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Resumo 

O problema de integrar produção distribuída (DG) renovável em sistemas de distribuição 

de energia está a tornar-se bastante crítico devido a razões técnicas, económicas e ambientais. 

Atualmente, existe um consenso global de que a integração de recursos de origem renovável – 

RESs, é altamente necessária para ter em conta o aumenta da procura de eletricidade e reduzir 

a pegada de carbono global de produção de energia. Contudo, a integração em larga escala de 

DG baseada em RES muitas vezes coloca desafios de ordem técnica no sistema, desde a 

perspetiva da estabilidade, fiabilidade e qualidade de energia. Isto deve-se porque a integração 

de RESs introduz uma expressiva variabilidade e incerteza no sistema de distribuição que faz 

com que a operação, planeamento e controlo se tornem complexos. Consequentemente, um 

esforço ao nível da integração é provável que seja suportado por certas tecnologias das redes 

inteligentes smart grids e conceitos que tenham a capacidade de aumentar a flexibilidade de 

todo o sistema de distribuição. Neste contexto, a integração de sistemas distribuídos de 

armazenamento de energia (DESSs) em conjunto com DGs, juntamente com a capacidade de 

comutação da rede e/ou reforço da rede, pode aumentar significativamente a flexibilidade do 

sistema, e por isso, beneficia a produção RES. 

Este trabalho apresenta um novo método para quantificar os impactos associados a DESS 

assim como a comutação da rede e/ou reforço ao nível de integração de produção renovável 

no sistema. Para executar esta análise, dois modelos foram desenvolvidos, um modelo de 

programação linear inteira mista (MILP) e um modelo baseado em Algoritmos Genéticos (GA). 

Estes modelos têm em consideração o reforço na rede de distribuição e/ou comutação em 

coordenação com a integração de tecnologias DGs baseadas em RES e DESS. 

As metodologias propostas são testadas nos sistemas de 16 e 33-nós do IEEE. Os resultados 

da análise mostram a capacidade de comutação/reforço da rede e a integração de DESS em 

suportar significativamente a integração em larga escala de DGs renováveis. 
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iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

v 

 

 

Abstract 

The issue of integrating renewable distributed generation (DG) in power distribution 

systems is becoming critical because of technical, economic and environmental reasons. 

Nowadays, there is a global consensus that integrating renewable energy sources—RESs, is 

highly needed to meet an increasing demand for electricity and reduce the overall carbon 

footprint of energy production. However, large-scale integration of RES-based DGs often poses 

a number of technical challenges in the system, from stability, reliability and power quality 

perspectives. This is because integrating RESs introduces significant operational variability and 

uncertainty to the distribution system, making operation, planning and control rather 

complicated. Hence, such a high level integration effort is likely to be supported by certain 

smart-grid technologies and concepts that have the capability to enhance the flexibility of the 

entire distribution system. Framed in this context, the integration of distributed energy storage 

systems (DESSs) jointly with DGs, along with the network’s switching capability and/or network 

reinforcement, significantly improves the flexibility of the system, thereby increasing chances 

of accommodating large-scale RES power.  

This work presents a novel method to quantify the impacts of installing DESS as well as 

network switching and/or reinforcement on the level of renewable power integrated in the 

system. To carry out this analysis, two models are developed, mixed integer linear programming 

(MILP) and Genetic Algorithm (GA) based models. These models take into account the 

distribution network reinforcement and/or switching in coordination with integrating RES-based 

DGs and DESS technologies.  

The proposed methodologies are tested on 16- and 33-node systems. The results show the 

capability of network reinforcement/switching and DESS integration in significantly supporting 

large-scale integration of renewable DGs. 
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Chapter 1 

Introduction 
 

1.1 – Background 

Driven by technical, economic, environmental and structural factors, the integration of 

Renewable Energy Sources (RESs) in power systems has been increasing steadily. Furthermore, 

global concerns such as climate change, energy dependence and security and other related 

issues are forcing policy makers and states to introduce new energy policies (RES policies, in 

particular) that support the development and utilization of RESs. The favorable agreement of 

states to curb emissions and mitigate climate change is also expected to further accelerate RES 

integration in power systems (particularly, at a distribution level). The level of Distributed 

Generation (DG) deployed in distribution network systems follows an upward trend, and there 

is a general consensus that DGs will immensely contribute to the efforts of addressing a 

multitude of the aforementioned global and local concerns including collective (and/or 

individual) RES integration targets set forth by different entities. 

The availability of several matured DG technologies and their decreasing cost trends, along 

with constraints in the construction of new transmission lines, increased customers’ demand 

for highly reliable electricity etc.  has been encouraging considerable investments in DGs 

(particularly, renewable types such as wind and solar power). However, large-scale integration 

of DGs in distribution network systems may sometimes bring technical problems to the system 

such as voltage rise issues. Such challenges need to be resolved if the system is to support the 

integration and full (efficient) utilization of massive DG power. One way is to properly allocate 

DGs in the system. The purpose of DG placement (allocation) is to find the optimal location and 

size of DGs (generally non-conventional energy sources) in the system, close to the end 

consumers.  

In particular, large-scale integration of RES-based DGs often poses a number of technical 

challenges in the system from the stability, reliability and power quality perspective. This is 

because integrating RESs introduces significant operational variability and uncertainty to the 

distribution system, making operation, planning and control rather complicated. 
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Hence, such a high level integration effort is likely to be supported by certain smart-grid 

technologies and concepts that have the capability to enhance the flexibility of the entire 

distribution systems. Energy Storage Systems (ESSs) can play a vital role integrating variable 

energy sources. In addition, Reconfiguration of Distribution System (RDS) can be very important 

because RDS can considerably enhance the flexibility of the system and voltage profiles, 

thereby increasing chances of accommodating large-scale RES power. 

1.2 – Problem Statement 

RESs make a crucial part of the solution for environmental sustainability; hence, they will 

play an important role in power systems. The integration of RESs should, in principle, reduce 

the risk of fuel price volatility and geopolitical pressures and ensure that these do not pose a 

significant impact on the overall public welfare. However, large-scale penetration of RESs will 

necessarily involve a process of adapting and changing the existing infrastructure because of 

their intrinsic characteristics, such as intermittency and variability. The growing need for 

intermittent RESs, in conjunction with the electrical mix changes in the long-term, will 

probably affect the distribution and transmission systems. In this context, a change in power 

generation options, resulting from a high contribution of RESs, may require network grid 

updates. Regulatory agencies are heavily committed to increase RES integration, not only due 

to environmental but also technical and economic reasons. The main challenge with most of 

RESs is their inherent variability and uncertainty, making operation, control and planning very 

complicated. DG penetration increases the variation of voltage and current in the network. 

Hence, increasing DG penetration may have a negative or a positive impact depending on 

various factors such as the size of the system and the loads type, requiring modeling and 

simulations to assess its impact. If not properly planned, this may lead to an uncertain increase 

in the feeders’ power flows, resulting in network congestion and increased losses in the 

network. However, the integration of ESS along with RESs has become one of the most viable 

solutions to facilitate the increased penetration of DG resources. Energy storage systems level 

the mismatch between renewable power generation and demand. This is because these devices 

store energy during periods of low electricity demand (price) or high RES power production, 

and then release it during periods of peak demand and low RES production. Therefore, in 

addition to their technical support to the system, ESSs bring substantial benefits for end-users 

and DG owners through reliability and power quality improvement as well as cost reduction. 

Besides, ESSs are being developed and applied in power grids to cope with a number of issues 

such as smoothing the energy output from RESs, improving the stability of the electrical system, 

etc. ESSs also increase savings during peak hours and minimize the impact of intermittent 

generation sources, leading to a more efficient management of the integrated system. Despite 

the high capital costs of many ESS technologies, their deployment in distribution systems is in 

the upward trend. Cost-cutting and the strong need of integrating RES-based DGs is expected 

to push the demand for the simultaneous deployment of ESSs in distribution network systems. 

In other words, distributed ESSs will increase dramatically in the years to come. Hence, proper 

planning of such systems is crucial for a healthy operation of the system as a whole. This relates 

to developing appropriate mathematical models and algorithms that lead to the optimal 

placement, timing and sizing of DGs and ESSs in the system, which is one of the problems 

addressed in this thesis. 
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Electrical distribution systems are interconnected by switches but predominantly operated 

radially. These switches are often used for emergency purposes such as to evade load 

curtailment during fault cases. However, the system can be reconfigured to find the best 

topology that minimizes power losses in the system and improve operational performance. This 

in turn improves the flexibility in the system, which may help the system to accommodate 

(absorb) more variable power. Investigating the capability of network switching and/or 

expansion along with ESS deployment in RES integration level is another problem addressed in 

this thesis. 

 

1.3 – Objectives 

This thesis aims to achieve the following goals: 

 To carry out a comprehensive state-of-the-art literature review on the subject areas 

of distribution network reconfiguration, DG and ESS integrations, which forms a basis 

for defining the problem addressed in this thesis; 

 To develop mathematical models for jointly optimizing distribution network 

reconfiguration, optimal placement, timing and sizing of ESS and RES-based DGs 

considering uncertainty and variability inherent to such problems; 

 To carry out case studies and perform relevant analysis of results; 

 To analyse the effects of distribution reconfiguration in the distribution networks; 

 To carry out quantitative and qualitative analysis in relation to the influences optimal 

sizing, location and timing of DGs and ESSs along with distribution network 

reconfiguration on relevant system variables in the distribution network. 

 

1.4 - Methodology  

The work in this thesis involves both qualitative and quantitative analysis regarding the 

impact of joint integration ESSs, network switching (reconfiguration) and reinforcement on the 

level of DG integration (particularly, focusing on RESs). In order to achieve the objectives, set 

in this thesis, a set of different mathematical simulation models are developed.  

In order to solve the proposed objectives were created two optimization models. The first 

proposed optimization model is coded by multi-objective Stochastic Mixed Integer Linear 

Program (S-MILP) to a planning horizon of three years and solved with GAMS, considering the 

operational variability and uncertainty of variable power resources along with reconfiguration 

and energy storage systems.   
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Also, a second optimization model proposed is coded by a GA and solved using the MatPower 

(package of MATLAB) optimal power flow (OPF). GA considers: 1) one snapshot of the 

distribution system to solve reconfiguration and 2) one snapshot of the distribution system to 

solve reconfiguration with optimal size and location of DGs. To reach at best reconfiguration 

of the distribution network GA will raffle the connected branches (1 or 0), proceed to resolution 

of OPF with the configuration given and keep the OPF costs DG’s placement and size is done at 

the same time by raffling the nodes were DGs are connected by the two-third theory. Size of 

DGs is done by takin an interval between 1 and 4 MW and raffle an integer number between 

that interval. A comparison between the base case and the best case given by GA is done, 

comparing reconfiguration only and reconfiguration with placement and size of DGs. 

The objective for the two methods is minimization of costs. In the case of S-MILP the total 

costs of the system (objective function) is composed of Net Present Value (NPV) of five cost 

terms: 1) investment costs, 2) costs of maintenance, 3) cost of energy in the system, 4) cost of 

unserved power and 5) total emission costs. For GA model the costs are given by the optimal 

power flow, consequently the cost of energy provided to the demand is minimized.  

 

1.5 – Thesis Structure 

The thesis is organized as follows. Chapter 2 presents a literature review of relevant works 

on the subject area of the thesis. A theoretical overview of the genetic algorithm, along with 

the descriptions of the entire solution process, is presented in Chapter 3. The stochastic 

mathematical models developed in this thesis are described in Chapter 4. Case studies, results 

and discussions are presented in Chapter 5. Chapter 6 gathers the relevant conclusions drawn 

from the numerical results, and shows directions for future work. 

 



 

 

 

 

Chapter 2 

Literature Review 

2.1 – Chapter Overview 

This chapter presents an extensive review of related works on subject area of distribution 

systems planning particularly focusing on the problems of distribution network reconfiguration, 

distribution generation and energy storage allocation and sizing in distribution network 

systems.  The reviewed works are largely structured based on the methodologies used to solve 

the aforementioned problems. 

2.2 – Distribution System Reconfiguration 

2.2.1 – Motivation of DSR 

Electrical distribution systems link high voltage transmission systems and the end-

consumers. They are often designed in a slightly meshed manner but normally operated in a 

radial configuration because of a number of reasons such as reduction of costs, uncomplicated 

coordination of protection systems, reduced occurrence of faults, better control power flows 

and voltage profile. Because of such reasons, maintaining the radial topology of the network 

systems is very critical. The reasons further explain the need for optimizations of distribution 

network systems to obtain the optimal radial topology [1].  

For the system to operate on a permanent basis, it is desirable to increase its efficiency 

and reduce its operating costs. One way to achieve this is by minimizing losses [2]. Some 

techniques used to reduce system losses are increasing the voltage level, cable replacement, 

installation of condensers and/or distribution systems reconfiguration (DSR). Among these 

techniques, the reconfiguration is the most attractive for the electricity distribution company 

because it allows the use of resources that already exist in the system. Consequently, DSR can 

be implemented by changing the status of the switches that connect/disconnect the branches 

of the system, in order to obtain a radial topology [3]–[20]. Reconfiguration can be done for 

numerous reasons, as in normal or emergency operation conditions.  
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In [21] authors show that losses in distribution network systems constitute more than 75% 

of the total system losses, contributing to a 40% of the total cost incurred to deliver power and 

80% of customer reliability. The losses are also classified as technical and non-technical losses. 

Non-technical losses include unauthorized line tapping, meter ampering, inaccurate meter 

reading, subsidies, unmetered public lighting etc. They can be reduced by monitoring, creating 

awareness, installing accurate metering devices etc. Technical losses occur due to flow of 

electric current. They cause economic damage.  

The DSR problems can be formulated as single-objective or multi-objective optimizations. 

In such optimization problems, there are two objectives that stand out, minimization of losses, 

especially in mono-objective approaches, and in multi-objective approaches besides the 

previous target, also operating costs minimization and maximization of the profit. It should be 

noted that in the multi-objective approach, the objective functions can be conflicting, in which 

case, the optimum solution is the result of a trade-off between multiple objectives [2]. 

Due to its explicit benefits (mentioned earlier), there has been a growing number of 

literature on the DSR problem over the past years, and it still remains an actual working topic. 

Generally, the goal of network reconfiguration is not only to reduce power losses but also to 

improve voltage profile, network reliability and economic operations. Therefore, DSR aims to 

find the best topology of the system taking into account power losses, energy demand, 

operational performance and other relevant determining factors. 

Based on the solution techniques applied to solve DSR problems, the literature on DSR can 

be broadly classified into two categories: 1) mathematical techniques; 2) heuristic and 

metaheuristic techniques [22]. 

2.2.2 – Mathematical Solution Techniques in DSR 

In the literature, a number of exact techniques have been widely employed  to solve DSR 

problems, such mixed-integer linear programming (MILP) [3], [8] mixed-integer second-order 

cone programming (MISOCP) [4], analytic hierarchic process (AHP) [9].  Paterakis et al.  in [3] 

propose a MILP DSR optimization model, which is formulated as a multi-objective mathematical 

programming (MMP) problem. The objective function constitutes the minimization of the active 

power losses and the minimization of commonly used reliability indices, which are explicitly 

treated within the MILP formulation. In [4], Chen et al. presents the assessment of distribution 

network total supply capability (TSC) value modelled as a MISOCP optimization problem. Gupta 

et al. [8] suggest a new MILP model which combines power and reliability objectives into a 

single objective function. A real time configuration based on load rate analysis is proposed by 

Pfitscher et al. [9]. AHP is applied in a  multicriteria decision making and analyzing of 

parallelism of feeders using Euler’s discretization method to make sure that the reconfiguration 

outcome does not violate radiality constraints.   

