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Resumo

O problema de integrar producéo distribuida (DG) renovavel em sistemas de distribuicao
de energia esta a tornar-se bastante critico devido a razdes técnicas, econémicas e ambientais.
Atualmente, existe um consenso global de que a integracao de recursos de origem renovavel -
RESs, é altamente necessaria para ter em conta o aumenta da procura de eletricidade e reduzir
a pegada de carbono global de producao de energia. Contudo, a integracao em larga escala de
DG baseada em RES muitas vezes coloca desafios de ordem técnica no sistema, desde a
perspetiva da estabilidade, fiabilidade e qualidade de energia. Isto deve-se porque a integracao
de RESs introduz uma expressiva variabilidade e incerteza no sistema de distribuicao que faz
com que a operacao, planeamento e controlo se tornem complexos. Consequentemente, um
esforco ao nivel da integracao é provavel que seja suportado por certas tecnologias das redes
inteligentes smart grids e conceitos que tenham a capacidade de aumentar a flexibilidade de
todo o sistema de distribuicdo. Neste contexto, a integracao de sistemas distribuidos de
armazenamento de energia (DESSs) em conjunto com DGs, juntamente com a capacidade de
comutacao da rede e/ou reforco da rede, pode aumentar significativamente a flexibilidade do
sistema, e por isso, beneficia a producao RES.

Este trabalho apresenta um novo método para quantificar os impactos associados a DESS
assim como a comutacao da rede e/ou reforco ao nivel de integracdo de producao renovavel
no sistema. Para executar esta analise, dois modelos foram desenvolvidos, um modelo de
programacao linear inteira mista (MILP) e um modelo baseado em Algoritmos Genéticos (GA).
Estes modelos tém em consideracao o reforco na rede de distribuicdo e/ou comutacao em
coordenacao com a integracao de tecnologias DGs baseadas em RES e DESS.

As metodologias propostas sdo testadas nos sistemas de 16 e 33-n6s do IEEE. Os resultados
da analise mostram a capacidade de comutacao/reforco da rede e a integracao de DESS em
suportar significativamente a integracdo em larga escala de DGs renovaveis.

Palavras-Chave

Algoritmo Genético (acronimo em inglés, GA), Comutacdo da Rede, Producao Distribuida
(acronimo em inglés, DG), Programacao Linear Inteira Mista (acronimo em inglés, MILP),
Reforco da Rede, Sistemas Renovaveis de Energia (acronimo em inglés, RESs), Sistemas
Distribuidos de Armazenamento de Energia (acronimo em inglés, DESS).
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Abstract

The issue of integrating renewable distributed generation (DG) in power distribution
systems is becoming critical because of technical, economic and environmental reasons.
Nowadays, there is a global consensus that integrating renewable energy sources—RESs, is
highly needed to meet an increasing demand for electricity and reduce the overall carbon
footprint of energy production. However, large-scale integration of RES-based DGs often poses
a number of technical challenges in the system, from stability, reliability and power quality
perspectives. This is because integrating RESs introduces significant operational variability and
uncertainty to the distribution system, making operation, planning and control rather
complicated. Hence, such a high level integration effort is likely to be supported by certain
smart-grid technologies and concepts that have the capability to enhance the flexibility of the
entire distribution system. Framed in this context, the integration of distributed energy storage
systems (DESSs) jointly with DGs, along with the network’s switching capability and/or network
reinforcement, significantly improves the flexibility of the system, thereby increasing chances
of accommodating large-scale RES power.

This work presents a novel method to quantify the impacts of installing DESS as well as
network switching and/or reinforcement on the level of renewable power integrated in the
system. To carry out this analysis, two models are developed, mixed integer linear programming
(MILP) and Genetic Algorithm (GA) based models. These models take into account the
distribution network reinforcement and/or switching in coordination with integrating RES-based
DGs and DESS technologies.

The proposed methodologies are tested on 16- and 33-node systems. The results show the
capability of network reinforcement/switching and DESS integration in significantly supporting
large-scale integration of renewable DGs.

Keywords

Genetic Algorithms (GA), Network Switching, Distributed energy storage systems, Distributed
Generation, Mixed Integer Linear Programming (MILP), Network Reinforcement, Renewable
Energy Sources (RESs), Energy Storage Systems (ESS).
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Chapter 1

Introduction

1.1 - Background

Driven by technical, economic, environmental and structural factors, the integration of
Renewable Energy Sources (RESs) in power systems has been increasing steadily. Furthermore,
global concerns such as climate change, energy dependence and security and other related
issues are forcing policy makers and states to introduce new energy policies (RES policies, in
particular) that support the development and utilization of RESs. The favorable agreement of
states to curb emissions and mitigate climate change is also expected to further accelerate RES
integration in power systems (particularly, at a distribution level). The level of Distributed
Generation (DG) deployed in distribution network systems follows an upward trend, and there
is a general consensus that DGs will immensely contribute to the efforts of addressing a
multitude of the aforementioned global and local concerns including collective (and/or
individual) RES integration targets set forth by different entities.

The availability of several matured DG technologies and their decreasing cost trends, along
with constraints in the construction of new transmission lines, increased customers’ demand
for highly reliable electricity etc. has been encouraging considerable investments in DGs
(particularly, renewable types such as wind and solar power). However, large-scale integration
of DGs in distribution network systems may sometimes bring technical problems to the system
such as voltage rise issues. Such challenges need to be resolved if the system is to support the
integration and full (efficient) utilization of massive DG power. One way is to properly allocate
DGs in the system. The purpose of DG placement (allocation) is to find the optimal location and
size of DGs (generally non-conventional energy sources) in the system, close to the end
consumers.

In particular, large-scale integration of RES-based DGs often poses a number of technical
challenges in the system from the stability, reliability and power quality perspective. This is
because integrating RESs introduces significant operational variability and uncertainty to the
distribution system, making operation, planning and control rather complicated.



2 Introduction

Hence, such a high level integration effort is likely to be supported by certain smart-grid
technologies and concepts that have the capability to enhance the flexibility of the entire
distribution systems. Energy Storage Systems (ESSs) can play a vital role integrating variable
energy sources. In addition, Reconfiguration of Distribution System (RDS) can be very important
because RDS can considerably enhance the flexibility of the system and voltage profiles,
thereby increasing chances of accommodating large-scale RES power.

1.2 - Problem Statement

RESs make a crucial part of the solution for environmental sustainability; hence, they will
play an important role in power systems. The integration of RESs should, in principle, reduce
the risk of fuel price volatility and geopolitical pressures and ensure that these do not pose a
significant impact on the overall public welfare. However, large-scale penetration of RESs will
necessarily involve a process of adapting and changing the existing infrastructure because of
their intrinsic characteristics, such as intermittency and variability. The growing need for
intermittent RESs, in conjunction with the electrical mix changes in the long-term, will
probably affect the distribution and transmission systems. In this context, a change in power
generation options, resulting from a high contribution of RESs, may require network grid
updates. Regulatory agencies are heavily committed to increase RES integration, not only due
to environmental but also technical and economic reasons. The main challenge with most of
RESs is their inherent variability and uncertainty, making operation, control and planning very
complicated. DG penetration increases the variation of voltage and current in the network.
Hence, increasing DG penetration may have a negative or a positive impact depending on
various factors such as the size of the system and the loads type, requiring modeling and
simulations to assess its impact. If not properly planned, this may lead to an uncertain increase
in the feeders’ power flows, resulting in network congestion and increased losses in the
network. However, the integration of ESS along with RESs has become one of the most viable
solutions to facilitate the increased penetration of DG resources. Energy storage systems level
the mismatch between renewable power generation and demand. This is because these devices
store energy during periods of low electricity demand (price) or high RES power production,
and then release it during periods of peak demand and low RES production. Therefore, in
addition to their technical support to the system, ESSs bring substantial benefits for end-users
and DG owners through reliability and power quality improvement as well as cost reduction.
Besides, ESSs are being developed and applied in power grids to cope with a number of issues
such as smoothing the energy output from RESs, improving the stability of the electrical system,
etc. ESSs also increase savings during peak hours and minimize the impact of intermittent
generation sources, leading to a more efficient management of the integrated system. Despite
the high capital costs of many ESS technologies, their deployment in distribution systems is in
the upward trend. Cost-cutting and the strong need of integrating RES-based DGs is expected
to push the demand for the simultaneous deployment of ESSs in distribution network systems.
In other words, distributed ESSs will increase dramatically in the years to come. Hence, proper
planning of such systems is crucial for a healthy operation of the system as a whole. This relates
to developing appropriate mathematical models and algorithms that lead to the optimal
placement, timing and sizing of DGs and ESSs in the system, which is one of the problems
addressed in this thesis.
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Electrical distribution systems are interconnected by switches but predominantly operated
radially. These switches are often used for emergency purposes such as to evade load
curtailment during fault cases. However, the system can be reconfigured to find the best
topology that minimizes power losses in the system and improve operational performance. This
in turn improves the flexibility in the system, which may help the system to accommodate
(absorb) more variable power. Investigating the capability of network switching and/or
expansion along with ESS deployment in RES integration level is another problem addressed in
this thesis.

1.3 - Objectives

This thesis aims to achieve the following goals:

e To carry out a comprehensive state-of-the-art literature review on the subject areas
of distribution network reconfiguration, DG and ESS integrations, which forms a basis
for defining the problem addressed in this thesis;

e To develop mathematical models for jointly optimizing distribution network
reconfiguration, optimal placement, timing and sizing of ESS and RES-based DGs
considering uncertainty and variability inherent to such problems;

e To carry out case studies and perform relevant analysis of results;

e To analyse the effects of distribution reconfiguration in the distribution networks;

e To carry out quantitative and qualitative analysis in relation to the influences optimal
sizing, location and timing of DGs and ESSs along with distribution network
reconfiguration on relevant system variables in the distribution network.

1.4 - Methodology

The work in this thesis involves both qualitative and quantitative analysis regarding the
impact of joint integration ESSs, network switching (reconfiguration) and reinforcement on the
level of DG integration (particularly, focusing on RESs). In order to achieve the objectives, set
in this thesis, a set of different mathematical simulation models are developed.

In order to solve the proposed objectives were created two optimization models. The first
proposed optimization model is coded by multi-objective Stochastic Mixed Integer Linear
Program (S-MILP) to a planning horizon of three years and solved with GAMS, considering the
operational variability and uncertainty of variable power resources along with reconfiguration
and energy storage systems.
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Also, a second optimization model proposed is coded by a GA and solved using the MatPower
(package of MATLAB) optimal power flow (OPF). GA considers: 1) one snapshot of the
distribution system to solve reconfiguration and 2) one snapshot of the distribution system to
solve reconfiguration with optimal size and location of DGs. To reach at best reconfiguration
of the distribution network GA will raffle the connected branches (1 or 0), proceed to resolution
of OPF with the configuration given and keep the OPF costs DG’s placement and size is done at
the same time by raffling the nodes were DGs are connected by the two-third theory. Size of
DGs is done by takin an interval between 1 and 4 MW and raffle an integer number between
that interval. A comparison between the base case and the best case given by GA is done,
comparing reconfiguration only and reconfiguration with placement and size of DGs.

The objective for the two methods is minimization of costs. In the case of S-MILP the total
costs of the system (objective function) is composed of Net Present Value (NPV) of five cost
terms: 1) investment costs, 2) costs of maintenance, 3) cost of energy in the system, 4) cost of
unserved power and 5) total emission costs. For GA model the costs are given by the optimal
power flow, consequently the cost of energy provided to the demand is minimized.

1.5 - Thesis Structure

The thesis is organized as follows. Chapter 2 presents a literature review of relevant works
on the subject area of the thesis. A theoretical overview of the genetic algorithm, along with
the descriptions of the entire solution process, is presented in Chapter 3. The stochastic
mathematical models developed in this thesis are described in Chapter 4. Case studies, results
and discussions are presented in Chapter 5. Chapter 6 gathers the relevant conclusions drawn
from the numerical results, and shows directions for future work.



Chapter 2

Literature Review

2.1 - Chapter Overview

This chapter presents an extensive review of related works on subject area of distribution
systems planning particularly focusing on the problems of distribution network reconfiguration,
distribution generation and energy storage allocation and sizing in distribution network
systems. The reviewed works are largely structured based on the methodologies used to solve
the aforementioned problems.

2.2 - Distribution System Reconfiguration

2.2.1 - Motivation of DSR

Electrical distribution systems link high voltage transmission systems and the end-
consumers. They are often designed in a slightly meshed manner but normally operated in a
radial configuration because of a number of reasons such as reduction of costs, uncomplicated
coordination of protection systems, reduced occurrence of faults, better control power flows
and voltage profile. Because of such reasons, maintaining the radial topology of the network
systems is very critical. The reasons further explain the need for optimizations of distribution
network systems to obtain the optimal radial topology [1].

For the system to operate on a permanent basis, it is desirable to increase its efficiency
and reduce its operating costs. One way to achieve this is by minimizing losses [2]. Some
techniques used to reduce system losses are increasing the voltage level, cable replacement,
installation of condensers and/or distribution systems reconfiguration (DSR). Among these
techniques, the reconfiguration is the most attractive for the electricity distribution company
because it allows the use of resources that already exist in the system. Consequently, DSR can
be implemented by changing the status of the switches that connect/disconnect the branches
of the system, in order to obtain a radial topology [3]-[20]. Reconfiguration can be done for
numerous reasons, as in normal or emergency operation conditions.
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In [21] authors show that losses in distribution network systems constitute more than 75%
of the total system losses, contributing to a 40% of the total cost incurred to deliver power and
80% of customer reliability. The losses are also classified as technical and non-technical losses.
Non-technical losses include unauthorized line tapping, meter ampering, inaccurate meter
reading, subsidies, unmetered public lighting etc. They can be reduced by monitoring, creating
awareness, installing accurate metering devices etc. Technical losses occur due to flow of
electric current. They cause economic damage.

The DSR problems can be formulated as single-objective or multi-objective optimizations.
In such optimization problems, there are two objectives that stand out, minimization of losses,
especially in mono-objective approaches, and in multi-objective approaches besides the
previous target, also operating costs minimization and maximization of the profit. It should be
noted that in the multi-objective approach, the objective functions can be conflicting, in which
case, the optimum solution is the result of a trade-off between multiple objectives [2].

Due to its explicit benefits (mentioned earlier), there has been a growing number of
literature on the DSR problem over the past years, and it still remains an actual working topic.
Generally, the goal of network reconfiguration is not only to reduce power losses but also to
improve voltage profile, network reliability and economic operations. Therefore, DSR aims to
find the best topology of the system taking into account power losses, energy demand,
operational performance and other relevant determining factors.

Based on the solution techniques applied to solve DSR problems, the literature on DSR can
be broadly classified into two categories: 1) mathematical techniques; 2) heuristic and
metaheuristic techniques [22].

2.2.2 - Mathematical Solution Techniques in DSR

In the literature, a number of exact techniques have been widely employed to solve DSR
problems, such mixed-integer linear programming (MILP) [3], [8] mixed-integer second-order
cone programming (MISOCP) [4], analytic hierarchic process (AHP) [9]. Paterakis et al. in [3]
propose a MILP DSR optimization model, which is formulated as a multi-objective mathematical
programming (MMP) problem. The objective function constitutes the minimization of the active
power losses and the minimization of commonly used reliability indices, which are explicitly
treated within the MILP formulation. In [4], Chen et al. presents the assessment of distribution
network total supply capability (TSC) value modelled as a MISOCP optimization problem. Gupta
et al. [8] suggest a new MILP model which combines power and reliability objectives into a
single objective function. A real time configuration based on load rate analysis is proposed by
Pfitscher et al. [9]. AHP is applied in a multicriteria decision making and analyzing of
parallelism of feeders using Euler’s discretization method to make sure that the reconfiguration
outcome does not violate radiality constraints.

