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Resumo 

 O estudo de tecidos celulares fornece uma incontestável fonte de conhecimento e 

compreensão acerca do corpo humano e do ambiente que o rodeia. Aceder a esta informação 

é, portanto, crucial para determinar e diagnosticar uma grande variedade de patologias, 

detetáveis somente ao nível microscópico. A histologia desempenha um papel importante na 

observação de células e suas características anatómicas, e igualmente para o diagnóstico clínico 

de patologias involvendo uma anormal conformação celular. Nas imagens histológicas, 

algoritmos de segmentação semi-automáticos ou automáticos são capazes de separar e 

identificar estruturas celulares de acordo com as suas diferenças morfológicas. Estes algoritmos 

de segmentação são a primeira abordagem a sistemas de visão computacional e, no que respeita 

à histopatologia, o diagnóstico automático de imagens histológicas. Como as amostras 

histológicas têm uma espessura reduzida, as características volumétricas são quase 

imperceptíveis, correespondendo a perdas de informação valiosas, principalmente topográficas 

e volumétricas, críticas para um correcto diagnóstico. 

 Consequentemente, a combinação de algoritmos de segmentação e reconstrução 3D 

aplicados a datasets de imagens histológicas fornecem uma maior informação acerca da 

patologia analisada e estruturas microscópicas, destacando regiões anormais. 

 Tendo isto em consideração, o presente trabalho focou-se em desenvolver algoritmo 

computacional automático capaz de realizar reconstrução 3D de superfícies de tecidos 

relevantes em secções histológicas 2D. Uma primeira abordagem foi desenvolvida focada em 

destacar as estruturas relevantes nas secções de tecido. Depois, um estudo feito com base em 

algoritmos de registo de imagem foi levado a cabo para descobrir qual a metodologia mais 

indicada para alinhar as secções provenientes de datasets de imagens. Combinando os melhores 

métodos de processamento e registo de imagem (resultado DICE para caso 1: ; resultado DICE 

para caso 2: ; resultado DICE para caso 3: ), avaliados em abordagens prévias, em conjunto com 

um algoritmo de reconstrução 3D foi possível uma representação volumétrica das estruturas de 

tecidos pertinentes do dataset de imagens alinhadas. 
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Abstract 

The study of cellular tissues provides an incontestable source of information and 

comprehension about the human body and the surrounding environment. Accessing this 

information is, therefore, crucial to determine and diagnose a wide variety of pathologies 

detectable only at a microscopic scale. Histology plays an important role in the observation of 

cells and their anatomical features, and so for clinical diagnosis of all the pathologies involving 

abnormal cellular conformation. In the histological images, semi-automated or automated 

segmentation algorithms are able to separate and identify cellular structures according to 

morphological differences. These segmentation algorithms are the first approach for 

computational vision systems and, concerning histopathology, the automated diagnose of 

histological images. Since the histological samples are thin, the volumetric features are almost 

unnoticeable, corresponding to losses of valuable information, mainly topographical and 

volumetric data, critical for a correct diagnostic.  

Hence, the combination of segmentation and 3D reconstruction algorithms applied to 

histological image datasets provides more information about the analysed pathology and 

microscopic structures, highlighting abnormal areas.  

Taking this into consideration, the present work focussed on developing an automatic 

computational algorithm capable of performing the 3D surface reconstruction of relevant tissue 

structures of 2D histological slices. A first approach was developed fixed on highlighting the 

relevant structures from the tissue sections. After that, a study on image registration algorithms 

was conducted to find the most suited methodology to align the slices from histological image 

datasets. Combining the top-performing image processing and registration methods (DICE score: 

0.9267±0.0337 for Case 1; 0.9367±0.0356 for Case 2; 0.9683±0.0283 for Case 3), evaluated in 

the previous approaches, with a 3D surface reconstruction algorithm it was possible to calculate 

a volumetric representation of the pertinent tissue structures from the aligned image dataset. 
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Chapter 1 

Introduction 

1.1 - Motivation 

 Histological studies provide an important help in the understanding of some complex 

pathophysiological processes concerning diseases at the cellular scale. These studies are 

considered the gold standard for assessing the natural response of a cellular tissue in face of a 

pathology or therapeutic intervention (Chakravarty, Bedell et al. 2008). To produce 

histopathology slides, a rather complex protocol must be executed involving a substantial 

amount of human labor and information processing (Randell, Ruddle et al. 2012).  

 Although in-vivo imaging techniques, such as the MRI and PET, assess anatomical and 

pathological information without invasive procedures, they require extensive validation when 

compared to histological ex-vivo examinations (Chakravarty, Bedell et al. 2008).  

 Visual interpretation, the core of most medical diagnostic procedures and the final 

diagnostic decision for cancer and other diseases, is based on tissue examination. This method 

requires a long time, intensive manual labor to produce viable results and presents a sampling 

bias that promotes intra- and inter-reviewer discrepancies when analysing histological tissues 

(Sertel, Kong et al. 2009). Thus, it is clear the need for automated processes concerning 

morphology diagnostics in medicine, to improve the diagnostic accuracy and provide a fast and 

reliable second opinion to histopathologists. Automated systems can reduce human factor 

mistakes and increase the speed of diagnostic processes (Nedzved, Belotserkovsky et al. 2005).  

 The volumetric data analysis from relevant tissue structures visible from 2D histological 

slices is not often a straightforward process, requiring a great amount of experience from 

histopathologists (Koshi, Holla et al. 1997). Therefore, three dimensional reconstruction of 

tissue samples at a microscopic resolution reveals significant potential to improve the study of 
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disease processes when structural or spatial modifications are involved (D. 1978). The 

combination of 3D image reconstruction methodologies with staining techniques provides a 

better understanding on functional information concerning the cellular structures (Roberts, 

Magee et al. 2012).  

 Hence, there is an urge to develop fully automated approaches for tissue analysis in 

histological section images, combining the best computational methods to produce an accurate 

and reliable 3D reconstruction algorithm, enhancing this way the medical study and clinical 

diagnostic of various diseases. The implementation of these algorithms could provide a better 

insight into the intricate spatial relations between the studied cell tissues and surrounding 

tissues. 

 With this in mind, a computational framework was developed in this study, composed by 

several image processing and registration algorithms and culminating in a 3D tissue 

reconstruction method. To accomplish this, a previous literature review was performed on the 

most suited methods to perform each task, as well as histological image notions, crucial to 

correctly analyse the image datasets tested to validate the developed algorithm, and also to 

define the relevant tissue structure to be reconstructed.  

1.2 - Objectives 

The present study aimed, primarily, the review and evaluation of currently implemented 

image processing and registration techniques in the literature, ranging from standard pre-

processing methods to complex image registration frameworks, and recently developed 

algorithms for histological image analysis.   

With all the concepts and information gathered from the literature review, it was possible 

to pursue the main goal of this study, which consisted in the development of a completely 

automatic computational framework, capable of performing accurate histological image 

alignment and 3D reconstruction of tissues. Therefore, providing detailed volumetric 

information concerning relevant tissues features, unobtainable through 2D conventional slice 

analysis. The objectives behind each step developed for the final framework, are explained 

below. 

Image pre-processing – first step, developed to accomplish the highest color 

differentiation between tissues with distinct stains, with several contrast enhancement 

methods being tested. 

Image segmentation – aiming to provide the most accurate discrimination between 

different tissue stains and/or other interesting structures in the histological images, 

previously pre-processed. 

Image registration – for the implementation of this step, the great focus was to achieve 

the most correct slice alignment, thus, mimicking the original disposition of histological 

tissues in natural conditions, before the tissue preparation procedure.  
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3D surface reconstruction – this final procedure enables the interpolation and surface 

reconstruction of the previously processed and aligned stack of slices. The main objective 

with this step is to provide detailed three dimensional insight over commonly studied 2D tissue 

structures, such as neoplasic tissues. 

 

1.3 - Document Structure 

The present work is divided in 4 chapters, besides the introduction. A brief description 

on the contents and subjects addressed in each one is provided below.  

 

Chapter 2 - Literature Review: On this chapter, an introduction to histology and its 

importance as a way to assess cellular responses to pathogens or treatments at a microscopic 

level is addressed, as well as the standard histological tissue sample preparation, for 

microscopic observation. This last topic is also discussed, including standard and recent 

techniques to perform microscopic observation on histological tissue sections. In this chapter, 

it is also presented a review on both standard and recently developed image processing 

methods, including pre-processing techniques, segmentation methods and registration 

algorithms, implemented on stained histological images. 

 

Chapter 3 – Methodology: This chapter describes the implemented methodology in this 

project, approaching first the pre-processing techniques tested, followed by image registration 

frameworks and culminating in the final workflow. The histological image dataset used to test 

the developed computational framework is also described in this chapter. 

  

Chapter 4 – Results and Discussion: In this chapter, all the results obtained either from 

pre-processing methods, segmentation or registration methodologies are presented and 

systematically discussed. 

 

Chapter 5 – Conclusion: This last chapter, comprehends the final conclusions about the 

results, obtained through the performed study, in addition to future development perspectives. 

  

1.4 - Principal Contributions 

 The principal contributions provided by the present work can be subdivided into two 

domains: the literature review and the developed computational framework.  

 The literature review presented represents an introduction to researchers or developers 

interested and unfamiliar with histological tissue image processing methods, to fundamental 
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histology concepts as well as computational techniques, ranging from image pre-processing to 

image registration algorithms, suited for histological tissue samples. Furthermore, it also 

presents current state of the art methodologies for image registration, implemented in 

histological image datasets, which obtained successful slice alignment results. 

 

 The pre-processing preliminary evaluation on color space transformation methods, best 

suited to enhance color contrast in stained tissue images, is complete and the resultant image 

examples presented in this document provide a great insight on these simple algorithms to 

increase RGB color contrast, not only applicable to histological slices. The CLAHE-red technique 

was conceived for the present work, and it was proven to be the best pre-processing method 

to enhance stain contrast in H & E histological images, originating accurate tissue segmentation 

results, with simple clustering methods (kmeans).    

 The stain deconvolution algorithm, despite being based on previous works on the 

literature, the computational framework that enabled automatic stain discrimination was 

conceived and developed in this project. This was accomplished using simple techniques and 

the results obtained were consistent for most of the tested histology slices.  

 The entire computational framework proposed in this project enables the reconstruction 

of a three dimensional volume based on real histological tissue structures. It was achieved 

through the implementation of computationally cheap algorithms, and were obtained highly 

detailed volumetric representation, not only of differently stained tissues but also, in some 

cases, the accurate reconstruction of neoplasic tissues, present in the considered histological 

image datasets. 
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Chapter 2 

Literature Review 

 This chapter presents the essential concepts required to understand the topics under 

study as well as all the research done so far on the subject. 

Firstly, it will be presented an overview on the histological concepts concerning the 

current laboratory approach for acquisition of samples, as well as the relevant features of the 

different types of cellular tissues, since these images from the tissue samples represent the 

case study of this project. 

A study on the most suitable computational methods to process and extract information 

from the histological images is reviewed and analyzed further in this chapter. This literature 

review culminates in the presentation and analysis of the most accurate 3D reconstruction 

algorithms for biological images, regarding the future reconstruction of certain relevant 

portions of cellular tissues in the histological samples. 

2.1. Histology 

 Histology is the science that is devoted to study the detailed morphology of cells and 

tissues concerning the way in which these constitute the different organs in the body, at a 

microscopic level. The methods implemented by histologists require the study of living cells 

outside the conditions in which their development is natural, imposing a controlled 

environment (Junqueira and Carneiro 1987).   

 Histological studies provide an important help in the understanding of some complex 

pathophysiological processes concerning diseases at the cellular scale. Since these studies are 

also fundamental to evaluate the performance of new therapies and drug agents, they are 

considered the gold standard for assessing the natural response of a cellular tissue in face of a 
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pathology or therapeutic intervention (Chakravarty, Bedell et al. 2008). The histological 

investigation, or the analysis of cell structures and tissues of different parts of the human body, 

is the focus of medical morphology, which is considered the most decisive method in the 

diagnostic of several human diseases (Nedzved, Belotserkovsky et al. 2005). Histopathologists 

can diagnose cancer and other pathologies through the observation under the microscope of 

sections of human or animal tissues (Randell, Ruddle et al. 2012). This histopathological 

diagnostic can be attained, for example, through the knowledge of some particular histological 

patterns, visible at the microscope, that are specific for a certain tumour or group of tumours, 

thus helping to provide and deliver the adequate treatment (Dive, Bodhade et al. 2014).  

 Considering that histological studies require biopsies or ex-vivo models, considering animal 

examinations (impossible to perform in live specimens), to assess disease and therapeutic 

efficiency tests results, these methods present serious disadvantages when compared to 

powerful imaging methods, such as high-resolution magnetic resonance imaging (MRI) and 

positron emission tomography (PET) scanners that are non-invasive and can be performed in in-

vivo models, enabling longitudinal studies of the same specimen. Despite these advantages, 

the last methods require an extensive validation when compared to the gold-standard ex-vivo 

methods (histological observations)  (Chakravarty, Bedell et al. 2008), highlighting the 

relevance of the histological methods nowadays.  

 Further in this section, the fundaments of histology are introduced and the procedure 

involved in the production of tissue samples for microscopic observation, as well as the 

different tissue types existent in the human body are explained.  

2.1.1. Tissue Types 

 All tissues share the same basic biological components, cells and extracellular matrix 

(ECM). The latter is constituted by a complex and deeply organized network of biomolecules 

that surrounds the cells forming an intensive connection, in order to grant and supply all the 

necessary nutrients and molecules demanded by the organism (Junqueira and Carneiro 1987). 

 The human body is composed by four principal types of cellular tissues, the epithelial 

tissue, the connective tissue, the muscle and the nervous tissue. The functional, structural, 

molecular and visual characteristics of these four types of tissue are explored bellow. 

  

 Epithelial tissue is formed by tightly united sections of cells that cover all body surfaces, 

such as skin and intestine (except the articular cartilage), and represent the functional units 

of secretory glands. The epithelium presents a reduced amount of ECM and it stands over a 

basement membrane, a thin layer of specialized ECM that supports the epithelial structure 

providing mechanical bracing, attachment site and acts as a selective filtration barrier. The 

epithelial tissue can be classified in three main categories according to the number of cell 

layers that compose the tissue. Simple epithelia is formed by one layer of cells and the 

Stratified epithelia by two or more layers of cells. The third type is the Pseudostratified 
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epithelia that, despite being also composed by one layer, not all the cells contact with the 

epithelium’s surface resulting in an irregular distribution of the cell’s nucleus. These categories 

can be subdivided, based on the shape of the cells present in the surface layer in squamous, 

cuboid and columnar (note: epithelia is the plural form of epithelium) (Junqueira and Carneiro 

1987, Paulsson 1992, Kierszenbaum 2007). Figure 1 illustrates the different categories of 

epithelial tissue.  

 

 

Number of cell layers 

 

Simple 

 

Stratified 

 

Pseudostratified 

 

 

 

Shape 

 

Cuboid Squamous Columnar 

 
 

 

Figure 1. Epithelial tissue classification according to the number of cell layers and cellular shape. Adapted 
from Leeds University Histology Guide (Michelle Peckham 2003). 

 

 Connective tissue is responsible for providing a support and connection structure for all 

other tissues and cells of the body, contributing to its shape maintenance. The connective 

tissue is formed by ECM and cells but, unlike the epithelium, the intercellular distance is 

greater, due to the large presence of ECM components in tissue, surrounding the cells. 

Concerning the extracellular matrix composition, it is a combination of a large number of 

biomolecules, namely collagen (the most abundant), elastin (provides elastic resilience to the 
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connective tissue), fibronectin with the role of matrix’s structure organizer, glycoproteins and 

proteoglycans (Kierszenbaum 2007, Halper and Kjaer 2014).  

 The connective tissue can be classified in embryonic, adult and specialized connective 

tissue. The embryonic tissue is an unconstrained tissue developed during early embryonic 

stages, present in the umbilical cord. Adult connective tissue comprises a large diversity of 

structures due to the variable cell-to-ECM ratio, therefore leading to the subdivision in two 

types of tissue, the loose and the dense connective tissue. Loose tissue exhibits more cells than 

collagen fibers, and it is mainly present in the vicinity of nerves, blood vessels and muscles. On 

the other hand, the dense connective tissue is richer in ECM fibers, and it is present in tendons, 

ligaments and the dermis (skin). Specialized connective tissue includes tissues with special 

properties such as the adipose tissue, cartilage, bone and bone marrow tissue (Kierszenbaum 

2007).  

 Examples of the abovementioned adult connective tissues can be visualized in Figure 2. 

 

 

 

 Muscle tissue consists of elongated cells, the myofibers, especially designed for 

contraction, which is promoted by the mechanical energy produced in the cells. The cellular 

membrane of muscle cells is the sarcolemma and the cytosol is denominated sarcoplasm.  

 The muscle tissue is divided in three types: skeletal, cardiac and smooth muscles. The 

skeletal muscle is composed of bundles of long, cylindrical and multinucleated cells exhibiting 

transverse striations. This muscle tissue contract voluntarily in a fast and vigorous way. In the 

skeletal muscle fibers, the various nucleus are located in the peripheral part, a distinguishing 

factor when comparing to the cardiac muscles. The cardiac muscle cells present transverse 

striations, one or two centered nucleus as well as an elongated and ramified shape. These cells 

are united by intercalated disks and exhibit involuntary, vigorous and rhythmic contraction. 

The cardiac fibers are surrounded by a sheath of connective tissue that assures the muscle with 

a wide capillary network. The smooth muscle is originated from the aggregation of long cells, 

Figure 2. Representative images from adult loose connective tissue (left) and adult dense 
connective tissue (right). Adapted from Leeds University Histology Guide (Michelle 
Peckham 2003).  
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thicker in the center. This muscle tissue is coated by a basement membrane and structurally 

supported by a set of reticular fibers, enabling the simultaneous contraction of the entire 

muscle (Junqueira and Carneiro 1987, Kierszenbaum 2007). Illustrative images on the several 

types of muscles are shown in Figure 3, 4 and 5. 

 

 

Figure 3.  Histological image showing a 
transverse section of skeletal muscle. Adapted 
from Leeds University Histology Guide (Michelle 
Peckham 2003). 

 

 
Figure 4. Histological image showing cardiac 
muscle. Adapted from Leeds University Histology 
Guide (Michelle Peckham 2003).  
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Figure 5. Histological image from a section of 
smooth muscle. Adapted from Leeds University 
Histology Guide (Michelle Peckham 2003).  

 

 Nervous tissue interconnects itself in the body to create a network, the nervous system, 

which is divided into two subsystems, the central nervous system (CNS) and the peripheral 

nervous system (PNS). The brain and spinal cord are the major components of the CNS while 

the PNS comprises the nerves (extensions of the neurons, nervous cells) and peripheral ganglia, 

establishing the connection with the CNS. The nervous system is responsible for the detection 

of sensorial stimuli from the exterior environment, integration of the received sensorial 

information, coordination of vital functions in the body and transmission of motor stimulus to 

the muscles (Junqueira and Carneiro 1987, Kierszenbaum 2007).  

