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Abstract

Cardiac auscultation has lost some emphasis in the cardiology practice in recent years.

This is mainly due to the widespread availability of more elaborate diagnostic methods

and the lack of auscultation training programmes. Auscultation, however, if done

properly, remains a valuable medical procedure that allows the clinicians to make a

quick diagnosis, sometimes avoiding additional and more expensive exams. The next

step in the evolution of cardiac auscultation is the creation of a computer assisted

cardiac assessment system that allows the detection of heart disease. Although there

is a large amount of work done already in this area, there is still the need for a more

reliable and accurate method.

To classify the signal extracted through a digital stethoscope, one must first divide the

signal into four segments of relevance, the first heart sound(S1), the systolic period,

the second heart(S2) and the diastolic period. This process is called heart sound

segmentation. We can divide this process into four stages: pre-processing, where we

remove the remove the signal’s noisy components; representation, where the signal

is transformed in a way that accentuates S1/S2 while attenuating systole/diastole

segments; segmentation, where we delimit the heart sounds; and classification, where

we distinguish S1 from S2. The segmentation stage can be further divided into two

phases: peak and boundary detection. This thesis is structured accordingly.

We start by presenting an exploratory analysis of both datasets in terms of their

spectral content. Then, we introduce the two most used types of pre-processing:

filtering, where one removes the signal components that are associated with noise,

and downsampling, where one shortens the length of a signal while keeping its general

morphology. In the subsequent stages, we did not use any type of filtering in this

stage as we wanted to show that it is possible to design a heart sound segmentation

method that did not we this type of preprocessing, while achieving good results. The

downsampling operation was only applied to the lengthier dataset, as its original size

made the tests in the posterior stages, too computationally heavy.
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The first contribution of this thesis starts by introducing, comparing and ranking

different types of representations, in terms of their capabilities to detect and classify

heart sounds. We found that the best representation for detection was the Shannon

energy envelope, while the best representation for classification was the continuous

wavelet transform.

The main contribution of this work is a novel peak detection procedure that achieves

better results than the winner solution of the Classifying Heart Sounds Pascal Chal-

lenge. This challenge featured two datasets. Every test performed in this work used

both datasets to assess the methods robustness facing clean and noisy signals. The

novel procedure uses the inflection points of stationary wavelet transform coefficients

to perform an initial segmentation followed by a hierarchical clustering procedure

that picks the relevant segments. We varied the wavelet, its order, the scale and the

type of coefficients to achieve maximum performance. The best performing parameter

combinations achieved a total error of 56732 and 706535, while the previous best

performing approaches of the challenge achieved 72242 and 1243640, for both datasets.

We also introduce two novel boundary detection methods: the longest increasing /

decreasing subsequence and the difference between variations. The first is based on

the assumption that the subsequence, of a given segment, with the longest contiguous

increase is the beginning of an heart sound and the longest contiguous decrease is

the end of an heart sound. The second proposed method maximizes the difference

between a segment’s variation and its neighbour’s. We also obtained good results,

out-performing known approaches.

In the classification stage, based on the introduced representations, we built features

that described each S1/S2 segment by looking exclusively to that segment’s infor-

mation (individual features), and by also looking to its adjacent systole and diastole

segments (neighbourhood features). Finally, we used the concatenation of both types

of features to achieve the maximum accuracy. We used these features to train a

machine learning algorithm, in order to predict an unseen dataset. We achieved similar

results as other modern classification approaches.

Keywords. Stationary Wavelet Transform, Heart Sound Segmentation, Heart Sound

Classification
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Resumo

A auscultação card́ıaca perdeu ênfase na prática de cardiologia nos últimos anos.

Isto é maioritariamente por causa da disponibilidade de métodos de diagnóstico mais

elaborados e pela sua ausência em programas de treino em hospitais e faculdades. No

entanto, se for propriamente feita, continua a ser um procedimento médico que permite

os profissionais da saúde fazer diagnósticos rápidos, evitando assim testes adicionais

mais caros. O próximo passo na evolução da auscultação card́ıaca é a criação de

um sistema de apoio à decisão cĺınica que permita a detecção de doenças card́ıacas.

Embora haja uma quantidade enorme de trabalho feito nesta área, ainda existe a

necessidade do desenvolvimento de métodos mais precisos e fiáveis.

Para classificar o sinal extráıdo através de um estetoscópio digital, devemos primeiro

dividir o sinal em quatro tipos de segmento: o primeiro som card́ıaco (S1), a śıstole,

o segundo som card́ıaco (S2) e a diástole. Este processo denomina-se segmentação de

som card́ıaco. Podemos dividir este processo em quatro fases: pré-processamento, na

qual removemos as componentes ruidosas do sinal; representação, onde transformamos

o sinal de forma a que acentue os segmentos com S1/S2, atenuando os segmentos com

śıstoles e diástoles; segmentação, onde delimitamos os sons card́ıacos; e classificação

onde distinguimos os segmentos S1 de S2. Podemos ainda dividir a fase de segmentação

em duas partes: detecção de picos e detecção de fronteiras. Esta tese está estruturada

da maneira conforme as fases previamente mencionadas.

Começamos por apresentar uma análise exploratória dos conjuntos usados ao longo

deste trabalho. Depois, introduzimos os dois métodos mais usados de pré-processamento:

filtragem, onde removemos as componentes do sinal que estão associadas a rúıdo, e dec-

imação, onde encurtamos o comprimento dos sinais, mantendo a sua morfologia geral.

Nas fases posteriores, não usamos qualquer tipo de filtragem, dado que mostramos

que é posśıvel obter bons resultados de segmentação não usando este tipo de pré-

processamento. A operação de decimação só foi aplicada ao conjunto de dados com

sinais mais longos, dado que o seu tamanho original tornava os testes realizados nas
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fases posteriores a esta, demasiado pesados computacionalmente.

A primeira contribuição desta tese começa por introduzir, comparar e ordenar tipos

diferentes de representação, em termos da sua capacidade para detectar e classificar

sons card́ıacos. Conclúımos dos nossos testes que a melhor representação para detecção

e classificação é o envelope de energia de Shannon e a transformada wavelet cont́ınua,

respectivamente.

A contribuição principal deste trabalho é um procedimento de detecção de picos que

obtém melhores resultados que a abordagem vencedora do concurso ”Classifying Heart

Sounds Pascal Challenge”. Todas comparaçoes e testes feitos neste trabalho usam

os dois conjuntos de dados apresentados neste concurso, para inferir a robustez dos

métodos face a sinais limpos e ruidosos. O novo procedimento usa os pontos de inflexão

da transformada wavelet estacionária seguido por um algoritmo clustering hierárquico

que escolhe os segmentos relevantes(que contêm S1 ou S2). Variamos as wavelets,

as ordens, as escalas e o tipo de coeficientes para atingir a máxima performance. A

melhor combinação de parâmetros em obteve erros totais de 56732 e 706535, enquanto

os melhores erros totais atingidos previamente no concurso foram de 72242 e 1243640,

para os dois conjuntos de dados.

Também apresentamos dois novos métodos de detecção de fronteiras: a sub-sequência

crescente/decrescente mais longa e a diferença entre variações. A primeira é baseada na

suposição que a sub-sequência, de um dado segmento, de maior crescimento cont́ıguo

marca o ińıcio de um segmento card́ıaco e que o maior decrescimento marca o seu fim.

O segundo método apresentado procura comprimentos de segmento que maximize a

diferença entre a sua variabilidade e a dos segmentos vizinhos. Obtivemos também

bons resultados, ultrapassando outros métodos modernos.

Na fase de classificação, baseámo-nos nas representação introduzidas anteriormente,

e contrúımos três tipos de descriptores: descriptores que representavam a informaçao

exclusivamente de um segmento (descriptores individuais), descriptores que represen-

tavam informaçao de um dado segmento e dos segmentos adjacentes, e concatenação

dos dois tipos de descriptores de forma a atingir melhor precisão. Usámos estes

descriptores para treinar algoritmos de aprendizagem máquina para preverem a clas-

sificação de novos segmentos. Obtivemos resultados semelhantes a outro métodos de

classificação modernos.

Palavras-Chave. Transformada Wavelet Estacionária, Segmentação de Som Card́ıaco,

Classificação de Som Card́ıaco
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Chapter 1

Introduction

Heart auscultation is a medical procedure with almost 200 years. In 1628, it was

William Harvey who first concluded that the main function of the heart was to pump

blood through the arteries to the body and that the pulse that created the flow, could

be heard by applying their ear directly to the chest[HS02]. It was only in 1816 that

Laennec, stated that as uncomfortable for the doctor as it was for the patient, disgust

in itself making it impracticable in hospitals, It was hardly suitable where most women

were concerned and, with some the very size of their breasts was a physical obstacle

to the employment of this method.[HS02]. Laennec faced with a large sized woman

with some symptoms of a diseased heart, rolled a piece of paper into a cylinder shape

and had the impression that he could hear the heart sounds in a ”manner much more

clear and distinct than I had ever been able to do by the immediate application of the

ear”[HS02] and thus invented the mediate auscultation through an instrument called

the stethoscope (Greek: stethos=chest, skopein=to view or to see). Over the years,

various works showed that some less frequent sounds like some types of murmurs were

correlated with heart disease.