The mathematical techniques have been less commonly used mainly due to computational
limitations. However, this paradigm has been changing with increased processing capability of
computing machines in addition to the new processing styles that have been developed recently
such as cloud computing. Heuristics and metaheuristics techniques have been employed in
recent years. Several of these techniques are combined in order to exploit the best
characteristic of each technique.
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2.2.3 - Heuristic and Metaheuristic Solution Techniques in DSR

The mathematical computational complexity of the DSR problem (mainly due to its
combinatorial, non-convex and nonlinear nature) has led to the extensive use of heuristic and
metaheuristic techniques in the literature by researchers. Some of these methods which have
been widely used to solve the aforementioned problem include genetic algorithm (GA) [5], [7],
[10], [11]1, [16], [18], [19], particle swarm optimization (PSO) [14] and others. A new non
dominated sorting guided GA (FNSGA) has been used to solve a multi-objective problem by
Eldurssi and O’Connell [5]. For automated reconfiguration, an enhanced GA has been suggested
by Duan et al. [7], with the aim of determining the optimal network configuration that leads
to the minimum power losses and/or the maximum system reliability. Torres et al. [10] uses a
GA for solving a DSR problem with purpose of minimizing real power losses while satisfying
several system operating constraints. A codification strategy based on the edge window decoder
(EWD) encoding technique that only leads to radial configurations has been employed. Even if
the DSR problem has been formulated as a MILP optimization in [8], authors use GA to obtain
the best compromising radial operating configuration. Cebrian and Kagan [16] address the
reconfiguration of distribution networks considering power quality indices by formulating such
a problem as non-linear mixed integer programming optimization, which is then solved by an
evolutionary algorithm (EA).

In [11], the DSR optimization is formulated as a single objective problem, encompassing
only the active power losses minimization. To find the optimal or near-optimal configuration
each candidate configuration is analyzed in two steps. First, the candidate topology is assessed
whether or not it is a valid radial configuration. Second, if the first condition is fulfilled, a
power flow module is run from which steady state variables are determined. Meshed heuristic
algorithm has been developed by Mena and Garcia [13] to solve the reconfiguration problem
with an objective function of network losses minimization. Niknam and Farsani [14] have
combined a hybrid EA with a self-adaptive discrete PSO to determine the statuses of
sectionalizing switch numbers, and a self-adaptive binary PSO to determine the statuses of tie
switches. This way, the distribution network is optimally reconfigured maintaining its radial
topology. Abul’Wafa [15] propose a heuristic approach, embedded in a load flow algorithm that
gives precise branch currents, node voltages and system power losses. Sahoo and Prasad [17]
consider voltage stability as the objective function, and the resulting DSR problem is solved
using a fuzzy GA. Mendoza et al [18] minimize losses via reconfiguration, which is solved using
a generic GA. The GA technique is based on the creation of an initial population of feasible
individuals. A fuzzy mutated GA is proposed by Prasad et al. [19] for reconfiguration of
distribution systems with a new chromosome representation of the network and a fuzzy
mutation control.

2.3 - Distributed Generation and Distribution System
Reconfiguration

2.3.1 - Overview of Distributed Generation

As mentioned in the previous section, DSR can be characterized as changing the statuses of
various switches that connect/disconnect the branches of the system in order to obtain a radial
topology which improves overall system performance and efficiency.
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The subsequent topology, yet, depends on many input parameters and needs to be updated
on a daily, monthly, or periodic basis to adjust to the changes in the system operating condition.
With increased penetration of variable renewable Distributed Generation (DG), one is more
likely to experience constantly changing system conditions. As a result, the need for network
reconfiguration increases because this enhances the flexibility of the system, which is useful to
cope with operational variations.

The purpose of distributed generation (DG) placement is to connect distributed generating
units, generally based on non-conventional energy sources, at end consumers. According to the
International Energy Agency (IEA), there are five key factors that have significantly increased
interest in distributed generations [23]: 1) development in DG technologies, 2) constraints on
construction of new transmission lines, 3) increased customer demand for highly reliable
electricity, 4) electricity market liberalization and 5) concerns about climate change.

Distributed generation (DG) implies the deployment of small generation units (from 1kW to
1MW) connected to distribution network and close to the end-consumers [24]. In addition, unlike
conventional electrical networks that have unidirectional power flow, the introduction of DG
leads to a bidirectional power flow.

Technical, economic and environmental advantages, as well as the disadvantages of DG
integrations are presented [23],[24].

DG is classified in renewable energy sources (RES) and non-renewable energy sources. RES-
based DGs are classified as photovoltaic (PV), wind, hydro, geo-thermal, tidal and bio fuel. The
non RES-based DG includes the diesel generator[23]. Some of the advantages of integrating
DG’s [21], [25] are summarized in Figure 2.1. Distribution networks have been designed to handle
unidirectional power flow. The introduction of DGs can have positive or negative impact on
the distribution network systems [23], [24]. The main negative impacts include:

e Integration of DGs can result in overvoltage issues. This is not a problem when DG
is connected to a system with low voltage issues. However, for weakly loaded
systems, DG integration may result in high voltage problems interfering with
standard voltage regulation practices. RES based DGs can especially worsen the
voltage profile due to their intermittent nature.

e The impact on protection co-ordination given that the power grids are designed to
operate for unidirectional power flow.

e The impact on harmonics as a result of integrating RES based DGs, which often
require power electronic interfaces, major sources of harmonics injected in the
system.

e The impact on reactive power management can be an issue with DG units which are
incapable of providing reactive power. Hence, if DG units are not properly located
and sized, they can have negative effects on the system. When connected to the
network, various DG technologies can lead to high levels of reliability and security
issues [24], [23], [26].
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Figure 2.1 - The main advantages of integrating Distributed Generators in the distribution system
(adapted from [24]).

Despite the steady growth of DG systems in recent years, there are still certain barriers
(technical, economic, regulatory) that restrict progress toward a new paradigm of electric
networks [24].

2.3.2 - DG Allocation in Distribution Systems—A Literature Review

Georgilakis and Hatziargyriou [27] present a review on the models, the methods and future
research of optimal DG placement in electrical distribution systems. Typically, the DG
allocation is a complex optimization problem that deals with the optimal planning of DGs in
existing distribution networks while respecting a number of technical, economic and
environmental constraints. Such an optimization work should lead to the optimal location and
size as well as the installation timing of DGs. The DG planning optimization problem is usually
difficult to solve using traditional mathematical methods because it is a nonlinear, non-convex
and combinatorial problem.

A number of approaches and methods have been proposed in the literature for
simultaneously restructuring of distribution network, and placement and sizing of DGs. Majority
of the previous works in this regard aim to reduce active power losses and improve the voltage
profile [28], [29]. The solution methods applied for solving the problems can be broadly
classified as 1) mathematical, 2) heuristic and meta-heuristic 3) hybrid types [21].

Mathematical techniques including MILP [30], [31], MISOCP [32] and multi-period optimal
power flow (MP-OPF) [33] have been employed in the literature to resolve the DG planning
problem. Haghighat and Zeng [30] propose a method to find a robust radial network topology
with minimum losses of a distribution system considering uncertainty in load and renewable
generation. The resulting problem is formulated in a MILP two-stage optimization framework.



10 Literature Review

The DSR problem aims to minimize losses under uncertain load and generation. The problem
has been decomposed in a master-slave structure. Ghamsari et al. [32] have developed a
MISOCP mathematical model to analyze the possibility and economics of an hourly
reconfiguration in the presence of renewable energy resources. The objective function of the
resulting problem is to minimize daily network losses via applying hourly reconfigurations,
formulated as a MISOCP problem which is then solved using the MOSEK solver. Capitanescu et
al. [33] proposes a multi-period OPF approach for assessing the improvement of DG hosting
capacity of distribution systems by applying static or dynamic reconfiguration, together with
active network management schemes. Munoz-Delgado et al. [31] report a MILP optimization
model whose objective is to minimize the net present value of the total cost including the costs
related to investment, maintenance, production, losses, and unserved energy. The costs of
energy losses are modeled by a piecewise linear approximation. Tahboub et al. [6] use MINLP
to formulate the DSR and a fuzzy C-means clustering algorithm is used to obtain representative
centroids from annual DG and power demand profiles

In the heuristic and meta-heuristic solution techniques category, a uniform voltage
distribution based constructive reconfiguration algorithm (UVDA) [34], GA [35]-[37], modified
particle swarm optimization (MPSO) [38], decimal coded quantum particle swarm optimization
(DQPSO) [39], PSO [36], artificial immune system (AIS) [36], Vaccine-AlS [36], harmony search
algorithm (HSA) [40], ant colony algorithm (ACA) [41] and evolutionary particle swarm
optimization (EPSO) [42] have been used to solve the aforementioned problems. Bayat et al.
[34] propose a new heuristic method base on UVDA for simultaneously optimizing
reconfiguration with DG siting and sizing with the aim of minimizing losses. Chidanandappa et
al. [35] implements an algorithm which predicts optimum reconfiguration plan for power
distribution system with multiple PV generators. Genetic algorithm is used to solve the resulting
problem and forward backward load flow method is implemented to consider time varying load
conditions. Jangir et al. [38] propose a methodology for determining optimal placement and
sizing of DG units to minimize the cost of annual energy losses, and also to enhance node voltage
profiles of the system. The optimal DG allocation problem is solved using MPSO algorithm whose
control parameters are varied with iteration in order to improve its performance. Guan et al.
[39] presents a methodology for DSR considering different types of DGs with an overall objective
of minimizing real power losses. DQPSO has been applied to solve feeder reconfiguration with
DGs. Rao et al. [40] proposes a new methodology to solve the network reconfiguration problem
in the presence of distributed generation (DG) with an objective of minimizing real power losses
and improving voltage profile in distribution systems. A metaheuristic HSA is used to
simultaneously reconfigure and identify the optimal locations for installing DG units in a
distribution network system. Sensitivity analysis is used to identify the optimal locations of DG
units. Different scenarios of DG placement and network reconfiguration are considered to study
the performance of the proposed method. Sulaima et al. [42] proposes EPSO, a hybrid solution
method obtained by combining PSO and EP solution methods. The proposed method finds the
optimal network reconfiguration and optimal size of DG simultaneously. Esmaeilian and
Fadaeinedjad [43] present a novel hybrid method of metaheuristic and heuristic algorithms to
solve distribution network reconfiguration in the presence of DGs, especially considering solar
PV type DGs. The solution method, according to the authors, is capable of boosting robustness
and reducing the computational time. Maciel et al. [44] report a broad comparison of different
meta-heuristics solution techniques applied on multi objective problems.
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Abu-Mouti and El-Hawary [45] propose a new population-based Artificial Bee Colony (ABC) for
solving a mixed-integer non-linear optimization problem for DG planning. Elmitwally et al. [46]
have developed a multi-agent control system (MACS) for solving the aforementioned problem.
An hybrid solution method is proposed in [43].In [47], authors make a multi-agent architecture.
Scenario analysis (SA) and concepts of receding horizon control (RHC) are employed in [48]. An
approach for optimal short-term operational scheduling with intermittent RES in an active
distribution system is proposed in [49].

2.4 - Energy storage system and Distributed Generation

2.4.1 - A General Overview

Energy storage system (ESS) is one of the most important components in an integrated
system because it helps to counteract the unpredictable variation of the energy supplied by
intermittent renewable energy sources such as wind and solar. High penetration of RESs
increases the variability and the uncertainty of the power supply, negatively affecting the
optimal operation of traditional power systems and network reliability. ESS levels the mismatch
between power generation and demand, making it an important component for economic and
technical reasons [24], [50].

On the other hand, deregulated electricity markets principally introduce a competitive
environment for power producers, resulting in high capital cost requirement for meeting peak
demands and volatile electricity prices. ESS is considered as one of the solutions for stabilizing
the supply of energy to avert wasteful power production and high prices in peak times. IEA
predicts a significant growth in the share of variable RES in total electricity generation, from
6.9% in 2011 to 23.1% by 2035 within the EU [50]. The European Commission has recognized
electricity storage as one of the strategic energy technologies to accomplish the EU's energy
targets by 2020 and 2050. The US Department of Energy (DOE) has also identified energy storage
as a solution for grid stability [50]. Storage technologies can be basically classified on storage
duration (lifetime) or form of storage. Based on the storage duration, ESS can be classified as
short-, medium- and long-term storage systems, and from the storage medium viewpoint, ESSs
can be classified as mechanical, chemical and electrical energy storage systems. Each ESS type
has different technical and economic characteristics, and applications [24], [51].

Some of the main reasons of integrating ESSs in distribution network systems can been seen
in the graphical illustration, shown in Figure 2.2. These include:

1) Meeting demand and reliability in grid's peak hours: Demand involves hourly, daily,
weekly and seasonal variations. Traditionally, in power systems, the production capacity is
often maintained huge enough to meet the peak demands that occur just a few hours per
year. This results in oversized, inefficient, environmentally unfriendly and uneconomical
power systems. In this regard, ESSs becomes a good alternative to store power during hours
of low demand to be used later in peak demand hours, deferring the construction of larger
power capacity.
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Figure 2.2 - The main reasons to adopt Energy Storage Systems in network (adapted from [52]).

2) Liberalized electricity markets: Another potential use of ESS is the substantial profits
that can be garnered from price arbitrage, due to changing electricity from low demand
periods to the peak ones. The lucrativeness of ESS in price arbitrage depends on the level
of fluctuations in spot prices. The use of ESS in balancing markets and other deregulated
ancillary services may stack the benefits, resulting in more economic appeal. Adopting an
optimal strategy in charge/discharge scheduling and more improvements in price
forecasting are the two important parameters in increasing the incomes from ESS in price
arbitrage.

3) Intermittent renewable energy: Energy policies promote the use of RES to reduce
carbon emissions. Intermittency of RES, like wind or solar, bring new challenges to the
optimal operation of power systems such as frequency fluctuations and voltage flicker. ESS
can enhance the use of RES. For instance, it can store extra uncontrollable RES power
generation during periods of high RES production and low demand so that the stored energy
can be used at a desirable time (often during peak demand hours). ESS can contribute in
relieving the fluctuation suppression, low voltage rides through, and voltage control
support, resulting in smooth power output.

4) DG and smart grid initiatives: ESS can contribute as an uninterruptible power supply
(UPS) and overcoming voltage drops in decentralized and inflexible power systems. The
integration of ESS is especially critical in remote islands and microgrids with more RES
integration [50]-[52]. In such systems, ESSs result in higher energy security and lower
emissions.
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As mentioned in the previous chapter, RES based power production is partially
unpredictable and independent of human action. Furthermore, the moments of high RES
generation may not coincide with the moments of the peak demand. There are two technologies
that can help to resolve this problem:

First, ESS and Hybrid Distributed Generation Systems. Energy storage has an important
contribution to the strategic value of the future of electric network. With increasing level of
RES and demand, ESSs will become very important for the operation of the system as a whole,
because this will increase the reliability and stability and flexibility of the system. Energy stored
during low demand periods will cover demand during peak periods. The use of power reserves
when the energy is most needed and more expensive helps to overcome the problem of
unpredictability and variable power production from RES. Second, ESS helps to reduce
congestion in transmission and distribution systems and to supply energy during outages.

One of the major issues with energy storage is the associated high capital cost. Apart from
pumped hydro, other storage technologies are undergoing continuous improvements both in
terms of performance as well as cost [23], [24]. The costs of most ESS technologies are expected
to dramatically fall in the years to come, and their economic viabilities are increasing from
time to time.

Optimal performance of power distribution networks is significantly influenced by network
configuration, location and size of DG units and ESSs. The presence of ESSs in distribution
systems leads to some loads to be supplied in faulty conditions [53].

2.4.2 - Simultaneous Integration of DGs and ESSs - A Literature Review

As it has been stated earlier, the placement and sizing optimization of ESS is important to
mitigate the unpredictable variation of the energy supplied by RES. In [54], Chauhan and Saini
present a detailed review on this subject area, including the individual ESS applications with
respect to several storage options, settings, sizing methodologies and control. Like in the
previous sections, based on the solution techniques applied to solve the problem pertaining to
the simultaneous planning of DGs and ESSs, the literature can be categorized as: 1) heuristic
and metaheuristic techniques; 2) mathematical techniques; 3) hybrid techniques.