The mathematical techniques have been less commonly used mainly due to computational 

limitations. However, this paradigm has been changing with increased processing capability of 

computing machines in addition to the new processing styles that have been developed recently 

such as cloud computing. Heuristics and metaheuristics techniques have been employed in 

recent years. Several of these techniques are combined in order to exploit the best 

characteristic of each technique. 
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2.2.3 - Heuristic and Metaheuristic Solution Techniques in DSR 

The mathematical computational complexity of the DSR problem (mainly due to its 

combinatorial, non-convex and nonlinear nature) has led to the extensive use of heuristic and 

metaheuristic techniques in the literature by researchers.  Some of these methods which have 

been widely used to solve the aforementioned problem include genetic algorithm (GA) [5], [7], 

[10], [11], [16], [18], [19], particle swarm optimization (PSO) [14] and others. A new non 

dominated sorting guided GA (FNSGA) has been used to solve a multi-objective problem by 

Eldurssi and O’Connell [5]. For automated reconfiguration, an enhanced GA has been suggested 

by Duan et al. [7], with the aim of determining the optimal network configuration that leads 

to the minimum power losses and/or the maximum system reliability. Torres et al. [10] uses a 

GA for solving a DSR problem with purpose of minimizing real power losses while satisfying 

several system operating constraints. A codification strategy based on the edge window decoder 

(EWD) encoding technique that only leads to radial configurations has been employed. Even if 

the DSR problem has been formulated as a MILP optimization in [8], authors use GA to obtain 

the best compromising radial operating configuration. Cebrian and Kagan [16] address the 

reconfiguration of distribution networks considering power quality indices by formulating such 

a problem as non-linear mixed integer programming optimization, which is then solved by an 

evolutionary algorithm (EA). 

In [11], the DSR optimization is formulated as a single objective problem, encompassing 

only the active power losses minimization. To find the optimal or near-optimal configuration 

each candidate configuration is analyzed in two steps. First, the candidate topology is assessed 

whether or not it is a valid radial configuration. Second, if the first condition is fulfilled, a 

power flow module is run from which steady state variables are determined. Meshed heuristic 

algorithm has been developed by Mena and García [13] to solve the reconfiguration problem 

with an objective function of network losses minimization. Niknam and Farsani [14] have 

combined a hybrid EA with a self-adaptive discrete PSO to determine the statuses of 

sectionalizing switch numbers, and a self-adaptive binary PSO to determine the statuses of tie 

switches. This way, the distribution network is optimally reconfigured maintaining its radial 

topology. Abul’Wafa [15] propose a heuristic approach, embedded in a load flow algorithm that 

gives precise branch currents, node voltages and system power losses. Sahoo and Prasad  [17] 

consider voltage stability as the objective function, and the resulting DSR problem is solved 

using a fuzzy GA. Mendoza et al [18] minimize losses via reconfiguration, which is solved using 

a generic GA. The GA technique is based on the creation of an initial population of feasible 

individuals. A fuzzy mutated GA is proposed by Prasad et al. [19] for reconfiguration of 

distribution systems with a new chromosome representation of the network and a fuzzy 

mutation control. 

 

2.3 – Distributed Generation and Distribution System 
Reconfiguration 

2.3.1 – Overview of Distributed Generation 

As mentioned in the previous section, DSR can be characterized as changing the statuses of 

various switches that connect/disconnect the branches of the system in order to obtain a radial 

topology which improves overall system performance and efficiency.  
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The subsequent topology, yet, depends on many input parameters and needs to be updated 

on a daily, monthly, or periodic basis to adjust to the changes in the system operating condition. 

With increased penetration of variable renewable Distributed Generation (DG), one is more 

likely to experience constantly changing system conditions. As a result, the need for network 

reconfiguration increases because this enhances the flexibility of the system, which is useful to 

cope with operational variations.  

The purpose of distributed generation (DG) placement is to connect distributed generating 

units, generally based on non-conventional energy sources, at end consumers. According to the 

International Energy Agency (IEA), there are five key factors that have significantly increased 

interest in distributed generations [23]: 1) development in DG technologies, 2) constraints on 

construction of new transmission lines, 3) increased customer demand for highly reliable 

electricity, 4) electricity market liberalization and 5) concerns about climate change. 

Distributed generation (DG) implies the deployment of small generation units (from 1kW to 

1MW) connected to distribution network and close to the end-consumers [24]. In addition, unlike 

conventional electrical networks that have unidirectional power flow, the introduction of DG 

leads to a bidirectional power flow.  

Technical, economic and environmental advantages, as well as the disadvantages of DG 

integrations are presented [23],[24].  

DG is classified in renewable energy sources (RES) and non-renewable energy sources.  RES-

based DGs are classified as photovoltaic (PV), wind, hydro, geo-thermal, tidal and bio fuel. The 

non RES-based DG includes the diesel generator[23].  Some of the advantages of integrating 

DG’s [21], [25] are summarized in Figure 2.1. Distribution networks have been designed to handle 

unidirectional power flow. The introduction of DGs  can have positive or negative impact on 

the distribution network systems [23], [24]. The main negative impacts include: 

 Integration of DGs can result in overvoltage issues. This is not a problem when DG 

is connected to a system with low voltage issues. However, for weakly loaded 

systems, DG integration may result in high voltage problems interfering with 

standard voltage regulation practices. RES based DGs can especially worsen the 

voltage profile due to their intermittent nature.  

 The impact on protection co-ordination given that the power grids are designed to 

operate for unidirectional power flow. 

 The impact on harmonics as a result of integrating RES based DGs, which often 

require power electronic interfaces, major sources of harmonics injected in the 

system.  

 The impact on reactive power management can be an issue with DG units which are 

incapable of providing reactive power. Hence, if DG units are not properly located 

and sized, they can have negative effects on the system. When connected to the 

network, various DG technologies can lead to high levels of reliability and security 

issues [24], [23], [26].  
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Despite the steady growth of DG systems in recent years, there are still certain barriers 

(technical, economic, regulatory) that restrict progress toward a new paradigm of electric 

networks [24]. 

2.3.2 – DG Allocation in Distribution Systems—A Literature Review 

Georgilakis and Hatziargyriou [27] present a review on the models, the methods and future 

research of optimal DG placement in electrical distribution systems. Typically, the DG 

allocation is a complex optimization problem that deals with the optimal planning of DGs in 

existing distribution networks while respecting a number of technical, economic and 

environmental constraints. Such an optimization work should lead to the optimal location and 

size as well as the installation timing of DGs. The DG planning optimization problem is usually 

difficult to solve using traditional mathematical methods because it is a nonlinear, non-convex 

and combinatorial problem.  

A number of approaches and methods have been proposed in the literature for 

simultaneously restructuring of distribution network, and placement and sizing of DGs. Majority 

of the previous works in this regard aim to reduce active power losses and improve the voltage 

profile [28], [29]. The solution methods applied for solving the problems can be broadly 

classified as 1) mathematical, 2) heuristic and meta-heuristic 3) hybrid types [21].  

Mathematical techniques including MILP [30], [31], MISOCP [32] and multi-period optimal 

power flow (MP-OPF) [33] have been employed in the literature to resolve the DG planning 

problem. Haghighat and Zeng [30] propose a method to find a robust radial network topology 

with minimum losses of a distribution system considering uncertainty in load and renewable 

generation. The resulting problem is formulated in a MILP two-stage optimization framework. 

 
Figure 1 - The main advantages of integrating Distributed Generators in the distribution system. 

Figure 2.1 - The main advantages of integrating Distributed Generators in the distribution system 
(adapted from [24]). 
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The DSR problem aims to minimize losses under uncertain load and generation. The problem 

has been decomposed in a master-slave structure. Ghamsari et al. [32] have developed a 

MISOCP mathematical model to analyze the possibility and economics of an hourly 

reconfiguration in the presence of renewable energy resources. The objective function of the 

resulting problem is to minimize daily network losses via applying hourly reconfigurations, 

formulated as a MISOCP problem which is then solved using the MOSEK solver. Capitanescu et 

al. [33] proposes a multi-period OPF approach for assessing the improvement of DG hosting 

capacity of distribution systems by applying static or dynamic reconfiguration, together with 

active network management schemes. Muñoz-Delgado et al. [31] report a MILP optimization 

model whose objective is to minimize the net present value of the total cost including the costs 

related to investment, maintenance, production, losses, and unserved energy. The costs of 

energy losses are modeled by a piecewise linear approximation. Tahboub et al. [6] use MINLP 

to formulate the DSR and a fuzzy C-means clustering algorithm is used to obtain representative 

centroids from annual DG and power demand profiles  

In the heuristic and meta-heuristic solution techniques category, a uniform voltage 

distribution based constructive reconfiguration algorithm (UVDA) [34],  GA [35]–[37], modified 

particle swarm optimization (MPSO) [38], decimal coded quantum particle swarm optimization 

(DQPSO) [39], PSO [36], artificial immune system (AIS) [36], Vaccine-AIS [36], harmony search 

algorithm (HSA) [40], ant colony algorithm (ACA) [41] and evolutionary particle swarm 

optimization (EPSO) [42] have been used to solve the aforementioned problems. Bayat et al. 

[34] propose a new heuristic method base on UVDA for simultaneously optimizing 

reconfiguration with DG siting and sizing with the aim of minimizing losses. Chidanandappa et 

al. [35] implements an algorithm which predicts optimum reconfiguration plan for power 

distribution system with multiple PV generators. Genetic algorithm is used to solve the resulting 

problem and forward backward load flow method is implemented to consider time varying load 

conditions. Jangir et al. [38]  propose a methodology for determining optimal placement and 

sizing of DG units to minimize the cost of annual energy losses, and also to enhance node voltage 

profiles of the system. The optimal DG allocation problem is solved using MPSO algorithm whose 

control parameters are varied with iteration in order to improve its performance. Guan et al. 

[39] presents a methodology for DSR considering different types of DGs with an overall objective 

of minimizing real power losses.  DQPSO has been applied to solve feeder reconfiguration with 

DGs. Rao et al. [40] proposes a new methodology to solve the network reconfiguration problem 

in the presence of distributed generation (DG) with an objective of minimizing real power losses 

and improving voltage profile in distribution systems. A metaheuristic HSA is used to 

simultaneously reconfigure and identify the optimal locations for installing DG units in a 

distribution network system. Sensitivity analysis is used to identify the optimal locations of DG 

units. Different scenarios of DG placement and network reconfiguration are considered to study 

the performance of the proposed method. Sulaima et al. [42] proposes EPSO, a hybrid solution 

method obtained by combining  PSO and EP solution methods. The proposed method finds the 

optimal network reconfiguration and optimal size of DG simultaneously. Esmaeilian and 

Fadaeinedjad [43] present a novel hybrid method of metaheuristic and heuristic algorithms to 

solve distribution network reconfiguration in the presence of DGs,  especially considering solar 

PV type DGs. The solution method, according to the authors, is capable of boosting robustness 

and reducing the computational time. Maciel et al. [44] report a broad comparison of different 

meta-heuristics solution techniques applied on multi objective problems. 
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Abu-Mouti and El-Hawary [45] propose a new population-based Artificial Bee Colony (ABC) for 

solving a mixed-integer non-linear optimization problem for DG planning. Elmitwally et al. [46] 

have developed a multi-agent control system (MACS) for solving the aforementioned problem. 

An hybrid solution method is proposed in [43].In [47], authors make a multi-agent architecture. 

Scenario analysis (SA) and concepts of receding horizon control (RHC) are employed in [48]. An 

approach for optimal short-term operational scheduling with intermittent RES in an active 

distribution system is proposed in [49]. 

2.4 - Energy storage system and Distributed Generation 

2.4.1 - A General Overview 

 Energy storage system (ESS) is one of the most important components in an integrated 

system because it helps to counteract the unpredictable variation of the energy supplied by 

intermittent renewable energy sources such as wind and solar. High penetration of RESs 

increases the variability and the uncertainty of the power supply, negatively affecting the 

optimal operation of traditional power systems and network reliability. ESS levels the mismatch 

between power generation and demand, making it an important component for economic and 

technical reasons [24], [50].  

On the other hand, deregulated electricity markets principally introduce a competitive 

environment for power producers, resulting in high capital cost requirement for meeting peak 

demands and volatile electricity prices. ESS is considered as one of the solutions for stabilizing 

the supply of energy to avert wasteful power production and high prices in peak times.  IEA 

predicts a significant growth in the share of variable RES in total electricity generation, from 

6.9% in 2011 to 23.1% by 2035 within the EU [50]. The European Commission has recognized 

electricity storage as one of the strategic energy technologies to accomplish the EU's energy 

targets by 2020 and 2050. The US Department of Energy (DOE) has also identified energy storage 

as a solution for grid stability [50]. Storage technologies can be basically classified on storage 

duration (lifetime) or form of storage. Based on the storage duration, ESS can be classified as 

short-, medium- and long-term storage systems, and from the storage medium viewpoint, ESSs 

can be classified as mechanical, chemical and electrical energy storage systems. Each ESS type 

has different technical and economic characteristics, and applications [24], [51].  

Some of the main reasons of integrating ESSs in distribution network systems can been seen 

in the graphical illustration, shown in Figure 2.2. These include:  

 

1) Meeting demand and reliability in grid's peak hours: Demand involves hourly, daily, 

weekly and seasonal variations. Traditionally, in power systems, the production capacity is 

often maintained huge enough to meet the peak demands that occur just a few hours per 

year. This results in oversized, inefficient, environmentally unfriendly and uneconomical 

power systems. In this regard, ESSs becomes a good alternative to store power during hours 

of low demand to be used later in peak demand hours, deferring the construction of larger 

power capacity.  
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2) Liberalized electricity markets: Another potential use of ESS is the substantial profits 

that can be garnered from price arbitrage, due to changing electricity from low demand 

periods to the peak ones.  The lucrativeness of ESS in price arbitrage depends on the level 

of fluctuations in spot prices. The use of ESS in balancing markets and other deregulated 

ancillary services may stack the benefits, resulting in more economic appeal. Adopting an 

optimal strategy in charge/discharge scheduling and more improvements in price 

forecasting are the two important parameters in increasing the incomes from ESS in price 

arbitrage.  

3) Intermittent renewable energy: Energy policies promote the use of RES to reduce 

carbon emissions. Intermittency of RES, like wind or solar, bring new challenges to the 

optimal operation of power systems such as frequency fluctuations and voltage flicker. ESS 

can enhance the use of RES. For instance, it can store extra uncontrollable RES power 

generation during periods of high RES production and low demand so that the stored energy 

can be used at a desirable time (often during peak demand hours). ESS can contribute in 

relieving the fluctuation suppression, low voltage rides through, and voltage control 

support, resulting in smooth power output.  

4) DG and smart grid initiatives: ESS can contribute as an uninterruptible power supply 

(UPS) and overcoming voltage drops in decentralized and inflexible power systems. The 

integration of ESS is especially critical in remote islands and microgrids with more RES 

integration [50]–[52]. In such systems, ESSs result in higher energy security and lower 

emissions. 

 
Figure 2 - The main reasons to adopt Energy Storage Systems in network (adapted from  [52]) 

Figure 2.2 - The main reasons to adopt Energy Storage Systems in network (adapted from [52]). 
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As mentioned in the previous chapter, RES based power production is partially 

unpredictable and independent of human action. Furthermore, the moments of high RES 

generation may not coincide with the moments of the peak demand. There are two technologies 

that can help to resolve this problem:  

First, ESS and Hybrid Distributed Generation Systems. Energy storage has an important 

contribution to the strategic value of the future of electric network. With increasing level of 

RES and demand, ESSs will become very important for the operation of the system as a whole, 

because this will increase the reliability and stability and flexibility of the system. Energy stored 

during low demand periods will cover demand during peak periods. The use of power reserves 

when the energy is most needed and more expensive helps to overcome the problem of 

unpredictability and variable power production from RES. Second, ESS helps to reduce 

congestion in transmission and distribution systems and to supply energy during outages.  

