
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Cross-platform mobile development
using Web Technologies

Diogo Costa

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Rui Maranhão (PhD)

July 10, 2013

Cross-platform mobile development using Web
Technologies

Diogo Costa

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: António Miguel Pontes Pimenta Monteiro (PhD)

External Examiner: José Maria Amaral Fernandes (PhD)

Supervisor: Rui Filipe Lima Maranhão de Abreu (PhD)

July 10, 2013

Abstract

There are many different mobile platforms nowadays that share the same applications, at least
their name and brand. The differences between each of these mobile platforms make it very hard
to build a single code base that runs in all platforms. However, efforts are being made to turn this
into a possible scenario.

Since almost all major platforms provide a web engine that supports HTML5, CSS3 and
Javascript, these technologies have become the base for most cross-platform development frame-
work efforts. Using HTML5, Javascript and an application wrapper, such as PhoneGap, it is
possible to make a web application that runs just like a native one. One of the major drawbacks of
this approach is developing the user interface. Each platform has its user interface guidelines and
designing an interface for each platform can be time consuming.

This dissertation addresses the implementation of framework that aims to simplify the devel-
opment of cross-platform applications using HTML5, CSS3 and Javascript, including a library that
auto-adjusts to the look and feel of the platform the application is running on. A demo application
will also be described, showcasing the developed framework.

Keywords: Mobile, HTML5, CSS3, Javascript, cross-platform, PhoneGap, Meems

i

ii

Resumo

Atualmente existem diferentes plataformas móveis que partilham as mesmas aplicações, ou pelo
menos o mesmo nome e marca. As diferenças entre estas plataformas móveis tornam muito difícil
a utilização do mesmo código fonte para a geração de executáveis para cada uma das plataformas.
Contudo, estão a ser feitos esforços no sentido de tornar este cenário uma realidade.

Visto que as grandes plataformas móveis disponíveis atualmente suportam HTML5, CSS3 e
Javascript, estas tecnologias tem vindo a tornar-se a base da maior parte dos esforços para criar
uma framework para desenvolvimento de aplicações móveis multiplataforma. Através da utiliza-
ção de HTML5, Javascript e um wrapper como o PhoneGap é possível criar uma aplicação web
que se assemelha e se comporta como uma aplicação nativa. No entanto, um dos grandes entraves
neste momento a este tipo de solução é o desenvolvimento da interface gráfica do utilizador. Cada
plataforma tem os seus próprios “guidelines” gráficos e desenvolver uma interface por plataforma
é uma tarefa que consome bastante tempo.

Esta dissertação endereça a implementação de uma framework que tem por objetivo a simpli-
ficação do desenvolvimento de aplicações móveis multiplataforma, recorrendo para isso às tec-
nologias HTML5, CSS3 e Javascript. A framework inclui uma biblioteca para desenvolvimento
de interfaces gráficas do utilizador que ajustam a sua aparência e comportamento consoante a
plataforma em que a aplicação está a ser executada. É descrita também uma aplicação de demon-
stração, cujo objetivo é mostrar como utilizar a framework desenvolvida e mostrar do que é capaz.

Keywords: aplicações, móveis, HTML5, CSS3, Javascript, multiplataforma, PhoneGap, Meems

iii

iv

Acknowledgements

I would like to say thank you to my family, particularly my grandparents, for supporting me during
the past year, when I worked and studied at the same time. Their contribute was crucial for me to
be able to finish this dissertation.

I would also like to thank my parents, for believing in me and their unconditional support, and
my girlfriend Marisa for fighting so that we can both have a good life in the future.

At last, but by no means least, I would like to thank my supervisor Rui Maranhão, for ac-
cepting to guide me throughout this dissertation and providing his support and expertise, and my
colleagues at Novabase for their friendship and support.

Thank you all.

v

vi

“Anything can change, because the smartphone revolution is still in the early stages.”

Tim Cook

vii

viii

Contents

1 Introduction 1
1.1 Context and Motivation . 2
1.2 Goals . 2
1.3 Dissertation’s Structure . 3

2 State of the Art 5
2.1 Mobile Operating Systems . 5
2.2 Approaches to Mobile Development . 6

2.2.1 Native . 6
2.2.2 Web . 7
2.2.3 Hybrid . 8
2.2.4 Publishing applications . 8

2.3 Web technologies . 9
2.3.1 The appearance of HTML5 . 9
2.3.2 Advantages of HTML5 . 10

2.4 Frameworks for developing mobile web applications 10
2.4.1 jQuery Mobile . 10
2.4.2 xui . 11
2.4.3 jQTouch . 11
2.4.4 Sencha Touch . 12
2.4.5 Wink toolkit . 12
2.4.6 Jo . 12
2.4.7 Kendo UI . 12
2.4.8 jqMobi and jqUI . 13
2.4.9 Comparison between frameworks . 14

2.5 Conclusions . 15

3 Case Studies 17
3.1 Facebook . 17
3.2 LinkedIn . 17
3.3 Exfm . 19
3.4 Conclusion . 20

4 Market Study and Analysis 23
4.1 Experience . 23

4.1.1 How many years of experience in software development do you have? . . 23
4.1.2 How many years of experience do you have in developing for mobile? . . 23
4.1.3 What platforms have you developed native applications for? 24

ix

CONTENTS

4.1.4 What kind of mobile apps do you develop? 24
4.1.5 Do you target one platform at a time, or do you have a team per platform? 24

4.2 HTML5, Javascript and CSS3 . 25
4.2.1 What’s your skill level in Javascript? . 25
4.2.2 What’s your skill level in HTML5 and CSS3? 25
4.2.3 Do you prefer HTML5 or Javascript for implementing user interfaces? . . 25

4.3 Features . 25
4.3.1 Analytics . 26
4.3.2 Hardware acceleration . 26
4.3.3 Configurable effects . 26
4.3.4 UI Widgets . 26
4.3.5 Data bindings between views and models 26
4.3.6 Cross-platform support . 27
4.3.7 Full SDK . 27
4.3.8 Documentation . 27
4.3.9 Internationalization (I18n) . 28
4.3.10 Extensions . 28
4.3.11 Monetization . 28

4.4 Conclusion . 28

5 The Meems Framework 31
5.1 Goals . 31
5.2 Concepts . 32

5.2.1 Widgets . 32
5.2.2 Model-View-ViewModel . 33
5.2.3 Observables . 34

5.3 Architecture . 35
5.3.1 AMD - Asynchronous Module Definition 36
5.3.2 Meems-events . 37
5.3.3 Meems-utils . 38
5.3.4 Meems-scroll . 42
5.3.5 Meems-ui . 46
5.3.6 Building user interfaces . 51
5.3.7 Effects . 54
5.3.8 Icons . 55

5.4 Documentation . 56
5.5 Conclusions . 57

6 RSS Reader: Demo Application 59
6.1 Requirements . 59

6.1.1 Functional Requirements . 59
6.1.2 Non-functional Requirements . 60

6.2 User Interface . 61
6.2.1 Login Screen . 62
6.2.2 News Screen . 62
6.2.3 Manage Feeds Screen . 62
6.2.4 News Detail Screen . 63

6.3 Architecture . 63
6.3.1 Back-end Server . 63

x

CONTENTS

6.3.2 Mobile Application . 65
6.3.3 Deployment and Packaging . 70

6.4 Conclusions . 72

7 Conclusions 75
7.1 Future Work . 76

References 77

A Survey Results 79
A.1 Experience . 79

A.1.1 How many years of experience in software development do you have? . . 79
A.1.2 How many years of experience in software development do you have? . . 79
A.1.3 What platforms have you developed native applications for? 80
A.1.4 What kind of mobile apps do you develop? 80
A.1.5 Do you target one platform at a time, or do you have a team per platform? 81

A.2 HTML5, Javascript and CSS3 . 81
A.2.1 What’s your skill level in Javascript? . 81
A.2.2 What’s your skill level in HTML5 and CSS3? 81
A.2.3 Do you prefer HTML5 or Javascript for implementing user interfaces? . . 81

A.3 Features . 82
A.3.1 Classify the functionalities/characteristics below according to their impor-

tance to you . 82

xi

CONTENTS

xii

List of Figures

2.1 Kendo UI . 12
2.2 Kendo UI on iPhone, Android and BlackBerry 13
2.3 jqMobi . 13

3.1 Native Android Facebook application (left) and Fastbook (right). Credit: Sencha 18
3.2 Earlier version of LinkedIn mobile. Credit: LinkedIn 18
3.3 Exfm iPhone application (hybrid). Credit: Exfm 20
3.4 Exfm Android application (native). Credit: Exfm 20

5.1 The Meems Framework logo . 31
5.2 Model-View-ViewModel design pattern . 33
5.3 Dependencies between the libraries that constitute the Meems framework 36
5.4 Page structure . 47
5.5 Page in Android . 47
5.6 Page in iOS . 47
5.7 Menu closed . 48
5.8 Menu open . 48
5.9 Menu always visible . 48
5.10 A button group in Android (left) and iOS (right) 48
5.11 A form example in Android (left) and iOS (right) 49
5.12 A simple list (left) and a list with ordering and multiple selection (right) 50
5.13 Example of switches, sliders and text fields in Android (left) and iOS (right) . . . 51

6.1 Simplified use case diagram . 60
6.2 Low fidelity mockup. From top-left to bottom right: login screen, empty news

screen, feeds screen, manage feeds screen, news screen, news detail screen 61
6.3 Flow between the screens . 62
6.4 Architecture overview . 64
6.5 RSS Reader running on Android 4.2.2 . 70
6.6 RSS Reader running on iOS Simulator, in Safari browser 71

xiii

LIST OF FIGURES

xiv

Abbreviations

ADT Android Developer Tools
API Application Programming Interface
CSS Cascading Style Sheets
GPS Global Positioning System
HTML HyperText Markup Language
IDE Integrated Development Environment
NDK Native Development Kit
SDK Software Development Kit
SPA Single Page Application
UI User Interface
W3C World Wide Web Consortium
WHATWG Web Hypertext Application Technology Working Group

xv

Chapter 1

Introduction

Smartphones are changing the way we live our lives. Checking emails, listening to music, sending

texts, video chatting, GPS navigation, watching movies or taking notes are just a small subset of

the tasks most smartphone owners perform. The practicality of these small but powerful devices

that fit in a pocket is attracting more people every day.

In 2007 and 2008, the two major mobile operating systems were released to the market: Ap-

ple’s iOS and Google’s Android. Together they power the largest group of smartphones, making

them the most popular mobile operating systems. Others have appeared meanwhile, like Windows

Phone, BlackBerry OS or Bada, each with relative success.

The success of smartphones has been also directly related to its application ecosystem. The

ability to download third party applications allows users to power up their phones with new func-

tionalities without being tied to the operating system’s provider. This also created opportunities

for companies and developers to profit by developing new applications. Many have taken this

opportunity and today there are thousands of mobile applications available for download.

Developing for a mobile platform, however, has brought new challenges compared to the

traditional development of desktop applications. Smartphones have different specifications and

capabilities than desktop computers and require good planning and implementation to build an

application that is easy to use and useful for the final users. Some guidelines and general co-

herence is therefore necessary to reduce fragmentation and provide users with an excellent user

experience on their usually small-sized-screen smartphones. Every mobile operating system has

its own development, graphics and user interface guidelines. Following these guidelines ensures

that third-party applications integrate well with the rest of the platform.

However, this fragmentation also means that in order to build applications for several plat-

forms, one must develop different applications, one per platform. The advent of HTML5 and its

growing support in mobile browsers has put the development of cross-platform web applications

as an alternative to native development. Web applications do have limitations, but with the in-

creasing popularity of this approach, people have been turning to hybrid applications, mixing web

and native code to produce cross-platform applications.

1

Introduction

1.1 Context and Motivation

This dissertation was born from my personal necessity to build mobile applications that look native

as fast as possible and without spending too much money. After a quick survey of the available

tools in market, I wasn’t satisfied with the fact that no good free/open-source solutions were avail-

able. PhoneGap looked like a great starting point, enabling the packaging of web applications for

six different platforms, but, although there are many frameworks and libraries for the development

of mobile web applications, none would provide a native look and feel according with the platform

it was running on.

Developing mobile applications for different platforms requires different programming lan-

guages and tools. Using web technologies, one can use HTML5, CSS3 and Javascript to build

applications that run across all major operating systems, thus saving time and money while pro-

ducing more. This only applies to certain types of applications, of course. There are cases when a

native application is not only desirable but required, like those that need to interface directly with

the phone’s hardware.

With this dissertation, I intend to develop a framework that help developers build their mobile

applications faster and cheaper, but still looking good on each mobile operating system, focusing

on Android and iOS at first.

1.2 Goals

The main goal of this project is to produce a framework that enables developers to build mobile

web applications that look native on Android and iOS platforms using web technologies, namely

HTML5, CSS3 and Javascript. The developed framework will use open-source and will also

be available entirely as open-source, as a contribution to the community that has offered, and

continues to offer, me so much, in terms of knowledge, support and free technology. This will also

enable other people to contribute to the project, allowing it to grow and be useful to other people.

But first, a study over the existing and most popular technologies must be performed in order

to identify their most attractive aspects and those they are lacking, so that they can be included in

the framework. The necessities of the market and developers is also to be taken into account, so a

survey must also take place.

The definition of the user interface must be extensible, allowing the developer to create its own

component when necessary, and must adapt itself to the look&feel of the platform it is running on,

allowing, however, the developer to override the default behaviour if needed.

The framework must use existing, approved and popular libraries and tools, like PhoneGap

and require.js, to be built over good practices and to appeal to as much developers as possible.

After developing the base framework, a demonstration application will also be developed. This

application, being for demonstration purposes only, will showcase the framework and how to use

it. The application must run on Android, iOS and the most common web browsers. A server-side

2

Introduction

component must also be developed in order to demonstrate how to build an application end-to-end

using Javascript as the base programming language.

1.3 Dissertation’s Structure

This dissertation has 5 main chapters: “State of the Art” (chapter 2), “Case Studies” (chapter 3),

“Market Study and Analysis” (chapter 4), “The Meems Framework” (chapter 5) and “RSS Reader:

Demo Application” (chapter 6).

After the introductory chapter (chapter 1), different approaches when developing for mobile

devices will be shown in chapter 2, along with general information on the mobile operating sys-

tems available nowadays and how to web applications can be published in the stores of the vendors

of the platform. Then, the main web technologies this dissertation focus on are presented, namely

HTML5, CSS3 and Javascript. In this chapter, a subset of the existing frameworks, tools and li-

braries that enable developers to build web mobile applications will also be presented, along with

a comparison between them.

In chapter 3, some interesting and famous mobile web applications are exposed, along with a

short analysis of the patterns used in the user interface and general trivia about the development of

each application. Some conclusions about developing for mobile and the advantages of using web

technologies for such task are drawn.

Chapter 4 reveals the main results of a survey that was conducted in the context of this disser-

tation are presented and interpreted.

Chapter 5 describes the development of the main framework that was born from this disserta-

tion. The goals and main concepts of the framework are discussed first, followed by a description

of the architecture and functionalities developed. The difficulties and challenges in developing this

solution are presented at the end of the chapter, together with conclusions about the development.

Besides the main framework, a demonstration application was also developed, as described

in chapter 6. The requirements of the application, its user interface and architecture of both mo-

bile client and back-end are described in this chapter. Some conclusions about the development

experience are drawn.

Finally, chapter 7 closes this dissertation, with overall conclusions about the work developed

and its goals, a personal opinion about the future of the world of mobile development and some

ideas about what work could be developed in the future to improve the Meems framework.

3

Introduction

4

Chapter 2

State of the Art

The development of mobile applications is a recent field and has been growing in the past few

years. The appearance of more powerful smartphones and operating systems is causing this field

to evolve and grow exponentially.

In this chapter, a brief history of recent mobile operating systems is presented, along with a

description of the common approaches taken to develop third-party software to these platforms,

with special focus on web technologies, particularly the HTML5 standard. Some mobile web

application development frameworks and libraries are also presented and analyzed.

Finally, the results of the survey performed in the context of this dissertation are presented and

interpreted, closing off this chapter with a few conclusions about the gaps this dissertation intends

to fill.

2.1 Mobile Operating Systems

Smartphones have become an important tool in our life. They’ve become practical, powerful and

extensible. The evolution in hardware and software is intertwined, better hardware enables better

software, and better software makes the user want more, leading to better hardware.

In the past few years, a revolution in the mobile fields has took place. The advent of modern

operating systems like Android and iOS has changed the way people use smartphones.

2007 and 2008 were the years Google’s Android and Apple’s iOS were presented to the world.

The iPhone, by Apple, was first revealed in January 2007, running the “iPhone OS”, re-branded

in 2010 to iOS. Later, in September 2008, the first phone running Google’s Android operating

system was presented: the T-Mobile G1.

The iPhone started this revolution, bringing to users a powerful phone designed to do more

than just communicate. It included multitasking and graphics capabilities and sported a multi-

touch screen, accelerometers, camera and other hardware components that contributed to a rich

user experience. People were very receptive to this device, as sales have proven: 6.1 million 1st

generation iPhones were sold over five quarters.[App09]

5

State of the Art

The T-Mobile G1, also known as HTC Dream, the first phone powered by Android, was quite

as successful as the iPhone, but Android has been evolving and gaining lovers all over the world.

In the first quarter of 2013, Android was the leader operating system in the market, with a 75%

market share, followed by iOS’s 17.3% and Windows Phone’s 3.2%.[IDC13]

One of the differentiating aspects that contributed to the success of these platforms over the

dominant operating systems when they appeared, was the creation of a whole ecosystem around

applications. Both Apple and Google created an online store to enable third-party vendors to

distribute their applications and to allow users to download applications from a common and safe

place. The possibility to extend the native platform with new applications meant that whenever an

user feels a feature is missing, he can complement the platform with a third party application. This

way, operating system vendors can focus on the platform, other companies and indie developers

can build and distribute their own applications and make money, and the final user gets the benefits

of a powerful multitasking device.

The next section describes how developers can build applications for these platforms.

2.2 Approaches to Mobile Development

When developing for mobile platforms, there are three possible approaches: native, web and hy-

brid.

The native approach consists of using solely the platform’s software development toolkit to

build an application that is compiled to the platform’s native language.

The web approach consists of using web technology, such as HTML5, Javascript and CSS,

to build a web application, accessible through the smartphone’s browser and that the user can

bookmark for later access.