 The nervous tissue in the CNS is the combination of neurons and glial cells, the latter 

ensuring structural support and correct conditions in the neurons’ membrane for the 

transmission of electric signals. In the CNS there is a separation between the neurons’ cellular 

body and their extensions, corresponding to two visually distinct sections, the gray matter and 

the white matter (both sections contain glial cells) (Junqueira and Carneiro 1987). A 

histological sample of nervous tissue illustrating both white and grey matter is shown in Figure 

6. 

 

Figure 6. Histological image showing a 
section from cerebral cortex, stained with 
Golgi-Cox method (stains neurons in black). 
Adapted from Leeds University Histology 
Guide (Michelle Peckham 2003). 
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2.1.2. Sample Preparation 

 Considering that histology is the visualization of cells under the microscope, certain 

procedures must be performed in order to obtain thin tissue samples (slides) of the organ or 

biological structure under study. The process to study cellular tissues at the optical microscope 

(described in more detail in section 2.1.3) consists in the preparation of histological sections 

or slides (Junqueira and Carneiro 1987). To produce these slides, a rather complex protocol 

must be executed involving a substantial amount of human labor and information processing 

(Randell, Ruddle et al. 2012).  

 The specimens for analysis can range from small pieces of tissue collected from biopsies 

to entire organs. Most of these specimens are thick and cannot be traversed by light, thus 

justifying the slicing in thinner portions. The production process of glass slides consists, first, 

of a dissection step to, as already said, obtain tissue portions where the disease or area of 

interest is macroscopically located. Then, these tissue sections are chemically processed in a 

fixation step, followed by an inclusion procedure and after this, a new cut in the tissue block 

is performed using a microtome, a high precision cutting device, to obtain the final glass slice 

thickness (5 µm). An important staining procedure is performed finally in the tissue slides to 

increase the contrast of certain cellular structures (Junqueira and Carneiro 1987, Randell, 

Ruddle et al. 2012). A more detailed explanation on the fixation, inclusion and staining 

processes is presented below. 

 Fixation – the purpose of this process is to toughen and preserve the microstructure 

and molecular composition of the tissue, thus avoiding the enzymatic and bacterial 

digestion. The fixation process involves the immersion of the tissue sample in a 

denaturizing and stabilizing solution, which diffuses itself and penetrates into the 

interior of the sample. The most widely used fixation agent for observation in optical 

microscopy is a solution of formaldehyde at 4% (Junqueira and Carneiro 1987). 

 Inclusion – In order to obtain thin sections for microscope observation using the 

microtome, as stated, the previously fixated tissue samples must be embedded in 

paraffin (optical microscopy), or certain plastic resins (optical and electronic 

microscopy), to provide them a more rigid complexion. The inclusion step is often 

preceded by a dehydration and clearing steps to supplant the water present in the 

tissues by alcohol and then, the latter by xylene (paraffin is soluble in xylene) 

(Junqueira and Carneiro 1987). An alternative approach for this method that replaces 

both described fixation and inclusion steps is the frozen fixation, further described in 

this section.  

 Staining – Considering that one or more sections sliced from the tissue block may be 

placed on a single slide or several slides for comparison, they can be stained with a 

wide variety of chemical or immunologically based procedures. The staining methods 

selectively highlight several components in the tissues, cells and ECM. The prevalent 

staining technique is the haematoxylin and eosin method (H & E), capable of 
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highlighting most of the significant cellular structures in the tissues. This technique 

stains the cell nucleus and other acidic structures in blue or violet (haematoxylin) and 

in pink the cytoplasm and collagen (eosin). Other techniques enable the contrast of 

more specific tissue structures or organisms by recurring to histochemical reactions, 

and also, in the case of immunohistochemical stains, to assess the presence or absence 

of a certain protein. These methods are performed only when the H & E staining fails 

to accentuate the contrast of the studied structure in the tissue (Junqueira and 

Carneiro 1987, Randell, Ruddle et al. 2012). Representative images of the visual 

appearance under the microscope of the referred staining methods applied on cellular 

tissues are presented in Figure 7. 

 

 

 

 

 

 

 

 

 

Figure 7. Histology picture of a set of cells lining a duct stained with H & E (on 
the left), and a histology image stained with immunohistochemical techniques 
to enhance, in red, the presence of the protein actin in the cells (on the right). 
Adapted from Leeds University Histology Guide (Michelle Peckham 2003).  

 
 In the frozen fixation, the tissues to be analysed are rapidly frozen (replacing the chemical 

fixation and inclusion steps in the previous protocol), and then stained with H & E technique. 

Despite producing lower quality slides this method acquires slices in a shorter time, ideal when 

is required a fast examination of the tissue (Randell, Ruddle et al. 2012). 

2.1.3. Microscopy and Histological Sample Observation 

 After the preparation of histological samples (more details in section 2.1.2) the 

microscopic cellular structures present in them are observed under the microscope. In this 

section, the prevalent types of microscopy implemented to visualize and analyze those tissue 

slices as well as innovative methods to perform the observation and diagnostic of histological 

images are addressed. There are two major types of microscopy devices, the light or optical 

microscopes and the electronic microscopes. The most critical factor concerning a microscope 

is its resolution power or resolution limit, which is measured by the minimum distance between 

two particles in the image (Junqueira and Carneiro 1987, Randell, Ruddle et al. 2012). 

Functional and operational details concerning different microscopes of both groups are 

explained further. 
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 The conventional light or optical microscope exhibits images of the stained tissues 

through illumination, which transverses the sample, generated by a light source. It is composed 

by both mechanical and optical parts and has a limit resolution of 0.2 µm. The optical part 

comprises three sets of lenses, namely the condenser, the objectives and ocular lenses. The 

first condenses the light from the source to the histological sample, the objectives collect the 

light that crossed the sample and projects an augmented version of the received image, ranging 

the magnification from 2.5x to 40x, into the ocular lens also contributing for the final 

magnification in a factor of 10. The final magnification is then, the product of both objective 

and ocular magnification. However, by convention the ocular magnification factor is not 

included in image descriptions. Besides the normal light microscope, optical microscopy also 

comprises other two major types of microscopes, the confocal and the fluorescence 

microscopes (Junqueira and Carneiro 1987, Randell, Ruddle et al. 2012).  

 Confocal microscopes allow the focusing of thinner sections in the image, avoiding the 

observation of overlapping planes of the tissue, fact that degrades and reduces the image’s 

definition. In order to perform this specific focus, the light beam that crosses the histological 

sample is narrow and the tissue’s image must transverse a small orifice. Consequently, this 

setup only allows the focussed plane of the original image to reach the detector, blocking all 

other consecutive planes. Since only a thin section is focussed at a time it is possible the three 

dimensional (3D) reconstruction by gathering all the planes of the analyzed tissue, through a 

computational algorithm (application later explored in the following sections) (Junqueira and 

Carneiro 1987).  

 In fluorescence microscopy, the analyzed samples are lighted by a mercury light source 

and, by recurring to certain filters the wave-length of the projected light can be regulated. 

Certain biological structures present in the tissue sample have affinity to fluorescent 

substances that when excited by the projected light they answer by emitting light in specific 

wave-length. Through the application of this technique certain biological components exhibit 

bright colors in the observed image, being highlighted from the surroundings (Junqueira and 

Carneiro 1987).   

  

 Electronic microscopy is based on the interaction between electrons and the tissues 

present in the sample to be analyzed. Considering that light microscopes have a limit resolution 

of 0.2 µm, electron microscopy represents a more accurate solution, offering a more detailed 

image of smaller components in the studied tissue with a limit resolution of approximately 3 

nm. Nowadays, exist two types of electron microscopes, transmission and scanning electron 

microscopes (Junqueira and Carneiro 1987).  

 Transmission microscopes possess a resolving power of approximately 3 nm, thus allowing 

the detailed observation of isolated biomolecules or particles 400 thousand times magnified. 

For entire tissue samples, the magnifying power is reduced to 120 thousand times, still a high 

resolution when compared with the optical microscope. The operating mode of this microscope 

is based on the detour of electrons when in contact with magnetic fields analogous to lens’ 
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light reflection in the optical microscope. The electron beam is produced upon heating a 

tungsten cathode, and, due to a voltage potential between the latter and the anode, the 

electrons are accelerated and transverse in high speed the microscope tube. In the tube, the 

beam is condensed through an electromagnetic lens (coils) and interacts with the tissue sample, 

traversing it and being consecutively amplified by a sequence of magnifying lenses. In the end, 

the electrons reach a detector (fluorescence plate) and imprint a black and white image of the 

analyzed sample. The printed grayscale is done according to the amount of electrons that 

crossed the microscope’s column and so, the tissue sample. Darker spots are electron-dense 

areas, meaning that more electrons traversed the tissue unaltered, not encountering any 

structure (Junqueira and Carneiro 1987). 

 Scanning microscopes acquire almost 3D images from the surface of tissues and cells in 

the analyzed sample. To perform this, the tissue is covered with a metallic coating, and a 

narrow electron beam is directed to the sample going through the entire surface of the tissue, 

without traversing it, in opposition to the transmission microscopes. The emitted electrons 

reflect on the surface and are collected by a detector, amplifying them and, with the 

intervention of other electronic components, a signal is produced in the form of a black and 

white image, similar to the transmission microscope. 

 The images produced by this electron microscopy equipment can be consulted in a monitor 

or stored (Junqueira and Carneiro 1987). 

 

 Examples of biological images collected from some of the previously referred types of 

microscopes are depicted in Figure 8. 

 

 

Figure 8. Comparative images acquired from optical microscopy (a) and electron microscopy (b). 
Image (a) is a light micrograph of Harderian gland from a neonate Alligator mississipiensis stained with 
Methyl Green-Pyronin Y (bv-blood vessel; hg-Harderian gland and ln-lymphatic node). Adapted from 
(Rehorek and Smith 2007). Image (b) is a micrograph of a section of mouse liver stained in a saturated 
solution of uranyl acetate (m-mitochondria and p-highly dense RNA particles). Adapted from (Watson 
1958). 
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 Recent alternatives to the microscopic current approaches have been developed. In order 

to counter the extensive time dispensed in learning and accustoming to the microscope usage 

and considering the decrease in use of these devices in medical schools (Randell, Ruddle et al. 

2013), these institutions have been using virtual slides (Histopathology slides scanned and 

stored as digital images), for teaching purposes. These slides allow a greater interaction 

between the students and the relevant morphological features present in the visualized tissue 

(Kumar, Velan et al. 2004).  

 In Leeds University, Randell R. and collaborators have developed a virtual reality 

microscope that consists of a wall-sized high-definition display (Powerwall) capable of 

rendering gigapixel virtual slides in real time (Figure 9). This system provides a five times 

greater slide area than conventional microscopes with equivalent magnification, and since it 

has a wall-size is better suited for group interpretation. This novel approach enables students 

to cooperatively interpret the displayed images, showing a more interactive apprenticeship. A 

complementary study, performed by Treanor D. and co-workers, aimed to verify this new 

solution for virtual slides analysis as a viable replacement for conventional microscopy in the 

histopathologists’ investigation and diagnostic routine. In fact, the diagnostic made by 

consulting virtual slices takes 60% longer, mainly due to the considerable amount of time spent 

to navigate across the entire image in the small display size, provided by common computer 

monitors and inadequate user interfaces. With this in mind, the aim of this study was to assess 

if by increasing the display size, using the Powerwall, the diagnostic would reach similar speed 

when comparing to conventional microscopy. The performed test in this study involved a simple 

diagnosis, finding small objects in the image, a decision about a lymph node and score a tissue 

microarray. By using the virtual microscope, histopathologists performed clinical diagnostics 

and all the other assigned tasks in similar times as when using a conventional microscope 

(Treanor, Jordan‐Owers et al. 2009, Randell, Hutchins et al. 2012, Randell, Ruddle et al. 2013).  

 

Figure 9. Leeds University wall-sized virtual 
microscope. Adapted from (Randell, Hutchins et al. 
2012). 

 
 In the University of South Carolina School of Medicine, according to (Blake, Lavoie et al. 

2003), the transition and implementation of virtual slides and virtual microscopes for teaching 
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purposes was performed. The histological slides were scanned and viewed up to a 400x 

magnification recurring to the MrSID viewer (wavelet-based multiresolution seamless image 

database, property of LizardTech (Hovanes, Deal et al. 1999)) and the computer as a virtual 

microscope. The stated approach possesses useful features, including effective microscope and 

telescope functions providing greater versatility for tissue sample study and increased speed in 

localizing the structures of interest, when compared to the conventional microscope. 

 In light of the stated, digital pathology promises interesting advantages, both in terms of 

efficiency and safety considering conventional microscopy procedures (Randell, Ruddle et al. 

2012). Potential advantages associated to a digital system reside in the possibility to alert 

histopathologists about the presence of new slides or cases to be analyzed (similar to the 

workflow in radiology diagnostics) and provide an easier cooperation between technicians when 

investigating a particular case. The latter is extremely important in the workflow of specialists, 

since this digital method allows a faster and safer way to share microscopic visualizations of 

tissue samples with other specialists, from other labs and also countries, to obtain second 

opinions, an extremely important procedure to ensure a flawless diagnostic. With the digital 

procedure, slides can be simultaneously sent to several histopathologists and, since the physical 

transportation of those slides is inexistent, there is a reduced risk of losing or mixing them, 

thus avoiding an erroneous diagnostic (Della Mea, Demichelis et al. 2006, Gilbertson, Ho et al. 

2006, Nakhleh 2008).  Also with the purpose of providing a fast and accurate second opinion 

to doctors and histopathologists, several computational methods are being developed to 

process and analyze digital tissue images. Some of those methods are introduced in following 

sections. 
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2.2. Image Processing 

 The first approach in order to acquire visual features and information from images, in the 

particular case of this study, from histological images, involves some computational strategies 

constituting the image processing procedure. 

 The beginnings of image processing trace back to the middle of the 20th century, when it 

started to be applied to improve microscope image’s quality, basically through frequency 

filtering (signal-to-noise ratio, contrast and image restoration methods). Real developments 

were made since then, and the analog image processing was replaced by digital image 

processing with the advent of powerful computers capable of applying sophisticated algorithms 

to large images in an acceptable amount of time (Bonnet 2004). 

 Since the visual interpretation is the core of most medical diagnostic procedures and the 

final diagnostic decision, for cancer and other diseases, is based on tissue examination, 

medicine represents a large application field for image processing and analysis algorithms 

(Bengtsson 2003). However, visual interpretation and evaluation present several weaknesses. 

For pathologists, it is a time-consuming, cumbersome and tedious process to analyze a large 

number of tissue samples in practice, thus requiring a long time and intensive manual labor to 

produce viable results. Besides from this problem, visual evaluations can, in many cases, be 

subject to unacceptable inter and intra-reviewer discrepancies (20% discrepancy between 

central and institutional reviewers, as reported by Teot L.A. et al. in (Teot, Sposto et al. 

2007)), due to the sampling bias,  confirming that it represents an error-prone method 

(Bengtsson 2003, Kong, Sertel et al. 2009, Sertel, Kong et al. 2009). 

 To overcome the stated weaknesses, established in the currently used visual evaluation 

process, allied to the fact that digital images are growing in popularity, computational methods 

resorting to automated image processing and analysis algorithms are being developed 

(Bengtsson 2003, Kong, Sertel et al. 2009). The automatic processing and analysis of tissue 

images provides reliable data, accelerates data acquisition process and by allowing digital 

image management it can replace other evaluation methods, more expensive and impossible 

to execute (Cisneros, Cordero et al. 2011).  

 Automated systems can exclude human factor mistakes and increase the speed of 

diagnostic processes. These systems represent an important asset considering that the amount 

of experienced specialists that conduct a correct histological analysis is reduced or 

concentrated in big medical centers. Therefore, this leads to an accumulation of cases poorly 

or misdiagnosed, conducting to incorrect untimely treatments and ultimately resulting in 

disablement or death. Considering the abovementioned it is clear the need for automated 

processes concerning morphology diagnostics in medicine, to improve the diagnostic accuracy 

and compensate the scarce number of specialists (Nedzved, Belotserkovsky et al. 2005).  
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 The key challenges in histological image computational analysis are automated cellular 

segmentation and classification in tissue images. Nevertheless, due to the complex nature and 

variety of histological images, it is difficult to develop automatic segmentation methods 

applicable to any type of those images (Nedzved, Belotserkovsky et al. 2005, Chomphuwiset, 

Magee et al. 2011). 

 The general procedure for automatic image processing and analysis can be divided in 

several steps, starting with the acquisition of digital histology images, which can range from 

diverse resolutions depending on the application and the size of the biological structure in 

study, on the histological sample. The following step is the image processing to identify the 

target tissues or biological structures in question, comprising, as a standard framework, image 

enhancement, image segmentation, feature extraction and implementation of machine 

learning algorithms (Caicedo 2009). To perform each of the previously referred stages a wide 

variety of computational methods can be implemented, according to different purposes (for 

example, automation of mass screening of histological specimens or quantitative analysis of a 

significant structure in the tissue) (Bengtsson 2003).  

 The image processing and analysis pipeline that is going to be produced in this work 

consists of three particular steps, the image pre-processing, image segmentation and 3D 

reconstruction (in section 2.3). A state of the art on methods for both these steps is presented 

in more detail in further sections. 

2.2.1. Image Pre-Processing 

 Although segmentation is the most important step in image processing and analysis, it is 

unusual to achieve a consistent and useful segmentation using only a single procedure. In order 

to obtain a successful segmentation, algorithms typically apply a constructed combination of 

methods, including a wide variety of preprocessing steps (Beare and Lehmann 2006). 

 To process histological images, an initial preprocessing step must be applied to reduce the 

computational costs through multi-scale image decomposition (Gonzalez and Woods 2008). This 

initial process produces low resolution images that can be analyzed to locate interesting 

structures and allow the implementation of other image processing steps only on those 

structures’ pixels. The preprocessing step is meant also to restore the images, by reducing 

image noise, low intensity contrast and intensity inhomogeneities present in the histological 

data. To perform this, methods such as image smoothing, denoise and enhancement can be 

applied (He, Long et al. 2010). Image smoothing is commonly performed recurring to spatial 

filtering methods used to remove image high frequency noise. Image denoising methods are 

implemented to remove image noise produced in image acquisition and compression processes 

(Aubert and Kornprobst 2006) and image enhancement techniques favour an increase in 

contrast between the regions of interest and the background, being the adaptive filters the 

most commonly employed methods (Gonzalez and Woods 2008). 
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 Considering the amount of manual labor involved in tissue samples preparation (section 

2.1.2), this process tends to introduce certain types of artifacts that require proper image 

preprocessing techniques to be countered. The majority of artifacts found in histological 

images are based on orientation differences found in the sections mounted in glass slides, 

variable luminance gradient (depending on the slide region where the tissue observed), non-

tissue noise produced by dust or bubbles and staining variations (variable tissue thickness and 

stain concentrations originate color variations in the histological stained structures). 

Therefore, image pre-processing techniques are applied to deal with acquisition artifacts and 

defective histology sections (Mosaliganti, Pan et al. 2006). 

 Some techniques are specially designed to deal with histological artifacts present in the 

digital images, namely the defective section exclusion and principal component analysis (PCA) 

alignment. 

