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Abstract 

 

This thesis explores for the first time the application of near-infrared spectroscopy and 

multivariate data analysis to monitor in-situ and in real-time dissolution tests of 

pharmaceutical solid dosage forms. 

For this goal a pharmaceutical immediate release formulation containing folic acid as the 

unique active pharmaceutical ingredient was selected. Dissolution testing is one of the 

most important experiments conducted by the pharmaceutical industry in the final quality 

control of solid dosage forms produced batches. Increase knowledge in this area and 

more efficient monitoring methods are fundamental for manufacturing processes 

improvement and control, following the quality-by-design concept defined by the 

International Conference on Harmonization Q8 (R2) guideline for industry.  

Recommended analytical methods for the quantification of active pharmaceutical 

ingredient in immediate release formulations are often based on high performance liquid 

chromatography. However, due to the specificities of this method, e.g., the need of a high 

amount of reagents and the time spent in each analysis, it was found necessary to 

develop alternative methods for the active pharmaceutical ingredient quantification.  

Identifying alternative methods for this task is therefore the motivation of this thesis.  

The first part describes the development of a simple, accurate, precise, economic and 

sensitive ultraviolet spectrophotometric method for the determination of folic acid in 

commercial tablets and in vitro dissolution studies. This method revealed a good linearity 

in the studied concentration range, a good determination coefficient and an excellent 

recovery. The statistical comparison with the high performance liquid chromatography 

reference method showed excellent agreement and indicated no significant differences in 

accuracy and precision. 

In the second part, the application of near-infrared spectroscopy and multivariate analysis 

to monitor in-situ dissolution tests was evaluated. Evaluation was performed with 

laboratory designed and commercial tablets of an immediate release formulation 

containing folic acid and four excipients. Near-infrared spectra were acquired in-situ with a 

transflectance probe immersed in the dissolution medium connected to a Fourier-

transform near-infrared analyser. Partial least squares regression with leave-one-out 

cross-validation was used to correlate near-infrared spectra with the drug concentration.  

Results demonstrate that it is possible to use in-situ near-infrared spectroscopy to monitor 

dissolution tests and that this method is a potential analytical technique candidate for the 

study of drug dissolution methods in a rapid way without any sampling process. Using this 

approach, it is possible to expand surrogate methods in quality control in the 
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pharmaceutical industry and to develop a better understanding of product critical quality 

attributes.  

 

Keywords: Dissolution tests, folic acid, ultraviolet spectroscopy, near-infrared 

spectroscopy, multivariate analysis. 
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Resumo 

 

Esta dissertação explora, pela primeira vez, a aplicação da espetroscopia no 

infravermelho próximo, juntamente com análise multivariada de dados, para monitorizar 

ensaios de dissolução de formas farmacêuticas sólidas in situ e em tempo real. Para tal, 

foi selecionada uma formulação farmacêutica de libertação imediata contendo ácido fólico 

como único princípio ativo. Os ensaios de dissolução são dos mais importantes testes 

efetuados pela indústria farmacêutica em formas farmacêuticas orais, no controlo da 

qualidade final dos lotes produzidos. O aumento do conhecimento nesta área e métodos 

de monitorização mais eficientes são fundamentais para a melhoria do processo de 

fabrico e do seu controlo, de acordo com a abordagem quality-by-design, definida pela 

guideline: International Conference on Harmonization Q8 (R2). Os métodos analíticos 

recomendados para a quantificação do princípio ativo em formulações de libertação 

imediata são frequentemente baseados em cromatografia líquida de alta eficiência. 

Contudo, devido às particularidades deste método (requerer elevadas quantidades de 

reagentes e análise demorosa) revelou-se necessário desenvolver um método alternativo 

para a quantificação do princípio ativo. Identificar métodos alternativos para esta tarefa é, 

portanto, a motivação de todo este trabalho. Assim, na primeira parte do trabalho, é 

descrito o desenvolvimento de um método simples, exato, preciso, económico e sensível 

por espetrofotometria no ultravioleta, para a quantificação de ácido fólico em comprimidos 

comerciais e em ensaios de dissolução. Este método demonstrou ter uma boa linearidade 

na gama de concentrações estudada, bom coeficiente de determinação e uma excelente 

taxa de recuperação. A comparação estatística dos resultados com o método referência 

(cromatografia líquida de alta eficiência) demonstrou não só uma ótima concordância 

entre os dois métodos, mas também não haver diferenças significativas na exatidão e 

precisão. Na segunda parte do trabalho, avaliou-se a aplicação da espetroscopia no 

infravermelho próximo juntamente com análise multivariada de dados, para monitorizar 

ensaios de dissolução in-situ. Esta avaliação foi efectuada em comprimidos comerciais e 

comprimidos concebidos no laboratório, de uma formulação farmacêutica de libertação 

imediata contendo ácido fólico como único princípio activo e quatro excipientes. Os 

espetros no infravermelho próximo foram adquiridos in-situ com uma sonda de 

transfletância submergida no meio de dissolução ligada a um espetrofotómetro de 

infravermelho próximo por transformada de Fourier. Através da regressão por mínimos 

quadrados parciais com validação cruzada estabeleceu-se uma correlação entre os 

espetros no infravermelho próximo obtidos e o teor de fármaco. Os resultados obtidos 

demonstram que é possível utilizar a espetroscopia no infravermelho próximo in situ para 
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monitorizar ensaios de dissolução e que este método consiste numa potencial técnica 

analítica para o estudo de métodos de dissolução de fármacos de forma rápida e sem 

efetuar amostragem. Através desta abordagem, é possível expandir os métodos 

substitutos no controlo da qualidade na indústria farmacêutica e desenvolver uma melhor 

compreensão dos atributos críticos de qualidade. 

 

Palavras-chave: Ensaios de dissolução, ácido fólico, espetroscopia no ultravioleta, 

espetroscopia no infravermelho próximo, análise multivariada. 
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1. Introduction 

1.1 Quality-by-design in the pharmaceutical industry 

 

Under the current quality-by-testing (QbT) regulatory framework, product quality is 

ensured by raw material, in-process material and end product testing and fixed (inflexible) 

drug product manufacturing process with very strict specifications on variables that are 

monitored in a univariate manner. Finished drug products are tested for quality by 

assessing whether they meet the manufacturer’s proposed and regulatory approved 

specifications. If the specifications are not met, they are rejected. Many times, root causes 

for failure are usually not well understood (1, 2). This framework causes significant burden 

on industry and consequently lead to manufacturing process that remain fixed and 

suboptimal (3).  

The International Conference on Harmonization (ICH) describes pharmaceutical quality-

by-design (QbD) as a systematic, scientific, risk-based, holistic and proactive approach to 

pharmaceutical development that begins with predefined objectives and emphases 

product and processes understanding and process control (4). QbD goal is to design and 

develop formulations and manufacturing pharmaceutical processes to guarantee a 

predefined product quality and performance objectives, as well as to provide robust 

manufacturing process through knowledge acquired from the manipulation of the process 

parameters in a constant way (1, 4-6). With the QbD paradigm, it is possible to use 

knowledge and data from product development studies to continuous improvement of the 

manufacturing process (5). QbD allows a more flexible regulatory approach based on 

optimisation and understanding of how design of a product and its manufacturing process 

may affect product quality (3).  

The quality cannot be tested into products; it should be built-in or should be by design. 

This sentence describes the entire concept of QbD, where the quality built-in products is 

an emerging necessity and overcomes the pharmaceutical end-product quality control 

(QC) approach (7, 8). In a few words, the overall aim of QbD is to make more effective 

use of the latest pharmaceutical science, engineering principles and knowledge 

throughout the lifecycle of a product (3). 

QbD identifies characteristics that are critical to quality and translates them into the 

attributes (critical quality attributes – CQAs) that the drug product should possess, and 

establishes how the critical process parameters (CPPs) can be varied to consistently 

produce a drug product with the desired characteristics (1). 
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The main contrasts between the QbT approach and an enhanced QbD approach 

concerning different aspects of pharmaceutical development are referenced in Table 1. 

 

Table 1: Comparison between the QbT and QbD approaches for pharmaceutical 

development (adapted from references (5, 8)). 

Aspect QbT Approach QbD Approach 

 

Overall 

Pharmaceutical 

Development 

 

-Empirical 

-Development with one variable 

at a time 

-Systematic 

-Influence of material attributes, 

process parameters to drug CQAs 

-Multivariate experiments 

-Establishment of design space 

 

Manufacturing 

Process 

-Fixed 

-Validation with full-scale 

batches 

-Focus on optimization and 

Reproducibility 

-Adjustable within design space 

-Continuous verification 

-Focus on control strategy and 

robustness 

-Use of statistical control methods 

Process 

Control 

-Go/no go decisions 

-Off-line analysis 

-Process analytical technology 

tools use (real-time release 

testing) 

 

Control 

Strategy 

 

-Drug product quality controlled 

by end-product testing 

-Drug product quality ensured by 

risk-based control strategy 

-Real-time release testing 

Lifecycle 

Management 

-Reactive, problem solving 

-Correction actions 

-Preventive actions 

-Continual improvement 

 

A key concept that supports QbD understanding and implementation is the design space 

concept (4). The ICH Q8 guidance describes the creation of a design space for 

pharmaceutical products and defines it as an established multidimensional combination 

and interaction of material attributes and/or process parameters demonstrated to provide 

assurance of quality. A design space can be described in terms of ranges of material 

attributes and process parameters, or through more complex mathematical relationships. 

It is possible to describe a design space as a time dependent function (e.g., temperature 

and pressure cycle of a lyophilisation cycle), or as a combination of variables such as 

components of a multivariate model (8). The design of space of an analytical method is 

established using a set of statistically designed experiments (design of experiments or 

DoE) which is a structured and organized method for determining the relationship 
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between factors affecting a process (inputs) and the output of that process (5). The 

knowledge and information from the product development studies and the manufacturing 

process experience are the base of the design space and support specifications and 

manufacturing controls. The changes in formulation and manufacturing processes during 

development and lifecycle management should be faced as opportunities to enrich 

additional knowledge and further support to the establishment of the design space. Design 

space is proposed and is subjected to regulatory assessment and approval (8). Changes 

within the design space of the method are not considered to be a change to the method 

(4). Otherwise, movement out of the design space is considered to be a change and 

would lead to a regulatory post approval change process. It is expected that an operation 

within the design space will result in a product meeting the defined quality (8). 

The QbD approach plays an important role in facilitation a better process knowledge as 

well as creating opportunities for root-of-cause investigation and developing control 

strategies in formulations and processes development (9). This better product process 

and control knowledge can be gained by the application of the process analytical 

technology (PAT) paradigm (8). 

 

1.2 Process analytical technology in the pharmaceutical 

industry 

 

The production of pharmaceutical dosage forms is a multistage operation consisting of 

several validated processes managed by standard operating procedures (10). After an 

operation, it is carried out a laboratory assessment to evaluate product quality, which is 

actually based on off-line (removing the sample and analysing far from the process chain) 

testing of randomly collected samples of batches (11-14). Although, this traditional 

approach has been successful in providing quality pharmaceutical products to the 

population, is time consuming, labour intensive and often inefficient, since it does not 

assure zero defect product quality, since risk assessment and risk management are not 

included (10-13). Additionally, after the drug approval, a small change to how a drug is 

made requires another regulatory assessment and authorization requiring time and 

paperwork (15). This process highly discourage the updating by the pharmaceutical 

companies making manufacturing processes frozen in time (11, 15). 

Today, there are opportunities to improve pharmaceutical development, manufacturing 

and quality assurance with technology innovation (11, 15). Food and Drug Administration 

(FDA) edited in 2004 a guideline on PAT: Guidance for Industry PAT — A Framework for 
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Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance. This 

guidance describes a regulatory framework on PAT that will encourage the development 

and implementation of innovative and efficient pharmaceutical development, 

manufacturing, and quality assurance. This PAT initiative includes chemical, physical, 

microbiological, mathematical and risk analysis conducted in an integrated manner (15). 

The PAT initiative is encouraged by the most important pharmaceutical regulatory 

authorities (health agencies), European Medicines Agency (EMA), Japanese Ministry of 

Health, Labour, and Welfare and ICH guidelines Q8 and Q9 (1, 13, 14). 

Figure 1 represents in a schematic way the PAT paradigm in comparison with the 

conventional approach. 

 

 

Figure 1: PAT paradigm. 

 

PAT is defined as a system aimed for designing, analysing, and controlling manufacturing 

processes through timely and continuously measurements, during processing, of critical 

quality and performance attributes of raw and in-process materials with the purpose of 

guaranteeing final product quality (1, 11, 13, 15, 16). To implement PAT, a three-step 

process can be followed as illustrated in Figure 2 (14). 
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Figure 2: Three steps for PAT implementation and its main objectives (adapted from 

reference (14)). 

 

The design phase starts early in the process development, in the beginning of a unit and 

later again to be optimized and characterized. Here, the CQAs that are affected by the 

process are identified along with the CPPs that have determined to affect the CQAs. The 

design phase allows an essential understanding which is crucial for the next two phases. 

In the analyse phase is selected a suitable analyser to monitor the CQA and to control the 

CPP, obtaining during the production, real-time information of all critical quality process 

aspects (14). The control phase includes planning a control scheme of the CPP based on 

process understanding such that the data from the analyser can be utilized for making 

real-time process decisions and adjustments and this way obtaining a consistent product 

quality within limits, avoiding batches loss (13-15). With this procedure the quality of the 

product is ensured and the efficiency of the manufacturing process is increased (5). 

One of the PAT main goals is by continuously monitoring the process and thus being able 

to better understand it, contribute to an improvement of the process knowledge (17). A 

process is considered well understood when: 

 all critical sources of variability are identified and explained; 

 variability is managed by the process and 

 product quality attributes can be predicted over the design space established for 

materials used, process conditions, manufacturing, and other (14). 

The advantages of PAT, referring to quality, safety and efficiency will differ depending on 

the process and the product however, in a general way it can be summarized as: 
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 better process understanding; 

 reducing production cycle times by using on-, in- and/or at-line measurements and 

controls; 

 reducing costs, preventing rejects, waste and re-processing; 

 increasing automation to improve operator safety and reduce human errors; 

 decrease in energy consumption, increasing capacity and 

 facilitating continuous processing to improve efficiency and manage variability (11, 14). 

 

Some of the possible opportunities for PAT implementation are characterized by:  

 low efficiency, long processing times and for high amount of waste processes; 

 new products under development stages and 

 improvement of pharmaceutical products which patent is expiring, and this way can 

avoid the generic drug manufacture competition (15). 

 

Available tools in the PAT context enable process understanding for scientific, risk-

managed pharmaceutical development and quality assurance. These can be categorised 

according to the following items. 

 

1.  Multivariate tools for design, data acquisition and analysis 

These tools include multivariate mathematical approaches such as statistical techniques 

as DoE and multilinear regression analysis, which allows a quantitative understanding of 

the effects of different inputs upon the output of a system, this is, the effects of the 

interaction of product and process variables (11). 

 

2. Process analysers 

For real-time process monitoring and control there are available tools that take univariate 

process measurements such as pH, temperature and pressure but also there are tools 

like near-infrared spectroscopy (NIRS), that provide multivariate information related to 

physical and chemical attributes of the materials that are being processed (11, 13). These 

multivariate process analysers constitute the essential PAT tools that provide data from 

each relevant process contributing to process and product understanding as well as 

continuous improvement (7). Those PAT analysers can be done on timely in-line, on-line 

and at-line measurements. The definitions are: 

 at-line: measurements where the sample is removed and analysed close to the process 

chain; 
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 on-line: measurements where the sample is diverted from the manufacturing process, 

and may be returned to the process chain; 

 in-line: measurements that can be invasive or non-invasive, where the sample is not 

removed from the process chain (11, 13, 15, 18).  

 

Spectroscopic techniques such as near-infrared (NIR) and Raman spectroscopy are the 

tools for reaching and ensuring QC at every step of manufacturing process (7). Due to its 

low cost per analysis, the availability of compact and robust process sensors and its high 

sensitivity to moisture and several chemical properties, NIRS was established as a 

fundamental PAT tool for pharmaceutical applications. Raman spectroscopy, thanks to the 

development of cheaper and more rugged laser technology, has recently emerged as an 

alternative PAT in-line monitoring and non-invasive tool for pharmaceutical processes 

analysis (19).  

 

3. Process control tools 

Process monitoring and control strategies are intended to monitor the state of a process 

and actively manipulate it to maintain a desired state. These tools provide a means for 

measuring process parameters and acting on those measurements. 

Most pharmaceutical processes are based on time-defined end-points, but they not 

consider the effects of physical differences in raw materials that are not detected in the 

actual QC of raw materials. Concerning the PAT framework, a process end-point is the 

achievement of the desired material attribute (11). 