A set of heuristic and metaheuristic techniques are employed in the literature. Saboori et
al. [51] uses PSO to find the optimal location and size of ESSs with the intention of reliability
improvement in radial electrical distribution networks. The proposed optimal ESSs planning is
addressed as a minimization problem which aims at minimizing the cost of energy not supplied
(ENS) as well as installation costs of ESSs costs at the same time while respecting a number of
technical constraints. These include security constraints such as voltage and line flows limits.
Fossati et al. [55] propose a method to find the energy and power capacities of the storage
system that minimizes the operating cost of a microgrid. The energy management strategy used
is based on a fuzzy expert system which is responsible for setting the power output of the ESS.
The design of the energy management strategy is carried out by means of a genetic algorithm
that is used to set the fuzzy rules and membership functions of the expert system. Given that
the size of the storage system has a major influence on the energy management strategy (EMS),
the EMS and ESS capacities are jointly optimized. In addition, the proposed method uses an
aging model to predict the lifetime of the ESS. Chen et al. [56] present a methodology for the
optimal allocation and economic analysis of ESS in microgrids on the basis of net present value
(NPV).
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As the performance of a microgrid strongly depends on the allocation and arrangement of
its ESS, optimal allocation methods and economic operation strategies of the ESS devices are
required for the microgrid. A matrix real-coded genetic algorithm is applied to find optimal
NPV, in which each GA chromosome consists of a 2-D real number matrix representing the
generation schedule of ESS and distributed generation sources. Hu et al. [57] propose a bi-level-
programming-based model to take the interaction of allocation and operation into
consideration at the same time, with the external level optimizing allocation and the internal
level optimizing operation. A genetic numerical algorithm is proposed to solve the bi-level
model.

The literature also includes some works that use mathematical techniques. Levron et al.
[58] suggest dynamic programing to compute the optimal energy management of storage
devices in grid-connected microgrids. Stored energy is controlled to balance the power of loads
and renewable sources, over the time domain, minimizing the overall cost of energy. The
algorithm incorporates an arbitrary network topology, which can be a general one-phase,
balanced, or unbalanced three-phase system. It employs a power flow solver in network
domain, within a dynamic programming recursive search in time domain. Mohamed Abd el
Motaleb et al. [59] performs optimal sizing for a hybrid power system with wind/energy storage
sources based on stochastic modeling of historical wind speed and load demand. The sequential
Monte Carlo simulation is performed to chronologically sample the system states. An objective
function based on self-adapted evolutionary strategy is proposed to minimize the one-time
investment and annual operational costs of the wind/energy storage sources and the effect of
the cycle efficiency and charging/discharging rate of different energy storage units on the
system cost is investigated. Crespo Del Granado et al. [60] have modeled the impact of real-
time pricing schemes (from the smart grids perspective) on a hybrid DG system (mixed
generation for heating and electricity loads) coupled with storage units. They have formulated
a dynamic optimization model to represent a real-life urban community’s energy system
composed of a co-generation unit, gas boilers, electrical heaters and a wind turbine.
Farrokhifar [61] calculates electricity grid losses while considering limitations of using energy
storage devices. Dynamic programming is used to solve the problem on CIGRE low voltage grid
as a standard benchmark. Srivastava et al. [62] analyze the technical and economic impacts of
distributed generators along with energy storage devices on distribution systems. The technical
analysis includes analyzing the transient stability of a system with DGs and energy storage
devices, such as a battery and ultracapacitor. The DGs are represented by small synchronous
and induction generators. Different types and locations of faults and different penetration
levels of DGs are considered in the analysis. For economic analysis, the costs of the system with
different DG technologies and energy storage devices are compared using the software tool
“hybrid optimization model for electric renewables (HOMER).” Atwa and El-Saadany [63]
propose a methodology for allocating an ESS in a distribution system with a high penetration of
wind energy. The ultimate goal is to maximize the benefits for both the DG owner and the
utility by sizing the ESS to accommodate all amounts of spilled wind energy and by then
releasing the stored energy to the system when needed so that the annual cost of the electricity
is minimized. In addition, a cost/benefit analysis has been conducted in order to verify the
feasibility of installing an ESS from the perspective of both the utility and the DG owner. These
data are incorporated into two separate OPF formulations in order to determine the annual
cost of spilled energy and the optimum allocation of the ESS in the distribution system.
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Hybrid methods in literature are also proposed. Arefifar and Mohamed [64] propose two
different strategies for constructing reliable microgrids considering temporary and sustained
faults, and supply-adequate microgrids considering both real and reactive power self-
sufficiency, defined as a new probabilistic index for simultaneous consideration of reliability
indices and real and reactive supply-adequacy for the construction of microgrids. All this take
into account the uncertainty in the characteristics of the DG units and loads for constructing
and enhancing the microgrids. For the sensitivity studies, proposed two corrective actions are
proposed to improve the performance of microgrids in terms of reliability and supply-adequacy.
Three different types of algorithms are used at different stages, including TS optimization
algorithm as the main optimization method and graph theory-related algorithms as well as
forward-backward-based probabilistic power flow methods.

2.5 - Distributed System Reconfiguration, Distributed Generation
and Energy Storage Systems

2.5.1 - Motives of Joint Optimization of DSR, DG and ESS Placement

A DSR along with optimal size and location of DG and ESS considers the aggregate potential
of each one on the system.

The ultimate goal for the simultaneous consideration of DSR and ESS and DG deployment is
to help the integration of large-scale RES. Figure 2.3 illustrates the integration of various
technologies in the distribution system. The increased penetration of variable renewable DGs
will have positive and negative impact on system conditions. Conventional electrical networks
carry a unidirectional power flow. The introduction of DGs implies a bidirectional power flow.
DSR increases to possibility of achieving some operational aims. Variability of RES will be
counterbalanced by ESS. In other words, ESS integrated in the network system will counteract
the unpredictable variation of the energy supplied by intermittent RES. In addition, ESS will
balance the demand and power generation. Storage of energy will occur during period’s high
RES power production and low demand, and is released during periods of peak demand.
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Figure 2.3 - Integration of various technologies in the distribution system- illustrative figure (Figure adapted from [65]
and [66].
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2.5.2 - Joint Optimization of DSR, DG and ESS Placement - A Literature
Review

Hosseini and Abbasi [53] propose, at first, an approach for ENS calculation in the presence
of DGs and storage systems. Then, the DSR problem along with the optimal DG allocation and
sizing problems solved by the Non-dominated Sorting Genetic Algorithm Il (NSGA-II). This
solution approach allows the losses, ENS and costs of each topology to be separately optimized
under specific loads and constraints. Quevedo et al. [65] presents a two-stage stochastic linear
programming model to solve the optimization problem and find the best combination of
generation, demand and electrical energy storage under islanding conditions. The
mathematical formulation of this work consists of a two-stage MILP reconfiguration model
considering wind power and energy storage in Electrical Distribution Systems (EDS). Hence, an
Alternative Current (AC) power flow is approximated through linear expressions to linearize the
model. In [65], a two-stage stochastic MILP reconfiguration model considering wind energy and
ESS has been implemented in order to maximize load and generation under islanding conditions.
The objective function of the optimization model is based on real power with additional
constraints for reactive power in the islanded area. Novoselnik and Baotic [66] present a
nonlinear model for a predictive control strategy of a dynamic reconfiguration of electrical
power distribution systems with distributed generation and storage. The goal of the proposed
control strategy is to find the optimal radial network topology and the optimal power references
for the controllable generators and energy storage units that will minimize cumulative active
power losses while satisfying operational constraints. By utilizing recent results on convex
relaxation of the power flow constraints, the proposed dynamic reconfiguration algorithm can
be formulated as a MISOCP. Furthermore, if polyhedral approximations of second order cones
are used then the underlying optimization problem can be solved as a MILP. Quevedo et al. [22]
propose an optimal contingency assessment model using a two-stage stochastic linear
programming including wind power generation and a generic ESS. The optimization model is
applied to find the best radial topology by determining the best switching sequence considering
contingencies

2.6 - Summary

This chapter has presented a detailed review of relevant works in the subject areas of
distribution network reconfiguration, deployment of distributed generation and energy storage
systems from the perspective of maximizing DG integration. In addition, the most relevant
works in the literature have been classified based on typically used solution methodologies.
The organization of this review is characterized by the evolution of approaches, from the
simplest to the most complex with regard to the integration of technology in the network.

It has been found out that the variety of methods and objectives applied on the reviewed
works, lack detailed information about tests and results (computation times, hardware,
development interface, etc.), especially earlier works, making it hard to compare different
methodologies. On this perspective, a multi-objective approach, as in this thesis, has been
increasingly gaining attention because it makes a weighted representation of the various costs
of real problems, a more orthodox approach.
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Remain patent the global consensus for the integration of DG sources, specially RES as a
way to meet the growing demand for electric energy and to reduce the carbon footprint of
energy production. Nevertheless, the realization of this considerable objective faces two big
challenges. The first is the variability and uncertainty introduced on the system by RES and the
second is the stability and quality of energy. To overcome these challenges, it is necessary to
integrate a set of enabling technologies, as well as design an effective coordination mechanism
among different technologies in distribution systems. It should be noted that, in addition to
these challenges, there exists a set of system restrictions related to operation as well as
economics that cannot be violated.

The integration of these technologies is a topic which has being studied for some time, yet,
integration of a specific set, namely DSR, DG and ESS has not been adequately studied. The
contribution of the present work therefore lies in the joint analysis of these technologies with
the specific aims of improving system flexibility, increasing RES penetration, reducing losses,
enhancing system stability and reliability.
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Chapter 3

Problem Formulation - A Mixed Integer
Linear Programming Approach

This chapter presents a complete description of the mathematical optimization model
developed to study the impacts of network switching and/or reinforcement as well as installing
DESSs on the level of renewable power integrated in the system. The proposed planning tool is
a dynamic and multi-objective stochastic mixed integer linear programming (S-MILP) model,
which jointly takes into account the optimal RES-based DGs and DESS integration in coordination
with distribution network reinforcement and/or switching.

3.1 - Algebraic Formulation of the Joint Planning Problem

The dynamic and multi-objective S-MILP optimization model developed in this thesis is
described as follows.

3.1.1 -Objective Function

The problem is formulated as a multi-objective stochastic MILP with an objective of overall
cost minimization as in (3.1). The objective function in (3.1) is composed of Net Present Value
(NPV) of five cost terms each weighted by a certain relevance factor y;; vj € {1,2, ...,5}.

The first term in (3.1), TInvC, represents the total investment costs under the assumption
of perpetual planning horizon. In other words, “the investment cost is amortized in annual
instalments throughout the lifetime of the installed component”.

Here, the total investment cost is the sum of investment costs of DGs, distribution network
system (DNS) components (feeders and transformers) and ESSs, as in (3.2). And, this cost is
computed as in (3.7)-(3.9).

19
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The second term, TMC, in (3.1) denotes the total maintenance costs which is given by the sum
of maintenance costs of new and existing DGs as well as that of DNS components and ESSs at
each stage and the corresponding costs incurred after the last planning stage, as in (3.3). Note
that the latter depend on the maintenance costs of the last planning stage according a
perpetual planning horizon. These maintenance costs are computed according to Eqs. (3.10)-
(3.12).

The third term TEC in (3.1) refers to the total cost of energy in the system, which is the
sum of the cost of power produced by new and existing DGs, supplied by ESSs and purchased
from upstream at each stage as in (3.4). Equation (3.4) also includes the total energy costs
incurred after the last planning stage under the assumption of perpetual planning horizon.
These depend on the energy costs of the last planning stage. The detailed mathematical
expressions for computing the cost of DG power produced and ESS power supplied as well as
that of purchased power are given in (3.13), (3.14) and (3.15), respectively. The fourth term
TENSC represents the total cost of unserved power in the system, given as in (3.5). And, this
is computed using Eq. (3.16). The last term TEmiC gathers the total emission costs in the
system, given by the sum of emission costs for the existing and new DGs (3.17)-(3.19) as well
that of purchased power (3.20).

Minimize TC =y, * TInvC + y, * TMC + y3 * TEC + y, * TENSC + y5 * TEmiC (3.1)

As mentioned earlier, the objective function is composed of five terms which are associated
with the relevance factors. These factors can have a single purpose or dual purposes. The first
one is to give the flexibility for the planner to include/exclude each cost term from the
objective function. In this case, the associated relevance factor is set to 1 if the cost term is
included; 0, otherwise. Another purpose of these factors boils down to the relative weight in
which the planner wants to give to each cost term. To emphasize the importance of a given
cost term, a relatively higher value can be assighed than any other term in the objective
function.

TInvC = Z (1 + 1)t (InvCP® + InvCPNS + InvCES) /7

teqt (3.2)
NPV of investment cost
TMC = Z (1 +7)7t (MntCPE + MntCPNS + MntCES)
teQt
NPV of maintenance costs (33)
+ (1 +7r) T (MntCR¢ + MntCENS + MntCES) /r
NPV maintenance costs incured after stage T
TEC = Z (A+7)t (ECPC + ECSS + ECES) + 1+ 1) T(ECRS + EC3S + ECES) /7

teQt NPV operation costs incured after stage T (34)

NPV of operation costs
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TENSC = z (1+7)"t ENSC, + (14 7)TENSC,/r

teQlt NPV reliability costs incured after stage T (35)

NPV of reliability costs

TEmiC = Z 1+ 7))t (EmiCPC + EmiCS) + (1 + 1) T(EmiCR¢ + EmiCS) /r

teqQl NPV emission costs incured after stage T

(3.6)

NPV emission costs

Equation (3.2) translates the total investment costs under the planning horizon, where
InvCPC¢ denotes the investment costs of DG’s, InvCP"S is the investment costs in the distribution
network system and InvCES is the investment cost in ESS. Equation (3.3) represents the total
maintenance costs of new and existing DG’s, of DNS components and ESSs at each stage and
these costs are updated by the NPV factor associated to each year. MntCP¢ are the
maintenance costs of DG, MntCPMS the maintenance costs of distribution network system and
MntCES maintenance costs of ESSs. Equation (3.4) shows the total cost of energy in the system,
which is the sum of the cost of power produced by new and existing DGs, supplied by ESSs and
purchased from upstream at each stage. This function is due to the NPV operation costs and
NPV operation costs updated each year of the planning horizon. TENSC in (3.5) represents the
total cost of unserved power in the system. This is interpreted as the energy not supplied costs
(ENSC) and ENSC updated costs at each year of planning horizon. The total emission costs of
power production using DG (EmiCP%) and the emission cost of purchased power (EmiC>°)is
presented in (3.6). This function also relates the updated costs at each year of the planning
horizon.

Equations (3.7)—(3.9) represent the investment costs of DGs, feeders and energy storage

system, respectively. Notice that all investment costs are weighted by the capital recovery
r(1+r)LT
(A+r)LT-1"

component added to the system is considered only once in the summation.

factor, The formulations in (3.7)—(3.10) ensure that the investment cost of each

b6 _ r(1+ r)LTH . _
InvC; a+ )LTg 1Cqi(xgit — Xg,it-1) ;Where xg;0 =0 (3.7)
geng jenl
(1 + 1)tk
InvCPNS = (1+r)—LTk_11Ck(xk,t ~ Xpe,e-1)
£
ke (14 DT (3.8)
+ m 1Cy, (xtr,ss,t - xtr,ss,t—l) ;

SSENSS trent”

s r(1+ r)LTess
InvC; Z Z (1 + r)les — [Cc(Xes,it — Xes,it—1) s Where Xo5,0 =0 (3.9)

ceN jent
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In (3.7), IC,; represents the investment cost of DG, x, ;. is the investment variables for DG.
LT, is the life time of DG. Equations (3.9) and (3.10) are also based on the same principle. In
(3.8), LT, and LT, are the lifetime of distribution lines and transformers, respectively. And, in
(3.9), IC, and IC,, are the investment costs on distribution lines and transformers, respectively.

Equation (3.10) stands for the maintenance costs of new MC,' and existing DGs M(; at each
time stage. The maintenance cost of a new/existing feeder is included only when its
corresponding investment/utilization variable is different from zero in (3.11). Equation (3.12)
is related to the maintenance costs at each stage of energy storage.

MntCP¢ = Z Z MC) xg + Z Z MCg ug,e (3.10)

gen9 jent gen ient

MntCtDNs = Y renet MCkE Up + Ykeant MC,I(ka‘t+

i \ (3.11)
MC3 Ugrsst T Z MCy Xtrsst
treQE-tr trenN-tr
MTltCL-ES = Z z MCesxes,i,t (312)

cenN jent

The total cost of power produced by new and existing DGs is given by equation (3.13). Note
that these costs depend on the amount of power generated at each scenario, snapshot and
stage. Therefore, these costs represent the expected costs of operation. Similarly, equations
(3.14) and (3.15) respectively account for the expected costs of energy supplied by the energy
storage system, and that purchased from upstream (i.e. transmission grid).