 In order to improve the 3D reconstruction robustness defective sections have to be 

identified and removed from the registration process. Since all images are acquired with the 

same magnification, tissue sizes in consecutive images should not suffer significant variations. 

Thus, when a large variation is verified it is probably due to broken or defective sections. To 

eliminate them the relevant structure areas were computed for each image and plotted against 

section location, using binary masks (masks containing information about the tissue pixel 

location. Tissue pixels identified and stored as binary masks). Spikes in this plot are potential 

defective sections (Mosaliganti, Pan et al. 2006). 

 Principal component analysis alignment is used to estimate tissue orientation, according 

to prior knowledge of typical structure arrangement, concerning the studied tissue. Since tissue 

orientations are used to initialize registration methods (section 2.3), by using this technique, 

the likelihood of converging to a more reliable global solution is increased (Mosaliganti, Pan et 

al. 2006). 

 The staining conditions verified in different histological slices suffer considerable 

variations (Figure 10). Therefore, after the being digitized, images present considerable color 

ranges. To normalize color distributions present across the slices, histogram equalization 

represents a viable solution (Sertel, Catalyurek et al. 2009). Histogram equalization is a well-

known and widely used image enhancement technique, due to its simplicity, high performance 

in almost all types of images. This technique is performed by remapping of grey-levels in an 

image based on a probability distribution of the input grey-levels, stretching the dynamic range 

of the image histogram. Thus, resulting in overall image contrast enhancement. The drawbacks 

of this method are noticeable in images with high and low mean brightness. The result is a 

significant change in the image outlook, whereas the purpose was only to enhance the contrast.  

Histogram equalization is best suited to enhance the edges between different structures, but, 

in return, reduces local details within those structures, producing over enhancement and 

saturation artefacts (Kaur, Kaur et al. 2011). The histogram equalization procedure is based on 

the assumption that the processed image presents uniform image quality in all regions, and 

therefore, one single grayscale mapping provides similar contrast enhancement throughout all 
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these regions. But, when distributions of grayscale intensities are variable according to 

different regions in the image, the previous assumption is invalid. Facing this, an adaptive 

histogram equalization technique, capable of determining the mapping for each pixel based on 

its local grayscale distribution (surrounding pixels), could significantly outperform the standard 

method.  However, when grayscale distribution is highly localized, full histogram equalization 

might not be desirable to transform very low contrast images. By limiting the contrast allowed 

through histogram equalization, the possibility of two very close grayscales being mapped to 

significantly different grayscales, i.e. high slope segments present in the grayscale mapping 

curve, can be avoided. Combining the contrast limiting approach with the previously mentioned 

adaptive histogram equalization method, the result is referred to as Contrast Limited Adaptive 

Histogram Equalization (CLAHE) (Reza 2004). 

 

 

Figure 10. Sequence of histological images from MKI (Mitosis-karyorrhexis index) cells, varying in color 
information due to staining differences. Adapted from (Sertel, Catalyurek et al. 2009). 

  

 

 For medical images, color enhancement represents a valuable tool to aid in visualization, 

detection and segmentation of specific tissue structures. An effective approach to increase 

color contrast on an image and maintain its hue (the pure color) is to transform the RGB (R - 

Red, G - Green, B - Blue) color into HSV (Hue, Saturation, Value) color space, modifying only 

the saturation (luminance) value in the image’s pixels. The transformation is given by: 

𝐻 = 𝑐𝑜𝑠−1 × (
1

2
[(𝑅−𝐺)+(𝑅−𝐵)]

√(𝑅−𝐺)2+(𝑅−𝐵)(𝐺−𝐵)
)  (1) 

 

𝑆 = 1 −
3

𝑅+𝐺+𝐵
[min(𝑅, 𝐺, 𝐵)]  (2) 

 

𝑉 =
1

3
(𝑅 + 𝐺 + 𝐵)    (3) 

 

 The luminance manipulation, through grey-level enhancement processes, without 

affecting the other two components in HSV color is possible due to the lack of correlation 

between these components. The usual process starts by performing the color transform to 
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convert the image in HSV color where the luminance or color saturation can be modified, 

disregarding the other components. Then, the reverse transform back to RGB color is applied 

in order to ascertain the effects of the produced modification (Bautista and Yagi 2010). 

 

 Hukkanen J. and co-.workers implemented a pre-processing method to improve the 

efficiency of nuclei segmentation (more information in section 2.2.2.) in histological images. 

The pre-processing method performs the conversion of H & E stained histological images 

originally in RGB color space into CIE L*a*b color space. The L component, the luminosity 

component, is then denoted as a grey-level image, which is further processed to obtain the 

segmentation. The L*a*b color space consists of a luminosity layer “L*”, a chromaticity layer 

“a*” (indicating the color location in the red-green axis) and a chromaticity layer “b*” 

(indicating the color location in the blue-yellow axis)(Hukkanen, Hategan et al. 2010). 

 

 In (Tabesh, Teverovskiy et al. 2007) is presented a study concerning image features for 

cancer diagnosis and histological grading of prostate images. The features representing color, 

texture and morphological details were combined in a supervised learning framework. The first 

stage in this framework involved pre-processing techniques, including background removal and 

image histogram matching to a reference image. The background was identified and then 

removed from the analysis through color tissue image transformation, from RGB color space 

into YCbCr color space (Gonzalez and Woods 2008), and posterior thresholding (section 2.2.2.) 

of the luminance (Y) component with a global empirically determined threshold. After this, the 

binary mask containing the tissues of interest is refined via closing and opening operations to 

fill gaps between tissue structures and remove small artefacts from the image. A convex hull 

operation (Gonzalez and Woods 2008) is then, applied to ensure the integration of lumens as 

tissue of interest, avoiding its exclusion from the binary mask. The second pre-processing step, 

implemented in this study, consisted of an histogram matching between the analysed 

histological image and a reference image, through the transformation𝐹𝑟
−1[𝐹𝑖(𝑥)], where 𝑥 is 

the pixel value in each of the red, blue and green channels. 𝐹𝑟 and 𝐹𝑖 are, the cumulative 

distribution function of pixel values for the input and reference images, respectively. 

Histogram matching is performed to mitigate color variations produced by staining and 

illumination conditions, which can affect segmentation efficiency. 

 

 The Stain Deconvolution technique is a pre-processing method, based on color 

deconvolution, which aims to deconvolve the applied stains on a certain RGB color image, to 

generate separate images, where each grayscale image shows the distribution of a single stain. 

This algorithm assumes that the chemical stains implemented to dye the tissue slides follows 

the Beer-Lambert Law of absorption, which provides a logarithmic relationship between the 

original RGB color channels and a stain matrix. This complex methodology is presented by both 
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(Ruifrok and Johnston 2001, Unpublished 2015), and the algorithm behind it is further explained 

in this work, on section 3.2.3. 
 

2.2.2. Image Segmentation 

 After image enhancement produced by pre-processing methods, removing the noise and 

increasing the contrast between the structures of interest and the remainder tissue, a new 

step, called segmentation, can be performed.  

 Segmentation is the most important part in image processing and analysis, and consists of 

a grouping process, in which the group components share similarities concerning one or more 

features, ultimately identifying regions in the input image corresponding to distinct structures 

(Vernon 1991).  

 The segmentation is the first step to perform automatic analysis of histology images, apart 

from the image pre-processing, enabling the distinction of some particular biological tissue 

from the remainder components in the image. Staining techniques are performed in histology 

to facilitate human visual identification of the different components, for a specialist, but in 

order to implement other computational processes on those components the segmentation 

must be performed (Cisneros, Cordero et al. 2011). The application of this step is suited for a 

multitude of purposes, such as effective identification of tissues, image subdivision for 

portionwise processing or pattern modelling (Caicedo 2009). 

  Since a universal segmentation, valid and suitable for all the image applications, does not 

exist, a specialized method is required for each application(Cisneros, Cordero et al. 2011). 

There are two different approaches to perform image segmentation: Region based and 

boundary based methods (Vernon 1991).  

 Region based methods focus on reconstructing the various components of an image into 

two dimensional areas (regions), by implementing a similarity criterion from the pixels of each 

elemental area (Cisneros, Cordero et al. 2011). An example of these segmentation methods are 

Region-Growing techniques, that, starting from one or more points (seeds), initialized manually 

or automatically by heuristic methods, they are expanded to neighbour pixels that share a 

certain homogeneity criterion (Pham, Xu et al. 2000). 

 Boundary based segmentation concerns on the detection of boundary pixels of the 

structures present in the image, extracting them from the rest. The isolated boundary is then 

used not only to define the location but also the shape of the structure of interest. Boundary 

detection algorithms diverge on the amount of domain-dependent information incorporated 

when the connection of edges is performed. Therefore, the effectiveness of these methods is 

intimately dependent on the performance of edge detection algorithms (Vernon 1991). 

Segmentation performed with edge detection techniques implements minimum cost functions 

and certain filters, based on the gradient concept, to determine the borders of homogeneous 

sections of the image. Considering that usually these detectors do not provide closed elements, 
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as previously mentioned, additional techniques must be applied to connect the edges. These 

techniques depend on thresholds to determine the existence of edges, which represents a 

problem considering that tissue images present highly variable contrast, brightness and detail 

on the structures (mainly due to type and quality of the performed stain) (Cisneros, Cordero et 

al. 2011). However, edge based algorithms are specially suitable for images with overlapped 

components (Díaz Iriberri 2007). 

 Since the tissue samples are stained to reveal specific structures, the majority of 

segmentation algorithms applied on histological images are based on color analysis and 

contrast, thus region based methods constitute the best approach for this task. Simple 

techniques based on thresholding (Chaudhuri, Rodenacker et al. 1988), which are applied on 

gray-scale representations of the processed image to separate pixels into two classes according 

to their intensity, and more complex ones such as the k-means clustering algorithm (Chaudhuri, 

Rodenacker et al. 1988, Sertel, Kong et al. 2009), similar to the threshold but applied to 

subdivide the image in more than two classes, can be implemented for this purpose (Caicedo 

2009). Some other algorithms have been proposed to deal with tissue structure and color 

variation such as active contour and watershed based techniques (Chomphuwiset, Magee et al. 

2011). 

 According to (Cisneros, Cordero et al. 2011) and its experience in histological image 

processing, thresholding techniques obtain accurate results in a reduced computing time, in 

contrast to other methods, including region growing and edge based techniques, that produced 

an incomplete and over-segmented image result, respectively. Therefore, the thresholding 

technique is thoroughly explained and presented below. 

 

 Gray level Thresholding is a simple region based technique used to highlight structures 

from the background that differ in gray-level intensity. The threshold operation will assign the 

value 255 (or 1 depending on the scale) to pixels with a grey-level above the threshold value 

and 0 (zero) to pixels with an intensity below that value, thus segmenting the image into two 

separate regions (structure and background).This operation consists in a test implementing the 

function 𝑇: 

 

𝑇(𝑥, 𝑦, 𝑁(𝑥, 𝑦), 𝑔(𝑥, 𝑦)) (4) 

 

where 𝑔(𝑥, 𝑦) is the grey-level at the pixel (𝑥, 𝑦) and 𝑁(𝑥, 𝑦) certain local property of the 

considered pixel. When 𝑔(𝑥, 𝑦) is greater than 𝑇, the pixel (𝑥, 𝑦) is labelled as belonging to the 

structure, otherwise it is labelled as background (Vernon 1991). Three classes of thresholding 

can be distinguished based on the restrictions imposed to Equation (4), being local, global and 

dynamic thresholding (Weszka 1978). In the global approach the threshold test is based 

exclusively in the threshold value and grey-level of the considered point, neglecting its position 

and local context in the image. Local thresholding is dependent not only in the grey-level but 

also on a neighbourhood property of the point and, dynamic thresholding, is dependent on both 
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previous properties and also on the point coordinates in the image. The choice of an adequate 

threshold for a given image is the major problem opposing to the acquisition of a valid and 

complete segmentation. To select the value that better differentiates the structure from the 

background several techniques can be applied, most of them based on the analysis of grey-

level histograms. The use of these histograms often results in a difficult method to detect the 

threshold value, mainly due to image noise and inexistence of two evident modes in the 

intensities (bi-modal histogram) (Vernon 1991).  

 Considering that thresholding techniques examine the properties of each pixel in order to 

evaluate its color and so, the pixel’s type according to certain measures. Cisneros et al 

proposed the measurement of the Mahalanobis distance (Mahalanobis 1936) (complementing 

the thresholding procedure) in order to distinguish and segment the type of the pixel between 

two components, i.e. by determining the distance between the pixel’s color and the 

components’ average color. This measure is subjective and has to be calibrated for each 

staining procedure. The proposed segmentation technique proved to be well-suited for analysis 

of histological image, particularly for tissue preparations with different dyes and structures 

presenting a considerable spatial separation (Cisneros, Cordero et al. 2011).  

 

 According to (Xu and Wunsch 2005) the K-means algorithm is the most acknowledged 

square error based clustering algorithm. This method performs partitional clustering, which 

consists in the assignment of a set of structures to be analysed into K clusters, without 

hierarchical structure. The K-means algorithm is a very straightforward method, easily 

implemented to solve many practical issues and it can perform clustering on large datasets. 

The first step is a random or prior knowledge based initialization of K cluster centres in image 

pixels (Calculation of a cluster prototype matrix). Then, each structure contained in the 

dataset is assigned to the nearest cluster and the prototype matrix is recalculated for the new 

partition, concerning the cluster’s centroid. The previous steps are repeated until the cluster’s 

centre stabilize in a constant position. There are some drawbacks for the implementation of 

this method concerning the lack of a universal, effective and automatic process to calculate 

the initial partitions, and the number of clusters present in a given image.   

 

 To perform tissue segmentation, or separation from the image background, clustering 

based algorithms (k-means) demonstrate better performance in face of luminance gradient 

presence, background noise and staining variability when compared to global thresholding 

methods, even when histogram equalization is implemented as pre-processing (section 2.2.1) 

(Mosaliganti, Pan et al. 2006). Figure 11 illustrates the parallel implementation of both methods 

to histological tissues.
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Figure 11: Relevant tissue structure segmented using (a) the global thresholding approach and (b) 
k-means algorithm. Adapted from (Mosaliganti, Pan et al. 2006).  

 

2.3. Image Registration and 3D Reconstruction 

 Since the microscope’s invention there has been a huge development in the field of 

histology, alongside with the capability to acquire information from thin, two-dimensional 

cellular tissue sections and reconstruct the overall three-dimensional structure of studied 

tissue. The visualization of the spatial slice’s relations in the three-dimensional form is an 

invaluable skill that is cultivated through a considerable amount of experience and observation  

(Koshi, Holla et al. 1997). 

 Hence, three-dimensional reconstruction of tissue samples at a microscopic resolution 

reveals significant potential to improve the study of disease processes when structural or 

spatial modifications are involved, and important to obtain the pathology diagnostic. Although 

the use of 3D imagery in histology seems unwarranted, since the latter is a 2D science (D. 

1978), applications based on this process have been developed to investigate the anatomy and 

microarchitecture of healthy tissues (Kaufman, Brune et al. 1997), tumour proliferation and 

also to study gene expression, for example in developing mouse embryos (Han, van Hemert et 

al. 2011). The 3D reconstruction applications are used to study tissue slices both at a 

microscopic and macroscopic scale, allowing a more accurate definition of histological 

parameters (tumoral angiogenesis in oncology and cellular distortions in prion diseases) (at 

microscopic level), and the analysis of structures too small to be precisely dissected and too 

large to be studied in a 2D slice basis (at macroscopic level) (Ourselin, Roche et al. 2001). The 

combination of 3D image reconstruction methodologies with immunohistochemistry or in situ 

hybridisation techniques provides a better understanding on phenotypic and functional 

information concerning the cellular structures (Roberts, Magee et al. 2012).  

 Most of the existent 3D imagery techniques involve deconstruction (into 2D slices), 

alignment and posterior reconstruction of those images into a 3D model (D. 1978). The 

techniques employed to perform the reconstruction framework suffered a great evolution, 
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since the deconstruction of the tissue in 2D slices through histological procedures, and the 

acquisition and alignment of histological sections, originally examined and prepared through 

observation and hand-drawn interpretations (Rehorek and Smith 2007). Since then, several less 

destructive and time consuming techniques have been employed to observe and analyze the 

tissues, such as the confocal microscopy (Kaczmarek and Strzelczyk 2005), magnetic resonance 

imaging (Perry, Cartamil et al. 2007) and computer tomography (Kley 2006). The preparation 

of micrographs and digitized images have improved the accuracy of measurements and 

extraction of numerous features in 3D reconstruction of cellular images, substituting the 

biological artist and hand-drawn representations (Shea 1979, Rehorek and Smith 2007). 

 All the previously referred non-destructing imaging methodologies (MRI and CT) enable 

the analysis of cellular tissues in three dimensions. Despite consisting of mature technologies, 

currently accepted and used in clinical and research practice, through the implementation of 

computational reconstructions for conventional histopathology, it is allowed the use of well-

known and gold standard histological staining and interpretation techniques (Roberts, Magee 

et al. 2012). 

 The reconstruction of 3D tissue volume from 2D histological slices requires a precise 

acquisition of serial histological data combined with robust automated techniques of image 

processing and analysis to be applied on digitized versions of those tissue slides. A usual 

histological reconstruction requires first, a slice-to-blockface (photograph of the volume prior 

of the histological slice’s acquisition, serving as reference. An example is illustrated in Figure 

12) registration for the purpose of minimizing the structural inhomogeneities found in the 

slices, followed by a slice-to slice registration to reduce the inhomogeneities between slices. 

A third step, consisting of a warping of reconstructed volume to a global reference can be 

performed, when the purpose is to study histological features combined with other 3D imaging 

techniques (for example, MRI) (Chakravarty, Bedell et al. 2008). 

 

 

Figure 12. Image from an example 
of blockface used for 3D 
reconstruction. Adapted from 
(Chakravarty, Bedell et al. 2008). 

 
 Image registration is considered an optimization process that aligns two or more images 

aiming to find the image transform that is responsible for the best alignment or closest 

similarity of structures of interest between consecutive images or, in the case of this study, 
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between consecutive histological tissue slices (Mosaliganti, Pan et al. 2006, Oliveira and 

Tavares 2014).  

 Registration algorithms are implemented to define correspondences between sets of 

images based on various image characteristics, ranging from specific landmark locations 

(Bookstein 1980), to contours or surfaces (Pelizzari, Chen et al. 1989, Davatzikos, Prince et al. 

1996), and volumetric functions (Thirion 1998) applied to voxel intensities (Johnson and 

Christensen 2002). 

  

 Most medical image registration algorithms assume a ‘rigid body’ transformation, in which 

six degrees of freedom are comprise in the transformation, three translations and three 

rotations, being all the distances preserved (characteristic of a rigid transformation). Other 

registration methods consider an increased number of degrees of freedom, allowing in some 

cases anisotropic scaling (nine degrees) and skews (twelve degrees of freedom). When a 

transformation includes scaling, skews and also rigid body parameters is referred to as affine 

transformation. The implementation of an affine transformation rather than a rigid transform 

does not greatly increase the applicability of image registration, since the number of organs 

that only stretch or shear is limited (Hill, Batchelor et al. 2001). There are two major types of 

transformations in image registration methods: Linear transformations (described above) and 

elastic or non-rigid transformations. These non-rigid transformations are capable of locally 

warping the moving image to be aligned with the fixed, or reference image, through large 

deformation models, radial basis functions and continuum models (Goshtasby 2005).  

