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ABSTRACT 

 

PRRXL1 is a paired-like homeodomain transcription factor expressed in nociceptive 

neurons of dorsal root ganglia and dorsal spinal cord. Evidence shows that PRRXL1 is crucial in 

the establishment and maintenance of the nociceptive system, as Prrxl1
-/-

 mice present neuronal 

loss, reduced nociception and failure to thrive. In this study it is shown that PRRXL1 is highly 

phosphorylated in vivo, and that its multiple band pattern on electrophoretic analysis is the result 

of different phosphorylation states. These phosphorylations evolve along spinal cord and dorsal 

root ganglia development from a higher to a lower phosphorylated state, and are mapped to 

aminoacid regions 1-143 and 227-263. PRRXL1 also displays a conformation, a dimerization 

and a repressor domain, which altogether act in concert to modulate its transcriptional activity. 

Phosphorylation is therefore proposed as a mechanism for regulating PRRXL1 function and 

conformation during nociceptive system development. 
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ABBREVIATIONS 

 

CIAP: calf intestinal alkaline phosphatase 

DRG: dorsal root ganglion 

dSC: dorsal spinal cord 

IEF: isoelectric focusing 

IMAC: immobilized metal affinity chromatography 

NLS: nuclear localization sequence 

OAR: otp, aristaless and rax 

Rf: electrophoretic mobility 

WB: western blotting 
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INTRODUCTION 

 

Pain is defined as “an unpleasant sensory and emotional experience associated with 

actual or potential tissue damage, or described in terms of such damage” [1]. Although the 

functional maturation of higher brain centres is needed for complete pain awareness and 

response, that would not be possible without the existence of a properly established spinal 

nociceptive circuitry [2]. This circuitry is important for the adequate relay of sensory 

information from the peripheral tissues to the brain, and its embryonic development is regulated 

by the combinatory expression of transcription factors, which specify distinct neuronal 

populations. The expression of morphogens and their receptors, basic Helix-loop-Helix 

transcription factors and, later, homeodomain transcription factors shapes the dorsal spinal cord 

(dSC) into its laminated cellular pattern and divides the dorsal root ganglion (DRG) into three 

main neuronal populations [3,2]. The ensuing DRG/spinal nociceptive circuit is therefore 

composed by small diameter primary afferent neurons that project to the superficial laminae of 

the dSC. 

The molecular mechanisms responsible for the proper establishment of these neuronal 

connections are not yet fully understood. Paired-related homeobox protein-like 1, or Prrxl1 

(also known as Drg11), is a gene encoding for a transcription factor that is involved in the 

establishment and maintenance of the DRG-dSC nociceptive circuitry during embryonic 

development [4]. It is expressed in the DRG, dSC, cranial sensory ganglia and brainstem 

sensory nuclei [5]. Prrxl1
-/- 

mouse embryos exhibit spatio-temporal abnormalities in the 

patterning of sensory afferent fibre projections to the dSC, as well as loss of dorsal horn 

neurons. Post-natally, Prrxl1 null mutant mice present significantly attenuated sensitivity to 

noxious and thermal stimuli, with reduced sensitivity to mechanical stimulation and chemical 

nociception. The apparent absence of alterations in motor function and locomotion suggests that 

proprioception and mechanical innocuous processing are not influenced by PRRXL1 [4]. At the 

cellular level, PRRXL1 seems to be important for the survival of peptidergic and non-

peptidergic small DRG neurons, as opposed to large DRG neurons [6]. Prrxl1 expression 

markedly decreases after birth, being residual in adult life. However, post-natal expression is 

increased in inflammatory, but not neuropathic pain, at the expense of peptidergic and non-

peptidergic small DRG neurons [7].  

Although the role of PRRXL1 in the development of the DRG/dSC circuit has been well 

established, the mechanisms underlying the modulation of PRRXL1 transcription activity 

remain unstudied. PRRXL1 western blotting (WB) analysis of SC and DRG extracts revealed a 

pattern of multiple bands [5], which may indicate the occurrence of post-translational 

modifications such as phosphorylation [8]. In fact, more than 400 types of post-translational 

modifications can occur, with the most common occurring in eukaryotic cells being 

phosphorylation [9]. Protein phosphorylation is a major mechanism by which transcription 

factor activity is regulated. Moreover, it seems to be the post-translational modification of 

choice when rapid modulation of transcription factor activity is required [10]. Protein 

phosphorylation is known to regulate several cellular processes, namely cell growth and 

division, differentiation, signal transduction and gene expression [11]. 

The present study shows that PRRXL1 band pattern is due to multiple phosphorylation 

states that vary along DRG and dSC development. Analysis of several PRRXL1 truncated forms 

suggests that PRRXL1 has two phosphorylation clusters, with an overall number of at least 6 

phosphorylated residues. These phosphorylations seem to be responsible for changes in protein 

conformation and thereby transcriptional activity. Overall, this work comes a step closer to 
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uncovering the molecular mechanisms underlying the regulation of PRRXL1 function in the 

establishment of the nociceptive circuitry. 

 

 

MATERIALS AND METHODS 

 

Animal care and Tissue Harvesting - NMRI mice were bred and fed ad libitum with a standard 

diet and housed at the IBMC animal facility under temperature- and light-controlled conditions. 

Embryonic day 0.5 (E0.5) was considered to be the midday of the vaginal plug. The animals 

were euthanized (isoflurane anesthesia followed by cervical dislocation) and embryos surgically 

removed. The SC and DRG were collected and the SC dissected into their dorsal and ventral 

moieties, except for E10.5 embryos, where the prospective SC was used. Experiments complied 

with the European Community Council Directive (86/609/EEC) and the animal ethics 

guidelines at IBMC. The Portuguese Veterinary Ethics Committee approved all animal 

manipulations. 