Finally, the hybrid approach tries to combine the native and web approaches seamlessly, pro-

viding the final user with an application that seems native while allowing the developer to mix

native and web technologies.

2.2.1 Native

Most, if not all, modern mobile operating systems provide developers with the necessary tools to

develop applications that can later be installed by users to extend the smartphone capabilities. Each

vendor provides developers with different tools, but the basics include a compiler and a debugger.

These tools enable the developer to build native applications, with access to all the capabilities

of the smartphone, such as camera, GPS, sensors, hardware acceleration, etc. Taking advantage

of this capabilities, the developer can build very interesting applications that integrate with the

platform and provide an excellent user experience.

For instance, two of the most prominent platforms, Android and iOS, provide several tools for

application development.

6

State of the Art

Android tools allow developers to build applications for Android on Windows, Linux and

Mac platforms, using the Android SDK Tools, an Android system image emulator, platform-

specific tools and, optionally, the ADT plugin for the Eclipse IDE. Applications developed with

this tools will be compiled to bytecode and run over Android’s optimized virtual machine named

Dalvik.[Goo13b] For developing applications that need extra performance, the Android NDK is

available. It is a toolset that allows developers to use C or C++ to build native code.[Goo13a]

For developing applications for the iOS platform, which means targeting the iPhone, iPod

and iPad devices, it is mandatory to use Xcode, Apple’s integrated development environment,

which already includes the iOS SDK. It is only available for Mac platforms, a restriction that

makes developing for this platform an expensive investment if the developer doesn’t own a Mac

device already. Application logic is specified using Objective-C and a screen and flow designer is

included in the toolkit. Applications can be tested by running in the included simulator. [App13]

2.2.2 Web

The idea of using a single code base for targeting several platforms has been the main motivation

for using web technologies such as HTML5, CSS3 and Javascript to develop applications. And

with access to the Internet and navigating through websites being a common functionality on

smartphones, web applications for mobile devices have become popular.

Recent smartphones include powerful Web browsers and Javascript engines, capable of ren-

dering complex websites and with a very good support of the HTML5 and CSS3 standards. The

default browsers in Android, iOS and BlackBerry 6+ use the WebKit layout engine to render web

pages. This toolkit is well known for its HTML5 and CSS3 support. Other layout engines are

also used by other platforms: Internet Explorer Mobile uses Trident, Opera Mobile and Mini use

Presto, Firefox Mobile uses Gecko. Although the standards are the same, their implementation

may vary from an engine to another. This changes may mean that the same page will be rendered

a bit different in distinct browsers. Therefore, in order to provide a cross-platform experience, the

developer must be aware of the differences between each engine and try to accommodate them.

Besides the layout engine, most mobile browsers also incorporate a Javascript engine, respon-

sible for handling all the scripted logic of the web pages. There are also different engines, which

can cause different behaviour, even in the same platform. For instance, the default browsers of dif-

ferent smartphones with the Android operating system, known for its fragmentation, can use the

JavascriptCore or Google’s V8 Javascript engines, depending on the capabilities of the smartphone

and its vendor. Although the programming language is the same, the performance of each engine is

different, and this can cause different behaviours in different browsers, sometimes compromising

the user experience.

To deal with these differences, developers often use code libraries and frameworks that provide

an abstraction layer and deal with the particularities of each platform, speeding up the development

task and ensuring a consistent user experience.

7

State of the Art

2.2.3 Hybrid

The downside of web applications is that the user does not perceive them as native, as they must

run inside the browser. Another downside is the access to the capabilities of the phone that are not

exposed to the web application by the Javascript engine, such as the accelerometers or access to

the file system.

To circumvent this situation, a thin native wrapper can be used to hold the web application.

This wrapper is a native application that is customized with the application’s branding, such as its

name and icons, and, when opened, uses a web browser view to show the web application. It can

also be used to extend the Javascript API that is exposed to the application.

A very famous example of this is PhoneGap. PhoneGap, now owned by Adobe, “is an open

source solution for building cross-platform mobile applications with standards-based Web tech-

nologies like HTML, Javascript, CSS”. PhoneGap supports several platforms (iPhone (3G and

newer), Android, Blackberry OS, WebOS, Windows Phone 7, Symbian and Bada) and exposes

through Javascript many APIs to access the smartphone’s features: accelerometer, camera, com-

pass, contacts, file, geolocation, media, network, notifications and storage. And its functionality

can be extended through the plugin system.

Another solution that enables the use of web applications as native ones is appMobi. It pro-

vides developers with an HTML5 IDE, device emulation, debugging tools, game acceleration and

build services for iOS, Android and other platforms. AppMobi Cloud Services extends HTML5

with features like in-app purchasing, push messaging, analytics, authentication and more.

Other solutions take this approach a step further. Appcelerator’s Titanium Mobile allows the

development of native applications using Web technologies the same way PhoneGap does, but it

exposes a Javascript API that allows the creation of native UI components. So, the developer can

choose either to design the app with HTML and CSS or to use the API to build a native UI.

2.2.4 Publishing applications

After developing an application, the developer can distribute it in the vendor’s application store,

for instance, Google Play for Android applications, Apple Store for iOS applications or Window

Phone Apps+Games Store for Windows Phone applications. Each store has its own publishing

policy, but usually a fee must be paid to publish applications in these stores, be it one-time only

(Google Play) or yearly (iOS App Store). These policies can also restrict which applications can

be published, based on their look and feel, if they are native or not, if they add new functionalities

to existing applications and if they are compliant with the platform’s guidelines. [Wik12][Goo13c]

Web applications cannot apply for publishing in some application stores, most notably in

Google Play and Apple Store. These stores require applications to be native, or at least, to look

like a native application. This is one of the most frequent uses of webview containers like Phone-

Gap: to allow web applications to be published to application stores, targeting several platforms

with a single code-base.

8

State of the Art

2.3 Web technologies

Developing mobile applications using web technologies can bring great benefits to the develop-

ers in terms of cross-platform support and cost reduction. The promise of “write once, run ev-

erywhere” is very tempting and is what motivates the use of HTML5, CSS3 and Javascript for

building mobile applications.

In this section, we focus on how and why HTML5 appeared and how useful it can be to develop

cross-platform mobile applications.

2.3.1 The appearance of HTML5

The HTML5 standard began to be written in 2004 by the Web Hypertext Application Technology

Working Group (WHATWG), while the World Wide Web Consortium (W3C) was working on

XHTML 2.0. This standard was born from the disagreement between browser vendors and the

W3C on how the Web could be fixed. XHTML 2.0 was too strict and wasn’t backwards compatible

with HTML, making it harsh for developers to build cross-browser websites. In 2008, WHATWG

released to the public the first draft of the specification and, despite not being finished at the time,

parts of HTML5 had already been implemented in web browsers. Later, in 2009, the W3C decided

to drop the development of XHTML 2.0 and teamed up with the WHATWG to help developing

HTML5.

HTML5 is the evolution of HTML4, a standard that adds many new functionalities and APIs

to web browsers, trying to supersede external plugins like Flash, Silverlight and Java. These

include audio and video support, scalable vector graphics, drag-and-drop, history management,

web storage, geo-location and many others.

Enabling sites to store data larger than a cookie in the client’s web browser is also a functional-

ity included in the standard. It enables the developer to cache files, images or data manually. This

is a subject that browser vendors have disagreed on, leading to four different APIs: web storage,

web SQL database, IndexedDB and filesystem.[Mah13] Their support is very different, but hope-

fully this will change in the future. Besides these method for storing data, HTML5 also provide

offline caching, where the resources of the web site can be cached and used for running it when no

connectivity exists. This is very useful. Take, for instance, the Gmail Offline1 web application. It

allows the user to connect with his Gmail account and download his emails to the browser’s offline

storage and the application itself to the offline cache. This way, when the internet connection is

down, the user is still able to open the application and view the emails he downloaded previously.

Browsers are not for sharing only text anymore. Loads of videos and audio are downloaded

each day, especially since the appearance of video sharing sites like YouTube. Have gained such

importance, the HTML5 standard introduces native support for reproducing video and audio with-

out external plugins, like Adobe Flash, which are often missing in mobile. The supported formats

are not yet specified, but “Ogg Theora” and “H.264” are the most likely to be supported since

1http://goo.gl/T4RYW

9

http://goo.gl/T4RYW

State of the Art

they are both widely used open standards. At the moment, Internet Explorer and Safari support

“H.264”, while Firefox and Opera support “Ogg Theora” and Chrome supports both.

Besides video and audio, graphics are also very important in a web site nowadays. HTML5

introduces the canvas element. It is a drawing area that the developer can fill using the Javascript

API. It supports different context renderers; at the moment, only 2d and 3d (WebGL) are sup-

ported. It can be used for games and advanced graphics.

HTML5 exposes many more features to enable developers to build advanced web sites and

applications. However, HTML5 alone does not enable a developer to build rich applications.

Using Javascript, developers can manipulate the DOM, build business logic rules and use several

APIs the browsers provide to interact with the page and therefore engage the user. The use of

cascading style sheets (CSS) enables the styling and manipulation of DOM elements, allowing a

developer to customize the web page as he desires.

2.3.2 Advantages of HTML5

HTML5 is indeed bringing many new features to web browsers, including the mobile ones. The

standard is not yet finished, but when it does and the most common browsers implement it com-

pletely, web applications based on it will truly be cross-platform. At the moment, most browsers

already implement most parts of the standard, especially the mobile browsers of Android and iOS.

Each mobile operating system provides its own software development kit. For instance, they

differ in programming languages: Java is used to build applications for Android while Objective-C

must be used for developing applications for iOS. Other platforms also use other programming

languages. This means that an application developed for one platform, can not be used in another

without the code being ported.

This is where HTML5 has the upper hand. Using HTML5, CSS3 and Javascript, developers

can target several platforms were the code once. There are already many frameworks and libraries

that enable developers to use these technologies to build mobile applications, as is shown in the

next section.

2.4 Frameworks for developing mobile web applications

In order to speed up the development of web applications, developers often use third-party frame-

works. There are many frameworks available, the next subsections will focus on some of the most

used, exploring their features, advantages and disadvantages.

2.4.1 jQuery Mobile

JQuery Mobile2 is a framework for developing user interfaces for mobile devices based on the

famous jQuery and jQuery UI libraries.

2http://jquerymobile.com/

10

http://jquerymobile.com/

State of the Art

JQuery Mobile provides a unified user interface system that works seamlessly across all pop-

ular mobile device platforms. It focus on being feature-rich, lightweight, with a flexible theming

system and ThemeRoller tool. Including an Ajax navigation system, page transitions and a core set

of UI widgets (pages, dialogs, toolbars, listviews, buttons with icons, form elements, accordions,

collapsibles, and more), jQuery Mobile is one the most used frameworks for developing web apps.

It is easy to learn, thanks to its simple, markup-based system to applying behavior and theming.

More advanced developers can use the API of global configuration options, events, and methods

to apply scripting or generate dynamic pages.

JQuery Mobile supports many devices, with the full compatibility list available in its website.

“To make this broad support possible, all pages in jQuery Mobile are built on a foundation of clean,

semantic HTML to ensure compatibility with pretty much any web-enabled device. In devices that

interpret CSS and JavaScript, jQuery Mobile applies progressive enhancement techniques to un-

obtrusively transform the semantic page into a rich, interactive experience that leverages the power

of jQuery and CSS. Accessibility features such as WAI-ARIA are tightly integrated throughout

the framework to provide support for screen readers and other assisting technologies.”[jF+12]

2.4.2 xui

Xui3 is a micro library DOM library for building HTML5 mobile applications. It provides methods

for manipulating DOM objects, handling events and effects, AJAX and styling, but, unlike jQuery,

it does not provide a UI toolkit, so the developer is responsible for that.

Being a micro library and not a full framework, its second place on the rank can be explained

by its inclusion in the PhoneGap framework. Xui was developed along with PhoneGap out of

necessity for a framework that was mobile-oriented.

2.4.3 jQTouch

JQTouch4 is a “Zepto/jQuery plugin for mobile web development on the iPhone, Android, iPod

Touch and other devices”.[Kan13a]

It is an open-source library sponsored by Sencha and has the following features: easy setup,

flexible themes (using SASS), native WebKit animations, callback events, swipe detection, exten-

sions, small file size and iOS5 scrolling.

To build an user interface the developer uses HTML and applies classes and identifiers to

div elements which will be processed by jQTouch and transformed into pages with headers and

navigation when the page loads. The interface can be themed, but is does not provide a native

look&feel.

3http://xuijs.com/
4http://www.jqtouch.com/

11

http://xuijs.com/
http://www.jqtouch.com/

State of the Art

2.4.4 Sencha Touch

Sencha Touch5 is a high-performance HTML5 mobile application framework that enables devel-

opers to build cross-platform applications using Javascript that work on iOS, Android, BlackBerry,

Kindle Fire and other devices. It features smooth scrolling and animations, more than 50 widgets,

fast adaptive layout engine, native packaging, advanced lists and much more.

The designing of the user interface is done via Javascript, using the provided API. The gen-

erated UI can be themed, but it does not adapt itself to the look&feel of the platform. It is well

documented, has a large community and many demo and real-world applications to learn from,

making it one of the most successful frameworks for web mobile development.

2.4.5 Wink toolkit

The Wink toolkit6 is also a Javascript framework for developing mobile web applications. It is

lightweight, provides touch events handling, DOM manipulation, CSS transforms and several UI

components. The interfaces are designed using Javascript to invoke their API. Available for free,

it currently supports iOS, Android, BlackBerry, Bada and Windows Phone 7.

Like other frameworks described above, the generated user interface can be customized using

CSS or by using one of the provided themes. And once again, it does not adapt the interface to the

platform’s look&feel.

It is highly modular and the existing demo applications, tutorials and community are good

starting point for starting to use this toolkit.

2.4.6 Jo

Jo7 is another framework that allows a developer to build mobile applications using Javascript and

CSS. The generated UI is supposed to look native, but only on iOS. It takes full advantage of

CSS3 to style the screens making it easy to customize. The documentation is good and there are a

few demos, but it does not seem to be used by many applications so far.

2.4.7 Kendo UI

Figure 2.1: Kendo UI

Kendo UI Mobile8 is a complete framework for developing cross-platform web applications

that look native in Android, iOS and BlackBerry devices. Differences between platforms are

5http://www.sencha.com/products/touch/
6http://www.winktoolkit.org
7http://joapp.com/
8http://www.kendoui.com/

12

http://www.sencha.com/products/touch/
http://www.winktoolkit.org
http://joapp.com/
http://www.kendoui.com/

State of the Art

automatically dealt with by the framework, adapting the user interface to comply with the platform

standards.

The framework promotes the separation between the application’s logic and the user interface.

Three central concepts define an app: application logic, which is written in Javascript, layouts and

views, both written with HTML. The application logic layer manages all navigation, application

history, loading views and other essential mobile app tasks, besides the logic associated with the

app’s business logic. Layouts define reusable portions of the application, similar to templates. Its

often used to promote maintainability by defining common view areas used across multiple views.

Finally, views are individual pages of the app. Most applications will have at least one view.

Currently, Kendo UI only supports iOS, Android and BlackBerry OS. Besides the native-

like theming and layout system, it is also a complete mobile application framework, handling

navigation, views, templates, animations and history. It can be downloaded for a 30-day trial, after

which a license must be bought.

Figure 2.2: Kendo UI on iPhone, Android and BlackBerry

2.4.8 jqMobi and jqUI

Figure 2.3: jqMobi

JqMobi9 is a small Javascript library for mobile HTML5 application development that can

9http://www.jqmobi.com/

13

http://www.jqmobi.com/

State of the Art

replace jQuery in mobile devices. JqUI is a UI toolkit for building user interfaces for mobile

applications using HTML5.

Using HTML5 elements such as header, nav and footer and some custom data- at-

tributes, jqUI allows a developer to specify the user interface of a whole application and customize

it through CSS and Javascript. It targets mobile WebKit browsers, so it works on iOS and Android

platforms. It has a small footprint of only 22kb when gzipped and supports plugins for extending

functionality.

The generated user interface can be styled using themes, but, unlike Kendo UI, it does not

adapt itself to the platform’s look and feel. It does provide an overall design that works nicely

on mobile devices, which consists of a fixed header and footer, a content area in the middle and

a menu on the side that collapses and expands on user command on small screens or is always

visible in larger screens.

Through the use of plugins, the developer can extend the framework with new functionalities

like sub-panels, internationalization, advertisement or maps.

JqMobi and jqUI are both open-source projects.

2.4.9 Comparison between frameworks

Despite not being a listing of all available frameworks, the list above includes enough frameworks

to analyze the current state of the art.

HTML5 is still under development and the difference between platforms and their different

implementations of HTML5 caused many frameworks to appear, each with its way of tackling the

problem, trying to provide developers with the tools for developing better applications that run on

as many devices as possible, are cost effective and user friendly.

Although all these frameworks leverage the power of HTML5, there are clearly two different

approaches as to how the developer designs the applications. JQuery Mobile, jQTouch, Kendo UI

and jqMobi try to extend HTML, allowing the user to write the application’s screens in HTML and

then applying custom identifiers, CSS classes or data- attributes to provide context and meaning

to a specific part of the HTML so that the framework can than transform it into a part of the final

application. On the other hand, Sencha Touch, Wink and Jo force the developer to design all the

screens in Javascript through the use of their own API. Each approach has its advantages and

disadvantages. In the first approach, the traditional HTML file and structure is maintained, the

developer just has to make sure that it is structured the correct way so that the framework can

interpret the file correctly. However, it is less flexible when compared with Javascript and there is

the initial overhead of processing the file to prepare the user interface each time the application is

loaded. In the second approach, although it is much more flexible, it requires the user to learn a

whole new API. Also, the design of the screens is not as well structured as in the first approach,

making it harder to be maintained by a designer that doesn’t know Javascript.

As far as look&feel goes, all frameworks provide a consistent user experience across several

platforms, mostly because its design and behaviour is the same on every platform. Most frame-

works do support theming, but this is not enough to emulate the native look&feel of a platform.

14

State of the Art

Name Type HTML5-based UI JS-based UI Cost Native looks
jQuery Mobile Library Yes No Free No
jQTouch Library Yes No Free No
Sencha Touch Framework No Yes Free/Paid No
Wink Framework No Yes Free No
Jo Framework No Yes Free No
Kendo UI Framework Yes No Paid Yes
jqMobi Library Yes Yes Free No

Table 2.1: Comparison between frameworks

The exception to this is Kendo UI. Of all the frameworks above, it is the only one that tries to adapt

the user interface to the platform’s look&feel, for instance, tabs will be placed on top in Android

phones, on the bottom with labels in iOS or on bottom without labels in BlackBerry. Also, the

theme color and images are automatically changed to themes specific for each platform. Although

it still cannot pose as a real native application, it does a better job than any other framework.