 

The majority of Feature-based techniques consist on four steps: Feature detection is the 

manual or automatic detection of distinctive objects, such as closed-boundary regions, edges 

or contours, and their representation with control points. In the feature matching step, the 

correspondence between detected features in the fixed (static image) and moving image are 

established, recurring to diverse similarity measures. Transform model estimation consists in 

the alignment of both fixed and moving image, according to mapping functions estimation 

(transformation types). In image resampling and transformation, the last step, the moving 

image is transformed through the mapping function (Zitova and Flusser 2003). 

 

 A review on the currently implemented techniques to perform histological sample analysis 

and 3D image reconstruction is presented below. 

 In a study performed by (Braumann, Kuska et al. 2005) the three-dimensional structure of 

tumor invasion fronts of uterine cervix carcinoma was analyzed to better understand its 

intricate architectural-functional relation. The intention of the produced investigation was to 

obtain an objective quantification of the tumorous invasion based on 3D reconstructed tumoral 

tissue data, since the morphological information can be assessed through histological 

observation. The image computational algorithm presented comprised three registration steps, 

first a rigid one followed by a polynomial nonlinear method and finally a nonlinear curvature 
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based one, and it was capable of reconstructing selected tumor invasion fronts from a 

considerable extend of histological serial sections (90-500 slices). Through this technique it was 

achieved an extremely detailed 3D reconstruction of invasion of solid tumors, as visualized in 

Figure 13. 

 

 

Figure 13. Two views of 3D reconstruction of uterine cervix carcinoma tumor invasion fronts, from 
different histological specimens. Adapted from (Braumann, Kuska et al. 2005). 

 
An extension of the previous study was carried out by Ryk J. and co-workers, where the Large 

Image Microscope Array (LIMA), a vibratome capable of sectioning tissues to 40 mm thickness 

slices, is used to section entire organs, particularly lungs, into slice images in order to establish 

direct correlation between lung pathology and Computer Tomography (CT) images. A camera 

and a stereomicroscope mounted on the vibratome scan the entire surface area of the tissue, 

controlled by a custom software, responsible for the entire process automation. The alignment 

is accomplished through the combination of a custom code and the Insight Segmentation and 

Registration Toolkit (ITK), resulting in the registration of high magnification and resolution 

pathology images with the corresponding CT images (de Ryk, Namati et al. 2004). 

 Another technique developed by (Rehorek and Smith 2007) aims for the generation of 3D 

images from specific microanatomical structures contained in tissue sections. The presented 

3D reconstruction technique not only allows the concurrent visualization of multiple structures 

or tissues but also enables the analysis of spatial topography from the histological sections. 

This technique involves, foremost, the visual identification and manual delimitation of the 

region of interest’s position in a 2D section digital image. All the marked digital images were 

then aligned to previous slices based on fiducial landmarks (reference structures in the image), 

accomplished by rendering the second of two adjacent tissue sections through manual rotation 

of the image on top of the other slice. 

 A semiautomatic method was developed by (Kurien, Boyce et al. 2005) to produce three-

dimensional reconstructions of invasive breast carcinoma, recurring to common laboratory 

equipment to evaluate the spatial arrangement of parenchymal cells. The tumour studied in 

this work was stained immunohistochemically to reconstruct two 3D images, one for normal 

parenchymal cells and the other for malignant. The digital histological sections were acquired 

using a microscope, a scanner and a camera connected to a computer, and the alignment was 
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performed using a semiautomatic method, allowing manual interaction through a graphical 

interface. The referred method uses cross correlation coefficient as an integrity slice fit 

measure and an automatic process based on the Fibonacci search algorithm (Ramaprabha, 

Balaji et al. 2012) to achieve an automatic alignment. Finally, the resultant reconstructed 

volume was obtained using maximum, minimum point projection and back to front opacity 

blending. The results obtained through this method were distinct and accurate 3D 

reconstructed models, contributing to a more comprehensive and explicit visualization (high 

resolution) of spatial arrangement of normal and malignant parenchymal tissues and their 

relation to the surrounding tissues (Figure 14). This approach provided an insight on invasive 

breast carcinoma proliferation, unobtainable through conventional visualization of 2D 

histological sections. 

 

 

Figure 14. 3D reconstruction of invasive breast carcinoma 
immunohistochemically stained, illustrating the spatial 
arrangement of the different parenchymal tissues. Adapted 
from (Kurien, Boyce et al. 2005). 

 
 In (Ourselin, Roche et al. 2001) it is emphasized the need of a robust method to perform 

the alignment of histological sections for 3D reconstruction. In this work, it is proposed an 

intensity-based method to register the image slices, first by using a block matching strategy 

(Jain 1981), allowing the computation of local displacements between image slices, and then, 

a rigid transformation, estimated by those local measures. The entire process is fully 

automated and integrated into a multi-scale framework in order to improve accuracy and 

computation times. The results obtained experimentally highlight the capacity of the proposed 

algorithm to reach sub-pixel accuracy while being able to compensate large displacements 

between slices. 

 Conventional 3D histopathology is limited by low resolution, time and difficulty with 

acquiring a large number of images with a microscope, the absence of a fully integrated system 

for 3D reconstruction (Namati, De Ryk et al. 2007) and, in the case of manually guided 3D 

reconstruction, the time required for the whole process (Petrie, Flynn et al. 2002). Concerning 

those limitations, Roberts N. and collaborators developed a 3D histopathology software using 
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automated virtual slide scanners to produce high-resolution digital images and 3D 

reconstructions of the cellular tissue. The software is applicable to any type of tissue, requires 

minimal manual intervention, once the slides are prepared, and reveals reasonably robustness 

over a wide variety of data or type of application. The system digitises automatically the virtual 

slides, which subsequently communicates with the image serving software to align the image 

and produce the visualization. To perform the alignment it uses a high-resolution registration 

followed by a multi-level registration method, whereby the user is able to manually select, 

zoom and re-register the area of interest (Roberts, Magee et al. 2012). The registration 

algorithm proposed by the author starts by performing a sequential slice-to-slice image based 

registration, a multi-stage method based on extension of phase correlation (De Castro and 

Morandi 1987), which consists of a first rigid alignment ignoring scale that serves as input to a 

non-rigid registration method that divides the input image into equally spaced square patches, 

individually aligned through the phase correlation. A non-rigid B-spline based transform is 

estimated through a least squares error minimising method and applied to the whole image to 

approximate a set of points from each patch. The B-spline is applied at multiple increasing 

resolutions and B-spline grid sizes. This registration method uses as reference a representative 

central virtual slide (generally the slice containing the largest portion of the tissue to be 

studied). The subsequent images are aligned to their neighbours and then concatenated to form 

a 3D volumetric dataset for the user to visualize, after the completion of rigid and non-rigid 

transforms. As previously referred in this study, it was also developed a user-interface to 

promote the interaction and user selection of sub-areas of interest in the image to re-register 

at higher resolution. This was performed using the explained non-rigid multiple-level resolution 

method, providing this way sub-cellular accuracy reconstructions. After the 3D volume 

reconstruction the developed software enables interactive segmentation of the volumetric 

structures by implementing several techniques, including a manual method called “color 

example thresholding” in which the user defines a threshold and selects a certain color in the 

image and the software annotates all the pixels sharing RGB color with the selected one and 

the considered threshold. Another approach implements region growing algorithms (Efford 

2000) to segment spatially connected similar pixels (more information on section 2.2.2), using 

the user selected points as seeds and the threshold as color similarity criteria. In the end, it 

was implemented an iso-surfacing using marching cubes (Lorensen and Cline 1987) and mesh 

decimation (code from VTK (Schroeder, Martin et al. 2003)) to render the segmented volume 

and allow the visualization of distinct parts of the volume separately (Magee, Treanor et al. 

2008, Roberts, Magee et al. 2012). 

 In (Chakravarty, Bedell et al. 2008) is described a method for 3D reconstruction of two 

dimensional histological sections from mouse brain to create volumetric data, a fundamental 

step in the analysis of ex-vivo data to validate in-vivo imaging techniques. To achieve the 

latter, the reconstructed volume is directly mapped into in-vivo anatomical MRI volumes, thus 

enabling accurate validation of recent imaging technologies, as well as the integration of 

histological cellular or molecular data in in-vivo structural and functional data. The procedure 
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described in this work is an extension of a previous study by Chakravarty et al. (Chakravarty, 

Bertrand et al. 2006) performed for the reconstruction of human basal ganglia and thalamus, 

where the histological sections suffered first manual alignment and color adjustment, and then 

non-linear correction techniques to enhance the image alignment. In (Chakravarty, Bedell et 

al. 2008) it was used a digital blockface to perform image registration and a volume derived 

from the average of ten MRI volumes of mice (Lau, Lerch et al. 2008) to serve as volumetric 

reference. The method stated by the author starts with the alignment of histological sections 

to the corresponding blockface image. First, a slice-to-slice alignment of the blockface data 

was executed and a transformation mapping each slice to the next, converging this process to 

the center slice (reference), was estimated. Then, for the histological dataset it was applied 

and estimated a linear transformation to map all the slices into the corresponding slice in the 

blockface reconstructed volume. Both two dimensional transformations were adapted from the 

linear registration technique proposed in (Collins, Neelin et al. 1994). Posteriorly a nonlinear 

morphological correction was implemented, consisting of a slice-to-slice warping to correct 

morphological inconsistencies between slices. To perform the estimation of these 

transformations the ANIMAL algorithm (an iterative algorithm that estimates a 3D deformation 

field on a lattice of nodes when a source volume is matched to a target volume) was used 

(Collins and Evans 1997). Then, in order to counter intensity inhomogeneities between 

registered slices, possibly produced by staining densities and slice thickness irregularities that 

can challenge the correct visualization of the images, a nonlinear intensity correction was 

performed. This procedure first applies the nonlinear transformations estimated in the 

morphological correction to consecutive series of four slices, to grant that all of them present 

morphological consistency. After this, each slice was portioned into equally sized square 

patches, assuming that sufficiently small areas would enable the estimation of a first order 

polynomial scaling factor to match the joint histograms of each square by using a least-trimmed 

squares polynomial estimation (Prima, Ayache et al. 2001). Once performed this process for 

each square patch, a grid containing the scaling factors previously estimated was interpolated 

to match the resolution of the histological image, and then, the produced interpolation field 

was multiplied by all the slices to enhance the grey-level consistency. Finally, the histological 

reconstructed volume was directly warped to the stated MRI template volume reference. The 

results obtained through this routine demonstrate an effective alignment of the histological 

volume with the MRI template. These results enhance the fact that the combination of tissue 

preparation techniques and automated image processing allows for a more comprehensive, 

multi-modal evaluation of pathology or therapeutic intervention effectiveness in rodent models 

of CNS disease. The results obtained through the stated technique are presented in Figure 15 

(Chakravarty, Bedell et al. 2008). 
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Figure 15. Volumetric results from the reconstruction of serial histological slices acquired by Chakravarty 
M. and collaborators. From left to the right: Blockface reconstructed, original data stacked without any 
correction, reconstruction model after slice-to-blockface linear alignment, resulting reconstruction from 
nonlinear morphological correction and reconstruction after nonlinear intensity correction. Adapted from 
(Chakravarty, Bedell et al. 2008). 

 

Johnson J. and co-workers presented a hybrid landmark/intensity-based deformable 

registration algorithm. This algorithm applies an iterative process by producing accurate 

correspondences between image structures near landmark locations and elements separate 

from them by matching corresponding landmarks and image intensities, respectively. First are 

registered landmarks disregarding intensity and then intensity differences between slices are 

minimized (Johnson and Christensen 2002). Despite the accurate results, this technique was 

not applied to reconstruct 3D images from 2D slices and also revealed that when applied to 

unclassified data based on landmarks does not lead to reliable registrations.  

 Another method for automatic registration of histology sections was presented by Arganda 

C. and collaborators, consisting in a technique for non-deformable registration recurring to 

Sobel transforms and segmented contours. The goal of this project was to accurately align 

tissue sections in volumetric data and also to detect and render relevant structures in 3D. The 

algorithm proposed accomplished this by finding the best suited rigid body transformation 

(translation and rotation) of the images being registered (applied globally), through 

maximization of a matching function based on image correlation (applied locally on specific 

locations revealed by segmentation methods). A multiresolution pyramidal approach was then 

implemented, reaching the best registration transformation in increasing resolution stages 

(Arganda-Carreras, Fernandez-Gonzalez et al. 2004). 

 In (Mosaliganti, Pan et al. 2006) was presented a mutual information based registration 

approach, having as basis the maximization of mutual information (MI) (Maes, Collignon et al. 

1997), an effective similarity measure to register multi-modal images when the image 

intensities are not linearly correlated. The proposed technique includes four stages, including 

the transform, metric, optimizer and interpolator phase, in order to register a consecutive slice 

into a stationary image. The transform stage is modelled, as previously referred approaches, 
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to a rigid 2D transform, which allows rotation and translation. To perform the optimizer and 

interpolation stage were incorporated a regular step gradient optimizer (Maes, Vandermeulen 

et al. 1999) and a bi-linear interpolation (Maes, Collignon et al. 1997), respectively. The 

registration was acquired through MI optimization multiresolution strategies, as proved in 

previous studies that can provide similar robustness to direct registration combined with an 

increased computational speed when compared to other multiresolution techniques 

(Studholme, Hill et al. 1996, Maes, Vandermeulen et al. 1999). This approach was performed 

applying 3-level image pyramids (Figure 16), with image magnifications of 10x, 20x and 50x. 

Starting with the transform obtained for the lower magnification images are scaled and 

employed to initialize the next higher magnification, repeating this process until the highest 

resolution (the improvement in accuracy for resolutions above 50x do not compensate the 

computational costs). After this, a two-level optimization (Figure 17) was executed to achieve 

a higher MI in the reconstructed model. This process introduces a restricted translation and 

rotation around the PCA initialization (described in 2.2.1), altering the converged solutions. 

This step is repeated until no improvement is verified in the mutual information model. The 

presented study developed a multi-resolution MI based registration algorithm combined with a 

novel optimization strategy that allows not only a reduction of manual intervention in the 

registration process but also a higher chance of obtaining a converged global solution 

(Mosaliganti, Pan et al. 2006).  

 

Figure 16. Schematic representation of the ITK-based 
registration framework. The transforms pass from a lower to a 
higher resolution based on the 3-level image pyramids shown. 
Adapted from (Mosaliganti, Pan et al. 2006).  

 

 

Figure 17. Representation of the regular step gradient descent (A,C) and the two-level optimizer (B,D) 
on 2 slides from placenta image dataset (PCA was applied initially as pre-processing), used in (Mosaliganti, 
Pan et al. 2006). 
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2.4. Key Issues 

 

 The present section summarizes the contents addressed in the literature review, 

highlighting the fundamental concepts to be retained. 

 

 Histological techniques are considered the gold standard for assessing the natural 

response of a cellular tissue in face of a pathology or therapeutic intervention.  

 

 The existent fundamental types of tissue are epithelial (covers body surfaces), 

connective (provides support and connection to all other tissues in the body), muscular 

(designed for contraction) and nervous (ensures the communication between sensorial 

cells, CNS and muscles). 

 

 In order to visualize histological samples and their tissue structures under the 

microscope, a previous preparation of the tissue comprising fixation, inclusion and 

staining techniques must be performed.  

 

 Digital histological slices provide numerous advantages when compared to conventional 

microscopy, namely in the possibility to alert histopathologists about the presence of 

new slides for analysis and provide easier cooperation between technicians when 

investigating a particular case (i.e. a second opinion). 

 

  Automated computational systems, comprising segmentation and 3D reconstruction 

algorithms can providing a fast and accurate second opinion to doctors and 

histopathologists. 

 

 Computational systems can also reduce the workload of histopathologists, who perform 

a rather time consuming and laborious task, subjected to high inter and intra-reader 

variability. 

 

 Image pre-processing methods are applied to the histological images to reduce the 

visual noise and enhance the contrast between the interest structures and the 

remainder tissue. 

 

 Segmentation is the most relevant process in image processing and analysis systems, 

enabling the distinction and identification of some particular biological tissue from the 

remainder components in the input image.  
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  Three-dimensional reconstruction of tissue samples at a microscopic resolution reveals 

significant potential to improve the study of disease processes when structural or 

spatial modifications are involved.  

 

 Image registration is considered an optimization process that aligns two or more 

images, aiming to find the image transform responsible for the best alignment or 

closest similarity of structures of interest between consecutive images. 
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Chapter 3 

Methodology 

 In this chapter, the methodology developed and all the algorithms constituting it will be 

thoroughly explored, as well as all the image datasets containing animal cell tissue, tested to 

provide the necessary validation for the proposed framework.  

 Firstly, the experimental database analyzed in this study, cordially supplied by the 

Pathology Laboratory of the Institute of Biomedical Sciences Abel Salazar, is going to be 

addressed, including the description of all three different tissue datasets, the properties of the 

digital image acquisition device and the relevant tissue regions to be processed and highlighted 

by the proposed methodology. 

 The second section of the methodology presents an exhaustive description and explanation 

of all the computational methods developed and employed to perform image processing and 

registration on the dataset, culminating with the final framework implemented integrating the 

most suited pre-processing, segmentation, registration and 3D reconstruction of the cell 

tissues. The presented computational framework was implemented in Matlab R2014a® (Inc., 

Natick, Massachusetts, United States). 

3.1. Dataset 

 The three image datasets studied in this project were acquired and prepared, using the 

standard method detailed in section 2.1.2., in the Pathology laboratory in Institute of 

Biomedical Sciences Abel Salazar. In order to obtain the digital images an Olympus scanner 

program was used, creating an image for each slice in the three studied cases, described further 

in this section. Some features found in images from the datasets that can undermine the image 

processing and analysis proposed by the algorithm develop in this work, are also addressed in 

the present section.
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3.1.1. Tissue Sample Preparation and Digital Image Acquisition 

 After selected the tissue to be studied, the histological sample preparation for observation 

and posterior digitalization was performed according to the methodology described in section 

2.1.2. Three samples were prepared and stained for H & E to produce three different datasets. 

The initial case was marked with four dots around the tissue to improve image registration, an 

additional process not performed in the other two tissue samples, both produced following a 

normal protocol. Prior to scanning, a final cleaning process was conducted to remove agent 

residues from staining and superficial dust from single slides as well as corrections in coverslip 

displacements over the tissue surface. These precautions were taken into account due to the 

scanner high sensitivity in image acquisition and subsequent digital image overall quality. 

 Olympus VS110 - Digital virtual microscopy system (Olympus America Inc.) was the scanner 

used to obtain the digital images. This system is based on an upright motorized Olympus 

microscope with four optical lens (2x, 10x, 20x and 40x) that enables automatic tissue 

detection. The embedded software provides a full control to the user over the scanning process 

and is capable of scanning large specimens in multiple z-planes with high resolution [ref do 

scanner]. All the images included in the analyzed datasets were scanned at a 0.32µ/pixel 

resolution, or at 20x magnification (standard scanning magnification). 