We now live in the digital era, and despite having much more sophisticated and reliable

methods like the ultrasonic imaging and Doppler techniques, cardiac auscultation

is still taught and used in modern cardiology, as it remains a valuable diagnostic

tool[Tav06]. The common stethoscope, however, lacks some useful features like record-

ing, and playing back sounds. It also cannot visual display or transmit the heart sounds

to multiple clinicians simultaneously. These limitations have been resolved by the use

of Electronic Digital Stethoscopes such as the Digiscope Prototype[Coi10] and many

others, which have proved to be of great use due to its non-invasiveness and to its low

cost, whether it be for analysis or for teaching young cardiologists[Tav06].
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CHAPTER 1. INTRODUCTION 16

The next step in the evolution of cardiac auscultation is to create a computer assisted

cardiac evaluation system that allows the detection of heart disease. Although there

is a huge amount of work done already in this area, there is still the need for a more

reliable method. To analyse the signal extracted through a digital stethoscope, one

must first divide the signal into four segments of relevance, the first heart sound(S1),

the systole period, the second heart sound(S2) and the diastole period. In some heart

disease scenarios, there are some extra sounds like the S3 and S4. The aim of this work

will be to divide an normal heart sound signal into four different types of segment.

To give a clear explanation about these four types of segment, it is provided a brief

description of the normal heart and how it produces the two main sounds: the S1 and

the S2.

The heart pumps blood through the blood vessels to every part of the human body

renewing its oxygen content. It has four chambers: the right and left atriums and

the right and left ventricles. De-oxygenated blood from the superior and inferior vena

cavae enters the heart through the right atrium which is pumped through the tricuspid

valve into the right ventricle and then to the lungs where carbon dioxide is exchanged

for oxygen. The left atrium receives the oxygenated blood from the lungs through

the left and right pulmonary veins. The blood is then pumped into the left ventricle

through the mitral valve and is sent out to the body by the aorta[SAH94].

Figure 1.1: The ”Lub” or S1 is caused by the closure of the mitral and tricuspid valves

and marks the beginning of the systolic period. The ”Dub” or S2 is caused by the

closure of the aortic and pulmonary valves and it marks the beginning of the diastolic

period. Adapted from 1
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As one can see in Fig.1.1 , the ”Lub” or S1 is caused by the closure of the mitral and

tricuspid valves and marks the beginning of the systolic period, i.e. the time in the

cardiac cycle when blood is ejected from the ventricles into the great vessels. As the

valves close within 100ms from each other it is heard as a single sound. The ”Dub”

or S2 is caused by the closure of the aortic and pulmonary valves and it marks the

beginning of the diastolic period, i.e. the time when the left and right ventricules are

being filled with blood. Both valves are normally heard as a single sound due to their

almost simultaneous closure.

The division of the heart sound signal into S1, systole, S2 and diastole is called Heart

Sound Segmentation. The most well known approach towards Heart Sound Segmen-

tation(HSS) was presented by H.Liang’s 1997 paper [LLH97]. This approach set the

standard approach for heart sound segmentation dividing the method in four parts,

pre-processing, representation, segmentation and classification of heart sounds. In the

pre-processing stage the signal goes through filtering and downsampling operations

in order to remove some artifacts through their abnormally high frequencies and by

smoothing the signal. In the representation stage, the signal is transformed in order

to maximize the difference between S1 and S2 from the systolic and diastolic periods.

In the segmentation phase, the peaks corresponding to S1 and S2 are found and

then procedure is done to detect the boundaries of the two heart sounds. In the

classification, one tries to distinguish the S1 from the S2.

1.1 Evolution of HSS approaches

In order to give the reader an overview of the evolution of the Heart Sound Segmen-

tation approaches, it is presented in chronological order, 3 known approaches towards

HSS, starting with Liang’s[LLH97]. After reducing some of the noise inherent to a

heart sound signal, Liang gave his most valuable contribution in the representation

stage. He proposed that a transformation to the signal called the Shannon Energy

Envelope which attenuated the low-intensity parts of the signal more than the high-

intensity parts and emphasized the medium intensity parts. This transformation due

to its ability to accentuate the S1 and S2 heart sounds became the main reason that

made this work, the most cited article in HSS. The segmentation and classification

stages on the other hand, relied on some obscure thresholds leaving a path for further

improvement.

1http://www.texasheartinstitute.org/images/ph listen normal-heart.jpg
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In 2006, Kumar’s paper [KCA+06], the segmentation and classification stages were

much clearer. The authors used a simple rule to segment the signal just by using the

zero-crossings of the normalized version of envelope of a transformation of the signal.

The classification is done by applying a non-supervised method that bases his decision

making on the fact that the duration of the diastole is longer then the systoles. This

last criterion however, is not always true. When the patients are children or have an

elevated heart rate the durations of the systolic and diastolic periods are sometimes

indistinguishable and can lead to a high error.

In 2013, Moukadem [MDHB13] proposed a novel method that detected the boundaries

of an heart sound by using the time frequency concentration information. In the

classification stage, it distinguished the S1 from the S2 heart sounds using not only

the durations of the systolic and diastolic period but also time frequency information

features. Although this type of approach uses time frequency information for both

segmentation and classification purposes, it relies on the same threshold based method

of Liang for peak detection making it to sensitive to noisier auscultations.

1.2 Datasets

(a) Digiscope Prototype. Adapted from 2 (b) An iPhone with the Istethoscope app.

Adapted from 3

Figure 1.2: Signal Extraction Tools

To compare and validate the known and novel methods, we used two public heart

sound datasets that were featured in an competition called the Classifying Heart

2http://digiscope.up.pt/images/articles imgs/new layout.png
3http://i.dailymail.co.uk/i/pix/2010/08/31/article-0-0AFB9BE9000005DC-123 468x286.jpg
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Sounds Pascal Challenge[BNCM11], the Digiscope and Istethoscope datasets. This

competition was divided in two parts. The first was to test the contestant’s algorithm

segmentation capabilities. The second was to test the algorithm accuracy to classify

an heart sound signal into one of four different labels, Normal,Murmur,Extra Heart

Sound and Artifact. For this work, it was only used the scores from the first part of

the challenge in both datasets, so that it could be tested the accuracy of the novel

method. Two datasets were used in order to assess the algorithm’s robustness facing

a clearer and a noisier heart sound signal. The clearer heart sound dataset was the

Digiscope dataset.

1.2.1 Digiscope

The Digiscope Project was a Portuguese funded project that aimed to develop a

digitally enhanced stethoscope that extracted clinical features from the phonocar-

diogram (PCG) and provided clinical auxiliary diagnostic tool regarding specific heart

pathologies. The data used in this study was collected in the Real Hospital Português

(Brazil), with the approval of the RHP Ethics Commitee, anonymized and shipped to

Portugal. It consists in 200 auscultations were made from children using a Littmann

Model 3100 electronic stethoscope with a sampling frequency of 4KHz. All of the

auscultations did not have any abnormal heart sounds. An expert pointed out the

correct positions of 120 auscultations, 90 of which had reference annotations available

to the contestants —training data—and 30 were used for the algorithm validation—test

data.

1.2.2 Istethoscope

The noisier one was the Istethoscope dataset. The iStethoscope is an iPhone app

that turns the iPhone into a digital stethoscope. It uses its microphone to record

ones heart sound. A person can send to an expert physician or to the University of

Minnesota Duluth to be collected and analysed for scientific purposes. This dataset is

overall much more noisy and has higher variability than the Digiscope dataset. The

variability may be connected to patient diversity. Since we do not have information on

who was auscultated, the heartbeats may present very different patterns depending on

whether is a child, a regular adult or a professional athlete. One source of noise is the

fact that the auscultation are not done by clinicians. Since the average person is not

trained to perform heart auscultations, the heart sounds will have high variability. The
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final noise factor is the lack of ambient control. The auscultation can be performed

wherever and the ambient noise if its mildly present, it will be heard through the

iPhone microphone. The dataset was extracted using iPhone versions 3G and 3GS

with a sampling frequency of 44100Hz. Once again, we did not have information

about the auscultated subjects. An expert pointed out the correct positions of 30

auscultations. 10 of these auscultations were used for the algorithm validation phase

and the rest for training. Both validation datasets had the annotations hidden from

the contestants in an Microsoft Excel file.

1.3 Aims and Contributions

The main contributions of this thesis are:

• Comparison of representations in terms of their capability to distinguish S1/S2

from systole/diastole and to distinguish S1 from S2.

• Propose a novel peak detection procedure

• Propose two novel boundary detection procedures

• Comparison between three types of classification features: Individual, Neigh-

bourhood, and concatenations of the previous two.

1.4 Thesis Structure

The rest of the content of this thesis is organized as follows: In Chapter 2, it is

presented some exploratory analysis of the two datasets and the differences between

different methods of pre-processing; in Chapter 3, it is shown a study about the use

and capabilities of different types of Representation; in Chapter 4, it is presented the

main contribution of this work, the Segmentation phase. It is introduced and its results

is compared with the other approaches used in the Classifying Heart Sounds Pascal

Challenge; in Chapter 5 it is presented a study that compares a supervised method

using different types of features vs. an unsupervised method that uses the only the

systole/diastole duration criteria to identify both S1 and S2 heart sounds; Finally, in

Chapter 6, an overview of the content is shown, along with some discussion.



Chapter 2

Pre-Processing

Before proceeding with the representation, segmentation and identification stages,

most approaches use pre-processing techniques like filtering and downsampling. In

this thesis, we did not use any type of filtering and we only downsampled the Istetho-

scope dataset, for complexity purposes. In this chapter, to perform an exploratory

analysis of the data, we present a spectral analysis of both Digiscope and Istethoscope

datasets. Although we did not use any type of filtering, we illustrate the effects of

filtering methods used in other HSS approaches. We also introduce downsampling and

argue about the Istethoscope’s high sampling frequency causing heavy time and space

complexity for the algorithms presented in posterior chapters.

To introduce spectral analysis, we present first a short introduction about Fourier

transform and how it can be used to obtain a signal’s spectral content.