ECtDG = Z Ps Z Ty Z Z(chi,s,w,tpgi,s,w,t + Ocji,s,w,t P;,i,s,w,t) (313)

seNS  wenW gend ient

ECES =) o ) T D APl (3.14)

sens wenW esenes

ECSS = Z o, Z T, Z 2, PSS, (3.15)

sens  weW ceNS

The penalty for the unserved power, given by (3.16), is also dependent on the scenarios,
snapshots and time stages. Equation (3.16) therefore gives the expected cost of unserved
energy in the system.
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ENSC, = Z Ps Z Z 7tw")s,w,lr(sl',s,w,lr (316)

seNS  weW jent

The expected emission costs of power generated by new and existing DGs are given by
(3.17)-(3.19), and that of energy purchased from the grid is calculated using (3.20). Note that,
for the sake of simplicity, a linear emission cost function is assumed here. In reality, the
emission cost function is highly nonlinear and nonconvex, as in [44].

EmiCP¢ = Emic) + Emicf (3.17)

EmiCtN = Z Ps Z Ty Z Zl(s:(:vzf Rgpévzswt (318)

seNS  wenw gend ieql

EmiCtE = Z Ps Z Ty Z ZAS%fER‘gP;zswt (319)

seNS  wenw gend ieql

EmiC® = Z Ps z Tw Z Z /153122 RE PSSt (3.20)

seNS  wenVW cens jent

3.1.2 -Constraints

a) Kirchhoff’s current law (Active power balance)

The active power balance at each node is enforced by equation (3.21):

Z ( ,LS,w,t + P st t) + z (chclhsw t Pes’fi,s,w,t) + ng.w,t + Z Pk,s,w,t - Z Pk,s,w,t + 6i,s,w,t

geQbG eseQes inkei out,kei (3 21)
= Z 0.5¢ 5w, + Z 0.50ksuw,e + Diwe 5 V6, Vel

in,kei out,kei

Equation (3.21) denotes that the sum of all incoming flows should be equal to the sum of
all outgoing flows at each node. The losses in every feeder are considered as “virtual loads”
which are equally distributed between the nodes connecting the feeder Note that losses are a
quadratic function of flows (not shown here). Hence, they are linearized using first order
approximation, as in [68].
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b) Energy Storage Model Constraints

For the sake of simplicity, a generic ESS is employed here. This is modeled by the set of
constraints in (3.22)-(3.28). Equations (3.22) and (3.23) represent the bounds of power capacity
of the ESS while being charged and discharged, respectively. Inequality (3.24) prevents
simultaneous charging and discharging operation of ESS at the same operational time w. The
amount of stored energy within the ESS reservoir at a given operational time w as a function of
the energy stored until w — 1 is given by (3.25). The maximum and minimum levels of storages
in the operational time w are also considered through inequality (3.26). Equation (3.27) shows
the initial level of stored energy in the ESS as a function of its maximum reservoir capacity. In
a multi-stage planning approach, Equation (3.28) ensures that the initial level of energy in the
ESS at a given year is equal to the final level of energy in the ESS in the preceding year. Here,
ndh is assumed to be 1/n¢k.

0= Pecsifi,s,w,t < Iggi,s,w,txes,i,tpecs’,li'max (322)

0< Pedsc,i},ls,w,t =< [ecgi,s,w,txes,i,tpei},li'max (323)

Iecsfl,i,s,w,t + Igs(fltfs,w,t <1 (324)

Ees,i,s,w,t = Ees,i,s,w—l,t + nch,especgi,s,w,t - ndch,espedsc,if,ls,w,t (325)
E:;,iinxes,i,t < Ees,i,s,w,t < xes,i,t :sl,cilx (326)
Ees,i,s,wo,Tl = Mesxes,i,TlE;g,ciLx (327)

Ees,i,s,wl,t+1 = Eesiswt (3.28)

Inequalities (3.22) and (3.23) involve products of charging/discharging indicator variables
and investment variable. In order to linearize this, new continuous positive variables z";
det we» Which replaces the bilinear products in each constraint, is introduced such that
the set of linear constraints in (3.29) and (3.30) hold. For instance, the product Ig;gw,,,xes,i_t is
replaced by the positive variable zZ, ;.

introducing the set of constraints in (3.29) [69]. Similarly, the product Iggi‘s‘w_txes,i_tis decoupled
by including the set of constraints (3.30).

and z

Then, the bilinear product is decoupled by
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dch max ydch . dch . dch _ __gqdch max
Zes,i,s,w,t < Xes Ies,i,s,w,t ’ Zes,i,s,w,t < xes,i,t ’ Zes,i,s,w,t = xes,i,t (1 Ies,i,s,w,t)xes (329)

ch max ych . ,Ch . »Ch _ __gJch max
Zes,i,s,w,t < Xes [es,i,s,w,t ’ Zes,i,s,w,t < Xes,it » Zes,i,s,w,t = Xes,it (1 Ies,i,s,w,t)xes (330)

a) Active Power Limits of DGs

The active power limits of existing generators are given by (3.31). In the case of new
generators, the corresponding constraints are (3.32). Note that the binary variables multiply
both bounds to make sure that the power generation variable is zero when the generator
remains either unutilized or unselected for investment.

E,min E E,max

Py iswitgit < Pgiswe < Pyigwilgit (3.31)
N,min N N,max

PoiswiXgit = Pgiswe = FgisweXgit (3.32)

It should be noted that these constraints are applicable only for conventional DGs. In the
case of variable generation source (such as wind and solar PV), the upper bound P/, . should
be set equal to the minimum of the actual production level at a given hour, which is dependent
on the level of primary energy source (wind speed and solar radiation), and the rated (installed)

capacity of the generating unit. And, the lower bound PJ%, . in this case is simply set to zero.

b) Active Power Limits of Power Purchased

SS,min SS SS,max
Ps,w,t = Ps,w,t = Ps,w,t (333)

For technical reasons, the power that can be purchased from the transmission grid could
have minimum and maximum limits, which is enforced by (3.33). However, it is understood that
setting the maximum and minimum limits is difficult. These constraints are included here for
the sake of completeness. In this work, these limits are set to 1.5 times the minimum and
maximum levels of total load in the system.

c) Logical constraints

The set of logical constraints in (3.34) ensure that an investment decision cannot be
reversed. In addition to the constraints described above, the direct current (DC) based network
model and radiality related constraints presented in [68] are used here.
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Xt 2 Xie—15 Xgit = Xgit—1> Xes,it = Xes,it—1 (3.34)

d) Radiality constraints

There are two conditions that must be fulfilled in order a distribution network system (DNS)
to be radial. First, the solution must have N; — Ny circuits. Second, the final topology should
be connected. Equation (3.35) represents the first necessary condition for maintaining the
radial topology of DNs.

D ORGeker ) = Ni = N vt (3.35)
kel

Note that the above equation assumes line investment is possible in all corridors. Hence, in
a given corridor, we can have either an existing branch or a new one, or both connected in
parallel, depending on the economic benefits of the final setup (solution) brings about to the
system. The radiality constraint in (3.35) then has to accommodate this condition. One way to
do this is using the Boolean logic operation, as in (3.35). Unfortunately, this introduces
nonlinearity. We show how this logic can be linearized using an additional auxiliary variable
Zj ¢ and the binary variables associated to existing and new branches i.e. Uy and X,
respectively. Givenzy ;: = OR(Xy ¢, Ug.),this Boolean operation can be expressed using the
following set of linear constraints:

Zpt < Xkt + Uty Zit > Xty Zit > U ts 0< Zyt <1 ; Vit (3.36)

Then, the radiality constraints in (69) can be reformulated using the z,, variables as:

Zk,t = Ni —_ NSS ,Vt (3.37)
kel

When all loads in the DNS are only fed by power from substations, the final solution obtained
automatically satisfies the two aforementioned conditions; hence, no additional constraints are
required i.e. (3.36) along with (3.37) are sufficient to guarantee radiality. However, it should
be noted that in the presence of DGs and reactive power sources, these constraints alone may
not ensure the radiality of the distribution network, as pointed out in [70] and further discussed
in [71].

3.2 - Summary
This chapter has presented a full description of the proposed dynamic and multi-objective

S-MILP model, which jointly takes into account the optimal RES-based DGs and DESS integration
in coordination with distribution network reinforcement and/or switching.
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The problem has been formulated as with an objective of overall cost minimization. The
objective function is composed of Net Present Value (NPV) of five cost terms each weighted by
a certain relevance factor. The considered cost terms include the total investment cost, the
total cost of maintenance, consumed energy, unserved energy and emissions in the system all
under the assumption of perpetual planning horizon.

As already mentioned, in the formulation is employed one of the concepts most used in the
investment study in the financial world, the Net Present Value, which conceptually shows how
to value in monetary terms the cash flows in any investment planning, in this case, considering
the costs associated with the expansion planning of a given system.

This model will be tested in Chapter 5 on a case study and the further numerical results
will be discussed there.
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Chapter 4

Problem Formulation and Solution -
Genetic Algorithms Approach

In this chapter, a method to investigate the impacts of network switching as well as
installing DGs in distribution system is presented. To carry out this analysis, different models
are formulated. A brief description of the genetic algorithm employed is presented in this
chapter.

4.1 - An overview of Genetic Algorithms

Genetic algorithms are nature-inspired solution algorithms often suited for complex and
combinatorial problems [72] . Such algorithms are based on natural selection and genetic
mechanisms. They explore historic information to find points that are expected to lead to the
best performance. This is done by an iterative process. Each iteration is often referred to as a
generation. During each iteration, the principles of selection and reproduction are applied to
a population. The selection process determines the individuals that will be reproduced
(fathers), creating a determined number of descendants (sons) to the next generation by a
determined probability named fitness index. This can be understood as the individuals with
better relative adaptation, having greater chances to transmit their genes [73].

In a genetic algorithm, a possible population of solutions progresses according to the genetic
operators (probabilistic) conceived by biological representations. On average, there is a
tendency to have better solutions as the evolutionary process lasts. Notwithstanding, genetic
algorithm exploits a probabilistic and metaheuristic method to obtain new populations. It is not
a random solution search algorithm because it explores the available information to search new
individuals or better solutions to improve a performance index.

Genetic algorithms seek to privilege individuals with better skills. By this means, they try
to drive to regions of search space where global optima are located. Sometimes, this cannot be
achieved if the parameters are not well suited for the problem.
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4.1.1 -Codification

The basis to a genetic algorithm application to a problem is the representation of the
problem to be analyzed. Each representation must have matching genetic operators. This is
critical for genetic algorithms to operate correctly to the correspondingly optimization
problem.

Genetic algorithm creates populations of individuals. This is called a chromosome, a data
structure. Generally, chromosomes are vectors or binary values chain, reals or combinations of
both. A chromosome represents a possible solution to the problem. Hence, a chromosome forms
the set of parameters of the objective function that will be optimized. All the configurations
that a chromosome can assume is called a search space. If a chromosome has n parameters of
a function, it will be a search space with n dimensions. The majority of representations are
genotypic Genotype is the set of genes that defines the genetic constitution of an individual.
Genetic operators will be applied to genes [72]. Genotypes are represented by finite scale
vectors, that the user needs to specify (see in Figure 4.1).

The genotype of an individual is conventionally represented by a binary vector. Each
element of the vector characterizes a certain characteristic relevant to the construction of a
unique individual. Combinations of elements can form the real characteristics of an individual,
namely its phenotype. This representation is problem independent because once found the
representation in binary vectors, standard operations can be applied, helping the employing in
different classes of problems. Binary representation is the most commonly used approach
because it is easy to implement, manipulate and analyze. But if the problem has continuous
parameters, chromosomes could have bigger representations if the user wants to work with a
higher precision. This leads to the use of a larger amount of memory. The majority of genetic
algorithms proposed in the literature have a fixed number of individuals in a population, with
constant size chromosomes. This is the simplest method to create a population of individuals
[73].

1 0 1 1
2.3 2.4 1.1 3.9
A B W H
101110011 111000011

Figure 4.1 - Possible chromosome representation.
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Having defined the chromosomic representation to the problem, a possible set of solutions
are generated called aspirants. These aspirants are normally called sons due to the fact that
they have a genetic material from their fathers. The set of codified solutions according the
selected representation matches a population of individuals representing, over the evolution
cycles, the current stage of problem solution. In each iteration, the population is modified
because genetic algorithms involve an iterative process. Each iteration is called a generation
although not all population individuals are necessarily sons of individuals of the population in
the preceding iteration.

In the populations, several statistical values are calculated that will be used to evaluate if
the search is close to the optimal solution. Parameters that can be evaluated are the best
individual, diversity, standard deviation and average of accomplished goals. Normally, the
evaluation is done to the objective function, this is the simplest way. This is simply to say that
objective function becomes the fitness function, and there is no need to calculate the relative
fitness function.

4.1.2 -Initialization

The representation of a search space is the most sensitive issue. Hence, initialization leads
to some mechanism of making educated guess. The types of initializations are the following
[74]:

e Random initialization — Individuals of the population are generated randomly.

e Deterministic initialization — Individuals of the population are generated
deterministically by heuristic methods.

e Random initialization with niche — Individuals of the population are generated by
ways that can be divided in species. This will group individuals with similar
characteristics.

Randomly initializing population of n individuals are generated or some heuristic methods
are used. This is the classic initialization that can be found in most relevant works. Without
variety, there is no evolution. The natural selection theory (Darwin’s Theory of Evolution)
implies individuals that have different adaptation index to the ambient where they live, so it
is important to have a large search space in the genetic algorithm.

Initial population generation can be obtained obeying some conditions established by the
user. The user can establish such conditions from previous knowledge of the problem. The more
restrictive these conditions are, the faster the convergence is. This is because the generated
values are closer to the desired (possibly optimal) solution. There is no formula to the number
of individuals that compose the population. They can be dependent on some heuristics but it’s
more reliant on the user’s experience, and his/her previous knowledge of the objective
function. The larger the number of individuals is, the higher the probability of convergence
because the probability of the solution among the elements of population is bigger. But this
may lead to greater computational effort, increasing the computation time. If the population
is too small, it will not have diversity, the search space is reduced and the convergence will be
premature.
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The objective is to generate a population within a certain interval where it could be the
solution. With this, it is not necessary to generate a random population. In the current work,
we know that the number of branches must be equal to the number of buses minus the number
of generators to keep radial configuration of the DNS, consequently, we can generate a uniform
distribution between this fixed number of branches and zero.

4.1.3 -Evaluation

A genetic algorithm needs information about the value of the objective function to each
individual of the population. The objective function gives the measure of how good the
individual is adapted to the environment. In other words, this relates to the probability to
survive and reproduce, transferring its genetic material to the next generations. The evaluation
of the individual results in the so called “fitness function”[74].

Validating is the next step and it can be defined as the process to compare the fitness
function from all individuals and sorting them out by their corresponding fitness function
values. Normally, the best/bests are selected, according to the evolution theory. Convergence
and the performance of the population related to the objective function is analyzed. This can
be done by calculating the maximum, minimum and average of the fitness function or the
standard deviation in each generation. Convergence can be a process of setting a finite number
of generations (the most practical way).

If the initial population happens to have the exact solution to the problem, the algorithm
will not stop. Convergence of the algorithm is achieved only, for instance, when the average
fitness of the population is well stabilized or we reach the maximum number of generations.
This can indicate that the population is adapted to the environment and the elements lead to
the best objective function value. This can also indicate that we are stuck in an optimum
location and need to improve the search space. The best individual is saved whether it belongs
to the actual population or not. In the end, this will be the expected result. The recording is
always done in each generation to see if we reached the optimum solution.

In genetic algorithms, convergence can be very fast to a sub-optimal solution. This is not
what is desired, however. This problem is called premature convergence and it can occur by a
small population or badly distribution of initial population. Premature convergence can occur
due to bad distribution of individuals in search space and will affect the search for the global
optimum. Such a premature convergence is also called diversity loss. Diversity indicates the
rate which each region is represented in the solution search space. This can be overcome by
improving the distribution of individuals in the initial population and preventing loss of diversity
in the first generations. In addition, increasing the number of individuals will improve the
search space. The selection process will guarantee that the best individual will dominate the
next generation and so on if there are no better individuals with a best fitness function.