1 dimensional (1D) and 2 dimensional (2D)-PAGE sample preparation - dSC nuclear lysates 

for 1D-PAGE were obtained as previously described [5]. dSC and DRG were homogeneized in 

2D lysis buffer (20 mM phosphate buffer pH 8.0, 0.1% Triton X-100) supplemented with 

phosphatase and protease inhibitors (Sigma-Aldrich) and Benzonase nuclease (Novagen), 

sonicated and cleared by centrifugation. Isoelectric focusing (IEF) was performed on a Protean 

i12 Cell (Bio-Rad) using 11 cm immobilized pH gradient strips pH 3-10 non-linear (Bio-Rad) 

for 38.000 VH, held at 750 V and frozen until processing. The low-bis SDS-Polyacrilamide gels 

(10-16%T/1.35%C) were ran, and WB was performed using standard protocols. Rabbit anti-HA 

(Invitrogen #715500), homemade rabbit anti-PRRXL1 [5], mouse anti-FLAG M2 (Sigma-

Aldrich #F1804), mouse anti-α-tubulin (Sigma-Aldrich #T5168) and rabbit anti-Histone H3 

(Abcam #ab1791) were used as primary antibodies. Appropriate HRP conjugated secondary 

antibodies (Jackson Immunoresearch Europe) or Clean-Blot IP Detection Reagent (Pierce) were 

used. All quantitative blot analyses were performed using ImageLab v4.1 (Bio-Rad 

Laboratories).  

Dephosphorylation assays - Samples homogeneized in dephosphorylation buffer [12] were 

incubated with calf intestinal alkaline phosphatase (CIAP) (Invitrogen) for 2 h at 37ºC. A 

competitive inhibitor, 20 mM Na2HPO4, was added to a replicate reaction mix as a control. IEF 

samples were prepared using ReadyPrep™ 2-D Cleanup Kit (Bio-Rad).  

Ga(III)- immobilized metal affinity chromatography (IMAC) - The matrix was generated using 

IMAC-Select Affinity gel (Sigma-Aldrich) and GaCl3. The gel was washed in 50 mM EDTA/1 

M NaCl and charged with 100 mM GaCl3 in 100 mM acetic acid. It was washed with 5% acetic 

acid followed by 0.5 M NaCl and H2O washes. GaCl3 was not added to the control matrix. 

Nuclei were lysed in IMAC lysis buffer (15 mM MES/NaOH pH 5.5, 0.5 M NaCl, 1% NP-40, 

protease inhibitor cocktail). Matrix was equilibrated in IMAC buffer (50 mM MES/NaOH 

pH5.5, 0.5 M NaCl, 1% NP-40) and extracts (0.1 µg/µL) were incubated for 2 h at 4ºC. After 

washing, elution was performed by adding 0.2 M Phosphate buffer pH 8.0 [modified from 13]. 

The input and collected fractions were TCA-precipitated prior to analysis.  

GST- PRRXL1 generation and purification - BL21 E. coli transformed with pGEX-4T3-Prrxl1 

were induced, lysed (PBS, 0.5% Triton, 1 mM DTT and inhibitor cocktails), incubated 2 h at 

20ºC with a glutathione-cellulose matrix (Bioline) and eluted with thrombin (Novagen). The 

SDS-PAGE gel of the eluate was reverse stained with Zn
2+

 [14] and the PRRXL1 band was 
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excised. PRRXL1 was eluted from the gel by diffusion overnight at 4ºC in  0.01% SDS/20 mM 

Tris-HCl pH 7.5, TCA–precipitated, ressuspended in 2% SDS and dialyzed against a 10 mM 

Tris-HCl pH 7.5, 0.01% n-octyl-β-D-glucoside solution, to allow renaturation of the fusion 

protein.  

Prrxl1 constructs - Full-length and N/C-terminal truncations of Prrxl1 (EU670677.1) were 

amplified from mouse E14.5 SC cDNA and cloned into pCDNA3.3-TOPO TA (Invitrogen). 

The HA- and FLAG-tag were added to the primers (see Supplementary Table 1). All constructs 

were sequenced.  

Cell culture - ND7/23 and HeLa cell lines were cultured at 37ºC/5ºCO2 in DMEM (Gibco) 

containing 10% FBS (Gibco) and 50 U/ml penicillin and streptomycin (Gibco). Transfection 

was performed using Lipofectamine 2000 (Invitrogen) and cells were harvested 24 h later.  

Luciferase reporter assays – 48 h after transfecting ND7/23 or HeLa cells with different 

constructs of PRRXL1, pCMVβ (Clontech) and pGL3 (Promega) containing Firefly Luciferase 

under the control of the Rgmb promoter sequence [15], cells were resuspended in 50 µl of lysis 

buffer (Promega) and the protein extract cleared by centrifugation. 5 µl were mixed with the 

luciferase reagent (Promega) and luminescence measured by an Infinite M200 plate reader 

(Tecan). Transfection efficiency was normalized by assessing β-gal activity using ONPG 

(Sigma-Aldrich) as substrate and read at 420 nm.  

Cyanogen bromide (CNBr) cleavage assay - ND7/23 cells overexpressing PRRXL1-HA, lysed 

in a 1% Triton X-100, 0.1% SDS buffer were incubated for 20 or 90 min with 10 volumes of a 

100 mg/mL CNBr solution in 70% formic acid. Afterwards, 10 volumes of 10% TCA in acetone 

were added, incubated for 1 h at -80ºC, centrifuged at 21,100g for 30 min and washed twice in 

acetone. Precipitate was resuspended in adequate downstream buffer [modified from 16]. 