One of the major issues with energy storage is the associated high capital cost. Apart from 

pumped hydro, other storage technologies are undergoing continuous  improvements both in 

terms of performance as well as cost [23], [24]. The costs of most ESS technologies are expected 

to dramatically fall in the years to come, and their economic viabilities are increasing from 

time to time. 

Optimal performance of power distribution networks is significantly influenced by network 

configuration, location and size of DG units and ESSs. The presence of ESSs in distribution 

systems leads to some loads to be supplied in faulty conditions [53].  

2.4.2 – Simultaneous Integration of DGs and ESSs – A Literature Review 

As it has been stated earlier, the placement and sizing optimization of ESS is important to 

mitigate the unpredictable variation of the energy supplied by RES. In [54], Chauhan and Saini 

present a detailed review on this subject area, including the individual ESS applications with 

respect to several storage options, settings, sizing methodologies and control. Like in the 

previous sections, based on the solution techniques applied to solve the problem pertaining to 

the simultaneous planning of DGs and ESSs, the literature can be categorized as: 1) heuristic 

and metaheuristic techniques; 2) mathematical techniques; 3) hybrid techniques. 

A set of heuristic and metaheuristic techniques are employed in the literature. Saboori et 

al. [51] uses PSO to find the optimal location and size of ESSs with the intention of reliability 

improvement in radial electrical distribution networks. The proposed optimal ESSs planning is 

addressed as a minimization problem which aims at minimizing the cost of energy not supplied 

(ENS) as well as installation costs of ESSs costs at the same time while respecting a number of 

technical constraints. These include security constraints such as voltage and line flows limits. 

Fossati et al. [55] propose a method to find the energy and power capacities of the storage 

system that minimizes the operating cost of a microgrid. The energy management strategy used 

is based on a fuzzy expert system which is responsible for setting the power output of the ESS. 

The design of the energy management strategy is carried out by means of a genetic algorithm 

that is used to set the fuzzy rules and membership functions of the expert system. Given that 

the size of the storage system has a major influence on the energy management strategy (EMS), 

the EMS and ESS capacities are jointly optimized. In addition, the proposed method uses an 

aging model to predict the lifetime of the ESS. Chen et al. [56]  present a methodology for the 

optimal allocation and economic analysis of ESS in microgrids on the basis of net present value 

(NPV).  
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As the performance of a microgrid strongly depends on the allocation and arrangement of 

its ESS, optimal allocation methods and economic operation strategies of the ESS devices are 

required for the microgrid. A matrix real-coded genetic algorithm is applied to find optimal 

NPV, in which each GA chromosome consists of a 2-D real number matrix representing the 

generation schedule of ESS and distributed generation sources. Hu et al. [57] propose a bi-level-

programming-based model to take the interaction of allocation and operation into 

consideration at the same time, with the external level optimizing allocation and the internal 

level optimizing operation. A genetic numerical algorithm is proposed to solve the bi-level 

model. 

The literature also includes some works that use mathematical techniques. Levron et al. 

[58] suggest dynamic programing to compute the optimal energy management of storage 

devices in grid-connected microgrids. Stored energy is controlled to balance the power of loads 

and renewable sources, over the time domain, minimizing the overall cost of energy. The 

algorithm incorporates an arbitrary network topology, which can be a general one-phase, 

balanced, or unbalanced three-phase system. It employs a power flow solver in network 

domain, within a dynamic programming recursive search in time domain. Mohamed Abd el 

Motaleb et al. [59] performs optimal sizing for a hybrid power system with wind/energy storage 

sources based on stochastic modeling of historical wind speed and load demand. The sequential 

Monte Carlo simulation is performed to chronologically sample the system states. An objective 

function based on self-adapted evolutionary strategy is proposed to minimize the one-time 

investment and annual operational costs of the wind/energy storage sources and the effect of 

the cycle efficiency and charging/discharging rate of different energy storage units on the 

system cost is investigated. Crespo Del Granado et al. [60]  have modeled the impact of real-

time pricing schemes (from the smart grids perspective) on a hybrid DG system (mixed 

generation for heating and electricity loads) coupled with storage units. They have formulated 

a dynamic optimization model to represent a real-life urban community’s energy system 

composed of a co-generation unit, gas boilers, electrical heaters and a wind turbine. 

Farrokhifar [61] calculates electricity grid losses while considering limitations of using energy 

storage devices. Dynamic programming is used to solve the problem on CIGRÉ low voltage grid 

as a standard benchmark. Srivastava et al. [62] analyze the technical and economic impacts of 

distributed generators along with energy storage devices on distribution systems. The technical 

analysis includes analyzing the transient stability of a system with DGs and energy storage 

devices, such as a battery and ultracapacitor. The DGs are represented by small synchronous 

and induction generators. Different types and locations of faults and different penetration 

levels of DGs are considered in the analysis. For economic analysis, the costs of the system with 

different DG technologies and energy storage devices are compared using the software tool 

“hybrid optimization model for electric renewables (HOMER).” Atwa and El-Saadany [63] 

propose a methodology for allocating an ESS in a distribution system with a high penetration of 

wind energy. The ultimate goal is to maximize the benefits for both the DG owner and the 

utility by sizing the ESS to accommodate all amounts of spilled wind energy and by then 

releasing the stored energy to the system when needed so that the annual cost of the electricity 

is minimized. In addition, a cost/benefit analysis has been conducted in order to verify the 

feasibility of installing an ESS from the perspective of both the utility and the DG owner. These 

data are incorporated into two separate OPF formulations in order to determine the annual 

cost of spilled energy and the optimum allocation of the ESS in the distribution system.
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Hybrid methods in literature are also proposed. Arefifar and Mohamed [64] propose two 

different strategies for constructing reliable microgrids considering temporary and sustained 

faults, and supply-adequate microgrids considering both real and reactive power self-

sufficiency, defined as a new probabilistic index for simultaneous consideration of reliability 

indices and real and reactive supply-adequacy for the construction of microgrids. All this take 

into account the uncertainty in the characteristics of the DG units and loads for constructing 

and enhancing the microgrids. For the sensitivity studies, proposed two corrective actions are 

proposed to improve the performance of microgrids in terms of reliability and supply-adequacy. 

Three different types of algorithms are used at different stages, including TS optimization 

algorithm as the main optimization method and graph theory-related algorithms as well as 

forward–backward-based probabilistic power flow methods. 

 

2.5 – Distributed System Reconfiguration, Distributed Generation 

and Energy Storage Systems 

2.5.1 - Motives of Joint Optimization of DSR, DG and ESS Placement 

A DSR along with optimal size and location of DG and ESS considers the aggregate potential 

of each one on the system.  

The ultimate goal for the simultaneous consideration of DSR and ESS and DG deployment is 

to help the integration of large-scale RES. Figure 2.3 illustrates the integration of various 

technologies in the distribution system. The increased penetration of variable renewable DGs 

will have positive and negative impact on system conditions. Conventional electrical networks 

carry a unidirectional power flow. The introduction of DGs implies a bidirectional power flow. 

DSR increases to possibility of achieving some operational aims. Variability of RES will be 

counterbalanced by ESS. In other words, ESS integrated in the network system will counteract 

the unpredictable variation of the energy supplied by intermittent RES. In addition, ESS will 

balance the demand and power generation. Storage of energy will occur during period’s high 

RES power production and low demand, and is released during periods of peak demand.   

 

 
Figure 3 Integration of various technologies in the distribution system- illustrative figure (Figure adapted from [65] 
and [66]. 
Figure 2.3 - Integration of various technologies in the distribution system- illustrative figure (Figure adapted from [65]  

and [66]. 
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2.5.2 – Joint Optimization of DSR, DG and ESS Placement – A Literature 

Review 

Hosseini and Abbasi [53] propose, at first, an approach for ENS calculation in the presence 

of DGs and storage systems. Then, the DSR problem along with the optimal DG allocation and 

sizing problems solved by the Non-dominated Sorting Genetic Algorithm II (NSGA-II). This 

solution approach allows the losses, ENS and costs of each topology to be separately optimized 

under specific loads and constraints. Quevedo et al. [65] presents a two-stage stochastic linear 

programming model to solve the optimization problem and find the best combination of 

generation, demand and electrical energy storage under islanding conditions. The 

mathematical formulation of this work consists of a two-stage MILP reconfiguration model 

considering wind power and energy storage in Electrical Distribution Systems (EDS). Hence, an 

Alternative Current (AC) power flow is approximated through linear expressions to linearize the 

model. In [65], a two-stage stochastic MILP reconfiguration model considering wind energy and 

ESS has been implemented in order to maximize load and generation under islanding conditions. 

The objective function of the optimization model is based on real power with additional 

constraints for reactive power in the islanded area. Novoselnik and Baotic [66] present a 

nonlinear model for a predictive control strategy of a dynamic reconfiguration of electrical 

power distribution systems with distributed generation and storage. The goal of the proposed 

control strategy is to find the optimal radial network topology and the optimal power references 

for the controllable generators and energy storage units that will minimize cumulative active 

power losses while satisfying operational constraints. By utilizing recent results on convex 

relaxation of the power flow constraints, the proposed dynamic reconfiguration algorithm can 

be formulated as a MISOCP. Furthermore, if polyhedral approximations of second order cones 

are used then the underlying optimization problem can be solved as a MILP. Quevedo et al. [22] 

propose an optimal contingency assessment model using a two-stage stochastic linear 

programming including wind power generation and a generic ESS. The optimization model is 

applied to find the best radial topology by determining the best switching sequence considering 

contingencies 

2.6 – Summary 

This chapter has presented a detailed review of relevant works in the subject areas of 

distribution network reconfiguration, deployment of distributed generation and energy storage 

systems from the perspective of maximizing DG integration. In addition, the most relevant 

works in the literature have been classified based on typically used solution methodologies. 

The organization of this review is characterized by the evolution of approaches, from the 

simplest to the most complex with regard to the integration of technology in the network. 

It has been found out that the variety of methods and objectives applied on the reviewed 

works, lack detailed information about tests and results (computation times, hardware, 

development interface, etc.), especially earlier works, making it hard to compare different 

methodologies. On this perspective, a multi-objective approach, as in this thesis, has been 

increasingly gaining attention because it makes a weighted representation of the various costs 

of real problems, a more orthodox approach. 
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Remain patent the global consensus for the integration of DG sources, specially RES as a 

way to meet the growing demand for electric energy and to reduce the carbon footprint of 

energy production. Nevertheless, the realization of this considerable objective faces two big 

challenges. The first is the variability and uncertainty introduced on the system by RES and the 

second is the stability and quality of energy. To overcome these challenges, it is necessary to 

integrate a set of enabling technologies, as well as design an effective coordination mechanism 

among different technologies in distribution systems. It should be noted that, in addition to 

these challenges, there exists a set of system restrictions related to operation as well as 

economics that cannot be violated. 

The integration of these technologies is a topic which has being studied for some time, yet, 

integration of a specific set, namely DSR, DG and ESS has not been adequately studied. The 

contribution of the present work therefore lies in the joint analysis of these technologies with 

the specific aims of improving system flexibility, increasing RES penetration, reducing losses, 

enhancing system stability and reliability.   
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Chapter 3 

Problem Formulation - A Mixed Integer 
Linear Programming Approach 

 

This chapter presents a complete description of the mathematical optimization model 

developed to study the impacts of network switching and/or reinforcement as well as installing 

DESSs on the level of renewable power integrated in the system. The proposed planning tool is 

a dynamic and multi-objective stochastic mixed integer linear programming (S-MILP) model, 

which jointly takes into account the optimal RES-based DGs and DESS integration in coordination 

with distribution network reinforcement and/or switching.  

3.1 – Algebraic Formulation of the Joint Planning Problem 

The dynamic and multi-objective S-MILP optimization model developed in this thesis is 

described as follows. 

3.1.1 -Objective Function 

The problem is formulated as a multi-objective stochastic MILP with an objective of overall 

cost minimization as in (3.1). The objective function in (3.1) is composed of Net Present Value 

(NPV) of five cost terms each weighted by a certain relevance factor 𝛾𝑗; ∀𝑗 ∈ {1,2, … ,5}.  

The first term in (3.1), 𝑇𝐼𝑛𝑣𝐶, represents the total investment costs under the assumption 

of perpetual planning horizon. In other words, “the investment cost is amortized in annual 

instalments throughout the lifetime of the installed component”. 

Here, the total investment cost is the sum of investment costs of DGs, distribution network 

system (DNS) components (feeders and transformers) and ESSs, as in (3.2). And, this cost is 

computed as in (3.7)-(3.9).  
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The second term, 𝑇𝑀𝐶, in (3.1) denotes the total maintenance costs which is given by the sum 

of maintenance costs of new and existing DGs as well as that of DNS components and ESSs at 

each stage and the corresponding costs incurred after the last planning stage, as in (3.3). Note 

that the latter depend on the maintenance costs of the last planning stage according a 

perpetual planning horizon. These maintenance costs are computed according to Eqs. (3.10)-

(3.12). 

The third term 𝑇𝐸𝐶 in (3.1) refers to the total cost of energy in the system, which is the 

sum of the cost of power produced by new and existing DGs, supplied by ESSs and purchased 

from upstream at each stage as in (3.4). Equation (3.4) also includes the total energy costs 

incurred after the last planning stage under the assumption of perpetual planning horizon. 

These depend on the energy costs of the last planning stage. The detailed mathematical 

expressions for computing the cost of DG power produced and ESS power supplied as well as 

that of purchased power are given in (3.13), (3.14) and (3.15), respectively. The fourth term 

𝑇𝐸𝑁𝑆𝐶 represents the total cost of unserved power in the system, given as in (3.5). And, this 

is computed using Eq. (3.16). The last term 𝑇𝐸𝑚𝑖𝐶 gathers the total emission costs in the 

system, given by the sum of emission costs for the existing and new DGs (3.17)-(3.19) as well 

that of purchased power (3.20).  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐶 = 𝛾1 ∗ 𝑇𝐼𝑛𝑣𝐶 + 𝛾2 ∗ 𝑇𝑀𝐶 + 𝛾3 ∗ 𝑇𝐸𝐶 + 𝛾4 ∗ 𝑇𝐸𝑁𝑆𝐶 + 𝛾5 ∗  𝑇𝐸𝑚𝑖𝐶 (3.1) 

As mentioned earlier, the objective function is composed of five terms which are associated 

with the relevance factors. These factors can have a single purpose or dual purposes. The first 

one is to give the flexibility for the planner to include/exclude each cost term from the 

objective function. In this case, the associated relevance factor is set to 1 if the cost term is 

included; 0, otherwise. Another purpose of these factors boils down to the relative weight in 

which the planner wants to give to each cost term. To emphasize the importance of a given 

cost term, a relatively higher value can be assigned than any other term in the objective 

function.  