 

3.1.2. Tissue Analysis and Image Datasets 

 All the three cases analyzed in this study were obtained from domestic dog, Canis lupus 

familiaris, histological sections. The tissue sections composing the scanned image datasets 

were diagnosed by a histopathologist from Institute of Biomedical Sciences Abel Salazar, in 

order to establish the most relevant structures to be highlighted in the image processing 

framework. A brief description of the three studied cases is presented in Table I. 

 

Table I. Characterization of the three image datasets studied in this work. 

 
Nº of Images Description 

Case 1 124 
Testicular neoplasic tissue 

Animal: Dog 

Case 2 100 
Lymph node with possible metastasis 

Animal: Dog 

Case 3 100 
Lymph node with neoplasia 

Animal: Dog 
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 Case 1 corresponds to a testicular tissue section, constituted by 124 images, in which it 

can be observed a neoplasic region in contact with representative structures of this 

reproductive organ. The presence of Leydig and Sertoli abnormal cells was detected through 

microscopic observation, supporting the existence of a collision tumor (two different cell lines), 

identified in Figure 18. 

 

Figure 18. Image from Case 1 (Slice nº 51) – Testicular tissue section with a 
collision tumor (A). Epididymis is (B) and Connective tissue (C). 

 

 In case 2, the prepared tissue is a lymph gland or node, small oval structures dispersed 

through the body and intersected by lymphatic vessels. These organs play a fundamental role 

in the proper functioning of the immune system, since they filter the lymph that passes through 

them on its way to the blood (Gray and Carter 2008).  The dataset for the second case contains 

100 slices, and the lymph node depicted in it contains a possible metastasis, neoplastic cells 

that migrated from other regions of the body in the bloodstream or lymph system (in this case), 

traversing the vessel’s walls (Klein 2008), highlighted in Figure 19.  

 

 

Figure 19. Image from Case 2 (Slice nº 5) 
– Lymph node tissue section with a 
possible neoplasic region (A). A blood 
vessel is marked by (B). 

 

A 

B 

C 

A 

B 
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 The last case studied, case 3, also represents a lymph node with metastasis and comprises 

a dataset with 100 images. The relevant tissues to be further analyzed in this study are exposed 

in Figure 20. 

 

Figure 20. Image from Case 3 (Slice nº 33) – 
Lymph node tissue section with neoplasic 
regions (A) and (B). Blood vessels are 
marked by (C). 

  

 After observing all the images contained in each dataset it was clear that the manual 

method employed to prepare the histological samples introduced some artifacts, that 

corrupted the final digital image, and so, the tissues to be computationally processed. During 

the cutting and mounting stages some tissue sections were torn and folded resulting in the 

emergence of line artifacts, as shown in Figure 21. Also, the positioning of the section in 

different orientations and or locations in the glass slides, resultant of the manual nature of the 

process, can produce images with different luminance gradient. The presence of dust and air 

bubbles in the prepared slices also contributes to a poor image processing performance. In 

addition to these artifacts, differences in staining concentration between slides, and therefore 

in the final stain color in cell tissues can lead to inaccurate results, when processed by the 

algorithm (Mosaliganti, Pan et al. 2006). With this in mind, all the three cases were reviewed, 

and the severely damaged images with these types of artifacts were removed from the 

datasets. In case 2, six slices were removed leaving the dataset with 94 images in total. On the 

other two cases no images have been discarded. 

A 
B 

C 
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Figure 21. Image removed from case 2, due to 
presence of folds on the tissue section, produced in 
the mounting process. 

3.2. Workflow implementation  

 Three different approaches were developed in this study to obtain the final 3D volume of 

the relevant cellular structures. The first methodology was developed just to ascertain the 

most suited pre-processing technique to obtain a high contrast between different stained 

tissues, thus providing the most accurate segmentation using kmeans, a simple, well-known 

and fast algorithm (Section 2.2.2.). After this, a more complete workflow was created, taking 

advantage of the previously determined pre-processing model and adapting it to a registration 

framework. The combination Pre-processing and registration method was analyzed, to obtain 

the best slice alignment. The final methodology was then established according to the 

previously referred studies to obtain the 3D volume and to ensure a more relevant segmentation 

of the stained structures. 

3.2.1. First Approach – Based on pre-processing and 

Segmentation 

 Considering the first approach, several pre-processing methods were tested, on the 

previously referred datasets (section 3.1), to enhance the contrast in image intensities between 

different types of cell tissue. These processes include color space conversion and manipulation, 

histogram equalization methods and image intensity normalization.  

 

 The first process implemented was an image normalization technique, whose framework 

was designed for this study in order to distinguish the relevant structures, contained in the 

datasets, from the background. This method consists, first, of a color channel separation in 

red, green and blue images (grayscale images) from the original RGB image, followed by an 

average and standard deviation measurement of pixel intensities on each color image. The 

normalized image for each color channel is calculated through equation (5):  
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𝑁𝑜𝑟𝑚 = 
(𝐼 − µ𝐼)

𝜎𝐼⁄    (5) 

where 𝑁𝑜𝑟𝑚 is the resultant normalized image, 𝐼 is the initial image, 𝜇𝐼 the average pixel 

intensity and 𝜎𝐼 the standard deviation value (both measured previously for each image). The 

final step of this method is the concatenation of the three normalized color channels to produce 

the RGB normalized final image. This is a standard score image normalization, to obtain high-

contrast images, highlighting the entire relevant structure over the background, i.e. the 

colored sections of the image are highlighted.  

 

 The color space transformations were focussed during the development of the pre-

processing step, and several of those spaces were tested, including CIE L*a*b (or L*a*b), HSV 

and YCbCr color space (Section 2.2.1.). All these conversions allow the enhancement and 

manipulation of several properties in the RGB image, like the color saturation, impossible to 

access in the original Red, Green and Blue channels. 

 

 In the first color space transformation, CIE L*a*b, the Red, Green and Blue channels 

composing the RGB image are converted into Luminosity (L), component a (red-green axis) and 

component b (blue – yellow axis), using (MathWorks) and (MathWorks). To perform the 

enhancement or diminution in the influence of these channels independently, a technique was 

conceived to convert RGB images to L*a*b color space. In this color space, the luminance 

channel and all the color component grayscale images (from the two last channels – a and b) 

are multiplied with a constant factor separately, and then, subjected to a histogram 

equalization (more precisely CLAHE – contrast limited adaptive histogram equalization, 

described with detail in section 2.2.1.). In the end, the image is converted back to the original 

color space (RGB color space), also with (MathWorks) and (MathWorks). The luminosity image 

(L) manipulation in the L*a*b color space by multiplying a constant factor, can increase or 

diminish the overall pixel intensity on the RGB image (visible when converted back). On the 

other hand, the implementation of a CLAHE on the image components can enhance the contrast 

between the colors on the different stains, thus increasing the discriminative power of a 

posterior segmentation algorithm.  

 

 The HSV color space transformation was also implemented, applying (MathWorks), in a 

similar framework as the previous one, therefore enabling the manipulation of each channel 

independently, the Hue (H), the Saturation (S) and Value (V) channels. To perform an accurate 

conversion this method requires a normalized RGB image (image pixel intensities ranging from 

zero to one, i.e. a different type of normalization than the previously described in this section 

– Feature scaling normalization), and the Saturation and Value channels are determined from 

the original RGB channels according to equations (6, 7): 

𝑆 = 
(𝑚𝑎𝑥−𝑚𝑖𝑛)

𝑚𝑎𝑥
   (6) 
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𝑉 = 𝑚𝑎𝑥   (7) 

where 𝑚𝑎𝑥 and 𝑚𝑖𝑛 are the maximum and minimum intensity value among the RGB triplet of 

the pixel. The previous conversion equations and the Hue matrix determination were 

performed according to (Ford and Roberts 1998). The saturation was the most interesting 

channel to study since its enhancement originates images with more vivid colors, thus leading 

to a better differentiation between different tissues. To acquire this enhancement the 

Saturation channel was multiplied by a constant factor, as opposed to the first method (CIE 

L*a*b conversion). After this, the HSV image is reconverted to the RGB color space, using 

(MathWorks), where the impact of the referred operation can be verified.  

  

 The last color space transformation technique is characterized by the improvement of 

color contrast in RGB images through image processing operations in the YCbCr color space. 

The transition to this color space is characterized by the transformation of Red, Green and Blue 

channels into luminance (Y) and chrominance (Cb – blue; Cr – red) information, performed with 

(MathWorks), and the conversion equations behind it are described below (8, 9 and 10): 

𝑌 = 16 + (65.481𝑅 + 128.553𝐺 + 24.966𝐵)   (8) 

𝐶𝑏 = 128 + (−37.797𝑅 − 74.203𝐺 + 112.0𝐵)   (9) 

𝐶𝑟 = 128 + (112.0𝑅 − 93.786𝐺 − 18.214𝐵)   (10) 

where 𝑌 is the luminance value, 𝐶𝑏 and 𝐶𝑟 the chrominance values blue and red, respectively, 

and 𝑅, 𝐺 and 𝐵 the RGB triplet for the considered image pixel (Ford and Roberts 1998). The 

YCbCr image enhancement is performed through multiplication of a factor, as in previously 

described color space transformation methods, in the luminance channel and the blue 

chrominance component (Cb), independently. Then, the YCbCr image is converted back with 

the reverse operation, through (MathWorks), to the RGB color space, where the changes applied 

are verified. 

 

 The last pre-processing methodology developed to enhance the color contrast in H&E 

stained tissues is based on contrast limited histogram equalization (CLAHE), a method already 

stated in this section, based on (MathWorks), and applied directly to each color channel 

separately. After this, the channels are concatenated to form an RGB image. A similar method, 

but with histogram equalization (CLAHE) only being applied to the red grayscale image channel 

was also developed, termed in this work as CLAHE-red, leaving unaltered the green and blue 

channels, before the channel concatenation.  

 

 Aiming to eliminate the background, thus increasing the influence of the relevant image 

structures in the segmentation process, a masking process was developed, combining some of 

the techniques already described in this section with morphological operators. The framework 

behind it includes, first, a HSV color space transformation enhancing the saturation channel, 

followed by an YCbCr conversion, with blue chrominance (Cb) histogram equalization. The 
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image threshold (section 2.2.2.) for the Cb grayscale image is determined using the Otsu 

algorithm (Otsu 1975), and then applied to the image to obtain a binary mask of the relevant 

structure in the image (the background intensity becomes 0). The final mask is obtained after 

small adjustments with morphological operators, namely image closing and opening (inthis 

order).         

 

 The effectiveness of all the presented image pre-processing methods was tested with a 

kmeans algorithm (section 2.2.2.), based on (Mathworks), upgraded to perform colored image 

segmentation. This clustering algorithm was implemented in this stage due to its simplicity and 

low computational cost, enabling the image segmentation in multiple classes, or, in this case, 

cell tissues, to determine the top-performing pre-processing method in stain color 

discrimination. The color upgrade was achieved by reshaping the incoming RGB image matrix 

to a row × column × 3 matrix, thus gathering on each column the pixel intensity information of 

each color channel image. These pixel intensity triplets were used in the segmentation 

procedure to discriminate classes. The kmeans was applied for 3 and then for 4 classes, in order 

to separate the image background from two or three different cell tissues.  

 

The general scheme of the first workflow implemented is presented in Figure 22. 
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Figure 22. Schematic model representing the first workflow implemented in the study. Several contrast 
enhancement pre-processing techniques were applied to the dataset, and their efficiency was tested 
with the kmeans algorithm, for 3 and 4 classes. 
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3.2.2. Second Approach – Based on Image Registration  

 The knowledge acquired from the pre-processing study, concerning the best methods to 

provide an accurate segmentation, led to the registration test, where several registration 

techniques were approached. To determine the most appropriate, two criteria were taken into 

account: the DICE score (Sørensen 1948, Cheung 2012) and the computational cost.  

 Four registration algorithms were tested in two different registration models, pairwise and 

reference slice (more details in section 2.3.). 

 The first algorithm implemented is a feature-based registration method and the second an 

intensity-based algorithm. The feature registration method only enables rotation and 

translation to the moving images, since the only type of transformation implemented is 

similarity. On the other hand, the intensity–based model allows other two types of 

transformation, the rigid and the affine (section 2.3.). The other two algorithms tested, the 

Demon algorithm and the B-spline algorithm, which are both capable of performing non-rigid 

registration. All these methods are explained further in this section. 

  

 The automatic feature-based registration starts by detecting image features in both 

images, moving and fixed, mainly through the implementation of the Speed-Up Robust Features 

(SURF) algorithm (Bay, Ess et al. 2008), an algorithm that searches blob features, regions of 

the image where several properties (for example, brightness and intensity) remain constant. 

The detected features are then extracted including their location in the image, through the 

pixels surrounding the interest point or feature blob (Bay, Ess et al. 2008). The detected and 

extracted feature regions in the moving and fixed images are matched using parallel 

hierarchical clustering trees (Muja and Lowe 2012), resulting in a pair of indexes from the 

matched features. The locations of those matching points are also retrieved and the 

transformation is performed based on the matched points of both fixed and moving image, 

resorting to M-estimator Sample Consensus (MSAC) algorithm (Torr and Zisserman 2000) to 

exclude outliers. The inliers of both sets of matching points are mapped and originate a 2D 

geometric transform object (Hartley and Zisserman 2003). In the last step, the geometric 

transformation object generated is applied to the moving image, creating this way the 

registered image. The scale and angle applied (considering that it is a similarity transform) 

with the transform object to create the final image are recovered to serve as quality control 

of the whole procedure, allowing this way the removal of completely distorted images, possible 

outcomes of the registration process. The stated framework was performed based on 

(MathWorks). 

 

 Concerning the intensity-based registration three key components have to be previously 

defined in order to configure the whole registration process, the optimizer, the metric and the 
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transformation type (section 2.3.). The metric is, in fact, the image similarity metric 

responsible for evaluating the registration’s accuracy and the optimizer (Regular Step Gradient 

Optimizer, whose algorithm is described in (Pennec, Cachier et al. 1999)) defines the procedure 

for minimization or maximization of this similarity metric (Mean Squares metric 

implementation in (MathWorks)). This registration method is an iterative process that can be 

performed in three different transformation types (rigid, similarity and affine) and always 

requires two images, a fixed and a moving image. The whole registration process starts with 

an internally determined transformation matrix combined with the transformation type 

specified, determining the image transformation that is going to be applied to the moving 

image with bilinear interpolation (MathWorks). After the interpolation the metric compares 

both transformed moving image and fixed image, computing the metric value and then the 

optimizer checks for ending conditions to stop the registration process. These conditions can 

be the maximum number of iterations (defined by the optimizer) or a certain metric value 

threshold. If the stop condition does not verify the optimizer adjusts the transformation matrix 

to initiate a new registration cycle. The maximum number of iterations and the optimizer step 

size the registration can be altered to improve the registration, but always with a greater 

computational cost (MathWorks). The explained workflow is presented in Figure 23Figure 23. 

 

Figure 23. Representation of the intensity-based registration framework implemented. 
Adapted from (MathWorks).  

 

 The first non-rigid registration methodology tested was the B-Spline Grid, Image and Point 

Registration developed by (Kroon 2008), based on the algorithm developed in (Rueckert, 

Sonoda et al. 1999). This is an intensity based registration technique whose algorithm 

implements a grid of B-spline control points (section 2.3.) that control the transformation of 
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the moving image over the fixed one. It measures the registration error, through squared pixel 

distance (Vercauteren, Pennec et al. 2009), a similarity criterion based on the information 

theory and calculates the amount of information existent in the registered moving image about 

the fixed one (considering a registration procedure). The B-Spline method applies the Fast 

Limited Memory Optimizer (Kroon 2009), a Quasi-Newton optimizer, to move the control points, 

in order to achieve the optimal registration between both images with minimal similarity error. 

The implemented B-Spline method can also performed rigid and affine transformations (section 

2.3.).    

 

 The Demon algorithm is a non-rigid registration technique faster and rather simpler than 

the B-Spline. This algorithm was first described by (Thirion 1998) and followed by (Wang, Dong 

et al. 2005), and the methodology followed in the present study was developed by (Kroon 2008). 

For each pixel a velocity, or movement, is defined by this method, using the intensity 

differences and gradient information. The velocity matrix is smoothed by a Gaussian filter and 

iteratively applied to transform the moving image and register it onto the fixed image. The 

transformation is optimized by a limit memory BFGS optimizer (Liu and Nocedal 1989) in an 

iterative and multi-resolution way. The Demon algorithm also performs affine registration 

(section 2.3.). 

  

 In the second approach were also tested combinations of the previously described 

algorithms, starting with a rigid registration technique followed by a more accurate and 

computational demanding non-rigid registration algorithm, as performed in previous studies 

(Roberts, Magee et al. 2012).   

 

 In order to align all the images from the datasets available, two different registration 

models, the reference slice model and the pairwise model, were implemented for all the 

abovementioned registration methods, starting from the middle slice (in the datasets) since, 

generally, it is the section with most tissue (Roberts, Magee et al. 2012). Through the reference 

model the registration procedure is performed considering only as fixed image the middle slice 

from the image dataset, thus, being all the slices registered to reference section. The pairwise 

model is performed in a cascade process starting from the center slice and performing 

registration in pairs of slices (moving image becomes fixed image in the next alignment) in two 

directions - until the top slice in the first run and the first slice in the second run.   

 

 The workflow of the registration approach combined with the best suited pre-processing 

method is presented in Figure 24.  
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3.2.3. Final Approach – Based on the complete workflow with 

the 3D reconstruction 

In the third and final approach, the most successful pre-processing and registration 

method, or combined methods, for the tested image datasets were connected and the 3D 

reconstruction final step was added to the workflow.  