 

4. Continuous improvement and knowledge management tools 

Continuous learning through data collection and analysis over the life cycle of a product is 

essential and contributes to justifying proposals for post-approval changes. Information 

technology systems that support knowledge acquisition from such databases are valuable 

for the manufacturers. 

 A knowledge base can be of most benefit when it consists of scientific understanding of 

the relevant multifactorial relationships (e.g., between formulation, process, and quality 

attributes) as well as a means to evaluate the applicability of this knowledge in different 

situations (11). 

 

By performing a real-time testing approach with PAT, the QC testing of the end-product is 

no longer required once it already provides a guarantee that the product is within 

specifications (4, 5). 
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In order to achieve a thorough understanding and control over the solid dosage form 

manufacturing, the QbD approach using PAT tools need to be incorporated into the field. 

In summary, using the PAT framework for solid dosage form manufacturing will lead to 

fewer batch rejections, less laboratory tests and waste, deeper understanding of the 

process, which is the ultimate prerequisite for process control (2). 

 

1.3  Dissolution testing 

 

The dissolution testing is one of the most important experiments conducted by the 

pharmaceutical industry for testing new drug candidates, new drug delivery systems, new 

formulations and also for generic drugs approval to ensure drug products compliance with 

the quality standards (20-22).  

The drug dissolution testing has been applied since 1950s and was included in the United 

States Pharmacopoeia (USP) in 1970 (5, 23). Until this date, there is no other test that 

allows the prediction of a drug product dissolution in the human body (5). Dissolution test 

is a valuable in vitro test which allows the determination of the drug release rate and 

extent in function of time at determined conditions defined by the official monographs, 

which has an enormous predictive power of the gastrointestinal (GI) absorption process of 

the drug (24-26).  

In a dissolution test of a tablet or capsule two main steps occur, that are represented in 

Figure 3 (27): 

1. Disintegration (release of the drug from the formulation matrix). 

2. Dissolution (solubilization of the drug in the liquid medium). 

 

 

Figure 3: Steps of a drug dissolution process (adapted from reference (28)). 
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Disintegration test is also a standardized test intended to determine the capacity of tablets 

and capsules to disintegrate at a certain time in certain conditions determined in the 

pharmacopoeias. Disintegration is different from dissolution, and disintegration test does 

not implies the last one (29). A capsule or tablet may disintegrate into smaller particles, 

but if the active pharmaceutical ingredient (API) do not dissolve, it won´t be available to be 

absorbed in the small intestine (5). 

In the final product QC routine in the pharmaceutical industry, every batch of a certain 

drug product has to be tested before its release, and its approval or rejection depends if 

the dissolution test is similar or has deviations relatively to the reference values (25). This 

test enables the characterization of the drug and tablet pharmacotechnical performance 

(25, 27). In case of drugs under development, it predicts in vivo performance of the drug 

and its correlation with drug in vitro behaviour (establish in vitro-in vivo correlation (IVIVC)) 

and also it can help the selection of a suitable formulation (excipients and API) (21-23).  

To controlled release drugs, this pharmacotechnical performance test is particularly 

important for evaluate release and further dissolution of the API, which is considered to be 

a determining step in the in vivo absorption (30).  

Dissolution tests have proven to be a relevant tool for indicating alterations in crystallinity, 

pore structure of polymeric excipients, polymorphisms, gelatine capsule cross-linking and 

moisture content (5).  

Bioequivalence between drugs are evaluated by dissolution tests in case of post-approval 

and scale-up changes (modifications of some critical parameters in the manufacturing 

process or in the formulation) (21, 27). In this context, it is necessary to take into account 

the entire drug dissolution profile instead of a single point, when examining batch-to-batch 

variability. Exemplifying, despite tablets from two different batches may dissolve at a 

certain percentage at a specific time, the entire dissolution profiles between these two 

batches may differ significantly (9).  

There is a continuous need for the improvement of in vitro dissolution testing, aiming the 

approaching to the in vivo dissolution processes in the human body (31). 

Under the QbD ideals, the dissolution tests should be developed to reflect in vivo 

performance as much as possible (1). That is why it is important to perform these tests 

with many variables as possible, to achieve a complete picture of the dissolution process 

(26). 

Drug absorption from a solid dosage form after oral administration depends on the release 

of the drug substance from the drug product, the dissolution or solubilization of the drug 

under physiological conditions, and the permeability across the GI tract (31). 

Dissolution of an active ingredient consists of a dynamic process dependent of the 

medium and hydrodynamics, and fundamentally, this process is controlled by the affinity 
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between the solvent and the solid substance and the way by which the pharmaceutical 

system releases the drug (32). 

There are many factors that influence the drug dissolution rate, like the drug 

physicochemical properties (e.g. particle size or solubility, molecular structure, polymorph 

forms), formulation characteristics (e.g. excipients, presentation type - capsule, pill), 

release form (immediate or extended) and dissolution method and conditions (e.g. 

apparatus type, medium pH, paddle speed, temperature and surfactant type if present) 

(32, 33). Additionally, the dissolution rate shows dependence on the presence of 

manufacturing variables such as compression force, hardness, packaging type, storage 

conditions and changes in the surface area (5). Therefore, this test allows the detection of 

the different excipients (binders, disintegrators), mixing effects, granulation procedure and 

coating influence, providing a better control of the manufacturing process (22). Dissolution 

tests must be reliable, precise, simple and reproducible and must detect all the influences 

referenced above once they may also affect in vivo performance of the drug (27).  

 

1.3.1 Guidelines  

 

The first guidelines for dissolution testing of solid oral drugs were published in 1981 and 

were elaborated by the International Pharmaceutical Federation (FIP). These guidelines 

were intended as suggestions primarily directed to compendial committees, working on 

the introduction of dissolution / release tests for the respective Pharmacopoeias (34). In 

1997 was edited the final version of the FIP guidelines and the FDA Guidance for industry 

for dissolution testing of immediate release solid oral dosage forms which provides 

several information such as general recommendations for dissolution testing and 

approaches for setting dissolution specifications (18). Also in 1997 was edited the 

guidance for industry of development, evaluation, and application of IVIVC for extended 

release oral dosage forms providing recommendations to pharmaceutical sponsors who 

intend to develop documentation in support of an IVIVC for an oral extended release drug 

product (35).  

In 2000, FDA published the Guidance for Industry - Waiver of In Vivo Bioavailability and 

Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a 

Biopharmaceutics Classification System where recommendations are provided for the 

sponsors of investigational new drug  applications, new drug applications and abbreviated 

new drug applications, and supplements to these applications who wish to request a 

waiver of in vivo  bioavailability and/or bioequivalence studies for immediate release solid  

oral dosage forms (36). In 2010 was published the Guidance for Industry: The Use of 
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Mechanical Calibration of Dissolution Apparatus 1 and 2 – Current Good Manufacturing 

Practice (CGMP). This guidance is intended to support drug manufacturers in calibrating 

USP pharmacopoeia dissolution apparatus 1 and 2 guaranteeing that critical  parameters 

associated with the dissolution apparatus meet certain mechanical calibration tolerances 

(37).  

 

1.3.1.1 Instrumentation 

 

There are several standardized dissolution apparatus described in the different 

pharmacopoeia. The most used are the USP type 1 (basket method) and 2 (paddle 

method) apparatus (38). These devices are simple and robust, and are recommended in 

several guidelines as well in different pharmacopoeias as a first choice for the in vitro 

dissolution testing of immediate as well as controlled/modified release drugs (34). These 

methods are the official methods for the in vitro dissolution testing and should be used 

except in case of showing to be unsatisfactory. They are flexible once they allow the 

dissolution testing of a variety of drug products (18). The paddle or the basket rotation 

promotes agitation in the medium in order to remove the drug saturated layer of 

dissolution from around the dosage and replace it with new medium. The rotation speed of 

the paddle and the quantity and composition of the dissolution medium can be varied to fit 

the in vivo condition, while the shape and position of the paddle and the vessels are 

regulated by the relevant pharmacopoeia guidelines (5).  

Other systems are the USP apparatus 3 which describes the reciprocating cylinder and 

the flow-through cell, USP apparatus 4. The last one is also monographed in the USP, 

Japanese pharmacopoeia and European Pharmacopoeia (Ph. Eur) (34). This flow-through 

cell emerged as a solution for low solubility drugs that saturated in 900 mL of medium. In 

this apparatus 4, the tablet is placed in a cell where there is a continuous flow of fluid 

which provides simultaneously the dissolution medium and the stirring (39). 

If an individual drug product cannot be accommodated by one of the apparatuses, 

described above, alternative models or appropriate modifications (automation, auto-

sampling) have to be developed and approved (18, 34). In case of superiority of the 

alternative or the modification, they have to be proven in comparison to the well-

established and standardised apparatuses and  demonstrate to have the ability to differ 

between batches with acceptable and non-acceptable performance (18, 34, 40). 

The dissolution procedures have been harmonized for the entire pharmacopoeia 

internationally, although there are some sections that remain unique to each 

pharmacopoeia (34). Thus, the official standard methods of the Ph. Eur should be 
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considered in case of a dissolution test methodology development for a product aimed to 

the European Union market (5). Generally a drug tablet or capsule is immersed in a 

known volume of water or an aqueous solution (500 to 1000 mL), where it dissolves under 

heating and stirring (34, 41, 42). The percentage of the API dissolved in this solution is 

then calculated at a specific time (41, 42). 

Because the dissolution experiments are sensitive to mechanical and physical/chemical 

factors (stirring, position of aliquotation, vibrations, paddle or vessel shape) the dissolution 

apparatus should be appropriately calibrated to ensure compliance with regional good 

manufacturing practice requirements (43, 44). To standardise the conditions, USP 

recommends two different dissolution calibrator tablets: disintegrating (prednisone tablets) 

and non-disintegrating/eroding (salicylic acid tablets). To increase the method 

repeatability the prednisone calibrator tablets are recommended for apparatus 2 (44). 

 

1.3.1.2 Dissolution medium 

 

As already mentioned above in vitro dissolution data should allow some interpretation 

regarding the in vivo performance. According to this most dissolution tests conditions are 

based on the human body: they are conducted at 37oC and a range pH value 1.2 to 6.8, 

mimicking the pH of the GI tract (5, 34). 

To simulated intestinal fluid (SIF), a dissolution medium of pH 6.8 should be employed. A 

higher pH should be justified if necessary, but in general, it should not exceed pH 8.0. To 

simulated gastric fluid (SGF), a dissolution medium of pH 1.2 should be employed without 

enzymes. The need for enzymes in SGF and SIF should be evaluated on a case-by-case 

basis and should be justified. It is possible the need for enzymes (pepsin with SGF and 

pancreatin with SIF) to dissolve pellicles, if formed, to permit the dissolution of the drug.  

For water insoluble or sparingly water soluble drug products, the use of a surfactant such 

as sodium lauryl sulfate is recommended. The need for and the amount of the surfactant 

should be also justified (18). A pH gradient may be appropriate for gastroresistent 

formulations and products for which dissolution testing at one pH-level or at different pH-

levels in parallel does not give biopharmaceutically relevant results (34). The use of 

apparatus 3 allows an easy change of the medium. Apparatus 4 can also be adopted for a 

change in dissolution medium during the dissolution run (18). 

Agitation typically should be obtained in the basket/paddle apparatus by stirring at 50 to 

100 rpm and in general should not exceed 150 rpm. Regarding media temperature, 37 ± 

0.5° C should generally be used for oral dosage forms. Slightly increased test 
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temperatures (e.g. 38 ± 0.5° C) are under consideration for special applications e.g. for 

rectal dosage forms, lower temperatures (e.g. 32 ± 0.5 °C) for transdermal systems (34). 

 

1.3.1.3 Specifications 

 

In vitro dissolution specifications are established to ensure batch-to-batch consistency and 

to indicate potential problems with in vivo bioavailability.  

Three categories of dissolution test specifications are described in the FDA guidance. 

1. Single-point specifications: for immediate release formulations where the drug is 

highly soluble and rapidly dissolving; it is used as a routine quality control test. 

2. Two-point specifications: for characterizing the quality of the drug product and as a 

routine QC test for certain types of drug products (e.g. slow dissolving or poorly water 

soluble drug product). 

3. Dissolution profile comparison: (a) for accepting product sameness under scale-up 

and post-approval changes related changes, (b) to waive bioequivalence requirements 

for lower strengths of a dosage form, (c) to support waivers for other bioequivalence 

requirements (18). 

 

According to the Biopharmaceuticals Classification System (BCS), the rate and extent of 

drug absorption are controlled by the dissolution rate, aqueous solubility and GI 

permeability (5). This classification can be used as a basis for setting in vitro dissolution 

specifications and can also provide a basis for predicting the likelihood of achieving a 

successful IVIVC (18). 

The drug substances are divided in four classes according to the dissolution, solubility and 

permeability:  

 BCS class I (high-solubility and high-permeability drugs); 

 BCS class II (low solubility - high permeability drugs); 

 BCS class III (high solubility - low permeability drugs) and 

 BCS class IV (low solubility - low permeability drugs) (21). 

 

The solubility and permeability parameters are standardized in the FDA Guidance for 

Industry Dissolution Testing of Immediate Release Solid Oral Dosage Forms (18). 

In the USP and FDA guidances, dissolution testing is mandatory for all drugs when the 

API belongs to BCS class II, class III or IV (45).  

According to the BCS guidance, biowaivers may be accepted for BCS class I products if 

the drug product is rapidly dissolving (21).  
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1.3.2 Analytical methods for dissolution tests analysis: 

emerging methods 

 

The analytical methods for API quantification should be sensitive, accurate, and precise 

(32). The majority of the methods for monitoring dissolution use ultraviolet-visible (UV-vis) 

spectroscopy or high performance liquid chromatography (HPLC) with UV-vis detection, 

based on manually or automatically removed aliquots from the dissolution vessel (46). 

The current reference methods have a significant number of limitations such as requiring 

large amounts of drug and long sampling times (30s to 60s) (20). This sampling process is 

disruptive to the dissolution profile since the removal of aliquots from the dissolution 

vessel disturbs the solution (46). These standard methods provide no information of the 

process that takes place within the tablet like water sorption, swelling, polymer matrix 

erosion and drug diffusion as well as limited or no information on chemical processes that 

takes place within a dissolution vessel (13). Moreover, the sampling will decrease the total 

volume of the vessel (42, 46). HPLC method is time consuming and labour intensive, 

demand the use of high quantities of organic reagents and require sample preparation 

which can be a source of potential errors (20, 26). The UV-vis measurements present 

some limitations: not every drug is suitable for this technique, because some result in a 

large amount of undissolved particles (15). The presence of excipients, air bubbles and 

undissolved particles in the window of the detector or in the solution may interfere with the 

measures (leading to scattering of UV-vis radiation) and it explains the inferior accuracy of 

this method (1, 20).  

The lack of simultaneous real-time information concerning the solution concentration and 

the solid-state composition makes the detection of solid-state changes during dissolution 

difficult since these often initiate almost instantaneously (47). This lack of real-time 

information can compromise the understanding of the formulation behaviour and the 

dissolution mechanisms, which represent one of great challenges to the pharmaceutical 

industry (46, 47). 

The health authorities have challenged the pharmaceutical industry to understand 

dissolution and make the dissolution test more biologically relevant (46). The  PAT 

approach brought the necessity for the development of new analytical tools that promote 

the increase of the understanding of complex dissolution behaviour this is, techniques that 

provide an insight of what is happening in real-time (46, 47). Imaging techniques such as 

Fourier transform infrared (FT-IR), NIRS and magnetic resonance imaging spectroscopy 

have been applied for the study of dissolution processes (47). Also Raman spectroscopy 
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have been applied in the dissolution monitoring, contributing to the process knowledge 

(13).  

These new real-time monitoring methods brought by PAT approach require validation 

against the official analytical methods employed in dissolution testing. This validation has 

to conform with Validation of Analytical Procedures defined in the ICHQ2(R1) guideline 

and Validation of Compendial Methods in <1225> USP (48, 49). The validation aspects to 

be considered in the new method are accuracy, precision (repeatability, reproducibility, 

intermediate precision), specificity, linearity, range, detection limit, quantification limit, and 

robustness (49). 

 

1.4 Near-infrared spectroscopy  

  

The NIRS technique uses the electromagnetic radiation (EMR) in the region 12821 cm-1 to 

4000 cm-1 (780 to 2500 nm) (50). 

 

 

Figure 4: Electromagnetic radiation regions between X-rays and microwaves (adapted 

from reference (51)). 