 

𝑇𝐼𝑛𝑣𝐶 = ∑(1 + 𝑟)−𝑡(𝐼𝑛𝑣𝐶𝑡
𝐷𝐺 + 𝐼𝑛𝑣𝐶𝑡

𝐷𝑁𝑆 + 𝐼𝑛𝑣𝐶𝑡
𝐸𝑆)/𝑟

𝑡𝜖Ω𝑡⏟                              
𝑁𝑃𝑉 𝑜𝑓 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡

 
(3.2) 

  

𝑇𝑀𝐶 = ∑(1 + 𝑟)−𝑡

𝑡𝜖Ω𝑡

 (𝑀𝑛𝑡𝐶𝑡
𝐷𝐺 +𝑀𝑛𝑡𝐶𝑡

𝐷𝑁𝑆 +𝑀𝑛𝑡𝐶𝑡
𝐸𝑆)

⏟                              
𝑁𝑃𝑉 𝑜𝑓  𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡𝑠

+      (1 + 𝑟)−𝑇(𝑀𝑛𝑡𝐶𝑇
𝐷𝐺 +𝑀𝑛𝑡𝐶𝑇

𝐷𝑁𝑆 +𝑀𝑛𝑡𝐶𝑇
𝐸𝑆)/𝑟⏟                              

𝑁𝑃𝑉 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑢𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇 

 

(3.3) 

  

𝑇𝐸𝐶 = ∑(1 + 𝑟)−𝑡

𝑡𝜖Ω𝑡

 (𝐸𝐶𝑡
𝐷𝐺 + 𝐸𝐶𝑡

𝑆𝑆 + 𝐸𝐶𝑡
𝐸𝑆)

⏟                        
𝑁𝑃𝑉 𝑜𝑓  𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠

 + (1 + 𝑟)−𝑇(𝐸𝐶𝑇
𝐷𝐺 + 𝐸𝐶𝑇

𝑆𝑆 + 𝐸𝐶𝑇
𝐸𝑆)/𝑟⏟                      

𝑁𝑃𝑉 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑢𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇 

 
(3.4) 
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Equation (3.2) translates the total investment costs under the planning horizon, where  

𝐼𝑛𝑣𝐶𝑡
𝐷𝐺 denotes the investment costs of DG’s, 𝐼𝑛𝑣𝐶𝑡

𝐷𝑁𝑆 is the investment costs in the distribution 

network system and 𝐼𝑛𝑣𝐶𝑡
𝐸𝑆 is the investment cost in ESS. Equation (3.3) represents the total 

maintenance costs of new and existing DG’s, of DNS components and ESSs at each stage and 

these costs are updated by the NPV factor associated to each year. 𝑀𝑛𝑡𝐶𝑡
𝐷𝐺 are the 

maintenance costs of DG, 𝑀𝑛𝑡𝐶𝑡
𝐷𝑁𝑆 the maintenance costs of distribution network system and 

𝑀𝑛𝑡𝐶𝑡
𝐸𝑆 maintenance costs of ESSs. Equation (3.4) shows the total cost of energy in the system, 

which is the sum of the cost of power produced by new and existing DGs, supplied by ESSs and 

purchased from upstream at each stage. This function is due to the NPV operation costs and 

NPV operation costs updated each year of the planning horizon. 𝑇𝐸𝑁𝑆𝐶 in (3.5) represents the 

total cost of unserved power in the system. This is interpreted as the energy not supplied costs 

(𝐸𝑁𝑆𝐶) and 𝐸𝑁𝑆𝐶 updated costs at each year of planning horizon. The total emission costs of 

power production using DG (𝐸𝑚𝑖𝐶𝑡
𝐷𝐺) and the emission cost of purchased power (𝐸𝑚𝑖𝐶𝑡

𝑆𝑆)is 

presented in (3.6). This function also relates the updated costs at each year of the planning 

horizon.   

Equations (3.7)—(3.9) represent the investment costs of DGs, feeders and energy storage 

system, respectively. Notice that all investment costs are weighted by the capital recovery 

factor, 
𝑟(1+𝑟)𝐿𝑇

(1+𝑟)𝐿𝑇−1
. The formulations in (3.7)—(3.10) ensure that the investment cost of each 

component added to the system is considered only once in the summation. 

𝐼𝑛𝑣𝐶𝑡
𝐷𝐺 = ∑ ∑

𝑟(1 + 𝑟)𝐿𝑇𝑔

(1 + 𝑟)𝐿𝑇𝑔 − 1
𝐼𝐶𝑔,𝑖(𝑥𝑔,𝑖,𝑡 − 𝑥𝑔,𝑖,𝑡−1)

𝑖𝜖𝛺𝑖𝑔𝜖𝛺𝑔

 ; 𝑤ℎ𝑒𝑟𝑒 𝑥𝑔,𝑖,0 = 0 (3.7) 

  

𝐼𝑛𝑣𝐶𝑡
𝐷𝑁𝑆 = ∑

𝑟(1 + 𝑟)𝐿𝑇𝑘

(1 + 𝑟)𝐿𝑇𝑘 − 1
𝐼𝐶𝑘(𝑥𝑘,𝑡 − 𝑥𝑘,𝑡−1

𝑘𝜖𝛺ℓ

)

+ ∑ ∑
𝑖(1 + 𝑖)𝐿𝑇𝑡𝑟

(1 + 𝑖)𝐿𝑇𝑡𝑟 − 1
𝑡𝑟𝜖𝛺𝑡𝑟𝑠𝑠𝜖𝛺𝑠𝑠

𝐼𝐶𝑡𝑟(𝑥𝑡𝑟,𝑠𝑠,𝑡 − 𝑥𝑡𝑟,𝑠𝑠,𝑡−1) ; 

(3.8) 

  

𝐼𝑛𝑣𝐶𝑡
𝐸𝑆 = ∑∑

𝑟(1 + 𝑟)𝐿𝑇𝑒𝑠𝑠

(1 + 𝑟)𝐿𝑇𝑒𝑠 − 1
𝐼𝐶𝑐(𝑥𝑒𝑠,𝑖,𝑡 − 𝑥𝑒𝑠,𝑖,𝑡−1)

𝑖𝜖𝛺𝑖𝑐𝜖𝛺𝑐

 ; 𝑤ℎ𝑒𝑟𝑒 𝑥𝑒𝑠,𝑖,0 = 0 (3.9) 

𝑇𝐸𝑁𝑆𝐶 = ∑(1 + 𝑟)−𝑡

𝑡𝜖Ω𝑡

 𝐸𝑁𝑆𝐶𝑡
⏟            
𝑁𝑃𝑉 𝑜𝑓  𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑐𝑜𝑠𝑡𝑠

+ (1 + 𝑟)−𝑇𝐸𝑁𝑆𝐶𝑇/𝑟⏟            
𝑁𝑃𝑉 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑐𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑢𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇 

 
(3.5) 

  

𝑇𝐸𝑚𝑖𝐶 = ∑(1 + 𝑟)−𝑡

𝑡𝜖Ω𝑡

 (𝐸𝑚𝑖𝐶𝑡
𝐷𝐺 + 𝐸𝑚𝑖𝐶𝑡

𝑆𝑆)
⏟                      

𝑁𝑃𝑉 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠

+ (1 + 𝑟)−𝑇(𝐸𝑚𝑖𝐶𝑇
𝐷𝐺 + 𝐸𝑚𝑖𝐶𝑇

𝑆𝑆)/𝑟⏟                      
𝑁𝑃𝑉 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑢𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 𝑇

 
(3.6) 
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In (3.7), 𝐼𝐶𝑔,𝑖 represents the investment cost of DG, 𝑥𝑔,𝑖,𝑡 is the investment variables for DG. 

LTg is the life time of DG. Equations (3.9) and (3.10) are also based on the same principle. In 

(3.8), 𝐿𝑇𝑘  and 𝐿𝑇𝑡𝑟 are the lifetime of distribution lines and transformers, respectively. And, in 

(3.9), 𝐼𝐶𝑘 and 𝐼𝐶𝑡𝑟 are the investment costs on distribution lines and transformers, respectively. 

Equation (3.10) stands for the maintenance costs of new 𝑀𝐶𝑔
𝑁 and existing DGs 𝑀𝐶𝑔

𝐸at each 

time stage. The maintenance cost of a new/existing feeder is included only when its 

corresponding investment/utilization variable is different from zero in (3.11). Equation (3.12) 

is related to the maintenance costs at each stage of energy storage. 

𝑀𝑛𝑡𝐶𝑡
𝐷𝐺 = ∑ ∑𝑀𝐶𝑔

𝑁

𝑖𝜖𝛺𝑖𝑔𝜖𝛺𝑔

𝑥𝑔,𝑖,𝑡 + ∑ ∑𝑀𝐶𝑔
𝐸

𝑖𝜖𝛺𝑖𝑔𝜖𝛺𝑔

𝑢𝑔,𝑖,𝑡 (3.10) 

  

𝑀𝑛𝑡𝐶𝑡
𝐷𝑁𝑆 = ∑ 𝑀𝐶𝑘

𝐸
𝑘𝜖𝛺𝑒ℓ 𝑢𝑘,𝑡 + ∑ 𝑀𝐶𝑘

𝑁𝑥𝑘,𝑡𝑘𝜖𝛺𝑛ℓ + 

∑ 𝑀𝐶𝑡𝑟
𝐸

𝑡𝑟𝜖𝛺𝐸_𝑡𝑟

𝑢𝑡𝑟,𝑠𝑠,𝑡 + ∑ 𝑀𝐶𝑘
𝑁𝑥𝑡𝑟,𝑠𝑠,𝑡

𝑡𝑟𝜖𝛺𝑁_𝑡𝑟

 
(3.11) 

  

𝑀𝑛𝑡𝐶𝑡
𝐸𝑆 = ∑∑𝑀𝐶𝑒𝑠𝑥𝑒𝑠,𝑖,𝑡

𝑖𝜖𝛺𝑖𝑐𝜖𝛺𝑐

 (3.12) 

 

The total cost of power produced by new and existing DGs is given by equation (3.13). Note 

that these costs depend on the amount of power generated at each scenario, snapshot and 

stage. Therefore, these costs represent the expected costs of operation. Similarly, equations 

(3.14) and (3.15) respectively account for the expected costs of energy supplied by the energy 

storage system, and that purchased from upstream (i.e. transmission grid). 

 

𝐸𝐶𝑡
𝐷𝐺 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ ∑(𝑂𝐶𝑔,𝑖,𝑠,𝑤,𝑡

𝑁 𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝑁

𝑖𝜖𝛺𝑖𝑔𝜖𝛺𝑔

+ 𝑂𝐶𝑔,𝑖,𝑠,𝑤,𝑡
𝐸

𝑤𝜖𝛺𝑤

𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝐸 )

𝑠𝜖𝛺𝑠

 (3.13) 

  

𝐸𝐶𝑡
𝐸𝑆 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ 𝜆𝑠,𝑤,𝑡

𝑒𝑠 𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ

𝑒𝑠∈𝛺𝑒𝑠𝑤𝜖𝛺𝑤𝑠𝜖𝛺𝑠

 (3.14) 

  

𝐸𝐶𝑡
𝑆𝑆 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ 𝜆𝑠,𝑤,𝑡

𝜍
𝑃𝜍,𝑠,𝑤,𝑡
𝑆𝑆

𝜍∈𝛺𝜍𝑤𝜖𝛺𝑤𝑠𝜖𝛺𝑠

 (3.15) 

The penalty for the unserved power, given by (3.16), is also dependent on the scenarios, 

snapshots and time stages. Equation (3.16) therefore gives the expected cost of unserved 

energy in the system. 
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𝐸𝑁𝑆𝐶𝑡 = ∑ 𝜌𝑠 ∑ ∑𝜋𝑤𝜐𝑠,𝑤,𝑡𝛿𝑖,𝑠,𝑤,𝑡
𝑖𝜖𝛺𝑖𝑤𝜖𝛺𝑤𝑠𝜖𝛺𝑠

 (3.16) 

The expected emission costs of power generated by new and existing DGs are given by 

(3.17)-(3.19), and that of energy purchased from the grid is calculated using (3.20). Note that, 

for the sake of simplicity, a linear emission cost function is assumed here. In reality, the 

emission cost function is highly nonlinear and nonconvex, as in [44]. 

 

𝐸𝑚𝑖𝐶𝑡
𝐷𝐺 = 𝐸𝑚𝑖𝐶𝑡

𝑁 + 𝐸𝑚𝑖𝐶𝑡
𝐸 (3.17) 

  

𝐸𝑚𝑖𝐶𝑡
𝑁 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ ∑𝜆𝑠,𝑤,𝑡

𝐶𝑂2𝑒𝐸𝑅𝑔
𝑁𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝑁

𝑖𝜖𝛺𝑖𝑔𝜖𝛺𝑔𝑤𝜖𝛺𝑤𝑠𝜖𝛺𝑠

 (3.18) 

  

𝐸𝑚𝑖𝐶𝑡
𝐸 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑ ∑𝜆𝑠,𝑤,𝑡

𝐶𝑂2𝑒𝐸𝑅𝑔
𝐸𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝐸

𝑖𝜖𝛺𝑖𝑔𝜖𝛺𝑔𝑤𝜖𝛺𝑤𝑠𝜖𝛺𝑠

 (3.19) 

  

𝐸𝑚𝑖𝐶𝑡
𝑆𝑆 = ∑ 𝜌𝑠 ∑ 𝜋𝑤 ∑∑𝜆𝑠,𝑤,𝑡

𝐶𝑂2𝑒𝐸𝑅𝜍
𝑆𝑆𝑃𝜍,𝑠,𝑤,𝑡

𝑆𝑆

𝑖𝜖𝛺𝑖𝜍𝜖𝛺𝜍𝑤𝜖𝛺𝑤𝑠𝜖𝛺𝑠

 (3.20) 

 

 

3.1.2 -Constraints 

 

a) Kirchhoff’s current law (Active power balance) 

 

The active power balance at each node is enforced by equation (3.21):  

 

∑ (𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝐸 + 𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝑁 )

𝑔𝜖Ω𝐷𝐺

+ ∑ (𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ − 𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑐ℎ )

𝑒𝑠𝜖Ω𝑒𝑠

+ 𝑃𝜍,𝑠,𝑤,𝑡
𝑆𝑆 + ∑ 𝑃𝑘,𝑠,𝑤,𝑡

𝑖𝑛,𝑘𝜖𝑖

− ∑ 𝑃𝑘,𝑠,𝑤,𝑡
𝑜𝑢𝑡,𝑘𝜖𝑖

+ 𝛿𝑖,𝑠,𝑤,𝑡

= ∑ 0.5𝜑𝑘,𝑠,𝑤,𝑡
𝑖𝑛,𝑘𝜖𝑖

+ ∑ 0.5𝜑𝑘,𝑠,𝑤,𝑡
𝑜𝑢𝑡,𝑘𝜖𝑖

+ 𝐷𝑠,𝑤,𝑡
𝑖  ;  ∀𝜍, ∀𝜍𝜖𝑖 

(3.21) 

Equation (3.21) denotes that the sum of all incoming flows should be equal to the sum of 

all outgoing flows at each node. The losses in every feeder are considered as “virtual loads” 

which are equally distributed between the nodes connecting the feeder Note that losses are a 

quadratic function of flows (not shown here). Hence, they are linearized using first order 

approximation, as in [68].  
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b) Energy Storage Model Constraints 

 

For the sake of simplicity, a generic ESS is employed here. This is modeled by the set of 

constraints in (3.22)-(3.28). Equations (3.22) and (3.23) represent the bounds of power capacity 

of the ESS while being charged and discharged, respectively. Inequality (3.24) prevents 

simultaneous charging and discharging operation of ESS at the same operational time w. The 

amount of stored energy within the ESS reservoir at a given operational time w as a function of 

the energy stored until 𝑤 − 1 is given by (3.25). The maximum and minimum levels of storages 

in the operational time w are also considered through inequality (3.26). Equation (3.27) shows 

the initial level of stored energy in the ESS as a function of its maximum reservoir capacity. In 

a multi-stage planning approach, Equation (3.28) ensures that the initial level of energy in the 

ESS at a given year is equal to the final level of energy in the ESS in the preceding year. Here, 

𝜂𝑒𝑠
𝑑𝑐ℎ  is assumed to be 1/𝜂𝑒𝑠

𝑐ℎ. 