4.1.4 -Selection

Selection is the process that will make the initial population more fit after many
generations. This is the basic principle of genetic algorithms. Selection mechanism in genetic
algorithms tries to imitate the natural selection process [73], [74].

32
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Genetic algorithms start with an initial population with a set of individuals. If we know a
priori where the solution is located, the first individuals can be initialized deterministically.
When we do not know anything about the search space, the individuals are created randomly.
Deterministic way can lead us to fast convergence because the global optimum can be in the
first generation. The selection process favors the fit individuals, and to a fitness function is
assigned to each individual. This function is an input that represents the genes of the
chromosome and provides their fitness as an outcome. Fitness is like a grade where the
evaluation is made by a solution coded from each individual. This fitness is based on the
objective function.

A relative fitness can be calculated to each individual. To some selection methods, it is
desirable that the value of relative fitness for each individual be less than 1 and that the sum
of every fitness values are equal to 1. The relative fitness of each individual is calculated by
dividing its value of fitness (objective function that the solution from the individual) by the
sum of values of the fitness of the entire individuals of the population (the sum of the objective
functions of each individual). This is expressed by equation (4.1).

f(x)

f(xi)rel = ;'1:1f(xj)

(4.1)

where f(x;) is the fitness function.

Generally, a population of n individuals is generated with a probability proportional to its
relative fitness in the population. Using the previous probability, we select n individuals.
Individuals with low fitness will have high probability to disappear from the population.
Individuals with high fitness will be passed on to the next generation. It is not necessary to
calculate this fitness function because when we have a fixed maximum generation, we can
analyze the objective function of each individual and select the best. This fitness function is a
good instrument when we have convergence by some other method than a fixed number of
generations (like average fitness of the population is well stabilized).

The objective function gives information about how close or far the solution is from the
desired solution. It includes restrictions that need to be satisfied by the solution. In
optimization problems, the objective function can be maximization or minimization of the
objective function. It can be maximization of profit or minimization of costs. Some problems
can include more than one objective function. Problems called multi-objective optimization
can have an objective function that includes more than one objective.

The selection process chooses a subassembly of individuals based on fitness, creating an
intermediate population. Different selection methods are implemented in genetic algorithms.
Most of all seek to favor the fittest individuals in order to keep population diversity. Some
methods are:

e Roulette;

e Tournament;

e Stochastic sampling;
e C(Classification.
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The Roulette method is the simplest and the most commonly used approach. Individuals of
the generation are selected to the next generation using roulette as we see in the famous game
of casinos roulette wheel. Each individual is represented in the roulette according to their
fitness value. This way, individuals with nice fitness get a bigger interval in the roulette and
the others with low fitness will receive a shorter interval. After distribution in the roulette,
certain values are randomly generated in the interval from 0 to the total summary of the fitness
of all individuals, a determined number of times depending on the size of population. If a given
individual is in the interval, the generated value will be selected to the intermediate
population.

In tournament selection, n individuals of population are selected randomly with the same
probability. The individual with the greatest fithess among them is selected to the intermediate
population. Process ends when the intermediate population is fulfilled.

A stochastic sampling is a variation of Roulette method but instead of one unique needle,
n needles equally spaced are used, where n is the number of individuals to be selected. This
way, instead of spinning the roulette n times, it is only spinned one time.

A classification method primary classifies the population, then, each individual gets a grade
according to the classification of the population. The worst individual will get the lower value
that we can assign, the second worst gets the second worst value and successively. The best
will get the highest grade, that can be equal to the number of individuals in the population.
After the classification process, every individual has a certain chance to be selected.

4.1.5 -Genetic Operators

Global optimization algorithm must be capable of exploring new points inside the solution
search space. This mechanism is called exploration and exploitation, and is often adopted in
genetic algorithms by applying correct genetic operators. The main genetic operators are
crossover and mutation primarily in a binary codification [75].

Crossover uses information in two or more individuals (fathers) to generate one or more
individuals (sons). This can be resistant to add new information to population because it sees
the region close to father’s individuals. The process of recombination is a sexual process - it is
more than one individual - and stimulates the exchange of information between chromosome
pairs. It is a random process with a fixed probability that needs to be specified by the user.

Mutation can be a diversifier or booster to the solution search. Some approaches use
mutation as the technique responsible for the evolution process, for determining if the
movement is exploration or exploitation, and the adaptable parameters in each generation.
Mutation can diversify when new information is introduced in the individual, and consequently
to the population (very strong mutation). If the mutation is very weak, it is a booster in neighbor
solution search. This process is equivalent to the random search. One position is selected in the
chromosome, and changes the correspondent value to another random one. This can be
controlled with a fixed parameter that indicates the probability of a gene suffering mutation.

Crossover and mutation can be combined to upgrade the search for the optimal solution by
taking advantages of the best features in each method.
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4.1.6 -Genetic Parameters

The performance of a genetic algorithm is strongly dependent on how the parameters to be
employed are defined. Hence, it is important to investigate which way some parameters can
influence in the behavior of the algorithm [76]. This way, we can establish the parameters
according to the requirements and resources available. Parameters usually are size of
population, crossover rate, mutation rate, substitution rate and convergence condition. Size of
the population affects the global performance and efficiency of genetic algorithms. With a
small population, the performance may drop because a relatively small search space is covered.
Bigger population offers a representative search space domain and avoids optimum local
solutions. However, to work with bigger populations, we may need a longer simulation time or
more computation resources.

Crossover rate specifies how fast new structures are introduced in the population. If it is
set very high, good structures can be removed faster than the selection capacity. With a small
rate, the algorithm can become slow or stagnate. Mutation rate prevents that the search
becomes stagnated in regions of search space. It allows that every space search point can be
achieved. With a high rate, the search becomes random.

Substitution rate controls the population percentage that will be substituted in the next
generation. With a higher rate value, most of the population will be substituted but it can suffer
of losing great structures of fitness. When the rate value is too low, the algorithm may become
slow. Substitution rate is not commonly used because with a nice mutation and crossover rate,
we can guarantee that the next generations will be always better than the previous ones.

A convergence condition is the condition when the algorithm will stop. The ideal is to stop
when we reach the optimum solution in an optimization problem. When we have multimodal
functions (saddle points, with many optimal points and one global optimum) it can be sufficient
when we reach one optimal point but there are situations where the largest possible number
of optimal points is desired. In practical, we cannot tell with certain if a given point matches
the global optimum. As a consequence, it’s used as convergence condition a maximum number
of generations or a limit of computational time to stop the algorithm. Another criterion is to
stop the algorithm if during several generations the fitness function is not getting better,
interpreted as an idea of stagnation of the solution.

4.2 - Genetic Algorithms: Formulation

In this work, a GA is used to solve the resulting problems based on AC OPF models. The OPF
problems are solved using the MatPower toolbox in MATLAB environment. MatPower is a
package of MATLAB for solving power flow and optimal power flow problems. It is intended as
a simulation tool for researchers and educators that is easy to use and modify.

A GA is a method for solving constrained and unconstrained problems optimization
problems, particularly suited for non-linear and combinatorial problems. It is based on natural
selection. The process that guides a GA is basically initialization, mutation, evaluation and
selection. In this work, a GA is employed to solve the reconfiguration of distribution system as
wells as placement and sizing of DGs. The implementation process of the GA is summarized as
follows:
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A GA is a method for solving constrained and unconstrained problems optimization
problems, particularly suited for non-linear and combinatorial problems. It is based on natural
selection. The process that guides a GA is basically initialization, mutation, evaluation and
selection. In this work, a GA is employed to solve the reconfiguration of distribution system as
wells as placement and sizing of DGs. The implementation process of the GA is summarized as
follows:

e Step 1: Initialization - Generate the set of branches and set of DG’s in each node

e Step 2: Mutation - Mutate the chromosome of branches and DG’s

e Step 3: Evaluation - Check the radially constraints

e Step 4: Run the OPF of radial populations

e Step 5: Selection

e Step 6: Uniform Crossover and a Small Mutation - Crossover and Small mutation for
a new population based on the best populations.

e Step 7: Selection - Select the best population.

The chromosome of the set of branches connected is binary, 1 if connected and 0 if
disconnected. The generation of radial populations is based on number of buses minus the
number of generators. The DG placement does not affect this stipulation. The algorithm used
is shown in Figure 4.2.

The DG chromosome is generated by integer numbers between 0 and 4, respecting the size
of DG in MW and with a length of number of buses. This way we generate the location and size
of DG. The parameters of the network are introduced in a MatPower case. To solve the OPF,
we just need to pass to the MatPower information regarding the statuses of the branches.

The DGs are regarded as a PV bus. Hence, in order to solve the OPF, we need to introduce
the generator data and the generator cost data. Running the OPF, we obtain the voltage profile,
costs and line flows.

First, we will investigate the benefits of having only reconfiguration in the system. Second,
we will solve the problem of DG placement and sizing along with the reconfiguration problem.
This way, the best places to install DG’s and their optimal size, as well the network topology is
determined.

The objective function is the total costs in the system. This will be our fitness function that
needs to be minimized.

In order to get the best topology, we penalize the configurations that do not lead to radial
configurations. Then, if it fulfils the radially constraints, we check if all buses are connected.
If not, another penalization is introduced. After running the OPF and see if it converges,
investigation regarding voltage limits is done. If the voltage limits are not respected, another
penalization is introduced in the fitness function. If the OPF does not converge, we penalize
the fitness. This will lead to the best cases.

This process is also reproduced when we introduce DGs in the problem. A DG is treated as
another population and all the constraints regarding the OPF will be checked and respected.
Different costs of DG are considered in order to seek for the best cases.
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Figure 4.2 - Flow Chart of the proposed GA.
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4.3 - Summary

In this chapter, an overview of the genetic algorithm (GA), the optimization problems and
the solution procedures have been described. Overall, the problem considered in the
optimization process jointly takes into account the optimal DGs placement and size in
coordination with distribution network switching in one operation scenario.

The resulting problem has been solved using a genetic algorithm, where a brute-force AC
OPF is considered with an objective of overall cost minimization. The objective function is
composed of costs related to power production in one operation scenario. In addition, loss
minimization has been taken into consideration with reconfiguration of the distribution system.



Chapter 5

Case Studies, Results and Discussion

5.1 - Mixed Integer Linear Programming based Optimization

5.1.1 - Case Study: A 33-bus Test System

A standard IEEE 33-bus radial distribution network, shown in Figure 5.1, is used here for
carrying out the required analysis mentioned earlier. The system has a rated voltage of 12.66
kV, and a total demand of 3.715 MW and 2.3 MVAr. Network data and other related information
about this test system can be found in [77]. Other data and assumptions made throughout this
paper are as follows:

e The planning horizon is 3 years long, which is divided into yearly planning stages, and
a fixed interest rate of 7% is used.

o The expected lifetime of ESS is assumed to be 15 years while that of DGs and feeders
is 25 years.

e Two investment options with installed capacities of 0.5 and 1.0 MVA are considered for
each wind and solar PV type DG units.

e The installation cost and emission related data of these DG units, provided in [78], are
used here.

e For the sake of simplicity, all maintenance costs of DGs are assumed to be 2% of the
corresponding investment costs while that of feeders is 450 €/km/year.

e The investment cost of each feeder is 38700 €/km.

e The current limits of all feeders is assumed to be 200 A except for those between nodes
1 and 9 which is 400 A.

e Itis assumed that all feeders can be switched on/off, if deemed necessary

e In addition, it is assumed that wind and solar power sources are uniformly available at
every node.

e The cost of energy storage is 1000k€/MW;

39
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Figure 5.1 - 33-bus radial distribution svstem.

e The operational variability and uncertainty introduced by wind and solar PV type DGs,
demand and electricity price are accounted for via the clustering method proposed in
[79].

e The maximum allowable bus voltage deviation in the system is set to 5%, and node 1 is
considered as a reference with a voltage magnitude of 1.0. Annual demand growths of
0%, 5% and 10% are also considered in all simulations.

e Emission prices in the first, second and third stages are set to 25, 45 and 60 €/tCO2e,
respectively, and the emission rate of power purchased from upstream is arbitrarily set
to 0.4 tCO2e/MWh.

e The cost of unserved energy is 2000 €/MWh. A power factor of 0.9 is considered in the
system, and is assumed to be the same throughout. The base power is set to 1 MVA.

]

The computed values of relevant variables are analyzed for different cases (as depicted in
Table 5.1) over the three years planning horizon. Case 1 represents the base case topology
where no investments are made while Case 2 considers an optimal reconfiguration but with no
investments. Cases 3 and 4 both consider investments in DGs only but differ in that the former
does not change the network topology and the latter uses optimal switching. The last two cases
correspond to scenarios where investments in DGs are coordinated with that of ESSs. Case 5
uses the topology in the base-case while Case 6 uses network reconfiguration.

5.1.2 - Results and Discussion

The results in Table 5.1 reveal the significant differences in overall NPV cost in the system,
share of energy supplied by RES and ESS combined, cost of total network losses and unserved
power among the aforementioned cases. The results are also compared with the base case
system where no investments are made and the network topology is held the same. Network
reconfiguration alone, as in Case 2, results in about 8.4% in the cost of losses, and a 3.1%
reduction in the NPV overall system cost compared with that of Case 1. In addition, network
reconfiguration avoids a total of 396.3 kVA load curtailment (or 256.9 kVA in Case 3) that would
otherwise occur at nodes 17, 18, 32 and 33 due to voltage limit constraints in
Case 1.
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Table 5.1 - Results of Relevant Variables for Different Cases.

Cases Total cost Energy supplied by Total cost of Total cost of Total installed
(TC) [kE] RES and ESS [%] losses [k€] unserved power size [p.u.]

(k€] Wind Solar  ESS

1 45447 .91 0.0 1089.80 1505.70 0.0 0.0 0.0

2 44044.58 0.0 997.85 0.00 0.0 0.0 0.0

3 33281.50 58.1 433.58 161.79 6.0 3.0 0.0

4 33106.07 58.2 404.59 0.00 6.0 3.0 0.0

5 26522.10 88.8 218.33 0.00 8.0 1.0 3.0

6 26516.52 88.8 212.73 0.00 8.0 1.0 3.0

Another more interesting observation from Table 5.1 is that Cases 3 and 4 result in
(approximately) 60% reductions in the overall cost of the system and the amount of imported
energy. Wind and solar power sources are complementary by nature. This important
phenomenon seems to be exploited when DG investments are not accompanied by investments
in ESSs (i.e. Cases 3 and 4). This is because, according to the DG investment solution in Table
5.1, the operational variability in the system seems to be handled by investing an appreciable
amount in both complementary power sources (wind and solar). This can also be seen from the
level of demand covered by RESs, which is about 58%.

The results corresponding to Cases 5 and 6 show that the total cost and cost of losses are
dramatically reduced by more than 41.6% and 80% respectively. This reveals the substantial
benefits of coordinating investments DG with ESSs. Generally, ESSs significantly improve system
flexibility, enabling large-scale accommodation RES energy. Interestingly, the total amount of
installed DGs (9 MW) is the same for Cases 3—6 i.e. with/without ESSs. Even if this is the case,
in the absence of ESSs (Cases 3 and 4), there may be spillage of RES power when the demand
is lower than the total generated power. However, the installation of ESSs leads to an efficient
utilization of RES power. This is evident from the amount of energy consumption covered by
the combined energy supplied by RESs and ESSs in Cases 5 and 6 is about 89%.

Normally, network switching capability also improves system flexibility, leading to a high
level RES penetration. In this particular study, the effect of network switching on the level of
RES power absorbed by the system is not significant as one can observe in Table 5.1. This may
however be case-dependent. A more frequent switching capability could, for instance, have
significant impact.

The optimal location and size of installed DGs corresponding to Cases 3 through 6 is shown
in Figure 5.2. The average voltage profiles at each node and for each case are depicted in
Figure 5.3. It is interesting to see in this figure the substantial contributions of DGs and ESS
installations to voltage profile improvement.