 

The NIRS technique is a vibrational spectroscopic technique that studies vibrational 

transitions in molecules and provides important information of the compounds structure 

(13, 51). In NIRS  samples  irradiated with NIR light, absorb it, causing molecular 

overtones (electron excitations to higher energy levels) and combination vibrations of C-H, 

O-H, N-H and S-H (51, 52). Combinations come from interaction of two or more vibrations 

taking place simultaneously in polyatomic molecules and arise in absorption bands called 

combination bands, the frequencies of which are the sums of multiples of each interacting 

frequency (51, 53). The combination bands region is located at higher NIR wavelengths 

(1900-2500 nm) (54). Overtones are absorption bands caused by transitions between 



 
In-situ dissolution testing monitoring of pharmaceutical solid dosage forms by near-infrared spectroscopy and 

chemometrics 

 

16 
 

non-contiguous vibrational states at approximately, multiples of the fundamental 

vibrational frequency (53). Transition from the ground state to the first excited state 

absorbs light strongly in the NIR region and give rise to the intense bands called the 

fundamental bands. Transition from the ground state to the second excited state with the 

absorption of NIR radiation give rise to weak bands called first overtone in NIR. Transition 

from the ground state to the third excited state with the absorption of NIR give rise to weak 

bands called second overtone in NIR. Equally, third and fourth overtone bands will occur 

based on the transition to the fourth and fifth excited state with the absorption of NIR (51). 

Figure 5 represents these transitions between the ground state and the different excited 

states. 

 

Figure 5: Transitions between the ground state and different excited states 

(adapted from reference (51)). 

 

These overtones are much less likely than the fundamental transitions, so the bands are 

much weaker (the band for the first overtone is 10–100 times weaker than that for the 

fundamental frequency, depending on the particular bond). These bands appear between 

780 nm and 2000 nm, depending on the overtone order and the bond nature and strength 

(53). 

A molecule to be analysed by NIR spectroscopy should possess the change of dipole 

moment (52). This is, only vibrations that result in change of dipole moment of a molecule, 

can absorb NIR radiation. Therefore, the majority of organic and some inorganic 

compounds shows good reflectance or transmission properties in this region of the EMR 

spectrum (51). 

Interactions between atoms in different molecules (for example hydrogen bonding and 

dipole interactions) alter vibrational energy states, thereby shifting existing absorption 

bands and giving rise to new ones, through differences in crystal structure. This allows 

crystal forms to be distinguished and physical properties (such as density, viscosity, and 
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particle size in pulverulent solids) to be determined. It can be affirm that the NIR spectrum 

contains not only chemical information of use to determine compositions, but also physical 

information that can be employed to determine physical properties of samples (53). 

NIR measurements for analytical purposes can be done in three ways, depending on the 

nature of the sample. 

 Transmittance (700-1800nm): the radiation passes through the sample and what is 

measured is the decrease in radiation intensity due to the radiation absorbed and 

scattered by the sample (10); it is used for transparent materials (solutions) and for 

lower concentration samples (51); transmittance measurements are more accurate, 

best taken at lower wavelengths because they are more energetic and have more 

penetration power (54).  

 Diffuse reflectance (1000-2500nm): it is used for solids, turbid liquids and semi-solid 

solutions; it has lower sensitivity than transmittance; here, most of the radiation is 

reflected; physical characteristics affect reflectance measurements especially at higher 

wavelengths (combination bands region), hence, any sample changes will create an 

additional source of variability and noise in the measurements (54) and 

 Transflectance: hybrid mode of transmittance and reflectance; here, the radiation is 

transmitted through the sample, reflected from a ceramic tile or other reflector surface 

and then transmitted back through the sample before finally reaching the detector, 

therefore the pathlength is doubled (51); it is used for solids, semi-solids and turbid 

liquids (10). 

 

The ability of great penetration depth of the sample by NIR radiation is explained by the 

low absorption coefficient, which is an analytical advantage, since it allows direct analysis 

of strongly absorbing and even highly scattering samples, such as turbid liquids or solids 

in either transmittance or reflectance mode without further pre-treatments (10). 

 

1.4.1 Instrumentation 

 

NIR spectroscopy instrumentation has evolved dramatically in response to the need for 

speed in analyses and flexibility in adapting to different sample states. 

Spectrophotometers used to record NIR spectra are essentially identical with those 

employed in other regions of the electromagnetic spectrum. But NIR equipment can 

incorporate a variety of devices, depending on the characteristics of the sample and the 

particular analytical conditions and needs (such as speed, sample complexity and 

environmental conditions), so the technique is very flexible (53). 



 
In-situ dissolution testing monitoring of pharmaceutical solid dosage forms by near-infrared spectroscopy and 

chemometrics 

 

18 
 

Any commercial NIR spectrophotometer has five basic sections: (1) sample compartment, 

(2) light source, (3) monochromator, (4) detector/s, and (5) signal processor or computer 

(54). 

 

 

Figure 6: Basic NIR spectrometer configuration (adapted from reference (10)). 

 

1. Light source 

 

One of NIR light source most used is the tungsten halogen lamp, which has wavelength 

emission ranges from 320 to 2500 nm; it is small and rugged (10, 54). Light-emitting 

diodes (LED) is the most important light source of NIR (51). The low power consumption 

and price, small size, and long lifetime (around 25 years) of LEDs still make them the 

most suitable light sources for miniaturized instruments and specific screening 

applications outside the laboratory environment. Conventional LEDs emit in short 

wavelength ranges (30–50 nm) around their centre point (54). 

 

2. Monochromator 

 

A number of optical configurations exist that can be used to separate the polychromatic 

NIR spectral region into “monochromatic” frequencies (10).  

NIR spectrophotometers can be of two types concerning to wavelength selection, namely 

discrete wavelength and whole spectrum (53). In discrete-wavelength 

spectrophotometers, wavelengths can be selected by using as light sources filters that 

allow the passage of variably broad wavelength bands or LEDs covering only a narrow 

spectral range of 50–100 nm (10, 53).  
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Whole-spectrum coverage NIR instruments usually include a diffraction grating, diode 

array or acousto-optic tunable filter (AOTF). They are much more flexible than discrete 

wavelength instruments, so they can be used in a wider variety of situations (53).  AOTF 

allows faster tuning for wavelength selection (numerous readings per second without 

being sensitive to vibrations), and provide better reproducibility without the need for 

mechanical devices because one filter can create several wavelengths.  NIR equipments 

called Fourier transform (FT) analysers (encompassing an interferometer often the 

Michelson interferometer) show some advantages. Essentially, an FT analyser has three 

major advantages over a dispersive instrument: the multiplex or Fellgett's advantage 

(information from all wavelengths collected simultaneously yielding a higher signal-to-

noise ratio (SNR) for a given scan-time or a shorter scan-time for a given resolution), the 

throughput or Jacquinot's advantage (no slit restrictions) and the "Connes' advantage" 

(better wavelength accuracy). Inside an FT spectrometer, the light beam is split in two: 

one beam is reflected to a fixed mirror, and the other is reflected to a mirror that moves 

forward and backward at carefully controlled speed. The reflected beams are recombined 

back in the beam splitter to generate the interferogram signal, which is a result of light 

interferences. The processed signal or output looks like the spectra obtained by any 

traditional spectrometer, but with the expectation of higher throughput and frequency 

accuracy. One of the drawbacks is the fact that Fourier transform near-infrared (FT-NIR) 

instruments are complex and expensive, and mainly suitable for controlled environments 

(such as laboratories) due to their sensitivity to external factors such as temperature and 

vibrations (50, 54). 

 

3. Sample compartment 

 

This compartment encompasses a sample holder or a sample presentation interface. To 

measure good NIR spectra, the proper sample presentation is essential especially when 

measuring solid samples, since scatter effects and stray light induced by variations in 

packing density of powders or sample positioning of tablets or capsules may cause large 

sources of error in the spectra (10). Instruments working by diffuse reflectance it is 

common to use open sample cups or sample cells confined by silica or quartz (materials 

transparent to NIR light) and adjusted sample holders for tablets and capsules (10, 54). 

Transmission instruments may also work with confined sample cells, but with specific pre-

set pathlenghts ranging from 0.1 to 10 cm, depending on the product to be analysed (54).  

One important reason for the increasing acceptance of NIR spectroscopy is the possibility 

of using it directly on the production line allowing continuous real-time measurements 

(54). The probes can be directly inserted into the process line or connected to a flow-cell, 
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through which the sample can be diverted from the production line. Reflectance 

measurements in the production line can be made through a window. Transmission 

measurements can be made by inserting two optic probes facing each other. 

Transflectance measurements can be made by sending the light first through the probe, 

then through the sample, and subsequently to the detector back through the probe 

following reflection. The use of fibre optic probes  either for transmission, diffuse 

reflectance or for transflectance measurements allows sampling by immersion in liquids 

for controlling liquid processes (54). 

 

4. Detector 

 

Detectors transform the incident light energy to electric analogue signal. The electrical 

signal is then amplified and transformed to digital, which may later be further processed 

by the computer. Detectors and amplifiers are considered the most common sources of 

non-systematic noise in instruments (random noise). Random noise is reduced in most 

commercial instrumentation by averaging several spectra from a same sample, improving 

the SNR (53). 

Photo-sensitive detector materials are chosen according to the NIR region to be covered. 

From 400 to 1100 nm, silicon detectors are common. Silicon detectors are stable, low 

noise, fast, not too expensive, and sensitive to low light intensity to achieve good 

performance. Lead sulfide (PbS) or indium gallium arsenide (InGaAs) detectors can cover 

higher wavelength regions than silicon detectors, being usual having both types combined 

in a same instrument. PbS detectors are slower, but very popular since they are sensitive 

from 1100 to 2500 nm and provide good signal-to-noise properties. The most expensive, 

InGaAs detector, combines the speed and size characteristics of the silicon detector with 

the wavelength range of the PbS detector (10). Photodiode array spectrographs (PDAs) 

have a set of InGaAs detectors or charged coupled devices (CCDs) in array. While 

InGaAs PDAs offer high signal precision, high SNR, and less sensitivity to high light 

intensities when compared to CCDs, CCDs have higher signal sensitivity and resolution. 

PDAs take faster measurements (all wavelengths measured at once) (54). 

 

Selection of the appropriate analyser depends upon the required analyte sensitivity, 

reliability, ease of use, calibration transferability and implementation needs. For those 

reasons, laboratory and process analysers have to be differentiated. Laboratory analysers 

normally are used in off-line or at-line measurements in QC or in research. They must be 

able to reach analyte sensitivity, have optimum sample presentation and high SNR. 

Diffraction grating and interferometer-based instruments are the most recommended. 
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Process analysers are intended for in-line or on-line measurements to provide real-time 

data while operating in industrial, many times harsh, conditions. Robust and fast analysers 

are necessary in those conditions (10). 

 

1.4.2 Advantages and limitations  

 

The use of NIRS in qualitative and quantitative analysis offers many advantages to 

pharmaceutical industries by providing not only chemical but also physical information 

rapidly with little or no sample preparation, unlike most traditional methods (48). 

The NIR spectra can be obtained in-situ without any sample pre-treatment, and can be 

performed in solids, powders, pastes, gases and liquids (55). The fact that there is no 

need for sample preparation, makes NIR a convenient technique to monitor the synthesis 

of toxic compounds once the intensive physical contact with the compounds  is reduced 

as well as the possibility to reuse  samples after measurement (56). 

Once the laborious task of preparing samples is eliminated, the productivity increases 

which compensates the decrease in the precision by using NIR (57). Also, in this way 

avoids important steps responsible for error sources (56).  

The NIR spectrum has low intensity and wide bands as well as several overlaps, which 

means low sensitivity. For this reason it becomes difficult to use NIR to measure samples 

with low concentrations (58). The NIR signal is a complex function of physical and 

chemical parameters and result in a great amount of spectral data that need to be 

resolved with chemometric models so that useful information can be extracted (13, 57). 

Moreover, physical conditions of samples and measuring environment also influence the 

spectra, making it even more complex to interpret the data (56). For these reasons, NIR is 

not usually used as a direct analysis technique (10). NIR requires using multivariate 

calibration models that are constructed with samples of all variability of sources, in order 

to ensure adequate accuracy, precision, and robustness (12). 

Table 2 summarizes the advantages and disadvantages of the NIR technique. 
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Table 2: Main advantages and disadvantages of NIRS (adapted from references (52, 

53, 56)). 

Advantages Disadvantages 

Non-destructive and non-invasive method  

Low sensitivity of the signal when 

determining substances with 

concentration below 0.1% (w/w) (not 

suitable for trace analysis, only for major 

components) 

Fast spectral measurements (less than 1 

minute) 

High financial investment for the 

instrumentation in the beginning 

Low cost analysis: no need of chemical 

reagents and one operator can measure a 

big amount of samples (automation) 

 

High trained personnel for the development 

of calibration models 

Several spectra can be obtained on the 

same object leading to more representative 

sample composition and more accurate 

results 

 

Requires an accurate and robust calibration 

with a large data set and variation, which 

can be difficult to obtain 

 

Minimal or no sample preparation 
Use chemometric tools to extract useful 

information; scarcely selective 
 

Several components of the sample can be 

measured at the same time and also its 

physical characteristics (density, particle 

size) 

 

Difficulty on transferring calibration between 

instruments of the same 

manufacture or between different 

manufactures 

Easy application in different environments 

(industry, laboratory) 

 

 

It requires an accurate chemical and 

physical analysis of reference samples 

 

 

Measurements can be on-, in- and at-line 

Analysis in-situ thanks to robust optical 

probes 

Availability of portable instruments that 

permit the measurements in the field 
 

Interference of water in the spectrum of the 

substances that are being measured due to 

the water high absorbance 

Penetrate glass containers 

Can be used for qualitative and quantitative 

analysis 
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1.4.3 Pharmaceutical industry applications 

 

NIR spectroscopy is considered to be one of the most implemented PAT tools (59).  

Although being a well-known technique for many years, only recently NIR spectroscopy 

started to be applied in the pharmaceutical industry (26). Pharmaceutical companies have 

gradually adopted NIR spectroscopy as their technique of choice for the manufacturing 

process control (53).  

NIR spectroscopy is considered a reliable technique to: 

1. Process monitoring and control, being part of the product QC (in process and final 

product) (51, 52). 

2. Predict product characteristics at all stages of a solid dosage form manufacturing 

process (51, 52). 

3. Raw material analysis through quantification and identification of excipients and API, 

assessment of a spectral signature of raw materials, intermediates and final dosage 

forms (10, 56). 

4. Monitoring and control of unit operations such as blending, granulation, compression, 

film coating process evaluation, drying, tabletting and capsule-filling (10, 56).  

5. Prediction in real-time the drug release from coated tablets as well as pre-determined 

dissolution times (60). 

6. Study of the particle size, content uniformity and hardness testing of solid formulations 

(10, 57).  

7. Perform analysis of intact dosage forms: tablets, capsules, lyophilized products, 

polymeric implants and microspheres (10). 

8. Analysis of polymorphs, as they exhibit spectral differences in the NIR region as well as 

optical isomers (61). 

9. Determining the water content of a sample, although water absorbs very strongly in the 

NIR region, specially between 1400 nm and 1450 nm and between 1900 nm and 1940 

nm (56). 

 

An internet search on web pages of the main manufactures of NIR instrumentation 

evidenced a remarkable concern of these manufactures with the PAT approach. They 

provide platforms and the necessary skills required to implement PAT on a single or 

multiple unit process as well as diverse instrumentation and technologies to many types of 

industry, including pharmaceutical industry (62-64).  
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Concerning the application of PAT into the pharmaceutical industry, the following tables 

(Table 3 and Table 4) present examples of FT-NIR equipments available in the market. 

They are divided into two groups: laboratory analysers and process analysers. 

 

 

Table 3: Examples of FT-NIR laboratory analysers available in the market. 

Laboratory 

Analyser 

Equipment 

Instrument Picture Applications/Features 

ABB® 

MB3600-PH 

 

-Laboratory QC analysis; 

-Raw material identification and 

qualification; 

-Research and development; 

-At-line PAT measurements (62). 

ABB® 

MB-Rx 

 

-Provides real-time insight into 

reaction monitoring for various 

processes in chemical and 

biotechnology applications;  

-Its optics are non-hygroscopic, and 

do not require desiccant cartridges;  

-Intended for laboratories and pilot 

plants; 

-Rugged insertion probe (62). 

Antaris ® II 

 

-Analyse any sample type rapidly 

and accurately (solids, powders, 

tablets, paste, gel, films, and liquids); 

-Contains all the tools necessary to 

make regulatory compliance easy; 

-Industry-leading method transfer 

performance; 

-Rugged design ready for fast, 

precise and accurate measurements 

in the lab or in the plant (64). 
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Table 4: Examples of FT-NIR process analysers available in the market. 

Process 

Analyser 

Equipment 

Instrument Picture Applications/Features 

ABB ® 

FTPA2000-

260PH 

  

-Real-time monitoring of 

continuous and batch processes in 

pharmaceutical industries; 

-Method development for 

monitoring of product CQA; 

-PAT implementation, as part of 

QbD initiatives (62).  

Bruker® 

Tandem 

 

-Automatic on-line PAT tool; 

-Allows the collection of process 

data and control the tablet 

compression process; 

-Provide both physical (weight, 

thickness, diameter, hardness) 

and chemical (content uniformity 

analysis; simultaneous 

quantification of multiple 

components, such as APIs and 

moisture content) characteristics of 

pharmaceutical tablets (65).  

