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Abstract— This paper presents a contribution to the use of
Hopfield neural networks (HNNs) for parameter estimation.
Our focus is on time-invariant systems that are linear in the
parameters. We introduce a suitable HNN and present a weaker
condition than the currently existing ones that guarantees the
convergence of the parameterization estimated by the network
to the actual parameterization. The application of our results
is illustrated in a parameter estimation problem for a two carts
system.
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I. INTRODUCTION

System identification plays undoubtedly an important role

in different areas such as biomedicine, robotics and fluid

dynamics applied to aircraft and motor vehicle industries. In

fact, obtaining an accurate model for a process is important

not only for the study of the process itself, but very often

for the design of a suitable control strategy. In this con-

text, consider the example of a patient undergoing general

anesthesia, where a control action is used for drug delivery

optimization [7]: the safety of the patient obviously depends

on the reliability of the control strategy, but the latter is based

on the identification of the patient dynamics.

Many approaches to system identification have been pro-

posed, in particular the use of neural networks as black-box

models (see, for instance, [8]). However, there are problems

where gray-box models are preferred, since they can be ap-

plied not only for prediction but also for description purposes,

offering in this case some insight into the underlying system

dynamics. This motivated us to propose instead the use of

neural networks as a tool designed to estimate the parameters

of a gray-box model intended to fit the system data. In this

paper, we consider Abe’s formulation of a Hopfield neural

network (HNN) [1]. Compared to the original Hopfield’s

formulation [4], this formulation is simpler, computationally

less demanding, and hence more suitable for parameter

estimation. These advantages have been pointed out in [2],

where the use of such formulation in that context has

been proposed. The authors proved that the parameterization

estimated by their network asymptotically converges to the
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actual parameterization for a system assumed to be time-

invariant and linear in the parameters. However, this result

was obtained under very restrictive assumptions on the matrix

(Wij). In fact, these assumptions are so restrictive that they

do not hold for the case study presented in that work, in spite

of the good performance of the corresponding estimation

process. This suggested us that the conditions of [2] could

be relaxed, motivating this contribution.

The paper is organized as follows. In Section II, the prob-

lem of applying a HNN to parameter estimation is formulated

and our contributions clarified. Section III presents both the

way how we define the network estimator and its stability

analysis. In Section IV, the application of our results is

illustrated in a parameter estimation problem for a two carts

system. Finally, we present the conclusions and future work.

II. PROBLEM FORMULATION

Our focus is on time-invariant systems that are linear in

the parameters, i.e., systems that can be represented in the

form

y(t) = A(t)θ, (1)

for some y : [t0,+∞[→ Rm×1, A : [t0,+∞[→ Rm×n,

being θ ∈ Rn×1 the vector of the unknown parameters to es-

timate. It is assumed that y,A are continuously differentiable

and bounded functions, and that y(t),A(t) are available at

each time t, although y,A are possibly explicitly unknown.

Furthermore, it is reasonable to assume the knowledge about

some c > 0 for which θ ∈] − c, c[n. Our problem is that

of defining a Hopfield neural network (HNN) that is able to

generate a trajectory θ̂(·) such that ∀t ≥ t0 θ̂(t) ∈] − c, c[n

and limt→+∞θ̂(t) = θ under mild assumptions. In [2],

the proposed network generates a trajectory confined to

θ̂(t0)+] − 1, 1[n and asymptotically convergent to θ under

the assumption that ∀t ≥ t0 ker(A(t)) = {0}. But if the

latter condition holds, then the solution to the estimation

problem given by θ =
(

AT (t)A(t)
)−1

AT (t)y(t) can be

obtained at any time t ≥ t0, even if AT (t)A(t) is ill-

conditioned, in which case simpler standard methods can

be applied to compute θ. In addition, a necessary condition

for ∀t ≥ t0 ker(A(t)) = {0} to hold is that m ≥ n, i.e.,

the system should not be overparameterized. However, a

successful application of a HNN to an estimation problem

where m < n is given in [2], which motivated us to find more

general conditions. Here, we start by introducing a different

HNN that has the advantage of requiring no prior knowledge

on the choice of θ̂(t0), the initial estimate of θ, and which
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accommodates the value of c, a parameter that determines the

size of the search space. Then, we show that θ is a globally

uniformly asymptotically stable equilibrium point of this

HNN at t = t0
1 if the following holds: for all nondegenerate

interval I ⊂ [t0,+∞[,
⋂

t∈I ker(A(t)) = {0}. It is clear

that this is a weaker condition than the one presented in [2];

moreover, it does not imply an order relation between m

and n. Finally, note that we assume no upper bound for the

parameter c, which can be made arbitrarily large.