As shown in Figure 5.3, the coordinated integration of DGs and ESSs (i.e. Case 6), especially
leads to the best voltage profile. Figure 5.4 demonstrates the optimal network topology, DG
and ESS locations corresponding to this case. The nodes 8, 14, 25, 30 and 32 are within the 4
cases. We can assume that these nodes possibly are the critical nodes to invest. The benefit of
joint DG and ESS investments along with network reconfiguration in terms of losses reduction
(over 84% on average) can be seen from figure 5.5. The spikes observed in Case 6 are because
of the variability in RES power injected into the system.
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Figure 5.4 - Optimal locations of DGs and ESSs under Case 6
(Opened switches 28-29, 8-21, 9-15, 18-33, 12-22).
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Figure 5.5 - Total system losses profile.

As shown in Figure 5.3, the coordinated integration of DGs and ESSs (i.e. Case 6), especially
leads to the best voltage profile. Figure 5.4 demonstrates the optimal network topology, DG
and ESS locations corresponding to this case. The nodes 8, 14, 25, 30 and 32 are within the 4
cases. We can assume that these nodes possibly are the critical nodes to invest. The benefit of
joint DG and ESS investments along with network reconfiguration in terms of losses reduction
(over 84% on average) can be seen from figure 5.5. The spikes observed in Case 6 are because
of the variability in RES power injected into the system.

5.2 - Genetic Algorithm Results

5.2.1 - Case Study: 16-bus Test System

Figure 5.6 shows the 16-bus test system used for analysis of the results from GA. The system
has a rated voltage of 23 kV and a total demand of 28.7 MW and 17.3 Mvar. The maximum
allowable bus voltage deviation in the system is set to 5%. A power factor of 0.95 is considered
for the DG. The costs of the generators at the feeders are given by polynomial functions, and
two options are considered as in (5.1) and (5.2):

C(P) = 150 + 20P + 0.01P2 €/h (5.1)

C(P) = 180 + 30P + 0.03P2 €/h (5.2)

For integrating the DG as a PV bus and add to the cost of the system given by the OPF, one
polynomial function (5.3) was taken in consideration.
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Figure 5.6 - 16-bus radial distribution system [67].

(5.3)

It is assumed that DG power sources are uniformly available at every node. Nodes 1, 2 and
3 are considered as references. The base power is set to 1 MVA. Network data and other related
information about this test system can be found in [80]. The variations of different relevant

parameters when considering different cases (as depicted in Table 5.2) are analyzed.

e Case 1 represents the base case with the 3 feeders having the same costs

Case 2 considers reconfiguration of the base case

Case 3 refers to the base case reconfiguration but with different generation costs
at the feeders

Case 4 considers reconfiguration with different costs for feeders;

Cases 5 and 6 denote scenarios where, instead of minimization of costs, we
minimize the losses but they differ in the costs of feeders that are different in Case
6

Case 7 considers the reconfiguration with DG capable of injecting and absorbing
active and reactive power

Case 8 considers reconfiguration with DG capable of injecting and absorbing active
power

Case 9 considers reconfiguration with DG capable of injecting and absorbing

reactive power

In Cases 3, 4 and 6, three scenarios for different costs are proposed: 1) the generator at
feeder 1 (F1) is more expensive, 2) the generator at feeder 2 (F2) is more expensive, 3) the
generator at feeder 3 (F3) is more expensive.
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5.2.2 - Results and Discussion of the 16-bus Test System

The results in Table 5.2 reveal significant differences in overall operation costs, active and
reactive power losses and total installed size of DGs. Network reconfiguration, Case 2,
compared with base case, Case 1, results in about 0.04% of reduction in total cost, a 7.17%
reduction in total active power losses and a 5.98% reduction in total reactive power losses.
Topology from Case 2 is shown in figure 5.7. The voltage profile can be seen in Figure 5.8. The
improvement in voltage profile is appreciable. Table 5.3 summarizes the numerical results
concerning the network topology (opened branches) along with the DG location and size.
Comparing the costs corresponding to different generation cost assumptions at the feeders, i.e.
Case 4 with Case 3, there are some relevant issues worth mentioning here. The first one is that
the costs are lower in Case 4 than in Case 3, but we get higher values of losses. This may be
due to the fact that the reconfiguration tries to find the path that minimizes the involvement
of the more expensive feeder. We can see in Figure 5.9 that the feeder is always with one bus,
feeding the demand. We will get a feeder that will be feeding more buses and the losses will
increase comparing the cases that are related. All the scenarios in Case 6 have the same
configuration, that is the same configuration of the Case 2. This configuration is illustrated in
Figure 5.7. In addition, in Case 6, the scenarios seem to lead to high total costs except in 6-F2.
This shows that the single reconfiguration of the system is different if we are considering
minimization of losses or minimization of costs.

In Figure 5.10, we see that the voltage profile for case 4-F2 is worse than the case 3-F2
despite having obtained the best costs in case 4-F2. This is because the topology of
the network that leads to bigger losses, impacting the voltage profiles. The voltage profiles
of Case 6 are the same as Case 2, and Figure 5.8 reveals this phenomenon.

Table 5.2 - Results of Relevant Variables for Different Cases.

Cases Total Cost  Total Active  Total Reactive Total Computation
[€/h] Power Losses Power Losses installed DG time [s]
[MW] [Mvar] size [MVA]
1 1029.4177 0.1064 0.1224 0
2 1029.0201 0.0987 0.1151 0 7.848185
3-F1 1146.0389 0.1064 0.1224 0
3-F2  1215.8225 0.1064 0.1224 0
3-F3  1111.0366 0.1064 0.1224 0 -
4-F1 1081.0391 0.1510 0.1680 0 8.262878
4-F2  1100.7268 0.1480 0.1777 0 12.175396
4-F3  1070.4623 0.1251 0.1517 0 9.956841
5 1029.0201 0.0987 0.1151 0 7.540224
6-F1 1151.8748 0.0987 0.1151 0 6.644372
6-F2  1198.3556 0.0987 0.1151 0 11.134548
6-F3  1120.9084 0.0987 0.1151 0 9.013040
7 790.0860 0.0290 0.0311 21 24.246142
8 790.0860 0.0540 0.0583 16 30.989449

9 1028.8530 0.0927 0.1054

RN
N

27.035288
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1,06

Table 5.3 - Opened Branches and Location of DG.

DG Bus Location

4;5;6;7;912; 15
5;6;11;12; 13; 15
4; 6;9; 15; 16

Cases Opened branches
1 5-11; 10-14; 7-16
2 8-10; 9-11; 7-16
3-F1 5-11; 10-14; 7-16
3-F2  5-11; 10-14; 7-16
3-F3  5-11; 10-14; 7-16
4-F1 4-5; 4-6; 8-10
4-F2 4-6; 8-9; 8-10
4-F3  9-11; 13-14; 13-15
5 8-10; 9-11; 7-16
6-F1 8-10; 9-11; 7-16
6-F2 8-10; 9-11; 7-16
6-F3 8-10; 9-11; 7-16
7 6-7; 9-11; 10-14
8 6-7; 13-14; 5-11
9 6-7; 8-10; 9-11
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Figure 5.7 - New topology of the distribution system from Case 2.
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When we analyze the Cases 7 through 9, we can observe some substantial differences. In
case 7 and 8, where the DGs can control the active power, the total costs are the same. In Case
7, the total costs are reduced by 23.25% approximately, the active and reactive power losses
are also slashed by 72.72% and 74.63%, respectively. Similarly, in Case 8, the total costs, active
and reactive power losses are also approximately reduced by 23.25%, 49.27% and 52.40%,
respectively. In Case 9, where DG can only control reactive power, the costs are only reduced
by 0.05%, the reduction in active and reactive power losses is approximately 12.84% and 13.91%
respectively.

The numerical results generally show the substantial benefits of integrating small
distributed generation in the distribution network system, particularly in reducing costs and
losses. As for voltage profile, it can be seen in Figure 5.11. We can see that there are
improvements in the voltage profile across all nodes in the system. The introduction of DGs
with reactive power support capabilities has a greater impact in total losses than installing DGs
capable of supplying only active power or reactive power. The results strengthen this argument.
In addition, the total installed size of DGs is in decreasing order from Case 7 to Case 9. This is
because of the fact DGs with reactive power support capability significantly contribute to the
controllability of the system, hence, resulting in a substantially reduced costs and losses. This
in turn results in a more integration of DGs in the system. Figure 5.12 shows the optimal location
of DGs and the configuration of the system under Case 7. In Figure 5.13 we can see the
distribution of the DGs in the 16-bus distribution system. The nodes 6 and 15 are common in
the solution. This solution can be interpreted as the nodes that can be critical to invest in DGs.

The total installed DGs covers about 70% of the required demand in Case 7, 53% in Case 8
and 46% in Case 9.
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Figure 5.11 - Voltage comparison between Case 7 and Base Case
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Figure 5.13 - Size and placement of DGs in the 16-bus distribution system.

In Figure 5.14, the convergence process is shown for Case 2. This is the best fitness function
that we have in each generation. A fast convergence of the algorithm in the 16-bus radial
distribution system is achieved. As this is a GA, we cannot be sure if this is the best solution.
The difference between solutions in each generation is very small. In the first generation, the
cost associated with the best solution amounts to 1030.3622 €/h and that of the final solution
is 1029.0201 €/h.
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Figure 5.14 - Convergence process in Case 2.
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Figure 5.15 - Convergence process in Case 7.

The difference between these two solutions is about 0.13%. This is a very small deviation
and shows the difficulty that we can have with the GA in achieving the optimal solution. In
Case 7, we achieved the best solution in the first iteration but this is very rare, and may not be
replicated in the same or other problems.

5.2.3 - Case Study: 33-bus Test System

In Figure 5.1 it is shown the 33-bus radial distribution system that was considered for
carrying out the required analysis mentioned earlier. This case is already setup in
Matpower. The system has a rated voltage of 12.66 kV, and a total demand of 3.715 MW and
2.3 Mvar. Network data and other related information about this test system can be found
in [80]. The maximum allowable bus voltage deviation in the system is set to 5%.
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A power factor of 0.95 is considered for the DG. The costs of the feeders are a polynomial
function and two options are available (5.4) and (5.5).

C(P) = 150 + 20P + 0.01P2 €/h (5.4)

For integrating the DG as a PV bus and add to the cost of the system given by the OPF, one
polynomial function was taken in consideration:

C(P) = 8P €/h (5.5)

It is assumed that DG power sources are uniformly available at every node. Node 1 was It is
assumed that DG power sources are uniformly available at every node. Node 1 is considered as
the reference node. The base power is set to 100 MVA. The variations of different relevant
parameters when considering different cases (as depicted in Table 5.4) are analyzed. Case 1 is
the base case; Case 2 considers reconfiguration; Case 3 is a scenario where minimizes only
losses. Cases 4, 5 and 6 all handle reconfiguration along with DG integration but they differ in
that, in Case 4, the considered DGs are capable of producing active power as well as injecting
and absorbing reactive power, Case 5 considers DGs that can only produce active power, and
the DGs considered in Case 6 are capable of only producing or consuming reactive power.

5.2.4 - Results and Discussion of the 33-bus Test System

Comparing Case 1 with Case 2, we see that reconfiguration slightly lowers the total costs
and losses. The total cost reduction is about 0.54%. The active and reactive power losses are
also reduced by 61.59% and 17.38%, respectively. Like in the previous case studies, the results
here show the benefits of reconfiguring the distribution network system. In Figure 5.16, the
voltage profile of reconfiguration and the base case are shown. Clearly, the positive
contribution of reconfiguration to the voltage profiles can be observed. The voltage is improved
in almost all nodes, except in nodes 19, 20, 21 and 22. In addition, in Table 5.4, there is little
difference between minimization of losses and minimization of costs, the difference is
approximately 0.0057% for total costs, 0.5147% for active power losses and 0.5695% for reactive
power losses. In Figure 5.17, we can see that the voltage profile is very similar. In Table 5.5,
the unique difference between the opened branches is 9-11 in Case 2, and 10-11 in Case 3. Only
one branch is different and almost leads to a similar fitness function value. As mentioned
earlier, there is a small difference and we can conclude that these configurations are minimized
but may not be the global optima. Further analyzing the results in Table 5.4, there is a
significant difference in total costs and in total losses in Case 4 and Case 5 comparing to Cases
1, 2 and 3.

In addition, as stated in the 16-bus test system, when we have DGs capable of generating
active power or both active and reactive power, we have better results. Comparing Case 4 to
Case 1, there is a reduction of 21.23% in total costs. The major difference is now in active and
reactive power losses. There is approximately 98.76% and 97.99% reduction in power losses,
respectively. This is a big positive impact in the system that is translated into almost linear
voltage profile as we can see in Figure 5.18. In this distribution system, that is larger than the
16-bus test system, the effects are more visible.
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Table 5.4 - Results of Relevant Variables for Different Cases.

Cases Total Cost  Total Active Total Reactive  Total installed = Computation

[€/h] Power Losses Power Losses DG size [MVA] time [s]
[MW] [Mvar]

1 228.1816 0.1865 0.0999 0

2 226.9463 0.1249 0.0825 0 24.423398
3 226.9593 0.1256 0.0830 0 27.102581
4 179.7385 0.0023 0.0020 23 32.926209
5 180.0747 0.0443 0.0333 17 39.599780
6 226.1954 0.0876 0.0672 15 34.074488

Table 5.5 - Branches Opened and DG Location in 33-bus Distribution System.

Cases Opened branches DG Bus Location
1 21-8; 9-15; 12-22;18-33;25-29
2 7-8; 9-10; 14-15; 32-33;25-29
3 7-8; 10-11; 14-15; 32-33; 25-29 -
4 7-8; 11-12; 15-16; 21-22; 28-29 4; 9; 16; 17; 20; 22; 23; 24; 26; 30; 31; 32
5
6

6-7; 11-12; 14-15; 26-27; 32-33 5; 8; 12; 13; 14; 17; 23; 25; 28; 31; 33
7-8; 8-9; 14-15; 28-29; 32-33 5; 6; 13; 15; 22; 24; 30; 32

«o®e+ Base Case

—e— Best Case

Min Voltage

Max Voltage

Bus

Figure 5.16 - Voltage comparison between Case 1 and Case 2.
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Figure 5.20 - Convergence process in Case 6

The voltages are with a linear profile when DGs are placed in the system. The effects of
having DGs capable of producing only active or reactive power are also seen in the Figure 5.18.
With active power only DGs, we can have also a better voltage profile, not so linear as in Case
4 but significantly better than the base case. Deploying reactive power only DGs also has impact
in systems losses, and voltage profiles. In Case 5, the reduction in total costs is 20.65%
compared with Case 2 and 21.08% when compared with Case 1. Compared with Case 2, active
and reactive power losses are reduced by 76.22% and 66.68% respectively.

As in Case 6, there is no big impact in total costs, only 0.87% when compared with Case 1
but, there is a huge difference in terms of losses. Compared with Case 1, the active and reactive
power losses are reduced by 53.04% and 32.69%, respectively. Although the costs are slightly
increased, the benefits of having DGs with this technology are evident with the reduction of
losses and improvement in voltage profile. However, as mentioned earlier, this can be
dependent on the convergence process of the GA. In Cases 4 and 5, as illustrated in Figure 5.19,
in the first generation, we are getting better results in terms of costs than in Case 1. Placement
and sizing of DGs may not be optimal because of the solution method. However, there are small
differences from generation to generation, probably indicating the closeness of the solution to
the optimal one.

Figure 5.20 shows the convergence process of Case 6 and, in first generation, there is a
worse scenario than base case. This seems to perpetuate throughout the simulation leading to
worse costs but with better voltage profile and loss reduction.

In Case 4, the first best generation is with a value of 179.8402 €/h, with a difference of
0,06% compared with that of the best solution (179.7385€/h). And, this is the same for Case 5,
in which the difference of the first generation to the last generation is about 0,05%. We can
observe the convergence process in Case 2 and the difference in terms of costs for the first and
the last generation is about 0,47%. The algorithm probably reached the optimal solution in the
generation 52, and it is still the same until the last generation.
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The convergence time is 24.423398 seconds with a population of 200 individuals. It is worth
mentioning here that each simulation can lead to a different solution but with small
differences. This may be mainly because switching off one branch or another may not lead
significant difference in costs (about 0.12%).