Büchi® 

NIRFlex N-500 

 

-Polarization interferometer 

insensitive to mechanical 

disturbances; 

-Possibility to change the 

measurement options within a 

matter of seconds; 

-Autosampler; 

-Measurements can be performed 

directly in bags and containers 

using fibre optic probes (63). 
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1.4.4 Guidelines 

 

The major Pharmacopoeias such as USP and Ph. Eur. have generally adopted NIR 

techniques. Both contain a general chapter on NIRS where is referred the suitability of 

NIR instrumentation for use in pharmaceutical analysis focussing on operational 

qualification and performance verification related to wavelength scale and repeatability, 

response repeatability, photometric linearity, and photometric noise. Only some limited 

guidance is provided in terms of developing and validating an application (10). 

The Pharmaceutical Analytical Science Group – PASG - edited in 2001 Guidelines for the 

development and validation of near-infrared spectroscopy methods where is presented a 

discussion of the characteristics for consideration during the design, development and 

validation of NIR methods included as part of registration applications (48).  

In 2012, the EMEA published a draft guideline on the use of NIRS by the pharmaceutical 

industry: Guideline on the use of Near-infrared Spectroscopy (NIRS) by the 

pharmaceutical industry and the data requirements for new submissions and variation. 

This guideline describes the general regulatory requirements and its procedures on 

developing a NIR method. According to this guideline, the development and 

implementation of an NIRS procedure is iterative and the stages are interdependent (49). 

The main stages in developing and establishing NIRS procedures are summarised in 

Figure 7. 

 

 

Figure 7: Main stages in developing and establishing NIRS procedures (adapted from 

reference (49)). 
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In general, NIRS procedures used for the release testing of drug substances or drug 

products need to be developed and validated in conjunction with the reference methods. 

For PAT, NIRS procedures, e.g., dynamic process monitoring of a powder blend, may not 

be possible to refer to a conventional reference method (49).  

 

1.5 Data processing 

 

PAT tools such as NIRS generate a great amount of data which need organization and 

extraction of the relevant information and consequently, reduce irrelevant information, in 

order to make QC decisions. Moreover, the analytical data of several PAT tools is typically 

not suitable for direct interpretation, therefore it is indispensable to use chemometric 

analysis (7, 14). As an example, NIR signal results in highly overlapped and broad peaks 

influenced by a number of physical, chemical and structural variables, and chemometrics 

made the extraction of that information possible (54). Since vibrational spectroscopy 

methods are non-selective, the information retrieved is multivariate in nature (16). Thus, 

multivariate analysis can be used to handle large data sets, simplifying the analysis, 

gaining essential knowledge of processes under investigation and retrieving qualitative 

and quantitative information from the spectral data (10). This amount of data generates 

greater confidence in conclusions that come from the statistical analysis and allows the 

construction of more robust multivariate models (5).  

 

1.5.1 Chemometrics 

 

Chemometrics is the science of extracting relevant information from chemical processes 

through mathematics, statistics and computational devices in chemical analysis, being 

essential for effective data analysis and to obtain real-time information from data (14, 54).  

In a summarized way, chemometric methods help in the development of an empirical 

model based on the collected data that can be used for the prediction of the properties of 

a chemical process and hence help in process analysis, optimization, and control using 

mathematical and statistical methods for the data treatment of chemical analyses (14, 67).  

There are several advantages of using multivariate methods over univariate techniques 

such as robust modelling, noise removal, handling of interacting variables or overlapping 

spectral profiles, outlier or fault detection, variable-reduction and understanding the causal 

relationships (2). The fast, precise, accurate, and non-destructive PAT analysers in 
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combination with chemometrics are suitable for process analysis and optimization leading 

to improved product quality, productivity, and efficiency (14). 

 

1.5.2 Experimental design 

 

Experimental design is a powerful technique in the beginning of the experiments, to 

support decisions such as regarding the number of experiments and the conditions in 

which these can be conducted. The goal of the DoE is the determination of a relation 

between factors acting on a system and the response or properties of the same system. 

This relation is, in many cases, in the form of a mathematical model. An experimental 

design can help to optimise, costs, time, equipment, materials, manpower among others. 

A number of different experimental designs can be used, the choice is depending on the 

final goal of the experiments (61). 

 

1.5.3 Spectral processing 

 

Interfering spectral factors, such as light scattering, pathlength variations, noise and also 

the different physical properties (particle size) of the samples demands for mathematical 

corrections, called data pre-treatments (10, 53). In these situations, spectral pre-treatment 

minimize those contributions, which incorporate irrelevant information into spectra, in 

order to be able to develop simpler and robust calibration models (53). The main objective 

is to decrease background and increase the signal conveying chemical information. 

Basically, pre-processing methods can be classified as baseline correction-normalization, 

signal enhancement, and statistical filtering of signal noise (54).  

 

1.5.3.1 Mean centering 

 

Mean centering (MNCN) the spectra is a basic pre-treatment that involves the subtraction 

of each variable´s response from the mean response of that variable over all of the 

samples in the data set, enhancing the absorbance from each individual wavelength. 

Centering the data to the mean value reduces the final model complexity, often reducing 

the number of variables to be employed by one (54). 

 

 



 
In-situ dissolution testing monitoring of pharmaceutical solid dosage forms by near-infrared spectroscopy and 

chemometrics 

 

29 
 

1.5.3.2 Derivatives 

 

One way to remove baseline differences is to apply derivatives to the spectra (61). The 

first derivate spectrum is the slope at each point of the original spectrum. The second 

derivate is the slope of the first derivate (68). Derivatives can be applied to improve the 

resolution of overlapping bands, enhancing the signal, and removing an additive baseline 

-1st derivate and linear baseline – 2nd derivate (54).  Since spectral noise is also amplified 

by derivation, derivatives are usually combined with smoothing algorithms, being the most 

used the Savitzky-Golay (SG). The idea behind the SG algorithm is to use the first and 

second derivative of the fitted curve at a certain point to estimate the first and second 

derivative of the original spectrum. The use of derivatives shows some disadvantages, 

since they change the shape of the original spectrum. However, the second derivative has 

the advantage that the peaks appear in the same location as in the original spectrum but 

with opposite sign (68). In most cases the second derivative presents more features than 

the original spectrum (61). Concerning the spectra interpretation, this fact can be an 

advantage if the original spectrum is very simple but can also be a disadvantage if the 

original spectrum is already a very complex one (68). 

 

1.5.3.3 Normalization 

 

Some of the more frequent pre-treatments for NIR spectra include the normalization 

methods: the multiplicative scatter correction (MSC) and the standard normal variate 

(SNV). Both methods process reflectance and transmittance spectra. Baseline shifts and 

intensity differences resulting from variable positioning or pathlength variations may be 

reduced or eliminated by normalization algorithms (10).  

MSC removes the additive and multiplicative scatter effects in the spectra, eliminating 

most of the variations among the spectra (see Figure 8). The MSC works very well in 

cases where the scatter effects are the dominating source of variability, for example in 

many applications of diffuse reflectance NIR spectroscopy. This transformation should 

however be used very carefully when scatter is not the dominant effect. Two important 

consequences of MSC application have been observed, from a calibration point of view: 

simplification of the calibration model by reduction of the components required and 

possible improvement of linearity besides being used in many spectroscopic applications 

with good results (68). 

The SNV method centres and scales individual spectra, having a very similar effect to 

MSC. The main difference between SNV and MSC, besides the vertical scale adapted 
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from SNV, is that SNV standardises each spectrum using only data from that same 

spectrum (68). Figure 8 shows a NIR spectroscopy raw spectrum, pre-processed with 

MSC and pre-processed with SNV from a powder paracetamol formulation. 
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Figure 8: NIR spectroscopy spectra from a powder paracetamol formulation (a) raw data, 

(b) pre-processed with MSC and (c) pre-processed with SNV (adapted from reference 

(61)). 

 

1.5.4 Principal component analysis 

 

There is a need for variable-reduction methods because of the vast amount of spectral 

information provided by NIR spectrophotometers, the substantial number of samples 

required to construct classification and calibration models, and the high correlation in 

spectra (14). Variable-reduction techniques allow the dimensions of the original data to be 

reduced to a few uncorrelated variables containing only relevant information from the 

samples. The best known and most widely used is principal component analysis (PCA) 

(56).  

PCA is a mathematical procedure that converts the original variables into new, called 

principal component (PC) (56). These PC´s are linear combinations of the original ones 

and can be interpreted like spectra (56, 67). In this way, the relevant information for the 

system is contained in a reduced number of variables (53).  

They represent the direction of the largest variation in the data: the first principal 

component (PC 1) explains the largest variation in the data and contains the most 

information. Each data point can be projected on this PC and a “score” can be attributed 

to each of these points, this is, each spectrum is represented by a score on each PC. 

Once PC 1 is constructed, a second (PC 2) can be drawn according to the same principle. 

This PC 2 is by definition orthogonal to PC 1 and represents the largest variation around 
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PC 1. The main advantage of this procedure is that the original information, represented 

by a high number of original variables (wavelengths) can be represented by only a few 

latent variables (LV). Feature reduction allows visualizing the data structure by plotting the 

scores of the samples on the first few PC’s (56). The PCA data obtained can be used as 

new variables, instead of the original data, in subsequent calculations (53). PCA is the 

basis for several other chemometric techniques, like principal component regression 

(PCR), Partial Least Squares (PLS) and soft independent modelling of class analogy - 

SIMCA (56). 

Figure 9 represents the transformation procedure on the basis of three original variables, 

this is, three wavelengths per spectrum. For real spectra with x wavelengths the 

transformation leads to a x dimensional space (10). 

 

 

Figure 9: Transformation of a spectrum with three variables, or wavelengths (a) to a new 

coordinate system with one axis for each wavelength, converting the spectrum to a single 

point in a three-dimensional space (b), cloud formation of several spectra (c), MNCN (d), 

and determination of principal components F1, F2 and F3 (e) (adapted from reference 

(10)). 

 

In pharmaceutical NIR analysis, it is often possible to compress most of the spectral 

variability to only a few principal components, with only a rather small loss of information 

(10). 
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1.5.5 Multivariate calibration for quantitative analysis 

 

To perform a qualitative analysis using NIR data it is necessary to calibrate using 

multivariate methods (10). The purpose of multivariate analysis methods is to construct 

models capable of accurately predicting the characteristics and properties of unknown 

samples by correlating raw or pre-processed products spectra with one or more chemical-

physical properties of a set of samples (53, 54). The process involves the steps described 

in Table 5. 

  

Table 5: Steps in the multivariate model construction process (adapted from reference 

(53)). 

Step Purpose 

1. Calibration samples selection 
Select a set of samples representative of 

the whole population. 

2. Determination of the target values by 

using the reference methods 

Determine the value of the measured 

property in an accurate and precise 

manner. The quality of the value dictates 

that of the calibration model. 

3. NIR spectra record 
Obtain physicochemical information in a 

reproducible manner. 

4. Pre-treatment of the spectra 
Reduce unwanted contributions (such as 

shifts and scatter) to the spectra. 

5. Model construction 
Establish the spectrum-property 

relationship using multivariate methods. 

6. Model validation 

Ensure that the model accurately predicts 

the property of interest in samples not 

subjected to the calibration process. 

7. Unknown samples prediction 
Predict rapidly the property of interest in 

new, unknown samples. 

 

A number of multivariate analysis methods can be classified according to their purpose 

and the algorithms or computational procedures that they use. The method of choice will 

depend on the purpose of the analysis, the characteristics of the samples and the 

complexity of the system concerned (for example its non-linearity). The simplest and 

oldest, however, less used, quantitative multivariate analysis method is multiple linear 

regression (MLR), which usually uses fewer than five spectral wavelengths. MLR 
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assumes concentration to be a function of absorbance (according to Beer´s Law), which 

implies the knowledge of the concentrations of not only the target analytes, but also all 

other components contributing to the overall signal (53).  

The multivariate-regression methods most frequently used in NIR spectroscopy are PCR 

and particularly PLS regression (10).  

PCR uses the PCs provided by PCA to perform regression on the sample property to be 

predicted (68).  

PLS finds the directions of greatest variability by considering both spectral and target-

property information, with the new axes called ‘‘PLS components’’ or ‘‘PLS factors’’(10). 

The main goal of the PLS is to establish a linear link between two matrices, the spectral 

data X and the reference values Y. This technique consists of modelling both X and Y in 

order to find out the variables in X matrix that will best describe them Y matrix. This can 

be explained by the representation of the spectra in the space of wavelengths in order to 

show directions that will be linear combinations of wavelengths called factors which 

describe best the studied property (67).  

The main difference between the two methods is that the PC 1 or factor in PCR 

represents the largest variations in the spectrum, whereas in PLS it represents the most 

relevant variations showing the best correlation with the target property values. In both 

cases, the optimum number of factors used to build the calibration model depends on the 

sample properties and the analytical target (10). 

For regression modelling, PLS is the main tool employed having advantages such as of 

handling collinear variables (e.g. spectral data) and handling of modest amounts of 

missing data. This is an appealing property, for instance if one needs to analyse process 

data where some probes may be malfunctioning or data from a certain day is missing. The 

method also assumes that there is noise present both in X and Y measurements, which is 

lacking in an ordinary regression, such as MLR (2). 

 

1.5.5.1 Calibration model validation 

 

A proper validation of the calibration equation is a crucial step to determine its suitability to 

predict new samples, which is the whole purpose of developing NIR calibrations (54). 

 

Calibration error 

 

The root mean square error of calibration (RMSEC) is a measuring of the fit of the model 

to the calibration data. It is defined as: 
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       √
∑          

   

     
 

(Equation 1) 

 

In Equation 1,    are the values obtained by testing the calibration equation directly on the 

calibration data,   is the number of samples and   is the number of principal components. 

This estimate is an estimate of model error and not prediction error (68). 

 

Internal validation: cross-validation 

 

Validation should rather be performed with distributed samples which were not previously 

used for calibrating, but independent validation may not always be possible. In this way, 

cross-validation can provide a basic assessment of the calibration performance with 

calibration data only (54). This technique is done by successively deleting samples from 

the calibration itself. First, a sample (or set of samples) is deleted from the calibration set. 

A calibration is performed and that sample (or set of samples) is projected. In the next 

step the first removed sample (or set of samples) returns to the calibration set and the 

next sample (or set of samples) is removed. The procedure continues until all samples 

have been deleted once. The root mean square error of cross-validation (RMSECV) is 

defined by the following equation (68): 

 

       √
∑             

   

 
 

(Equation 2) 

 

In Equation 2,       is the estimate for    based on the calibration equation with the 

sample   deleted and   is the number of samples (68). 

The cross-validation may be performed using the following methods to split the data: 

 leave-one-out cross-validation: when only one sample is deleted at a time; this method 

is also called full-cross-validation; 

 segmented cross-validation: contiguous blocks, in which a set of samples can be 

deleted in each iteration; this should be done when replicates exist in the calibration 

set; the replicates should be removed together, if not, over-optimistic results may be 

obtained; 
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 venetian blinds, in which every ith sample is deleted, and 

 random subsets, in which set of samples are randomly chosen to be removed (68). 

 

The RMSECV it is not an error that directly estimates the actual predictor, but an estimate 

of the average prediction error of calibration models based on N-1 samples (68). Any 

statistic reported from cross-validation cannot be directly compared or interpreted the 

same way as statistics from a real validation of the final model with new samples (54). 

 

External validation 

 

One way to validate the calibration model is to split the data into two sets: one for 

calibration and one for validation/testing. In this case, the root mean square error of 

prediction (RMSEP) is calculated according to: 

 

       √
∑          

   

  
 

(Equation 3) 

 

in which     and    are the predicted and measured reference values, respectively, for the 

test samples and the    is the number of samples in the validation/test set. The RMSEP 

is the simplest test that can be made to validate a model (68). 

When the RMSEP or RMSECV are used to predict the number of model components a 

plot of RMSEP(CV) against the number of components can be used (Figure 10). 
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Figure 10: RMSECV in function of the number of PLS components 

(adapted from reference (61)). 

 

Typically, in this plot the value of the error for a small number of components is high and 

decreases as the number of components increases. If the number of components is very 

high the error tends to increase again. A normal procedure when using this plot is 

searching for the number of components that gives the smallest error. If, however a 

smaller number of components give approximately the same error value, it would be 

preferably to choose the smaller number of components, leading to a more robust model. 

It should be emphasised that if the RMSECV is used to predict model architecture, 

RMSEP should be used to test the final performance of the model. 