DNA-protein interaction studies – 50 µg of transfected ND7/23 cell extracts were incubated 

overnight at 4ºC with 150 ng of biotinylated Rgmb promotor sequence [15] (PCR-generated 

using biotinylated primers) and 1 μg of Salmon sperm DNA (Sigma Aldrich), in a volume of 

100 µL of wash buffer (TBS, 5% BSA, 0.05% Tween-20). Control reactions omitted the DNA 

probes. The reaction mix was incubated for 2 h at room temperature in NeutrAvidin
 
coated 96-

well plates (Pierce) and washed. Anti-HA antibody 1/1000 was added for 3 h at room 

temperature, followed by washing and 1 h incubation with a 1/5000 dilution of HRP-conjugated 

goat anti-rabbit antibody. WestPico Chemiluminescent substrate (Pierce) was added and 

luminescence measured after 2 min on an Infinite M200 reader (Tecan).  

Ferguson Plot - Ferguson plot analysis can distinguish a change in the shape of a protein from a 

change in the charge. By running ND7/23 extracts overexpressing PRRXL1-HA in SDS-PAGE 

at various concentrations of acrylamide (10 to 16%, w/v), the logarithm of the electrophoretic 

mobility (Rf) was plotted versus the acrylamide concentration. The slope and y-axis intercept 

depend on the electrical charge of the protein and on the shape, defined as the Stokes radius 

(effective hydrated radius of the protein-SDS complex). Proteins differing only in the 

conformation give different slopes with a common y-axis intercept whereas proteins differing 

only in the electrical charge have identical slopes with different y axis intercepts [17,18]. Linear 

regression was performed in Microsoft Excel 2010
®
.  

Limited tryptic digestion - ND7/23 cells overexpressing Prrxl1 lysed in TBS-0.1%, Triton X-

100 were incubated with TPCK-treated trypsin (Sigma-Aldrich #T1426) at ratios of 1:100 to 

1:400 (w/w). The reactions were performed in 0.05% BSA, 50 mM Tris-HCl pH 8.0, 20 mM 
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CaCl2 and  0.5 mM DTT at 37ºC during 15 min, after which 5 mM AEBSF and sample buffer 

were added. Peptides were resolved by 16% SDS-PAGE.  

Cycloheximide time-course - ND7/23 cells were reverse-transfected with pCDNA3.1-Prrxl1. 

After 12 h, the cells were incubated with cycloheximide (100 µg/ml) for 1 to 6 h and the lysates 

analysed by WB.  

Sub-cellular fractionation of Prrxl1 constructs – ND7/23 cells transfected with different Prrxl1 

constructs were lysed in nuclear fractionation buffer (0.25 M sucrose, 20 mM Tris-HCl pH 7.4, 

0.1% Triton X-100 and protease and phosphatase inhibitors), gently homogeneized and 

centrifuged at 1000g for 10 min at 4ºC. Equivalent amounts of total, cytosolic and nuclear lysate 

were loaded.  

Immunocytochemistry of constructs – ND7/23 cells transfected with different Prrxl1 constructs 

were fixed in 4% PFA in PBS, permeabilized using 1% Triton X-100 in PBS, blocked with 10% 

NGS in PBS/0.1% Triton and incubated overnight at 4ºC with anti-PRRXL1. Alexa 594 

conjugated goat anti-rabbit IgG (Molecular Probes) was used as secondary antibody and DAPI 

was used as a nuclear counterstain.  

Co-immunoprecipitation - ND7/23 cells were co-transfected with PRRXL1-FLAG and several 

HA-PRRXL1 truncated constructs. Lysates in co-immunoprecipitation buffer (TBS, 0.1% 

Triton X-100, 10% glycerol and protease and phosphatase inhibitors) were immunoprecipitated 

using ANTI-FLAG M2 Magnetic Beads (Sigma-Aldrich) and eluted in Sample Buffer.  

Statistical analysis – Students t-test was used and the p-values indicated result from at least 3 

independent experiments. All error bars represent standard deviation. 

 

 

RESULTS 

 

PRRXL1 displays a delayed electrophoretic migration due to phosphorylation 

PRRXL1 WB analysis showed the presence of multiple bands [5] that are suggestive of 

post-translational modifications [8,19]. This is further supported by the fact that PRRXL1 

expressed in Escherichia coli displayed a single band, when compared to E14.5, which 

displayed a higher molecular-weight duplet (fig. 1a). As the most common post-translational 

modification in eukaryote organisms is phosphorylation [9], it was hypothesized that the 

PRRXL1 band pattern could be due to phosphorylation. Therefore, nuclear extracts of dSC from 

E14.5 embryos were treated with CIAP. The phosphatase treatment reproducibly eliminated the 

alteration in migration, revealing an increasing amount of dephosphorylated PRRXL1 (lower 

molecular-weight band) with increasing units of CIAP. The addition of a competitive inhibitor 

(Na2HPO4) prevented this effect, maintaining PRRXL1 band pattern (fig. 1b). Thus, 

phosphorylation is responsible for the delayed migration of the observed PRRXL1 forms. To 

further reinforce this observation, E14.5 and post-natal day 0 (P0) dSC nuclear extracts were 

subjected to Ga(III) IMAC, a resin that binds phosphoproteins [13]. These ages were chosen 

because they are representative of different PRRXL1 band patterns. As depicted in figure 1c, the 

E14.5 and P0 eluted fractions displayed an enrichment of the upper bands, and only the lower 

bands (the more dephosphorylated bands) were detected in the unbound fraction (flowthrough). 

While providing an important internal control, this demonstrates that the multiple band pattern 

represents a gradient of differentially phosphorylated forms, with higher phosphorylation states 

in the upper bands. This also explains the absence of dephosphorylated PRRXL1 in dSC E14.5 
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incubated with Ga(III), as PRRXL1 expressed in this age displays only highly phosphorylated 

forms. 