The configuration outcome of Case2 is shown in Figure 5.21. Figure 5.22 shows the DG
placement and size in Case 4, Case 5 and Case 6. In Figure 5.23, there are the configuration
and DG placement for Case 4. It seems that there is no connection between Cases 4, 5 and 6
with respect to locating the critical buses to install DG. We can make a connection between
Cases 4 and 5 as well as Cases 4 and 6. Recall that Case 4 considers DGs with active and reactive
power generation capability while active power only and reactive power only DGs are
considered in Cases 5 and 6, respectively Having this in mind, Case 4 and Case 5 seem to have
common optimal DG locations including buses 17, 23 and 31. Case 4 and Case 6 also have
common “optimal” DG locations such as buses 22, 24, 30 and 32. When we look at the demand
and at the total installed size of DG, there seems to be a lot of discrepancies among the
different cases.

15 16 17 18

Figure 5.21 - Configuration in Case 2.
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Figure 5.22 - DG size and placement in Cases 4, 5 and 6.
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DG DG

Figure 5.23 - Configuration and DG placement Case 4

5.3 - Summary

Numerical results in GA showed that having reconfiguration can lead to a better voltage
profile, reduced costs and losses in the operational stage. But taking in consideration solely
costs or total losses cannot lead us to the optimal performance because, sometimes, reaching
the minimum costs with a certain configuration may not agree with lowering the total losses in
the system. Hence, it is necessary to have in consideration total losses and total costs, making
the operational scenario as a weighted sum of these two measures, or handling it as a multi-
objective optimization. This is because, when we have a generator more expensive than the
others in the system, the reconfiguration with objective to minimize costs will seek that this
generator feeds the lowest possible demand in order to reduce the costs, making that the others
generators feed a larger number of demand, becoming a larger radial system to feed, increasing
the losses. When we only seek to minimize the losses with a generator more expensive than the
others in the system, we will get the best configuration possible, with the best voltage profile
but, the more expensive generator will participate more in the system, feeding more load, the
costs of operation will increase. This may however be case dependent.

The reconfiguration of the 33-bus network system leads to a better voltage profile in
almost all the nodes. But as this is a GA, we cannot be sure that we have the optimal objective
function value
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Lower costs and lower losses in the new configuration of the 33-bus network system are
evident. The comparison between minimization of losses and minimization of costs for
reconfiguration purpose do not show significant differences. However, this may also be case
dependent.

A MILP model was developed that involves joint optimization of placement and sizing of
RES-based DGs and ESSs in coordination with optimal network switching. Numerical results
showed the capability of ESSs integration in dramatically increasing the level and optimal
exploitation of renewable DGs. According to the simulation results, the simultaneous
integration of DGs and ESSs resulted in an overall cost and average losses reduction. The optimal
network reconfiguration, DG and ESS installations substantially contributed to voltage stability.
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Chapter 6

Conclusions and Future Works

6.1 - Conclusions

This thesis work has developed a stochastic MILP optimization model that jointly optimizes
RES integration with ESSs and switching/reinforcement of the distribution network taking in
consideration the variable and uncertain nature of RES based-DGs. The formulation of such a
problem in a MILP form means that exact and efficient solution techniques commercially
available can be used, and optimality is guaranteed within a finite simulation time. In addition,
a series of related problems such as network reconfiguration as well as DG allocation and sizing
are formulated in such a way that GA can be employed. The thesis present an extensive
qualitative and quantitative analysis made in both approaches. In the case of GA-based model,
one of the goals of the analysis has been to analyse the influence of integrating DGs and
reconfiguration in the distribution network systems with a single operation scenario. The MILP
based analysis has been carried out considering a detailed representation of several operational
situations (introduced as a result of the stochastic nature of RESs and demand) and different
low frequency uncertain parameters such as emission prices. Moreover, the impacts of network
switching/expansion as well as deploying distributed ESSs on the DG integration levels have
been investigated.

Simulation results from GA-based analysis have showed the significant benefits in lowering
costs, reducing total losses and improving voltage profiles in the system. Even if the analysis
made in this thesis involves only one operational scenario, the benefits are very evident. But
numerical results show that the integration in the system of DG have very significant impact in
total losses. In the 33-bus test system, almost 99% reduction of active power losses and 98% of
reactive power losses are achieved by the integration of DGs with reactive power support
capabilities. The impact on the overall voltage profile in the system is also dramatic, leading
to almost linear profile throughout the system. The integration of DGs with a capability to
produce and consume reactive power is a scenario where improvement in voltage is significant.

But the cost function of DGs is generic and the intention of this analysis is to understand
the positive impacts in coordinating a distribution system with DG and reconfiguration.

59
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The simulation results also show that considering DGs with reactive power support
capability leads to a higher integration of such DG technologies. In addition, the results
obtained from cases that consider only reconfiguration of the system have indicated a better
voltage profile, and a reduction in total active and reactive power losses of 61.59% and 17.38%,
respectively. Total costs of the system are reduced by 0.54% when compared to the base case.
This shows the impacts the reconfiguration of the distribution system especially in loss
reduction, and improving voltage profile.

All these analyses point to the need for an exact planning tool of DGs along with ESSs, and
distribution reconfiguration and/or expansion. In real-life, such a problem is a very complex,
nonlinear, nonconvex and combinatorial. However, this thesis has developed a comprehensive
planning tool that is a tractable optimization model considering relevant stochastic parameters,
major cost drivers and factors in a multi-stage and multi-scenario planning framework. In
addition, the thesis also contributes to an extensive analysis made on a medium scale network.
The joint optimization model is formulated as a stochastic programming. And, in the stochastic
formulation, we need to have in mind that DGs are variable and uncertain. The best way to
minimize the impacts of DGs is the place and size of ESSs. In addition, taking into consideration
the difficulty of GA to provide an exact solution, sometimes “wandering” near the optimal
solution or getting stuck in local optima, a new MILP formulation has been proposed that
handles multiple objective functions, taking into consideration the costs not only for the
operation, but also the investment in DGs, investment in the network, costs of emission and
costs of unserved power. The numerical results from
S-MILP have showed the capability of ESSs integration in dramatically increasing the level and
optimal exploitation of renewable DGs. According to the simulation results, the simultaneous
integration of DGs and ESSs resulted in an overall cost and average losses reduction of 41% and
84%, respectively. The optimal network reconfiguration, DG and ESS installations (jointly or
separately) substantially contributed to voltage stability. In the particular case study, the
impact of network switching on RES power integration was not significant. However, it should
be noted that this can be case-dependent.

6.2 - Future Works

The analysis in the GA-based model can be further extended by considering different
operational situations (instead of one), ESSs, different cost drivers such as emission costs, etc.
The issues accounted for in the MILP model can be transferred to the GA-based model and the
results obtained by both can be compared. Relevant conclusions can be drawn from such
comparative results.

6.3 - Works Resulting from this Thesis

The paper prepared based on this thesis can be found in Annex and was accepted and
presented at the 13th International Conference on the European Energy Market — EEM 2016
(technically co-sponsored by IEEE), Porto, 9 June 2016.
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M. R. Cruz, D. Z. Fitiwi, and S. F. Santos, “Influence of Distributed Storage Systems and Network
Switching/Reinforcement on RES-based DG Integration Level”, in European Energy Market
(EEM), 13th International Conference on, 2016, pp. 1-5.
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Abstract—Nowadays, there is a global consensus that integrating
renewable energy sowrces (RES) is highly needed to meet an
increasing demand for electricity and reduce the overall carbon
footprint of power prodection. Framed in this context, the
eoordination of RES integration with distributed energy storage
systems (DESS), along with the network’s switching capability andfor
network reinforcement, is expected to significantly improve svstem
flexibility, thereby increasing chances of accommodating large-scale
RES power. This paper presents an innovative method to quantify the
impacts of network switching andfor reinforcement as well as
installing DESSs on the level of renewable power integrated in the
system. To carry out this analysis, a dynamic and multi-objective
stochastic mixed integer linear programming (S-MILP) model is
developed, which jointly takes into account the optimal RES-based
DGs and DESS integration in coordination with distribution network
reinforcement andfor switching. A standard distribution network
system is used as a case study. Numerical results show the capability of
DESSs integration in dramatically increasing the level of renewable
DGs integrated in the system. Although case-dependent, the impact of
network switching on RES power integration is not significant.

Index  Terms—Distributed  energy  storage  systems, distributed
generation, network reinforcement, network switching, RESs.

L MNOMENCLATURE

A, SeisdIndices

ifnt Indexsset of buses

g/ /0o Index/set of generators/DGs
Je fi2% Indexsset of branches

/s Index/set of vearly scenarios
tfat Index/set of planning stages
w o Index/set of hourly snapshots
¢ /- Index/set of substations

B, Pavameters

ERY,ERS,ERY  Emission rates of new and existing DGs, and energy
purchased, respectively (tCOe/MWh)

Investment cost of DG, line and energy storage,
respectively (ME)

LTy, LTy, LTy, LT, Lifetimes of DG, distribution line, transformer and

energy storage svstem, respectively (vears)

1€, 5 ICy, 1€,

MCo, MC, Maintenance cost of storageftrafo per year (ME)

Mq‘.’.’%. Mt’.’% Maintenance costs of new and existing DGs (MEAT)

MC) MC; Maintenance cost of new and existing line { MEAT)

ﬂf;ism.t, Elﬂ'::i'smt(}pemm cost of unit energy production by new and
existing DGs (EMMWh)

Ao Price of emissions (€/tons of COz equivalent)

e Price of electricity purchased (€/MWh)

e, My Probability of yearly scenario s and weight (in hours)
of hourly snapshot group w

T Penalty for unserved power (E/VW)

Nehes Charging efficiency (%)

Hag Scaling factor (%)

C. Variables
[ Unserved power at node § (MW)
- Active power demand at node i§ (MW)
P cms Psﬂ'slw‘, Power produced by new and existing DGs (MW)
PSS Active power imporied from grid (MW)
Ug e, U Utilization variables of existing DG and lines

Investment vanables for DG, storage systems and
distribution lines, respectively

Xgite Xesip i

L Losses associated to each feeder (MW)
Eosiset Reservoir level of ESS (MWh)
et e 1 e Discharging/charging indicator variables

A ot PEY ¢ o Dischargedicharged power (MW)

Xeros Transformer mvestment variable

D, Functions {all units ave in ME)

ECi* Expected cost of energy purchased from upstream

ENSCE, Expected cost of unserved power

Emicy® Expected emission cost of DG power production

Emic¥ EmiCE  Expected emission cost of power production using
new and existing DOis, respectively

EmiCSs Expected emission cost of purchased power

Invﬂ'ﬁ“, MntEPY NPV investment/maintenance cost of DNS
components

IavC?®, MatcP®, ECPENPY investment/maintenance/expected energy
cost of DGs, respectively

InvCH MuntC¥ NPV investment'maintenance cost of a line

InvCES, MutCE NPV investment/maintenance cost of ESS

I1. INTRODUCTION
A, Motivation and Aims

The issue of integrating remewable distributed generations
(DGs) in power distnbutions systems is becoming very critical
because of techmical, economic and environmental reasons.
MNowadays, there 15 a global consensus that integrating renewable
energy sources—RESs, 15 highly needed to meet an increasing
demand for electricity and reduce the overall carbon footprint of
energy production. However, large-scale integration of RES-based
DGs often poses a number of technical challenges in the system
from the stability, reliability and power quality perspective. This is
because integrating RESs introduces significant operational
variability and uncertainty to the distnbution system, making
operation, planning and control rather complicated. Hence, such a
high level integration effort 15 likely to be supported by certain
smart-grid technologies and concepts that have the capability to
enhance the flexibility of the entire distribution systems. Framed in
this context, the integration of distributed energy storage systems
(DESSs) jointly with DGs, along with the network’s switching
capability and/or network reinforcement, significantly improves the
flexibility of the system, thereby increasing chances of
accommaodating large-scale RES power.



This paper presents a method to gquantify the influences of
simultaneous consideration of investments in DESSs as well as
network switching and/or reinforcement on the level of renewable
power integrated in the system. To carry out this analysis, a
stochastic mixed integer linear programming (S-MILP) model is
developed which takes account of distnbution network
reinforcement and/or switching in coordination with investments in
RES-based DGs and DESS technologies.

B. Literature Review

RESs make a crucial part of the solution for environmental
sustainability; hence, they will play an important role in power
systems [1]. The integration of RESs should, in principle, reduce
the nisk of fuel price volatility and geopolitical pressures and ensure
that these do not pose a significant impact on the overall public
welfare [2], [3]. However, large-scale penetration of RESs wall
necessarily involve a process of adapting and changing the existing
infrastructure because of their intrinsic characteristics, such as
intermittency and variability. The growing need for intermittent
RESs, in conjunction with the electrical mix changes in the long-
term, will probably affect the distribution and transmission systems.
In this context, a change in power generation options, resulting
from a high contribution of RESs, may require network grid
updates. Regulatory agencies are heavily committed to increase
RES integration, not only due to environmental but also technical
and economic reasons [4].

The main challenge with most of RESs is their inherent
variability and uncertainty, making operation, control and planning
very complicated. DG penetration increases the variation of voltage
and current in the network. Hence, increasing DG penetration may
have a negative or positive impact depending on various factors
such as the size of the system and the loads type, requiring
modeling and simulations to assess its impact [5]. If not properly
planned, this may lead to an uncertain increase in the feeders’®
power flows, resulting in network congestion and increased losses
in the network. However, the integration of DESS with RESs have
become one of the most viable solutions to facilitate the increased
penetration of DG resources [4], [6]. Energy storage systems level
the mismatch between renewable power generation and demand [6].
This 15 because these devices store energy during penods of low
electricity demand (price) or high RES power production, and the
release it during periods of peak demand and low RES production
[7]- Therefore, in addition to their technical support to the system,
ES8s bring substantial benefits for end-users and DG owners
through reliability and power quality improvement as well as cost
reduction [§]. Besides, ESSs are being developed and applied in
power grids to cope with a number of issues such as smoothing the
energy output from RESs, mproving the stability of the electrical
system, etc. [9]. ESSs also increase savings during peak hours and
minimize the impact of intermittent generation sources, leading to a
more efficient management of the integrated system.

Electrical distribution systems are interconnected by switches
but predominantly operated radially. These switches are often used
for emergency purposes such as to evade load curtailment during
fault cases. However, the system can be reconfigured to find the
best topology that minimizes power losses in the system and
improve operational performance, in general [10], [11]. Ref. [12]
discusses distribution network reconfiguration for minimizing
losses in the presence of vanable energy sources. Authors i [13]
have nvestigated the mmpact of load vanability on network
reconfiguration outcome. In [14], [15], authors have studied
distribution system reconfiguration with the aim of reducing energy
losses under normal conditions. As the network topology can be
adjusted by the change of switches state in the lines (normally

opened/closed), the optimal management of the entire system has to
find the optimal network configuration, allowing greater network
flexibility [16], which may in tum allow large-scale RES
integration. The work in [17] considers dynamic reconfiguration
with a possibility of remotely controlling switches in an active and
centralized management framework, with the aim of removing
network congestion in real time.

The present work presents a qualitative and quantitative analysis
regarding the impact of joint integration ESSs, network switching
(reconfiguration) and reinforcement on the level of DG integration
(particularly, focusing on RESs). For carrying out this analysis, a
multi-objective  S-MILP model 15 developed considering the
operational variability and uncertainty of variable power resources.

. Contributions and Paper Chrganization
The main contributions of this work are twofold:

* A multi-stage and stochastic optimization model, which
considers  simultaneous  integration of DESSs  and
variable peneration sources as well as  network
switching/investments;

* A thorough analysis related to the influence of network
flexibility (switching capability, investments) and/or DESS
nstallations made in coordination with investments in
variable generation sources on the RES integration level,
system cost and losses.

The rest 15 organized as follows. Section Il presents a brief
description of the developed mathematical model. Numerical results
are discussed in Section IV. The final section concludes this paper.

III. MopEL FORMULATION

The dynamic and multi-objective S-MILP optimization model
developed here 15 described as follows.

A. Objective Function

The problem is formulated as a multi-objective stochastic MILP
with an objective of overall cost minimization as in (1). The objective
function in (1) 5 composed of Net Present Value (NPV) of five cost
terms each weighted by a certain relevance factor y; ¥j € {1,2, ...,5).

The first term in (1), TIaeC, represents the total investment costs
under the assumption of perpetual planning horizon [I18]. In other
words, “the investment cost is amortized in annual installments
throughout the hifetime of the installed component™, as 15 done mn [19].