III. HOPFIELD NEURAL NETWORKS FOR PARAMETER

ESTIMATION

In what follows, we first describe our adaptation of

Abe’s formulation of a time-invariant Hopfield neural net-

work (HNN) to the parameter estimation problem. Then, we

present the stability analysis of the proposed estimator.

A. Hopfield neural network estimator

Consider a HNN where the number of neurons equals

the number of parameters to estimate, n, and the neuron

dynamics is governed by the ordinary differential equation

dpi

dt
(t) = −





n
∑

j=1

Wijfj(pj(t)) + Ii



 , (2)

being pi the total input to neuron i, fj a continuous, nonlin-

ear, bounded and strictly increasing function determining the

output of neuron j, Wij a parameter representing the weight

associated with the connection from neuron j to neuron i,

and Ii a parameter corresponding to the external input or

bias of neuron i. The output of neuron j is regarded as the

estimate of parameter j, i.e.,

θ̂j = fj ◦ pj .

In order to guarantee that the network trajectory is in

the feasible region of the estimation problem, i.e., that

∀t ≥ t0 θ̂(t) ∈] − c, c[n, we include c in the the usual defi-

nition of fj to get

fj(pj(t)) = c tanh

(

pj(t)

β

)

,

where β > 0 is a scaling parameter. The only thing left to

define in (2) are the parameters Wij and Ii. The goal is to

make the vector of actual parameters θ an equilibrium point

of the network at t = t0; hence, it is natural to make the

network dynamics depend on the system data, i.e., to take

Wij and Ii as functions of y(t), A(t). First, let us look at

the state space representation of the HNN,

dθ̂

dt
(t) = −

1

cβ
Dc(θ̂(t))

(

W(t)θ̂(t) + I(t)
)

, (3)

1Let f : [t0, +∞[×D → R
n be piecewise continuous in t and locally

Lipschitz in x on [t0, +∞[×D, where D ⊂ R
n. The point x

⋆ ∈ D

is an equilibrium point of the system dx

dt
= f(t,x) at t = t⋆ ≥ t0 if

∀t ≥ t⋆ f(t,x⋆) = 0 [5].

where

Dc(θ̂(t)) = diag
((

c2 − θ̂2
i (t)

)

i

)

,

W(t) = (Wij)(t) ∈ Rn×n and I(t) = (Ii)(t) ∈ Rn×1.

Clearly, θ is an equilibrium point of the network at

t = t0 if and only if ∀t ≥ t0 W(t)θ + I(t) = 0 (just note

that Dc(θ̂(t)) is invertible since ∀t ≥ t0 θ̂(t) ∈] − c, c[n).

In order to achieve this condition, and given that

∀t ≥ t0 AT (t)A(t)θ − AT (t)y(t) = 0 by (1), we take

W(t) = AT (t)A(t), (4)

I(t) = −AT (t)y(t). (5)

Henceforth, we shall refer to (3) together with (4), (5) as our

HNN.

B. Stability analysis of the Hopfield neural network estimator

The goal of the stability analysis carried out in this section

is to present a weaker sufficient condition, under which θ is a

globally uniformly asymptotically stable equilibrium point of

our HNN. Often in the literature only global attractiveness is

proved, rather than global asymptotic stability. However, an

equilibrium point can be attractive without being stable [9].

Stability means that the trajectory of the network remains

close to θ if the initial estimate θ̂(t0) is sufficiently close,

being therefore an important feature in practice, and thus

worth to show.

Now, the approach to the stability analysis is made under

the framework of Lyapunov stability theory. In the HNN

literature, the function

E(t, θ̃) =
1

2
θ̃T W(t)θ̃ + θ̃T I(t)

is usually taken as being Lyapunov in the time-invariant case,

where W and I do not vary in time; however, this is not our

case. Here, we cannot guarantee that E is Lyapunov, since
dE
dt

evaluated along the network trajectory,

dE

dt
(t, θ̂(t)) = −

1

2
θ̂T (t)

dW

dt
(t)(2θ − θ̂(t))

−
1

cβ
(W(t)(θ − θ̂(t)))T Dc(θ̂(t))W(t)(θ − θ̂(t)),

is not necessarily negative definite despite the negative defi-

niteness of its second term. Hence, we are led to introduce a

suitable Lyapunov function. Before doing so, note that instead

of studying the stability behavior of θ as an equilibrium

point of our HNN, we can study the stability behavior of

the origin as an equilibrium point of a system obtained from

the network through an appropriate change of variables, like

the one determined from

∆(t) = θ − θ̂(t).