The ND7/23 cells are a hybrid cell line derived from neuroblastoma and P0 DRG 

neurons that displays sensory neuron-like properties [20]. It also endogenously expresses 

PRRXL1, although at low levels [21]. Lysates of ND7/23 cells overexpressing Prrxl1 were 

incubated with CIAP and resolved by SDS-PAGE (fig. 1d). Untreated PRRXL1 displayed a 

multiple band pattern similar to P0 DRG. As expected, incubation of PRRXL1 with CIAP 

abrogated upper bands, and Ga(III)-IMAC purification confirmed an enrichment of the upper 

bands (fig. 1e). Therefore, the ND7/23 cell line is a suitable model for further study of PRRXL1 

phosphorylations. 

 

PRRXL1 acquires distinct phosphorylation states along development 

When mouse dSC and DRG protein extracts from different developmental stages are 

resolved by WB, a differential multiple band pattern can be observed (fig. 2a). Overall, four 

bands can be identified, henceforth referred to as band 1 to 4 from the slowest to the fastest 

migrating band. At early developmental ages (E10.5 to E14.5), when neuronal specification and 

migration is occurring [3], only the two upper bands (bands 1 and 2) were detected both in the 

dSC and in the DRG (fig. 2a). From E16.5 onwards, a developmental period where neurons 

have migrated and are differentiating [3], there is a progressive change of PRRXL1 upper band 

toward lower bands (bands 3 and 4). However, while in the dSC there is loss of the upper 

migrating band (bands 1 and 2) from E16.5 onwards, in the DRG, the upper bands fade only 

after birth, while band 3 increases at P14 and P21. This differential evolution of phosphorylation 

patterns in the dSC and in the DRG along nociceptive system development suggests that 

PRRXL1 plays a specific role in each tissue. 

 To improve the resolution of our analysis, several protein extracts were subjected to 2D 

electrophoresis, a technique combining IEF followed by SDS-PAGE (fig. 2b). The IEF 

separates proteins according to their isoelectric point (pI). It can detect individual 

phosphorylated forms, since each additional phosphate increases the negative charge of the 

protein, thus causing a shift in pI [22]. Therefore, by using IEF, one can monitor the 

phosphorylation state of a protein as indicated by the shifts in the pI. For this analysis, samples 

from E14.5, E16.5, P0 and P14 mice were used, as these developmental ages seem 

representative of all PRRXL1 phosphorylation states. The 2D electrophoresis resolved PRRXL1 

into a detectable maximum of 7 different spots, which drift towards the anode (fig. 2b). The 

number of phosphorylated residues for each spot was determined by considering the predicted 

shift provided by each phosphorylation [23], the expected position in the 3-10 pH gradient and a 

dephosphorylated E14.5 dSC extract (fig. 2b, CIAP control), where only one spot is seen in the 

region of PRRXL1 theoretical pI (8.74). Therefore, each spot corresponds to different PRRXL1 

phosphorylated forms.  

In accordance to the observation that PRRXL1 phosphorylated forms vary along 

development, it is evident that the relative abundance of each spot also changed, and differed 

between samples. When comparing E14.5 with E16.5 and P0 dSC samples, the intensity of two 

spots (arrows in fig. 2b, corresponding to 2 and 4 phosphorylated residues) decreased from 

E14.5 to E16.5 and was undetectable at P0. These spots are part of the upper bands from the 1D 

analysis (fig. 2a/b, diagrams). On the other hand, the lower bands were only detected at post-

natal ages. In the dSC, band 4 is the only one of the lower duplet detected in 1D SDS-PAGE 

(fig. 2a), giving rise to a spot that migrates in a region of the immobilized pH gradient strip 

corresponding to one phosphorylated residue (fig. 2b). The PRRXL1 expressed in ND7/23 cells, 
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however, displayed spots corresponding to 6 phosphorylated residues, and is most similar to the 

spot pattern of dSC P0. The progressive disappearance of particular spots explains the previous 

finding that, as development progresses, PRRXL1 tends to exist in a less phosphorylated state. 

It also suggests that specific phosphorylation states are favoured over others at different stages, 

and may be mutually interdependent. 

 

PRRXL1 acquires phospho-dependent conformational changes 

The fact that the SDS-PAGE resolved phosphorylated PRRXL1 forms with the same 

isoelectric point (and hence the same number of phosphorylated sites) but with different 

electrophoretic mobility (fig. 2b, ND7/23) suggests that the electrostatic charge conferred by the 

presence of multiple phosphate groups is not the sole responsible for PRRXL1 multiple band 

pattern. This mobility shift could in fact be the result of different protein conformations that rely 

on phosphorylation at key residues [8].  

To further address this issue, the phosphorylation-induced gel shift was studied using 

the Ferguson plot approach [17,18], by carrying out SDS-PAGE at different acrylamide 

concentrations and plotting the log(Rf) as a function of acrylamide concentration (Table 1). The 

Rf is proportional to the net charge of the protein and inversely proportional to its Stokes radius. 

If the mobility decrease was caused only by an alteration in the charge due to phosphorylation, 

it would be independent of the acrylamide concentration (for further details please refer to the 

Materials and Methods section). However, the difference in the slopes of the Rf of the lower 

(bands 3/4) versus the higher (bands 1/2) phosphorylated state of PRRXL1 suggests that 

phosphorylation causes a change in protein Stokes radius and thus in protein structure. In fact, 

there is an Rf decrease with decreasing pore size. This supports the previous hypothesis that 

PRRXL1 suffers conformational changes, likely induced by phosphorylation. 