2.5 Conclusions

The smartphone world continues to evolve at an accelerated pace and developers are constantly

looking for new ways to speed up the development process of their applications. Web technolo-

gies have a good support on recent mobile platforms, making them a good investment for cross-

platform development, depending on the kind of application that is being developed. And com-

bined with products like PhoneGap, web applications can pose as native applications and gain

access to hardware features that otherwise they wouldn’t have. This enables developers to build

powerful applications using only HTML5, CSS3 and Javascript.

There are already many frameworks and libraries that aim to make it easier for the developer

to build mobile web applications. However, most of these frameworks and libraries don’t provide

a native look&feel, rather providing themes that stay consistent across platforms. If a web applica-

tion wishes to truly integrate with the platform it is running on, then the user interface should look

native. However, this should be achieved without requiring the user to define multiple interfaces,

one per platform.

As so, there is an opportunity and necessity in creating a tool that builds user interfaces that

are automatically adjusted to the look&feel of the platform the application is running on, and it is

precisely this that I propose to do in this dissertation.

15

State of the Art

16

Chapter 3

Case Studies

In this chapter, some known hybrid applications are analyzed to better understand the type of

applications that employ web technologies and the design patterns that were used.

3.1 Facebook

The Facebook mobile application is very popular, with around 470 million mobile users, where

140 million people use the iPhone app and 176 million use the Android app.[Eva13].

Until the end of 2012, beginning of 2013, Facebook’s mobile application was powered by

HTML5. However, Facebook decided to change to native development, saying that betting too

much on HTML5 was a mistake.[Ola12]

The developers of Sencha Touch, however, did not believe that the problem was HTML5, but

rather the techniques used by the developers of Facebook, so they developed Fastbook, a proof-

of-concept web application that implements the basic features of Facebook, implemented using

the Sencha Touch framework. The Fastbook application even managed to beat Facebook’s native

Android application in terms of performance.[JA12]

In terms of user interface (see figure 3.1), both applications use a top bar with action buttons

and the rest of the screen is filled with a list component, which contains the posts. A navigation

drawer is also present on both applications. Swiping from the left edge or clicking on the top-

left button reveals the navigation drawer, allowing the user to explore through other parts of the

application.

Both the native applications (iOS, Android) and the Fastbook application use their own appear-

ance, without adjusting to the looks of the platform, therefore looking the same on iOS, Android

and even Windows Phone.[Thu13]

3.2 LinkedIn

LinkedIn is a social networking website, used mainly for professional networking, with more than

200 million members as the beginning of 2013.[Nis13]

17

Case Studies

Figure 3.1: Native Android Facebook application (left) and Fastbook (right). Credit: Sencha

In mid 2011, LinkedIn launched its mobile application for Android and iOS. This application

was actually a hybrid application, leveraging the power of HTML5 for 95% of the graphical inter-

face. Later, in May 2012, they also launched an iPad application, again also powered by HTML5.

Both applications were well received, for its performance and design, which was pleasant and a

great improvement when compared to the web site version, which was the only interface available

to mobile users before the launch of the applications. It’s also worth noting that the company mi-

grated their back-end code from Ruby on Rails to node.js, which led to an increase of performance

and scalability. [O’D11, O’D12]

Figure 3.2: Earlier version of LinkedIn mobile. Credit: LinkedIn

18

Case Studies

Figure 3.2 shows the first mobile application that LinkedIn launched for Android and iOS.

It shows a slick design, which seems like a variant of the native design of iOS, a top bar with a

centered title and action buttons on each side, with a few quirks, like the arrow beneath the title of

the screen indicating that it is possible to interact with the title to navigate through the application.

In terms of content, lists and tiles are common across the application, similar to many other mobile

applications. However, the interface of the application doesn’t adapt itself to the native look of the

platform, looking the same regardless of where it runs.

Later, in April 2013, LinkedIn announced new versions of their mobile applications. The nov-

elty in these new versions is that they are completely native. LinkedIn stopped using HTML5 for

building the user interface, because their users were spending more time inside of the application,

leading the application to be out of memory eventually. Another major reason invoked by Kiran

Prasad, LinkedIn’s senior director for mobile engineering, was the HTML5 ecosystem and its lack

of good developer and operations tools.[O’D13]

3.3 Exfm

Exfm is a social music discovery platform that was founded in 2010. It is powered by many music

sites and, besides a web site, provides iPhone and Android applications.

Recently, the CEO of Exfm, Dan Kantor, wrote an article documenting the team’s experience

porting their native iPhone application to a hybrid application, using HTML5 and PhoneGap.[Kan13b]

In this article, Kantor describes the key factors that led to this transformation and then presents a

few technical details and their implementations.

Before changing to a hybrid application, Exfm existed in three flavors: iPhone application,

Android application, web application for mobile and desktop. The Exfm team is very small,

consisting of only six people, which do most of the development. However, it contracted out a

lot of the native mobile application work, which has costs evidently. Discussing Exfm’s future

with Lucas Hrabovsky, the Chief Technical Officer (CTO) of Exfm, together they analyzed the

products current state (mobile applications, Python back-end and Javascript front-end) and their

hiring needs for the future. Since the six members of the team are well familiarized with Javascript,

they decided to use it for everything. So, they ported the back-end to node.js and used PhoneGap

for the mobile applications.

As a result of this transformation, their iOS application, which was initially rated 4 stars, went

up to 4.5 stars and has more daily installs than the former native application. It also allowed the

company to reduce costs by not having to hire work out. At the moment of writing, the hybrid

version was only released for iPhone. The iPad and Android versions are still native applications,

but the new versions are expect to be out soon.

In terms of user interface, the new iPhone application (figure 3.3) shows a different design from

the Android application (figure 3.4), but also different from the native look of iOS applications.

Overall, it shows a top bar with a title and action buttons on the side. The button on the left

side of the title takes the user to a menu screen, allowing him to quickly navigate throughout the

19

Case Studies

Figure 3.3: Exfm iPhone application (hybrid). Credit: Exfm

Figure 3.4: Exfm Android application (native). Credit: Exfm

application. This menu screen shows tabs that reveal lists of songs, people, sites and genres. When

playing music, a footer with player controls is shown.

Since the Android is native, one can notice the use of native components, like the tab host that

contains the applications primary screens and allows the user to quickly change between them,

or the lists with the native arrows on the right side. Only when the Android version of the new

hybrid application is released will it be possible to see if it maintains the native look of the native

application or if it will look the same as the iPhone application.

3.4 Conclusion

There are many more mobile applications available, but from these three examples some conclu-

sions can be drawn.

First, it is very interesting to see how companies and small teams bet on new technologies as

HTML5. Facebook and LinkedIn are both big companies and both initially betted in HTML5 for

developing their mobile applications, later migrating to native applications due to complications

encountered. On the other hand, the small team behind Exfm initially betted in developing native

20

Case Studies

mobile applications, beside their main web application, and later migrated to HTML5, since they

had to contract work out for developing the major part of the mobile applications. This was

solution because all members of the team knew Javascript. And as result of this migration, the

number of downloads increased and they managed to reduce costs. Also, the major reason for

abandoning HTML5 was the lack of experience with it, memory issues and the lack of good

developer tools, all factors that are expected to improve in a near future as browsers perfect their

implementation of the HTML5 standard.

Another interesting and relevant fact is that these applications use basically the same look on

every platform, even native ones, like Facebook’s. This makes the applications stand out from

an user’s point of view, because the user is not familiarized with the interface components. This

can be either good or bad. It can help the application distinguish itself from its competitors by

promoting a different and consistent look across platforms, but it can also cause the user to look

for another application that integrates better with his phone. For instance, earlier versions of

Facebook for Windows Phone 8 showed a native look and feel. But when a new beta version with

the same look and feel as the iOS and Android applications was released, users complained about

the lack of integration with the operating system, because they are accustomed to have a native

rich experience.[Thu13]

Finally, the applications share a common design pattern: top bar with title and action buttons,

a menu with options that is opened when the button on the left of the title is pressed and content

presented using lists and tiles. These characteristics seem to be popular with most iOS and Android

applications and are a basis for the framework that was developed in this thesis.

21

Case Studies

22

Chapter 4

Market Study and Analysis

In order to better understand the needs of developers that develop for mobile platforms, a survey

was distributed to college students and professionals.

The survey counts with a total of ninety nine (99) responses and was separated in three parts:

experience; HTML5, Javascript and CSS3 and, finally, features.

The full results of the survey are available in appendix A.

4.1 Experience

The purpose on the first part, experience, was to understand the profile of the people answering

the survey in terms of their experience in developing mobile applications and software in general.

It comprised of five questions:

4.1.1 How many years of experience in software development do you have?

As the question states, its purpose is to collect how much experience the people answering the

survey have developing software in general.

73% of the participants stated to have 1 or more years of experience, where 10%, 14%, 12%

and other 10% stated to have 4, 5, 6 and 10 years of experience, respectively. We can therefore

conclude that the vast majority of the participants has experience developing software in general.

4.1.2 How many years of experience do you have in developing for mobile?

This question intends to evaluate the experience of the participants in developing for mobile plat-

forms.

38% stated to have no experience developing for mobile platforms. The rest 62% stated to

have between 1 and 3 years of experience. This trend is in conformance with the rising of the

importance of mobile platforms in the past years and how easy developing software for those

platforms has become.

23

Market Study and Analysis

4.1.3 What platforms have you developed native applications for?

This question allows to determine the platforms the participants have developed for and, therefore,

are most comfortable with. This was multiple choice question, so the sum of totals can be greater

than 100%.

The platform participants have worked more with is Android, with 59% of votes, followed by

Windows Phone/Mobile with 19% of the votes. The iOS platform had 8% of votes.

The fact that Android had the most votes can be explained by its vast availability in the market

and the fact that the tools for developing native applications for it are free, bringing no costs in the

development phase.

Although the Windows Phone platform is recent, Windows Mobile has been around since

2003, which could explain the higher number of votes when compared with the iOS platform,

one of the most platforms nowadays. However, no participant stated to have more than 3 years

experience developing for mobile platforms, and the Windows Mobile platform has seen its last

stable update in 2010, 3 years ago, when Windows Phone first appeared. It is, therefore, impossible

to determine which of the platforms the participants wanted to refer to and this is definitely an

aspect to improve in future surveys.

The low vote count for the iOS platform can be explained by the high costs of developing

for this platform. It requires a device capable of running MacOSX, such as a MacBook, and a

developer license which costs around $99 (≈e 77) per year.

4.1.4 What kind of mobile apps do you develop?

How the developers approach the development of their mobile applications is also important, since

a hybrid approach is proposed in this dissertation.

87 participants answered this question. The majority of participants (53%) claim to develop

native applications, while 32% claim to develop web applications. The rest 15% are familiar with

hybrid applications.

A hybrid approach will most definitely interest the 32% that develop web applications, since

they’ll be able to use technologies they’re used to to provide a better experience for the end user.

The majority which develops native application can also be interest in an hybrid approach as a way

to target multiple platforms at once, reducing development costs. The next question approaches

this point of view.

4.1.5 Do you target one platform at a time, or do you have a team per platform?

The participants were confronted with three choices, regarding their approach when targeting more

than one platform: one platform at a time, a team per platform or targets only one platform. Not

answering this question, its assumed that the programmer targets more than one platform at a time.

Of the 65 participants that answered this question, 54% targets one platform at a time, while

40% target only one platform. 6% use one team per targeted platform.

24

Market Study and Analysis

Targeting only one platform at a time has its advantages from a managers point of view: target

one platform with a small team and see if it is successful and, if it is, use the same team to port it

to other platforms. And using more than one team to target several platforms is costly, although

the delivery time is shortened. Through a hybrid approach, however, the application would only

have to be developed once by a single team to target several platforms.

4.2 HTML5, Javascript and CSS3

The purpose of this part was to assess the familiarity and preferences of the participants towards

the HTML5, Javascript and CSS3 technologies.

4.2.1 What’s your skill level in Javascript?

Participants were asked to qualify their skill level in Javascript from a scale of 0 to 5, where 0

means “No skill” and 5 means “Advanced”.

From the 99 participants that answered this question, 23% stated to have no knowledge of

Javascript. 35% stated theirs skills to be average and above.

The adoption of the Javascript language is important for developing hybrid applications, so the

fact that the votes for the levels average and above are low can be an issue. But Javascript is de

facto programming language of the web, so there are lots of resources available for training.

4.2.2 What’s your skill level in HTML5 and CSS3?

This question follows the same principle as the previous answer, but now regarding HTML5 and

CSS3.

All 99 participants answered this question; 23% claimed to have no knowledge of HTML5 nor

CSS3 and 44% evaluate their skills as average or better.

4.2.3 Do you prefer HTML5 or Javascript for implementing user interfaces?

There are two ways of creating a user interface using web technologies: using HTML or using

Javascript. This question aims to determine the popularity of each of these approaches among the

participants.

35% of the participants prefers to use HTML5 while 10% prefers to use Javascript. The

majority 55% indicated to prefer to mix both technologies. Developing web applications normally

involves mixing Javascript, HTML and CSS, so the results of this question are actually satisfactory.

4.3 Features

The participants were asked to rate a set of features according to their usefulness, from “Not

important” to “Deal breaker”.

25

Market Study and Analysis

4.3.1 Analytics

Analytics are important to know more about who uses the application and how they use it. Services

like Google Analytics make this easy.

Results show that 36% of the 75 participants that answered this question consider analytics to

be an useful feature. 28% consider supporting it a must, while only 3% consider it to be a deal

breaker.

The developed framework will be supporting analytics indirectly through PhoneGap, since it

has plugins for this.

4.3.2 Hardware acceleration

In mobile devices, hardware acceleration is very important to give the user the best experience

possible, as animations and rendering in general will be smoother.

37% of the 76 participants that answered this question consider hardware acceleration to be

useful, 29% consider it a must, while 8% consider it to be a deal breaker.

Through the use of CSS3 transition and transform, the developed framework will take

advantage of hardware acceleration whenever it is supported.

4.3.3 Configurable effects

Smooth animations ensure a richer user experience. Using CSS3, the user can configure the ani-

mations.

Of all the participants, only 76 answered this question. 42% of the participant consider this

feature to be useful, 18% consider it to be a must and 3% consider it a deal breaker.

Since the developed framework has all design stated in external stylesheets, the developer can

easily extend them with new effects or configure existing ones.

4.3.4 UI Widgets

Graphical user interfaces are built using widgets, which are small components the user can interact

with.

39% of the 74 that answered this question considered widgets to be useful. 27% find it to be a

must and 8% considered it a deal breaker.

The developed framework provides a basic set of widgets, which will be discussed later in this

document.

4.3.5 Data bindings between views and models

In the Model-View-ViewModel design pattern, it is useful to use some sort of data binding mech-

anism. This mechanism allows layers to detect changes in objects and automatically update them-

selves. What this means to the developer is that he can just update a value in the view model

26

Market Study and Analysis

and the user interface will be automatically update. Likewise, when the user interacts with the

interface, the binded values are updated and the view model is notified.

41% of the 75 people that answered this question find data bindings to be useful. 31% find it

to be a must, while 8% consider it a deal breaker.

The developed framework includes a data binding mechanism called “Observables”, which

will be presented later on.

4.3.6 Cross-platform support

The purpose of this dissertation is to propose a framework that enables cross-platform development

of applications. This question intends to clarify if developers really feel the need for cross-platform

technologies.

75 people answered this question, 32% consider cross-platform support to be useful, other

32% consider it to be a necessity and 21% consider it to be a deal breaker.

Comparing to other features, this one has a high number of “deal breaker” votes, which means

people do want cross-platform technologies.

4.3.7 Full SDK

A full SDK provides developers with all the necessary tools and libraries they need to build a full

application.

Of the 72 people that answered this question, 35% find it to be useful while 29% and 18% find

it to be a must and a deal breaker, respectively.

The developed framework will not provide a full SDK initially, but since all the necessary

dependencies of the library will be compiled and minified together with the library, the developer

only needs to use his favorite Javascript IDE. The demonstration application that was developed

can also be used as a quick start project.

4.3.8 Documentation

A project’s documentation is very important, as it sometimes the only resource available that

describe the inner works of the project and how to use it.

The responses to this question show how important documentation really is, as it was the

question with more “deal breaker” responses: of the 74 participants that answered this question,

22% find it useful, 35% see it as a must, and 23

This dissertation will be used as documentation for the inner works of the developed platform.

Besides this, the code will be documented and an automatic documentation tool will be used to

generate the API documentation. A demonstration application was also developed in the context

of this dissertation and will serve as practical example.

27

Market Study and Analysis

4.3.9 Internationalization (I18n)

Internationalization, sometimes abbreviated to i18n, refers to the ability to translate the textual

content of the application to a predefined set of languages and switching between them according

a setting.

37% of the 75 participants that answered this question consider support for internationalization

to be useful, 31% consider it to be a must and 16% consider it to be a deal breaker.

Although the developed framework doesn’t support internalization directly, Require.js, one of

the core components of the framework, can be extended with a plugin1 that allows the developer

to load language bundles and use them in the application.

4.3.10 Extensions

Extensions allow the user to add a certain functionality to the framework if it is missing.

Of the 75 people that answered this question, 51% consider it to be useful, 16% and 3%

consider it to a must and a deal breaker, respectively.

Since the developed framework uses Require.js, the developer can inject custom modules when

necessary. The main factory method of creating widgets also allows the definition of custom

widgets.

4.3.11 Monetization

Monetization is the method through which developers gain profits from their applications. One

of the most common ways of monetization is through the use of advertising, embedded in the

application.

Of the 71 people that answered this question, 46% consider it to be useful, 15% and 4%

consider it to be a must and a deal breaker, respectively.

The developed framework has currently no standard way to show advertising or support for

other monetization techniques. However, using the Html widget, developers can inject custom

HTML, thus making it possible to inject code that shows ads.

4.4 Conclusion

The purpose of this survey was to see if the goals for this dissertation are aligned with the neces-

sities and desires of its intended target audience. Although the number of participants was low,

the responses that were obtained showed that most of the goals and proposed features where well

accepted by the participants.