 

0 ≤ 𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ ≤ 𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑐ℎ 𝑥𝑒𝑠,𝑖,𝑡𝑃𝑒𝑠,𝑖
𝑐ℎ,𝑚𝑎𝑥 (3.22) 

  

0 ≤ 𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ ≤ 𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑐ℎ 𝑥𝑒𝑠,𝑖,𝑡𝑃𝑒𝑠,𝑖
𝑐ℎ,𝑚𝑎𝑥 (3.23) 

  

𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ + 𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑑𝑐ℎ ≤ 1 (3.24) 

  

𝐸𝑒𝑠,𝑖,𝑠,𝑤,𝑡 = 𝐸𝑒𝑠,𝑖,𝑠,𝑤−1,𝑡 + 𝜂𝑐ℎ,𝑒𝑠𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ − 𝜂𝑑𝑐ℎ,𝑒𝑠𝑃𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑑𝑐ℎ  (3.25) 

  

𝐸𝑒𝑠,𝑖
𝑚𝑖𝑛𝑥𝑒𝑠,𝑖,𝑡 ≤ 𝐸𝑒𝑠,𝑖,𝑠,𝑤,𝑡 ≤ 𝑥𝑒𝑠,𝑖,𝑡𝐸𝑒𝑠,𝑖

𝑚𝑎𝑥  (3.26) 

  

𝐸𝑒𝑠,𝑖,𝑠,𝑤0,𝑇1 = 𝜇𝑒𝑠𝑥𝑒𝑠,𝑖,𝑇1𝐸𝑒𝑠,𝑖
𝑚𝑎𝑥  (3.27) 

  

𝐸𝑒𝑠,𝑖,𝑠,𝑤1,𝑡+1 = 𝐸𝑒𝑠,𝑖,𝑠,𝑊,𝑡 (3.28) 

Inequalities (3.22) and (3.23) involve products of charging/discharging indicator variables 

and investment variable. In order to linearize this, new continuous positive variables 𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ , 

and 𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ , which replaces the bilinear products in each constraint, is introduced such that 

the set of linear constraints in (3.29) and (3.30) hold. For instance, the product 𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ 𝑥𝑒𝑠,𝑖,𝑡 is 

replaced by the positive variable 𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ . Then, the bilinear product is decoupled by 

introducing the set of constraints in (3.29) [69]. Similarly, the product 𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ 𝑥𝑒𝑠,𝑖,𝑡is decoupled 

by including the set of constraints (3.30).  
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𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ ≤ 𝑥𝑒𝑠

𝑚𝑎𝑥𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ  ;  𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑑𝑐ℎ ≤ 𝑥𝑒𝑠,𝑖,𝑡  ; 𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑑𝑐ℎ ≥ 𝑥𝑒𝑠,𝑖,𝑡 − (1 − 𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑑𝑐ℎ )𝑥𝑒𝑠
𝑚𝑎𝑥 (3.29) 

  

𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ ≤ 𝑥𝑒𝑠

𝑚𝑎𝑥𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ  ;  𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑐ℎ ≤ 𝑥𝑒𝑠,𝑖,𝑡  ; 𝑧𝑒𝑠,𝑖,𝑠,𝑤,𝑡
𝑐ℎ ≥ 𝑥𝑒𝑠,𝑖,𝑡 − (1 − 𝐼𝑒𝑠,𝑖,𝑠,𝑤,𝑡

𝑐ℎ )𝑥𝑒𝑠
𝑚𝑎𝑥 (3.30) 

 

a) Active Power Limits of DGs 

 

The active power limits of existing generators are given by (3.31). In the case of new 

generators, the corresponding constraints are (3.32). Note that the binary variables multiply 

both bounds to make sure that the power generation variable is zero when the generator 

remains either unutilized or unselected for investment. 

𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝐸,𝑚𝑖𝑛 𝑢𝑔,𝑖,𝑡 ≤ 𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝐸 ≤ 𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝐸,𝑚𝑎𝑥 𝑢𝑔,𝑖,𝑡 (3.31) 

  

𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝑁,𝑚𝑖𝑛 𝑥𝑔,𝑖,𝑡 ≤ 𝑃𝑔,𝑖,𝑠,𝑤,𝑡

𝑁 ≤ 𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝑁,𝑚𝑎𝑥 𝑥𝑔,𝑖,𝑡 (3.32) 

It should be noted that these constraints are applicable only for conventional DGs. In the 

case of variable generation source (such as wind and solar PV), the upper bound 𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝑚𝑎𝑥  should 

be set equal to the minimum of the actual production level at a given hour, which is dependent 

on the level of primary energy source (wind speed and solar radiation), and the rated (installed) 

capacity of the generating unit. And, the lower bound 𝑃𝑔,𝑖,𝑠,𝑤,𝑡
𝑚𝑎𝑥  in this case is simply set to zero. 

 

b) Active Power Limits of Power Purchased 

𝑃𝑠,𝑤,𝑡
𝑆𝑆,𝑚𝑖𝑛 ≤ 𝑃𝑠,𝑤,𝑡

𝑆𝑆 ≤ 𝑃𝑠,𝑤,𝑡
𝑆𝑆,𝑚𝑎𝑥  (3.33) 

For technical reasons, the power that can be purchased from the transmission grid could 

have minimum and maximum limits, which is enforced by (3.33). However, it is understood that 

setting the maximum and minimum limits is difficult. These constraints are included here for 

the sake of completeness. In this work, these limits are set to 1.5 times the minimum and 

maximum levels of total load in the system. 

 

c) Logical constraints 

The set of logical constraints in (3.34) ensure that an investment decision cannot be 

reversed. In addition to the constraints described above, the direct current (DC) based network 

model and radiality related constraints presented in [68] are used here. 
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𝑥𝑘,𝑡 ≥ 𝑥𝑘,𝑡−1;   𝑥𝑔,𝑖,𝑡 ≥ 𝑥𝑔,𝑖,𝑡−1;   𝑥𝑒𝑠,𝑖,𝑡 ≥ 𝑥𝑒𝑠,𝑖,𝑡−1 (3.34) 

 

d) Radiality constraints 

There are two conditions that must be fulfilled in order a distribution network system (DNS) 

to be radial. First, the solution must have 𝑁𝑖 − 𝑁𝑆𝑆 circuits. Second, the final topology should 

be connected. Equation (3.35) represents the first necessary condition for maintaining the 

radial topology of DNs. 

∑ 𝑂𝑅(𝑥𝑘,𝑡 , 𝑢𝑘,𝑡)

𝑘∈Ω𝑖𝑗

= 𝑁𝑖 − 𝑁𝑆𝑆   ; ∀𝑡 (3.35) 

Note that the above equation assumes line investment is possible in all corridors. Hence, in 

a given corridor, we can have either an existing branch or a new one, or both connected in 

parallel, depending on the economic benefits of the final setup (solution) brings about to the 

system. The radiality constraint in (3.35) then has to accommodate this condition. One way to 

do this is using the Boolean logic operation, as in (3.35). Unfortunately, this introduces 

nonlinearity. We show how this logic can be linearized using an additional auxiliary variable 

𝑧𝑘,𝑡 and the binary variables associated to existing and new branches i.e. 𝑢𝑘,𝑡 and 𝑥𝑘,𝑡, 
respectively. Given𝑧𝑘,𝑡: = 𝑂𝑅(𝑥𝑘,𝑡 , 𝑢𝑘,𝑡),this Boolean operation can be expressed using the 

following set of linear constraints: 

𝑧𝑘,𝑡 ≤ 𝑥𝑘,𝑡 + 𝑢𝑘,𝑡;  𝑧𝑘,𝑡 ≥ 𝑥𝑘,𝑡;  𝑧𝑘,𝑡 ≥ 𝑢𝑘,𝑡; 0 ≤ 𝑧𝑘,𝑡 ≤ 1   ; ∀𝑡 (3.36) 

Then, the radiality constraints in (69) can be reformulated using the 𝑧𝑘,𝑡 variables as: 

∑ 𝑧𝑘,𝑡
𝑘∈𝛺𝑖𝑗

= 𝑁𝑖 − 𝑁𝑆𝑆       ; ∀𝑡 (3.37) 

When all loads in the DNS are only fed by power from substations, the final solution obtained 

automatically satisfies the two aforementioned conditions; hence, no additional constraints are 

required i.e. (3.36) along with (3.37) are sufficient to guarantee radiality. However, it should 

be noted that in the presence of DGs and reactive power sources, these constraints alone may 

not ensure the radiality of the distribution network, as pointed out in [70] and further discussed 

in [71]. 

3.2 – Summary 

This chapter has presented a full description of the proposed dynamic and multi-objective 

S-MILP model, which jointly takes into account the optimal RES-based DGs and DESS integration 

in coordination with distribution network reinforcement and/or switching.  
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The problem has been formulated as with an objective of overall cost minimization. The 

objective function is composed of Net Present Value (NPV) of five cost terms each weighted by 

a certain relevance factor. The considered cost terms include the total investment cost, the 

total cost of maintenance, consumed energy, unserved energy and emissions in the system all 

under the assumption of perpetual planning horizon.  

As already mentioned, in the formulation is employed one of the concepts most used in the 

investment study in the financial world, the Net Present Value, which conceptually shows how 

to value in monetary terms the cash flows in any investment planning, in this case, considering 

the costs associated with the expansion planning of a given system. 

This model will be tested in Chapter 5 on a case study and the further numerical results 

will be discussed there. 
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Chapter 4 

Problem Formulation and Solution -
Genetic Algorithms Approach 

 

In this chapter, a method to investigate the impacts of network switching as well as 

installing DGs in distribution system is presented. To carry out this analysis, different models 

are formulated. A brief description of the genetic algorithm employed is presented in this 

chapter.  

4.1 – An overview of Genetic Algorithms  

Genetic algorithms are nature-inspired solution algorithms often suited for complex and 

combinatorial problems [72] . Such algorithms are based on natural selection and genetic 

mechanisms. They explore historic information to find points that are expected to lead to the 

best performance. This is done by an iterative process. Each iteration is often referred to as a 

generation. During each iteration, the principles of selection and reproduction are applied to 

a population. The selection process determines the individuals that will be reproduced 

(fathers), creating a determined number of descendants (sons) to the next generation by a 

determined probability named fitness index. This can be understood as the individuals with 

better relative adaptation, having greater chances to transmit their genes [73]. 

In a genetic algorithm, a possible population of solutions progresses according to the genetic 

operators (probabilistic) conceived by biological representations. On average, there is a 

tendency to have better solutions as the evolutionary process lasts. Notwithstanding, genetic 

algorithm exploits a probabilistic and metaheuristic method to obtain new populations. It is not 

a random solution search algorithm because it explores the available information to search new 

individuals or better solutions to improve a performance index.  

Genetic algorithms seek to privilege individuals with better skills. By this means, they try 

to drive to regions of search space where global optima are located. Sometimes, this cannot be 

achieved if the parameters are not well suited for the problem.  
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4.1.1 -Codification 

The basis to a genetic algorithm application to a problem is the representation of the 

problem to be analyzed. Each representation must have matching genetic operators. This is 

critical for genetic algorithms to operate correctly to the correspondingly optimization 

problem.  

Genetic algorithm creates populations of individuals. This is called a chromosome, a data 

structure. Generally, chromosomes are vectors or binary values chain, reals or combinations of 

both. A chromosome represents a possible solution to the problem. Hence, a chromosome forms 

the set of parameters of the objective function that will be optimized. All the configurations 

that a chromosome can assume is called a search space. If a chromosome has n parameters of 

a function, it will be a search space with n dimensions. The majority of representations are 

genotypic Genotype is the set of genes that defines the genetic constitution of an individual. 

Genetic operators will be applied to genes [72]. Genotypes are represented by finite scale 

vectors, that the user needs to specify (see in Figure 4.1).  

 The genotype of an individual is conventionally represented by a binary vector. Each 

element of the vector characterizes a certain characteristic relevant to the construction of a 

unique individual. Combinations of elements can form the real characteristics of an individual, 

namely its phenotype. This representation is problem independent because once found the 

representation in binary vectors, standard operations can be applied, helping the employing in 

different classes of problems. Binary representation is the most commonly used approach 

because it is easy to implement, manipulate and analyze. But if the problem has continuous 

parameters, chromosomes could have bigger representations if the user wants to work with a 

higher precision. This leads to the use of a larger amount of memory. The majority of genetic 

algorithms proposed in the literature have a fixed number of individuals in a population, with 

constant size chromosomes. This is the simplest method to create a population of individuals 

[73]. 

 
Figure 4 Possible chromosome representation 

.Figure 4.1 – Possible chromosome representation. 
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Having defined the chromosomic representation to the problem, a possible set of solutions 

are generated called aspirants. These aspirants are normally called sons due to the fact that 

they have a genetic material from their fathers. The set of codified solutions according the 

selected representation matches a population of individuals representing, over the evolution 

cycles, the current stage of problem solution. In each iteration, the population is modified 

because genetic algorithms involve an iterative process. Each iteration is called a generation 

although not all population individuals are necessarily sons of individuals of the population in 

the preceding iteration.  

In the populations, several statistical values are calculated that will be used to evaluate if 

the search is close to the optimal solution. Parameters that can be evaluated are the best 

individual, diversity, standard deviation and average of accomplished goals. Normally, the 

evaluation is done to the objective function, this is the simplest way. This is simply to say that 

objective function becomes the fitness function, and there is no need to calculate the relative 

fitness function. 

 

4.1.2 -Initialization 

The representation of a search space is the most sensitive issue. Hence, initialization leads 

to some mechanism of making educated guess. The types of initializations are the following 

[74]: 

 Random initialization – Individuals of the population are generated randomly.  

 Deterministic initialization – Individuals of the population are generated 

deterministically by heuristic methods. 

 Random initialization with niche – Individuals of the population are generated by 

ways that can be divided in species. This will group individuals with similar 

characteristics.  

Randomly initializing population of n individuals are generated or some heuristic methods 

are used. This is the classic initialization that can be found in most relevant works. Without 

variety, there is no evolution. The natural selection theory (Darwin’s Theory of Evolution) 

implies individuals that have different adaptation index to the ambient where they live, so it 

is important to have a large search space in the genetic algorithm. 

Initial population generation can be obtained obeying some conditions established by the 

user. The user can establish such conditions from previous knowledge of the problem. The more 

restrictive these conditions are, the faster the convergence is. This is because the generated 

values are closer to the desired (possibly optimal) solution. There is no formula to the number 

of individuals that compose the population. They can be dependent on some heuristics but it’s 

more reliant on the user’s experience, and his/her previous knowledge of the objective 

function. The larger the number of individuals is, the higher the probability of convergence 

because the probability of the solution among the elements of population is bigger. But this 

may lead to greater computational effort, increasing the computation time. If the population 

is too small, it will not have diversity, the search space is reduced and the convergence will be 

premature. 
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The objective is to generate a population within a certain interval where it could be the 

solution. With this, it is not necessary to generate a random population. In the current work, 

we know that the number of branches must be equal to the number of buses minus the number 

of generators to keep radial configuration of the DNS, consequently, we can generate a uniform 

distribution between this fixed number of branches and zero.  

4.1.3 -Evaluation 

A genetic algorithm needs information about the value of the objective function to each 

individual of the population. The objective function gives the measure of how good the 

individual is adapted to the environment. In other words, this relates to the probability to 

survive and reproduce, transferring its genetic material to the next generations. The evaluation 

of the individual results in the so called “fitness function”[74].  

Validating is the next step and it can be defined as the process to compare the fitness 

function from all individuals and sorting them out by their corresponding fitness function 

values. Normally, the best/bests are selected, according to the evolution theory. Convergence 

and the performance of the population related to the objective function is analyzed. This can 

be done by calculating the maximum, minimum and average of the fitness function or the 

standard deviation in each generation. Convergence can be a process of setting a finite number 

of generations (the most practical way). 

If the initial population happens to have the exact solution to the problem, the algorithm 

will not stop. Convergence of the algorithm is achieved only, for instance, when the average 

fitness of the population is well stabilized or we reach the maximum number of generations. 