2.1 Fourier Transform

X(ejω) =
∞∑
−∞

x[n]e−jωn (2.1)

The Fourier transform(eq.2.1) of a signal x[n], can be interpreted as a sequence of

weighted combinations of the complex exponential sequence ejωn, where ω is the real

normalized frequency variable [Mit10]. In this thesis, by Fourier Transform(FT) we

mean the Discrete-Time Fourier Transform(DTFT), as all digital signals have a finite

discrete time domain. The magnitude of the FT can be used to compute a signal’s

spectral content. In the Noise removal context, this is of great use since there are

spectral differences among the Systole, Diastole, S1 and S2 segments.

21
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2.2 Spectral Analysis

Spectral Analysis aims to estimate the distribution of the power over frequency of a

signal. In our particular problem, the spectral content is a mean to distinguish S1

from S2 heart sounds, as it was noted in [AT84]. We use the Periodogram (eq.2.2) as

the estimator of the spectral content of the signal, i.e. the Power Spectral Density.

φ̂p(ω) =
1

N

∣∣∣∣∣
N∑
n=1

x[n]e−jωn

∣∣∣∣∣
2

(2.2)

This method is a non-parametric one as it does not fit the signal to a well defined model

such as the parametric approaches , e.g. the Auto-Regressive(AR). All of the different

spectral estimation methods assume that the signal is stationary, i.e. the statistical

properties do not change in time. The fact that the parametric methods make a

stricter assumption about this property, led us to use the non-parametric approach.

There are more well developed methods that aim to improve the accuracy of this

estimator such as the Blackman-Tukey or the Welch methods[SM05]. However, Stoica

in [SM05], shows that those methods are more or less equivalent in their properties

and performance for large signal lengths.

Figure 2.1: Median of periodogram of S1,S2,Systole and Diastole segments. Top

Figure:Istethoscope. Bottom Figure:Digiscope.

To build this figure, we started by decomposing the Digiscope and Istethoscope into
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sets of S1, systolic, S2 and diastolic segments. Then, we computed the periodogram

for each segment of each type. Finally, to obtain an average spectral behaviour of all

the segments of one type, we computed the median of each frequency —represented in

Fig.2.1 by the x-axis —for all segments. All the median periodograms were normalized

by its maximum value as it is hard to interpret the meaning of the amplitudes in the

frequency domain. The periodograms had the same length, hence we represented

them in the same plot as one can see in Fig.2.1. Analysing Fig.2.1, we can see

that the Istethoscope segments lacks well defined spectral patterns, unlike Digiscope’s.

Focusing on the bottom figure(Digiscope), we see that the S2 has a spectral content

around 75Hz which is slightly higher than S1(50Hz), following the claims of P.J.

Arnott in [AT84]. The heart sound segments —S1,S2 —have higher frequencies than

the Systolic and Diastolic segments. This difference suggests that spectral content is

especially useful in a procedure where one differentiates heart sounds from the other

types of segments, a procedure also known as peak detection. The results that confirm

this argument are presented in Chapter 4. If we focus on the Istethoscope (Upper

part of Fig.2.1) spectral content, we see that the majority of the spectral content is

widely distributed around 150Hz. We can also see that the S2 spectral information

completely overlaps the S1’s. The difference between the spectral contents between

datasets suggests that it is related to the conditions in which the dataset was extracted.

Digiscope had a more controlled environment and the auscultations were performed

by clinicians. The iStethoscope, on the other hand, did not share any of the Digiscope

good conditions and the auscultations were made by non-experts.

2.3 Filtering

A digital filter is applied for attenuating the frequencies that not belong to the S1

or S2 heart sound frequency range. The most common filters are the convolution

ones. Convolution is a mathematical operation that takes 2 signals and outputs in

each points the area overlap between the input signals. In this section we analyse the

effects of filtering used in other heart sound segmentation approaches. In [CVMC13],

Castro applies a band pass filter with cut-off frequencies 25 and 900Hz; In [MDHB13],

it is applied an high pass filter with a cut frequency of 30Hz ; in [CHJH13] the author

uses a band pass filter with cut-off frequencies 50 and 200Hz. In [EMD12] the author

applies a low pass filter with a cut off frequency of 800Hz.

As we can see in Fig.2.2, all filters seem to have a more or less similar effect on a heart

sound signal, except the Butterworth bandpass filter with cut off frequencies 50 and
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Figure 2.2: Effects of different convolutional filtering methods applied to a S1 heart

sound.

200Hz, represented by the red line. Since in [CHJH13], the authors cut frequencies

that are present in both S1 and S2 as it was seen on the previous section, some

frequency information is lost and consequently the signal is deformed. This type of

hard filtering, although it cuts frequencies that are known to be associated with heart

sounds, achieves quite good results as it is shown in [CHJH13]. It is, however, a

dubious method as it alters the original heart sound frequencies.

In the sub-sequent stages, we chose not to use any filtering, as we wanted to show

that it is possible to achieve good heart sound segmentation results without this type

of pre-processing. The results of our approach can be seen on Chapter 4, where we

compare our method’s performance against the winning approach —where the authors

did use filtering —of the Classifying Heart Sounds Challenge.

2.4 Downsampling

Downsampling or decimation is the mathematical operation where one reduces the

number of samples from a signal. in order for the signal to represent the same

information with less samples, we keep every Mth sample of x[n] and we remove
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the in between M − 1 samples. A downsampling of factor M is described by eq.2.3

where x[n] is original signal and y[n] is the downsampled signal.

y[n] = x[nM ] (2.3)

The Istethoscope dataset had a sampling frequency of 44100Hz, i.e. a 10 second

Istethoscope signal has 441000 samples. Using such a high sampling frequency on

algorithms with high time and space complexities is unfeasible. Examples of com-

putationally heavy used approaches in this thesis are the Stationary Wavelet Trans-

form —that keeps 2NK coefficients in memory, where N is the length of the signal

and K is the used scale—and the Unweighted Pair Group Method with Arithmetic

Mean(UPGMA)—that has a time-complexity of O(n2). To be able to perform ex-

haustive tests in the subsequent stages, we downsampled the Istethoscope’s signals by

a factor of 20 (to 2205Hz). This operation allowed us to capture frequencies up to

1102.5Hz, thus not deforming the signal.

2.5 Discussion

The need for an alternative representation of the signals especially in the iStethoscope

dataset is pressing, given a distinction between S1,S2 and the diastole/systole is

currently unfeasible.

The analysis of the differences of the spectral content on the Digiscope and iStetho-

scope, gave us an idea of the challenges of segmenting a clean and noisy heart sound.

While in a clean dataset, represented by Digiscope, we can differentiate spectral

content of signal and noise and consequently detect S1 and S2 heart sounds more

successfully, in a noisy dataset, represented by Istethoscope, it asks for a more suitable

representation for detecting and distinguishing S1 from S2.

Filtering approaches are widely used in heart sound segmentation methods. In this

thesis, however, we present a heart sound segmentation method that achieves good

results without using any type of filtering. In the remaining chapters, we downsampled

the Istethoscope dataset to 2205Hz. This is due to the high length of the Istethoscope

original signals, leading to higher computational costs in subsequent stages. We left

the Digiscope dataset untouched, in terms of filtering and downsampling, since it has

a computationally acceptable sampling frequency of 4000Hz.

In the next chapter, we present different representation methods and compare their
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capabilities to distinguish S1 and S2 from the systole and diastole, and to distinguish

S1 from S2.



Chapter 3

Representation

To correctly segment the signal and identify the heart sounds, a suitable representation

of the signal is required. The representation should accentuate the difference between

the phenomena we wish to detect—S1 and S2 heart sounds—and the noise—systolic

and diastolic periods. The classification improvement is obtained by building features

that contain different types of information about S1 and S2, allowing a better distinc-

tion from one another. In this chapter we introduce by topics, some representations

that were used in other HSS approaches, highlighting its advantages and disadvantages.

After the introduction we present a study that compares the representations by their

ability to distinguish the different types of segments, i.e. S1, systole, S2 and diastole.

3.1 Envelopes

The envelope of a signal bounds the peaks of the signal, obtaining a low pass filtered

version. This is illustrated in Fig.3.1. The envelope originally appeared from the

need to decode low frequency content signals encoded in the amplitude high-frequency

radio waves, a process known as Amplitude Modulation(AM)[Got66]. In AM, one

transforms the original signal, which has low frequency content(audible frequencies),

into an high frequency version of the original signal .

m(t) = M cos(ωmt+ φm) (3.1)

c(t) = A sin(ωct+ φc) (3.2)

27
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Figure 3.1: A signal’s envelope. Adapted from 1

y(t) = [1 +m(t)] c(t) = A [1 +M cos(ωmt+ φ) sin(ωct))] (3.3)

This transformation is called Amplitude Modulation, which consists in multiplying

the modulating signal m(t) with amplitude M, frequency ωm
2π

and initial phase φm(3.1),

i.e. original signal, by the higher frequency signal, i.e. the carrier signal c(t) (3.2).

The product of the two is called the modulated signal y(t)(3.3). To demodulate the

signal, one can use an envelope which computes the low frequency content (the original

content) from the modulated signal.

In heart sound segmentation, the most known envelope is the Shannon Energy en-

velope. H.Liang in [LLH97], compared 4 different types of envelopes, the Shannon

Energy, the Shannon Entropy, the absolute value and the Signal’s energy, as we can

see in Fig.3.2. Liang states that the main advantage of the Shannon Energy is that it

emphasizes the medium intensities while attenuating more the low intensities. Such

properties are desirable in a heart sound signal since the S1s and S2s usually are of

mid-high intensity and the systole and diastole periods are low intensity, while noise

might be present in high intensity peaks.

In Fig.3.3, we can see the effect of each type of envelope presented in [LLH97] has

1http://upload.wikimedia.org/wikipedia/commons/thumb/d/d7/Analytic.svg/2000px-

Analytic.svg.png
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Figure 3.2: Comparison between different types of Envelopes

on a Digiscope and an Istethoscope signal. The Shannon Energy, as Liang stated,

does accentuate the mid intensities while attenuating the low ones. However, one

notices that while Shannon Energy does a better job by lowering the low intensities,

the Shannon Entropy does a better job by setting the mid and high intensities with the

approximately the same intensity. This will be particularly useful in the Segmentation

stage to differentiate the S1 and S2 segments from the systole and diastole segments.