To further support this observation, the susceptibility of PRRXL1 bands to limited 

tryptic digestion was used as a conformational probe. ND7/23 extracts overexpressing Prrxl1 

were incubated with different amounts of trypsin and the signal intensity of bands 1/2 and 3/4 

was estimated (fig. 3a). The fast migrating bands (bands 3/4) correspond to a less 

phosphorylated status and were more resistant to enzymatic digestion than the more 

phosphorylated bands (bands 1/2), whose expression diminishes with increasing trypsin 

amounts. This result suggests that phosphorylation favours a local conformational change that at 

least partially alters PRRXL1 structure, with increased exposure of more proteolitically 

sensitive residues. Furthermore, when ND7/23 cells overexpressing Prrxl1 were treated with 

cycloheximide (which inhibits protein synthesis by blocking translational elongation; fig. 3b), 

there was a decrease of the upper bands’ level over time, in comparison with the lower bands. 

These observations suggest that highly phosphorylated PRRXL1 is less stable. 

 

PRRXL1 homodimerizes and has two phosphorylation clusters 

Aiming at identifying the main PRRXL1 phosphorylated regions, several truncated 

forms of HA-PRRXL1 were generated (fig. 4a) and the nuclear translocation of the constructs 

was assessed (fig. 4b/c). It has been suggested that paired-like homeodomain transcription 

factors contain a bipartite nuclear localization sequence (NLS) motif flanking the homeodomain 

region [24]. In fact, all PRRXL1 truncations containing the homeodomain/NLS sequence 

translocated to the nucleus, while versions with deletion in this region remained in the 

cytoplasm. However, a small amount of PRRXL1107-263 was still translocated to the nucleus 

despite the deletion of the homeodomain, while all PRRXL1189-263 remained in the cytosol (fig. 

4c). This could be explained by dimerization of the truncated form with endogenous PRRXL1 
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or other transcription factors, as paired-like homeodomain proteins usually act as dimers to form 

a functional DNA-binding domain [25].  

To identify a putative PRRXL1 dimerization domain, co-immunoprecipitation studies 

were performed with ND7/23 cell extracts co-expressing full-length PRRXL1-FLAG and the 

different truncated forms of HA-PRRXL1. As visible in figure 4d, PRRXL1 

immunoprecipitated with itself and with PRRXL11-227, PRRXL11-180 and PRRXL1107-263 

truncated forms. This implies that these three truncations have a sequence capable of binding 

PRRXL1. However, PRRXL11-143 was not capable of binding, together with PRRXL1189-263, 

which are constructs lacking aminoacids 143-180. This indicates the 143-180 region as the 

likely site for PRRXL1 homodimerization, supporting the possibility that PRRXL1107-263 partial 

nuclear translocation is due to dimerization with endogenous PRRXL1. 

Analysis by 2D-electrophoresis of ND7/23 cells overexpressing different PRRXL1 

truncations revealed a similar 3-spot pattern for PRRXL11-227, PRRXL11-180 and PRRXL11-143 

truncated forms (fig. 5a). On the other hand, PRRXL1 C-terminal constructs (PRRXL1107-263 

and PRRXL1189-263) displayed a highly phosphorylated pattern, containing 5 distinct spots. 

These phosphorylations occurred in the cytoplasm, since the PRRXL1189-263 truncated protein 

was not targeted to the nucleus (fig. 4b/c). These findings suggest that there are at least two 

phospho-sites between aminoacids 1-143 and four phospho-sites from aminoacids 189 onwards. 

In fact, as PRRXL11-227 truncation displayed a similar spot pattern as the other N-terminal 

constructs, the majority of the C-terminal phosphorylations must occur from aminoacid 227 

forward. 

To further study this PRRXL1 C-terminal phosphorylation, a chemical cleavage assay 

with CNBr, which cuts at methionine residues (fig. 5b), was performed. To identify the cleaved 

fragments, ND7/23 cells overexpressing PRRXL1-HA fusion protein were shortly incubated (20 

minutes) with CNBr (fig. 5b) and compared with the migration of PRRXL1107-263 and 

PRRXL1189-263 constructs. The small amount of the PRRXL169-263 on WB suggests that this is a 

fragment more prone to cleavage in the first methionine residues, thus originating high level of 

both PRRXL1107-263 and PRRXL1189-263. This observation correlates well with surface 

accessibility scores, according to which PRRXL1 N-terminal region containing the 

homeodomain is highly exposed [26,23]. In 2D electrophoretic analysis of PRRXL1-HA treated 

with prolonged CNBr incubation (fig. 5c), a new fragment encompassing aminoacids 212 

forward was detected. It still displayed the same number of phosphorylated spots (four) as the 

PRRXL1189-263 peptide, confirming that the majority of C-terminal phosphorylations occur from 

aminoacid 212 forward. 

One advantage of the CNBr chemical cleavage, in comparison with the truncation 

approach, is the use of full-length PRRXL1, which maintains its native conformation. Thus, 

contrary to the PRRXL1189-263 truncation (fig. 5a), the spot pattern of PRRXL1189-263 resulting 

from the CNBr cleavage was also vertically resolved, while the highly phosphorylated 

PRRXL1212-263 fragment was just horizontally resolved (fig. 5c). This indicates that this part of 

the protein may not suffer SDS-PAGE resistant conformational changes. Therefore, the data 

suggest that the structural alterations occurring in PRRXL1 must include the region up to 

aminoacid 212, and comprises most of the otp, aristaless and rax (OAR) domain. However, 

these structural changes were not visible in the PRRXL1189-263 truncation, which was never 

expressed in the presence of the N-terminus of the protein. Therefore, this may indicate that the 

N-terminal region is necessary for the induction of the mentioned structural changes. As the 

PRRXL1107-263 truncation was also vertically resolved, the region important for PRRXL1 

conformational changes to occur must be located between aminoacids 107 and 189. This can be 

further narrowed to region 107-143, as PRRXL11-143 was the smallest N-terminus truncation that 
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exhibited a conformation change. Overall, two phosphorylation clusters were identified, one 

encompassing aminoacids 1-143 and containing at least 2 phosphorylated residues, and other 

encompassing aminoacids 227-263, containing at least 4 phosphorylated residues. These regions 

likely have structural implications for the phosphorylation rich C-terminus.  