The plot of ŷi versus y can also be useful to see how the model is behaving in terms of 

predictions abilities. An example can be visualized in Figure 11. Good predictions should 

be in a 45° line (and having a high correlation coefficient). However, some care must be 

taken when using the correlation coefficient in a model validation. Correlation only 

measures the degree of linear relationship between the measurements. A calibration 

equation can be clearly biased and still have high correlation between measured and 

predicted values. Also, extreme points may distort the correlation coefficient. So, a 

comparison between RMSEP(CV) is always preferred (68). 
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Figure 11: Mass fraction of an API (neomycin sulphate) versus the predicted mass 

fraction (adapted from reference (61)). 

 

1.5.6 Outliers 

 

There are always some observations that for some reason are different from the rest of 

the data set (68). Outliers from either reference values or spectral data exist and most 

calibration methods are highly sensitive to them (54). There are several reasons for an 

observation to be an outlier: 

 when a sample belongs to another population than the “normal” samples; 

 when an instrument is not functioning properly and therefore gives an erroneous or 

misleading signal, affecting one or all x-variables, and 

 when there are errors in y caused by reference method failure or transcription error, 

resulting in a sample that will not fit into the regression model obtained from the rest of 

the data (68). 

 

It is important to refer, that an outlier is not necessarily an erroneous observation, but 

merely an observation different from the rest of the population. Such observation can 

represent new and valuable information for the researcher. 

Calibration and prediction outliers have to be considered separately. The calibration 

outliers are very important because they will affect the equation prediction with 

consequences for all future samples. A prediction outlier does not affect the calibration 

model however the prediction of y for such samples will be erroneous. 
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It is also useful to distinguish between x- and y-outliers. The x-outliers are those x-vectors 

that are in some way abnormally positioned relatively to the majority of x-data (Figure 12 

(c)). The y-outliers are defined as those observations that have a different relationship 

between y and x (Figure 12(a)) (68). 

 

 

Figure 12: Outlier detection in linear models. The outlier in (a) is an y-outlier, the outlier in 

(c) is a x -outlier and the outlier in (b) is both x- and y-outlier (adapted from reference 

(68)). 

 

In one dimension, as in figure above, it is easy to define a x-outlier, however with more 

than one dimension it becomes more difficult to detect this kind of outliers. The plots of 

principal components scores and PLS scores are very important to detect x-outliers. If 

outliers are present this will show up as points in the scores plots lying outside the normal 

range of variability (68). 
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1.6 Application of NIRS to dissolution tests 

 

The studies concerning NIRS application in dissolution tests published until now were all 

performed off-line in diffuse reflectance mode. No study using NIRS in-situ to monitor 

dissolution studies was found after an exhaustive bibliography search.  

The studies on NIR application in dissolution tests that were performed until this date are 

presented in Table 6. All of them show satisfactory results regarding the use of NIRS and 

chemometrics. 
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Table 6: Compilation of NIRS applications in dissolution tests with chemometric tools. 

Author Aim of the study Main conclusions 

Zannikos 

et al, 1991 

-Predict the dissolution rate of carbamazepine tablets using NIR 

in diffuse reflectance mode and chemometric methods (PCR), 

validating with the reference method. 

-Study the influence of moisture in the dissolution rate profile of 

the drug. 

-The dissolution rate was affected by the degree of 

hydration in high humidity, and could be non-

destructively predicted by NIR. 

Donoso 

et al, 2004 

-Use NIR in diffuse reflectance mode as an alternative method in 

measuring the dissolution rate from theophylline tablets 

compacted at different compressional forces.  

-Obtain model equations by using different mathematical 

techniques for regression.  

-Test the model equations predictive ability, and statistically 

compare the predictive values to laboratory results to check for 

the agreement of the model with the reference methods. 

-NIR in diffuse reflectance mode showed to be an 

alternative and non-destructive method for 

measurement of drug dissolution from tablets.  

-Models were developed for prediction of 

percentage of drug dissolved from tablets and were 

successfully validated and applied for prediction.  

-The predicted values were very similar to 

laboratory data. 

Freitas 

et al, 2005 

-Application of PLS regression method to correlate dissolution 

profiles obtained by using a dissolution apparatus (conventional 

method) and the NIR diffuse reflectance spectra of a series of 

clonazepam tablets.  

-Ten different formulations with fixed amount of clonazepam and 

varying proportions of excipients were analysed. 

-Good correlation results were obtained of predicted 

dissolution percentage by NIR versus dissolution 

percentage by the reference method.  

- NIR diffuse reflectance spectroscopy method is an 

alternative, non-destructive tool for measurement of 

drug dissolution from tablets. 

- PLS showed to be an adequate regression 

method in building the calibration models. 
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Author Aim of the study Main conclusions 

Blanco 

et al, 2006 

- Develop PLS calibration models to determine the percentage 

of API dissolved at a given time by using tablets pressed at 

variable pressures and spanning a wide range of dissolution 

profiles using NIR in reflectance mode, validating against the 

reference method dissolution procedure and analysis. 

-It was possible to accurately determine the API 

content and percentage of dissolution at a time of 

pharmaceutical tablets by using NIRS (in diffuse 

reflectance) in combination with multivariate 

calibration.  

-The pressure used to compact the tablets have a 

pronounced effect on their NIR spectra.  

-PLS model was used to determine compliance with 

the dissolution specifications, the results were 

comparable to those obtained with the reference 

method. 

Otsuka 

et al, 2007 

-Develop multivariate regression models that predicted the 

change in dissolution properties for indomethacin tablets 

pressed under varying  compression pressures used both 

transmittance and diffused reflectance NIRS with chemometrics. 

-The dissolution of the tablets was delayed by an 

increase in maximum compression pressure.  

-It is possible to predict the dissolution properties of 

pharmaceutical preparations using both diffuse 

reflectance and transmittance with chemometric 

methods. 

- The transmittance mode was more accurate for 

predictions of the dissolution behaviour of tablets 

than the diffuse reflectance mode. 
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Author Aim of the study Main conclusions 

Tabasi 

et al, 2009 

-Study the dissolution behaviour of sustained release 

theophylline tablets using NIR diffuse reflectance spectroscopy 

and multivariate calibration models. 

 

-The results of this study showed that NIRS with 

multivariate modelling (PLS) was able to 

successfully differentiate variations on an excipient 

for drug coating in tablet formulation and correlate 

dissolution profiles of each batch to its 

corresponding tablet composition.  

-Using NIRS, dissolution results could be accurately 

predicted without having to actually analyse the 

product.  

-The results of this study expand the application of 

NIRS in sustained release pharmaceutical products. 

Neves 

et al, 2012 

-Develop a quantitative methodology to simultaneously 

determine the dissolution testing of four API (isoniazid, 

rifampicin, pyrazinamide and ethambutol) in tablets using NIR in 

diffuse reflectance, validating the results with the reference 

method. 

-NIRS by diffuse reflectance, coupled with 

chemometric methods showed to be an efficient 

analytical technique, when used in the study of the 

dissolution testing of tablets, when compared to 

HPLC. 

-PLS is presented as a good regression method to 

be used together with pre-treatment steps that must 

be performed initially on the sample spectra. 
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1.7 Folic Acid  

 

The study presented in this thesis is based on an immediate release tablet formulation 

containing folic acid as the API.  

Chemically, the folic acid is constituted of three components: (1) a bicyclic pterin linked by 

a methylene bridge (C9-N10) to (2) para-aminobenzoic acid which is joined by peptide 

linkage to a single molecule of (3) L-glutamic acid (69, 70). 

The folic acid molecule belongs to the vitamin B group and is present in many foods as 

free folic acid but mainly conjugated with glutamic acid residues (69). The human 

metabolism is not able to produce this molecule, so they have to obtain it from diet (70). 

Moreover, the folic acid obtained from pharmaceutical preparations is more bioavailable 

than the ones obtained from diet, once most of it is lost in the cooking process (71). 

This vitamin has received considerable attention because of its role in the prevention of 

diseases. Its function is vital to the biochemical process of DNA synthesis and repair. Pre-

conception consumption of folic acid plays a major role in the prevention of neural tube 

defects, primarily anencephaly and spine bifida (69, 70). 

This yellow crystal has limited solubility in water and organic solvents. However, it is 

soluble in alkaline solutions so the folic acid standards used for quantification are 

prepared in basic solution, where the molecule demonstrates more stability (69). 

Several methods have been developed for the quantification of folic acid in 

pharmaceutical formulations. Chemiluminescence using a flow injection technique and 

with fluorescence detection was used to quantify folic acid in tablets (72, 73). Another flow 

injection method, multicommutation, with flourimetric detection was used to quantify folic 

acid in tablets after irradiation of the samples with UV (ultraviolet) radiation (74). Other 

methods such as, a sensor with electrocatalytic detection and square wave voltammetry 

were also used to quantify folic acid in pharmaceutical preparations (75, 76).  

Several different chromatographic methods have been developed and applied in the 

determination of folic acid in individual tablets or in multivitamin tablets such as 

microemulsion electrokinetic chromatography, high performance thin layer 

chromatography - HPTLC - and ultra-high pressure liquid chromatography - UHPLC - (77-

80). In addition hyphened methods as liquid chromatography/tandem mass spectrometry - 

LC/MS-MS - and high performance liquid chromatography/electrospray ionization-mass 

spectrometry - HPLC/ESI-MS - were also used to determine folic acid in multivitamin 

tablets (81, 82).  

The British pharmacopoeia and USP methods for the quantification of folic acid 

recommend the use of HPLC (83). Even though HPLC is a sensitive and selective method 
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and is very well established in pharmaceutical applications, there are several 

disadvantages which already have been reference before: HPLC has a complicated 

operation and maintenance system that requires large solvent volumes, with high cost of 

consumable supplies and the generation of substantial quantities of hazardous organic 

solvents and the time required to perform a HPLC method is many times very high and 

not in accordance with the requirements of the QC of a pharmaceutical industry that 

entails a more expeditiously method (77). 
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2. Experimental 

 

This work was made in collaboration with a pharmaceutical industry and with the 

pharmaceutical technology department of the faculty of pharmacy of the University of 

Porto. 

The experimental section is divided in two parts, in the first one the development and 

validation of the UV spectrophotometric method for folic acid quantification is shown. In 

the second part, the application of the NIRS method to monitoring dissolution tests is 

explained. 

 

2.1 Development and validation of a UV spectrophotometric 

method for the determination of folic acid 

2.1.1 Instrumentation, samples, reagents and solutions  

 

High performance liquid chromatography 

 

In this work two different HPLC apparatus were used: one for the quantification of folic 

acid in commercial pharmaceutical formulations and a second for the quantification of folic 

acid in the dissolution tests. The reference method procedure was performed according to 

the USP folic acid monograph (83).  

For the quantification of the folic acid content in commercial tablets, the method was 

performed on a HPLC system (Merck Hitachi LC system, Ltd. Tokyo, Japan) comprising 

two LC L-7100 pumps, an interface D-7000 and a Diode Array Detector. Chromatography 

Data Station Software was used for chromatographic control and data processing. The 

chromatographic conditions are defined in Table 7. 

For the quantification of folic acid during dissolution tests, the HPLC method was 

performed in an instrument with an automatic injection system (autosampler) and four 

pumps from UltiMate 3000 LC Systems, (Dionex, Germany). Software Chromeleon 6.70 

(Dionex, Germany) was used for data control and processing. The chromatographic 

conditions are defined in Table 8. 

A reversed-phase Spherisorb ODS2 column (pore size 5.0 μm, 4.6 x 250 mm, Waters, 

Dublin, Ireland) with a security guard cartridge (4.0 x 3.0 mm, Phenomenex, USA) was 

used for separation in both HPLC apparatus. Each chromatographic run was performed in 

isocratic elution mode using a mobile phase consisting of a buffer solution with pH 7.20 ± 

0.05 (mixture (1:1) of 0.60 mol L-1 sodium perchlorate with 0.02 mol L-1 potassium 
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monobasic phosphate) and methanol (90:10). The pH was adjusted with potassium 

hydroxide 1.00 mol L-1 or phosphoric acid 1.00 mol L-1. All solvents used in the 

chromatographic system were filtered through a 0.45 μm nylon membrane filter (HNWP, 

Millipore) using a vacuum pump (Büchi, Switzerland) and degassed for 15 minutes in an 

ultrasonic bath (JP Selecta, Barcelona, Spain).  

 

Table 7: Chromatographic conditions for the quantification of folic acid in commercial 

pharmaceutical formulations. 

Column C18, 4.6 x 250 mm, 5.0 µm 

Mobile Phase 
Isocratic buffer solution pH 7.20 / 

methanol (90:10) (v/v) 

Injection volume 20 µl 

Column temperature Ambient room temperature (25 ± 1ºC) 

Flow rate 1.0 mL min-1 

Run time 13 minutes 

Detector 280 nm 

 

Table 8: Chromatographic conditions for the quantification of folic acid in dissolution 

tests. 

Column C18, 4.6 x 250 mm, 5.0 µm 

Mobile Phase 
Isocratic buffer solution pH 7.20 / 

methanol (90:10) (v/v) 

Injection volume 20 µl 

Column temperature Ambient room temperature (25 ± 1ºC) 

Flow rate 1.0 mL min-1 

Run time 13 minutes 

Detector 280 nm 

 

Ultraviolet spectrophotometry 

 

All UV measurements were made on a Jasco V-660 double beam UV–vis 

spectrophotometer (Jasco, USA) using 1 cm optical path quartz cells. The UV 

measurements were performed with a spectral resolution of 1 nm, a scan speed of 400nm 

min-1, on a spectral range between 200 nm and 450 nm.  
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Figure 13: The UV-vis spectrophotometer Jasco V-660 (adapted from (84)). 

 

pH measurements  

 

A Crison GLP22 pH-meter (Crison, Spain) calibrated with standard buffer solutions was 

used for pH measurements. 

 

Dissolution tests 

 

Tablets dissolution testing was performed in accordance to the USP Pharmacopoeia 

general method and folic acid tablets monograph (38, 83). Table 9 summarizes the 

dissolution testing apparatus and specifications used in this work. 

 

Table 9: Dissolution testing apparatus and specifications. 

Equipment 
Erweka model ZT3-1 automatic 

dissolutor 

Dissolution medium 500 ± 1% mL distilled water 

Rotating apparatus Apparatus 2 (paddle) 

Temperature 37 ± 0.5ºC 

Stirrer speed 50 rpm 

 

The dissolution medium temperature was controlled at 37 ± 0.5°C using a Crison TM65 

thermometer.  
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Samples, reagents and solutions 

 

MilliQ ultra-pure water and grade glassware were used for the preparation of all solutions 

and samples. All chemicals and reagents were of analytical or HPLC grade. 

Phosphate buffer (0.10 mol L-1 solution of NaH2PO4/Na2HPO4) was used to prepare 

solutions of different pH’s in a pH range between 7.0 and 9.5 with a pH increment of 0.5. 

Folic acid reference standard was purchased from Sigma (St. Louis, MO, USA) with a 

purity of 89.9%.  

A folic acid stock solution (500.00 µg mL-1) was prepared by dissolving an equivalent of 

50.00 mg of folic acid reference standard in 100 mL of 0.10 mol L-1 phosphate buffer at pH 

9.0. Working standard solutions were obtained by appropriate dilution of this stock 

solution with phosphate buffer.   

All pharmaceutical excipients used in the interference studies were of pharmaceutical 

grade and were purchased from Sigma (St. Louis, MO, USA). 

In this study three IR folic acid commercial brands were selected, hereby designated by A, 

F and G. These commercial folic acid products were purchased from local drugstores. All 

folic acid products were labelled to contain 5.00mg of folic acid per tablet.   

 

2.1.2 Determination of folic acid in pharmaceutical formulations 

 

To verify the pH influence on the UV spectra of folic acid, six folic acid solutions with 

different pH’s were tested. Therefore, 0.875 mL of a folic acid stock solution (500.00µgmL-

1) was diluted to a volume of 25 mL with 0.10 mol L-1 of phosphate buffer (in the range pH 

7.0 to pH 9.5 with pH increments of 0.5) to obtain folic acid working standard solutions 

with a concentration of 17.50 µg mL-1. The folic acid working standard solutions with 

different pH’s were then measured on the UV spectrophotometer at a temperature of 25ºC 

(controlled room temperature). 

To confirm the maximum of absorbance (ʎmax), a volume of 0.875 mL of folic acid stock 

solution was diluted to a final volume of 25 mL with 0.10 mol L-1 of phosphate buffer at pH 

9.0 to obtain a folic acid reference solution of 17.50 µg mL-1. Buffer was used as the blank 

on all UV measurements.  

For the linearity study, seven solutions at different concentrations were prepared using 

seven different aliquots of folic acid stock solution at pH 9 according to Table 10. The 

solutions were measured by UV spectrophotometry using a buffer solution as blank. The 

absorbance was measured at 282.5 nm, and the respective values were used to 

determine the method’s linearity by least squares. This procedure was made in three 
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different days. The limit of detection (LOD) and the limit of quantification (LOQ) for the 

assay were also calculated (85). 

 

Table 10: Standard solutions used for the calibration curve assessment. 