Most of the feedback received was taken into account when developing the framework. De-

cisions to drop some of the functionalities were made, mostly due to time constraints, but also

because the core products that the framework can be extended through plugins to include them.

1http://requirejs.org/docs/api.html#i18n

28

http://requirejs.org/docs/api.html#i18n

Market Study and Analysis

This was the case for internationalization, analytics, monetization and providing a full SDK. An-

other decision that was taken is to support only the use of Javascript to define the user interface.

Since the Javascript layer is a necessity, it was decided to leave out the support of HTML5 in-

terfaces. However, in the future, a translator of HTML5 or any other specification language to

Javascript could be developed atop of the Javascript API.

The next chapters describe the framework that was developed and the core functionalities it

provides.

29

Market Study and Analysis

30

Chapter 5

The Meems Framework

Meems
Figure 5.1: The Meems Framework logo

As stated before, most of the current mobile web development frameworks don’t really address

the cross-platform look&feel of user interfaces in a way that keeps both the user and the developer

happy.

5.1 Goals

The Meems framework is an attempt at making the life of developers easier, while trying to pro-

vide the final user with the best user experience possible, emulating the look&feel of his mobile

platform, by using the power of HTML5, CSS3 and Javascript, available in most modern mobile

operating systems.

Using the Meems framework, developers are able to put together user interfaces fast, without

the need to tweak each detail for each mobile platform. A single code base for all platforms, but

with a native-like look&feel on each of them.

31

The Meems Framework

The main goal was to build a framework for developing mobile user interfaces that is com-

pletely independent, has a small footprint, a modular architecture and that is both easy to learn and

to use, but also easy to tweak if necessary.

As a framework for building user interfaces, it also promotes the separation between the rep-

resentation of data and the business logic, following the Model-View-ViewModel design pattern.

At the moment, together with PhoneGap, Meems allows developers to target the Android and

iOS platforms, with native-like look&feel on each platform. It is possible to target other platforms,

but since Meems only supports these two platforms at the moment, the developer would have to

choose between one look&feel or the other.

5.2 Concepts

The Meems framework is based on a few key concepts that are essential for understanding it and

how to use it.

5.2.1 Widgets

A widget is an element that influences directly the user interface, be it a control or a layout man-

ager, it is something that users will notice and possibly interact with. Meems possesses a set of

basic widgets and allows the final user to use custom widgets.

When a widget is initiated, it’ll create DOM objects that will be the visual representation of the

widget. These objects are usually assigned CSS classes that can be used to style the widget. The

widgets are themed differently for each mobile platform supported. The widget itself can also de-

tect the platform and behave differently in each platform. Take, for instance, the tab group widget.

This widgets aggregates several named pages, showing one at once together with a navigation bar

with the name of each page (called tabs). Depending on the platform, the navigation bar can either

be on top of the page or on the bottom. Although configurable by the user, the default position

of the bar will be different according to the platform, for instance, it will be on top on Android

devices and on the bottom for iOS devices.

Widgets are also responsible for handling DOM events and mapping them to Meems internal

events, converting them to meaningful events in the context of the widget. The user can then

use the event handling capabilities of Meems to capture those events and process them. Taking

the previous example, a tab group widget must capture the event that is triggered by the browser

when the user presses a tab, change to the selected page and fire an internal event notifying the

application that the tab has changed.

Widgets are the core of Meems framework. They are what allows the programmer to define

the user interface in a generic way, without worrying on how it will look on each platform. If a

platform is not yet supported, the widgets are the only thing that need to be updated to support it.

32

The Meems Framework

View

Data Binding

ViewModel

Model

Figure 5.2: Model-View-ViewModel design pattern

5.2.2 Model-View-ViewModel

While Meems only provides the "View" part of an application, its API is oriented towards the sepa-

ration of data representation and the application logic according with the Model-View-ViewModel

(MVVM) design pattern.

The MVVM design pattern promotes the separation of the application’s logic from the user

interface. The transfer of data between the two is done through data bindings and commands.

Three base concepts are introduced:

• Model, a domain object, representing the data that is to be user or manipulated somehow. It

is free of business and representation logic.

• View, the user interface where the data is presented and/or collected. The view can contain

behaviours, events and data-bindings and does not maintain state.

• ViewModel, acts as a translator between the model and the view layers, performing all the

necessary translations of the data. It exposes methods, commands, helpers to maintain the

state of the view and events. It can manipulate the view in response to changes in the model

and update the model when the view changes.

The MVVM pattern was first mentioned to the public by Microsoft’s John Gossman in a

blog post titled “Introduction to Model/View/ViewModel pattern for building WPF apps”. As

the title suggests, this pattern is an adaptation of the Model-View-Controller design pattern for

Windows Presentation Foundation (then codenamed Avalon). In his post, Glossman explains that

the purpose of this design pattern is to allow designers and programmers to collaborate, making the

View a sole responsibility of the designer, instead of the developer having to translate mock-ups

33

The Meems Framework

and designs to code. This scenario fitted Microsoft’s new markup language for interface design,

called XAML, that can be generated by tools designed to simplify the job of designers, most

notable Microsoft’s Expression. Using declarative data-bindings, the developer could bind the

application’s data to the user interface the designer built. So, data-binding is another base concept

for the MVVM pattern.

Data-binding is a mechanism that allows the View to notify the ViewModel whenever the user

changes the data and also allows the View to be notified when the Model has suffered changes,

normally triggered by an action of the user. This is particularly useful in complex user interfaces,

specially when the same data is used in several components.

Meems also aims to help both the developer and the designer. However, since it is in an

early stage, the specification of the user interface is done using Javascript. At later stages of

development, and probably outside of the context of this thesis, a mechanism of translation from

HTML5, or some other markup language, to Javascript will be developed.

After the user interface is built, the developer can bind data objects to the controls through the

use of observables.

5.2.3 Observables

Observables are data containers enhanced with a mechanism for notifying all the interested parties

when its contents have been modified.

Following the Observer design pattern, each observable stores a list of interested observers,

that will be notified whenever the content of the observable changes. Observables possess methods

for subscribing and unsubscribing observers at runtime.

Observables are the main mechanism for exchanging data between the user interface (View)

and view models in the Meems framework. Most properties of the available widgets support

observables and will be automatically updated when a change occurs. Likewise, whenever the

user changes the data through the user interface, the view model will be notified of the change so

that it can update itself.

Observables are used for listening for changes in specific properties, instead of entire objects.

The example code below shows how to use observables in the Meems framework.

1 / / D e f i n i n g t h e model , each p r o p e r t y must be an o b s e r v a b l e .
2 v a r p e r s o n = {
3 name : Meems . O b s e r v a b l e . o b s e r v a b l e (" John Smith ") ,
4 age : Meems . O b s e r v a b l e . o b s e r v a b l e (1 8) ,
5

6 / / Ar ray s must be d e c l a r e d w i t h o b s e r v a b l e A r r a y .
7 c h i l d r e n : Meems . O b s e r v a b l e . o b s e r v a b l e A r r a y ([])
8 } ;
9

10 / / R e g i s t e r an o b s e r v e r .
11 v a r onNameChanged = f u n c t i o n (o ldValue , newValue) {

34

The Meems Framework

12 c o n s o l e . l o g (" name changed from " + o l d V a l u e + " t o " + newValue + " ! ") ;
13 }) ;
14

15 p e r s o n . name . s u b s c r i b e (onNameChanged) ;
16

17 /∗ To change t h e v a l u e o f an o b s e r v a b l e , i n v o k e i t as a
18 f u n c t i o n w i t h t h e new v a l u e as argument . ∗ /
19 p e r s o n . name (" John Adams Smith ") ;
20 p e r s o n . age (2 0) ;
21

22 /∗ To r e t r i e v e i t s c u r r e n t va lue , i n v o k e as a f u n c t i o n
23 w i t h no argument s . ∗ /
24 c o n s o l e . l o g ("My name i s " + p e r s o n . name () + " and I ’m " +
25 p e r s o n . age ()) ;
26

27 / / Remove t h e o b s e r v e r .
28 p e r s o n . name . u n s u b s c r i b e (onNameChanged) ;

Listing 5.1: Observables in Meems

5.3 Architecture

In order to maintain the code clean and modular, the Meems framework is separated in four li-

braries:

• meems-events, a library for manipulating DOM and custom events, providing an easy API

and cross-platform support;

• meems-utils, a library with multiple utilities, divided by domain. Includes methods for

manipulating arrays, maps, functions and others;

• meems-scroll, emulates fixed div scrolling, since older devices don’t allow div’s to scroll

when they are positioned absolutely;

• meems-ui, the core library that contains the UI widgets and methods to build the user inter-

face.

The first two modules are independent and can be used separately. Meems-scroll depends on

meems-events and meems-utils and meems-ui depends on the other three. Besides these depen-

dencies, there is only one more, which all of them rely on: require.js1.

Require.js is a Javascript file and module loader that implements the Asynchronous Mod-

ule Definition proposal2. It enables the separation of the code in modules. A module can depend

1http://requirejs.org/
2https://github.com/amdjs/amdjs-api/wiki/AMD

35

http://requirejs.org/
https://github.com/amdjs/amdjs-api/wiki/AMD

The Meems Framework

meems-events meems-scroll meems-utils

meems-ui

requires

requires

requires

requiresrequires

Figure 5.3: Dependencies between the libraries that constitute the Meems framework

on other modules. Given a main module, require.js will dynamically load it and all its de-

pendencies. This enables the programmer to keep the code modular, easier to maintain and to

debug. Another advantage of having the code modular and using require.js is the usage of

its optimizer tool. This optimizer tool, called r.js, can run on top of Node.js or Rhino and will

take as input Javascript modules and produce a single Javascript file, minified to the smallest size

possible. This will reduce the number of files that the client must download and also its total size.

This is a very powerful step when preparing the code for production. It can also optimize CSS,

but the Meems framework does not use this, yet.

5.3.1 AMD - Asynchronous Module Definition

The Asynchronous Module Definition API, also known as AMD, “specifies a mechanism for defin-

ing modules such that the module and its dependencies can be asynchronously loaded. This is par-

ticularly well suited for the browser environment where synchronous loading of modules incurs

performance, usability, debugging, and cross-domain access problems.”[ao13]

Using the AMD API to describe a module, dependencies are declared using strings, therefore

reducing the use of global variables. The API also allows to map a module name to different paths,

which makes it easy to swapping implementations. This can be useful for creating mock objects

for testing purposes.

A module and its dependencies are declared using the define method. The first argument

is usually an array of strings containing the dependencies of the module. These dependencies

are then passed as arguments to the module constructor, which is a function passed as second

argument.

1 d e f i n e (f u n c t i o n () {
2 re turn {
3 s a y H e l l o : f u n c t i o n () {
4 / / Do s o m e t h i n g .
5 }
6 } ;
7 }) ;

Listing 5.2: Defining a module without dependencies in AMD (modA.js)

36

The Meems Framework

1 d e f i n e (f u n c t i o n () {
2 f u n c t i o n ModB () {
3 re turn t h i s ;
4 }
5

6 ModB . p r o t o t y p e . doSomething = f u n c t i o n () {
7 / / Do s o m e t h i n g .
8 } ;
9

10 re turn ModB ;
11 }) ;

Listing 5.3: Defining a module without dependencies in AMD (modB.js)

1 d e f i n e (["modA" , "modB"] , f u n c t i o n (ModA, ModB) {
2 re turn {
3 i n i t : f u n c t i o n () {
4 ModA . s a y H e l l o () ;
5 v a r b = new ModB () ;
6 b . doSomething () ;
7 }
8 } ;
9 }) ;

Listing 5.4: Defining modules in AMD (modC.js)

5.3.2 Meems-events

Event processing is a must when programming for the Web. The DOM triggers events in response

to the actions of the user (for instance, when he moves the mouse, presses a key, touches the

screen, scrolls the page, etc.) and also to notify the pages of some internal events, such as timers

or when loading ends.

Applications can bind listeners to events in order to be notified when such event is triggered.

This is how the application can react to the user actions. However, registering this listeners is

not standardized among all browsers. There are two major event registration models: W3C’s

and Microsoft’s. The first model is supported by Mozilla, Safari, Chrome, Konqueror and other

WebKit-based browsers. The second model is supported by Internet Explorer. Opera supports

both models. They both offer the two basic functions of event registration (add and remove a

listener), but with a different syntax. W3C’s model provides the addEventListener function

for registering listeners and removeEventListener to remove them.Microsoft’s model pro-

vides the attachEvent function for registration and the detachEvent for removal of listeners.

Other differences between this models do exist, but being outside of the scope of this dissertation,

37

The Meems Framework

the reader is encouraged to read other material about this topic. A good starting point is the

QuirksMode website: http://www.quirksmode.org/js/events_advanced.html.

Meems is designed for mobile environments, which nowadays is almost as diverse as the

desktop environment in terms of Web rendering. Android, iOS and BlackBerry and others are

Webkit-based, Windows Phone uses Trident and Firefox OS uses Gecko. This fragmentation is

the reason why the meems-events library was made. It is a layer of abstraction over the browser’s

event model, providing the programmer with a simple API for manipulating event listeners, that is

supported on most platforms and that can be easily extended should the need arise.

Packed under the Dom package name, the meems-events library exposes two core functions for

manipulating DOM events:

• on(element, event, listener): Register a new listener of element for the

given event;

• off(element, event, listener): Remove the listener waiting for events on

element.

Besides abstracting from the browser model, the meems-events library also provides an API

to implement custom events that can be triggered and listened for. For this purpose, the Handler

class is provided. This class should be extended by any class whose objects will trigger custom

events. It exposes the following methods:

• on(event, listener): Register a new listener for the given event;

• off(event, listener): Remove the listener waiting for events;

• fire(event, args): Triggers the given event, invoking all registered listeners, pass-

ing them the provided args.

5.3.3 Meems-utils

Like any other programming language, Javascript does not provide the user with every possible

functionality, rather it provides the building blocks, that programmers can use to build libraries to

solve specific problems. These libraries can then be used by other projects to reduce implementa-

tion time.

Although Meems could use external libraries in order to speed up development, the need for

a small, targeted code that runs well fast on mobile environments was a critical factor in deciding

on building meems-utils instead on using libraries such as jQuery or Zepto. The whole Meems

framework is smaller that jQuery (both minified, 57 kB versus 93 kB, respectively)!

Meems-utils is a library that provides several helper methods in a few domains, separated by

packages: Ajax, Fn, Array, Map and Dom.

38

http://www.quirksmode.org/js/events_advanced.html

The Meems Framework

5.3.3.1 Ajax

This package exposes the request method which enables the application to build an AJAX re-

quest and receive the server’s answer easily. It’s specially useful when developing a layer for

communicating with services that follow the REST pattern. This method works across all plat-

forms that support the XMLHttpRequest object. It supports custom headers, setting the method

(GET, POST, DELETE, PUT, HEAD) and request and response formatting (JSON, XML, URL

encoded).

5.3.3.2 Array

This packages contains functions to manipulate and extract information from arrays.

The indexOfByProp function accepts an array, a property name and a value to match as

arguments and returns the position of the first element of the array whose requested property

matches the given value.

The remove method accepts an array and an element as arguments and proceeds to remove

from the array (in-place) the first appearance of the element.

The moveElement method swaps the position of two elements inside an array.

5.3.3.3 Dom

To allow applications to interact with pages, browsers expose to Javascript the DOM tree of pages.

DOM, which stands for Document Object Model, are objects that represent elements in the page,

have methods and properties that define how the browser renders them and are organized in a tree

hierarchy.

Manipulating the DOM tree of a page can, however, be costly. When the DOM tree is changed

or the properties of an elements are changed, the browser must calculate the changes to the user

interface and paint it accordingly. Depending on the changes, this process can lead to the painting

of large areas of the screen, which is very bad, performance-wise.[Hen12]

To ensure that an application runs as smoothly as possible, the interactions with the DOM must

be keep to a minimum and changes should be batched to resize the number of reflows as must as

possible. It is, therefore, useful to have helper methods that store all changes and apply them in

bulk when requested.

One of the possible approaches to apply bulk changes to an object is to use CSS classes.

Adding and removing classes from the object will cause the browser to update the object with the

properties defined by the CSS classes and to update the screen if needed. To keep the repaints to a

minimum, the classes associated with object should be communicated to the DOM once. This is

what the Dom package does.

This package provides the following functions:

• setClass, queues a request to replace the class names associated with the given object

with a new one;

39

The Meems Framework

• addClass, queues a request to add a new class name to the given object;

• removeClass, queues a request to remove a class name from the given object;

• getClass, returns a string with all the class names associated with the given object, in-

cluding the ones that weren’t yet applied;

• setHtml, queues a request to change the innerHTML property of an object;

• getHtml, returns the contents of the innerHTML of the given object, including changes

that weren’t yet applied;

• applyChanges, calculates all changes that are queued and applies them to the objects.

For example, assuming an object obj and the following code:

1 / / On module 1 (r e p l a c e s a l l c l a s s e s w i t h t h e ui−b u t t o n c l a s s)
2 o b j . c lassName = " ui−b u t t o n " ;
3
4

5 / / On module 2 (adds ui−b u t t o n−normal c l a s s)
6 o b j . c lassName += " ui−b u t t o n−normal " ;
7
8

9 / / On module 3 (removes ui−b u t t o n c l a s s name)
10 o b j . c lassName = o b j . c lassName . r e p l a c e (/ \ \ bui−b u t t o n \ \ b / , " ") ;
11

The final classes for obj would be ui-button-normal. Instead of modifying the DOM

directly 3 times, it could be replaced with the following code:

1 v a r Dom = Meems . U t i l s .Dom;
2

3 / / On module 1 (r e p l a c e s a l l c l a s s e s w i t h t h e ui−b u t t o n c l a s s)
4 Dom. s e t C l a s s (obj , " ui−b u t t o n ") ;
5
6

7 / / On module 2 (adds ui−b u t t o n−normal c l a s s)
8 Dom. a d d C l a s s (obj , " ui−b u t t o n−normal ") ;
9

10

11 / / On module 3 (removes ui−b u t t o n c l a s s name)
12 Dom. removeClass (obj , " ui−b u t t o n ") ;
13
14

15 / / At t h e end o f a l l p r o c e s s i n g :
16 Dom. app lyChanges () ;

40

The Meems Framework

This will cause a single update to obj’s className property, with the advantage of making

the code look cleaner and simpler.

5.3.3.4 Fn

Javascript relies heavily on functions and callbacks so it is very practical to have some helper

methods. This package provides those helpers.