 

PRRXL1 C-terminal region contains a neuronal-specific repressing domain 

Protein phosphorylation has been described as an activity regulator of several 

transcription factors [27], which could also be the case for PRRXL1. RGMb is a protein whose 

expression is known to be regulated by PRRXL1 [15], and thus a luciferase reporter assay was 

used to measure PRRXL1 activity on the Rgmb promoter in ND7/23 and non-neuronal HeLa 

cell lines (fig. 6a). Comparison of PRRXL1 transcriptional activity with the control (empty 

vector) revealed a repressor function for PRRXL1 in both models. However, deletion of 

PRRXL1 C-terminus (aminoacids 227 to 263) diminished PRRXL1 repressor activity in 

ND7/23, but not in HeLa cells, which is suggestive of a neuronal-specific effect. As expected, 

PRRXL1107-263 and PRRXL1189-263 did not change basal promoter activity, since they lack the 

ability to bind DNA. 

When looking at DNA affinity (fig. 6b), a great reduction in DNA binding was observed 

in constructs with deletion of the homeodomain, as expected. Conversely, constructs lacking the 

C-terminus regulatory domain still maintained their ability to bind DNA (fig. 6b, PRRXL11-143). 

However, full-length PRRXL1 expressed in E. coli, where PRRXL1 is not phosphorylated or 

folded (fig. 1a), was also not able to bind DNA. This reinforces the role of phosphorylation on 

PRRXL1-DNA binding, and thus PRRXL1 activity as a transcription factor. 

 

 

DISCUSSION 

 

PRRXL1 is a paired-like homeodomain transcription factor with a crucial role in the 

differentiation, connection and maintenance of DRG and dSC pain-processing neurons during 

development [6]. However, the mechanisms governing PRRXL1 activity in nociceptive system 

development are unknown. This study shows that PRRXL1 is phosphorylated. These 

phosphorylated residues are located in two well defined functional domains: one encompassing 

aminoacids 1-143 and involved in conformational changes, and the other including aminoacid 

227 forward and displaying neuronal specific repressor activity (fig. 7). 

Protein phosphorylation is the most common post-translational modification in 

eukaryotes [9]. It is frequently used in signal transduction, and it is implicated in basic cellular 

processes such as metabolism, growth, division and differentiation [28]. In fact, several 

homeodomain proteins have been reported to be phosphorylated, such as Arix [27], Csx/Nkx2.5 

[12] and more recently Pax6 [29]. PRRXL1 acquires distinct phosphorylation patterns along SC 

and DRG development, with higher phosphorylation states at early developmental ages (from 

E10.5 to E14.5). At later stages, PRRXL1 is progressively less phosphorylated, thus acquiring a 

more compact and stable protein conformation with reduced transcriptional activity. Therefore, 

reversible phosphorylation and dephosphorylation can act as a molecular switch on PRRXL1 

function, with important impact on regulating diverse cellular functions, as occurs with several 

other proteins [30,31]. 

However, this change in phosphorylation state does not occur at similar time points in 

these tissues. PRRXL1 is maintained at a hyperphosphorylated state until later ages (P7) in the 

DRG when compared to the SC (E18.5). Moreover, while in the SC there is a progressive 



10 

 

conversion of bands 1/2 to band 4, PRRXL1 in the DRG progressively acquires a conformation 

corresponding to band 3 even at late post-natal ages. Thus, one may argue that specific 

phospho-sites are spatially and chronologically regulated. Considering that the anatomo-

functional abnormalities in Prrxl1
-/-

 mouse occur earlier in the dSC than in the DRG [6,32], this 

indicates that PRRXL1 might play different roles in different tissues, supporting the proposed 

PRRXL1 involvement in neuronal differentiation within the dSC, and in the DRG-spinal 

targeting within the DRG [32]. Mechanistically, this probably results from distinct 

phosphorylation states acquired by PRRXL1 during the different phases of DRG and SC 

neurodevelopment, which may promote the association of PRRXL1 with distinct molecular 

partners/promoter regions. The combinatorial interaction between various homeodomain 

transcription factors indeed commands the differentiation of SC and DRG neuronal 

subpopulations [3]. Differential expression of PRRXL1 with LMX1b and TLX3 in the dSC 

defined three different laminae I-III glutamatergic neuronal populations [32]. PRRXL1 could 

therefore be involved in this mechanism through phosphorylation. 

PRRXL1 has at least six phosphorylated residues, as determined by the 2D 

electrophoretic analysis of mouse SC and DRG tissue. These phosphorylations can be grouped 

in two clusters. Therefore, there are at least two phospho-sites between aminoacids 1-143 and 

four phospho-sites in the C-terminus (aminoacids 227-263). The most common phosphorylated 

aminoacid residues are phosphoserine and phosphothreonine [9], which is probably the case for 

PRRXL1. In fact, phosphoserine-binding domains have been described to play an important role 

in signal propagation, by enabling phosphorylation-dependent protein-protein interactions [11]. 