Standard 

solution 

Concentration of 

folic acid (µg mL-1) 

Volume of 

stock solution 

(µL) 

Final volume (mL) 

1 1.00 50 25 

2 2.50 125 25 

3 5.00 250 25 

4 10.0 500 25 

5 12.5 625 25 

6 15.0 750 25 

7 17.5 875 25 

 

To verify the folic acid solutions stability, a folic acid working solution with a concentration 

of 17.50 µg mL-1 was prepared and preserved for 48h at room temperature (25 ºC) and 

analysed to test the folic acid stability in alkaline medium (pH 9). 

Since the aim of this study was to determine folic acid in pharmaceutical formulations, the 

effects of the most commonly used excipients were examined. The analysed excipients 

were magnesium stearate and Ludipress®. Solutions containing folic acid (10.00 µg mL-1) 

and the excipients in the proportion 1:1 and 1:10, were stirred with 0.10 mol L-1 of 

phosphate buffer at pH 9.0 in a magnetic stirrer for 20 minutes. Then the solutions were 

filtered with a filter pore of 0.45 µm, diluted, and analysed by UV spectrophotometry with 

the conditions already described. 

After establishing the best experimental conditions, the three commercial tablets 

containing folic acid (brand A, F and G) were analysed by UV spectrophotometry as 

follows. 

The average tablet weight was calculated from 20 tablets and then they were finely 

powdered in a porcelain mortar. A portion of this powder, equivalent to 50.00 mg of folic 

acid was accurately weighed and dissolved in 80 mL of 0.10 mol L-1 phosphate buffer at 

pH 9.0 and shaken for 20 minutes in a mechanical stirrer. The solution was filtered with a 

filter pore of 0.45 µm and transferred into 100 mL graduated flasks. The volume was 

completed with phosphate buffer at pH 9. Aliquots from this solution were transferred into 

25 mL graduated flasks and were analysed by UV spectrophotometry. This procedure was 
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made in triplicate for each tablet brand. The amount of folic acid per tablet was calculated 

from the standards calibration curve. 

To confirm the accuracy, precision of the proposed method and to check the interference 

of the excipients (matrix) present in commercial tablets, recovery experiments were 

carried out by the standard addition method. This study was performed by addition of 

known amounts (2.50, 5.00, and 7.50 µg mL-1) of standard folic acid solution to a known 

concentration of the previously analysed commercial tablets. The resulting mixtures were 

analysed by UV spectrophotometry with the conditions already referenced. The drug 

recovery was calculated by comparing the concentration obtained from the spiked 

mixtures with that of the pure drug.  

 

2.1.3 Determination of folic acid in dissolution tests 

 

Dissolution tests, using the three commercial brands already mentioned (brand A, brand F 

and brand G) were performed to assess the possibility of quantify folic acid during 

dissolution by UV spectrophotometry.  

The volume of the dissolution medium was placed in the vessel and was controlled at 37 ± 

0.5°C. One tablet was placed in the vessel and the dissolution vessel was immediately 

operated at the specified agitation rate for 15 minutes. Thirteen sampling points were 

defined to monitor the dissolution. At each sampling time point, a 3.0 mL sample was 

collected using a syringe with cannula, between the surface of the dissolution medium 

and the top of the rotating paddle. The mixture temperature was periodically verified and 

the vessel kept covered over the entire duration of the dissolution test. 

Samples were filtered with a membrane filter with a pore dimension of 0.45 µm prior to the 

analysis by HPLC and UV spectrophotometry. Table 11 presents the dissolution testing 

conditions used in this work. 
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Table 11: Dissolution testing conditions . 

Rotating apparatus Apparatus 2 (paddle) 

Dissolution medium 500 ± 1% mL distilled water 

Temperature 37.0 ± 0.5 ºC 

Stirrer speed 50 rpm 

Duration of the test 15 minutes 

Number of vessels 1 

Quantification method 

Off-line UV spectrophotometric proposed 

method and by the reference method (off-

line HPLC) 

Sampling time-points 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14 and 15 

minutes 

 

 

Figure 14: Erweka model automatic dissolutor.  
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2.2 Development of a NIRS method for dissolution testing 

monitoring 

2.2.1 Samples 

 

Two different types of samples were used to develop the NIRS method, commercial 

tablets and laboratory scale tablets.  

The commercial tablets used were an immediate release commercial formulation (brand 

F) constituted by folic acid (2.55%) and two excipients, magnesium stearate (0.91%) and 

Ludipress® (96.54%). Ludipress® is a blend of lactose (93%), povidone (3.5%) and 

crospovidone (3.5%) (86).  

The laboratory scale tablets were based on the IR commercial formulation (brand F). 

To have different dissolution profiles, a full factorial experimental design (Table 12 batch A 

to G) was created varying the compression force in two levels and the proportion of binder 

(povidone) in three levels in a total of six batches. In these batches the excipients that 

constitute Ludipress® were added separately to be able to change their relative amounts. 

Besides these six batches, two additional ones were made in which Ludipress® was 

added in the concentration present in the commercial formulation (batch H and I from 

Table 12) and the compression force was varied in the two levels used in the 

experimental design. From each batch 20 tablets were fabricated. 

 

Table 12: Composition and compression force of the laboratory scale tablets. 

Batch 

Folic 

Acid 

(%) 

Lactose 

(%) 

Povidone 

(%) 

Crospovidone 

(%) 

Magnesium 

stearate 

(%) 

Ludipress 

(%) 

Compression 

force (ton) 

A 2.55 89.79 3.38 3.38 0.91 - 2 

B 2.55 88.34 4.83 3.38 0.91 - 2 

C 2.55 86.41 6.76 3.38 0.91 - 2 

D 2.55 89.79 3.38 3.38 0.91 - 5 

F 2.55 88.34 4.83 3.38 0.91 - 5 

G 2.55 86.41 6.76 3.38 0.91 - 5 

H 2.55    0.91 96.54 2 

I 2.55    0.91 96.54 5 
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The laboratory scale tablets were prepared according to the following: 

a) Powders were weighted in the proportion showed in Table 12 weighing a total mass of 

50.00g. 

b) The powder mixture were blended in a turbula (WAB T2F, Switzerland) (Figure 15) for 

15 minutes in a plastic 500 mL recipient. 

 

 

Figure 15: The turbula (WAB T2F, Switzerland) used for powder blending (adapted 

from (87)). 

 

c) The blend was compressed with a compression force of 2 or 5 ton (see Table 12) in a 

hydraulic press (Specac, United Kingdom) for 5 seconds using a die and punch of 10 

mm diameter. 

To characterize the laboratory scale tablets, 10 tablets of each batch were subjected to a 

hardness test according to the Portuguese Pharmacopoeia IX in a Erweka TBH 28 

(Germany) equipment (88). 
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Figure 16: Hydraulic press used to produce tablets with variable hardness (adapted from 

(89)). 

 

2.2.2 Near-infrared spectroscopy 

 

Near-infrared spectra were recorded on a FT-NIR analyser (FTLA 2000, ABB, Québec, 

Canada), with an InGaAs detector, controlled via the Bomem-GRAMS software (ABB, 

Québec, Canada) and equipped with two different accessories: 

a) A powder sampling accessory (ACC101, ABB, Québec, Canada) for diffuse reflectance 

measurements with a 6 mm diameter illumination area (Figure 17). Each spectrum was 

acquired with an 8 cm-1 resolution, recorded as the average of 64 scans over a 

wavenumber range between 10000 cm-1 and 4000 cm-1. In the beginning of the 

measurements, a background spectrum was taken by placing the reference material 

PTFE (Teflon) over the sampling window. Three measurements were made for each 

tablet on each side.  
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Figure 17: FT-NIR spectrometer FTLA2000 from ABB, equipped with a reflectance 

powder sampling accessory. 

 

b) A transflectance probe (Flex, Solvias, Basel, Switzerland) with a mechanical pathlength 

of 1 mm (total optical pathlength of 2 mm) (Figure 18). Each spectrum was acquired 

with an 8 cm-1 resolution, recorded as the average of 16 scans over a wavenumber 

range between 10000 cm-1 and 4000 cm-1. The measurements were performed in-situ 

with the probe inside the dissolution vessel. In the beginning of each dissolution test, a 

background spectrum with air was taken with the probe clean and dry.  

 

 

Figure 18: FT-NIR spectrometer FTLA2000 from ABB, equipped with a transflectance 

probe. 
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2.2.3 Tablet dissolution test 

 

The dissolution tests were performed using the apparatus shown in Figure 14 using the 

conditions stated in Table 9. 

The volume of the dissolution medium was placed in the vessel and was controlled at 37 ± 

0.5°C. The transflectance probe was placed inside de dissolution medium always in the 

same position and depth. Once the tablet was inserted in the vessel, the apparatus was 

immediately operated at the specified agitation speed. At each sampling point, a sample 

of approximately 3 mL was collected, using a syringe with cannula, between the surface 

of the dissolution medium and the top of the rotating paddle, for UV spectrophotometry 

analysis. Samples for UV analysis were filtrated through a 0.45 µm syringe filters without 

dilution. 

The mixture temperature was periodically verified and the vessel kept covered over the 

entire duration of the test. 

Each sample for UV analysis was obtained at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 

and 15 minutes of the dissolution testing. The NIRS measures were automatically made 

by the software at the specific times in order to coincide the UV sampling times. 

 

2.2.4 Data processing  

 

After spectral acquisition, all calculations were carried out using the Matlab version 7.9 

(MathWorks, Natick, MA, USA) and the PLS Toolbox version 5.5.1 (Eigenvector 

Research, Inc., Seattle, WA, USA).  

The way that the laboratory scale tablets were constructed renders them some difference 

in physical properties, predominantly in terms of particle size. To minimise these physical 

differences, different pre-processing methods were employed to the spectral data, e.g. SG 

filters, derivatives, SNV, MSC and normalization. 

These pre-processing methods remove interferences such as, baseline drifts, light 

scattering effects and other instrumental variations. Additionally, the pre-processing 

methods remove interferences due to physical phenomena such as differences in the 

particle size distribution. However, it is known to be very difficult to remove entirely the 

effects of uncontrolled physical phenomena from the NIR spectra using simple pre-

processing methods (10). 

The multivariate technique used to relate the UV concentration of folic acid with the NIR 

spectra, was PLS. To assess the PLS model accuracy (bias), the RMSECV estimated 
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according to Equation 2 was used. The model robustness was evaluated in terms of the 

RMSEP according to Equation 3. 
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3. Results and discussion 

 

As in the case of the experimental section, this section will be divided in two parts. In the 

first part it will be presented and discuss the development and validation of the UV 

spectrophotometric method for the determination of folic acid in pharmaceutical 

formulations and in dissolution tests. The validated method will be used in the second part 

as the reference method for the NIRS method. In this second part the results regarding 

the NIRS method to monitor dissolution methods will be presented and discussed.  

 

3.1 Development and validation of a UV spectrophotometric 

method for the determination of folic acid  

3.1.1 Determination of folic acid in pharmaceutical 

formulations 

 

Studies at different pH’s were carried out to verify its influence on folic acid absorption in 

the UV-vis region. The influence of pH was studied between 7.0 and 9.5 in intervals of 0.5 

pH units (see Figure 19). Four broad absorption bands with absorption maxima at 217 

nm, 257 nm, 282.5 nm and 361.5 nm could be observed in the UV-vis folic acid spectrum. 

All bands were dependent of the pH, and the band centered at 361.5 nm underwent a 

bathochromic shift moving between 346.5 nm at pH 7.0 and 363.5 nm at pH 9.0.  

Since in the literature it is referenced that folic acid is soluble and more stable in alkaline 

solutions the remaining experiments were carried at pH 9.0 (69). 

As can be seen in Figure 19, the UV-vis spectra of folic acid showed that the drug 

absorbed appreciably at 282.5 nm (ʎmax.), so this wavelength was selected as the 

detection wavelength for determination of folic acid in pharmaceutical formulations. 
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Figure 19: UV-vis spectra of a 17.50 µg mL-1 folic acid solution at different pH values. The 

buffer used was of 0.1 mol L-1 NaH2PO4/Na2HPO4. 

 

To evaluate the linear range of the calibration curve seven standards with concentrations 

of 1.00 µg mL-1, 2.50 µg mL-1, 5.00 µg mL-1, 10.00 µg mL-1, 12.50 µg mL-1, 15.00 µg mL-1 

and 17.50 µg mL-1 were measured by UV spectrophotometry and the absorbance value at 

282.5 nm taken for further calculations. The measurements were made in triplicate and 

the average value was determined. The calibration curve (Figure 20) was obtained by 

least squares, and validated by evaluating the linear dynamic range, precision, LOD and 

LOQ (85). 

Under the described experimental conditions, Beer’s law is obeyed in the concentration 

range from 1.00 to 17.50 µg mL-1 of folic acid with an excellent determination coefficient 

(R2 = 0.9999). This range was chosen because the final objective of this part of the work 

is to assess the possibility of using UV spectroscopy to measure the concentration of folic 

acid during dissolution tests. During dissolution the range of concentration is from 

approximately 2 µg mL-1 in the first measuring point until 10 µg mL-1 in the end of the 

dissolution. 

The absorbance values for this concentration range were adjusted by the Equation 4. 

 

                                       (Equation 4) 

 

In Equation 4,              is the concentration of folic acid in µg mL-1 and   is the UV 

absorbance at 282.5 nm. 
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The LOD (3.3.SDblank/slope of curve) and LOQ (10.SDblank/slope of curve) were 9.3 × 10-3 

µg mL-1 and 28.2 × 10-3 µg mL-1 of folic acid, respectively (85). 

 

Figure 20: UV calibration curve for the determination of folic acid in pharmaceutical 

formulations. 

 

Folic acid solutions are known to degrade with light and temperature during time, to check 

the stability of the solutions a folic acid working solution with a concentration of 17.50 µg 

mL-1 was investigated (69). The data given in Table 13 shows the values of absorbance at 

282.5 nm of this solution which remain unchanged after standing for 48 hours at room 

temperature (approximately at 25ºC) protected from light. 

 

Table 13: Folic acid working solution stability at room temperature (25 C). 

Time (h) Absorbance (282.5nm) 

0 1.08468 

1 1.08509 

2 1.08437 

24 1.07699 

48 1.07716 
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The interference of the excipients was studied to verify the specificity of the method to 

folic acid. The effect of each excipient was considered interference when the absorbance 

signal showed a variation coefficient equal or more than 5.3% or a mean recovery 

between 90-107% in the determination of the drug. The percentage of folic acid found in 

the test solutions ranged from 98.2 to 102.5 %, with variation coefficients values less than 

1.1% for three replicates, indicating that no interferences of the excipients were observed 

under these conditions (90). In view of these results, the method is considered to be 

specific for the analyte, folic acid. 

The proposed UV method was successfully applied on the determination of folic acid in 

three tablet formulations (brand A, F and G). The results, presented in Table 14, compare 

favourably with the reference method (HPLC) described in the USP, at a 95% confidence 

level using the t-student and Fisher test (91). The tests show no significant differences 

between the results of the proposed and the official methods, at the 95% confidence level. 

These results testify the applicability of the proposed UV method for the determination of 

folic acid in pharmaceutical formulations. 

 

Table 14: Determination of folic acid in commercial pharmaceutical formulations. 

 

Sample 

 

Label 

value a 

Proposed UV method 
Official HPLC 

method 

Found b 
RSD  

(%) c 

p-value 

(0.05) d 

F-value   

(19.00) d 
Found b 

RSD 

(%) c 

A 5.00 4.80±0.04 0.8 0.25 4.00 4.90±0.02 0.4 

F 5.00 4.90±0.15 1.2 0.59 1.56 4.80±0.12 2.5 

G 5.00 4.80±0.09 0.4 0.53 1.78 4.80±0.12 2.5 

a Label content for tablets: mg unit –1. 

b Average value  standard deviation (SD) of three determinations. 

c Relative standard deviation (RSD) of three determinations. 

d The figures between parentheses are the theoretical values of p and F. 

 

In order to investigate the presence of matrix effects and to check the accuracy and 

precision of the developed method, it was carried out a recovery study. Three different 

concentrations of folic acid with concentrations of 2.50 µg mL-1, 5.00 µg mL-1 and 7.50 µg 

mL-1 were spiked into a known concentration folic acid solution. The  recovery test results 
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are presented in Table 15. The recovery mean values for all samples are within the 

100.6% and 101.1% range with RSDs within 0.4% and 1.5%. These values ensure an 

accurate and precise method, without interference from any excipient present in the 

analysed tablets (90). 

 

Table 15: Recovery data from three different concentrations of folic acid spiked into a 

known concentration folic acid tablet previously determined. 