Being a prototype-based programming language, the concept of class is not a base concept of

the language as in pure object-oriented languages. Javascript makes use of functions that, together

with the new operator, create new objects based on a prototype, therefore simulating the behaviour

of object-oriented programming.

The extend method is syntactic sugar for implementing class inheritance. This method is

automatically installed in Javascript’s Function object, so it’s accessible through every function

(“class”). Using this method, the inheritance chain is maintained, meaning that the instanceof

operator works just fine and can be used to verify if an object is an instance of a certain class or

one of its sub-classes.

1 f u n c t i o n Animal () {
2 re turn t h i s ;
3 }
4

5 Animal . p r o t o t y p e . name = f u n c t i o n () {
6 re turn " a n i ma l " ;
7 } ;
8

9 f u n c t i o n Cat () {
10 re turn t h i s ;
11 }
12

13 Cat . e x t e n d (Animal , {
14 " name " : f u n c t i o n () {
15 re turn " c a t " ;
16 } ,
17

18 "meow" : f u n c t i o n () {
19 re turn "meow" ;
20 }
21 }) ;
22

23 v a r meems = new Cat () ;
24 v a r isMeemsACat = meems i n s t a n c e o f Cat ; / / t r u e
25 v a r isMeemsAnAnimal = meems i n s t a n c e o f Animal ; / / t r u e

Listing 5.5: Using the extend helper

41

The Meems Framework

The postPone function postpones the execution of a function to end of the current process-

ing stack. This is useful for running commands only after the current processing is done and

give the browser the opportunity to do other things, like rendering. It is syntactic sugar for the

setTimeout method.

The function bind returns a new function that invokes the function given as the first argument

with the object passed in the second argument as the this object. Useful for when the this

object is different depending on the context and the developer needs it to be a specific object.

Throttle allows the developer to limit the invocation of a function over time. Using this

method, a new function is created that, when invoked, will invoke the wrapped function at most

once in the specified time interval. This is useful is situation when a callback can be invoked

many time very quickly, causing the CPU to spike and performance to degrade. An example of

this is a window resize event handler. When the user resizes the browser window, the handler will

be invoked several times until the resizing finishes, so that the application can resize itself to the

browser area. Wrapping the handler in a throttle call with a small interval (around 100ms),

it’s possible to avoid CPU spikes while still updating the application’s user interface.

5.3.3.5 Map

This is a small package, with only one function: getKeys. This functions returns an array with

the keys of the object that is passed as argument.

5.3.4 Meems-scroll

The Meems framework intends to simulate native user interfaces using HTML5 and Javascript. A

very common scenario in native applications is the existence of a fixed header and/or footer, which

provide the user with actions or information.

Although HTML element property position can have the value fixed, which dictates that

the element will stay in the same position regardless of the scrolling of the page, this value is cur-

rently not very well supported by mobile platforms.3 Known behaviours include totally ignoring

the property, let the element scroll with the page only returning it to its position when the scrolling

motion finishes and flashing when scrolling.

To overcome the lack of support of position:fixed elements, one must use absolute po-

sitioning of elements. But with this, another problem arises. When the contents of an absolutely

positioned element exceed the element’s dimensions, the user should be allowed to scroll to view

the rest of the contents when the overflow CSS property is set to auto or scroll. However,

this is not supported on some mobile platforms, like some versions of Android4. Recent versions

of iOS and Android do support setting -webkit-overflow-scrolling: touch; on ele-

ments to enable native scrolling, but it does not allow customization and on some platforms, like

iOS<5, requires the user to use two fingers to scroll the content.5 To overcome this behavior and

3http://caniuse.com/#feat=css\discretionary{-}{}{}fixed
4http://code.google.com/p/android/issues/detail?id=2911
5http://goo.gl/2lAfy

42

http://caniuse.com/#feat=css\discretionary {-}{}{}fixed
http://code.google.com/p/android/issues/detail?id=2911
http://goo.gl/2lAfy

The Meems Framework

ensure a consistent scroll experience, it’s necessary to use Javascript to simulate the scrolling of

elements. The meems-scroll module emulates the scrolling behaviour of Android and iOS on

absolute positioned elements, using hardware acceleration when possible to minimize the impact

on the application’s performance. It uses CSS3’s transition and transform properties to

animate the elements, allowing the browser to use hardware acceleration to render smooth anima-

tions.

It is very simple to use. The module returns a class, internally named Scroll, which accepts

the element which must be scrollable and an object with configuration settings as arguments in its

constructor. The following configuration settings are supported:

Setting Description Default
axisLock After starting to scroll, lock the scrolling to the axis of the

movement or allow it to change while scrolling?

true

bouncing Should the contents bounce if scrolled past the limit or re-

main static at the limits?

true

disableTouchEvents Scroll only programmatically? false

fadeOutDuration How long should the fade out animation of the scrollbar

take (in seconds)?

1

friction Friction factor for scrolling. The higher the slower the

scrolling is.

100.0

hideScroller Should the scrollbar be hidden? false

minDistanceOfDrag When starting to scroll, how many pixels must the user’s

finger move for the element start to scroll?

10

paging Use the size of the element as page size and only allow the

user to scroll one page at a time?

false

snap Snap the scrolling to the given page size (in pixels). 0 to

disable snapping.

0

scrollX Allow the content to scroll horizontally? false

scrollY Allow the content to scroll vertically? true

timingFunction CSS3 timing function when animating the contents after

the scrolling finished.

ease-out

totalMaxTime The maximum time in seconds the animation of the con-

tents can take.

1

Table 5.2: Available settings in meems-scroll

1 / / Add meems−s c r o l l as a dependency
2 d e f i n e (["meems−s c r o l l "] , f u n c t i o n (S c r o l l) {
3 v a r s c r o l l e r ;
4 re turn {
5 i n i t : f u n c t i o n () {

43

The Meems Framework

6 / / Ob ta in t h e e l e m e n t t h a t w i l l be s c r o l l e d .
7 v a r elm = document . ge tE lemen tById (" e l m T o S c r o l l ") ;
8 / / Cr ea t e a s c r o l l e r .
9 s c r o l l e r = new S c r o l l (elm , {

10 pa g i ng : f a l s e ,
11 snap : 0 ,
12 s c r o l l X : f a l s e ,
13 s c r o l l Y : t rue
14 }) ;
15 } ,
16

17 d e s t r o y : f u n c t i o n () {
18 i f (s c r o l l e r) {
19 /∗ D e s t r o y t h e s c r o l l e r when
20 i t ’ s no l o n g e r needed . ∗ /
21 s c r o l l e r . d e s t r o y () ;
22 s c r o l l e r = n u l l ;
23 }
24 }
25 } ;
26 }) ;

Listing 5.6: Using meems-scroll

5.3.4.1 Implementation

When associating a scroller with an object, meems-scroll calculates the dimensions of the con-

tainer (the element which contents will scroll) and the dimensions of the contents inside the con-

tainer. This information is stored in the container’s DOM element as custom properties. Then,

additional DOM elements representing the scrollbars are attached to the container, one for the

horizontal axis and another for the vertical axis, depending of the scroller’s configuration. Scroller

will manage this elements, showing and hiding them when needed and destroying them when their

no longer necessary. Also, events handlers are attached to the element so that meems-scroll can

process the events that are triggered when the user presses the container, drags it and releases it

and simulate the scrolling of the contents. To know which events to listen for, meems-scroll will

first detect if the touchstart event is supported. If it is, this means the platform supports touch

events (probably it’s a mobile device with a touch screen), so it will listen for the touchstart,

touchmove and touchend events. If touch events aren’t supported, it’ll listen for normal mouse

events: mousedown, mousemove and mouseup.

When the user starts pressing the container to initiate a scrolling motion, the scroller catches

this event and performs the following actions: obtains and stores the position of the cursor or

touch point, calculates the size of the contents of the container, updates a flag indicating that the

container is scrolling and prevents the event from being processed by the browser. This last step

44

The Meems Framework

is very important to overcome a defect6 in the Android platform (2.0, 2.1).

When the user moves the finger or the cursor while the container is in scrolling motion, the cursor

position is grabbed and subtracted from its initial position, stored when the user started pressing

the container. The result of this difference will dictate how many pixels the content is moved

and in which direction. The position of the content is updated by using the transform prop-

erty together with the translate3d value. This enables the browser to use hardware acceler-

ation when rendering the content, providing a smoother scrolling experience. The scrollbars are

also updated to reflect the current position of the content relative to the container: the size of

the bar will be equal to min(containerSize,contentSize)
contentSize × containerSize and its position will be equal to

−contentPosition
contentSize ×containerSize. These will be calculated for each of the axis, being each dimension

chosen according to the axis: size will be the height for the Y axis and the width for the X axis,

position will be top for the Y axis and left for the X axis.

When the dragging motion is released, the content will be animated, continuing to scroll for a small

period of time at a velocity that depends on the movement performed by the user when dragging

the content. To perform the animation, the CSS3 property transition is used. To use it it is

necessary to know the final position of the content and how long should it take until it reaches the

final position. To calculate this, meems-scroll uses as input the duration of the dragging motion

(time) and how many pixels the content was moved (o f f set). From this, the average velocity in

pixels per second is calculated (velocity = o f f set
time). A first estimate of the animations total time is

then calculated by taking the absolute value of the average velocity and dividing it by a constant

value (totalTime= abs(velocity
f riction)). Having an estimate for the time, an estimate for the final position

is calculated: f inalPos = currentPos− velocity× totalTime.

The estimate of the final position must be adjusted according to the constraints imposed by the

scroller’s configuration, for instance, paging, snapping and the minimum and maximum possible

value.

If paging is enabled, the final position will be adjusted to

round(currentPos±containerSize
containerSize)× containerSize, depending on the direction of the movement.

If snapping is enabled, the final position will be adjusted to round(f inalPos
con f ig.snap)× con f ig.snap.

Then, the final position is adjusted according the its limit values. It will always be zero or a

negative value. If the size of the content is smaller than the size of the container, the final posi-

tion will always be zero, since there is nothing to show beyond the container’s boundary. If the

content surpasses the container in size, then the maximum absolute value for the position of the

content is contentSize− containerSize. The final position is truncated, if necessary, to be inside

this boundaries.

After the final position is calculated, the animation’s duration is adjusted as well by taking into

account the difference between the final position before and after being adjusted: totalTime =

min(totalTime×abs(startPos−newFinalPos
startPos− f inalPos),con f ig.totalMaxTime).

This calculations are performed for each axis and the highest time will be used as the duration of

the animation.

6http://code.google.com/p/android/issues/detail?id=5491

45

http://code.google.com/p/android/issues/detail?id=5491

The Meems Framework

Finally, the content properties transition and transform are updated:

1 c o n t e n t . s t y l e . t r a n s i t i o n = " a l l " + t o t a l T i m e + " s " + c o n f i g . t i m i n g F u n c t i o n ;
2 c o n t e n t . s t y l e . t r a n s f o r m = " t r a n s l a t e 3 d (" + f i n a l P o s X + " px , " + f i n a l P o s Y +
3 " px , 0) " ;

During the animation of the content, the position of the scrollbars still needs to be updated. To do

this, an asynchronous cycle of duration equal to that of the animation of content is performed using

the requestAnimationFrame method. In each iteration of this cycle, the current position of

the content is retrieved using the getComputedStyle function and the scrollbars’ positions are

updated accordingly.

5.3.5 Meems-ui

The meems-ui module is the main module of the Meems framework. It contains the widgets that

will be the building blocks developers use to construct the user interface of a mobile application.

It follows an object-oriented approach, based around the Widget class. Every widget must ex-

tend this class and override at least the update method. Widgets must also be registered in the

Meems.UI factory class, through the registerWidget(name, class) method. After this,

to instantiate a widget, the create factory method of the Meems.UI namespace can be used. It

takes the name of the type of widget to create as argument and returns an instance of that type of

widget.

The base widgets provided with the framework can be separated in three categories: navigation

and organization, layout and user interface controls.

5.3.5.1 Navigation and organization

The widgets in this category are used to specify the high-level structure of the application’s user

interface. Mobile applications are usually composed of multiple screens which transition from one

to another.

In the context of the Meems framework, an application can have one or more Pages, where only

one is visible at a time. To store and transition between pages a PageHolder is used.

One common user interface pattern in mobile applications nowadays is a lateral menu that slides

from the side. This allows the user to easily access other options of the application without leaving

the current screen. In Meems, this is called an Aside.

PageHolder is a widget that can store multiple pages and transition between them. It should be

the top-level widget in an application. Pages can be set using the pages function and transitions

can be accomplished by invoking the currentPage function with the desired page as the first

argument. It imposes no restrictions regarding what pages can transition to others, it’s up to the

46

The Meems Framework

application itself to decide this. Transitions between pages can be animated using CSS3. A default

transition animation is provided in the effects.css file.

Page represents a screen of the application. It exposes three facets: header, content and footer,

as this structure is the most common in mobile applications. Although each facet can contain any

widget, it is best to use the Header and Footer widgets for the header and footer, respectively.

For the content facet, usually a group or list widget is used, the most common would be the List,

Form and TabGroup widgets.

Header
Content
Footer

Figure 5.4: Page structure

Figure 5.5: Page in Android Figure 5.6: Page in iOS

Aside enables the use of one page as a lateral menu that can be toggled when on a small screen

and that will be always visible on large screens. The purpose of this is to provide the user with

easy access to all the major pages of the application.

5.3.5.2 Layout

Some widgets are meant to organize other widgets, placing them in the correct positions with the

correct dimensions. The layout of a screen can be achieved by using these widgets.

Button Group is a widget that organizes buttons in an horizontal manner. Using the

maxButtons attribute, its possible to limit the number of buttons visible at a time. If more

buttons than those allowed exist, an overflow button will be made visible. Clicking this button

pops up a menu with items representing the extra buttons.

Footer is a widget meant to be used with the Page widget. This widget adds a footer to the

screen, where a button group can be placed with the buttons facet.

47

The Meems Framework

Figure 5.7: Menu closed Figure 5.8: Menu open

Figure 5.9: Menu always visible

Figure 5.10: A button group in Android (left) and iOS (right)

Form stores fields that accept user input and organizes them vertically. A form can also have a

title, which will be placed above the first field.

Group is a widget that merely groups other widgets vertically.

48

The Meems Framework

Figure 5.11: A form example in Android (left) and iOS (right)

Header like the Footer widget, is meant to be used with the Page widget. It adds a header

bar to the screen, which contains a title and two facets, buttonsleft and buttonsright, to

place buttons in left and right side of the title, respectively. These facets expect ButtonGroup

widgets. The title can be set through the title attribute.

List is a representation of an array. Each item of the array will be converted to a graphical

representation using a Mustache template, that can be set using the template attribute. Header

items are also supported. An element will be converted to a header if its header property is true.

Header elements are converted using the template defined by the headerTemplate attribute.

Besides representing a list of items, this widget also provides mechanisms that allow the user to

manipulate the items, namely, sort them manually and selecting several items before an operation

through the use of checkboxes. To enable sorting, the sortable attribute must be set to true. To

enable multiple selection, the selectionMode attribute must be set to multiple.

Tab Group allows to separate content in categories, through several partial pages, called Tabs.

Only one tab is visible at a time and each one is associated with a named button that allows

navigating between tabs. The tabs method can be used to associate an array of Tabs.

Tab is a widget meant to be used with the Tab Group widget. The contents of the tab can be

set through the content facet. The title attribute is used to set the text that will appear in the

tab button.

5.3.5.3 UI controls

The following widgets are basic units usually used to present a single piece of information or

collect information from the user.

49

The Meems Framework

Figure 5.12: A simple list (left) and a list with ordering and multiple selection (right)

Button allows the user to trigger a single action. Is characterized with a text and an icon, set

through the title and icon attributes, respectively. The context in which the button is used will

d:etermine the visibility of the button’s text and icon. The platform will also influence this. For

instance, in the Android platform, buttons inside a Header will appear as an icon only, while on

the iOS platform they’ll show only as text. See figure 5.10 for an example of buttons in a header

and figure 5.12 for an example of a button inside a form.

Slider allows a user to select a value from a fixed range by sliding its finger/cursor over a

bar. The widget exposes two attributes to manipulate the range of valid values: minimum and

maximum. To read or write the value of the slider, the value method must be used. The value

can either be a numeric value or an observable.

Switch is usually used to represent or collect a boolean value. Like the Slider widget, its value

can be read or written using the value method, which also supports observables, besides boolean

values.

Text Field allows to capture textual information from the user. The value method can be used

to read or write the contents of the field. A string or an observable can be used. A text field also

exposes the type attribute, which allows to specify the type of data that is meant to be collected

according with the HTML5 standard for input controls. This includes types like: text, number,

date, tel (for phone numbers), email and search. Setting the appropriate type allows the platform

to adjust how it collects the data. For instance, if the type is date, a date picker will be presented

to the user instead of a keyboard. If it is email, the keyboard layout will be adjusted to place the

symbol in a more handy place.

50

The Meems Framework

Figure 5.13: Example of switches, sliders and text fields in Android (left) and iOS (right)

Html is widget that allows the developer to use Mustache templates for generating HTML el-

ements, making it ideal to present information to the user. Mustache7 is a logic-less template

language that uses double braces to denote a placeholder. The placeholders of the template are

then replaced with values corresponding to the values of the properties of an object named after

the placeholders. For example, given the template This is a {{expName}}. and the object

{"expName":"test"}, the final result would be This is a test.. The template can be

set using the html attribute. The object to be bound to the template can be set using the data

attribute.

5.3.6 Building user interfaces

The Meems Framework is meant be used as a presentation layer for mobile applications. Follow-

ing the Single Page Application (SPA) pattern, all the screens of the application are present in a

single page and made visible or hidden to transition between screens, therefore avoiding the need

to refresh the page to present new information, providing the user with a more fluid experience

and emulating the behaviour of a native application.

Since all the application’s screens are present in the same page, it’s necessary to use a mechanism

to manage those pages. The PageHolderwidget is responsible for storing all pages and transition

between them upon command. It must, therefore, be the root widget of an application. Pages can

then be added to this widget.

To create all the necessary widgets, the factory method create must be used. Passing it a widget

type, it’ll return an instance of that type that can be immediately modified using its chainable meth-

ods. Meems provides this chainable API so that it is possible to chain several method invocations,

reducing the amount of code that needs to be written.