If this is the case for PRRXL1, such phosphorylated residues could play a role in PRRXL1 

signaling pathway. Additionally, protein kinases target many cellular proteins and can cause 

significant conformational changes. On the other hand, protein conformation is very important 

for kinase accessibility, and therefore for protein activity.  Therefore, PRRXL1 conformational 

changes must act as a mechanism to regulate the interaction between PRRXL1 and other 

proteins involved in the development of the nociceptive system. Phosphorylation seems to 

induce a less stable conformational change, and CNBr cleavage assays suggest that the N-

terminal is highly exposed, a condition important for PRRXL1-DNA binding. The structural 

alterations occurring in PRRXL1 result in a four band pattern upon SDS-PAGE.  This four band 

pattern results from two similar paired bands (bands 2/4 and the not so clearly visualized bands 

1/3) that likely result from phosphorylation at key residues. According to this work, some of 

these residues must be located in the region of PRRXL1 encompassing aminoacid residues 107-

143. 

It is known that PRRXL1 has an homeodomain and an OAR domain [33]. The 

homeodomain is a 60 aminoacid region that binds to palindromic DNA regulator sequences 

[34]. Here, a phosphorylation cluster encompassing this homeodomain was identified. 

Considering this proximity, it is hypothesized that this region may regulate PRRXL1-DNA 

binding events. This is further supported by the fact that PRRXL1 expressed in a prokaryotic 

system, and thus not phosphorylated, is not able to bind DNA. On the other hand, the OAR 

domain spans aminoacids 199-219 and is a transactivation domain whose function is not yet 

fully understood. However, in vivo and in vitro studies have shown that the deletion of the 

OAR domain in the Prx1/2 and Cart1 homeodomain proteins increases DNA binding and 

transcriptional activity [35-37]. Thereby, it has been proposed that the OAR domain negatively 

modulates the protein function, which may in this case be aided by the phosphorylation of 

PRRXL1 identified repressor domain. This negative regulation of transcriptional activity may 

also involve an intra-molecular interaction between the OAR and the DNA-binding 

homeodomain [35]. Since these two functional domains are located at opposite ends of the 
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PRRXL1 protein, an interaction between them will most likely require a structural loop, 

mediated through the phosphorylation of the conformation domain.  

Recently, the existence of a “post-translational modification code” has been proposed, in 

a way that the distinct combination of post-translational modifications could function as a 

molecular code, thus originating a large set of combinations from a limited set of elements and 

conveying different meanings or biological responses [38]. The existence of such a code could 

be extrapolated to a “phosphorylation code”, in that different combinations of phosphorylated 

residues would convey different molecular responses. In fact, this has already been described 

for the retinoblastoma tumor suppressor protein (Rb) [39]. It is known that different 

phosphorylated forms of Rb exist, and it was demonstrated that phosphorylation events induce 

unique conformations in Rb. These conformational changes are site specific and provide a 

mechanism through which different phosphorylation events can code for different functional Rb 

outputs [39]. This could also be true for PRRXL1, in a way that different combinations of 

phosphorylated residues could enable a wider and at the same time a more specific range of 

action. The existence of phosphorylated residues within a given PRRXL1 domain could further 

increase its transcriptional potential. Therefore, a putative PRRXL1 phosphorylation code could 

enable fine-tuning of transcriptional responses beyond a mere global modulation of transcription 

factor concentration, further augmenting PRRXL1 capabilities in the regulation of nociceptive 

system development. 

In conclusion, the present findings give important insight on phospho-dependent 

functioning of PRRXL1, and uncover a part of the vast mechanisms that take part in regulating 

PRRXL1 activity. However, the exact phosphorylated aminoacid residues will be invaluable for 

further study of the role of PRRXL1 in the development of the nociceptive system, and the 

ND7/23 cell line appears to be a suitable model for further studies on PRRXL1 transcriptional 

activity. 
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FIGURES, TABLE AND LEGENDS 

 

 

 
 

Fig. 1 – PRRXL1 multiple band pattern is the result of phosphorylation. a) Comparison of 

PRRXL1 expression pattern in Escherichia coli and in dSC from E14.5 and P0 mice. dSC 

extracts migrate as a multiple band pattern, while PRRXL1 expressed in E. coli migrates as a 

lower single band. b) PRRXL1 band pattern is a result of phosphorylation. Lysates from E14.5 

dSC were treated with different units (U) of CIAP in the presence (+) or absence (-) of a 

competitive inhibitor (Na2HPO4), resulting in progressive elimination of the multiple band 

pattern. c) Phosphoprotein enrichment by Ga(III) IMAC of protein lysates from E14.5 and P0 

dSC. The upper bands in all samples are enriched in the eluate. The control matrix (without 

Ga
3+

) did not bind PRRXL1. d) ND7/23 cell overexpressing Prrxl1 were incubated with CIAP, 

resulting in the abrogation of the multiple band pattern. e) Ga(III) IMAC of protein lysates from 

ND7/23 cells overexpressing PPRXL1 shows upper band enrichment.  
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Fig. 2 – PRRXL1 acquires distinct phosphorylation profiles along development. a) WB 

characterization of PRRXL1 band pattern at distinct dSC and DRG developmental ages. Loaded 

protein extracts were equilibrated to the overall PRRXL1 signal in order to highlight differences 

in the band pattern. As development progresses, the lower bands grow in relative abundance. 

Note that the lowest band in the DRG tissue is band number 3 (compare P21 DRG and E18.5 

dSC). b) 2D analyses of PRRXL1 from dSC (E14.5, E16.5, P0 and P14) and ND7/23 cells 

overexpressing PPRXL1. E14.5 dSC treated with CIAP was used to identify the PRRXL1 

dephosphorylated state. For each sample, a correspondence between the 2D differential spot 

pattern with the 1D SDS-PAGE band pattern was depicted in the diagram. The arrows indicate 

variation of particular spots along development. The number of phosphorylated residues was 

estimated by using the theoretical pI of multisite phosphorylated Prrxl1 and the 

dephosphorylated control (CIAP). NT: neural tube.  
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Table 1 - Ferguson plot analysis of PRRXL1 upper doublet vs lower doublet. 