Sample Added (µg mL-1) Found (µg mL-1) 
Recovery 

(%) 
Mean Recovery a 

A 

2.50 

5.00 

7.50 

2.55 

4.95 

7.55 

102.0 

99.0 

100.7 

 a = 100.6  1.5 

F 

2.50 

5.00 

7.50 

2.52 

5.08 

7.57 

100.8 

101.6 

100.9 

 a = 101.1  0.4 

G 

2.50 

5.00 

7.50 

2.54 

4.98 

7.60 

101.6 

99.6 

101.3 

 a = 100.8  1.1 

a Average  RSD of three determinations 

 

3.1.2 Determination of folic acid in dissolution tests 

 

The developed UV method for the determination of folic acid in pharmaceutical 

formulations described above cannot be applied for the quantification of folic acid in 

dissolution tests since the aliquots retrieved from the dissolution tests are at pH 6. 

Therefore, to use the same folic acid standards, i.e., folic acid in phosphate buffer at pH 9, 

to quantify folic acid directly from the dissolution samples, a different strategy was 

pursued.  

To verify the existence of isosbestic points, specific wavelengths at which two chemical 

species have the same molar absorptivity, and so the absorbance is essentially 

independent of the pH, a first derivative was applied to the UV-vis spectra of a folic acid 
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standard solution with a concentration of 17.50 µg mL-1 at different pH’s (from pH 7.0 to 

pH 9.5 with increments of 0.5 pH units) (92). In Figure 21 it can be observed that three 

isosbestic points exist at 253.3, 305.5 and 377.2 nm. All of them were tested to verify if 

the value of the first derivative of the absorbance was linear against the concentration of 

folic acid and if they were sensitive enough to perform the quantification.  

 

 

Figure 21: First-derivative UV-vis spectra of a 17.50 µg mL-1 folic acid solution at different 

pH. The gray dash indicates the wavelength used for the calibration curve assessment. 

 

From the tested isosbestic points, the best linear correlation with the best sensitivity was 

at a wavelength of 377.2 nm in the folic acid concentration range between 1.00 µg mL-1 

and 17.50 µg mL-1. In Figure 22 can be seen the calibration curve for the determination of 

folic acid using the first derivative of the absorbance at 377.2 nm.  
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Figure 22: First derivative UV calibration curve for the determination of folic acid during 

dissolution tests. 

 

The linear regression from the calibration curve equation was: 

 

1D377.2 (U.D.)    9    ×             ×                            (Equation 5) 

 

In Equation 5,              is the concentration of folic acid in µg mL-1 and 1D377.2 is the 

value of the first derivative of the absorbance at 377.2 nm. Under the described 

experimental conditions, Beer’s law is obeyed in the concentration range from 1.00 to 

17.50 µg mL-1 of folic acid with an excellent determination coefficient (R2 = 0.9997). 

Therefore, by applying a first derivative to the UV spectra, it was possible to determine 

folic acid in solutions retrieved directly from the dissolution tests with pH around 6 with a 

calibration curve performed with standards at pH 9. 

The three commercial brands already mentioned were subjected to dissolution tests and 

aliquots of 3 mL were retrieved during the dissolution tests to be analysed by HPLC and 

UV. Table 16 depicts the concentration of folic acid determined by the reference method 

(HPLC) and by the first derivative UV method. The concentrations presented in Table 16 

are corrected for the decrease of volume that results from the removal of 3.0 mL in each 

sampling point. Some of the dissolution points do not have results because some 

experimental problem (probably sample contamination) occurred during the HPLC 

measurements and/or UV measurements and so the points were considered outliers.    



 
 

In-situ dissolution testing monitoring of pharmaceutical solid dosage forms by near-infrared spectroscopy and 

chemometrics 
 

66 

 

As can be seen in Figure 23 a), b) and c), the dissolution profiles determined with the UV 

first derivative method and the HPLC reference method for the three commercial brands 

are very similar.  

 

 

 

 

 

 

 

a) 

b) 
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Figure 23: Dissolution profiles of folic acid (FA) tablets of the three commercial brands: a) 

brand A, b) brand F, c) brand G) determined by HPLC and by the first derivative UV 

method. 

 

To perform a statistical comparison between both analytical methods, the determination 

coefficient (R2) and a regression analysis considering the 95% confidence level were 

performed (see Table 17). Linear regression data may be used for calibrating a new 

method against an established one or validating the utility of a method in relation to 

analytical quality specifications. The correlation coefficient indicates the magnitude of total 

random error of the method comparison, including nonlinearity, drift or shift, total analytical 

imprecision and sample-related effects. The methods are considered statistical equal if 

the confidence interval (CI) for the slope includes the value 1 and if the confidence interval 

for the intercept includes the value 0 (93) (94). For the three commercial samples both 

criteria were met with the exception of the slope for sample A. However, analysing the 

determination coefficients it can be seen that for the three cases values are always above 

0.99 (the defined threshold). 

c) 
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Table 16: Dissolution profiles of folic acid in commercial tablets . 

 

 

 

Time 

(min) 

Dissolution 

Sample A Sample F Sample G 

UV 1st derivative 

method 

Official HPLC 

method 

UV 1st derivative 

method 

Official HPLC 

method 

UV 1st derivative 

method 

Official HPLC 

method 

 µg mL-1 (%) µg mL-1 (%) µg mL-1 (%) µg mL-1 (%) µg mL-1 (%) µg mL-1 (%) 

1 ---- ---- ---- ---- 1.0 10.2 0.7 7.3 ---- ---- ---- ---- 

2 3.1 32.3 3.0 30.6 ---- ---- ---- ---- 2.2 22.9 2.2 22.9 

3 4.1 42.7 4.2 42.9 4.0 40.8 3.0 31.3 3.5 36.5 3.5 36.5 

4 4.6 47.9 4.8 49.0 5.1 52.0 4.4 45.8 4.4 45.8 4.5 46.9 

5 5.0 52.1 5.2 53.1 6.0 61.2 5.6 58.3 4.9 51.0 5.0 52.1 

6 5.3 55.2 5.5 56.1 7.1 72.4 6.6 68.8 5.2 54.2 5.4 56.3 

7 5.6 58.3 5.9 60.2 7.5 76.5 7.1 74.0 5.5 57.3 5.6 58.3 

8 5.8 60.4 6.1 62.2 7.4 75.5 7.4 77.1 5.6 58.3 5.7 59.4 

9 6.1 63.5 6.2 63.3 7.7 78.6 7.6 79.2 ---- ---- ---- ---- 

10 6.1 63.5 6.4 65.3 ---- ---- ---- ---- 5.8 60.4 6.0 62.5 

11 ---- ---- ---- ---- ---- ---- ---- ---- 6.0 62.5 6.1 63.5 

14 ---- ---- ---- ---- 8.2 83.7 8.2 85.4 ---- ---- ---- ---- 

15 6.8 70.8 7.0 70.6 8.0 81.6 8.3 86.5 6.4 66.7 6.4 66.7 
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Table 17: Comparison between the HPLC reference method and the proposed first 

derivative UV method for the determination of folic acid concentration in dissolution 

tests (HPLC reference method (x) and first derivative UV spectrophotometric (y)) . 

 

Sample 

 

R2 

Slope Intercept 

Value 95% CI Value 95% CI 

A 0.995 0.912 0.860 to 0.965 0.278 -0.011 to 0.567 

F 0.999 0.993 0.973 to 1.014 -0.130 -0.264 to 0.005 

G 0.999 0.973 0.946 to 1.001 0.040 -0.100 to 0.181 

 

3.2 Development of a NIRS method for dissolution testing 

monitoring 

 

The goal of this work was the assessment of a novel possibility involving the use of NIRS 

to monitor in-situ dissolution tests in order to expand surrogate methods in QC control in 

the pharmaceutical industry and to develop a more effectively understanding of CQA.  

For that end, in a first approach, dissolution tests were performed using laboratory scale 

tablets to verify the possibility of the NIRS method be sensitive to process variations. 

Then, the use of NIRS and multivariate calibration for high-throughput monitoring and 

control of dissolution tests was evaluated using the immediate release commercial 

formulation (brand F) as model.  

NIRS results were correlated with results obtained with the optimized first derivative UV 

method, hereby adopted reference method for quantification of folic acid. This method 

was preferred since it is faster and simpler when compared with the HPLC method and 

provides equivalent results as demonstrated in the previous sections. 

Preliminary studies were performed to evaluate the capacity of NIRS to distinguish folic 

acid solutions from pure water. Two different folic acid solutions with concentrations of 

5.00 µg mL-1 and 10.00 µg mL-1 were measured by NIRS in the same experimental 

conditions as the dissolution tests. In Figure 24 can be seen that the NIR spectra from the 

two folic acid solutions and the NIR spectra from pure water can be distinguished in the 

region between 6200 cm-1 and 5600 cm-1.  
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Figure 24: Left: NIR spectra of pure water and two folic acid (FA) solutions with 

concentrations 5.00 and 10.00 µg mL-1. Right: Amplified region (6200-5600cm-1). 

 

3.2.1 Laboratory scale tablets 

 

In order to characterize the manufactured tablets a hardness test was done (see Table 

18). As expected, the tables that were produced with a lower compression force (batch A, 

B and C) gave lower hardness values, between 37 N and 41 N. The tablets produced with 

a higher compression force (batch D, E, and F) have a higher hardness values, between 

81 N and 91 N.  Tablets form batch G and H that were produced with Ludipress® gave 

higher values of hardness when compare with the tablets without Ludipress®. The reason 

for that is that the lactose was different from the Ludipress® lactose that is much more 

compressible, affecting in this way the hardness values. 
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Table 18: Hardness values for the 8 produced batches. 

Batch 
Compression 

force (ton) 

Hardness 

(N) a 

A 2 41 

B 2 37 

C 2 41 

D 5 91 

E 5 84 

F 5 81 

G 2 86 

H 5 122 

a Average of ten determinations 

 

NIRS in reflectance mode was also used to characterize the laboratory scale tablets. Each 

tablet (20 per batch) was measured in both sides and in triplicate by NIRS.   

A PCA was made with all spectra (6 spectra per tablet) to see if there was differences in 

the spectra from the different batches. Figure 25 shows the PCA score plot from the first 

component (PC1) against the second component (PC2). Each point in the score plot is a 

single spectrum. The spectra were pre-processed with a first derivative followed by a SG 

filter of 15 points fitted with a second order polynomial and mean centered prior to PCA. 

The first PC captured 87.2% of variability in the sample set. The greatest source of 

variability in the spectra was the found to be related with compaction pressure. The way 

that particles are packed in the tablet affects the NIRS measurement because the light 

travels differently depending on the particles arrangement in the tablets.  



In-situ dissolution testing monitoring of pharmaceutical solid dosage forms by near-infrared spectroscopy and 

chemometrics 

 

72 

 

 

Figure 25: PCA score plot from a model calibrated with NIR spectra (10000 cm-1 – 4000 

cm-1) obtained in reflectance mode of tablets produced under laboratory conditions. 

Legend: spectra from tablets produced with a compression force of 2 tons,  spectra 

form tablets produced with a compression force of 5 tons. 

 

In Figure 26 one spectrum from a tablet of batch A and one spectrum from a tablet of 

batch D are presented pre-processed in the same way as the spectra form the PCA 

analysis. The only difference in these two batches is the compression force, and as can 

be seen in the entire spectra differences they are only related to differences in the 

compression force.  
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Figure 26: Pre-processed first derivative reflectance NIR spectra from batch A 

(compression force of 2 tons) and batch D (compression force of 5 tons). 

 

After the characterization of the laboratory scale tablets, one tablet per batch in a total of 

eight tablets were subjected to dissolution testing as described in the experimental 

section. 

Regarding the reference UV spectroscopic method, for each day of analysis a new 

calibration curve was made with new standards (see Table 19 for calibration curve data). 

 

Table 19: Parameters of the three calibration curves for the determination of folic 

acid. 

Calibration 

Curve 
Date Batch Slope Intercept R2 

1 04/06/2013 A 0.0582 0.0018 0.9999 

2 05/06/2013 B 0.0590 0.0072 0.9995 

3 06/06/2013 C to H 0.0567 -0.0032 0.9999 

 

In Table 20 is the folic acid concentration during dissolution tests for each of the tablets, 

measured by the first derivative UV spectroscopic method. The concentrations presented 

are already volume corrected. These results will be used to calibrate the NIRS method 

when applying PLS method. 
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Table 20: Folic acid concentration obtained from dissolution testing of one tablet of 

each batch of the laboratory scale tablets measured by the first derivative UV 

spectroscopic method. 

Sampling 

time point 

(min) 

Laboratory scale tablets  

Folic acid concentration (µg mL-1) 

A B C D E F G H 

1 2.92 2.84 2.95 4.64 4.71 4.31 1.76 1.18 

2 4.51 4.47 5.28 5.61 5.70 5.69 3.83 2.69 

3 5.69 5.33 6.48 6.10 6.13 6.28 5.41 4.29 

4 6.95 6.66 7.02 6.27 6.44 6.65 6.53 5.64 

5 7.28 7.13 7.33 6.53 6.72 7.00 7.02 6.20 

6 7.70 7.63 7.63 6.70 6.83 7.12 7.40 6.52 

7 8.00 7.90 7.82 6.74 7.01 7.28 7.68 6.75 

8 8.20 8.08 8.00 6.86 7.05 7.41 7.94 6.84 

9 8.39 8.24 8.15 6.99 7.13 7.47 8.00 6.96 

10 8.34 8.33 8.30 6.96 7.17 7.61 8.19 6.98 

11 8.54 8.43 8.39 7.06 7.33 7.53 8.12 7.15 

12 8.72 8.57 8.42 7.07 7.35 7.60 8.38 7.16 

13 8.74 8.72 8.46 7.17 7.41 7.69 8.42 7.21 

14 8.84 8.81 8.45 7.20 7.45 7.83 8.46 7.19 

15 8.78 8.82 8.61 7.20 7.46 7.87 8.51 7.25 

 

The transflectance raw NIR spectra acquired during dissolution tests for all the batches of 

the laboratory scale tablets are shown in Figure 27. Spectral bands are highly overlapping 

and it is very difficult to identify the chemical constituents of the samples, excipients and 

API, or to distinguish similar features between them. In the spectra it is clear the water 

absorption peaks at 6900 cm−1 and 5200 cm−1, originating saturated bands. These 

spectral zones in which the spectra is saturated are not suitable to use in PLS model, so 

the two remaining areas marked in the Figure 27 as Zone 1 (between 10000 cm-1 and 

7200 cm-1) and Zone 2 (between 6310 cm-1 and 5540 cm-1) were tested in the PLS model. 
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Figure 27: Transflectance NIR spectra obtained from the eight dissolution tests performed 

with one laboratory scale tablet for each batch. 

 

Besides the two different spectral zones, several pre-processing methods were tested, 

namely SG filter with a first or second derivative, and three normalization methods (SNV, 

MSC and normalize). The best results (lower RMSECV) were obtained using the 

normalize function and the spectral zone 2. The normalize function normalizes the 

variables to area =.1 and is used mostly to correct pathlength variations (68). Since the 

excipients present in the formulation are not soluble in water, is possible that pathlenght 

variations occurred when particles of the excipients cross the transflectance probe, and 

thus this pre-processing method minimizes these variations that will affect the NIR spectra 

and consequently the PLS model. In Figure 28 is present the same spectra as in Figure 

27 but pre-processed with the normalize function.   
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Figure 28: Transflectance pre-processed NIR spectra obtained from the eight dissolution 

tests performed with one laboratory scale tablet for each batch. 

 

In Figure 29 the pre-processed spectra corresponding to the spectral zone used in the 

PLS model (zone 2) for one dissolution test can be seen.  The dissolution can be followed 

over time; this is an evidence of the NIR sensitivity for the changes in the dissolution 

medium over the dissolution test. 
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Figure 29: Pre-processed NIR spectra corresponding to the spectral zone used in the PLS 

model (Zone 2). The spectra in this figure correspond to one dissolution test performed 

with one laboratory scale tablet. 

 

The first dissolution points correspond to a very low concentration of folic acid (lower than 

6.5 µg mL-1) and also the presence of the excipients in the dissolution medium makes very 

difficult to quantify these first sampling points by NIRS. For this reason, to build the 

calibration model the first 6 sampling time points were excluded.  

In Figure 30 is shown the 15 sampling point’s raw NIR spectra for the dissolution tests for 

each batch. As can be seen there are some batches in which the spectra is almost 

overlapped, e.g., batch A and B, and some others that the spectra is more dispersed, e.g., 

batch C to G. After some considerations it was concluded that the spectral dispersion was 

due to the non-soluble excipients present in the dissolution medium that dispersed the 

light and affect the spectra. The dispersion is not always the same depending in how the 

tablet starts to desegregate. Nevertheless, the light scattering effect was pronounced and 

had a linear relation with the increasing folic acid concentration. Additional studies are 

being made in order to understand this phenomenon but due to the time restrains it was 

not possible to include those studies in this thesis. Due to the experimental constrains 

explained, the spectra from the batches A, and B were removed from further calculations. 