The absolute value and signal energy are not considered to be good envelopes in the

heart sound segmentation scenario given that while they do transform the signal, they

keep the same relative intensities, consequently enhancing noise peaks.

3.2 Short Time Fourier Transform

In order to introduce the S-transform it is useful to first introduce the Short Time

Fourier Transform(STFT) since one can easily derive the S-transform from the STFT.

STFT {h(t)(τ, f)} = X(τ, f) =

∫ ∞
−∞

h(t)g(t− τ)e−jft (3.4)

The STFT is simply an multiple application of the Fourier Transform to a signal in

windows of the same size and shape. It produces a STFT matrix with 2 dimensions:
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Figure 3.3: Effect of different types of Envelopes on a Digiscope and an Istethoscope

Signal
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the translation τ and the frequency f . The window function g can have several

shapes. Known window shapes are: the Triangular(Bartlett), the Rectangular and the

Hamming window. The different types of windows serve as a M size coefficient vectors

that quantize the segments coefficients. The STFT has the particular application

of enabling one to see how the frequencies present in a signal evolve over time.

As all time-frequency representations however,it suffers from time or translation—τ

—and frequency —f—resolution trade-off. Wider windows lead to a higher frequency

resolution since they are able to capture both high and low frequencies in one window.

They also lead to a lower time resolution because we do not know where exactly in the

window were those frequencies. The narrower windows lead to a higher time resolution

but a lower frequency resolution.

3.3 S-Transform

To derive the S-transform from the STFT [Sto91], we must first force the window

function g to be a normalized Gaussian.

g(t) =
1

σ
√

2π
e−

t2

2σ2 (3.5)

If we constraint the value of σ to be proportional to the inverse of the frequency we

obtain the S-transform.

σ(f) =
1

|f |
(3.6)

S(τ, f) =

∫ ∞
−∞

h(t)
|f |√
2π
e−

(t−τ)f2
2 e−i2πftdt (3.7)

This transform solves the trade-off by attributing windows with higher frequencies,

lower widths and vice-versa.

In [MDHB13], the author uses the S-transform for two different purposes. First,

he applies the S-Transform to obtain the time-frequency information in the 0-100Hz

range. He then proceeds by computing the Shannon Energy Envelope of the resulting

S-matrix. This step will give higher values to the time samples that contain frequency

intensities between 40 and 80 Hz—the approximate frequency range of an S1 and S2.

σ(f) =
α

|f |p
(3.8)

After obtaining the final representation, he applies the same threshold based steps to

obtain the peaks that represent the S1 and S2 heart sounds. The author also modified
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the S-Transform in the following way: instead of using the frequency function (3.6),

he uses (3.8), where α and p are optimized parameters. These two parameters cor-

rectly tuned will give an optimized time and frequency resolution which consequently

will lead to a more reliable time frequency representation, although making it very

computationally expensive.

Figure 3.4: Effect of the S-Transform on a Digiscope and an Istethoscope Signal

Fig.3.4 illustrates the S-transform representation superimposed with the original sig-

nal. We can see that the S-Transform is indeed suitable for representing heart sound

signals. Picking the right frequency range, by using spectral analysis, or the literature,

we obtain in this case a good representation for both noisier and cleaner signal, even

though the iStethoscope signal needs further processing.

3.4 Wavelets

Wavelet Transforms aim to create a matrix of coefficients that will provide infor-

mation about a signals correlation with dilated,contracted and shifted versions of a

mother wavelet function[BGG97]. Unlike the Short Time Fourier Transform where
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the coefficients represent the correlation to complex sinusoids, the Wavelet Transform

coefficients represent correlation to a small basis function called the mother wavelet.

This mother wavelet is copied into scaled, shifted versions so that in the end, we end

up with a multi resolution decomposition of a signal. In Fig.3.5 we can see different

mother wavelet functions. The Wavelet Transform also has the property of assigning

wider windows to higher scaled versions of the mother wavelet and narrower windows

to lower scaled versions of the mother wavelet, the non-optimized STFT.

Figure 3.5: Examples of mother wavelet functions. Adapted from 2

In this section, we show three different types of Wavelet Transform, the Continuous

Wavelet Transform, the Discrete Wavelet Transform, and the Stationary Wavelet

Transform. They differ between themselves in the content and redundancy they have

between scales and translations.

2http://www.emeraldinsight.com/content images/fig/1340180208030.png
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3.4.1 Continuous Wavelet Transform

The Continuous Wavelet Transform(CWT) defined in 3.9 on a given scale computes

the similarity between a window of the signal with a given mother wavelet function

by the inner product. It produces a function of time n and scale s. Scaling a mother

wavelet function causes its frequency domain to shrink, as it is inversely proportional

to frequency. This is the property that allows the continuous wavelet transform to

have a good (although redundant) resolution in both time and frequency .

CWT (n, s) =
1√
|s|

n+M/2∑
i=n−M/2

x(i)ψ(
i− n
s

) (3.9)

Using a linear scaling function causes the frequency to have a non linear interval in

the frequency domain[ETG12]. This can be fixed applying eq.(3.10) to obtain a linear

frequency function.

f =
fcfs
s

(3.10)

The slight increase in both the shifting and the scaling of the mother wavelet function

in the continuous wavelet transform, causes it to be highly redundant in both. While

this property on a compression scenario is not desirable, it is useful in an event

segmentation/classification scenario.

In [ETG12], the authors test several mother wavelet functions to see which is more

suited to analyse a heart sound signal. The authors concluded that the Morlet wavelet

fitted best in a heart sound signal, since it minimized the error in both its frequency

domain(Fig.3.7), and its energy variability through time (Fig.3.6).

In Fig.3.6, we can see how the wavelet energy fits a Digiscope and an Istethoscope

signal. It shows that despite fitting well in the Digiscope signal’s energy, in an

Istethoscope signal that is not the case since it accentuates the sidelobes of an high

intensity peak present between samples 10000 and 12000. In Fig3.7, we can see

the signal’s frequency content calculated using a parametric approach. From this

figure we can conclude that the wavelet captures the signal’s frequencies. The type

of representation analysis done in [ETG12] however, is not suited in a heart sound

segmentation scenario.
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Figure 3.6: CWT Energy Adequacy in a Digiscope and an Istethoscope signal using

Morlet wavelet
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Figure 3.7: CWT Frequency Adequacy in a Digiscope and an Istethoscope signal using

Morlet wavelet

Figure 3.8: The Discrete Wavelet Transform. Adapted from 3
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3.4.2 Discrete Wavelet Transform

Perhaps the most widely used of the Wavelet Transforms, the Discrete Wavelet Trans-

form (DWT)[BGG97] provides a compact and non-redundant representation of signals.

It can be fully described by its low-pass filter g(n) and by the high-pass filter h(n). The

filters in each scale extract the low and high frequency content of a given signal. This is

especially suitable when the main frequency content of the signal lies within a specific

range. It is widely used in heart sound segmentation for denoising[HSI97], and as a

final representation using a specific scale[KCA+06]. This transform has the downside

of the downsampling perfomed in each scale. In a event detection scenario, this means

that there is not an one to one correspondence of the detail/approximation coefficients

with the original signal. In heart sound segmentation, the DWT is particularly hard to

use as the final representation of the signal. In a signal sampled at 4000Hz , one has to

pick the fourth scale approximation coefficients to obtain the heart sound approximate

frequency content[AT84] in the 0-120Hz range, thus decimating the original signal by

a factor of 16.

In Fig.3.9, we can see the approximation coefficients from scales 1 to 4 and the detail

coefficients in scale 4 using Daubechies wavelet of order 6. As expected, there is not

much difference between the original signal and the approximation coefficients from

scales 1 to 4, as the frequency range those scales feature, shown in Table.3.1, contain

the natural heart sound frequencies, which are in the 0-150Hz range[AT84]. The detail

coefficients, however, in the same scale show much less noise than the approximation

coefficients between heart sounds, making the S1/S2 detection easier as the two types

of information become more distinguishable which makes this representation of great

use for the subsequent stages, i.e. the segmentation and the classification. We can

also see the effects of the downsampling where in the original signal we have 4500

samples in the scale 4 we have 300 coefficients. So if we want to detect events using

the approximation/detail coefficients, we have to multiply those annotations by 2scale.

This type of approach deeply affects the time resolution of the annotations, as we can

see in Fig.3.9, making it undesirable for detailed event detection.

3.4.3 Stationary Wavelet Transform

3http://upload.wikimedia.org/wikipedia/commons/2/22/Wavelets - Filter Bank.png
4http://upload.wikimedia.org/wikipedia/commons/1/16/Wavelets - SWT Filter Bank.png
5http://upload.wikimedia.org/wikipedia/commons/6/6b/Wavelets - SWT Filters.png
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Figure 3.9: Approximation coefficients from scales 1 to 4 and Detail Coefficients in

scale 4 of a Digiscope signal using Daubechies wavelet of order 6

Scale Coefficient Type Frequencies

1 ca 0 to 846Hz

2 ca 0 to 476Hz

3 ca 0 to 239Hz

4 ca 0 to 120Hz

4 cd 66 to 133Hz

Table 3.1: Frequencies captured in each scale with a sampling frequency of 4000Hz,

using Daubechies wavelet of order 6
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(a) Stationary Wavelet Transform Diagram. Adapted from 4

(b) Filter upsampling. Adapted from
5

Figure 3.10: The Stationary Wavelet Transform

The Stationary Wavelet Transform centers itself around a simple idea. Unlike the

DWT, where in each scale, after convolving the filter with the approximation co-

efficients, one downsamples the resulting signal, in the SWT the filter response is

upsampled before the convolution. In practical terms, the DWT downsamples the

approximation coefficients while maintaining the length of the original filter, making

the relative length of the filter bigger. The SWT, on the other hand, upsamples the

filter while keeping the length of the original signal, making the relative length of the

filter bigger as well. It has the downside however, of being highly redundant having

2NK coefficients, where N is the length of the signal and K is the number of scales.