The latter condition defines the estimation error, whose

dynamics is
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d∆

dt
(t) = f(t,∆(t)), (6)

where

f(t, ∆(t)) = −
1

cβ
Dc(θ − ∆(t))W(t)∆(t)

was obtained minding that ∀t ≥ t0 W(t)θ + I(t) = 0. It is

clear that ∆⋆ = 0 is the equilibrium point of the estimation

error dynamics (6) at t = t0 which corresponds to the

equilibrium point θ̂⋆ = θ of our HNN at t = t0. We are now

ready to introduce a suitable Lyapunov function through the

next lemma.

Lemma 1: The function V : θ+] − c, c[n→ R defined by

V (∆(t)) =

−
1

2c

n
∑

i=1

ln

(

(

1 +
∆(t)i

c − θi

)c−θi
(

1 −
∆(t)i

c + θi

)c+θi

)

(7)

is a Lyapunov function for the estimation error dynamics (6).

The next lemma states that in every concentric, closed sub-

hypercube of θ+]−c, c[n containing the origin, the Lyapunov

function V is lower and upper bounded by suitable compar-

ison functions. Its proof is based on that of Lemma 4.3 in

[5].

Lemma 2: Consider the set

Sr = {∆ ∈ θ+] − c, c[n: ‖∆ − θ‖∞ ≤ r}

for some r ∈]‖θ‖∞, c[2. Then, there exist class K functions3

γ1 and γ2 such that

γ1(‖∆‖∞) ≤ V (∆) ≤ γ2(‖∆‖∞)

for all ∆ ∈ Sr.

An important result to the proof our main contribution is

given in the next lemma, which guarantees that the trajectory

θ̂(·) generated by our HNN is unique for each initial estimate

θ̂(t0) of the actual parameterization θ. This follows from

Theorem 3.3 in [5], since f is Lipschitz and every trajectory

lies entirely in a compact subset of θ+] − c, c[n.

Lemma 3: The initial-value problem defined by the esti-

mation error dynamics (6) and the initial condition ∆(t0) =
∆0,

d∆

dt
(t) = f(t,∆(t)), ∆(t0) = ∆0, (8)

has a unique solution over [t0,+∞[.

Corollary 1: If ∆(t0) 6= 0, then the solution ∆(t) to the

initial-value problem (8) is such that ∀t ≥ t0 ∆(t) 6= 0.

We are now ready to state and prove the main result of this

paper.

2By definition, ‖v‖∞ = max{|vi|}.
3A continuous function γ : [0, a] → [0, +∞[ is said to belong to class

K if it is strictly increasing and γ(0) = 0 [5].

Theorem 1: The equilibrium point ∆⋆ = 0 of the estima-

tion error dynamics (6) is globally uniformly asymptotically

stable if

for all nondegenerate interval I ⊂ [t0,+∞[,
⋂

t∈I

ker(A(t)) = {0}. (9)

Proof: Consider the initial-value problem (8), which has

a unique solution over [t0,+∞[ by Lemma 3. Let us assume

that ∆0 ∈ Ωρ, where

Ωρ = {∆ ∈ Sr : V (∆) ≤ ρ}

for some r ∈]‖θ‖∞, c[, ρ ∈]0, min∆∈∂Sr
{V (∆)}; moreover,

suppose that ∆0 6= 0, otherwise ∀t ≥ t0 ∆(t) = 0, since

∆⋆ = 0 is an equilibrium point at t = t0. It is possible to

prove that, under (9), we have

∃δ > 0 : ∀t ≥ t0 V (∆(t + δ)) < V (∆(t)). (10)

To this end, it suffices to consider the negative semidefinite-

ness of dV
dt

, the symmetry and positive semidefiniteness of

W, the fact that ∀t ≥ t0 ker(W(t)) = ker(A(t)), and finally

use Corollary 1. Now, it is easy to see that, from (10), we

have

∃δ > 0 : ∀t ≥ t0 V (∆(t + δ)) ≤ (1 − λ)V (∆(t))

for some λ ∈]0, 1[. Similarly to the proof of Theorem 8.5 in

[5], it can be shown that there exists a class KL function4 σ

such that

∀t ≥ t0 V (∆(t)) ≤ σ(V (∆0), t − t0). (11)

Hence,

∀t ≥ t0 ‖∆(t)‖
∞

≤ γ−1
1 (V (∆(t)))

≤ γ−1
1 (σ(V (∆0), t − t0))

≤ γ−1
1 (σ(γ2(‖∆0‖∞), t − t0))