 

 

Figure 30: NIR spectra corresponding to the dissolution tests performed with eight 

batches of the laboratory scale tablets. 
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As already stated, the regression technique used to relate the NIR spectra with the 

concentration of folic acid determined by the first derivative UV method was PLS with 

internal cross-validation, using the leave-one-out method.  

The optimal number of LV was chosen based on the lowest RMSECV value according to 

the leave-one-out cross-validation strategy. The model error was also assessed by using 

the RMSECV.  For 6 LV a RMSECV of 0.15 µg mL-1 was obtained corresponding to a 

relative standard error (RSE) of 2.08% with a cross-validation R2 of 0.95, which is 

indicative of a good prediction model (Table 21). These results show a good correlation 

and low levels of RMSECV between the dissolution percentage predicted by NIR and the 

dissolution percentage determined by UV for each batch.  

 

Table 21: PLS model results for the determination of folic acid during dissolution tests 

by NIRS using laboratory scale tablets. 

Pre-

processing 

Spectral 

Range 
LV 

RMSECV 

µg mL-1 

RSECV 

(%) 
R2

CV 

Normalize 

and MNCN 

6310 cm-1 to 

5540 cm-1 
6 0.15 2.08 0.95 

 

The folic acid concentrations measured by the first derivative UV method were plotted 

against the respective concentration estimated by the NIR method for batch D (Figure 31). 

The highest variation between the reference method values and the ones predicted by 

NIRS are in the beginning of the dissolution, where the concentration of folic acid is very 

low.  
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Figure 31: Dissolution profile determined with the first derivative UV reference method and 

with the NIRS method of batch D tablet. 

 

Figure 32 plots the folic acid concentrations determined by the UV method against the 

predicted NIR concentrations. Ideal predictions should lie on a 45° line.  

 

Figure 32: UV determinations versus NIRS predictions of folic acid concentration for all 

dissolution sampling points. 
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3.2.2 Commercial tablets 

 

Ten commercial tablets of the brand F belonging to the same batch were subjected to 

dissolution testing with the conditions already described in the experimental section.  

Samples collected over the dissolution tests were measured according to the optimized 

first derivative UV method. All dissolution tests were monitored by NIRS according to the 

conditions previously described in the last section. 

Table 22 presents the parameters of the calibration curve for the quantification of folic acid 

by the first derivative UV method.  

 

Table 22: Parameters of the calibration curve for the determination of folic acid by the 

UV method with first derivative. 

Calibration 

Curve 
Date Batch Slope Intercept R2 

1 29/06/2013 1 to 10 0.0587 -0.0002 1.000 

 

In Table 23 is presented the folic acid concentrations measured by the first derivative UV 

spectroscopic method during dissolution for each of the tablets. The concentrations 

presented are already volume corrected. These results will be used to calibrate the NIRS 

method when applying PLS method. 
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Table 23: Folic acid concentration obtained from the dissolution testing of each tablet 

of the brand F commercial immediate release formulation. 

Sampling time 

point (min) 

Commercial tablets 

Folic acid concentration (µg mL-1) 

1 2 3 4 5 6 7 8 9 10 

1 0.97 1.08 0.95 1.09 1.12 0.98 1.00 1.04 1.13 1.34 

2 2.69 3.08 2.71 2.79 2.83 2.51 2.52 2.52 2.50 2.89 

3 4.75 5.24 4.97 4.58 4.49 4.02 4.29 4.19 4.47 4.57 

4 6.70 7.17 6.80 6.68 6.53 6.22 6.20 5.63 6.50 6.09 

5 7.62 8.00 7.84 7.96 7.92 7.93 7.47 7.19 7.92 7.17 

6 8.40 8.44 8.36 8.35 8.59 8.29 8.13 8.20 8.44 7.85 

7 8.87 8.81 8.64 8.56 8.77 8.58 8.59 8.50 8.84 8.48 

8 9.07 8.94 8.97 8.91 9.04 8.82 8.97 8.76 8.96 8.61 

9 9.27 9.14 9.14 8.96 9.25 9.02 9.17 8.97 9.06 8.94 

10 9.40 9.19 9.30 9.22 9.35 9.15 9.30 9.13 9.27 9.02 

11 9.50 9.41 9.32 9.38 9.42 9.31 9.41 9.21 9.39 9.08 

12 9.64 9.41 9.45 9.44 9.74 9.30 9.43 9.22 9.45 9.20 

13 9.71 9.46 9.51 9.44 9.64 9.43 9.64 9.31 9.51 9.28 

14 9.79 9.56 9.49 9.51 9.72 9.58 9.66 9.42 9.57 9.28 

15 9.86 9.58 9.62 9.64 9.67 9.51 9.70 9.39 9.60 9.38 

 

The transflectance raw NIR spectra acquired during dissolution tests for all the 

commercial tablets are shown in Figure 33. The spectra are very similar to the spectra 

form the laboratory scale tablets, as expected. The same two spectral regions, between 

10000 cm-1 and 7200 cm-1 and between 6310 cm-1 and 5540 cm-1 were tested in the PLS 

model. 
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Figure 33: Transflectance NIR spectra obtained for the ten dissolution tests performed 

with the commercial tablets. 

 

The same pre-processing methods (SG filter with a first or second derivative, SNV, MSC 

and normalize) were tested for this case. The best pre-processing method was normalize 

and the spectral area that gave the best results was zone 2 (between 6310 cm-1 and 5540 

cm-1). In Figure 34 are shown all the spectra for the dissolution of the 10 tablets pre-

processed with the normalize function and in Figure 35 is shown for one tablet (tablet 8) 

the spectra correspondent to a dissolution test for spectra zone 2. The discussion done for 

the case of the laboratory scale tablets is also applied here. 
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Figure 34: Transflectance pre-processed NIR spectra for the ten dissolution tests 

performed with the commercial tablets. 

 

 

Figure 35: Pre-processed NIR spectra corresponding to one dissolution test of a 

commercial tablet zoomed in the spectral zone used for the PLS model (zone 2). 

 

Figure 36 represents the spectra from the dissolution tests of the 10 tablets of the 

commercial brand F. As can be seen the same scattering effects that also affected the 

spectra of the laboratory scale tablets were also present here. For the same reasons 
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already explained the batch correspondent to tablet 1, 2 and 6 were removed from the 

calculations. Also, the first sampling points with folic acid concentration lower than 6.5 µg 

mL-1 were also removed from the calculation for the same reasons stated before. 

 

 

Figure 36: NIR spectra corresponding to the dissolution tests performed with the ten 

commercial tablets (brand F) containing folic acid. 

 

Even after removing three batches, it was still possible to use six of the remaining batches 

to calibrate and one to assess the prediction ability of the method. So, batch 4 was not 

used in the calibration set and was used to test the model. PLS with cross-validation was 

used to relate the NIRS spectra with the folic acid concentrations measured by the first 

derivative UV method. The model error was assessed by the cross-validation error and 

model robustness was evaluated in terms of the RMSEP. 
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Table 24: PLS model results for the determination of folic acid during dissolution tests 

by NIRS using commercial tablets. 

Pre-

processing 

Spectral 

Range 
LV 

RMSECV 

µg mL-1 

RSECV 

(%) 
R2

CV 
RMSEP 

µg mL-1 

RSEP 

(%) 
R2

P 

Normalize 

and MNCN 

6310 cm-1 

to 

5540 cm-1 

6 0.24 0.84 3.2 0.34 3.8 0.87 

 

The leave-one-out strategy indicated that the best number of PLS LV was 6. For this 

number of LV the RMSECV was 0.24 µg mL-1 corresponding to a RSE of 3.2 % and to a 

R2 of 0.84 (See Table 24). These results are evidence of a good prediction model. 

The folic acid concentrations obtained with the UV method were plotted against the 

respective NIR concentration estimations for a commercial tablet 8 (Figure 37). As can be 

seen there are a good agreement between the reference method values and the valued 

predicted by the NIR method. 

 

 

Figure 37: Dissolution profile determined with the reference (UV) and NIRS methods of 

one commercial tablet (number 8). NIRS predictions were obtained by leave-one-out 

cross-validation. 
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Figure 38 represents the NIR predicted concentrations for the tablet 4 and the actual 

concentrations obtained with the reference first derivative UV method. 

 

Figure 38: Dissolution profile determined with the reference method (UV method with first 

derivative) and with the NIR method for commercial tablet number 4. 

 

The figures-of-merit for the PLS test were: RMSEP=0.34 µg mL-1; RSE= 3.8% and Rp2: 

0.87 (Table 24). The results of the correlation between the predicted and experimental 

values are higher than 0.80, which confirm a good model predictive ability with a low RSE 

(lower than 5%) (68). 

Figure 39 represents the folic acid concentrations determined by the UV method against 

the predicted NIR concentrations. The blue points correspond to leave-one-out 

estimations for the 6 dissolution tests included in the calibration and in pink the projected 

dissolution test 4. The closer the values approach the 45º diagonal line, the better the 

prediction is. 
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Figure 39: Folic acid concentration obtained by UV spectroscopy versus NIRS predictions 

for all dissolution tests used in the PLS model for the commercial samples ( calibration 

samples,  test samples). 

 

It was already mentioned that the dissolution profile of a tablet depends not only on the 

dissolution conditions, but also on the physical and chemical composition of the tablet, 

namely, the porosity, particle size distribution, tablet hardness, among other factors (32, 

33). NIR spectra are able to collect all physical and chemical information of folic acid 

tablets, which can be linked to the dissolution behaviour (53).  

This work was highly affected by the different disaggregation of the individual tablets, 

adding variability to the results. The light scatter caused by the undissolved excipient 

particles in the dissolution vessel, decisively influence the NIR spectra, increasing the 

error in estimating the analyte concentrations. 

The non-linear behaviour observed for lower concentrations may also affect the study. 

This analysis is limited by the low levels of API presented in the tablet, the immediate 

release formulation and the sensitivity of the in-situ fibre optic probe. 

However, this study demonstrated the versatility of this novel application of NIRS, the 

method has excellent potential to be improved and optimized by: 

 selection of a more sensitive probe; 

 developing a NIR transflectance probe with a mechanism for preventing the 

disturbance caused by the undissolved particles; and 

 by applying  a major calibration with more sample sets to understand the scientific 

background of these results. 
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In this study, a PLS calibration model was established for NIR quantitative analysis based 

on percentage of drug dissolution with an FT-NIR spectrophotometer, thus overcoming 

the disadvantages of off-line analysis and complexity using UV spectrophotometric and 

HPLC methods and making on-line/in-line dissolution determination of folic acid tangible.   

Although the work here presented requires further studies and improvements, the results 

concerning the experimentally designed tablets as well as the commercial ones indicate 

that NIR in the transflectance mode combined with the PLS is a potential method for the 

dissolution assessment in the QC of a pharmaceutical industry laboratory, or even in the 

dissolution profile assessment during investigation of a potential drug. Also, FT-NIR 

showed great potential in the study of drug dissolution processes. 

As already mentioned in chapter 1, item 1.6 (application of NIRS to dissolution tests) 

several studies on the development of a dissolution testing monitoring method with NIRS 

have been reported, but all of them use NIRS in diffuse reflectance mode, and none uses 

transflectance. Therefore, this work is considered pioneer in respect of working with 

dissolution testing monitoring in NIR transflectance mode. 
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4. Conclusions 

4.1 Development and validation of a UV spectrophotometric 

method for the determination of folic acid 

 

In this first part of the work an analytical method based on UV spectroscopy was 

developed for determining folic acid in pharmaceutical formulations and validated in 

conjunction with the reference method (HPLC).The present method is found to be simple 

and more sensitive than most of the already reported spectrophotometric methods. The 

statistical parameters and the recovery study data clearly indicate the accuracy and 

precision of the method. Analysis of commercial samples containing folic acid showed no 

interference from common additives and excipients in general.  

For the determination of folic acid in dissolution tests a modification in the UV method was 

needed due to pH differences between standards and samples collected from the 

dissolution vessel. A first derivative UV spectrophotometric method was developed.  

For both cases the statistical comparison between the reference method (HPLC) and the 

proposed method, showed that it is suitable to quantify folic acid in pharmaceutical 

formulations and in dissolution tests. These results along with the fact that it is a simple, 

fast and resources saving efficient method make it an important surrogate for HPLC, 

which is an expensive and time consuming technique.   

 

4.2 Development of a NIRS method for dissolution testing 

monitoring 

 

The main goal of this work consisted in the assessment of the applicability of NIRS as an 

efficient PAT tool to monitor in-situ dissolution testing of an immediate release tablet 

formulation. 

Preliminary studies were made to evaluate the ability of NIRS to distinguish API from 

water. Results showed that not only NIR was capable of distinguish the API from the 

water, but also it could be sensitive to different folic acid concentrations. 

Laboratory scale tablets were manufactured in the laboratory with different characteristics 

in order to create a robust model. A PCA model evidenced that NIRS is able to detect 

differences in tablets produced at distinct compression forces. 

Dissolution tests of eight batches (1 tablet for each batch) were performed and the 

dissolved API percentage was measured by first derivate UV method. NIR spectra were 
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correlated with reference measurements obtained by UV using PLS. Models were 

optimized regarding the spectral range, spectra processing and number of LV (through 

leave-one-out cross-validation). Models quality was very good which can be demonstrated 

by the excellent agreement between NIR predictions and the reference method 

estimations for the API concentration over the dissolution test.  

Finally, 10 tablets of one commercial brand, of the same batch were subjected to 

dissolution tests, in the same conditions as the manufactured ones. A new calibration 

model with good correlation was achieved. Then, an external data set was used to confirm 

models’ accuracy.  

Results clearly showed that NIRS along with multivariate analysis is a potential analytical 

technique candidate for the in-line study of drug dissolution. This study demonstrates that 

it is possible to use in-situ NIRS to monitor dissolution tests. This methodology can easily 

be adapted to other solid forms since its application is straightforward. 

While some goals were fully achieved, this work opened the door to several important 

issues that still need to be addressed. A better interpretation of the influence of 

undissolved particles in the NIR spectra over the dissolution test is required to stabilize 

NIR predictions. Either by interpreting correctly the effect of the particles or by developing  

a strategy to overtake the light scattering caused by the undissolved excipient particles, 

some action is required before attempting to implement this methodology in practice. This 

could be the objective of a future work since it is certainly a missing element in this work. 

There are other issues that will need future optimization and improvement such as an 

improvement of the probe sensitivity, conducting more dissolution tests ideally from 

experimentally designed tablets with many variables to improve NIR models’ accuracy 

and robustness.  

In summary, this study indicated that NIRS has excellent potential as an analytical method 

for dissolution tests in-situ monitoring. This was demonstrated for the immediate-release 

tablet formulation based in folic acid but can be expected to have excellent potential for 

other solid dosage forms. 

These results expand the NIRS applications portfolio for pharmaceutical solid oral dosage 

forms. 
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5. Future work and perspectives 

 

The work developed in this thesis opened new perspectives in the implementation of 

NIRS for dissolution methods monitoring. The approach followed in this work revealed to 

have some advantages but also some drawbacks were identified. The most interesting 

feature of the proposed method is to promote an insight into what is happening in the 

dissolution vessel in real time and the associated low-cost per monitored dissolution. 

While some of the initial targets were accomplished by this work, essentially the 

demonstration of feasibility, many issues remain open for research and therefore can be 

subject of continuation works. Among the most problematic issues faced in this particular 

work that need a careful attention is the identification of the real effect of light scattering 

caused by particles in suspension on the near-infrared spectra that cannot be removed by 

mathematical processing. This must be accomplished by monitoring a series of 

dissolutions with the in-situ probe and periodically performing some sampling, filtering and 

measuring again with the probe now without the particles interference. This study should 

be accompanied by a deep characterization of particles distribution over the dissolution 

course to allow the establishment of a relation between the presence of particles and 

spectral features observed when the probe is monitoring inside the vessel.  

 

The following items summarise some of the work that is still essential to consolidate the 

knowledge initiated with this thesis: 

 applicability range consolidation: develop the method from experimentally designed 

tablets with different designed variables; the goal is the identification of CQA and to 

identify the technique applicability range; 

 test the methodology for the same API but with tablets made of different excipients; 

identifying the effect of different excipients on this methodology is absolutely critical; 

 consolidate the methodology using an extensive number of samples: designed tablets 

and tablets from different lots of the same manufacturer and different manufacturers; 

 verify the impact of the probe configuration on the quality of monitoring results (e.g., 

optical pathlength, probe configuration, placement inside the vessel); 

 incorporate validation parameters such as linearity, range, accuracy precision and 

robustness into this strategy; perform tasks related with analytical method development 

and validation requirements in accordance with the ICH guidelines;  

 validate the methodology with other solid dosage forms working on a common framework 

for dissolution testing monitoring with NIRS; and 
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 identify the possibility to use the same methodology using dispersive instrumentation 

which is less expensive and therefore more prone to be implemented in practice by 

pharmaceutical companies. 
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