This can indicate that the population is adapted to the environment and the elements lead to 

the best objective function value. This can also indicate that we are stuck in an optimum 

location and need to improve the search space. The best individual is saved whether it belongs 

to the actual population or not. In the end, this will be the expected result. The recording is 

always done in each generation to see if we reached the optimum solution. 

In genetic algorithms, convergence can be very fast to a sub-optimal solution. This is not 

what is desired, however. This problem is called premature convergence and it can occur by a 

small population or badly distribution of initial population. Premature convergence can occur 

due to bad distribution of individuals in search space and will affect the search for the global 

optimum. Such a premature convergence is also called diversity loss. Diversity indicates the 

rate which each region is represented in the solution search space. This can be overcome by 

improving the distribution of individuals in the initial population and preventing loss of diversity 

in the first generations. In addition, increasing the number of individuals will improve the 

search space. The selection process will guarantee that the best individual will dominate the 

next generation and so on if there are no better individuals with a best fitness function. 

4.1.4 -Selection 

Selection is the process that will make the initial population more fit after many 

generations. This is the basic principle of genetic algorithms. Selection mechanism in genetic 

algorithms tries to imitate the natural selection process [73], [74]. 
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Genetic algorithms start with an initial population with a set of individuals. If we know a 

priori where the solution is located, the first individuals can be initialized deterministically. 

When we do not know anything about the search space, the individuals are created randomly. 

Deterministic way can lead us to fast convergence because the global optimum can be in the 

first generation. The selection process favors the fit individuals, and to a fitness function is 

assigned to each individual. This function is an input that represents the genes of the 

chromosome and provides their fitness as an outcome. Fitness is like a grade where the 

evaluation is made by a solution coded from each individual. This fitness is based on the 

objective function.   

A relative fitness can be calculated to each individual. To some selection methods, it is 

desirable that the value of relative fitness for each individual be less than 1 and that the sum 

of every fitness values are equal to 1. The relative fitness of each individual is calculated by 

dividing its value of fitness (objective function that the solution from the individual) by the 

sum of values of the fitness of the entire individuals of the population (the sum of the objective 

functions of each individual). This is expressed by equation (4.1). 

𝑓(𝑥𝑖)𝑟𝑒𝑙 = 
𝑓(𝑥𝑖)

∑ 𝑓(𝑥𝑗)
𝑛
𝑗=1

 (4.1) 

where  𝑓(𝑥𝑖) is the fitness function. 

Generally, a population of n individuals is generated with a probability proportional to its 

relative fitness in the population. Using the previous probability, we select n individuals. 

Individuals with low fitness will have high probability to disappear from the population. 

Individuals with high fitness will be passed on to the next generation. It is not necessary to 

calculate this fitness function because when we have a fixed maximum generation, we can 

analyze the objective function of each individual and select the best. This fitness function is a 

good instrument when we have convergence by some other method than a fixed number of 

generations (like average fitness of the population is well stabilized). 

The objective function gives information about how close or far the solution is from the 

desired solution. It includes restrictions that need to be satisfied by the solution. In 

optimization problems, the objective function can be maximization or minimization of the 

objective function. It can be maximization of profit or minimization of costs. Some problems 

can include more than one objective function. Problems called multi-objective optimization 

can have an objective function that includes more than one objective. 

 

The selection process chooses a subassembly of individuals based on fitness, creating an 

intermediate population. Different selection methods are implemented in genetic algorithms. 

Most of all seek to favor the fittest individuals in order to keep population diversity. Some 

methods are: 

 Roulette; 

 Tournament; 

 Stochastic sampling; 

 Classification. 
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The Roulette method is the simplest and the most commonly used approach. Individuals of 

the generation are selected to the next generation using roulette as we see in the famous game 

of casinos roulette wheel. Each individual is represented in the roulette according to their 

fitness value. This way, individuals with nice fitness get a bigger interval in the roulette and 

the others with low fitness will receive a shorter interval. After distribution in the roulette, 

certain values are randomly generated in the interval from 0 to the total summary of the fitness 

of all individuals, a determined number of times depending on the size of population. If a given 

individual is in the interval, the generated value will be selected to the intermediate 

population.  

In tournament selection, n individuals of population are selected randomly with the same 

probability. The individual with the greatest fitness among them is selected to the intermediate 

population. Process ends when the intermediate population is fulfilled.  

A stochastic sampling is a variation of Roulette method but instead of one unique needle, 

n needles equally spaced are used, where n is the number of individuals to be selected. This 

way, instead of spinning the roulette n times, it is only spinned one time.  

A classification method primary classifies the population, then, each individual gets a grade 

according to the classification of the population. The worst individual will get the lower value 

that we can assign, the second worst gets the second worst value and successively. The best 

will get the highest grade, that can be equal to the number of individuals in the population. 

After the classification process, every individual has a certain chance to be selected. 

4.1.5 -Genetic Operators 

Global optimization algorithm must be capable of exploring new points inside the solution 

search space. This mechanism is called exploration and exploitation, and is often adopted in 

genetic algorithms by applying correct genetic operators. The main genetic operators are 

crossover and mutation primarily in a binary codification [75]. 

Crossover uses information in two or more individuals (fathers) to generate one or more 

individuals (sons). This can be resistant to add new information to population because it sees 

the region close to father’s individuals. The process of recombination is a sexual process – it is 

more than one individual – and stimulates the exchange of information between chromosome 

pairs. It is a random process with a fixed probability that needs to be specified by the user. 

Mutation can be a diversifier or booster to the solution search. Some approaches use 

mutation as the technique responsible for the evolution process, for determining if the 

movement is exploration or exploitation, and the adaptable parameters in each generation. 

Mutation can diversify when new information is introduced in the individual, and consequently 

to the population (very strong mutation). If the mutation is very weak, it is a booster in neighbor 

solution search. This process is equivalent to the random search. One position is selected in the 

chromosome, and changes the correspondent value to another random one. This can be 

controlled with a fixed parameter that indicates the probability of a gene suffering mutation. 

Crossover and mutation can be combined to upgrade the search for the optimal solution by 

taking advantages of the best features in each method.  
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4.1.6 -Genetic Parameters 

The performance of a genetic algorithm is strongly dependent on how the parameters to be 

employed are defined. Hence, it is important to investigate which way some parameters can 

influence in the behavior of the algorithm [76]. This way, we can establish the parameters 

according to the requirements and resources available. Parameters usually are size of 

population, crossover rate, mutation rate, substitution rate and convergence condition. Size of 

the population affects the global performance and efficiency of genetic algorithms. With a 

small population, the performance may drop because a relatively small search space is covered. 

Bigger population offers a representative search space domain and avoids optimum local 

solutions. However, to work with bigger populations, we may need a longer simulation time or 

more computation resources.  

Crossover rate specifies how fast new structures are introduced in the population. If it is 

set very high, good structures can be removed faster than the selection capacity. With a small 

rate, the algorithm can become slow or stagnate. Mutation rate prevents that the search 

becomes stagnated in regions of search space. It allows that every space search point can be 

achieved. With a high rate, the search becomes random. 

Substitution rate controls the population percentage that will be substituted in the next 

generation. With a higher rate value, most of the population will be substituted but it can suffer 

of losing great structures of fitness. When the rate value is too low, the algorithm may become 

slow. Substitution rate is not commonly used because with a nice mutation and crossover rate, 

we can guarantee that the next generations will be always better than the previous ones. 

A convergence condition is the condition when the algorithm will stop. The ideal is to stop 

when we reach the optimum solution in an optimization problem. When we have multimodal 

functions (saddle points, with many optimal points and one global optimum) it can be sufficient 

when we reach one optimal point but there are situations where the largest possible number 

of optimal points is desired. In practical, we cannot tell with certain if a given point matches 

the global optimum. As a consequence, it’s used as convergence condition a maximum number 

of generations or a limit of computational time to stop the algorithm. Another criterion is to 

stop the algorithm if during several generations the fitness function is not getting better, 

interpreted as an idea of stagnation of the solution. 

4.2 – Genetic Algorithms: Formulation 

In this work, a GA is used to solve the resulting problems based on AC OPF models. The OPF 

problems are solved using the MatPower toolbox in MATLAB environment.  MatPower is a 

package of MATLAB for solving power flow and optimal power flow problems. It is intended as 

a simulation tool for researchers and educators that is easy to use and modify. 

A GA is a method for solving constrained and unconstrained problems optimization 

problems, particularly suited for non-linear and combinatorial problems. It is based on natural 

selection. The process that guides a GA is basically initialization, mutation, evaluation and 

selection. In this work, a GA is employed to solve the reconfiguration of distribution system as 

wells as placement and sizing of DGs. The implementation process of the GA is summarized as 

follows:
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A GA is a method for solving constrained and unconstrained problems optimization 

problems, particularly suited for non-linear and combinatorial problems. It is based on natural 

selection. The process that guides a GA is basically initialization, mutation, evaluation and 

selection. In this work, a GA is employed to solve the reconfiguration of distribution system as 

wells as placement and sizing of DGs. The implementation process of the GA is summarized as 

follows: 

 Step 1: Initialization – Generate the set of branches and set of DG’s in each node 

 Step 2: Mutation – Mutate the chromosome of branches and DG’s  

 Step 3: Evaluation - Check the radially constraints  

 Step 4: Run the OPF of radial populations 

 Step 5: Selection 

 Step 6: Uniform Crossover and a Small Mutation - Crossover and Small mutation for 

a new population based on the best populations. 

 Step 7: Selection – Select the best population. 

The chromosome of the set of branches connected is binary, 1 if connected and 0 if 

disconnected. The generation of radial populations is based on number of buses minus the 

number of generators. The DG placement does not affect this stipulation. The algorithm used 

is shown in Figure 4.2. 

The DG chromosome is generated by integer numbers between 0 and 4, respecting the size 

of DG in MW and with a length of number of buses. This way we generate the location and size 

of DG. The parameters of the network are introduced in a MatPower case. To solve the OPF, 

we just need to pass to the MatPower information regarding the statuses of the branches.  

The DGs are regarded as a PV bus. Hence, in order to solve the OPF, we need to introduce 

the generator data and the generator cost data. Running the OPF, we obtain the voltage profile, 

costs and line flows.  

First, we will investigate the benefits of having only reconfiguration in the system. Second, 

we will solve the problem of DG placement and sizing along with the reconfiguration problem. 

This way, the best places to install DG’s and their optimal size, as well the network topology is 

determined.  

The objective function is the total costs in the system. This will be our fitness function that 

needs to be minimized.  

In order to get the best topology, we penalize the configurations that do not lead to radial 

configurations. Then, if it fulfils the radially constraints, we check if all buses are connected. 

If not, another penalization is introduced. After running the OPF and see if it converges, 

investigation regarding voltage limits is done. If the voltage limits are not respected, another 

penalization is introduced in the fitness function. If the OPF does not converge, we penalize 

the fitness. This will lead to the best cases. 

This process is also reproduced when we introduce DGs in the problem. A DG is treated as 

another population and all the constraints regarding the OPF will be checked and respected. 

Different costs of DG are considered in order to seek for the best cases. 
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Figure 5 Flow Chart of the proposed GA. 

.Figure 4.2 – Flow Chart of the proposed GA. 
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4.3 – Summary 

In this chapter, an overview of the genetic algorithm (GA), the optimization problems and 

the solution procedures have been described. Overall, the problem considered in the 

optimization process jointly takes into account the optimal DGs placement and size in 

coordination with distribution network switching in one operation scenario.  

The resulting problem has been solved using a genetic algorithm, where a brute-force AC 

OPF is considered with an objective of overall cost minimization. The objective function is 

composed of costs related to power production in one operation scenario.  In addition, loss 

minimization has been taken into consideration with reconfiguration of the distribution system. 
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Chapter 5 

Case Studies, Results and Discussion 

 

5.1 –  Mixed Integer Linear Programming based Optimization 

5.1.1 – Case Study: A 33-bus Test System 

A standard IEEE 33-bus radial distribution network, shown in Figure 5.1, is used here for 

carrying out the required analysis mentioned earlier. The system has a rated voltage of 12.66 

kV, and a total demand of 3.715 MW and 2.3 MVAr. Network data and other related information 

about this test system can be found in  [77]. Other data and assumptions made throughout this 

paper are as follows: 

 The planning horizon is 3 years long, which is divided into yearly planning stages, and 

a fixed interest rate of 7% is used.  

 The expected lifetime of ESS is assumed to be 15 years while that of DGs and feeders 

is 25 years.  

 Two investment options with installed capacities of 0.5 and 1.0 MVA are considered for 

each wind and solar PV type DG units.  

 The installation cost and emission related data of these DG units, provided in [78], are 

used here.  

 For the sake of simplicity, all maintenance costs of DGs are assumed to be 2% of the 

corresponding investment costs while that of feeders is 450 €/km/year.  

 The investment cost of each feeder is 38700 €/km.  

 The current limits of all feeders is assumed to be 200 A except for those between nodes 

1 and 9 which is 400 A.  

 It is assumed that all feeders can be switched on/off, if deemed necessary 

 In addition, it is assumed that wind and solar power sources are uniformly available at 

every node.  

 The cost of energy storage is 1000k€/MW; 
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 The operational variability and uncertainty introduced by wind and solar PV type DGs, 

demand and electricity price are accounted for via the clustering method proposed in 

[79]. 

 The maximum allowable bus voltage deviation in the system is set to 5%, and node 1 is 

considered as a reference with a voltage magnitude of 1.0. Annual demand growths of 

0%, 5% and 10% are also considered in all simulations.  

 Emission prices in the first, second and third stages are set to 25, 45 and 60 €/tCO2e, 

respectively, and the emission rate of power purchased from upstream is arbitrarily set 

to 0.4 tCO2e/MWh.  

 The cost of unserved energy is 2000 €/MWh. A power factor of 0.9 is considered in the 

system, and is assumed to be the same throughout. The base power is set to 1 MVA. 

  

The computed values of relevant variables are analyzed for different cases (as depicted in 

Table 5.1) over the three years planning horizon. Case 1 represents the base case topology 

where no investments are made while Case 2 considers an optimal reconfiguration but with no 

investments. Cases 3 and 4 both consider investments in DGs only but differ in that the former 

does not change the network topology and the latter uses optimal switching. The last two cases 

correspond to scenarios where investments in DGs are coordinated with that of ESSs. Case 5 

uses the topology in the base-case while Case 6 uses network reconfiguration.  

5.1.2 – Results and Discussion 

The results in Table 5.1 reveal the significant differences in overall NPV cost in the system, 

share of energy supplied by RES and ESS combined, cost of total network losses and unserved 

power among the aforementioned cases. The results are also compared with the base case 

system where no investments are made and the network topology is held the same. Network 

reconfiguration alone, as in Case 2, results in about 8.4% in the cost of losses, and a 3.1% 

reduction in the NPV overall system cost compared with that of Case 1. In addition, network 

reconfiguration avoids a total of 396.3 kVA load curtailment (or 256.9 kVA in Case 3) that would 

otherwise occur at nodes 17, 18, 32 and 33 due to voltage limit constraints in  

Case 1.  

 
Figure 6 - 33-bus radial distribution system. 

Figure 5.1 - 33-bus radial distribution system. 
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Another more interesting observation from Table 5.1 is that Cases 3 and 4 result in 

(approximately) 60% reductions in the overall cost of the system and the amount of imported 

energy. Wind and solar power sources are complementary by nature. This important 

phenomenon seems to be exploited when DG investments are not accompanied by investments 

in ESSs (i.e. Cases 3 and 4). This is because, according to the DG investment solution in Table 

5.1, the operational variability in the system seems to be handled by investing an appreciable 

amount in both complementary power sources (wind and solar). This can also be seen from the 

level of demand covered by RESs, which is about 58%.  