, µ(‖∆0‖∞ , t − t0) (12)

with γ1, γ2 as in Lemma 2, and where the function µ

is a class KL function by Lemma 4.2 in [5]. Making

use of the fact that the norms ‖·‖
2

and ‖·‖
∞

are equiv-

alent in Rn, from (12) it follows that ∆⋆ = 0 is uni-

formly asymptotically stable by Lemma 4.5 in [5]. Fi-

nally, note that limr→c−∂Sr = ∂(θ+] − c, c[n), and therefore

limr→c−min∆∈∂Sr
{V (∆)} = +∞ by (7). In this way,

ρ < min∆∈∂Sr
{V (∆)} can be made arbitrarily large so that

the set Ωρ includes any initial state ∆0 ∈ θ+] − c, c[n. Thus,

∆⋆ = 0 is globally uniformly asymptotically stable.

4A continuous function σ : [0, a]× [0, +∞[→ [0, +∞[ is said to belong
to class KL if, for each fixed τ , the mapping σ(ξ, τ) belongs to class K
with respect to ξ and, for each fixed ξ, the mapping σ(ξ, τ) is decreasing
with respect to τ and σ(ξ, τ) → 0 as τ → +∞ [5].
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IV. CASE STUDY

In the following, we illustrate the application of our theo-

retical results to the parameter estimation problem for a two

carts system. This system of some unknown parameters is

often considered in a benchmark problem of robust adaptive

feedback control (see, for instance, [3]).

Consider two carts joined by a spring and a damper as

represented in Fig. 1. The application of physical laws yields

the state space model

ẋ(t) = Mx(t) + Nu(t), (13)

where

x(t) = (x1(t), x2(t), ẋ1(t), ẋ2(t))
T

,

M =









0 0 1 0
0 0 0 1

− k
m1

k
m1

− b
m1

b
m1

k
m2

− k
m2

b
m2

− b
m2









,

N =









0
0
1

m1

0









,

and where xi, ẋi, ẍi denote respectively the displacement,

velocity and acceleration of cart i, u the force applied to cart

1, and mi, k, b the parameters corresponding respectively

to the mass of cart i, the spring constant, and the damper

constant. Assume that the masses mi are known, and that

the constants k, b are the unknown parameters to estimate.

Hence, (13) can be cast into the reduced form (1) by taking

y(t) =

(

m1ẍ1(t) − u(t)
m2ẍ2(t)

)

,

A(t) =

(

−x1(t) + x2(t) −ẋ1(t) + ẋ2(t)
x1(t) − x2(t) ẋ1(t) − ẋ2(t)

)

,

θ =

(

k

b

)

.

A successful parameter estimation is guaranteed if condi-

tion (9) on ker(A) holds, i.e., for all nondegenerate interval

I ⊂ [0,+∞[,
⋂

t∈I ker(A(t)) = {0}. Start by noting that

∀t ≥ 0 ker(A(t)) % {0}, given that ∀t ≥ 0 det(A(t)) = 0;

in fact, ∀t ≥ 0 ker(A(t)) = {θ̃ ∈ R2 : (x1(t) −
x2(t))θ̃1 + (ẋ1(t) − ẋ2(t))θ̃2 = 0}. Therefore, it is easy to

see that condition (9) holds if for all nondegenerate interval

I ⊂ [0,+∞[ and all r1, r2 ∈ R, there exists t ∈ I such that

x1(t) − x2(t) 6= r1er2t. (14)

Fig. 1. Two carts system.

In the following, we shall study x1 − x2, and show that the

latter condition holds for suitable initial values on the system

state variables xi, ẋi and suitable forces u.

Let us start by seeing that any solution x1, x2 of (13) is

also a solution of

ẍ1(t) − ẍ2(t) + ζ1(ẋ1(t) − ẋ2(t)) + ζ0(x1(t) − x2(t)) =

1

m1

u(t),

where ζ1 = bm1+m2

m1m2

and ζ0 = k m1+m2

m1m2

. The application

of the (unilateral) Laplace transform L to both sides of the

preceding equality yields after some manipulation

X1(s) − X2(s) = F (s) (U(s)+

m1((x1(0) − x2(0))(s + ζ1) + ẋ1(0) − ẋ2(0))) ,

where Xi = L[xi], U = L[u], and

F (s) =
1

m1(s2 + ζ1s + ζ0)
.