In the pre-processing stage the previously tested methods were subjected to an efficiency 

test, but to a different segmentation technique, the stain deconvolution method, explained in 

more detail further in this section. The method implemented for this first step was the CLAHE 

but with a difference in the algorithm presented in the section 3.2.1., since only the red 

channel was subjected to the histogram equalization. This was performed due to the high 

influence of the red channel in both Hematoxylin and Eosin stain, proving, through the 

segmentation, to be the best stain discriminant method. The image was also subjected to a FIR 

filter (filters with finite impulse response) convolution to remove line artifacts or deformations 

on the analyzed slice (section 3.1.).  
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Figure 24. Schematic model representing the second workflow implemented in the study. In the first step, 
the most successful pre-processing method was applied to the image dataset, followed by the image 
registration step, with several methods being tested. 
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The stain deconvolution technique developed for this study was based on the work carried 

out by (Ruifrok and Johnston 2001, Chan 2013) and also from (Unpublished 2015). The stain 

deconvolution is a segmentation method that is capable of deconvolve a stained image (for 

example with H&E) and generate separate images, each one with the distribution of a single 

stain (Hematoxylin, Eosin and Background, in the case of the tested datasets). This method 

assumes that the chemicals employed to stain the tissues slides follow the Beer-Lambert Law 

of absorption (11): 

𝐼 =  𝐼𝑜𝑒
−𝑆𝐷   (11) 

where 𝐼 is the RGB image, 𝐼𝑜 is the intensity of the source, 𝐷 the stain density map and 𝑆 the 

stain absorption matrix. This equation grants a logarithmic relation between the original RGB 

color channels and the stain intensities. The implemented algorithm starts by converting the 

RGB image 𝐼 into the optical density place (OD) – 𝐼𝑂𝐷 - through the previous equation in the 

form (12):  

𝐼𝑂𝐷 =−log(
𝐼

𝐼𝑜
)   (12) 

After the OD conversion, the image pixels are projected into the Maxwellian chromaticity 

plane. In the Maxwellian plane the distance between two points is proportional to their 

chromatic dissemblance (Maxwell and Zaidi 1993), or within this study, the pixels that belong 

to the same stain are projected closer than the pixels belonging to different stains. To calculate 

the pair of corresponding Maxwellian coordinates (𝑚1,𝑚2) for each pixel 𝑝, the following 

equation (13) was implemented: 

[
𝑚1
𝑚2

] =  [
0.7071 −0.7071 0
−0.4082 −0.4082 0.8165

]
𝑝

‖𝑝‖1
   (13) 

The described Maxwellian plane property and the pair of Maxwellian coordinates allows 

the implementation of an unsupervised classifier, for example kmeans, to assign a label for 

each pixel according to its stain. With the classification performed, the following step is the 

Stain Matrix estimation. For this study, it is considered the existence of three stains or classes, 

the Hematoxylin (class 1), Eosin (class 2) and the Background (class 3). The Maxwellian 

coordinates of the mean value in each of these classes - 𝜇𝑐 = (𝜇𝑚1𝑐 , 𝜇𝑚2𝑐), obtained through 

the kmeans classification, is converted back to the OD space through the equations (14) 

exposed below: 

𝑆𝑐,𝑟 = 0.7071𝜇𝑚1𝑐 − 0.4082𝜇𝑚2𝑐 + 0.33 

𝑆𝑐,𝑔 = −0.7071𝜇𝑚1𝑐 − 0.4082𝜇𝑚2𝑐 + 0.33   (14) 

𝑆𝑐,𝑏 = 1 − 𝑆𝑐,𝑟 − 𝑆𝑐,𝑔 

 

where 𝑆𝑐,𝑟 is the red channel value for the stain vector of the class 𝑐, 𝑆𝑐,𝑔 the green channel 

value and 𝑆𝑐,𝑏 the blue channel counterpart. The stain vector is generated for each class 𝑐 by 

𝑆𝑐 = [𝑆𝑐,𝑟 , 𝑆𝑐,𝑔, 𝑆𝑐,𝑏]
𝑇
, and, in turn, the stain matrix by 𝑆 =  [𝑆1, 𝑆2, 𝑆3], being 𝑐 = 1,2,3 the H, E 
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and B stains, respectively. The stain density map 𝐷 is obtained through the inverse of the stain 

matrix as demonstrated in equation (15): 

𝐷 = 𝑆−1𝐼𝑂𝐷  (15) 

 
The created stain matrix is then applied to the OD image to each pixel to obtain a final 

three channel image, composed by images from the three different stains, Hematoxylin, Eosin 

and Background. The stain images are separated and the first two, the relevant stains, suffer 

a contrast enhancement process. The contrast enhancement method embedded in the stain 

deconvolution framework performs a mapping of intensity values in grayscale images, so that 

the output data (image) presents a saturation of 1 % in high and low intensities, thus an 

increased contrast in intensities (MathWorks).  

 

The registration method implemented was the automatic intensity-based registration 

algorithm (section 3.2.2.) with transform type rigid and performed taking as constant fixed 

image the reference slice of the image dataset (the central slice), and as moving images all 

the slices successively, from the first to the last in the dataset, aligning them to the reference 

and stacking them to form volumetric data. 

  

To execute the 3D reconstruction and display were implemented using two different 

frameworks. The algorithms tested were the Marching Cubes algorithm (Lorensen and Cline 

1987) implemented by (Hammer 2011) and the Isosurface framework from (MathWorks), 

adapted for the image datasets tested in this study.  

The Marching Cubes algorithm creates polygonal surface representations of isosurfaces 

(Lorensen and Cline 1987) of 3D scalar fields, such as the slice stack formed after the 

registration complete process over all the dataset images. The implemented method consists 

in a vectorized version of the algorithm, which computes a triangulated mesh of the isosurface 

within a given 3D matrix of scalar values, according to the isosurface value (the constant value 

or level set from the 3D image represented in the isosurface), and specified in terms of a face 

and vertex list. The orientation of the triangles generated is selected according to the normal 

point from higher to lower values (Hammer 2011). This method enables the visualization of the 

generated 3D surface, with customizable colors and view. 

The Isosurface framework from (MathWorks) also performs the extraction of the 

isosurface data from volumetric according to an isosurface value, although with a different 

process. This method performs first a volumetric interpolation using linear interpolation with 

(MathWorks), and then connects the points with equal isosurface value, forming a three 

dimensional surface. This method is combined with a 3D data smoothing technique (MathWorks) 

to smooth the edges of the reconstructed surface and a 2D polygon filling method (MathWorks) 

to enable its coloring and visualization. 

The final workflow schematic representation is shown in Figure 25. 
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Figure 25. Schematic model representing the third and final workflow implemented in the study. The 
approach starts by computing a loop for each slice in the dataset (minus the reference middle slice) 
in which the image suffers pre-processing, segmentation through stain deconvolution and registration 
with the reference slice as fixed image. All the registered images are stored and stacked to form the 
3D data dataset, which will, posteriorly, serve as input of both 3D reconstruction frameworks.  
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Chapter 4 

Results and Discussion 

 In this chapter, all the experimental results obtained with the three approaches described 

in the methodology (Chapter 3) and their respective discussion are presented. The pre-

processing results will be the first to be analyzed, based on color contrast enhancement and 

segmentation results, followed by registration frameworks comparison and evaluation (second 

approach). Finally, the final workflow will be discussed, finishing with the 3D reconstruction 

results. All the selected parameters and decisions performed are properly indicated and 

justified, throughout the entire chapter. The workflows in this study were tested on a Windows 

64bit Intel Core i7-4700HQ CPU at 2.40 GHz, with 8 GB of RAM computer system. 

4.1. Pre-processing stage  

 In this section, results from the application of pre-processing methods, addressed in the 

first approach (section 3.2.1.) will be presented and discussed further in this section. In the 

end, the best methods or workflows will be determined based on visual interpretation and a 

segmentation test, performed with kmeans algorithm.  

 Observing all the lesions and their description, in section 3.1.2., found in images from the 

three datasets, it can be concluded that they present very distinct natures and occur stained 

by both hematoxylin and eosin stains, in a wide range of color intensities. In light of the 

previous, the pre-processing techniques were developed focusing the color contrast 

enhancement and ultimately the distinction between tissues stained with each one of these 

stains.   

 The resultant images after implementation of the pre-processing techniques, presented 

throughout this section, applied to a single slice from the second dataset, serving as an 

illustrative example. The original image from the selected slice (nº 35) is presented in Figure 

26.
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Figure 26. Original image (slice nº35) from the second 
dataset. 

 Considering the analysis performed in tissue sections from case 2 by a histopathologist, 

described in section 3.1.2., the effectiveness of each pre-processing method applied will be 

discussed, concerning the color contrast between different tissues.  

The first procedure implemented was a color channel decomposition from the original 

RGB image, to ascertain the color channel most suited for color discrimination, mainly between 

lesion and healthy tissues. The resultant images are presented in Figure 27. 

 

 

 

Figure 27. Resultant images of color channel extraction from the original image. Red channel grayscale 
image – R, Green channel image – G and Blue channel image – B. 

 
Through image comparison it is possible to conclude that the color channel that better 

differentiates the relevant tissues from the healthy tissues in the lymph node is the red channel 

(Figure 27, image R), where the lowest pixel intensity corresponds to healthy tissues. Despite 

being the best channel to process in order to highlight the lesion tissues, the green image is 

also relevant, since it is the one that presents the greater contrast between lymph node and 

R G 

B 
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background. With these results in mind, several pre-processing methods, focusing color 

contrast enhancement, were tested and their results explored further in this section.  

  

 A CLAHE method was applied to each color channel independently to increase the 

contrast between pixel intensities of different tissues, in each color image. The resulting 

images are shown in Figure 28. These images were concatenated to create an RGB image with 

a clearer distinction (RGB equalized image), visible in Figure 29.a. This image demonstrates 

the efficiency of this technique, applied to grayscale images to obtain RGB with higher color 

contrast, fundamental to provide a better differentiation between the tissues. The CLAHE 

window of operation (adaptive method) was the same for each image, a 4x4 window, as well 

as the Clip Limit, of 0.01 (clip limit is the normalized value, between 0 and 1; Higher clip 

limit values will cut fewer values and, consequently, they will be spread out more, hence 

increasing the contrast). These parameters were determined by trial and error, to obtain the 

better contrast in the RGB final image. Since the red channel presents more color contrast 

information between hematoxylin and eosin stained tissues, another CLAHE approach was 

developed (CLAHE-red), in which only the red channel grayscale image was subjected to the 

histogram equalization, leaving both green and blue images unaltered. The resultant image is 

presented on Figure 29.b to be compared with the previous CLAHE method.  

 

 

 
Figure 28. Images obtained through CLAHE implementation on the original RGB image channels. 
Image resultant from red image histogram equalization (R), Green image (G) and Blue counterpart 
(B).  

  

R G 

B 
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Figure 29. RGB image obtained after CLAHE operation in each color channel image from the original 
image and posterior concatenation of the channels (a). RGB image obtained after CLAHE-red 
operation in the red channel and posterior concatenation with unaltered green and blue channels 
(b). 

 
 Visualizing the histogram equalized images of the color channels, in Figure 28, it is 

evident an overall contrast enhancement in grayscale pixel intensities and image sharpening, 

when compared to the original color channels (Figure 27). Also, the previous statement 

indicating the red channel image as the most valuable for tissue discrimination is 

corroborated by these CLAHE-red results, where it can be seen a more pronounced distinction 

between different tissues in the lymph node. By using a 4x4 window it was small enough to 

perform a local contrast enhancement, but not too reduced to be affected by small image 

artifacts with high or low intensities. Analyzing the RGB image formed by the equalized 

images, in Figure 29, it stands out the color contrast between tissues stained with 

Hematoxylin (nucleus) in blue, and Eosin in magenta, clearly enhancing the stain 

differentiation, when compared to the original image (Figure 26). This pre-processing method 

is also better than the all-channel CLAHE (Figure 29.a) because not only the colors exhibited 

by the tissues are more resembling to the hematoxylin and eosin stains but also the image 

color sharpness is reduced, contributing to the segmentation process.   

 

The image normalization technique, presented in section 3.2.1., was also tested for all 

the datasets and the result of this operation in slice 35 of case 2 can be observed in Figure 30. 

This procedure was implemented to produce images suitable to create masks, aiming to remove 

the background. The removal of this element can reduce the computational cost and improve 

the efficiency of segmentation procedures in the image. The normalization was applied to each 

color channel image, from the original RGB slice, separately and then concatenated to originate 

a final RGB normalized image. The normalized channels can be observed in Figure 31. 

 

a b 
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Figure 30. Normalized RGB image resultant from the 
Normalization technique described in section 3.2.1. 

 

 

 

Figure 31. Images resultant of the normalization procedure to each color channel (Red – 
R, Green – G and Blue – B). 

 
On Figure 31, it is possible to observe the outcomes of image normalization in each color 

channel from the original RGB image. Comparing the three images it is clear that the most 

suited one to produce masks, to remove the background, is the green channel image, due to 

the higher contrast between foreground (lymph node) and background. The red image is also 

interesting to mask not only the background but also the blood vessels (see Figure 19, form 

section 3.1.2.), that appear with intensities closer to the background pixels, unlike in the other 

two images. Since these structures (blood vessels) present closer colors to the lesion tissue 

pixels they can be misclassified as lesion in the segmentation procedure, hence the importance 

of removing blood vessels from the image. The final RGB normalized image (Figure 30), 

obtained through concatenation of the three normalized channels, although not presenting any 

detail or structure inside the lymph node it presents a higher contrast against the background 

than each separate channel. This allied to fact that the blood vessel area presents an 

intermediate color between foreground and background, proves the relevance of this technique 

to create masks for color images, in particular for tissue sections stained with H&E. 

R 

 

G 

B 
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Concerning the color space transformations, the first one tested was the HSV conversion. 

The original RGB image was converted to this color space, also composed by three channels 

(section 3.2.1.), where its color saturation (second channel) was enhanced by a multiplying 

factor. The images are then, converted back to the RGB color space to assess the effect of the 

produced modifications on the image’s colors. The factor was modified to find the most 

appropriate value to enhance the image color saturation, therefore to better distinguish the 

lesion from healthy tissues. Images resultant from the application of various factor values are 

presented in Figure 32, from 2x to 4x saturation increase. 

 

 

 
Figure 32. Images obtained with HSV color transformation with four different saturation enhancement 
factors, from the original image. Image (a) is 2x, image (b) is 2.5x, image (c) is 3x and (d) is 4x. 

 Analyzing the resultant images from this method, in Figure 32, considering four different 

saturation factors (2x, 2.5x, 3x and 4x), it can be concluded that by increasing the multiplying 

factor the tissue stain colors become more vivid, thus the differences between them become 

more evident. This occurs until a certain point, visible in image (c) where due to the increased 

saturation and subsequent high intensity colors, the dimensions and shape of the different 

tissue regions become sparse, therefore, corrupting the image, being even more noticeable in 

image (d). In face of the previous facts and by observation, it is concluded that the saturation 

enhancement factor responsible for the better color contrast is 2.5x, as it can be seen in Figure 

32.b where the purple tissues – Hematoxylin and pink tissues – Eosin are clearly defined. 

 

 A conversion to the CIE L*a*b color space was also applied to the original image. After 

the conversion, the luminance channel and both color components channels (a and b) were 

multiplied by a factor separately, in similar process to the HSV saturation enhancement. This 

operation was followed by a CLAHE to increase the contrast of pixel intensities in all the 

a b 

c d 
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channels, applied with an 8x8 window and a Clip Limit of 0.09. These values and the best suited 

factors for the channels (L factor = 0.8, a Factor = 0.7, b factor = 1/200) were determined 

through experimentation. The image resultant from the application of this method with the 

previously referred values can be observed in Figure 33.    

 

 
Figure 33. Image obtained through CIE L*a*b color space 
transformation, from the original image with all color 
channels enhanced separately by factors (Luminance – 0.8; 
a component – 0.7; b component – 1/200). 

 
 Observing Figure 33 it is possible to verify a color contrast enhancement between tissues 

stained with Eosin in shades of pink and the Hematoxylin stained tissues in a grayish brown. 

Although this method did not provide the best discrimination in terms of tissue types, it points 

out the color of the blood vessels from the overall eosin stained tissue, in a clearer manner 

when compared to previously implemented methods.  

 

 The last pre-processing method tested to increase the color contrast between the lesion 

and the other tissues corresponds to another color space transformation. The YCbCr color 

space conversion was applied to the original RGB image and, similarly to previous methods, 

some channels were enhanced. In the implemented transformation, both the Luminance (Y 

channel) and the blue chrominance (Cb channel) were multiplied by a diminution factor 

targeting the highlighting of lesion tissues over the other structures. This operation was 

optimized by trial and error and the most appropriate parameters were determined, and are 

presented below. Only after converting back to RGB color space the enhancement the outcome 

of the referred operations can be visualized. The output images resultant from this method 

and the influence of three different luminance factors (1/20, 1/40 and 1/80) were explored, 

using a constant blue chrominance factor – 1/16. The images obtained with this method and 

parameters presented an unnoticeable lymph node, with reduced sharpness and almost 

inconspicuous in terms of shape and/or appearance.  

  Therefore, and since this method is most suited to work on RGB normalized images (section 

3.2.1), the same test was repeated, but this time applying the color space transformation to 

the resultant image from the normalization process (Figure 30). The results are presented in 

Figure 34, also for luminance factors 1/20, 1/40 and 1/80. 
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Figure 34. Resultant images from YCbCr color space transformation applied to the normalized RGB 
image (Figure 30), with constant Cb factor (1/16) and decreasing luminance multiplying factors - 
1/20 (a), 1/40 (b) and 1/80 (c). 

 
 Analyzing the Figure 34, showing the result obtained when the YCbCr color space 

transformation is applied to the normalized image, outcome of the normalization method 

(Figure 30), it is evident the improvement in terms of image quality and sharpness. A general 

comparison between the three images shows that they are similar in terms of tissue colors 

among relevant structures, and thereby the diminution factors smaller than 1/20 do not 

increase the color contrast. The only difference between these images is the green color noise 

noticed among pixels from the background, which is higher for lower values. Considering this, 

the best suited diminution value for these images is 1/20x, since it provides a clearer 

discrimination between different stained tissues. This value, as well as the blue chrominance 

factor (1/16) were determined through experimentation, i.e. color contrast enhancement 

optimization. As noticeable in Figure 34 the diminution of both factors results in an overall 

image darkening (luminance diminution), particularly in tissues stained with hematoxylin, due 

to higher blue color influence (blue chrominance diminution). The YCbCr color space 

transformation preceded by an image normalization was the most accomplished method, of 

the presented in this section, in increasing the color contrast between Hematoxylin stained, in 

deep blue shades, and Eosin stained tissues, in magenta. 

 

 The masking method developed for this study (section 3.2.1.) involved a combination of 

two color space transformation techniques, HSV and YCbCr, with the predetermined 

parameters (enhancement factors, 2x for HSV and 1/20x for YCbCr). An automatic threshold 

operation is followed, in order to create a binary image with the lymph node detached from 

the background. The final steps for this masking method includes two morphological 

operations, starting with an image closing, with a 4 pixel radius disk shaped structural element, 

a b 

c 



4.1. Pre-processing stage 

61 

followed by an image opening performed with the same element, but with 6 pixel radius. These 

steps were conducted to achieve a unique final mask structure, as the one presented in Figure 

35, for the original image (Figure 26). The masking process is important to increase the 

influence of each different tissue to be segmented in the segmentation procedure. 

 

 
Figure 35. Mask structure, created from the 
original image to remove the background (a). 

 

 To corroborate the visual interpretation and selection of the most adequate pre-processing 

method to enhance color contrast based on the resultant images, in the datasets prepared for 

this study, a simple segmentation procedure was performed, using kmeans (section 2.2.2.) for 

each method and considering three different classes (hematoxylin stained tissues, eosin stained 

tissues and background), with 15 repetitions and using square Euclidean distance to assign the 

clusters. The segmentation results are shown in Figure 36 as well as the processed images used 

to acquire them, respectively, masked with the structure on Figure 35. Comparing the 

masked images originated from the different pre-processing methods and the respective three 

class segmentation result, represented in Figure 36, it is clearly noticeable that CLAHE and 

YCbCr transformation were the best performing methods in distinguishing the eosin and 

hematoxylin stained tissues. Although CLAHE was the top method to distinguish both stains in 

the segmentation (Figure 36.b), the YCbCr technique proved to be the best method to enhance 

the contrast between the lesion (neoplasic tissue) and healthy tissues, visible in the respective 

segmentation result (Figure 36.g). The three class segmentation result correspondent to the 

HSV enhancement presents mostly over segmented tissues, not being able to accurately find 

neither eosin nor hematoxylin stained tissues. On the contrary, the L*a*b transformation result 

presents under segmentation of both stains and an inconsistent pixel label throughout the 

entire lymph node.  