7http://mustache.github.io/

51

http://mustache.github.io/

The Meems Framework

After creating all the necessary widgets, the HTML DOM elements that will represent the widgets

must be created and added to the page. The creation of the elements is achieved by invoking the

update method of the root widget. This will trigger the update method of itself and all its

children, ensuring that all the widgets associated with it have DOM elements ready to be added to

the DOM tree. To give the developer more flexibility, the developer must manually insert the root

DOM element as child of the element he sees fit as parent. Most of the times, it will be the body

of the page (document.body). Invoking the el method of the root widget returns the DOM

element that must be added to the page. See the example below for how to create a simple user

interface and how to insert it in the DOM tree.

1 / / Cr ea t e a page w i t h a s i m p l e l i s t .
2 v a r page1 =
3 UI . c r e a t e (" page ")
4 . f a c e t (" h e a d e r " , UI . c r e a t e (" h e a d e r ") . a t t r (" t i t l e " , " Page 1 "))
5 . f a c e t (" c o n t e n t " ,
6 UI . c r e a t e (" l i s t ")
7 . i t e m s ([
8 { t e x t : " I tem 1 " } ,
9 { t e x t : " I tem 2 " } ,

10 { t e x t : " I tem 3 " } ,
11 { t e x t : " I tem 4 " }
12])) ;
13

14 / / Cr ea t e a second page w i t h a n o t h e r s i m p l e l i s t .
15 v a r page2 =
16 UI . c r e a t e (" page ")
17 . f a c e t (" h e a d e r " , UI . c r e a t e (" h e a d e r ") . a t t r (" t i t l e " , " Page 2 "))
18 . f a c e t (" c o n t e n t " ,
19 UI . c r e a t e (" l i s t ")
20 . i t e m s ([
21 { t e x t : " I tem 5 " } ,
22 { t e x t : " I tem 6 " } ,
23 { t e x t : " I tem 7 " } ,
24 { t e x t : " I tem 8 " }
25])) ;
26

27 / / Cr ea t e t h e r o o t w i d g e t and add t h e pages .
28 / / By d e f a u l t , t h e v i s i b l e page i s t h e f i r s t one .
29 v a r r o o t = UI . c r e a t e (" p a g e h o l d e r ")
30 . pages ([page1 , page2]) ;
31

32 / / Cr ea t e a l l e l e m e n t s , add them t o t h e page and a p p l y a l l changes .
33 r o o t . u p d a t e () ;
34 document . body . appendCh i ld (r o o t . e l ()) ;
35 U t i l s .Dom. app lyChanges () ;

Listing 5.7: Creating a simple user interface

52

The Meems Framework

Besides defining the interface in Javascript, it is also necessary to add the CSS files corresponding

to the current platform. These can added dynamically through Javascript or can be added manually

when there is a main HTML file per platform. Each platform has three CSS files that must be

imported:

• ui.css - Contains all the CSS necessary to render the widgets correctly;

• effects.css - Contains CSS for animating widgets;

• icons.css - Contains icon graphics in Base64 format.

1 f u n c t i o n l o a d C s s (u r l s) {
2 " use s t r i c t " ;
3

4 v a r l i n k ,
5 head = document . getElementsByTagName (" head ") [0] ,
6 f i r s t S i b l i n g = head . c h i l d N o d e s [0] ;
7

8 f o r (v a r i = 0 , l n = u r l s . l e n g t h ; i < l n ; ++ i) {
9 l i n k = document . c r e a t e E l e m e n t (" l i n k ") ;

10 l i n k . t y p e = " t e x t / c s s " ;
11 l i n k . r e l = " s t y l e s h e e t " ;
12 l i n k . h r e f = u r l s [i] ;
13 head . i n s e r t B e f o r e (l i n k , f i r s t S i b l i n g) ;
14 }
15 }
16

17 v a r p l a t f o r m = U t i l s .Dom. u s e r A g e n t () ;
18 l o a d C s s ([
19 " c s s / meems / " + p l a t f o r m + " / u i . c s s " ,
20 " c s s / meems / " + p l a t f o r m + " / i c o n s . c s s " ,
21 " c s s / meems / " + p l a t f o r m + " / e f f e c t s . c s s "
22]) ;

Listing 5.8: Dynamically insert CSS files

However, the creation of the user interface is not enough to create a mobile application. When the

user interacts with the interface, the logic layer must be invoked and update the interface properly.

To detect the interactions of the user with the interface, events are triggered. The logic layer can

listen for those events and respond appropriately.

To update the information on the user interface and also passing information to the logic layer, it

is recommended to use observables. Changing the value of the observables will cause the widgets

associated with the observable to be updated. Likewise, the logic layer can attach observers to

observables and react whenever their values change.

53

The Meems Framework

5.3.7 Effects

To animate the widgets when their state changes, Meems uses CSS3 transition and

animation properties. Using these properties enables the host browser to use hardware ac-

celeration to provide smoother animations.

For changing the state of the widgets of the application, Meems changes class names. So, using

CSS3, it’s possible to detect these changes and start the appropriate animations. For instance, to

show a widget, the class name ui-hide is removed and ui-show is added. So, combining these

class names and CSS3 animations, it is possible to, for instance, animate a page transition, as

shown in the following snippet:

1 /∗ D e f i n e a new a n i m a t i o n ∗ /
2 @keyframes f a d e I n R i g h t {
3 0\% {
4 o p a c i t y : 0 ;
5 t r a n s f o r m : t r a n s l a t e X (20 px) ;
6 }
7 100\% {
8 o p a c i t y : 1 ;
9 t r a n s f o r m : t r a n s l a t e X (0) ;

10 }
11 }
12

13 /∗ S e t t h e p a r a m e t e r s o f t h e a n i m a t i o n . ∗ /
14 . u i−page {
15 −webki t−a n i m a t i o n− f i l l −mode : bo th ;
16 −moz−a n i m a t i o n− f i l l −mode : bo th ;
17 −ms−a n i m a t i o n− f i l l −mode : bo th ;
18 −o−a n i m a t i o n− f i l l −mode : bo th ;
19 a n i m a t i o n− f i l l −mode : bo th ;
20 −webki t−a n i m a t i o n−d u r a t i o n : 0 . 2 5 s ;
21 −moz−a n i m a t i o n−d u r a t i o n : 0 . 2 5 s ;
22 −ms−a n i m a t i o n−d u r a t i o n : 0 . 2 5 s ;
23 −o−a n i m a t i o n−d u r a t i o n : 0 . 2 5 s ;
24 a n i m a t i o n−d u r a t i o n : 0 . 2 5 s ;
25 }
26

27 /∗ When a page i s made v i s i b l e , e x e c u t e f a d e I n R i g h t a n i m a t i o n . ∗ /
28 . u i−page . ui−show {
29 −webki t−a n i m a t i o n−name : f a d e I n R i g h t ;
30 −moz−a n i m a t i o n−name : f a d e I n R i g h t ;
31 −o−a n i m a t i o n−name : f a d e I n R i g h t ;
32 a n i m a t i o n−name : f a d e I n R i g h t ;
33 }

Listing 5.9: Animate page

54

The Meems Framework

At the moment, it is necessary to use the vendor prefixed version of the animation properties,

since most browsers still don’t recognize the normalized version.

The animations can also be platform dependent, so there are placed in a effects.css file inside

the folder of each platform’s theme.

5.3.8 Icons

Graphical items take an important role in nowadays applications, especially icons, since they help

the user to quickly identify the type of action a certain button performs or the importance of some

information.

Icons are usually stored and distributed as independent image files, most commonly in the JPEG,

PNG or GIF format. In the Meems Framework, however, base icons are distributed in a single CSS

file, icons.css, that contains all the images the application needs. The file contains at least one

CSS class per image, where the background-image property value is the image itself encoded

as a data URI. A data URI is a file encoded following the URI schema. Its format goes as follows:

data:[<mime type>][;charset=<charset>][;base64],<encoded data>

1 . u i−i con−l o a d i n g , . u i−i con−l o a d i n g . ui−d i s a b l e d {
2 background−image : u r l (’ d a t a : image / g i f ; base64 , R0lGODl . . . < t r u n c a t e d > . . . ’) ;
3 background−r e p e a t : no−r e p e a t ;
4 }

Listing 5.10: An icon represented in CSS as a data URI

This approach has some advantages and disadvantages.

Placing all icons inside a CSS file will make the file have a considerable size, but it will also reduce

the amount of HTTP requests the browser must make to retrieve all icons. So, if the application has

50 icons the browser would have to make 50 HTTP requests to the server, but if their are all inside

a single CSS file, only one request must be made. The overhead of opening new connections to

the server is therefore replaced by taking longer to download a single file, which most of the times

compensates. Besides, enable GZip in the server helps reduce the size of the file when the transfer

takes place and telling the browser that it can cache the file, it would only have to be downloaded

every once and a while. This way, the application can load faster.

Another advantage of this approach is the possibility to use CSS media queries to recognize the

device’s resolution and use the appropriate version of the icons. With the advent of high resolution

displays such as the Retina display, images must be of a higher resolution too in order to look crisp

and nice. There are two possible approaches to solving this problem: have all the versions of the

icons inside a single CSS file and use media queries inside of the CSS file, or have one version of

the icons per file and only include the relevant one. The first approach would produce a very large

file that would be hard to maintain and every device would download the same file, independently

of its resolution. The second approach allows for clean separation of versions and reduces the

amount of data the application must download. Consider the following two files: icons.css,

55

The Meems Framework

which contains 32x32 pixel version of all icons, and icons2x.css, which contains the 64x64

version of the icons. Using the following HTML tags in the head of the main HTML document

would be enough to ensure that the correct version of the icons is applied depending on the device

resolution:

1 <!−− Medium i c o n s −−>
2 < l i n k r e l =" s t y l e s h e e t " h r e f =" c s s / theme / a n d r o i d / i c o n s . c s s " / >
3 <!−− R e t i n a i c o n s −−>
4 < l i n k r e l =" s t y l e s h e e t " h r e f =" c s s / theme / a n d r o i d / i c o n s 2 x . c s s " media=" (−webki t−min

−dev i ce−p i x e l − r a t i o : 2) , (min−r e s o l u t i o n : 192 d p i) " / >

Listing 5.11: Use different icon resolutions according to device

The problem with this is that both files will still be downloaded. To overcome this, use Javascript

to detect the device’s pixel ratio and include only the appropriate style sheet:

1 v a r p l a t f o r m = U t i l s .Dom. u s e r A g e n t () ,
2 p i x e l R a t i o = window . d e v i c e P i x e l R a t i o ,
3 s u f f i x = p i x e l R a t i o >= 2 ? " 2x " : " " ;
4 l o a d C s s ([
5 " c s s / meems / " + p l a t f o r m + " / u i " + s u f f i x + " . c s s " ,
6 " c s s / meems / " + p l a t f o r m + " / i c o n s " + s u f f i x + " . c s s " ,
7 " c s s / meems / " + p l a t f o r m + " / e f f e c t s . c s s "
8]) ;

Listing 5.12: Using Javascript to detect the pixel ratio and import the appropriate CSS files

A problem with keeping all the icons in one CSS file it’s maintainability. It is much easier to edit,

save and publish a single image file than maintaining a huge single text file that contains all the

icons in an application. Also, a new step must be introduced in the process of adding or editing

icons of the application: the conversion of the image file to data URI. There are a lot of on-

line converters that can perform this, for example, http://dataurl.net/#dataurlmaker.

However, the advantages stated above largely pay off the extra effort that must be put when creat-

ing the icon themes.

5.4 Documentation

This dissertation contains explanation about the basic concepts of the framework and its inner

works, so it can be used as an initial reading document. Besides this, all the developed source

code is documented using Javadoc-style annotations, that are later processed by the YUIDoc8

tool, that is used to generate HTML files containing the API documentation.

8http://yui.github.io/yuidoc/

56

http://dataurl.net/#dataurlmaker
http://yui.github.io/yuidoc/

The Meems Framework

5.5 Conclusions

The differences between browsers present in the most common mobile platforms and desktop

browsers require developers to take precautions and to throughly test their applications in real

devices. Workarounds for defects present in older versions of the platforms are also needed if

one wishes to support them. This was especially true for the support of overflow: scroll.

Due to the lack of native support from the browsers, a Javascript solution, meems-scroll, had to

be developed and integrated into the framework, resulting in extra work to accomplish something

that the browser was supposed to provide.

The similarities between the iOS and Android platforms in terms of design made the implementa-

tion easier. Adding support for new platforms such as Windows Phone or BlackBerry OS 10 will

pose a great challenge, since the graphical guidelines are a bit different.

Finally, developing big applications and libraries in Javascript demands good practices. The flex-

ibility of the language is an advantage, but can also be a curse if not controlled. The use of

Require.js helped maintaining the code modular and clean, separating each unit of the code in its

file and allowing to declare their dependencies, so that the developer doesn’t have to worry about

the order in which to import the files. It was also helpful for compressing and minifying the code

in order to reduce load times and facilitate distribution.

57

The Meems Framework

58

Chapter 6

RSS Reader: Demo Application

To demonstrate how to use the Meems Framework and its behaviour in a real-world application, a

small RSS news reader application was developed.

RSS, which stands for “Rich Site Summary”, is web feed format used to publish frequently up-

dated works in a standardized format. An RSS document, commonly called feed or channel, can

include many items, or news. These information about each item can include full or partial text

content of the item plus meta-data like the publishing date and author.

Using an RSS reader, like the one describe in this chapter, people can subscribe to the feeds of

their favorite sites and consult all their updates in a single software, instead of having to check

each site individually.

6.1 Requirements

Since this application is only for demonstration purposes, there are only a few base requirements.

The application must allow the user to authenticate in order to have access to his personal feed

directory. When authenticated, the user can consult a list of his feed subscriptions, press a sub-

scription to views its news and select a news to consult it. The user must also be able to manage

its subscriptions: add a new subscription by URL, remove subscriptions and order them manually.

6.1.1 Functional Requirements

6.1.1.1 Authentication

The user must authenticate using his email and password. The application will communicate with

the back-end server to validate the credentials. The server will check if the user exists in the

MongoDB database and if its hashed password matches the hash in the database.

If the authentication fails, the user must be warned about it and stopped from proceeding to the

next screen.

If the authentication finishes successfully, the initially empty news screen is shown and the list of

feeds the user has subscribed is loaded.

59

RSS Reader: Demo Application

Figure 6.1: Simplified use case diagram

6.1.1.2 Feeds

The application must load from the back-end server the list of feeds the user has subscribed. This

list will be presented to the user, so that he can choose which feed to open.

Upon clicking on a feed, the application will load from cache all the news of the feed. If the

news in cache are too old (around 30 minutes), the application will ask the back-end server for an

updated list of news and store them in cache.

The user will also have the possibility to manage feeds. This includes adding a new feed, removing

existing feeds and manually ordering the feeds. All changes can then be saved and sent to the back-

end server for storage, or can be discarded by returning to the previous screen without saving.

When adding a new feed, the user must provide the URL, which will be sent to the back-end

server. The server then tries to read the feed and obtain its name, stores it in the user’s account and

returns the name of the feed to the application so that it can show it to the user.

6.1.1.3 News

After the user selects a feed, its news are listed. Each news has a title, an author, a publishing date

and a small description. These should be visible in the main listing. The user will be able to scroll

through the list to view more news.

When the user clicks on a news article, its full contents will be shown in a separate screen, by

loading the page of the original website that provided the feed.

6.1.2 Non-functional Requirements

The project must be separated in two major parts: a mobile application and a back-end server.

This separation allows for future improvement and scalability.

The mobile application must run on Android (2.3+) and iOS (5+) platforms, with a look and feel

as closest to native applications as possible.

60

RSS Reader: Demo Application

All user information, which includes email, password and feed subscriptions, must be stored in a

database.

6.2 User Interface

Figure 6.2: Low fidelity mockup. From top-left to bottom right: login screen, empty news screen,
feeds screen, manage feeds screen, news screen, news detail screen

The user interface of the mobile applications must look and behave like a native application.

Since the target platforms are Android and iOS, the same basic UI design patterns apply. The

applications will have a header with button actions and a title. In iOS, buttons will be used, while

in Android an action bar will be used instead. A footer will also be present when managing the

feeds. Lists will be used for presenting the list of feeds and news and a form will be used for the

login screen and the subscription of a new feed.

The most important design pattern used is the navigation drawer. The user will be able to click a

“Feeds” button which reveals a side pane, the drawer. This drawer will contain the list of feeds,

61

RSS Reader: Demo Application

Figure 6.3: Flow between the screens

that allow the user to navigate through his subscriptions, and also more actions related with the

feeds, such as the “Manage” action.

6.2.1 Login Screen

The login screen will have two input text fields, one for the email and another for the password.

The user must fill in both fields and press the “Login” button.

If the authentication fails, a pop-up alert will warn the user about the error. After correcting his

credentials, the user can try again.

If the authentication succeeds, the news screen will be shown.

6.2.2 News Screen

This screen will show the list of news, which is initially empty until the user selects a feed to read.

To choose a feed, the user has the button “Feeds” on the top of the screen, which, following the

navigation drawer design pattern, will reveal a side pane with the list of feeds. If the resolution

of the device is big enough (width larger that 650 pixels), this side pane will always be visible.

Clicking on a feed will close the drawer, update the page title and show the list of news of that

feed. When the user clicks on a news, the news detail screen is shown.

Besides showing the list of feeds, the navigation drawer also exposes an action relative to the

feeds: the “Manage” action. Clicking on this button, the manage feeds screen will be shown in the

side pane.

6.2.3 Manage Feeds Screen

This screen enables the user to subscribe to new feeds, by entering (probably pasting) the URL of

the feed and pressing the “Add” button. The URL will be appended to the bottom of the list of

feeds.

The list of feeds will allow the user to select multiple feeds by pressing the checkboxes on the left

of each item. When one or more feeds are selected, a footer will appear with the option to delete

the selected feeds.

62

RSS Reader: Demo Application

On the right side of each item, an order button is present. Pressing and dragging this button, will

cause the item to be moved in list according to the movements of the user. Releasing the button

will effectively place the item in its new place in the list.

All these operations are applied to a copy of the user’s feed list. If the user presses the “Back”

button on the top-left corner of the page, the copy is discarded and all modifications are lost.

However, if the user clicks on the “Save” button, the modifications are sent to the back-end server

and are applied locally, after a successful reply from the server. After saving, the user be taken

back to be previous screen.

6.2.4 News Detail Screen

This screen will allow the user to view all the details of a news article, by embedding directly

(through an iframe) the website the news originates from. The link for the article necessary for

this operation is provided by the back-end server, which provides it together with the list of news.