In spite of that, it is particularly suitable for event detection, which is the main goal

of this work. It maintains the same number of coefficients throughout all scales, thus

having the desired one on one correspondence with the original signal.

Fig.3.11 shows the approximation and detail coefficients from scales 5 to 6 after

applying the SWT using a Daubechies wavelet of order 10 to an heart sound signal

segment. In Table.3.2, we can see to which frequency range corresponds each scale

on both approximation and detail coefficients. This transform allows going further up

the scales as the coefficients have the same length as the original signal, which would
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Figure 3.11: SWT Detail and Approximation Coefficients from scales 5 to 6 using

Daubechies wavelet of order 10
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Scale Coefficient Type Frequencies

5 ca 0 to 59Hz

5 cd 35 to 64Hz

6 ca 0 to 30Hz

6 cd 18 to 33Hz

Table 3.2: Frequencies in each scale with a sampling frequency of 4000Hz, using a

Daubechies wavelet of order 10

be unfeasible using the DWT. Going further up the scales allows one to narrow down

the frequency range, obtaining more detailed information about the signal.

3.5 Hilbert Huang Transform

Most signal analysis methods have a fixed basis function and work best when applied

to stationary signals, i.e. signals that their statistical properties do not change over

time. Even some of the recent methods, although designed to handle non station-

ary data, like the Wavelet Transform, also have a fixed basis function, which does

not allow to account for morphological deformations of patterns through time. A

representation which, instead of having a fixed basis function, has an adaptive basis

function is therefore needed. The Hilbert Huang Transform[HS05] has this desirable

property. It consist in two parts: Empirical Mode Decomposition(EMD) and Hilbert

Spectral Analysis(HSA). The combination of these two methods allows an adaptive

representation of a signal.

3.5.1 Empirical Mode Decomposition

Empirical Mode Decomposition(EMD), is based on the assumption that any signal

consists of intrinsic modes of simple oscillations much like the rationale of a Fourier Se-

ries. The mathematical meaning of simple oscillation is that, each oscillation denoted

by Huang as an Intrinsic Mode Function(IMF) and its first derivative has the same

number of null points, and that the oscillation will be symmetric to the local mean.

These assumptions were built based on the need to apply the Hilbert Transform, which

will be introduced later on, to obtain the Hilbert spectrum, i.e. the instantaneous

frequencies over time. The IMF, unlike an harmonic function, does not have the

constraint of having constant amplitude and frequency. One can obtain the set of
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IMFs with the following procedure:

1. identify all extrema of x(t)

2. interpolate between minima (resp. maxima),ending up with some envelope

emin(t) (resp. emax(t))

3. compute the mean m(t) = (emin(t) + emax(t))/2

4. extract the detail d(t) = x(t)m(t)

5. if mid-stoppage criterion is not met: x(t) = d(t) Go to step 1

6. if final-stoppage criterion is not met: r(t) = x(t)− dfinal(t); x(t) = r(t)

The two most known mid-stoppage criteria are: to compute the normalized squared

error between consecutive d(t) and to test if this value is below a certain threshold.

This however does not guarantee that the IMF will follow the pre-defined assumptions.

The second mid-stoppage criterion is to define a number S, which will define the

number of consecutive times the number of zero crossing and extrema will stay the

same. If they do it stops. According to Huang[HSL+98], the range of S should be

between 4 and 8. The final stoppage criterion also has 2 options.: the first, is when

either cn or rn become smaller than a predefined threshold.; the second, is when the

residue rn becomes a monotonic function. The final residue represents the trend of

the data.

EMD, is used to decompose a signal into a set of intrinsic mode functions. These IMFs

are known to provide insight to the physical meaning of the data[HS05]. In Fig.3.12, we

can see the difference between the energy means of each type of segment throughout

the IMFs. Each line represents the difference between one type and the remaining

types of segment. Note that this image was done using one Digiscope illustrating

signal. Analysing Fig.3.12 shows that in IMF2 one can identify a segment as a S2

through the segments IMF energy. While in IMF17 we will be able to identify an S1

segment also through the segments IMF energy. This only applies to the particular

signal from which the IMF were extracted. Applying Empirical Mode Decomposition

to a set of signals, although one can modify the EMD algorithm to iterate until a

final number of signals, a given IMF would have different information for each signal.

If a given signal is noisier then the EMD is going to have to do more steps for it to

converge, resulting into a high number of IMFs. If the signal is cleaner it will result

in low number of IMFs. For this reason,the choice of which IMF or IMFs to use



CHAPTER 3. REPRESENTATION 43

Figure 3.12: Difference between the energy means of each type of segment, i.e. S1, S2,

systole and diastole, throughout the IMF’s

is a difficult one and usually is done by visual inspection [EMD12, CHJH13]. This

method of choosing a parameter of an algorithm does not have any either theoretical

or empirical value. So either an automatic method or a quantitative study is required.

3.5.2 Hilbert Transform

Practically, the Hilbert Transform is used to obtain the analytic representation of the

signal.

x̂(t) = H [x(t)] =
1

π

∫ ∞
−∞

x(τ)

t− τ
dτ (3.11)

xa(t) = x(t) + jx̂(t) (3.12)

The analytic representation described in eq.3.12 can be used in signal processing

for two different purposes. First, to obtain the signals envelope by computing its

magnitude. Second, one can obtain the instantaneous frequencies over time, by

differentiating the phase of the Hilbert Transform of a given signal. In Fig.3.13 we

can see one IMF superimpose with its instantaneous frequencies. This figure suggests

that the instantaneous frequencies of an IMF are too noisy to extract any physical

meaning. As it was said earlier, another possible use of the Hilbert transform is the
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Figure 3.13: IMF7 of a Digiscope signal superimposed with its instantaneous

frequencies

Hilbert envelope[ETG12]. This type of envelope is unadvisable to use as the magnitude

of the Hilbert transform of a signal attenuates the low-mid intensity while accentuating

every other intensities as we can see in Fig.3.14

3.6 Comparison Method

Since the segmentation and classification stages are highly dependent of the Repre-

sentation, it should be tested in three different types of scenarios. First,a good heart

sound representation should maximize the difference between S1 and S2 from the

systole and diastole segments; Second, it should also transform the original signal in

such a way that facilitates the boundary detection of S1 and S2; Finally it should

contain valuable information that will help one, build features in order to correctly

distinguish S1 from S2. Having the first and last guidelines in mind, in the following

study it was used the maximum as a descriptive feature of a segment. The maximum

was chosen given its use in a human manual annotation. Clinicians visually annotate

the beginning and end of an S1/S2 by observing the regularity of certain peaks. After

choosing the descriptive feature of a segment, a statistic that represented the mean

behaviour of a set of one or more types of segment was needed. The median was used

as a localization statistic given its robustness facing possible outliers. To complete
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Figure 3.14: Amplitude of Hilbert envelope of a normalized signal

the comparison method design, we needed an operator that compared sets of different

types of segments. For this purpose, we used the absolute difference between two

sets of segments. To assess the quality of a representation, using the guidelines as

our criteria, we design 2 features. The feature represented by eq.3.13, is the absolute

difference between the median of the maximums of all S1’s and S2’s from the median

of the maximums of all Systoles and Diastoles. With this method, we can determine

the difference between the relevant segments, i.e. S1 and S2, from the non-relevant

segments, which is going to be a vital step in the Segmentation stage. Eq.3.14, stands

for the absolute difference between the median of the maximums of all S1’s from the

S2’s. This equation allows us to distinguish S1 from S2 which is the main objective in

the classification stage. The features were extracted using the annotations from the

Digiscope and Istethoscope training datasets. All maximums were normalized to the

[0,1] range.

g1 = |median(max(wS1,S2(t)))−median(max(wSystole,Diastole(t)))| (3.13)

g2 = |median(max(wS1(t)))−median(max(wS2(t)))| (3.14)

3.7 Results

The first and last 4 rows of tables 3.3 and 3.4 show the best Digiscope and Istethoscope

results for g1 and g2 respectively. In these two tables are featured the best results using
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the following parameter range:

• SWT,DWT and CWT Daubechies Wavelet Order=[1,. . . ,40]

• DWT Scale=[1, . . . , 6]

• CWT Frequency(*)=[20, 40, . . . , 500]

• S-T Frequency(*)=[20, 40, . . . , 500]

• SWT Scale=[1, . . . , 12]

• SWT,DWT and CWT Coef=[ca, cd]

• EMD IMF=7

• HHT IMF=7

Figure 3.15: Frequency Interval of a Daubechies wavelet of scale 2 and orders 2 and

40.

To successfully analyse the implications of the SWT and DWT parameters, we com-

puted the periodogram of the convolved filters to extract the corresponding frequency
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Representation Order Scale Coef g1 g2

DWT 38 3 ca 0,63 0,014

SWT 1 3 ca 0,59 0,26

CWT 2 60(*) 0,57 0,22

S-T 380(*) 0,42 0,25

Original Signal 0,57 0,2875

Shannon Energy 0,70 0,18

Shannon Entropy 0,35 0,03

HHT 0,28 0,17

EMD 0,31 0,17

DWT 5 3 cd 0,32 0,42

SWT 15 3 cd 0,36 0,48

CWT 13 240(*) 0,40 0,50

S-T 500(*) 0,42 0,33

Table 3.3: Digiscope Representation Results. (*) : Frequency

interval. Fig.3.15 shows the periodograms of the detail filters of Daubechies wavelet

of order 2 and 40. The left and right vertical lines represent the points that mark 0.1

and 0.9 of the area of the periodogram. We used this information as the frequency

interval of a Daubechies wavelet of a given order,scale and coefficient type. As we can

verify in the Fig.3.15, the larger the order, the narrower the frequency interval.