Here, the total investment cost 15 the sum of investment costs of
DGs, distnbution network system (DNS) components (feeders and
transformers) and ESSs, as in (2). And, this cost 1s computed as in (7)-
{9). The second term, TMC, in (1) denotes the total maintenance costs,
which is given by the sum of maintenance costs of new and existing
DGs as well as that of DNS components and ESSs at each stage and
the corresponding costs incurred after the last planning stage, as in (3).
Note that the latter depend on the maintenance costs of the last
planning stage according a perpetual planning horizon. These
maintenance costs are computed according to Eqs. (10)-{12).

The third term TEC in (1) refers to the total cost of energy in the
system, which is the sum of the cost of power produced by new and
existing DGs, supplied by ESSs and purchased from upstream at each
stage as in (4). Eq. (4) also includes the total energy costs incurred
after the last planning stage under the assumption of perpetual
planning horizon. These depend on the energy costs of the last
planning stage. The detailed mathematical expressions for computing
the cost of DG power produced and ESS power supplied as well as
that of purchased power are given n (13), (14) and { 15), respectively.



The fourth term TENSC represents the total cost of unserved power in
the system, given as in (5). And, this is computed using Eq. (16). The
last term TEmiC gathers the total emission costs in the system, given
by the sum of emission costs for the existing and new DGs (17)-(19)
as well that of purchased power (20).

Minimize TC =y« TInvC + yo s TMC + y2 s TEC + ¥y
* TENSC + ys + TEmiC
TinwC = ¥, (1 + )7 Ine % + InvCPN + InveCE) fr
KoV of mrestment cost
TMEC = Yppne(1 + 7178 (MneCPY + MneCPNs + MarCE) +
NEV of mointengnce costs ‘.3}
(1 + r)y~ " (MneCES + MnoCENS + MniCF5)/r
NPV maintenance costs incured after stage T
TEC = ¥,ont(1 + 1)t (ECP® + ECF* + ECFFy +

NEV of operation costs i4)
(1+r)y T(ECRY + ECF* + ECER)jr
NPV operation costs incured after stage T
TENSC = Yeenel(l +r)t ENSC, +
NPV of reliability costs ‘.5}
{1+ TENSCr/r
NPV relicbility costs incured after stage T

TEmIC = Lene(l + r)78 (EmiCl? + EmiCEs) +

(1)

2)

NPV rmi{:iﬂnm:!s . :’ﬁ}
(14 ry T (EmiCE® + EmiCE) fr

NPV emission costs incured after stoge T

be rl1+r)tTe
fﬂl:l‘C: L Eﬂ‘”” Eim‘mmg.i(:‘g.i.! = [?.J
Xoir-1) iwherex ;0 =10
{14r) "k
InvCPN = Etexﬂﬁrﬁffkthr — X))+
i1+ LT
Besenss Lyrpntr (:(_:Si_]-r"[_ll 1Cer (Irr.s:.: - xrr.u.r—1} ; where xpg = )
0 and Xy zop=p
(1+ :Ii'l'm
h"':'l-:"‘cI!E-l; = Ecmﬁ Z.‘m‘mff}[xmu - (%)
Xegip—y) iwherex, ;=0
MHEEFE = Egeﬂs Eimj Mcgﬂ xg.i,r + Zg:ﬂﬂ Efgn‘ MC: ug,i,t { lﬂ]
MatCPNs = 5, e MCE ug, +
N £ N (1)

et MO X4 E e neer MCE W g + B qoe MOE Xpr 5oy
n’“’:l-t‘d:-rllg-c = Ec:ﬂ‘-' Efgﬂ] Mce:xu,i,l: { 12]

Eclaﬂ = E:{.ﬂ‘ P szﬂ"' L Egeﬂs EE:HJ Eﬂcgi;,w.tpgmj.s.w,l + (13)

Dc;i,s,w_! PgEl:l,_uvt)
dch

ECES = ¥oons e Buen™ T Deseass A5 Prcicms (14)
Ec:ss = Eiens Ps Bwenw T Egem' 1:,,,,.?3,«.: (15)
ENSEI: - Zs\rﬂ‘ Dy Emﬂ"‘ Ei,gn‘ My "5.w,!'5i,:,w,t { lﬁ]
E'i‘]"l:ilf.'f‘“"T = Emiﬂf" + Emiﬂf {17

E"]‘Tilf-'raI = Xeens Ps Lwen™ My Egm&' zigﬂJ -lf?:: Engpgﬂ:.w,: (18)

. o
Emuf.‘f = Xoens O Bwenw My Egrﬂd' Ei:rrf*]-;,w: ER;'FQE:L:MJ (19)
Emicrss = Eeens fis Bwenw Ty El;eﬂ‘-'zizﬂ‘ t,?vz_!EERgSPg.ss.w,! 20)
B. Constrainis
The active power balance at each node is enforced by:
zgr!lﬂ': [.Pgi:i.s.w,! + P;i:,w,t;] + Ee:rn“{PEd;:-i.hJM.t - Pg:i.:m.t] +
Pl;s,.f.w,! + Eim,ktipk,:m.t - Ewt,ktipk,:,w,t + 'Ei,.i,w,t = [2]}

Finkei 0.5k a0 + Dot iei 0.5@ksuws + Dhe 1 ¥, Yeel

Eqg. (21} denotes that the sum of all incoming flows should be equal
to the sum of all outgoing flows at each node. Note that losses in
every feeder are considered as “virtual loads™ which are equally
distnbuted between the nodes connecting the feeder. Note that
losses are a quadratic function of flows (not shown here). Hence,
they are lineanzed using first order approximation, as in [19].

For the sake of simplicity, a genenc ESS 15 emploved here.
And, this 1s modeled by the set of constraints in (22)(28). Egs. (22)
and (23) represent the bounds of power capacity of the ESS while
being charged and discharged, respectively. Inequality (24) prevents
simultaneous charging and discharging operation of ESS at the same
operational time w. The amount of stored energy within the ESS
reservolr at a given operational time w as a function of the energy
stored until w—1 is given by (25). The maximum and minimum
levels of storages in the operational time w are also considered through
inequality (26). Eq. (27) shows the initial level of stored energy in the
ESS as a function of its maximum reservorr capacity. In a multi-stage
planning approach, Eq. (28) ensures that the initial level of energy in
the ESS at a given year is equal to the final level of energy in the ESS
in the preceding vear. Here, n2c" is assumed to be 1/n5h.

0= F:srfi.s.w,: = f::i:.w,:xr:.hpif“u 22)

0= P::{:ﬁ,w,t = I::.E,:,w,t zﬁi.tﬂc:i'mu {23}
Iisme + 1aTswe 1 (24)

Evcisme = EE_SJ.S.W—IJ + n:h.espg.:i.:.w.t - “dck.zfpf:.rr:.:.w,! 125)
Bt Xesie = Eesinwe < XejeEngy 26)
Eesiswott = MesXesit1Eps] 27)

Eosismytsr = Epsizwe (28)

Motice that mequalities (22) and (23) involve products of
charging/discharging indicator vanables and investment vanable. In
order to linearize this, new continuous positive variables z::,i.s.w.h and
zdeh e which replaces the bilinear products in each constraint, is
introduced such that the set of linear constraints in (29) and (30) hold.
For instance, the product 12, | %e.:. is replaced by the positive
variable zdch . Then, the bilinear product is decoupled by
introducing the set of constraints in (29) [20].

SAB I s} Tt S Xesiz i Tongoms

deh max
Z Xesis — (1 - ‘;ﬂ.i:.lv.r)xﬂ

dch
Zesisuwt

(29)

Similarly, the product IZR; . ¥e.i0is decoupled by including the
following set of constraints:
ch max pch . ch . ok
Ze iz wt = Xes Ie:,i.:.w.t v Zes izt = Xecit i Zoxiswt

= x!!',i,.t - (1 - f:.:‘:i,s,w_r}xgu [30}

The active power limits of existing generators are given by (31). In
the case of new generators, the comesponding constraints are (32).
MNote that the binary variables multiply both bounds to make sure that
the power generation variable 15 zero when the generator remains
erther unutilized or unselected for investment.

Tmin E Emax
[FRERTTS u?ﬂ.-l'.-t . PS.LSM'.E =3 Rg,i,:.w,l: us'.i.t [3 Iy

N min N N max
Fg.i.uv.txa-i-t = Psr-i-saw-f = %.i.s.w.: Xt (32)

It should be noted that these constraints are applicable only for
conventional D{Gs. In the case of variable generation sources (such as
wind and solar PV, the upper bound P, . should be set equal to the
minimum of the actual production level at a given hour, which is
dependent on the level of primary energy source (wind speed and solar
radiation), and the rated (installed) capacity of the generating unit
And, the lower bound Fg3%, . in this case is simply set to zero.

The set of logical constraints in (33) ensure that an investment
decision cannot be reversed. In addition to the constraints descnibed



above, the direct current (DC) based network model and radiality
related constraints presented in [19] are used here.

Xie 2 Xpg—1i Xgir 2= Xgie-17 (33)

xu,i,l! = xﬂ',i..l!— 1

IV. RESULTS AND DISCUSSIONS

A standard IEEE 33-bus radial distribution network, shown in Fig.
I, 15 used here for carrying out the required analysis mentioned earlier.
The system has a rated voltage of 12.66 kV, and a total demand of
3.715 MW and 2.3 MVAr. Network data and other related information
about this test system can be found mm [21]. Other data and
assumptions made throughout this paper are as follows. The planning
horizon is 3 years long, which is divided into vearly planning stages,
and a fixed interest rate of 7% is used. The expected lifetime of ESS is
assumed to be 15 years while that of DGs and feeders is 25 years. Two
investment options with installed capacities of 0.5 and 1.0 MVA are
considered for each wind and solar PV type DG units. The installation
cost and emission related data of these DG units, provided in [22], are
used here. For the sake of simplicity, all maintenance costs of DiGs are
assumed to be 2% of the corresponding investment costs while that of
feeders is 450 €/km/year. The investment cost of each feeder is 38700
Ekm. The current limits of all feeders is assumed to be 200 A except
for those between nodes | and 9 which is 400 A. It 1s assumed that all
feeders can be switched on/off, if deemed necessary.

In addition, it 15 assumed that wind and solar power sources are
uniformly available at every node. The operational vanability and
uncertamnty introduced by wind and solar PV type DO, demand and
electricity price are accounted for via the clustering method proposed
in [23]. The maximum allowable bus voltage deviation in the system
is set to 5%, and node | is considered as a reference with a voltage
magnitude of 1.0. Annual demand growths of 0%, 5% and 10% are
also considered in all simulations. Emission prices in the first, second
and third stages are set to 25, 45 and 60 €4C0O2e, respectively, and the
emission rate of power purchased from upstream is arbitrarily set to
0.4 tCO2eMWh. The cost of unserved energy 1s 2000 €MWh. A
power factor of 0.9 15 considered in the system, and 15 assumed to be
the same throughout. The base power 1s set to | MVA.

The computed wvalues of relevant vanables are analyzed for
different cases (as depicted in Table I) over the three years planning
horizon. Case | represents the base case topology where no
investments are made while Case 2 considers an optimal
reconfiguration but with no investments. Cases 3 and 4 both consider
investments in DGs only but differ in that the former does not change
the network topology and the latter uses optimal switching. The last
two cases comespond to scenanos where investments i DGs are
coordinated with that of ESSs. Case 5 uses the topology m the base-
case while Case 6 uses network reconfiguration. The results in Table [
reveal the significant differences in overall NPV cost in the system,
share of energy supplied by RES and ESS combined, cost of total
network losses and unserved power among  the aforementioned cases.
The results are also compared with the base case system where no
investments are made and the network topology is held the same.
Metwork reconfiguration alone, as in Case 2, results in about 8.4% in
the cost of losses, and a 3. 1% reduction in the NPV overall system cost
compared with that of Case 1.

Fig. 1 Single line diagram of the test system in base case.

TABLE L. RESULTS OF RELEVANT VARIABLES FOR DIFFERENT CASES

Energy suppled Tatal cost of | Tolal mstalled soee
Tostal cost by RES and ESS | Total cost of urserved (pu. b

Cases® | (707 (kE} (%) lomses (k) | power (k€) | Wind [ Salar [ESS
1 1544791 0.0 108950 1505.70] 0.0 | 00 o0

1 14044 38 o o7 &3] oo o0 [ oo [oo

3 33::1.51% 551 433,58 16179 60 [ 30 |00

4 311060 553 404.59) oo a0 [ 30 oo

B 26522, 10 (e 118.33 ool 50 [ 10 50

3 2651657 [ 212,73 oo 80 | 10 3 0

*ase |- Base case; Case 2 Optomal saitching with no f; Case 3: DO n
base case topology; Case 4: DG orestment under optimal switching: Case 50 DO md’EEA
inrestment on bare care fapolegy; Case & DG and ESS irrestmcnt under optimal swilching.

In addition, network reconfiguration avoids a total of 3963 kVA
load curtailment {or 256.9 kWA in Case 3) that would otherwise occur
at nodes 17, 18, 32 and 33 due to voltage limit constraints in Case 1.

Another more interesting observation from Table [ is that Cases 3
and 4 result in (approximately) 60% reductions in the overall cost of
the system and the amount of imported energy. Wind and solar power
sources are complementary by nature. This important phenomenon
seems to be exploited when DG investments are not accompanied by
investments in ESSs (Le Cases 3 and 4). This is because, according to
the DG mvestment solution in Table I, the operational variability in
the system seems to be handled by investing an appreciable amount in
both complementary power sources (wind and solar). This can also be
seen from the level of demand covered by RESs, which is about 58%.

The results corresponding to Cases 5 and 6 show that the total cost
and cost of losses are dramatically reduced by more than 41.6% and
80% respectively. This reveals the substatial benefits of coordinating
investments DG with ESSs. Generally, ESSs significantly improve
system flexibility, enabling large-scale accommodation RES energy.
Interestingly, the total amount of installed DGs (9 MW) 15 the same for
Cases 3—6 Le. withfwithout ESSs. Even if this 15 the case, in the
absence of ESSs (Cases 3 and 4), there may be spillage of RES power
when the demand 1s lower than the total generated power. However,
the installation of ESSs leads to an efficient utilzation of RES power.
This is evident from the amount of energy consumption covered by the
combined energy supplied by RESs and ESSs in Cases 5 and 6 15
about 89%. Nomally, network switching capability also improves
system flexabihity, leading to a high level RES penetration. In this
particular study, the effect of network switching on the level of RES
power absorbed by the system is not significant as one can observe in
Table 1. This may however be case-dependent. A more frequent
switching capability could, for instance, have significant impact.

The optimal location and size of installed DGs comresponding to
Cases 3 through 6 15 shown im Fig. 2. The average voltage profiles at
each node and for each case are depicted in Fig. 3. It is interesting to
see in this figure the substantial contnbutions of DiGs and ESS
installations to voltage profile improvement. As shown m Fig. 3, the
coordinated integration of DGs and ESSs (1Le. Case &), especially leads
to the best voltage profile. Fig. 4 demonstrates the optimal network
topology, DG and ESS locations comesponding to this case. The
benefit of joint DG and ESS investments along with network
reconfiguration in terms of losses reduction (over 84% on average) can
be seen from Fig. 5. The spikes observed in Case & are because of the
variability in RES power injected into the system.

ad
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installed { MVA)
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Fig. 2 Optimal placement and size of DGs under different cases.
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Fig. 4 Optimal locations of DGs and ESSs under Case 6 (Opened switches 28-
29, 820, 9-15, 1833, 12-22).

Operational snapshots
Fig. 5 Total svstem losses profile.

V. CONCLUSIONS

This paper has investigated the impacts of installing DESSs as
well as network switching and/or reinforcement on the level of
renewable power integrated in the system. A mixed integer limear
programming (MILP) model was developed for this purpose, which
involves joint optimization of placement and sizing of RES-based DGs
and ESS5s in coordination with optimal network switching. Numerical
results showed the capability of ESSs integration in dramatically
increasing the level and optimal explotation of renewable DGs.
According to the simulation results, the simultaneous integration of
DGs and ESSs resulted in an overall cost and average losses reduction
of 41% and 84%, respectively. The optimal network reconfiguration,
DG and ESS installations (jointly or separately) substantially
contributed to voltage stability. In the particular case study, the impact
of network switching on RES power integration was not significant.
However, it should be noted that this can be case-dependent.
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