The results corresponding to Cases 5 and 6 show that the total cost and cost of losses are 

dramatically reduced by more than 41.6% and 80% respectively. This reveals the substantial 

benefits of coordinating investments DG with ESSs. Generally, ESSs significantly improve system 

flexibility, enabling large-scale accommodation RES energy. Interestingly, the total amount of 

installed DGs (9 MW) is the same for Cases 3—6 i.e. with/without ESSs. Even if this is the case, 

in the absence of ESSs (Cases 3 and 4), there may be spillage of RES power when the demand 

is lower than the total generated power. However, the installation of ESSs leads to an efficient 

utilization of RES power. This is evident from the amount of energy consumption covered by 

the combined energy supplied by RESs and ESSs in Cases 5 and 6 is about 89%.  

Normally, network switching capability also improves system flexibility, leading to a high 

level RES penetration. In this particular study, the effect of network switching on the level of 

RES power absorbed by the system is not significant as one can observe in Table 5.1. This may 

however be case-dependent. A more frequent switching capability could, for instance, have 

significant impact. 

The optimal location and size of installed DGs corresponding to Cases 3 through 6 is shown 

in Figure 5.2. The average voltage profiles at each node and for each case are depicted in 

Figure 5.3. It is interesting to see in this figure the substantial contributions of DGs and ESS 

installations to voltage profile improvement. 

As shown in Figure 5.3, the coordinated integration of DGs and ESSs (i.e. Case 6), especially 

leads to the best voltage profile. Figure 5.4 demonstrates the optimal network topology, DG 

and ESS locations corresponding to this case. The nodes 8, 14, 25, 30 and 32 are within the 4 

cases. We can assume that these nodes possibly are the critical nodes to invest. The benefit of 

joint DG and ESS investments along with network reconfiguration in terms of losses reduction 

(over 84% on average) can be seen from figure 5.5. The spikes observed in Case 6 are because 

of the variability in RES power injected into the system.  

Table 5.1 - Results of Relevant Variables for Different Cases. 
Table 1  - Re sults of  Relevant Variab les for Dif ferent Cases.  

Cases Total cost  

(TC) [k€] 

Energy supplied by 

RES and ESS [%] 

Total cost of 

losses [k€] 

Total cost of 

unserved power 

[k€] 

Total installed 

size [p.u.] 

Wind Solar ESS 

1 45447.91 0.0 1089.80 1505.70 0.0 0.0 0.0 

2 44044.58 0.0 997.85 0.00 0.0 0.0 0.0 

3 33281.50 58.1 433.58 161.79 6.0 3.0 0.0 

4 33106.07 58.2 404.59 0.00 6.0 3.0 0.0 

5 26522.10 88.8 218.33 0.00 8.0 1.0 3.0 

6 26516.52 88.8 212.73 0.00 8.0 1.0 3.0 

 

 
Figure 7 - Optimal DG location in Cases 3, 4, 5 and 6. Table 2 - Resu lts of Re levant Variable s fo r Different Cases.  
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Figure 10  - Average voltage prof iles in  the system under d ifferent cases.  

Figure 11  - Average voltage profiles in the system  under different cases.  

Figure 5.3 - Average voltage profiles in the system under different cases. 
 
 

 
Figure 12 - Optimal locations of DGs and ESSs under Case 6 (Opened switches 28-29, 8-21, 9-1 

5, 18-33, 12-22). 

Figure 5.4 - Optimal locations of DGs and ESSs under Case 6  
(Opened switches 28-29, 8-21, 9-15, 18-33, 12-22). 
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Figure 8 - Optimal DG location in Cases 3, 4, 5 and 6. 

 
Figure 9 - Optimal DG location in Cases 3, 4, 5 and 6. Figure 5.2 - Optimal DG location in Cases 3, 4, 5 and 6. 
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As shown in Figure 5.3, the coordinated integration of DGs and ESSs (i.e. Case 6), especially 

leads to the best voltage profile. Figure 5.4 demonstrates the optimal network topology, DG 

and ESS locations corresponding to this case. The nodes 8, 14, 25, 30 and 32 are within the 4 

cases. We can assume that these nodes possibly are the critical nodes to invest. The benefit of 

joint DG and ESS investments along with network reconfiguration in terms of losses reduction 

(over 84% on average) can be seen from figure 5.5. The spikes observed in Case 6 are because 

of the variability in RES power injected into the system.  

 

5.2 –  Genetic Algorithm Results 

5.2.1 – Case Study: 16-bus Test System 

Figure 5.6 shows the 16-bus test system used for analysis of the results from GA. The system 

has a rated voltage of 23 kV and a total demand of 28.7 MW and 17.3 Mvar. The maximum 

allowable bus voltage deviation in the system is set to 5%. A power factor of 0.95 is considered 

for the DG. The costs of the generators at the feeders are given by polynomial functions, and 

two options are considered as in (5.1) and (5.2):  

𝐶(𝑃) =  150 + 20𝑃 + 0.01𝑃2 €/h (5.1) 

  

𝐶(𝑃) =  180 + 30𝑃 + 0.03𝑃2 €/h (5.2) 

For integrating the DG as a PV bus and add to the cost of the system given by the OPF, one 

polynomial function (5.3) was taken in consideration. 

 

 
Figure 13 - Total system losses profile. 
Figure 5.5 - Total system losses profile. 
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𝐶(𝑃) =  8𝑃 €/h (5.3) 

It is assumed that DG power sources are uniformly available at every node. Nodes 1, 2 and 

3 are considered as references. The base power is set to 1 MVA. Network data and other related 

information about this test system can be found in [80]. The variations of different relevant 

parameters when considering different cases (as depicted in Table 5.2) are analyzed. 

 

 Case 1 represents the base case with the 3 feeders having the same costs 

 Case 2 considers reconfiguration of the base case 

 Case 3 refers to the base case reconfiguration but with different generation costs 

at the feeders 

 Case 4 considers reconfiguration with different costs for feeders;  

 Cases 5 and 6 denote scenarios where, instead of minimization of costs, we 

minimize the losses but they differ in the costs of feeders that are different in Case 

6 

 Case 7 considers the reconfiguration with DG capable of injecting and absorbing 

active and reactive power 

 Case 8 considers reconfiguration with DG capable of injecting and absorbing active 

power 

 Case 9 considers reconfiguration with DG capable of injecting and absorbing 

reactive power 

 

In Cases 3, 4 and 6, three scenarios for different costs are proposed: 1) the generator at 

feeder 1 (F1) is more expensive, 2) the generator at feeder 2 (F2) is more expensive, 3) the 

generator at feeder 3 (F3) is more expensive.  

 
Figure 14 - 16-bus radial distribution system [67]. 
Figure 5.6 - 16-bus radial distribution system [67]. 

 

 
Figure 15 - 16-bus radial distribution system [67]. 
Figure 5.6 - 16-bus radial distribution system [67]. 

Feeder I Feeder II Feeder III

1 2 3

4

5

6 7

8

9
10

11

12

13

14

1516

L 1

L 2

L 3

L 4

L 5

L 6

L 7

L 8

L 9

L 10

L 11

L 12

L 13

L 14

L 15L 16



Results and Discussion of the 16-bus Test System    45 

 

 

 

5.2.2 – Results and Discussion of the 16-bus Test System 

The results in Table 5.2 reveal significant differences in overall operation costs, active and 

reactive power losses and total installed size of DGs. Network reconfiguration, Case 2, 

compared with base case, Case 1, results in about 0.04% of reduction in total cost, a 7.17% 

reduction in total active power losses and a 5.98% reduction in total reactive power losses. 

Topology from Case 2 is shown in figure 5.7. The voltage profile can be seen in Figure 5.8. The 

improvement in voltage profile is appreciable. Table 5.3 summarizes the numerical results 

concerning the network topology (opened branches) along with the DG location and size. 

Comparing the costs corresponding to different generation cost assumptions at the feeders, i.e. 

Case 4 with Case 3, there are some relevant issues worth mentioning here. The first one is that 

the costs are lower in Case 4 than in Case 3, but we get higher values of losses.  This may be 

due to the fact that the reconfiguration tries to find the path that minimizes the involvement 

of the more expensive feeder. We can see in Figure 5.9 that the feeder is always with one bus, 

feeding the demand. We will get a feeder that will be feeding more buses and the losses will 

increase comparing the cases that are related. All the scenarios in Case 6 have the same 

configuration, that is the same configuration of the Case 2. This configuration is illustrated in 

Figure 5.7. In addition, in Case 6, the scenarios seem to lead to high total costs except in 6-F2. 

This shows that the single reconfiguration of the system is different if we are considering 

minimization of losses or minimization of costs. 

In Figure 5.10, we see that the voltage profile for case 4-F2 is worse than the case 3-F2 

despite having obtained the best costs in case 4-F2. This is because the topology of  

the network that leads to bigger losses, impacting the voltage profiles. The voltage profiles  

of Case   6   are   the   same   as   Case 2, and Figure 5.8   reveals   this   phenomenon. 

Table 5.2 – Results of Relevant Variables for Different Cases. 
Table 3  - Rele vant Variable s Re sults fo r Diffe rent Case s.  

Cases Total Cost 

[€/h] 

Total Active 

Power Losses 

[MW] 

Total Reactive 

Power Losses 

[Mvar] 

Total 

installed DG 

size [MVA] 

Computation 

time [s] 

1 1029.4177 0.1064 0.1224 0 - 

2 1029.0201 0.0987 0.1151 0 7.848185 

3-F1  1146.0389 0.1064 0.1224 0 - 

3-F2 1215.8225 0.1064 0.1224 0 - 

3-F3 1111.0366 0.1064 0.1224 0 - 

4-F1 1081.0391 0.1510 0.1680 0 8.262878 

4-F2 1100.7268 0.1480 0.1777 0 12.175396 

4-F3 1070.4623 0.1251 0.1517 0 9.956841 

5 1029.0201 0.0987 0.1151 0 7.540224 

6-F1 1151.8748 0.0987 0.1151 0 6.644372 

6-F2 1198.3556 0.0987 0.1151 0 11.134548 

6-F3 1120.9084 0.0987 0.1151 0 9.013040 

7 790.0860 0.0290 0.0311 21 24.246142 

8 790.0860 0.0540 0.0583 16 30.989449 

9 1028.8530 0.0927 0.1054 14 27.035288 

Table 4 Relevant Variable Results for Different Cases 
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Table 5.3 - Opened Branches and Location of DG. 
Table 53 - Opened Branches and Location of DG. 

Cases Opened branches DG Bus Location 

1 5-11; 10-14; 7-16 - 

2 8-10; 9-11; 7-16 - 

3-F1  5-11; 10-14; 7-16 - 

3-F2 5-11; 10-14; 7-16 - 

3-F3 5-11; 10-14; 7-16 - 

4-F1 4-5; 4-6; 8-10 - 

4-F2 4-6; 8-9; 8-10 - 

4-F3 9-11; 13-14; 13-15 - 

5 8-10; 9-11; 7-16 - 

6-F1 8-10; 9-11; 7-16 - 

6-F2 8-10; 9-11; 7-16 - 

6-F3 8-10; 9-11; 7-16 - 

7 6-7; 9-11; 10-14 4; 5; 6; 7; 9 12; 15 

8 6-7; 13-14; 5-11 5; 6; 11; 12; 13; 15 

9 6-7; 8-10; 9-11 4; 6; 9; 15; 16 

 

 
Figure 16 - New topology of the distribution system from Case 2. 

Figure 5.7 - New topology of the distribution system from Case 2. 

 
Figure 17 - Voltage comparison between base case and reconfiguration. 
Figure 5.8 - Voltage comparison between base case and reconfiguration. 
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Figure 18  - Reconf iguration  under different feeders cost. 
Figure 19  - Reconf iguration  under different feeders cost. 

Figure 5.9 - Reconfiguration under different feeders cost. 

 

 
Figure 20  - Vo ltage  profile of  Case 4-F2.  

Figure 5.10 - Voltage profile of Case 4-F2. 

 

  

 
Figure 21  - Reconf iguration  under different feeders cost. 

Figure 5.9 - Reconfiguration under different feeders cost. 

 

 

Feeder I Feeder II Feeder III

1 2 3

4

5

6 7

8

9
10

11

12

13

14

1516

L 1

L 2

L 3

L 4

L 5

L 6

L 7

L 8

L 9

L 10

L 11

L 12

L 13

L 14

L 15L 16

Case 4-F1

Feeder I Feeder II Feeder III

1 2 3

4

5

6 7

8

9
10

11

12

13

14

1516

L 1

L 2

L 3

L 4

L 5

L 6

L 7

L 8

L 9

L 10

L 11

L 12

L 13

L 14

L 15L 16

Case 4-F2

Feeder I Feeder II Feeder III

1 2 3

4

5

6 7

8

9
10

11

12

13

14

1516

L 1

L 2

L 3

L 4

L 5

L 6

L 7

L 8

L 9

L 10

L 11

L 12

L 15L 16

Case 4-F3

0,94

0,95

0,96

0,97

0,98

0,99

1

1,01

1,02

1,03

1,04

1,05

1,06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

V
o
lt

a
g
e
 (

p
u
)

Bus

Feeder 2 (Expensive) 

Min Voltage

Max Voltage

Best Case

Base Case



48  Case Studies, Results and Discussion 

 

 

 

When we analyze the Cases 7 through 9, we can observe some substantial differences. In 

case 7 and 8, where the DGs can control the active power, the total costs are the same. In Case 

7, the total costs are reduced by 23.25% approximately, the active and reactive power losses 

are also slashed by 72.72% and 74.63%, respectively. Similarly, in Case 8, the total costs, active 

and reactive power losses are also approximately reduced by 23.25%, 49.27% and 52.40%, 

respectively.  In Case 9, where DG can only control reactive power, the costs are only reduced 

by 0.05%, the reduction in active and reactive power losses is approximately 12.84% and 13.91% 

respectively.  

The numerical results generally show the substantial benefits of integrating small 

distributed generation in the distribution network system, particularly in reducing costs and 

losses. As for voltage profile, it can be seen in Figure 5.11.  We can see that there are 

improvements in the voltage profile across all nodes in the system. The introduction of DGs 

with reactive power support capabilities has a greater impact in total losses than installing DGs 

capable of supplying only active power or reactive power. The results strengthen this argument. 

In addition, the total installed size of DGs is in decreasing order from Case 7 to Case 9. This is 

because of the fact DGs with reactive power support capability significantly contribute to the 

controllability of the system, hence, resulting in a substantially reduced costs and losses.   This 

in turn results in a more integration of DGs in the system. Figure 5.12 shows the optimal location 

of DGs and the configuration of the system under Case 7. In Figure 5.13 we can see the 

distribution of the DGs in the 16-bus distribution system. The nodes 6 and 15 are common in 

the solution. This solution can be interpreted as the nodes that can be critical to invest in DGs.  

The total installed DGs covers about 70% of the required demand in Case 7, 53% in Case 8 

and 46% in Case 9. 

 
Figure 23 - Voltage comparison between Case 7 and Base Case 

Figure 5.11 – Voltage comparison between Case 7 and Base Case 
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In Figure 5.14, the convergence process is shown for Case 2. This is the best fitness function 

that we have in each generation. A fast convergence of the algorithm in the 16-bus radial 

distribution system is achieved. As this is a GA, we cannot be sure if this is the best solution. 

The difference between solutions in each generation is very small. In the first generation, the 

cost associated with the best solution amounts to 1030.3622 €/h and that of the final solution 

is 1029.0201 €/h.------------------------------------------------------------------------ 

 
Figure 25 - Optimal location for DG and reconfiguration in Case 7. 

Figure 5.12 - Optimal location for DG and reconfiguration in Case 7. 