Looking at Table. 3.3 , one can see the best results for g1 were by the DWT, SWT,

CWT, Original Signal and the Shannon Energy, in lines 1, 2, 3, 5 and 6. Examining

the parameters of the Wavelet transforms, we see that the best SWT and DWT

representation for g1 use the approximation coefficients in scale 3. The approxima-

tion coefficients of Daubechies wavelets of orders 1 and 38 at scale 3, captures an

approximate frequency ranges of 0-314Hz and 0-227Hz, respectively. These frequency

ranges cut some high frequency content related to noise usually found in the systole

and diastole segments, thus attenuating their amplitude. This results in a higher

difference between heart sounds and the diastolic and systolic periods. The SWT

order parameter can also be explained by the fact, that the Daubechies of order 1

is the same as the Haar wavelet which in each scale the low-pass filter acts as a

moving average obtaining a smoother signal which attenuates the systole and diastole

segments and consequently improving the Original Signal’s g1 by 0.02. In a DWT,

after 3 successive downsampling operations, the signal is smoothed, and the S1 and
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S2 segments are accentuated due to resemblance between the downsampled S1 and

S2 segments and the Daubechies low-pass filter at that scale/order. This explains

the success of the DWT representation featured in the first row. We can see that

the signal itself provides a good representation in S1 and S2 detection perspective,

which was expected since, even in a noisy environment the heart sound intensities

stand out. The Shannon energy is the best representation for heart sound detection

purposes given its power to attenuate low intensities and accentuate the middle ones.

The CWT best g1 scores has parameters of 2 and 60 for the Daubechies order and

the frequency, respectively. As it was shown in Chapter.2, the S1 and S2 have a

center frequency around 60Hz which fully explains the adequacy of this parameters.

The Daubechies wavelet order of the CWT cannot be fully explained due to the high

translation redundancy.

Focusing on the lower part of Table 3.3, we can see the best results for the g2 metric.

We can immediately see that the classification stage is harder than the segmentation

stage using this feature as comparative basis. Again the DWT and SWT have the

same coefficients, which in this case, are the detail coefficients of scale 3, but with

orders 5 and 15. The frequency ranges associated with the DWT and SWT are 131-

269Hz and 136-249Hz. This result suggests —as the S2 heart sound has a slightly

higher frequency content than the S1 —that the S1 is more attenuated than the S2

heart sound, accentuating the amplitude difference between the two. The CWT g2

results shown in the second last line, are coherent with SWT and DWT transforms,

and provide more detail to what is the frequency that best distinguishes both S1 and

S2, which is 240Hz.

Table.3.4 shows the Istethoscope’s representation results. The difference of the g1

score between the Istethoscope and Digiscope datasets is due to the noisy and non-

controlled auscultation conditions making the Istethoscope a harder signal to segment

using only the original signal. There are however, similarities with the Digiscope

results. One of them is the high order approximation coefficients in scale 3 for the

DWT representation. This result confirms the robustness of this particular coefficients

in the segmentation stage. In the CWT there is again a low order Daubechies wavelet

and a 60Hz frequency which provides the most efficient separation between S1 and S2

from the systole and diastole type segments. The Shannon energy also provides the

best results for the g1 performance metric.

Focusing on the lower part of the table, we can see the best results for g2. DWT

uses a frequency range between 0 and 115Hz, suggesting that the S2 heart sound is

attenutated, thus emphasizing S1. The CWT uses 20Hz, revealing a more detailed
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Representation Order Scale Coef g1 g2

DWT 23 3 ca 0,49 0,02

SWT 2 5 cd 0,48 0,25

CWT 4 60(*) 0,49 0,29

S-T 500(*) 0,40 0,27

Original Signal 0,40 0,34

Shannon Energy 0,61 0,31

Shannon Entropy 0,45 0,09

HHT 0,12 0,13

EMD 0,12 0,15

DWT 23 4 ca 0,11 0,41

SWT 2 5 ca 0,41 0,39

CWT 4 20(*) 0,31 0,41

S-T 380(*) 0,37 0,38

Table 3.4: Istethoscope Representation Results. (*) : Frequency

frequency that characterizes S1 heart sounds. The SWT, despite having slightly worse

results than the other 2, uses a narrower frequency range than the DWT, ranging from

0 to 69Hz. The frequency information that differentiates most effectively S1 from S2,

is the frequency range associated with the S1 heart sound [AT84].

3.8 Discussion

In this chapter, we started by introducing different types of representations high-

lighting its advantages and disadvantages towards HSS. Then, in order to make a

comparison between different types of segments, we chose the the segments maximum

as a representative feature of each segment.

Two representation guidelines were introduced: g1’s aim was to maximize the difference

between the heart sound’s (S1,S2) and the systole and diastole, and g2’s, to maximize

the difference between the S1 and S2 segments. The best representation in terms of

g1 was the Shannon Energy Envelope[LLH97]. This envelope method accentuates the

mid intensities while attenuating the low and high ones, making it extremely suitable

for heart sound detection. This result motivates our choice to use the Shannon Energy

in the peak detection procedure introduced in the next Chapter.
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The best representation in terms of g2 was the CWT. This transform accentuates the

high frequencies in the Digiscope dataset and the low frequencies in the Istethoscope

dataset. This practical effect is the same as what we want to achieve, using g2, is

the maximum difference between S1 and S2 heart sounds. This result will be later

confirmed in Chapter 5, where it is also the best individual metric that achieves higher

accuracy classifying a segment as S1 or S2.

In the next chapter, we introduce a novel peak detection procedure that achieved the

best segmentation result in the Classifying Heart Sounds Pascal Challenge[BNCM11].



Chapter 4

Segmentation

After representing the signal in a suitable form, the next step is to operate in this

signal to detect the segments that are going to be identified in the subsequent stage.

The Segmentation stage can be divided in two parts: Peak Detection and Boundary

Detection. In the Peak Detection phase, the peaks that correspond to the S1 and

S2 heart sounds are picked. In Boundary Detection phase, we then use these peaks

to create boundaries that mark the beginning and end of these heart sounds. This

chapter is divided accordingly.

4.1 Peak Detection

To get some insight about what is usually done in the Peak Detection phase, we provide

an overview on some of its approaches.

The peak detection performed by Liang in [LLH97], uses exclusively thresholds to

detect and discard peaks. This type of approach became a standard, that is even used

in modern approaches [MDHB13]. Liang’s approach is the following: First, a threshold

is set to identify peaks above that threshold as S1/S2 candidates—the value of the

threshold is omitted as it is a highly data-dependent parameter. This process creates

several peaks belonging to the same heart sound. Then, the author uses a low level

threshold—50ms—as to reject these extra peaks according to the following rule: if

two adjacent peaks are within 50ms, the largest peak is selected, if two adjacent peaks

exceed 50ms, the one that is more consistent with every second interval is picked.

Since some of the real S1s and S2s are below the threshold, a peak recovery procedure

is applied using a high level threshold. One uses the high level threshold to assume

51
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that if the length between two adjacent peaks is above that threshold, a peak was lost.

To recover that peak, Liang uses an iterated procedure that lowers the threshold until

a peak that is consistent with the intervals that were computed is found, or until an

iteration limit is reached.

In Castros paper [CVMC13], S1 and S2 heart sounds are picked if they are at least

150ms apart from each other and if their amplitude is above 30% of the median of the

envelopes amplitude.In [EMD12], the author proposes the threshold to be 98% of the

envelopes mean value. To reject extra peaks, and to recover missing peaks, the same

criteria as Liang is used. In [KCA+06], the authors fully segment the heart sound

signal by applying a threshold that is the average value of the envelope. In a nutshell,

all of the above mentioned approaches rely on single thresholds to determine what is

and what is not a S1/S2 candidate, and whether two peaks are too close/far apart

from each other, in order to pick one of them.

4.1.1 SWT Inflection Point Segmentation

The key behind the success of the novel approach introduced in this chapter is the

convolution operation performed by the SWT.

Fig.4.1 illustrates the convolution between two identical rectangular functions f and

g. The result of this operation is a triangle denoted by the black line. The triangle

represents the beginning and end of the similarity of two functions as one convolves

through the other. We can verify this statement in eq.4.1, as the convolution between

two functions f and g provides for each point the area overlap as g is translated

through f . This idea applied to heart sound segmentation is of great use since, if there

is a nearly similar mother wavelet function to the S1 and S2 heart sounds, one can

immediately get the desired segmentation. This is the main idea of the novel method

here introduced. We used SWT’s cascade of filters to implement this idea. Although

the signal is convolved with multiple low and/or high-pass filters, we can use the

convolution’s associative property to first convolve all the filters and then perform the

final convolution with the signal. Using a convolution of filters that resembles the S1

and S2 heart sounds, in a sufficiently large scale so that the filters are approximately

of the same size as the heart sounds, we obtained a series of concavities. Like the

resulting triangle in Fig.4.1, the beginning and end of the concavities should delimit

the corresponding heart sounds.

1http://upload.wikimedia.org/wikipedia/commons/6/6a/Convolution of box signal with itself2.gif
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Figure 4.1: Convolution operation illustration between rectangular functions f and g.

Adapted from 1
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(f ∗ g)[n] =
∞∑

m=−∞

f [m]g[n−m] (4.1)

Since we are not able to perfectly segment using this method, we can use it to extract

the S1 and S2 representation points, i.e. their main peaks. To perform this task, we

use Hierarchical Clustering.