 

 Mean Kr S.E.M. Y0 S.E.M. 

PRRXL1 (bands 1/2) -4.710 0.260 2.151 0.264 

PRRXL1 (bands 3/4) -4.830 0.269 2.308 0.282 

Average difference 0.121 0.010 0.156 0.022 

p 0.0062  0.008  

 

 

Table 1 – Ferguson plot analyses correlates PRRXL1 phosphorylation-induced gel shift with 

distinct protein shapes.  A linear regression of the logarithm of the relative electrophoretic 

mobility as a function of acrylamide concentration was performed. The table shows the slope 

(which corresponds to the retardation coefficient (Kr)) and the y-intercept (y0). Differences in 

Kr relate to differences in molecular radius while differences in y0 are related to differences in 

charge. This shows PRRXL1 phosphorylation induces a change in the molecular radius of 

PRRXL1. Kr: slope of electrophoretic mobility. S.E.M.: standard error of the mean. Y0: y-axis 

intercept. 
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Fig. 3 - PRRXL1 suffers phospho-dependent conformational changes. a) Limited tryptic 

proteolysis. ND7/23 extracts overexpressing Prrxl1 were treated with different amounts of 

trypsin and analyzed by WB. The graph represents the signal quantification of PRRXL1 upper 

(1/2) versus lower (3/4) bands. PRRXL1 upper bands are more prone to digestion, suggesting a 

more exposed conformation. b) PRRXL1 protein stability. ND7/23 cells overexpressing 

PRRXL1 were treated with cycloheximide and the PRRXL1 band abundance was assessed 

overtime by WB. The graph represents the signal quantification of PRRXL1 upper (1/2) versus 

lower (3/4) bands.  The results are representative of three independent experiments. 
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Fig. 4 – Analysis of PRRXL1 truncated forms. a) Schematic representation of HA-PRRXL1 

truncated forms. b) Immunocitochemistry of truncated versions of HA-PPRXL1. Anti-HA 

antibody stains the truncated forms in red, and DAPI stains the cellular nuclei in blue. Co-

localization of the two stains suggests nuclear translocation of the analyzed truncations. c) 

Subcellular fractionation of PRRXL1 constructs. The cytosolic and nuclear fraction were 

validated by using anti-tubulin and anti-histone H3 antibody respectively. d) Identification of 

PRRXL1 dimerization domain.  Co-immunoprecipitation studies with full-length PRRXL1-

FLAG and HA-PRRXL1 truncated forms reveal aminoacids 143-180 as the likely site for 

PRRXL1 homodimerization.  
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Fig. 5 – Mapping of PRRXL1 phosphorylated regions. a) 2D electrophoresis of ND7/23 

extracts overexpressing PRRXL1 truncated forms. b) Short CNBr cleavage assays (at 

methionine residues) were performed using overexpressed PRRXL1-HA and analyzed by WB 

with anti-HA antibody. The scheme represents theoretical PRRXL1 fragments, which were 

validated by comparison with the apparent size of the PRRXL1107-263 and   PRRXL1189-263 

constructs. The asterisk indicates a dimeric form of PRRXL1189-263. c) 2D electrophoretic 

analysis of ND7/23 cell extracts overexpressing PRRXL1-HA previously subjected to 

prolonged CNBr cleavage, revealing PRRXL1212-263. 
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Fig. 6 – PRRXL1 C-terminal contains a neuronal-specific repressor. a) Transcriptional activity 

of PRRXL1 truncations.  Luciferase assays on Rgmb promoter were performed with ND7/23 

and HeLa cells extracts expressing different PRRXL1 constructs. b) DNA-binding analysis of 

PRRXL1 truncations. ND7/23 cell extracts expressing different PRRXL1 truncations and 

recombinant PRRXL1 purified from E. coli were processed for DNA pull-down plate assays in 

the presence or absence (control) of a biotinylated Rgmb promoter probe. Values are represented 

as fold enrichment relative to the control sample.  
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Fig. 7 – Schematic representation of PRRXL1 functional domains and the location of putative 

phosphorylated regions. 
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Supplementary Table 1 

 

 

Construct Lower (Forward) Upper (reverse) 

PRRXL1 (for 

pGEX-4T3 cloning) 

CCGGAATTCCATGTTTTATTTCCA

CTGTCCGCCAC 

ATAGTTTAGCGGCCGCTCATACA

CTCTTCTCTCCCTC 

PRRXL1-HA 

GGAATTCGCCACCATGTTTTATTT

CCACTGTCCGCCAC 

TCAAGCGTAATCTGGAACATCGT

ATGGGTATACACTCTTCTCTC 

PRRXL1-FLAG 

TCATTTATCGTCATCGTCTTTGTA

GTCTGCGGCCTGTACACTCTTCTC

TC 

PRRXL1 GCTCTAGATCATACACTCTTCTCT

CCC HA-PRRXL1 
CGCCACCATGTACCCATACGATGT

TCCAGATTACGCTTTTTATTTCCA

CTGTCCGCC 

HA - PRRXL11-143 TCACACTGTGCGTCCCAGGCT 

HA - PRRXL11-180 GCACAGTGGGCCCCCTTT 

HA - PRRXL11-227 CAGGAGGTTGGCAGACTG 

HA - PRRXL1107-263 

CGCCACCATGTACCCATACGATGT

TCCAGATTACGCTGCAGAGGTGA

CACCACCG 
GCTCTAGATCATACACTCTTCTCT

CCC 

HA - PRRXL1189-263 
CGCCACCATGGGACTCTCCTTCCT

C 

 

Supplementary Table 1. Primers used for cloning all studied constructs.  

 

 




