 

 

 
Figure 26 - Size and placement of DGs in the 16-bus distribution system. 

Figure 5.13 - Size and placement of DGs in the 16-bus distribution system. 

Figure 27 - Convergence process in Case 2.
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Figure 5.14 - Convergence process in Case 2. 

 
Figure 32  - Conve rgence p rocess in  Case 7.  

Figure 5.15 - Convergence process in Case 7. 

 

The difference between these two solutions is about 0.13%. This is a very small deviation 

and shows the difficulty that we can have with the GA in achieving the optimal solution.  In 

Case 7, we achieved the best solution in the first iteration but this is very rare, and may not be 

replicated in the same or other problems. 

 

5.2.3 – Case Study: 33-bus Test System 

In Figure 5.1 it is shown the 33-bus radial distribution system that was considered for 

carrying out the required analysis mentioned earlier. This case is already setup in  

Matpower. The system has a rated voltage of 12.66 kV, and a total demand of 3.715 MW and 

2.3 Mvar. Network data and other related information about this test system can be found  

in [80]. The maximum allowable bus voltage deviation in the system is set to 5%. 
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Figure 31 - Convergence process in Case 2. 
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A power factor of 0.95 is considered for the DG. The costs of the feeders are a polynomial 

function and two options are available (5.4) and (5.5).  

𝐶(𝑃) =  150 + 20𝑃 + 0.01𝑃2 €/h (5.4) 

For integrating the DG as a PV bus and add to the cost of the system given by the OPF, one 

polynomial function was taken in consideration: 

𝐶(𝑃) =  8𝑃 €/h (5.5) 

It is assumed that DG power sources are uniformly available at every node. Node 1 was It is 

assumed that DG power sources are uniformly available at every node. Node 1 is considered as 

the reference node. The base power is set to 100 MVA. The variations of different relevant 

parameters when considering different cases (as depicted in Table 5.4) are analyzed. Case 1 is 

the base case; Case 2 considers reconfiguration; Case 3 is a scenario where minimizes only 

losses. Cases 4, 5 and 6 all handle reconfiguration along with DG integration but they differ in 

that, in Case 4, the considered DGs are capable of producing active power as well as injecting 

and absorbing reactive power, Case 5 considers DGs that can only produce active power, and 

the DGs considered in Case 6 are capable of only producing or consuming reactive power.  

5.2.4 – Results and Discussion of the 33-bus Test System 

Comparing Case 1 with Case 2, we see that reconfiguration slightly lowers the total costs 

and losses. The total cost reduction is about 0.54%. The active and reactive power losses are 

also reduced by 61.59% and 17.38%, respectively. Like in the previous case studies, the results 

here show the benefits of reconfiguring the distribution network system. In Figure 5.16, the 

voltage profile of reconfiguration and the base case are shown. Clearly, the positive 

contribution of reconfiguration to the voltage profiles can be observed. The voltage is improved 

in almost all nodes, except in nodes 19, 20, 21 and 22. In addition, in Table 5.4, there is little 

difference between minimization of losses and minimization of costs, the difference is 

approximately 0.0057% for total costs, 0.5147% for active power losses and 0.5695% for reactive 

power losses. In Figure 5.17, we can see that the voltage profile is very similar. In Table 5.5, 

the unique difference between the opened branches is 9-11 in Case 2, and 10-11 in Case 3. Only 

one branch is different and almost leads to a similar fitness function value. As mentioned 

earlier, there is a small difference and we can conclude that these configurations are minimized 

but may not be the global optima. Further analyzing the results in Table 5.4, there is a 

significant difference in total costs and in total losses in Case 4 and Case 5 comparing to Cases 

1, 2 and 3. 

In addition, as stated in the 16-bus test system, when we have DGs capable of generating 

active power or both active and reactive power, we have better results. Comparing Case 4 to 

Case 1, there is a reduction of 21.23% in total costs. The major difference is now in active and 

reactive power losses. There is approximately 98.76% and 97.99% reduction in power losses, 

respectively. This is a big positive impact in the system that is translated into almost linear 

voltage profile as we can see in Figure 5.18. In this distribution system, that is larger than the 

16-bus test system, the effects are more visible. 
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Figure 5.16 – Voltage comparison between Case 1 and Case 2. 

Table 5.4 – Results of Relevant Variables for Different Cases. 
Table 6 -  Relevant Variables Results for D ifferent C ases.  

Cases Total Cost 

[€/h] 

Total Active 

Power Losses 

[MW] 

Total Reactive 

Power Losses 

[Mvar] 

Total installed 

DG size [MVA] 

Computation 

time [s] 

1 228.1816 0.1865 0.0999 0 - 

2 226.9463 0.1249 0.0825 0 24.423398 

3  226.9593 0.1256 0.0830 0 27.102581 

4 179.7385 0.0023 0.0020 23 32.926209 

5 180.0747 0.0443 0.0333 17 39.599780 

6 226.1954 0.0876 0.0672 15 34.074488 

 

 

 

Table 5.5 - Branches Opened and DG Location in 33-bus Distribution System. 
Table 7  - B ranche s Opened and DG Location in  33-bus Distribution System.  

Cases Opened branches DG Bus Location  

1 21-8; 9-15; 12-22;18-33;25-29 - 

2 7-8; 9-10; 14-15; 32-33;25-29 - 

3 7-8; 10-11; 14-15; 32-33; 25-29 - 

4 7-8; 11-12; 15-16; 21-22; 28-29 4; 9; 16; 17; 20; 22; 23; 24; 26; 30; 31; 32 

5 6-7; 11-12; 14-15; 26-27; 32-33 5; 8; 12; 13; 14; 17; 23; 25; 28; 31; 33 

6 7-8; 8-9; 14-15; 28-29; 32-33 5; 6; 13; 15; 22; 24; 30; 32 
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Figure 5.17 - Voltage comparison between base Case 1, Case 2 and Case 3. 

 

Figure 5.18 - Voltage comparison between Case 1 and Case 4, 5, 6. 

Figure 5.19 - Convergence process in Case 4 and 5. 

Figure 35 - Voltage comparison between Case 1 and Case 4, 5, 6. 
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The voltages are with a linear profile when DGs are placed in the system. The effects of 

having DGs capable of producing only active or reactive power are also seen in the Figure 5.18. 

With active power only DGs, we can have also a better voltage profile, not so linear as in Case 

4 but significantly better than the base case. Deploying reactive power only DGs also has impact 

in systems losses, and voltage profiles. In Case 5, the reduction in total costs is 20.65% 

compared with Case 2 and 21.08% when compared with Case 1. Compared with Case 2, active 

and reactive power losses are reduced by 76.22% and 66.68% respectively. 

As in Case 6, there is no big impact in total costs, only 0.87% when compared with Case 1 

but, there is a huge difference in terms of losses. Compared with Case 1, the active and reactive 

power losses are reduced by 53.04% and 32.69%, respectively. Although the costs are slightly 

increased, the benefits of having DGs with this technology are evident with the reduction of 

losses and improvement in voltage profile. However, as mentioned earlier, this can be 

dependent on the convergence process of the GA. In Cases 4 and 5, as illustrated in Figure 5.19, 

in the first generation, we are getting better results in terms of costs than in Case 1. Placement 

and sizing of DGs may not be optimal because of the solution method. However, there are small 

differences from generation to generation, probably indicating the closeness of the solution to 

the optimal one.   

Figure 5.20 shows the convergence process of Case 6 and, in first generation, there is a 

worse scenario than base case. This seems to perpetuate throughout the simulation leading to 

worse costs but with better voltage profile and loss reduction. 

In Case 4, the first best generation is with a value of 179.8402 €/h, with a difference of 

0,06% compared with that of the best solution (179.7385€/h). And, this is the same for Case 5, 

in which the difference of the first generation to the last generation is about 0,05%. We can 

observe the convergence process in Case 2 and the difference in terms of costs for the first and 

the last generation is about 0,47%. The algorithm probably reached the optimal solution in the 

generation 52, and it is still the same until the last generation.  

Figure 5.20 – Convergence process in Case 6 

Figure 37 Convergence process in Case 6 

Figure 36 – Figura 18 
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The convergence time is 24.423398 seconds with a population of 200 individuals. It is worth 

mentioning here that each simulation can lead to a different solution but with small 

differences. This may be mainly because switching off one branch or another may not lead 

significant difference in costs (about 0.12%).  

The configuration outcome of Case2 is shown in Figure 5.21. Figure 5.22 shows the DG 

placement and size in Case 4, Case 5 and Case 6. In Figure 5.23, there are the configuration 

and DG placement for Case 4. It seems that there is no connection between Cases 4, 5 and 6 

with respect to locating the critical buses to install DG. We can make a connection between 

Cases 4 and 5 as well as Cases 4 and 6. Recall that Case 4 considers DGs with active and reactive 

power generation capability while active power only and reactive power only DGs are 

considered in Cases 5 and 6, respectively Having this in mind, Case 4 and Case 5 seem to have 

common optimal DG locations including buses 17, 23 and 31. Case 4 and Case 6 also have 

common “optimal” DG locations such as buses 22, 24, 30 and 32. When we look at the demand 

and at the total installed size of DG, there seems to be a lot of discrepancies among the 

different cases.  

 
Figure 38 - Configuration in Case 2. 
Figure 5.21 - Configuration in Case 2. 

 

 
Figure 39 - DG size and placement in Cases 4, 5 and 6. 
Figure 5.22 - DG size and placement in Cases 4, 5 and 6. 
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Figure 40 - Configuration and DG placement Case 4. 

Figure 5.23 - Configuration and DG placement Case 4 

 

 

5.3 – Summary 

Numerical results in GA showed that having reconfiguration can lead to a better voltage 

profile, reduced costs and losses in the operational stage. But taking in consideration solely 

costs or total losses cannot lead us to the optimal performance because, sometimes, reaching 

the minimum costs with a certain configuration may not agree with lowering the total losses in 

the system. Hence, it is necessary to have in consideration total losses and total costs, making 

the operational scenario as a weighted sum of these two measures, or handling it as a multi-

objective optimization. This is because, when we have a generator more expensive than the 

others in the system, the reconfiguration with objective to minimize costs will seek that this 

generator feeds the lowest possible demand in order to reduce the costs, making that the others 

generators feed a larger number of demand, becoming a larger radial system to feed, increasing 

the losses. When we only seek to minimize the losses with a generator more expensive than the 

others in the system, we will get the best configuration possible, with the best voltage profile 

but, the more expensive generator will participate more in the system, feeding more load, the 

costs of operation will increase. This may however be case dependent.  

The reconfiguration of the 33-bus network system leads to a better voltage profile in 

almost all the nodes. But as this is a GA, we cannot be sure that we have the optimal objective 

function value 
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Lower costs and lower losses in the new configuration of the 33-bus network system are 

evident. The comparison between minimization of losses and minimization of costs for 

reconfiguration purpose do not show significant differences. However, this may also be case 

dependent. 

A MILP model was developed that involves joint optimization of placement and sizing of 

RES-based DGs and ESSs in coordination with optimal network switching. Numerical results 

showed the capability of ESSs integration in dramatically increasing the level and optimal 

exploitation of renewable DGs. According to the simulation results, the simultaneous 

integration of DGs and ESSs resulted in an overall cost and average losses reduction. The optimal 

network reconfiguration, DG and ESS installations substantially contributed to voltage stability. 
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Chapter 6 

Conclusions and Future Works 

 

6.1 – Conclusions 

This thesis work has developed a stochastic MILP optimization model that jointly optimizes 

RES integration with ESSs and switching/reinforcement of the distribution network taking in 

consideration the variable and uncertain nature of RES based-DGs. The formulation of such a 

problem in a MILP form means that exact and efficient solution techniques commercially 

available can be used, and optimality is guaranteed within a finite simulation time. In addition, 

a series of related problems such as network reconfiguration as well as DG allocation and sizing 

are formulated in such a way that GA can be employed. The thesis present an extensive 

qualitative and quantitative analysis made in both approaches. In the case of GA-based model, 

one of the goals of the analysis has been to analyse the influence of integrating DGs and 

reconfiguration in the distribution network systems with a single operation scenario. The MILP 

based analysis has been carried out considering a detailed representation of several operational 

situations (introduced as a result of the stochastic nature of RESs and demand) and different 

low frequency uncertain parameters such as emission prices. Moreover, the impacts of network 

switching/expansion as well as deploying distributed ESSs on the DG integration levels have 

been investigated. 

Simulation results from GA-based analysis have showed the significant benefits in lowering 

costs, reducing total losses and improving voltage profiles in the system. Even if the analysis 

made in this thesis involves only one operational scenario, the benefits are very evident. But 

numerical results show that the integration in the system of DG have very significant impact in 

total losses. In the 33-bus test system, almost 99% reduction of active power losses and 98% of 

reactive power losses are achieved by the integration of DGs with reactive power support 

capabilities. The impact on the overall voltage profile in the system is also dramatic, leading 

to almost linear profile throughout the system. The integration of DGs with a capability to 

produce and consume reactive power is a scenario where improvement in voltage is significant.  

But the cost function of DGs is generic and the intention of this analysis is to understand 

the positive impacts in coordinating a distribution system with DG and reconfiguration.  
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The simulation results also show that considering DGs with reactive power support 

capability leads to a higher integration of such DG technologies. In addition, the results 

obtained from cases that consider only reconfiguration of the system have indicated a better 

voltage profile, and a reduction in total active and reactive power losses of 61.59% and 17.38%, 

respectively. Total costs of the system are reduced by 0.54% when compared to the base case. 

This shows the impacts the reconfiguration of the distribution system especially in loss 

reduction, and improving voltage profile. 

All these analyses point to the need for an exact planning tool of DGs along with ESSs, and 

distribution reconfiguration and/or expansion. In real-life, such a problem is a very complex, 

nonlinear, nonconvex and combinatorial. However, this thesis has developed a comprehensive 

planning tool that is a tractable optimization model considering relevant stochastic parameters, 

major cost drivers and factors in a multi-stage and multi-scenario planning framework. In 

addition, the thesis also contributes to an extensive analysis made on a medium scale network. 

The joint optimization model is formulated as a stochastic programming. And, in the stochastic 

formulation, we need to have in mind that DGs are variable and uncertain. The best way to 

minimize the impacts of DGs is the place and size of ESSs. In addition, taking into consideration 

the difficulty of GA to provide an exact solution, sometimes “wandering” near the optimal 

solution or getting stuck in local optima, a new MILP formulation has been proposed that 

handles multiple objective functions, taking into consideration the costs not only for the 

operation, but also the investment in DGs, investment in the network, costs of emission and 

costs of unserved power. The numerical results from  

S-MILP have showed the capability of ESSs integration in dramatically increasing the level and 

optimal exploitation of renewable DGs. According to the simulation results, the simultaneous 

integration of DGs and ESSs resulted in an overall cost and average losses reduction of 41% and 

84%, respectively. The optimal network reconfiguration, DG and ESS installations (jointly or 

separately) substantially contributed to voltage stability. In the particular case study, the 

impact of network switching on RES power integration was not significant. However, it should 

be noted that this can be case-dependent. 

6.2 – Future Works 

The analysis in the GA-based model can be further extended by considering different 

operational situations (instead of one), ESSs, different cost drivers such as emission costs, etc. 

The issues accounted for in the MILP model can be transferred to the GA-based model and the 

results obtained by both can be compared. Relevant conclusions can be drawn from such 

comparative results.    

6.3 – Works Resulting from this Thesis 

The paper prepared based on this thesis can be found in Annex and was accepted and 

presented at the 13th International Conference on the European Energy Market — EEM 2016 

(technically co-sponsored by IEEE), Porto, 9 June 2016. 
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storage systems and network switching/reinforcement on  
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