4.1.2 Hierarchical Clustering

After computing the segments, we need to choose a representative feature that de-

scribes each segment. This feature should effectively allow a posterior classification

system, to label them as S1/S2 or Noise(Systole,Diastole).The maximum absolute

value of a segment was chosen as a descriptive feature of each segment. We use the

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) method [Mur84], to

build an hierarchical tree with the maximum of each segment. This feature resembles

the one used performed visually by the clinicians. The UPGMA method is an iterative

method that in each step builds one cluster from to sub-clusters which have the nearest

distance according to eq. (4.2). This type of cluster aggregation allows us to obtain

the S1’s and S2’s through the top cluster that has the highest median of maximums.

This scenario, however, is not always true. The ideal scenario would happen if S1 and

S2 heart sounds had the same intensity. This is not true as the intensities depend

mostly on where was the auscultation spot. So to obtain the next set of S1 and

S2 candidates, we pick the sub-cluster of the low intensity cluster with the highest

median of intensities which can be seen in Fig.4.3. Picking only two sub-clusters can

be explained by the fact that there are always two sets intensities regardless of where

the auscultation spot is. If the auscultation is done in a lower part of the heart that

will lead to higher S1 than S2 intensities. If it is done in a upper part of the heart,

the S2 intensities will be higher than the S1’s. So regardless of the auscultation spot

the heart sounds will generally have two distinct patterns: the S1 and S2.

1

|A| |B|
∑
xεA

∑
yεB

d(x, y) (4.2)

Occasional errors in this segmentation can occur with two segments reporting the same

S1 or S2. This results in redundant detections, that correspond to outliers in the time

intervals between detections. To overcome this problem, the median of the intervals

between consecutive peaks is computed and peaks producing intervals below half of

this median are rejected, by selecting the highest of the two.
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The proposed method comprises two procedures, which are a Peak Detection/Recovery

phase done with Hierarchical Clustering, and a Redundant Peak Removal step.

The procedure starts by computing the Shannon Energy Envelope of the original

signal, as it accentuates the heart sound segments while attenuating the low intensity

segments—systole and diastole. In the Peak detection, an initial segmentation is

performed with the inflection points of the wavelet approximation or detail coefficients.

The inflection points provide information about where the concavity changes. As

mentioned earlier, these changes represent the beginning and end of similarity between

the wavelets approximation/detail coefficients and the envelope of the signal. As one

can see in Fig.4.2, the inflection points of the detail coefficients (Db38cd) of Daubechies

wavelet system of order 38 at scale 10, correspond to the boundaries of many of

the S1 and S2 waves. However, due to noise and the end-effect of the convolution,

this correspondence is not true for all S1 and S2 heart sounds. Nevertheless, these

inflection points are able to separate segments in which exists one S1, one S2 or

none of those (systole or diastole intervals), which will facilitate peak detection.

Figure 4.2: SWT Detail Coefficients in scale 10 superimposed with the a Digiscope

Signal
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Figure 4.3: Dendrogram and the picked subclusters that represent the first and second

sets of candidates (on the top). Candidates overlapped with a sample heart sound

signal (two lower axis).
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4.1.3 Results

To assess the performance of the method, three different types of metrics were used:

Sensitivity and Positive Predictive Value (PPV), shown in eq.(4.3) and eq.(4.4), and

total error show in eq.(4.5 and eq(.4.6)[BNCM11]. These first two types of metrics

were computed in the training and the test set, respectively. The Sensitivity and PPV

were calculated using the manual annotation of each S1/S2 boundary constructed from

the provided reference marks in the training set. The criteria used to create the True

Positives(TP), False Positives(FP) and False Negatives(FN) was the following:

• TP= Number of segments with detected peaks

• FN=Number of annotations without detected peaks

• FP= Number of detected peaks - TP

For the training set, the computation of total error could not be performed, as no

information on how to deal with a missing segment[BNCM11] was available.

Sensitivity =
TP

TP + FN
(4.3)

PPV =
TP

TP + FP
(4.4)

For the test set, Sensitivity and PPV could not be obtained since the reference

annotations were hidden, so only the the Total Error was calculated. The total error

is defined in the following way:

δk =

Nk/2∑
i=1

(|RS1i − TS1i|) + (|RS2i − TS2i|)

Nk

(4.5)

δ =

j∑
i=1

δk (4.6)

where δk is the average distance of the k-th sound clip in the dataset and Nk is the

total number of S1 and S2 in the k-th sound clip. RS1i and RS2i indicates the real

location of S1 and S2 of the i-th heartbeat and TS1i and TS2i indicates the calculated

location of S1 and S2 of the i-th heartbeat. j is the total of sound clips in the dataset.

Finally, δ is the total error obtained after summing δk over all j sounds in the dataset.
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Wavelet Order Scale Coef

Bi-Orthogonal [1, 2, . . . , 12] [1, 2, . . . , 12] [ca, cd]

Coiflet [1, 2, . . . , 5] [1, 2, . . . , 12] [ca, cd]

Daubechies [1, 2, . . . , 40] [1, 2, . . . , 12] [ca, cd]

Reverse Bi-Orthogonal [1, 2, . . . , 12] [1, 2, . . . , 12] [ca, cd]

Symlet [1, 2, . . . , 40] [1, 2, . . . , 12] [ca, cd]

Table 4.1: SWT’s searched parameters. ca and cd stand for the approximation and

detail coefficients.

Wavelet Order Scale Coef Total Error Sensitivity PPV

Bi-Orthogonal 15 10 ca 74221 0,93 0,84

Coiflet 3 10 ca 78663 0,93 0,82

Daubechies 9 10 ca 56732 0,91 0,95

Reverse Bi-Orthogonal 8 10 cd 72922 0,94 0,94

Symlet 17 10 cd 59467 0,94 0,94

Table 4.2: Digiscope Representation Results

To tune the wavelet, its order, its scale and its coefficients(Coefs) as best as possible,

we performed an exhaustive search in all the wavelets that are currently available in

Matlab[MAT11]. Those and the other parameters are featured in Table.4.1.

As we tested only the procedure’s segmentation performance we marked every heart

sound signal first occurrence as a S1. We also marked the rest of the peaks as the

following natural order —S2, S1, S2, S1, etc. These results could all be improved with

a posterior identification procedure.

The Daubechies and Symlet wavelets obtained similar and better results than the

others. This is due to the high number of orders both wavelets have. While the

Coiflet has five, and the Bi-Orthogonal and Reverse Bi-Orthogonal, have 12 available

orders in Matlab, the Daubechies and the Symlet wavelets have 40. The slight changes

of wavelet’s orders, allows a better fit of low and high-pass filters with S1 and S2 heart

sounds, which results in a better initial segmentation. Table. 4.2 shows that scale 10

is the most suitable. Scale 10 allows the low and high-pass filters to be upsampled

enough to reach a scale where the convolution between them and the original signal

result in a signal with smooth waves. These waves represent the beginning and end of

the similarity with S1 and S2 heart sounds.
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Wavelet Order Scale Coef Total Error Sensitivity PPV

Bi-Orthogonal 3 8 ca 966197 0,90 0,57

Coiflet 4 3 cd 1272497 0,93 0,07

Daubechies 18 5 cd 1127123 0,95 0,22

Reverse Bi-Orthogonal 8 3 ca 1172971 0,92 0,13

Symlet 17 5 ca 1035008 0,91 0,31

Daubechies(*) 6 10 cd 706535 0,97 0,63

Table 4.3: Istethoscope Representation Results

Approach Total Error

Digiscope iStethoscope

Our Proposed Method 56732 706535

Stanford 76444 1243640

UCL 75569 3394378

ISEP 72242 3905581

Table 4.4: Challenge Results Comparison

Switching our focus to Table.4.3, we can see that the Bi-Orthogonal and the Daubechies

wavelet, in the last row, obtained the best results. The wavelet emphasized by an

asterisk was applied to the Shannon entropy envelope instead of the Shannon energy

envelope of the signal. This choice was made because the Istethoscope dataset had

some signals in which there were two error spikes, while the heart sound signals

had intensities around 1
20

of the intensities of those spikes. We suspect that this

auscultation was caused by the Istethoscope user that performed that auscultation,

hit the Iphone to begin and end the auscultation while placing the Istethoscope in

a wrong position making the heart sounds extremely hard to detect. The Shannon

Entropy was used to accentuate some low-mid intensities while attenuating the highest

ones. Focusing on the Positive Predictive value, we see that lower scales have a lower

PPV. This happens since the approximation/detail coefficients have higher variability

at lower scales, consequently resulting in more inflection points. Even with the best

approach the method still had 0.63, which is a relatively low PPV. This is due to the

Istethoscope’s inherent noise given the lack of a controlled environment.

Table.4.4 shows the results comparison between our proposed methods and the ap-

proaches used in the Classifying Heart Sounds Pascal Challenge. As one can see, our

methods out-performed all of the other approaches in both Digicope and Istethoscope
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datasets.

4.2 Boundary Detection

Although commonly overlooked by several Heart Sound Segmentation approaches,

the boundary detection phase is paramount. It creates the final boundaries of every

detected S1 and S2. These boundaries are used not only to build features that allow us

to distinguish S1 from S2 heart sounds, but also in further procedures, e.g. automatic

classification of heart disease procedure.

In [LMA49], the author mentions that the maximum duration of a S1 and S2 is 150ms.