When the user is done, clicking on the “Back” button will bring him back to the news screen.

6.3 Architecture

The project is divided in two parts: a mobile application that uses the Meems Framework and

require.js and a back-end server implemented using Node.js as the runtime, the Express framework

and MongoDB as the storage engine.

6.3.1 Back-end Server

Node.js1 is a server-side Javascript platform, based on Google Chrome’s Javascript runtime, that

uses an event-driven non-blocking I/O model, providing a lightweight environment for scalable

real-time applications. And since it runs Javascript, it was possible to implement the server and

the client using a single programming language.

The simplify and accelerate the building process of the back-end server, the Express framework

was used. This framework purpose is to facilitate the development of web applications using

node.js, by providing a simple API to deal with request routing, middleware and response building.

For storing the information of all users, MongoDB is used. MongoDB is a powerful document

database and is the leading NoSQL database.2 The paradigm behind MongoDB is different from

that of relational database management systems (RDMS). Instead of schemas and tables, Mon-

goDB has collections and documents. Collections have a name and store several documents. No

schema or structure is imposed to documents, which are normally represented using the JSON

notation. Since JSON, which stands for “JavaScript Object Notation”, can easily be parsed in

Javascript and both the server and the client are implemented in Javascript, it is easy to load and

use the data directly from the database.

1http://nodejs.org/
2http://www.10gen.com/leading-nosql-database

63

http://nodejs.org/
http://www.10gen.com/leading-nosql-database

RSS Reader: Demo Application

Figure 6.4: Architecture overview

6.3.1.1 Data model

The information related to each user is divided in two collections: users and feeds.

The users collection contains a document per user. The documents contain the following fields:

• email - The email of the user, is used as his identifier and must be unique.

• password - A SHA1 hash of the user’s password. Is used for authenticating the user.

The feeds collection contains all the feeds that the users have subscribed, one per feed. Each

document stores the following fields:

• owner - The email of the user that owns the feed.

64

RSS Reader: Demo Application

• name - The title of the feed.

• url - The URL of the feed.

6.3.1.2 Web Services

To expose to the mobile application the functionality provided by the server, a REST-based API is

made available, exposing two web services: users and feeds.

The API goes as follows:
Method Path Description
GET /user Get user account information of the currently logged user

POST /user Create a new user account. Expects JSON object with the

email, password and name of the user

PUT /user Update a user account. Expects JSON object with the

email, password and name of the user

POST /user/login Login a user. Expects JSON object with the email,

password

GET /feeds Returns all the feed subscriptions of the logged user

GET /feeds/:id Returns the latest news of the feed subscription identified

by :id

POST /feeds Logged user subscribes to a new feed. Expects JSON ob-

ject with the url of the feed.

PUT /feeds Updates feed subscriptions in bulk. Expects a JSON array

with feed objects inside.

PUT /feeds/:id Update a single feed subscription, identified by :id. Ex-

pects a JSON object with name, url and order (for

changing the order).

DELETE /feeds Removes feed subscriptions in bulk. Expects a JSON array

of feed id’s.

DELETE /feeds/:id Removes a single feed subscription, identified by :id
Table 6.1: Back-end server API overview

Each entry point is protected and requires the user to first authenticate using the /user/login

service. This service returns a session id in the format of a cookie that must be present in all

future requests. Otherwise, the server will refuse to complete the request with a 403 Forbidden

response.

6.3.2 Mobile Application

To develop the mobile application, the Meems Framework was used for the View layer and re-

quire.js and pure Javascript together with a few helper methods from the meems-utils package

were used for the ViewModel and Model layers.

65

RSS Reader: Demo Application

In order to simplify the development phase, models are simple Javascript objects, so these are not

represented directly by a file or module. The downside of this simplification is that the commu-

nication with the web services has to be made from the ViewModel layer. While this is not the

standard way, this application is for demonstration purposes only.

Require.js was used to separate all code units into modules, one per file, and to automatically

manage dependencies. The application code is structured in the following way:

• css Contains all the CSS files, including Meems themes

• js Contains all the Javascript files

– lib External libraries: Meems and require.js

– view Contains the Javascript files that build the views

∗ feeds.js Implements the screen “Feeds”

∗ login.js Implements the screen “Login”

∗ news.js Implements the screen “News”

∗ newsdetail.js Implements the screen “News Detail”

∗ phone.js Implements the overall application view, acts as glue for the other views

and is the main view that instantiates and controls all others

– viewmodel Contains the Javascript files with the application logic. These files imple-

ment the ViewModels that form the bridge between the views and the web services.

∗ feeds.js Implements the code for managing feeds

∗ login.js Implements the code for authenticating the user

∗ news.js Implements the code for listing and presenting news of a feed

∗ newsdetail.js Implements the code to view a news detail information

∗ phone.js Implements the code that initialize other ViewModels and manages nav-

igation between screens

– index.js Main module of the project, it’s the file imported by require.js. Contains

all the initialization code: imports the necessary CSS files according to the platform,

initializes the main ViewModel and install the main view’s root element

• index.html The application’s entry point. Imports require.js, telling it where to locate the

main module, index.js

The view modules use Meems UI to build each page and then expose it to the view model by

exporting a Javascript object with the ui property set to the root widget of the page, usually a

Page or Aside widget. When creating the view, the module will also instantiate all the necessary

observables, bind them to the widgets and expose them through the same object as the ui, so that

the view model can update the view in response to some event. It is also common for the view to

capture low-level events from Meems UI and translate them to higher-level events. For instance,

66

RSS Reader: Demo Application

capturing a button:pressed event triggered by a ButtonGroup, detecting which button was

pressed, for example the “Manage” button, and triggering a feeds:manage event that can be

captured and processed by the view model.

The view model modules have its corresponding view module as a dependency, so Require.js will

inject the view modules at runtime. All modules have an init method that initializes all that is

necessary. Views create the interface and view models call the views’ init method, install event

handlers and update observables to their initial value.

6.3.2.1 Login View

The login view is the page where the user must authenticate himself. The root widget is a Page

with a Header, which contains a submit button, and a Form as content. The form contains two

input fields: email and password. When the user presses the submit button, a login event is

triggered. The view model then captures this event and attempts to login.

6.3.2.2 Feeds View

This view builds the page that shows the list of feeds the user has subscribed to and also the page

that allows the user to manage them. This view will be presented as a side pane, so the root widget

is a PageHolder that holds two pages: feeds and manage feeds.

The “Feeds” page is where the feeds the user subscribed are listed, so that he can choose one to

see its news. The root widget is a Page widget, with a Header and a List for content. In the

header, there is a button to enter the “Manage Feeds” screen.

The “Manage Feeds” view allows the user to manage its feeds. The root widget is a Page with a

Header, which contains a back and a save button, and, as content, a Form and a List. The form

is for subscribing to a new feed. It has a URL input field and an “Add” button. The list is multiple

selection, sortable list with the feeds of the user. Whenever more than one feed is selected, a

Footer with a delete button is shown. If the user presses the back button, all changes are lost and

the user is taken back to the “Feeds View”. The user must therefore click the save button in the

header for the changes to apply.

6.3.2.3 News View

The “News” view is where all the news of the currently selected feed are presented. The root

widget is a Page with a Header and a List as content. The header has a “Feeds” button that

toggles the side pane which contains the “Feeds” view. The list contains all the news of a feed

and when one of its items is selected by the user, the news:clicked event is triggered, so that

the view model can show its details. To show all the necessary details of each news item, the item

template of the list had to adjusted, as shown below.

1 v a r i t e m T e m p l a t e =
2 "< d i v c l a s s = \ " news \" > " +

67

RSS Reader: Demo Application

3 "< d i v c l a s s = \ " t i t l e \ " >{{ t i t l e }} </ div >" +
4 "< d i v c l a s s = \ " d a t e \ " >{{ f o r m a t t e d D a t e }} </ div >" +
5 "< d i v c l a s s = \ " a u t h o r \ " >{{ a u t h o r }} </ div >" +
6 "< d i v c l a s s = \ " summary \" >{{& summary }} </ div >" +
7 "< d i v c l a s s = \ " c l e a r \ " > </ div >" +
8 " </ div >" ;
9

10 v a r l i s t = UI . c r e a t e (" l i s t ")
11 . i t e m s (news) / / Bind t o an o b s e r v a b l e a r r a y .
12 . t e m p l a t e (i t e m T e m p l a t e) / / Change t h e i t e m t e m p l a t e .
13 . a t t r (’ empty ’ , ’No news . < / b>
 ’ + / / Change t h e empty message .
14 ’
 P l e a s e s e l e c t a f e e d from t h e menu . ’)
15 . a t t r (’ s t y l e ’ , ’ normal ’)
16 . a t t r (’ s o r t a b l e ’ , f a l s e)
17 . on (" i t em : c l i c k e d " , f u n c t i o n (eventName , i t em) {
18 pageNews . f i r e (" news : c l i c k e d " , i t em) ;
19 re turn true ;
20 })

Listing 6.1: Changing a list’s item template

6.3.2.4 News Detail View

The “News Detail” view appears after the user selects a news article. The view model will obtain

the original link for that news and show this view. The root widget is a Page, with a Header,

which contains a back button, and a Html for content. The header’s title will be the news’ title.

The html widget has a template and a data object binded to it. The template is an iframe whose

source is the link property of the data object. So, when the news item is binded to the html

widget as the data object, it’s link will be used as the source of the iframe. The user will then be

able to view the original news article.

1 v a r pageTempla te = "< i f r a m e c l a s s = \ " news−d e t a i l s \ " s r c = \ " { { l i n k }} \" > </ i f r ame >" ;
2 v a r c o n t e n t = UI . c r e a t e (" h tml ")
3 . a t t r (" c u s t o m C l a s s " , " ui− f i l l ") / / Makes t h e i f r a m e f i l l i t s p a r e n t
4 . a t t r (" h tml " , pageTempla te) / / Change t h e t e m p l a t e
5 . a t t r (" d a t a " , news) / / Bind t h e news da ta o b j e c t (an o b s e r v a b l e)

Listing 6.2: Creating an iframe using an Html widget

6.3.2.5 Phone View

This is the main view of the application. Its root widget is an Aside, which will be used for

placing the “Feeds” view as a side pane. As the main content, a PageHolder that contains the

“News” and “News Detail” views is used.

68

RSS Reader: Demo Application

6.3.2.6 Login View Model

The login view model initializes the “Login” view and deals with communicating with the back-

end server when the user presses the submit button.

When initializing, the view model checks if it has the credentials of the user stored in the

localStorage and, if it has, it attempts to login automatically using those credentials.

Otherwise, the user will have to fill in his email and password and press the submit button. When

the user presses the submit button, the login event is captured and the view model collects the

email and password the user wrote using the observables binded to those fields and submits an

AJAX request to the back-end server, to the /user/login endpoint.

If the user is successfully authenticated, the credentials are stored for automatic authentication the

next time the user opens the application and the “Feeds” view is shown.

However, if the authentication fails, the user is warned by ways of an alert and remains in the same

page so that he can try again.

6.3.2.7 Feeds View Model

This view model initializes the “Feeds” view and handles the events generated by it.

The feeds:clicked event is triggered when the user clicks on a feed. The view model will

check its cache (which is stored in localStorage) and collects the list of news from there. If

the cache is outdated, it’ll ask the back-end server for new news. After collecting the array of news

to show, it passes them to the “News” view model, invoking its showNews method. This method

updates the observables that set the title and the list content of the “News” view. After that, it’ll

show the “News”

When the user presses the manage button in “Feeds” view, the event feeds:manage is triggered

and captured by this view model. It creates a copy of the current feeds of the user, that will be

used as target of all the user’s modifications when on the manage screen, and makes a transition

to the manage screen.

The feeds:add event is triggered when the user is in the “Manage feeds” view, inserts an URL

and presses the “Add” button. When this happens, the view model reads the value of the observable

associated with the URL field and adds a new Javascript object to the temporary feeds array. This

object contains the properties name and url, both with the new URL.

The feeds:cancel event is triggered when the user presses the back button. It causes the view

model to clear the temporary feeds list and return to the “Feeds” screen.

The feeds:save event if triggered when the user presses the save button. The view model

captures this event and merges the temporary list and the present list, identifying which feeds

to add, edit or delete. Then, for each of these operations, it’ll communicate the changes to the

back-end server using the API described before.

69

RSS Reader: Demo Application

6.3.2.8 News View Model

This view model initializes the “News” view. It implements the showNews method mentioned

before and also an event handler for the news:clicked event, that is triggered when the user

selects a news article. When this event is triggered, the view model passes the select news article

to the news detail view model and makes a transition to the news detail view.

6.3.2.9 News Detail View Model

This view model initializes the “News Detail” view and updates it every time the user selects a

different news article to read.

6.3.3 Deployment and Packaging

Figure 6.5: RSS Reader running on Android 4.2.2

After the application was developed, a deployment and packaging stage was implemented.

The deployment procedure includes minimizing and compressing all the Javascript code, so that

the number of files to load and their size are reduced. To achieve this, the require.js optimizer, r.js,

was used. The optimizer allowed to merge all modules into a single file and to run the uglifyjs

program automatically, generating a file that could be imported using require.js.

However, due to the packaging system, that is described below, the load of dynamic Javascript

files using require.js doesn’t work so well, causing the files to not be loaded. So, to workaround

70

RSS Reader: Demo Application

Figure 6.6: RSS Reader running on iOS Simulator, in Safari browser

this problem, a small “shim” loader was used: almond.js.3 This loader replaces require.js and

wraps itself around the minified modules single file, so that no dynamic loading of Javascript files

is required, thus generating the final form of our application’s logic.

The deployment routine above is just for optimizing the application’s code to make it load faster.

To distribute the application and really make it native-like, a native wrapper must be used. These

wrappers generate a native application similar to a browser without any chrome and load the web

application directly from the file system, which is normally the package itself. PhoneGap is one the

most commonly used wrappers. However, using PhoneGap alone still requires to have a project

per platform and deploy for each one of them. To overcome this and to build the final mobile

application packages, the Adobe’s PhoneGap Build4 service was used. This service allows its users

to provide their application’s code and automatically compiles and generates native packages for

six different mobile platforms: Android, iOS, Windows Phone, BlackBerry, webOS and Symbian.

The application’s code can be sent from the file system, or a Git or SVN code repository can be

appointed. Since the RSS Reader application is available at GitHub5, that very same repository

was used.

Since building packages for the iOS platform requires a signing key, that only allows to test the

package on a single device, the testing on the application on this platform was done using iOS

3https://github.com/jrburke/almond
4https://build.phonegap.com/
5https://github.com/h4evr/meems-demo-phonegap

71

https://github.com/jrburke/almond
https://build.phonegap.com/
https://github.com/h4evr/meems-demo-phonegap

RSS Reader: Demo Application

simulator provided with Xcode. The Safari browser that the emulator brings has the same engine

that PhoneGap uses on iOS platforms, therefore the behavior of the application is the same in both.

For testing the Android package, the Android simulator was also used initially to speed up devel-

opment. Later, the package was tested in the following devices:

• Nexus 7, running Android 4.2.1

– CPU: Quad-code 1.2GHz Cortex-A9 (ARMv7)

– GPU: ULP GeForce

– RAM: 1GB

– Screen: Capacitive 7" screen, 1280x800

• 2 Samsung Galaxy S Advance, one running Android 2.3.6 and other running Android 4.1.2

– CPU: Dual-core 1GHz Cortex-A9 (ARMv7)

– GPU: Mali 400

– RAM: 768MB

– Screen: Capacitive 4" screen, 800x480

• ZT-180 Upad, running Android 2.2

– CPU: 1GHz Zenithink ZT-180 (ARMv6)

– RAM: 256MB

– Screen: Resistive 7" screen, 800x480

All devices were able to install and run the application, despite the different Android versions and

specifications. The look of the application remained across all devices and so did the behaviour.

The only performance issue that was noted was on the Upad, where the scrolling of long news list

turned out to be slower than on the other devices. This indicates that some optimization is needed

on the List widget to perform better on older devices.

See figures 6.5 and 6.6 for screenshots of the application running on Android and iOS.

6.4 Conclusions

Building an application combining the Meems Framework and require.js proved to be simple and

fast, providing in the end a web application that looks almost native in Android and iOS platforms.

Combined with Adobe’s PhoneGap Build web service, creating hybrid applications for Android

and iOS is very easy, just a commit to the repository, click on a “Update Code” button in their web

page and wait for the packages to be built.

The performance on the devices tested was very satisfactory, but can be further improved to run

better on older devices. Also, more effects should be parameterized to give a feel closer to native

applications.

72

RSS Reader: Demo Application

Developing a back-end server in node.js using the Express framework and MongoDB was a new

experience. The way all the technologies involved speak the same language (Javascript and JSON)

speeds up development and doesn’t require the developer to be changing languages in the process.

Node.js and Express make the separation of code and concepts easy, so the final source code is

clean and the API is simple to understand.

This combination of technologies (Meems Framework, require.js, node.js, Express, MongoDB),

all leveraging the power of Javascript and JSON, will allow developers to build full applications,

from front-end to back-end, faster and better, using always the same language: Javascript.

73

RSS Reader: Demo Application

74

Chapter 7

Conclusions

The market of smartphones is still evolving, as is the support for web technologies. The appear-

ance of operating systems like FirefoxOS make web applications first class citizens, so in the

future there will probably be more applications built using HTML5 and Javascript. And as the

popularity of these operating systems grow, it is only natural that other platforms, like Android or

iOS, also improve their support for these applications. The future of mobile development is cur-

rently too fragmented, with too many technologies, tools and frameworks, if one wants to target

multiple platforms. Hopefully, in the future, when web mobile applications are more prominent,

a cross-platform tool-set with well supported features will be developed, unifying developers and

platforms.

Meanwhile, frameworks like Meems are a necessity. There are already many frameworks and

libraries that help developers build their web mobile applications, but Meems fills a noticeable

gap: the need to look native on each platform, with a single code-base. This goal was met,

as demonstrated with RSS reader application that was developed to showcase the framework.

Developing web applications still isn’t easy as it should be, but using frameworks as Meems,

the developer doesn’t have to worry about how to render the user interface, instead he can focus

on the content he needs to present to the user. As HTML5 support in mobile platforms grows,

web applications will become more powerful and the frameworks that support them will need less

boilerplate code, making them faster and allowing applications to access more features.