Given the form of the transfer function F , it can be seen that

the condition concerning (14) holds for general initial values

on the system state variables xi, ẋi and general forces u, like

those represented by Bohl functions5. In this way, condition

(9) holds, and our Hopfield neural network (HNN) is able

to carry out a successful parameter estimation as long as

y,A are bounded and the value chosen for c is such that

θ ∈]− c, c[2. Note that, since ζi > 0, all poles of the transfer

function F have a negative real part; hence, the system is

BIBO-stable, and y,A are bounded for all bounded forces

u. Therefore, a bounded u and a large value for c should

be considered so that a successful parameter estimation can

be carried out. Finally, mind that the value of the other

time-invariant parameter of the HNN, β, does not affect

the qualitative properties of the network. In what follows,

we illustrate the performance of the HNN for a particular

parameterization of the system.

Let us assume, for instance, that m1 = m2 = 2 [kg],

k = 1
[

N
m

]

and b = 0.1
[

Ns
m

]

. Consider the HNN as defined

in (3)-(5) with c = 5 and β = 0.01. Fig. 2 depicts the

time-evolution of the estimated parameterization produced

by this HNN for two different initial conditions xi(0), ẋi(0)
(columns) and two different forces u (rows): the first column

refers to xi(0) = 0 [m], ẋi(0) = 0
[m

s

]

, the second to

xi(0) = 0 [m], ẋ1(0) = 1, ẋ2(0) = 2
[m

s

]

, and the first row

refers to u(t) = 1+e−t [N], the second to u(t) = cos(πt) [N].
In each of the four cases, the initial estimates of k and b were

randomly generated according to the continuous uniform dis-

tribution U(]0, c[). As expected, the estimation process is well

succeeded in all cases. Finally, in order to assess the HNN

performance when the system data is corrupted by noise,

we repeated the simulations assuming that the measurement

of x1, the displacement of cart 1, is affected by Gaussian

5A Bohl function is a function whose Laplace transform is rational and
strictly proper.

WeD04.2

3847



0 1.25 2.5
−2

−1

0

1

2

3

4

5

t [π s]

u
1
, IC

1

0 1.25 2.5
−2

−1

0

1

2

3

4

5

t [π s]

u
1
, IC

2

0 1.25 2.5
−2

−1

0

1

2

3

4

5

t [π s]

u
2
, IC

1

0 5 10 15 20
−2

−1

0

1

2

3

4

5

t [π s]

u
2
, IC

2

Fig. 2. Time-evolution of the estimated parameterization produced by the HNN for two different sets of initial conditions IC and two different forces u,
where IC1 = {xi(0) = 0 [m], ẋi(0) = 0 [m

s ]}, IC2 = {xi(0) = 0 [m], ẋ1(0) = 1, ẋ2(0) = 2 [m
s ]}, and u1(t) = 1 + e−t [N], u2(t) = cos(πt) [N]. The

solid and dashed lines represent respectively the estimated values for k and b; the square and the circle represent respectively the actual values of k and
b. Mind the different time interval used in the last simulation.
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Fig. 3. Time-evolution of the estimated parameterization produced by the HNN for the two different sets of initial conditions IC and two different forces
u previously considered, this time assuming that the measurement of x1(and thus of ẋ1, ẍ1) is affected by Gaussian noise. The solid and dashed lines
represent respectively the estimated values for k and b; the square and the circle represent respectively the actual values of k and b. Mind the different
time interval used in the last two simulations.
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noise with mean 0 [m] and standard-deviation 0.05 [m], i.e.,

the expected value of the measured displacement is x1 and

in 95% of the measurements the error is at most 0.1 [m].
Note that ẋ1, ẍ1, respectively the velocity and acceleration

of cart 1, are also affected by the measurement noise since

they are determined from x1. Fig. 3 illustrates the simulation

results, being clear that the parameterization estimated by the

network converges in mean to the actual parameterization.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the problem of parameter

estimation and proposed the use of Hopfield neural networks

(HNNs) to solve it. This is a preliminary work, where

only time-invariant systems were considered. We assumed

linearity in the parameters, a common assumption in system

identification (take, for instance, the ARX structure, widely

used to model system behavior); hence, our results are of

general applicability. We presented a suitable HNN and a

weaker sufficient condition under which the estimation error

asymptotically converges to zero. Finally, we illustrated the

application of our theory to the parameter estimation problem

for a two carts system.

In the future, we plan to extend our results to time-

variant systems. Moreover, we are interested in applying our

theory to the identification of the neuromuscular blockade

response to the infusion of atracurium, a muscle relaxant

drug. This is a problem for which there exists a gray-box

model that replicates very well the clinical data [6], but

whose parameters have meaningful values that are difficult

to estimate in practice.
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