 Facing the previous results, and in an attempt to improve the segmentation accuracy 

another test was conducted but considering four classes, dealing this way with tissues 

presenting lower concentration on eosin stain color, and possibly segment additional tissues, 

such as the blood vessels. The segmentation results are presented on Figure 37.  

 Through comparison between the results for the four class segmentation and the 3 class 

counterpart in each image, it can be concluded that was an overall improvement in the tissue 

discrimination, more evident in the two methods with the worst outcome in the previous test 

(HSV and L*a*b color space transformation).  
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 The CLAHE-red segmented image presents a higher differentiation in the tissue 

surrounding blood vessels, maintaining almost unaltered the other pixel’s assigned labels, in 

relation to Figure 36.b. A similar comparison can be made for both YCbCr segmentation results, 

were the fourth label was assigned to pixels surrounding the blood vessels (Figure 37.d), 

although less evident than the CLAHE pixel labelling. Despite a considerable improvement in 

HSV transformed image segmentation, it does not present a satisfactory outcome, being a large 

amount of eosin stained tissue still with miss assigned labels. The CIE L*a*b results were clearly 

Figure 36. Masked images, resultant from the contrast enhancement techniques applied to the 
original image (left column) – CLAHE-red (a), HSV transformation (c), L*a*b transformation (e) and 
YCbCr transformation (g). Kmeans results of the respective left image (right column) considering 3 
classes – CLAHE-red (b), HSV transformation (d), L*a*b transformation (f) and YCbCr transformation 
(h). 
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better than the previous segmentation, but also inconsistent, with a considerable amount of 

pixels belonging to hematoxylin and eosin stains being assigned to a third label.    

 

 

All things considered, and to assess the efficiency of top-performing pre-processing workflows, 

for stained tissues contrast enhancement, when applied to the other two datasets, the 

implementation was made and the resultant images are presented in Figure 40, regarding case 

1, and Figure 39 for case 3. The selected slices, to serve as example (slice nº35), from case 1 

and case 3 are shown in Figure 38.  

 

 

Figure 37. Segmentation results considering four classes, for CLAHE image (a), HSV enhanced image 
(b), L*a*b transformed image (c) and YCbCr image (d). 

a b 

c d 

Figure 38. Original image (slice nº 35) from case 1 (on the left). Original image (slice nº35) 

from the third dataset (on the right). 
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 Analyzing the outcomes from the segmentation process for both slices, from case 1 (Figure 

39Figure 40.b and Figure 39Figure 40.d) and case 3 (Figure 40.b and Figure 40.d), it can be 

concluded that both pre-processing workflows produced a satisfactory segmentation, thus 

achieving an accurate discrimination of both different stains, hematoxylin and eosin, in the 

tissues. The fact that both automatic pre-processing techniques demonstrated consistency in 

Figure 39. Masked images, resultant from the contrast enhancement techniques applied to the original 
image from case 1 – CLAHE-red (a), YCbCr (c). Results from kmeans segmentation performed in the 
respective left image (b, d). 

Figure 40. Masked images, resultant from the contrast enhancement techniques applied to the original image 
from case 3 – CLAHE-red (a) and YCbCr (c). Results from kmeans segmentation performed in the respective pre-
processed image, for CLAHE-red is image (b) and for YCbCr is (d). 
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datasets with large morphological and color differences (case 1, case 2 and 3), reinforces their 

quality, and thus their automatic color contrast enhancing capability. Comparing both 

methods, it is noticeable a higher differentiation between distinct stains (Hematoxylin and 

Eosin) with the CLAHE-red approach, being the correspondent tissues accurately separated, 

even in the collision tumor where both cell lines were clearly identified. On the other hand, 

the YCbCr workflow produced a tissue differentiation in the collision tumor in case 1 and 

divided different tissues near the inner neoplasic tissue in the case 3 image.  

 

 During the pre-processing technique’s development and testing, they presented several 

intra an inter-case inconsistencies in terms of contrast enhancement efficiency (visible when 

comparing Figure 36, Figure 40 and Figure 39) and, therefore, in the final segmentation accuracy. 

These errors are mainly due to staining incongruities in slices from different datasets and even 

from slices of the same case study, a fact already mentioned in section 3.1.2., presenting, in 

the last scenario, identical structures with slightly different colors. Since these pre-processing 

techniques rely on pixel intensity and color properties and have to be automatic, the 

aforementioned fact is the most probable cause for some errors in the segmentation. 

 

 Despite some techniques, and respective results, being explored and described to mask 

blood vessels from the images, namely, CIE L*a*b and normalization techniques, after several 

trials, intense testing and combination of techniques, the development of an automatic method 

capable of performing accurate distinction of blood vessels, in all images contained in the three 

datasets was proven impossible. In some cases, only the exterior blood vessels were removed, 

in other cases occurred a partial removal on the same. Facing this fact, the regions containing 

blood vessels in the images were not removed with the developed mask technique, 

implemented in the final pre-processing workflow. 

 

 CLAHE-red histogram equalization with background removal (masking process) and the 

YCbCr color space, also with background removal, preceded by a normalization step, both top 

performing methods in the segmentation process, were implemented to all slices from the 

three image datasets, in order to improve image registration, a process exhaustively explored 

in the next section. 
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4.2. Registration stage  

 In the present section, the registration methods, or combination of methods, are going to 

be explored and their efficiency in slice alignment will be compared, based on the DICE score 

and the computational cost required to compute the entire dataset image registration. The 

computational cost was measured as the time required to complete the registration of all the 

slices. The dataset selected to test the registration methods was case 3, containing 100 slices, 

since it is the complete dataset with the lowest number of images. All the experiments, using 

different registration algorithms were conducted for reference slice and pairwise registration 

models (section 3.2.2.). All the images submitted to a registration method suffered a previous 

grayscale conversion followed by a contrast adjustment with (MathWorks). 

 The first method explored was the automatic - intensity based technique, due to its 

simplicity and its three types of transformation (rigid, similarity and affine). The best suited 

pre-processed image to perform registration, among the resultant from the pre-processing 

methods, described in the previous section, was determined for this first test and used for the 

other intensity-based methods (Demon and B-spline algorithms). The mean DICE score, average 

DICE score from the 100 registered slices, measured to assess the registration quality, and the 

time elapsed during the registration of the entire dataset are presented in Table II, for all the 

experiments conducted. 

 
Table II. Table containing the mean DICE scores and the elapsed times for the intensity-based registration 
implementation, with different types of transformation (rigid, similarity and affine) and models 
(reference slice, pairwise), on images from both top-performing pre-processing methods (YCbCr color 
transformation and CLAHE-red). 

 Firstly, the images resulting from the YCbCr color space transformation (the method was 

applied to all slices in the dataset) masked and unmasked were tested with rigid 

Pre-processing 

method 

Transformation  Intensity- based registration 

Reference Slice Pairwise 

YCbCr color space 

transformation 

With Mask 

Rigid 

DICE: 0.6632±0.1739 

Time: 54.808968 s 

DICE: 0.6425±0.2612 

Time: 53.710495 s 

Without Mask 

Rigid 

DICE: 0.9114±0.0288 

Time: 66.556130 s 

DICE: 0.8897±0.0411 

Time: 66.166884 s 

Similarity 
DICE: 0.9033±0.0642 

Time: 81.728404 s 

DICE: 0.8906±0.0422 

Time: 72.233815 s 

Affine 
DICE: 0.9054±0.0626 

Time: 74.174649 s 

DICE: 0.8897±0.0432 

Time: 67.782040 s 

CLAHE-red Without Mask  

Rigid 

DICE: 0.9683±0.0283 

Time: 55.990489 s 

DICE: 0.9419±0.0385 

Time: 47.265646 s 
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transformation, to assess if the background removal would improve the registration process, as 

it did with the segmentation (section 4.1.). Comparing the DICE scores it is clear that without 

masking process the registration is considerably more accurate (Masked DICE = 0.6632±0.1739; 

Without mask DICE = 0.9114±0.0288; for reference slice model), although with a higher 

computational cost. These results prove not only that the masking method implemented is 

irregular in terms of removed structures, but also that a masked image possesses far lesser 

information, for an intensity-based registration method, than the same image with background. 

Considering the discrepancy between the obtained DICE scores, the following experiments were 

all conducted without masked images, to comprehend which one of the registration types 

performs the best registration considering the available datasets. Comparing the higher rigid 

score with both similarity and affine DICE scores it is possible to deduce that when the 

reference model is performed the rigid transformation slightly outperforms the other two types 

when the model is the reference slice (rigid DICE = 0.9114±0.0288; similarity DICE = 

0.9033±0.0642; affine DICE = 0.9054±0.0626), and, when implementing the pairwise framework 

the three scores are similar (rigid DICE = 0.8897±0.0411; similarity DICE = 0.8906±0.0422; affine 

DICE = 0.8897±0.0432), with slightly higher DICE result for the similarity type. After this test, 

the set of YCbCr images was substituted by the resulting images from the CLAHE-red method 

to verify which pre-processing technique produces the best images for intensity-based 

registration. This test was conducted without background removal and to the top scoring 

registration type – rigid registration. The comparison between the DICE scores indicates that 

the best pre-processing method, for the considered dataset intensity-based image registration 

is the CLAHE-red (for reference slice model CLAHE rigid DICE = 0.9683±0.0283, YCbCr rigid DICE 

= 0.9114±0.0288; for pairwise model CLAHE rigid DICE = 0.9419±0.0385, YCbCr rigid DICE = 

0.8897±0.0411). All the tests performed with reference slice model consistently present a 

higher DICE score when confronted with their pairwise model counterparts, suggesting that, 

for this case 3 the best model to perform intensity-based registration, and therefore, the entire 

image dataset alignment is the registration of each image to the reference slice. In the present 

work the defined reference slice is the middle one (slice nº50 in the considered dataset – case 

3), because it is the most representative in terms of tissues, according to (Chakravarty, Bedell 

et al. 2008)).  

 Analyzing the computing time of all the different registration types the results (Table II), 

it can be observed that the rigid transformation is the less computationally expensive, followed 

by the affine and then the similarity transform, with the highest time. These results go 

according to expected, because the rigid transform consists only in translation and rotation, 

being simpler than the other two (similarity – translation, rotation and scale; affine – 

translation, rotation, scale and sheer). Comparing, on the other hand, the times obtained by 

both registration models, it is visible a consistent increased computational cost in the 

registration methods performed using reference slice.  



  Results and Discussion 

68 

 Alignment images and pair of fixed and moving image for the most relevant registration 

experiments are shown in Figure 42, Figure 42 and Figure 43. The chosen moving image is slice 

nº35, the same as in the pre-processing section (4.1.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42. Images representing intensity-based image registration 
pairwise model and rigid transformation type, from YCbCr pre-
processing. Image (a) represents the fixed image (slice nº36), (c) the 
moving image (slice nº35) and (b) the rigid registration overlapping 
image (Fixed and registered images).   

b 
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Figure 41. Images representing intensity-based image registration 
performed with reference slice model and two types of transformation, 
from YCbCr pre-processing. Image (a) represents the fixed image (slice 
nº50) and (c) the moving image (slice nº35) for both rigid (b) and affine 
(d) registration type overlapping image (Fixed and registered images).   
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 After experimenting the automatic intensity-based registration algorithm, explained in 

section 3.2.2., an automatic feature-based similarity registration approach was implemented 

through an algorithm also referred in this section. Based on the top-scoring results obtained 

with the first method, the feature-based technique was applied to the CLAHE-red processed 

images, but without any viable results. This was due to the lack of matching points verified in 

the registration process of most of the slices contained in the dataset, either recurring to 

reference slice or pairwise model. Taking this into account and that feature-based methods 

perform image alignment based on features correspondence (between moving and fixed 

images), such as points, lines and contours, another pre-processing technique was applied to 

the dataset images, the image normalization (section3.2.1.). This method was implemented 

due to its capability to detach the lymph node (in this case) from the background, promoting 

its contour extraction. Aiming also to improve the contour extraction for the feature 

registration method a gaussian smoothing filter, with kernel dimensions 4x4, was applied to 

the normalized image. The registration results, DICE mean score and computational time, for 

smoothed and non-smoothed images are presented in Table III. The reference slice registration 

model was tested for this set of images, but it was incapable of providing a full dataset 

registration, and thus, the DICE score was not measured. 

 
Table III. Table containing the mean DICE scores and the elapsed times for the feature-
based registration implementation with pairwise model on images with both smoothed 
and non-smoothed image normalization pre-processing.   

Pre-processing method 
Feature-based similarity registration 

(Pairwise model) 

Image 

Normalization 

With smoothing 
DICE score: 0.9218±0.0481 

Time: 30.537524 s 

Without 

smoothing 

DICE score: 0.8412± 0.0999 

Time: 27.915660 s 

 

a b c 

Figure 43. Images representing intensity-based image registration 
performed with reference slice model and rigid transformation type, 
from CLAHE-red pre-processing. Image (a) represents the fixed image 
(slice nº50), (c) the moving image (slice nº35) and (b) the rigid 
registration overlapping image (Fixed and registered images). 
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 Observing the mean DICE scores obtained for smoothed images registration as opposed to 

non-smoothed (Table III), the superiority in terms of accuracy is substantial for the smoothed 

version, as expected. Only the pairwise model was successful in the similarity feature-based 

registration. Regarding the computational cost, both methods present similar times, around 30 

seconds, considerably shorter than those obtained through intensity-based registration. An 

example of smoothed slices alignment, including the correspondent fixed and moving pair 

(Moving - slice nº 35; Fixed – slice nº36) is shown in Figure 44.  

 

 

 

 

 

 

 

 

 

 

 

 
 Analyzing Table II and Table III top performing pre-processing and registration frameworks 

it is possible to infer that the intensity-based method performs the best image alignment 

(Intensity - CLAHE-red rigid DICE: 0.9683±0.0283; Smooth Normalization Similarity DICE: 

0.9218±0.0481). Considering, in turn, the time elapsed during the registration procedure the 

intensity method almost doubles the computational cost (Intensity: 55.990489 s; Feature: 

30.537524 s). Considering also that only a specific registration model and pre-processing 

method accomplished a satisfactory result, it is clear that the intensity-based registration is 

more adequate to perform slice alignment for the tested dataset. This result is expected due 

to fact that the images contained in the case 3, and H & E histological images in general, 

contain more information in image intensities, due to the color stains, than image features, 

identifiable by feature-based registration techniques. 

 
 With the intensity-based registration, using rigid transformation, being proved the best 

approach for these type of datasets, another experiment was conducted through the 

implementation of two distinct non-rigid registration techniques, the Demon and the B-spline 

algorithms (complex methods described with detail in section 3.2.2.).  

Figure 44. Images representing intensity-based image registration 
performed with pairwise model and similarity transformation type, from 
smoothed image normalization pre-processing. Image (a) represents the 
fixed image (slice nº36), (c) the moving image (slice nº35) and (b) the rigid 
registration overlapping image (Fixed and registered images). 

a b c 
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Table IV. Table containing the mean DICE scores and the elapsed times for the intensity-based non-rigid 
registration implementation, with two different algorithms (B-spline and Demon) and models (reference 
slice, pairwise), on images obtained from CLAHE-red pre-processing method.  

Quality 

parameters 

B-Spline Demon Algorithm 

Reference Pairwise Reference Pairwise 

DICE mean Score 0.9932±0.0013 0.9916±0.0056 0.9279±0.0352 0.9297±0.0438 

Time 
53 min 

(approx.) 

54 min* 

(approx.) 

40 min* 

(approx.) 

28 min* 

(approx.) 

*The entire dataset registration (100 images) was not accomplished by this algorithm/model. 

 
 An example of registration using B-spline and another using the Demon algorithm are 

presented in Figure 45. The results obtained for Demon algorithm with reference slice 

registration model and with pairwise model were similar, with the same mean DICE scores and 

a small difference in the standard deviation. The lower standard deviation for the first model 

suggests that the reference model originated a slightly more consistent registration for the 

entire image dataset. Through elapsed time comparison the pairwise registration model is the 

most efficient mode, when using the Demon algorithm on this dataset. Despite this apparent 

advantage, since it was not capable of performing the registration on the 100 slices of case 3, 

and only in 82, the best registration model is undoubtedly the reference slice model, even 

without registering the final slice. Analyzing the B-spline results it is easily concluded that this 

method obtained the highest DICE scores of all the tested methods before, in both registration 

models. Although the best performing method, the computational costs required to perform 

the complete dataset registration (100 images) with this algorithm, are untenably extensive, 

reaching almost an hour and even more, considering that, with the pairwise model  only 82 

slices were registered. Consulting some of the produced alignments, with the B-spline method, 

it is possible to observe several moving images completely distorted to fit the fixed image. This 

is one of the main reasons that justifies the outstanding DICE score verified by the B-spline 

method, an error that erases fundamental morphological tissue information present in the 

slices. Therefore, when compared to the Demon algorithm, this method is more limited, not 

only due to the longer computation times but also the greater distortion applied to the images. 

An illustrative image of the referred distortion error is visible in Figure 46, an alignment 

resultant from the B-spline non-rigid method. 
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 After exploring the non-rigid registration algorithms and following a previously developed 

methodology, performed by (Roberts, Magee et al. 2012), both the top-performing intensity-

based rigid and non-rigid registration techniques were combined, with the purpose of obtaining 

a more consistent framework to align histological sections with no distortions, and also to verify 

if by using previous rigidly registered images as input of a non-rigid method it increases the 

computational speed of the last process. The results obtained by the implementation of this 

method are - DICE: 0.9573±0.0340; Time: 40 min (approx.) –when applying the Demon algorithm 

after the rigid intensity-based registration, both in reference slice model, and – DICE: 0.9655± 

0.0417; Time: 25 min (approx.) – using the same framework but with both methods in pairwise 

Figure 45. Images representing the intensity-based non-rigid 
registration. On the first set of three images was performed the B-
spline algorithm with reference model, fixed image (a) is slice nº50, 
moving image (c) is slice nº35 and (b) the non-rigid registration 
overlapping image (Fixed and registered image). Concerning the other 
three images, (d) is the fixed image (nº36) and (f) the moving image 
(nº35) and (e) the overlapping image obtained with Demon algorithm 
in pairwise model. 

b c 

d f e 

a 

Figure 46. Illustrative images presenting a distortion error in the 
registration. Image (a) is the fixed slice (nº50), image (c) is the moving 
slice (nº40) and (b) is the overlapped image obtained with B-spline 
algorithm, in reference slice model. 

a b c 
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registration model. Comparing both scores, the pairwise model presented a faster and more 

reliable approach than its reference slice counterpart. Although the consistent results from 

both frameworks, when compared to the rigid intensity-based registration performed using 

middle reference slice model (Table II), it is easily concluded that the rigid method presents 

itself the most efficient registration approach, with higher DICE scores and requiring far less 

time to compute all the transformations in the dataset. Therefore, it can be deduced that the 

combination of this method with a posterior non-rigid algorithm did not increase the accuracy 

in the registration, and, facing this, the best method is the automatic intensity-based rigid 

registration, the first method tested.  