Besides the different support of the HTML5 standard on different platforms, one of the main

challenges of developing cross-platform mobile applications nowadays is testing. The lack of ap-

propriate tools and the discrepancies in the support of HTML5 by the different browsers makes

it difficult for a developer to accurately test his application to ensure it works in all the desired

platforms. One technique is to actually run the application in different smartphones and use re-

mote debugging tools, like weinre or Chrome DevTools. As mobile operating systems evolve, it’s

expected a better native support for these tools. Adobe’s PhoneGap Build allows one to enable

debugging support in the developed applications, causing it to detect the applications that are run-

ning in the different devices. The user can then choose a session and a weinre debugger will be

attached.

75

Conclusions

As new platforms appear, the mobile market evolves, along with how applications are developed.

The future is still uncertain, but web applications will definitely play an important role in it.

7.1 Future Work

The Meems Framework provides a working basic framework, but it is far from complete. A project

of this dimension would never be ended within the time frame of this dissertation, so its scope was

reduced. But there is still much work to be done to turn it into a really useful and production-

ready platform: more widgets, support for more platforms, better performance, integration with

other tools, better user documentation with examples, tutorials and a community.

Since the framework is extensible, implementing new widgets and supporting new platforms is

simple. Possible new widgets include: progress bar, picture gallery, comboboxes, dialogs and

pop-ups. Existing widgets should also be improved and extended. For example, the Aside widget

could be extended to be able to appear from either sides of the screen, instead of appearing only

from the left. The List widget can also be further optimized, as it is certainly one of the most

important widgets in mobile applications. Its performance varies according with the size of the

list, which means that long lists degrade the performance of the whole application.

The support for other platforms, like Windows Phone, BlackBerryOS, FirefoxOS or Ubuntu

Touch, will also be critical, as multiple platform support is one of the key features of frameworks

of this kind.

As the frameworks evolves, the user documentation will also be made better and users are expected

to collaborate in writing and translating it. A good solid documentation is an important step for

any software that wants to be used properly and prosper.

Providing the final user with the best experience is the goal, but the Meems framework is also

about making the life of developers easier. All the improvements above are certainly a step in this

direction.

76

References

[ao13] amdjs organization. AMD. https://github.com/amdjs/amdjs-api, 2013. [On-
line; accessed 16-February-2013].

[App09] Apple. Apple Reports First Quarter Results, January 2009. http:
//www.apple.com/pr/library/2009/01/21Apple-Reports-First-
Quarter-Results.html [Online; accessed 10-June-2013].

[App13] Apple. Start Developing iOS Apps Today: Set Up. https://developer.apple.
com/library/ios/#referencelibrary/GettingStarted/RoadMapiOS/
chapters/GetToolsandInstall.html, 2013. [Online; accessed 16-February-
2013].

[Eva13] Benedict Evans. Facebook’s 470m mobile app users. http://ben-evans.com/
benedictevans/2013/1/2/facebooks-545m-mobile-app-users, January
2013. [Online; accessed 02-June-2013].

[Goo13a] Google. Android NDK | Android Developers. http://developer.android.
com/tools/sdk/ndk/index.html, 2013. [Online; accessed 16-February-2013].

[Goo13b] Google. Android SDK | Android Developers. http://developer.android.com/
tools/sdk/index.html, 2013. [Online; accessed 16-February-2013].

[Goo13c] Google. Policy and Best Practices - Android Developer Help. http://support.
google.com/googleplay/android-developer/topic/2364761?hl=en,
2013. [Online; accessed 16-February-2013].

[Hen12] KeeKim Heng. Speeding up JavaScript: Working with the DOM. https://
developers.google.com/speed/articles/javascript-dom, March 2012.
[Online; accessed 04-May-2013].

[IDC13] IDC. Android and iOS Combine for 92.3Shipments in the First Quarter While Windows
Phone Leapfrogs BlackBerry, According to IDC, May 2013. http://www.idc.com/
getdoc.jsp?containerId=prUS24108913 [Online; accessed 10-June-2013].

[JA12] Jacky Nguyen Jamie Avins. The Making of Fastbook: An HTML5 Love
Story. http://www.sencha.com/blog/the-making-of-fastbook-an-
html5-love-story, December 2012. [Online; accessed 04-May-2013].

[jF+12] jQuery Foundation et al. jQuery Mobile Docs - Intro, 2012. http://jquerymobile.
com/demos/1.2.0/docs/about/intro.html [Online; accessed 10-June-2013].

[Kan13a] David Kaneda. jQT (formerly jQTouch) — Zepto/jQuery plugin for mobile web devel-
opment, 2013. http://jqtjs.com/ [Online; accessed 10-June-2013].

77

https://github.com/amdjs/amdjs-api
http://www.apple.com/pr/library/2009/01/21Apple-Reports-First-Quarter-Results.html
http://www.apple.com/pr/library/2009/01/21Apple-Reports-First-Quarter-Results.html
http://www.apple.com/pr/library/2009/01/21Apple-Reports-First-Quarter-Results.html
https://developer.apple.com/library/ios/#referencelibrary/GettingStarted/RoadMapiOS/chapters/GetToolsandInstall.html
https://developer.apple.com/library/ios/#referencelibrary/GettingStarted/RoadMapiOS/chapters/GetToolsandInstall.html
https://developer.apple.com/library/ios/#referencelibrary/GettingStarted/RoadMapiOS/chapters/GetToolsandInstall.html
http://ben-evans.com/benedictevans/2013/1/2/facebooks-545m-mobile-app-users
http://ben-evans.com/benedictevans/2013/1/2/facebooks-545m-mobile-app-users
http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/index.html
http://developer.android.com/tools/sdk/index.html
http://support.google.com/googleplay/android-developer/topic/2364761?hl=en
http://support.google.com/googleplay/android-developer/topic/2364761?hl=en
https://developers.google.com/speed/articles/javascript-dom
https://developers.google.com/speed/articles/javascript-dom
http://www.idc.com/getdoc.jsp?containerId=prUS24108913
http://www.idc.com/getdoc.jsp?containerId=prUS24108913
http://www.sencha.com/blog/the-making-of-fastbook-an-html5-love-story
http://www.sencha.com/blog/the-making-of-fastbook-an-html5-love-story
http://jquerymobile.com/demos/1.2.0/docs/about/intro.html
http://jquerymobile.com/demos/1.2.0/docs/about/intro.html
http://jqtjs.com/

REFERENCES

[Kan13b] Dan Kantor. The Story behind Exfm, April 2013. http://phonegap.com/blog/
2013/04/23/story-behind-exfm/ [Online; accessed 05-June-2013].

[Mah13] Michael Mahemoff. Client Side Storage - HTML5 Rocks, 2013. http://www.
html5rocks.com/en/tutorials/offline/storage/#web-storage [On-
line; acessed 10-June-2013].

[Nis13] Deep Nishar. 200 million members!, January 2013. http://blog.linkedin.com/
2013/01/09/linkedin-200-million/ [Online; accessed 05-June 2013].

[O’D11] Jolie O’Dell. LinkedIn’s new mobile app is so gorgeous, you’ll actually want to use
it, August 2011. http://venturebeat.com/2011/08/16/linkedin-mobile-
app/ [Online; accessed 05-June-2013].

[O’D12] Jolie O’Dell. You’ll never believe how LinkedIn built its new iPad app (exclusive),
May 2012. http://venturebeat.com/2012/05/02/linkedin-ipad-app-
engineering/#vb-gallery:1:421650 [Online; accessed 05-June-2013].

[O’D13] Jolie O’Dell. Why LinkedIn dumped HTML5 & went native for its mobile apps,
April 2013. http://venturebeat.com/2013/04/17/linkedin-mobile-
web-breakup/ [Online; accessed 05-June-2013].

[Ola12] Drew Olanoff. Mark Zuckerberg: Our Biggest Mistake Was Betting Too Much On
HTML5. http://techcrunch.com/2012/09/11/mark-zuckerberg-our-
biggest-mistake-with-mobile-was-betting-too-much-on-html5/,
September 2012. [Online; accessed 02-Jun-2013].

[Sen13] Sencha. Sencha Touch - Build Mobile Web Apps with HTML5, 2013. http://www.
sencha.com/products/touch/ [Online; accessed 10-June-2013].

[Thu13] Paul Thurrott. Why is the Facebook Beta App for Windows Phone 8 identical to the
Android and iOs apps?, May 2013. http://winsupersite.com/windows-
phone/why-facebook-beta-app-windows-phone-8-identical-
android-and-ios-apps [Online; accessed 05-June-2013].

[Ton10] Tony Wasserman. Software Engineering Issues for Mobile Application Development.
FoSER, 2010. http://works.bepress.com/tony_wasserman/4 [Online; ac-
cessed 23-February-2013].

[Wik12] Wikipedia. Approval of iOS apps — Wikipedia, The Free Encyclopedia. http:
//en.wikipedia.org/wiki/Approval_of_iOS_apps, 2012. [Online; accessed
16-February-2013].

78

http://phonegap.com/blog/2013/04/23/story-behind-exfm/
http://phonegap.com/blog/2013/04/23/story-behind-exfm/
http://www.html5rocks.com/en/tutorials/offline/storage/#web-storage
http://www.html5rocks.com/en/tutorials/offline/storage/#web-storage
http://blog.linkedin.com/2013/01/09/linkedin-200-million/
http://blog.linkedin.com/2013/01/09/linkedin-200-million/
http://venturebeat.com/2011/08/16/linkedin-mobile-app/
http://venturebeat.com/2011/08/16/linkedin-mobile-app/
http://venturebeat.com/2012/05/02/linkedin-ipad-app-engineering/#vb-gallery:1:421650
http://venturebeat.com/2012/05/02/linkedin-ipad-app-engineering/#vb-gallery:1:421650
http://venturebeat.com/2013/04/17/linkedin-mobile-web-breakup/
http://venturebeat.com/2013/04/17/linkedin-mobile-web-breakup/
http://techcrunch.com/2012/09/11/mark-zuckerberg-our-biggest-mistake-with-mobile-was-betting-too-much-on-html5/
http://techcrunch.com/2012/09/11/mark-zuckerberg-our-biggest-mistake-with-mobile-was-betting-too-much-on-html5/
http://www.sencha.com/products/touch/
http://www.sencha.com/products/touch/
http://winsupersite.com/windows-phone/why-facebook-beta-app-windows-phone-8-identical-android-and-ios-apps
http://winsupersite.com/windows-phone/why-facebook-beta-app-windows-phone-8-identical-android-and-ios-apps
http://winsupersite.com/windows-phone/why-facebook-beta-app-windows-phone-8-identical-android-and-ios-apps
http://works.bepress.com/tony_wasserman/4
http://en.wikipedia.org/wiki/Approval_of_iOS_apps
http://en.wikipedia.org/wiki/Approval_of_iOS_apps

Appendix A

Survey Results

The results of the performed survey are shown below.

A.1 Experience

A.1.1 How many years of experience in software development do you have?

The language and the platform don’t matter.

0 26 27%

1 6 6%

2 3 3%

3 6 6%

4 10 10%

5 14 14%

6 12 12%

7 6 6%

8 3 3%

9 2 2%

10 10 10%

This section’s purpose it to collect the amount of experience you have developing software.

A.1.2 How many years of experience in software development do you have?

The platform doesn’t matter.

79

Survey Results

0 36 38%

1 28 29%

2 21 22%

3 11 11%

4 0 0%

5 0 0%

6 0 0%

7 0 0%

8 0 0%

9 0 0%

10 0 0%

A.1.3 What platforms have you developed native applications for?

Choose all that apply.

JavaME 5 5%

Symbian 2 2%

iOS 8 8%

Android 56 59%

BlackBerryOS 0 0%

Bada 1 1%

Windows Phone / Mobile 18 19%

Other 5 5%

A.1.4 What kind of mobile apps do you develop?

Do you use the platform’s provided SDK’s (native), tools like PhoneGap or appMobi (hybrid) or

do you develop web applications oriented towards mobile?

Native 46 53%

Hybrid 13 15%

Web App 28 32%

80

Survey Results

A.1.5 Do you target one platform at a time, or do you have a team per platform?

One platform at a time 35 54%

A team per platform 4 6%

I only target one platform 26 40%

A.2 HTML5, Javascript and CSS3

A.2.1 What’s your skill level in Javascript?

0 23 23%

1 18 18%

2 23 23%

3 14 14%

4 17 17%

5 4 4%

A.2.2 What’s your skill level in HTML5 and CSS3?

0 23 23%

1 13 13%

2 19 19%

3 14 14%

4 22 22%

5 8 8%

A.2.3 Do you prefer HTML5 or Javascript for implementing user interfaces?

For implementing the views of your application, you prefer a library that enables you to use solely

HTML5 (like KendoUI) to specify it or a library where you use Javascript to specify the GUI (like

Sencha Touch)?

HTML5 25 35%

Javascript 7 10%

I like to mix HTML5 and Javascript 39 55%

81

Survey Results

A.3 Features

A.3.1 Classify the functionalities/characteristics below according to their impor-
tance to you

A.3.1.1 Analytics

Not important 4 5%

Nice to have 21 28%

Useful 27 36%

A must 21 28%

Deal breaker 2 3%

A.3.1.2 Hardware acceleration

Not important 3 4%

Nice to have 17 22%

Useful 28 37%

A must 22 29%

Deal breaker 6 8%

A.3.1.3 Configurable effects

Not important 2 3%

Nice to have 26 34%

Useful 32 42%

A must 14 18%

Deal breaker 2 3%

A.3.1.4 Fixed scrolling emulation

Not important 8 11%

Nice to have 19 26%

Useful 33 46%

A must 11 15%

Deal breaker 1 1%

82

Survey Results

A.3.1.5 UI Widgets

Not important 4 5%

Nice to have 15 20%

Useful 29 39%

A must 20 27%

Deal breaker 6 8%

A.3.1.6 Data bindings betweens views and models

Not important 3 4%

Nice to have 12 16%

Useful 31 41%

A must 23 31%

Deal breaker 6 8%

A.3.1.7 Cross-platform support

Not important 2 3%

Nice to have 9 12%

Useful 24 32%

A must 24 32%

Deal breaker 16 21%

A.3.1.8 Full SDK

Not important 5 7%

Nice to have 8 11%

Useful 25 35%

A must 21 29%

Deal breaker 13 18%

83

Survey Results

A.3.1.9 Documentation

Not important 3 4%

Nice to have 12 16%

Useful 16 22%

A must 26 35%

Deal breaker 17 23%

A.3.1.10 Internationalization (i18n)

Not important 1 1%

Nice to have 11 15%

Useful 28 37%

A must 23 31%

Deal breaker 12 16%

A.3.1.11 Extensions

Not important 3 4%

Nice to have 20 27%

Useful 38 51%

A must 12 16%

Deal breaker 2 3%

A.3.1.12 Monetization

Not important 9 13%

Nice to have 15 21%

Useful 33 46%

A must 11 15%

Deal breaker 3 4%

84

	Front Page
	Table of Contents
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Context and Motivation
	1.2 Goals
	1.3 Dissertation's Structure

	2 State of the Art
	2.1 Mobile Operating Systems
	2.2 Approaches to Mobile Development
	2.2.1 Native
	2.2.2 Web
	2.2.3 Hybrid
	2.2.4 Publishing applications

	2.3 Web technologies
	2.3.1 The appearance of HTML5
	2.3.2 Advantages of HTML5

	2.4 Frameworks for developing mobile web applications
	2.4.1 jQuery Mobile
	2.4.2 xui
	2.4.3 jQTouch
	2.4.4 Sencha Touch
	2.4.5 Wink toolkit
	2.4.6 Jo
	2.4.7 Kendo UI
	2.4.8 jqMobi and jqUI
	2.4.9 Comparison between frameworks

	2.5 Conclusions

	3 Case Studies
	3.1 Facebook
	3.2 LinkedIn
	3.3 Exfm
	3.4 Conclusion

	4 Market Study and Analysis
	4.1 Experience
	4.1.1 How many years of experience in software development do you have?
	4.1.2 How many years of experience do you have in developing for mobile?
	4.1.3 What platforms have you developed native applications for?
	4.1.4 What kind of mobile apps do you develop?
	4.1.5 Do you target one platform at a time, or do you have a team per platform?

	4.2 HTML5, Javascript and CSS3
	4.2.1 What's your skill level in Javascript?
	4.2.2 What's your skill level in HTML5 and CSS3?
	4.2.3 Do you prefer HTML5 or Javascript for implementing user interfaces?

	4.3 Features
	4.3.1 Analytics
	4.3.2 Hardware acceleration
	4.3.3 Configurable effects
	4.3.4 UI Widgets
	4.3.5 Data bindings between views and models
	4.3.6 Cross-platform support
	4.3.7 Full SDK
	4.3.8 Documentation
	4.3.9 Internationalization (I18n)
	4.3.10 Extensions
	4.3.11 Monetization

	4.4 Conclusion

	5 The Meems Framework
	5.1 Goals
	5.2 Concepts
	5.2.1 Widgets
	5.2.2 Model-View-ViewModel
	5.2.3 Observables

	5.3 Architecture
	5.3.1 AMD - Asynchronous Module Definition
	5.3.2 Meems-events
	5.3.3 Meems-utils
	5.3.4 Meems-scroll
	5.3.5 Meems-ui
	5.3.6 Building user interfaces
	5.3.7 Effects
	5.3.8 Icons

	5.4 Documentation
	5.5 Conclusions

	6 RSS Reader: Demo Application
	6.1 Requirements
	6.1.1 Functional Requirements
	6.1.2 Non-functional Requirements

	6.2 User Interface
	6.2.1 Login Screen
	6.2.2 News Screen
	6.2.3 Manage Feeds Screen
	6.2.4 News Detail Screen

	6.3 Architecture
	6.3.1 Back-end Server
	6.3.2 Mobile Application
	6.3.3 Deployment and Packaging

	6.4 Conclusions

	7 Conclusions
	7.1 Future Work

	References
	A Survey Results
	A.1 Experience
	A.1.1 How many years of experience in software development do you have?
	A.1.2 How many years of experience in software development do you have?
	A.1.3 What platforms have you developed native applications for?
	A.1.4 What kind of mobile apps do you develop?
	A.1.5 Do you target one platform at a time, or do you have a team per platform?

	A.2 HTML5, Javascript and CSS3
	A.2.1 What's your skill level in Javascript?
	A.2.2 What's your skill level in HTML5 and CSS3?
	A.2.3 Do you prefer HTML5 or Javascript for implementing user interfaces?

	A.3 Features
	A.3.1 Classify the functionalities/characteristics below according to their importance to you