 

 In order to validate the intensity rigid registration method, combined with CLAHE-red 

image pre-processing as a general framework to apply image alignment in large datasets of 

histological slices stained with H & E, it was applied in both case 1 and 2, and the results can 

be found in Table V.  

 
Table V. Table containing the mean DICE scores and the elapsed times for the intensity-
based rigid registration method implementation, on two different image datasets (Case 
1 and 2), previously pre-processed by CLAHE-red algorithm. 

 Case 1 Case 2 

Intensity rigid registration 
DICE: 0.9267±0.0337 

Time: 21 min (approx.) 

DICE: 0.9367±0.0356 

Time: 47.242910 s 

 
 An example of the registration of one moving slice (nº35) to the reference fixed (middle 

slice), for both cases 1 and 2, is presented in Figure 47. The DICE scores obtained for both 

datasets, despite being lower than the obtained for case 3 (DICE: 0.9683±0.0283), are 

satisfactory results, revealing a consistent alignment of the entire dataset above 0.9 score (in 

both cases). Comparing, in turn, the time elapsed in the registration of each case, the case 1 

is the most demanding in terms of computational cost, taking 21 minutes to completion. In 

contrast, case 2 took the least amount of time to perform the entire registration of the dataset, 

with approximately 47 seconds, followed by case 3 with 56 seconds (approx.). This time 

discrepancy, verified between case 1 and the other two, is due to the fact that besides being 

composed by more images (case 1 – 124; case 2 – 94; case 3 – 100), this dataset is composed by 

larger images, and consequently more pixels to be analyzed in the registration process.   
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4.3. Final Results  

 In this section, the results from the final workflow developed, aiming the 3D final 

reconstruction, including previous pre-processing, segmentation and registration are 

thoroughly described. All the figures resultant from the different steps are presented for slice 

nº 35, as in previous sections, to exemplify a possible outcome.  

 

 The first step is the pre-processing implementation, and, as consistently proved 

throughout sections 4.1. and 4.2. the most successful method to discriminate hematoxylin and 

eosin stained tissues in H & E histological images is the CLAHE-red algorithm. Since the 

processed images were going to be subjected to image segmentation, in the following step, 

and considering that masking the background increases the segmentation accuracy, as 

concluded in section 4.1., but reduces the registration capability, in the registration step (after 

segmentation), as inferred in the previous section, a different background removal method was 

implemented. This method involves the YCbCr color space transformation (section 3.2.2.), but 

instead reducing the luminance in images, as performed in section 4.1., this channel was 

enhanced in 1.2x (multiplication factor determined by trial and error to optimize the stain 

deconvolution’s accuracy), increasing pixel intensities, which eliminates most of the 

Figure 47. Images representing intensity-based image registration 
performed with reference slice model and rigid transformation type, from 
CLAHE-red pre-processing. Image (a) represents the fixed image (slice 
nº50), (c) the moving image (slice nº35) and (b) the rigid registration 
overlapping image for case 1 dataset. Image (d), (f) and (e) represent 
equivalent images but concerning case 2. 

a 

f e d 

c b 
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background details. Then, the CLAHE-red is applied to the RGB image enhanced in the YCbCr 

color space, and an example result, for all the available datasets, can be observed in Figure 48. 

A comparison with Figure 29 reveals that, the added luminance enhancement step does not 

reduces the color contrast between different stains, achieved implementing only CLAHE-red. 

 

 

 After the pre-processing stage, all the slices were submitted to a segmentation process, 

performed with the stain deconvolution algorithm (described with detail in section 3.2.3.), 

developed for this study. The stain deconvolution was performed for 3 class, in order to 

discriminate hematoxylin stained tissues, eosin stained tissues and the background. The 

segmentation result, as well as the Eosin and Hematoxylin extracted images are presented in 

Figure 49. Comparing the eosin and hematoxylin stain images obtained with this algorithm with 

CLAHE-red pre-processed images, it can be concluded that both grayscale stain images 

produced present an accurate representation of the correspondent stained tissue in the CLAHE-

red image, as regions with higher intensity.   

 By performing this technique two grayscale images are generated, the hematoxylin and 

eosin tissue images, that are used in the following process as image to be registered (only one 

of them is used to find the transformation), avoiding this way the implementation of grayscale 

conversion on RGB images to pursue the slice alignment. The pre-processing and segmentation 

framework, described so far, is also applied to the reference slice (nº50). 

 

 The registration was performed following the top performing method, the intensity-based 

rigid registration technique applied using hematoxylin or eosin grayscale images, obtained with 

the stain deconvolution algorithm from each slice in the dataset. The DICE score and 

computational cost were measured for the registration process applied to both hematoxylin 

and eosin images and the obtained values for each dataset are presented in Table VI. An 

example of the registration process for slice nº35 of case 3, with hematoxylin image can be 

observed in Figure 50.  

Figure 48. Images obtained from the combined pre-processing framework YCbCr luminance enhancement 
and CLAHE-red applied to the original images. Image (a) belongs to case 1, image (b) to case 2 and (c) to 
the third dataset. 
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 Analyzing Table VI it was possible to conclude which of the stain deconvolution outcome 

images is the most suited to perform image registration. The highest mean DICE scores verified 

belong to registrations performed with hematoxylin images, in all three datasets, justified by 

its greater representativeness in terms of high intensity structures, as it can be visualized in 

Figure 49. In case 2 both images, hematoxylin and eosin, share similar structures, with high 

pixel intensity, a fact, corroborated by the closest proximity in the DICE scores measured. In 

terms of computational time, the less demanding are the dataset registrations performed with 

the eosin images, because of the same reason explained for the DICE score, less amount of 

pixels to be correlated in the procedure. It is also noticeable that, for case 1 the registration 

was not only computationally expensive but also inaccurate and inconsistent (high standard 

deviation values), with mean DICE scores below those verified in for CLAHE-red (Table V), 

suggesting that the stain deconvolution proved itself incapable to distinguish both tissue stains 

in a substantial portion of slices, from this dataset.   

 

Figure 49. Segmentation results obtained with the stain deconvolution algorithm (first column): case 1-(a), 2-(d) 
and 3 (g). Hematoxylin image extracted with this algorithm (second column): case 1-(b), 2-(e) and 3-(h). Eosin 
image extracted (third column): case 1-(c), 2-(f) and 3-(i). 

h g 

f e d 

c b a 

i 
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Table VI. Table containing the mean DICE scores and the elapsed times 
for the intensity-based rigid registration method implementation, on all 
the image datasets (Case 1, 2 and 3), considering two different grayscale 
images (hematoxylin and eosin images), obtained through pre-processing 
(CLAHE-red and YCbCr transformation) and segmentation (stain 
deconvolution algorithm).  

Case study 
Registration 

Hematoxylin image Eosin image 

1 
DICE: 0.8387±0.2785 

Time: 71 min (approx.) 

DICE: 9.4781e-04±0.0102 

Time: 70 min (approx.) 

2 
DICE: 0.9345±0.0368 

Time: 204.695529 s 

DICE: 0.9179±0.0610 

Time: 155.079913 s 

3 
DICE: 0.9676±0.0296 

Time: 183.110440 s 

DICE: 0.6152±0.0894 

Time: 158.491751 s 

 
 Considering the previous results the selected set of grayscale images chosen to find the 

registration transformation were the hematoxylin stain images. The transformation found on 

each slice registration with the reference was applied to the correspondent eosin image, being 

aligned with the same translation and rotation than the hematoxylin image. Hereupon, both 

grayscale image datasets (hematoxylin and eosin) were equally aligned, and this framework 

was performed for each case study.  

 

  

 

 

 

 

 

 

 

 

 
 

 After registering the complete image dataset to the reference slice, all images were 

stacked creating volume data, in which the z coordinate represents the slice number. All the 

image datasets (case 1, 2 and 3) were stacked in two rectangular prisms each, one for the 

hematoxylin and the other for eosin registered images, with length and width defined by the 

length and width of the reference slice (because the registered image acquires the size of the 

fixed image), and with height equal to the number of slices contained in the dataset. These 

final volumes were smoothed with a box filter (a spatial domain low-pass filter in which each 

point in the output is the average of the surrounding points in the input structure), with 5x5 

Figure 50. Images representing intensity-based image registration performed with reference 
slice model and rigid transformation type, from hematoxylin images obtained through stain 
deconvolution (Case 3). Image (a) represents the fixed image (slice nº50), (c) the moving image 
(slice nº35), (b) the registration overlapping image and (d) the transformed eosin stained slice 
(nº35), with the registration transformation determined for the hematoxylin images.  

d c b a 
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kernel, and served as input for both 3D surface reconstruction methods, the Marching Cubes 

algorithm and the isosurface framework from (MathWorks) described in section 3.2.3. Using the 

marching cubes algorithm it was only possible the reconstruction of one stained surface at the 

time, being represented in Figure 51 the hematoxylin and eosin reconstructions from case 3 

image dataset, with isovalue equal to 0.5 for hematoxylin stack and 0.65 for eosin. Both 

isovalues were determined through experimentation, aiming to reconstruct a complete 3D 

surface for the considered tissue (stained with hematoxylin or eosin) and at the same time 

reduce the noise produced by background artifacts with intensities similar to the reconstructed 

structure, thus, reducing its intelligibility to the observer.    

 

Figure 51. 3D surface reconstruction from case 3 registered image dataset, using Marching cubes 
algorithm. Images (a) and (b) are from hematoxylin image dataset surface reconstruction with different 
views. Images (c) and (d) are eosin stacked images’ surface reconstruction. Structure (1) represents the 
neoplasic tissue found in Figure 20 – A; structure (2) represents the neoplasic tissue marked in Figure 20 
– B and structure (3) is the blood vessel in Figure 20 – C. 

a b 

c d 

1 

1 

2 
2 

3 

3 
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 Implementing the isosurface framework it was possible to combine both tissue stains 

stacks’ surface reconstruction in one image, using the patch function (MathWorks), and the 

result obtained for case 2 and 3 can be consulted in Figure 52. To each tissue stain 

reconstruction was assigned a color, based on the real color presented in the original image 

dataset. This was accomplished using an auxiliary algorithm, which, first, separates both stains 

from the CLAHE-red image based on stain deconvolution segmentation, performs an average 

pixel intensity measurement in the three color channels of both stain images from the slice and 

then, after the dataset complete analysis, performs another average calculation for all the 

slices, obtaining two final RGB triplets to be applied to the respective stained tissue 3D 

reconstruction. For this method were applied two different isovalues, 0.5 and 0.65 (same as in 

the previous method) for hematoxylin and eosin stacks, respectively.  

 

 
 Observing Figure 51 and Figure 52, it is possible to conclude that both cases 2 and 3 present 

a consistent slice alignment, visible in the surface uniformity along the Z-axis. This is more 

evident in the marching cubes algorithm results, suggesting that the 3D interpolation performed 

by this method provides more accurate results. The success of the entire framework is proven 

not only by this feature, but also by the similarity, in terms of morphology between what is 

seen in the original 2D image slices, from both datasets, and the result of the 3D surface 

reconstruction. Focusing on Figure 51 and in case 3 tissue analysis (section 3.1.2.) the 

Figure 52. 3D surface reconstruction from case 2 (second line) and 3 (first line) registered image dataset, 

using isosurfaces framework. Image (a)-top view, (b)-bottom view and (c)-side view, represent the case 3 
volumetric data combining both hematoxylin and eosin isosurfaces in three different views. Image (d)-top view, 
(e)-bottom view and (f)-side view, represent the case 2 volumetric data combining both hematoxylin and eosin 
isosurfaces in three different views. 

a 

f e d 

c b 
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resemblances are obvious, therefore, enabling the correlation between some relevant 

structures identified in Figure 20. The most evident structures reconstructed are the neoplasic 

tissue stained with hematoxylin (Figure 51.a – 1) and the other two stained with eosin (Figure 

51.d – 2), and also the blood vessel (Figure 51.c – 3 and Figure 20 – c). These 3D surface 

reconstructions are consistent and are able to provide important volumetric information about 

histological slices contained in the datasets, converting a planar observation in a 3D 

visualization of the tissues stained with hematoxylin and eosin in an either separate or merged 

version. Analyzing the surface reconstruction performed for case 2 (Figure 52– d,e,f), it is 

verified a reduced eosin tissue definition, maybe due to the sparse nature of the tissue on the 

original dataset that decreases the intelligibility of the volumetric data. The colors expressed 

in the final surface reconstructions present high affinity with the stain colors verified in the 

CLAHE-red images in Figure 29, pointing the efficiency of the previously described color 

algorithm in combination with the isosurface framework.   

 The 3D surface reconstruction framework applied to case 1 presented some computational 

issues, which compromised the result demonstration. The processing power used to test all the 

frameworks in this study (Intel Core i7-4700HQ CPU at 2.40 GHz, with 8 GB of RAM on a Windows 

64bit system) was not sufficient to load and visualize the volumetric data, mainly due to the 

bad performance of the stain deconvolution method in discriminating tissue stains in most slices 

contained in the dataset and the large image dimensions.  

 

 Taking into account all the previous 3D surface reconstructions, resulting from the final 

framework developed for this study, it can be concluded that the three-dimensional 

representation of the datasets was accomplished for the majority of the available datasets, 

and with interesting and reliable results. Especially for case 3, the reconstruction was able to 

provide accurate 3D volumetric features from neoplasic tissues in addition to overall 

morphological characteristics of the lymph node. The most relevant are the three dimensional 

progression on the Z-axis of the lesion over other tissues (Figure 51), difficult to visually 

estimate from a set of 2D slices. 

4.4. Summary 

 In summary, the top performing pre-processing workflows for hematoxylin and eosin stain 

contrast enhancement were the CLAHE-red histogram equalization followed by a background 

removal (masking process) and the YCbCr color space, also with background removal, preceded 

by a normalization step.  

 After testing several methods, it was concluded that the most efficient framework to 

perform registration in the considered histological image datasets is the automatic intensity-

based registration with rigid transformation type and reference slice model on CLAHE-red pre-

processed slices. This was deduced based on both DICE score results and computational cost, 

being the method with lower times of execution and the second highest DICE scores. The 
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highest score was obtained with B-spline non-rigid algorithm, but, since this method originated 

distortion artifacts to provide accurate registrations, corrupting valuable tissue information, 

and the times required to compute entire datasets could reach approximately one hour, the 

rigid method was considered the most suited for the task. 

 Combining the best methods from both pre-processing and registration sections, the final 

workflow was completed with the 3D surface reconstruction of both hematoxylin and eosin 

stained tissues registered stack. The eosin and hematoxylin separate images were acquired 

from an intermediate segmentation step, the stain deconvolution algorithm, a specially 

developed method for stained tissues differentiation from histological images. Through the 

combined implementation of these four main steps an accurate and interesting volumetric 

representation of both hematoxylin and eosin stained tissues was determined. Both 3D surfaces 

can be shown together or in separate images.  
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Chapter 5 

Conclusion 

 Automated techniques for image processing and analysis applied to histological studies 

constitute an important asset in the comprehension and assessment of relevant aspects, 

volumetric data and models from numerous diseases, unobtainable through 2D tissue slice 

analysis. Impelled by the relevance of this studies and the urge to assist the histopathologists 

in performing medical diagnostic, more accurate and reliable algorithms have been developed, 

providing a fast and trustworthy second opinion.  

 The present study explores histological concepts, including tissue types and sample 

preparation as well as successful techniques of image processing and analysis, highlighting 

current reliable approaches in the field of 3D histological tissue reconstruction.  

 With the previous research in mind and considering the need to produce a 3D 

reconstruction approach for cellular tissue analysis, in this work it was developed an automated 

computational framework combining the best algorithms and techniques implemented by the 

reviewed approaches, focused not only on reconstructing the relevant tissues, but also on their 

spatial relation with the surrounding structures.  

 After conducting the present study, it is possible to conclude that several artifacts present 

in histological tissue sections, such as differences in stain colors between slices and/or image 

datasets, can reduce the consistency of both image processing and registration methods when 

applied to them. On the other hand, through the implementation of accurate registration 

techniques on the image datasets, the presence of tissue orientation dissimilarities, due to the 

manual nature inherent to the sample preparation process, was almost mitigated.  

 The color contrast enhancing pre-processing methods developed and applied to the 

original digital images effectively provided an improvement in discriminating different stained 

tissues. This can be inferred either from visual analysis of resulting images or from the stain 

deconvolution segmentation result’s accuracy, and, consequently high performance in the 

registration process, with DICE scores of 0.9345±0.0368 for case 2 and 0.9676±0.0296 for case 
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3. Case 1 achieved poorer results in general, with a final DICE score of 0.8387±0.2785 in the 

registration process, justified by an inconsistent stain deconvolution procedure, revealing itself 

insufficient to accurately separate both stains, in a great portion of images from this dataset.  

 A consistent neoplasic tissue discrimination was not obtained through the implemented 

algorithm, but, by observing the 3D surface reconstruction of both eosin and hematoxylin 

(section 4.3.) the presence of this tissue is evident. Despite being specified the lesions in 

section 3.1.2. as tissues to be targeted by the algorithm, aiming to promote an isolated 3D 

reconstruction of these neoplasic tissues, the stained tissue separation and posterior 3D 

reconstruction reveals the interaction between the neoplasia and the surrounding healthy 

tissues. Therefore, the consistent reconstruction of both stained tissues including the lesion, 

with accurate volumetric shape, constitutes relevant information for diagnostic purpose.  

 Considering all this, it is concluded that the algorithm developed in this study provides a 

fast and accurate 3D surface volume, comprising both distinct stains represented independently 

and showing the three dimensional relation between lesions and the surrounding tissue. The 

proposed framework obtained a satisfactory performance for two of the three available 

datasets. 

5.1. Future Work Perspectives 

 One future work improvement is the preparation and testing of more histological image 

datasets to further validate the developed algorithm, and also to assess the algorithm’s 

accuracy when analyzing tissues without H & E stain. This would also instigate a refinement in 

the computational techniques, adapting the automatic framework to more sets of images and 

develop a more universal algorithm, capable of performing detailed tissue 3D reconstruction 

of any histological section.  

 Another future improvement would be the incorporation of a functional and general lesion 

detector, able to distinguish special tissues from the other stained healthy ones. The 

improvement of the stain deconvolution method, implementing supervised classification of the 

stained tissues, using as training set a portion of the entire image dataset, could lead to more 

accurate staining discrimination and possibly to define other interesting tissues, such as 

neoplasic tissues. 

 An interesting future development would be the implementation of the produced 

computational framework in opencv (Open Source Computer Vision), enabling a faster image 

processing, for larger image datasets, such as case 1, and the creation of an intuitive user 

interface for input image dataset manipulation and 3D reconstructed volume observation.   
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