As the delimitation of S1 and S2 heart sounds can only be done with the use of the

phonocardiogram and their maximum duration is a reasonably small quantity, some

small amount of error is expected and allowed. Liang’s procedure vaguely states that

the duration of those heart sounds is between 20ms and 120ms without mentioning

the procedure that leads to these values and how these values are used to segment the

heart sounds. An alternative approach in boundary detection is the use of thresholds

that automatically detect the S1/S2 boundaries. Moukadem, used this approach in

[MDHB13], which shows a study that provides the Mean Absolute Error between

the real S1 and S2 boundaries and different choices of threshold. It shows that the

dataset’s ideal threshold for S1 is 10% and the ideal threshold for S2 is 15% of the

maximum amplitude of the Shannon energy envelope. To choose a single threshold

that segments both S1 and S2 with near equal accuracy, the author picks 10% of the

maximum value of the envelope as the final threshold. This threshold detects the

S1/S2 boundaries. This type of boundary detection requires further processing given

the possible presence of murmurs and artifacts with an amplitude large enough to be

captured and consequently segmented by this threshold.

In this section, we present two novel boundary detection methods and compared with

a baseline threshold based approach[KCA+06] approach. The first approach(Eq.4.8) is

based on the difference between the variation of a main segment s(i) and its neighbours

s(i − 1) and s(i + 1). The aim of this approach is to vary the length of the main

segment—and consequently its neighbours—to maximize the difference between the

main segment’s and its neighbour’s standard deviations. This procedure was used on

the Shannon energy envelope of the signal, as it is the best representation in terms of

distinguishing S1/S2 from noise segments. The lengths of each segment varied between
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60 and 150ms [LMA49].

s(i) =

(
1

n− 1

n∑
i=1

(xi − x̄)2

) 1
2

(4.7)

V BS = s(i)− s(i+ 1)− s(i− 1) (4.8)

The second novel approach is based on the longest increasing/decreasing sub-sequence.

We apply a longest increasing and decreasing sub-sequence algorithm(LISS and LDSS)

in the Shannon Energy of the signal, to extract the beginning and end point, re-

spectively. The window length was 150ms. Fig.4.4 illustrates this method. The

rationale for this particular approach is that the Longest Increasing and Decreasing

Sub-Sequence in a window that contains a S1/S2, should obtain its beginning and end.

Figure 4.4: A boundary Detection perform by LISS and LDSS

The baseline approach is to detect the first and the last zero crossings in a window

length of 150ms from the Normalized Shannon Energy (SEnorm). The following

equation describes SEnorm :

SEnorm = SE− < SE > (4.9)

Where <> represents the average operator.
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Approach Annotation Error

Digiscope iStethoscope

a1 29,1±14,3 37,1± 13,4

a2 41,4± 10,8 67,1±15,2

a3 46,8± 15,2 83,2± 20,4

Table 4.5: Boundary Detection Results in miliseconds. Mean±Standard Devia-

tion. a1=Difference between Variations. a2=Longest In/Decreasing SubSequence.

a3=Threshold-based approach

The approaches were tested in the training set with the following error metric:

ErrorAnnotation = MAEleftBoundary +MAErightboundary (4.10)

In Table.4.5, we can see the boundary detection results for both Digiscope and Is-

tethoscope datasets. The success of the Difference between variations approach can

be explained by its iterative procedure and the metric used. A relative variation

between a segment and its neighbours provides a better mathematical description of

what is the most peaky subsequence of a given segment. The threshold based approach

had the worse result. This result was predictable because a threshold is a parameter

that can be tuned for a specific dataset, not for a wide range of datasets.

Despite achieving good results with the Difference between Variations approach, these

boundaries must not be used for the Identification stage. Apart from the pre-processing

stage, the success of every other stage of Heart Sound Segmentation, depends on the

success of previous stages. So, every extra stage-dependency in the algorithm is ill-

advised. Our suggestion is to use the maximum known duration of an S1 and a S2

(150ms) to build good classification features that allow us to distinguish an S1 from an

S2. The procedures presented here should be used for the computation of a segment’s

duration, which is a feature of paramount importance, as we show in the next chapter.

4.3 Discussion

We start out this chapter by introducing the novel method. It uses first the Shannon

Energy envelope to maximize the difference between S1/S2 heart sounds and the

systole/diastole, as stated in the previous chapter. Then, we take advantage of the

convolution process performed by the SWT to perform an initial segmentation by
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using the inflection points of its coefficients. As this procedure produces an imperfect

segmentation, we use hierarchical clustering to automatically choose the segments that

contain S1’s or S2’s. In some cases, hierarchical clustering picks consecutive segments

that represent the same peak. To overcome this problem, we use half of the median

of the intervals between peaks to discard peaks that are below this threshold.

To achieve the minimum total error, we varied the wavelet types, orders, scales and

coefficients types (approximation/detail). The best Digiscope parameter combination

was the approximation coefficient of Daubechies 9 at scale 10. To achieve a minimum

result of the Istethoscope dataset, we modified the novel procedure to use the Shannon

Entropy instead of the Shannon Energy envelope. As the Shannon Entropy accentuates

more the low intensities than the Shannon energy, this allowed us to detect some very

low peaks that were, in fact, heart sounds. As we wanted to achieve the best possible

total error in the test set we searched these parameters directly on the test-set for both

the Digiscope and Istethoscope datasets. Although we did not search the training set

we found that the best performing parameters—in terms of total error—in the test

set matched the best parameters in the training set using the available performance

metrics—sensitivity and ppv.

In the boundary detection section, we introduced two novel methods: the Longest

Increasing/Decreasing Subsequence(LISS/LDSS) and the difference between varia-

tions. The LISS/LDSS is based on the assumption that within a segment the longest

increase is the beginning of the heart sound and the longest decrease is the end. The

Difference between Variations searches between the known lower and upper limits

of a S1/S2 duration(60ms and 150ms), and maximizes the difference between the

standard deviation of the main segment and its neighbours. These two novel boundary

detection methods were compared against a threshold-based method. The Difference

between Variations out-performed the other two methods achieving results comparable

to Moukadem’s approach[MDHB13]. These results are questionable as the boundary

detection ground truth was annotated by the author. The ground truth was built by

the author using the original annotations provided in the Classifying Heart Sounds

Pascal Challenge, thus even though there may be some small translation errors, there

is no major errors, i.e. absent or duplicate annotations.

In the next chapter, we focus on the classification stage. We will use the representations

that were introduced and compared in the previous chapter to build representative

features that allow us to distinguish S1 from S2 heart sounds.
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Classification

In the Classification stage, after obtaining the unlabelled segments, one classifies each

segment as S1, S2, Systole or Diastole. Given the natural order of these events, we

can reduce the problem of classifying systole and diastole, consequently classifying the

adjacent segments as S1 or S2. This approach is mostly used as the duration of a

systole/diastole is usually the key feature that allows one to distinguish S1/S2.

The usual way of classification is to apply machine learning techniques. Machine

learning is a branch of artificial intelligence where its main focus is on the design

of systems that can learn from data. We can successfully divide machine learning

algorithms by the type of learning it uses. Two of these types are supervised and

unsupervised learning. While the supervised approach requires the correct labelling ,

the unsupervised approach does not require the correct labelling of instances. In this

scenario one usually splits the dataset into two parts: the training set and the test set.

The supervised machine learning algorithm builds rules using the training instances

and predicts the labelling of the test instances. To perform classification using the

unsupervised approach the algorithm discovers the structure of the training set, and

applies some a-priori made rules to predict in the test set. As it was stated earlier,

the key feature is the duration of the systole/diastole. This is due to the clinical fact

that the diastolic duration is longer than the systolic one. This fact, however, does not

apply to patients with an elevated heart rate, so other methods that describe S1 and

S2 heart sounds well enough to distinguish one another, are required. Another possible

solution is evaluate each segment’s maximum amplitude. This approach achieves good

results if the auscultation spot is always the same, however this is not the case in both

Digiscope and Istethoscope datasets. Another possibility is to describe its frequency

64
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content.

5.1 State of the Art

In [AT84], the author mentions that S2 frequency content its slightly higher than S1,

as it was shown in Chapter 2 for the Digiscope dataset. However in noisy datasets

such as the Istethoscope dataset this fact is harder to assess. A. Castro in [CVMC13],

proposed an frequency based approach that improves the S1/S2 classification rate using

the detail coefficients at levels 3 and 4 of a Daubechies Wavelet of order 6. Moukadem

in [MDHB13], goes even further and uses a time frequency which obtained better

results. In this chapter, we present different features using a suppervised approach.

We classify each segment using the maximum absolute value of each segment and its

adjacent segments using the representation that were presented in Chapter 3.

5.2 k-Nearest Neighbours

To validate and compare the Classification methods here presented, we used the k-

Nearest Neighbours model[Dud76] (KNN), with k=3. We chose this model/parameter

also to compare with A.Moukadem’s approach [MDHB13] that used the same model

setting. The KNN is a straightforward classification method where the computation

of an instance distance matrix can be seen as the model training phase. To predict

in a classification scenario, given an unlabelled test instance, the method searches the

distance matrix for the top k most similar instances, and predicts the value of the

label through majority voting. This method is illustrated in Fig.5.1, where the red

star is the test instance that is going to be classified as a Class B instance, since that

is the majority of the cases with k = 3.

5.3 Experimental Methodology

Experiments were performed using K-Fold Cross Validation[EG83], with K=5. We

used this approach to compare with Moukadem’s results in [MDHB13] as he also

uses the same experimentation method. The K-Fold Cross Validation operates in the

1http://1.bp.blogspot.com/5lJFjAYvQ7Q/UIr7Qp1wvOI/AABAc/r KtPGaat9A/s1600/knnConcept.png
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Figure 5.1: K-Nearest Neighbours Algorithm. Adapted from 1

following way: first, the training set is divided into K sub-sets. Iteratively, using sub-

set 1 to K for posterior testing, the used model is trained in K−1 remaining sub-sets.

A performance metric is computed in each folded, and after finishing the procedure,

averaged to give an overall performance metric. The 5-Fold Cross Validation is

illustrated in Fig.5.2. The performance metrics used were: Accuracy, Sensitivity and

Specificity. The Accuracy and Specificity are described by equations.(5.1) and (5.2).

The sensitivity was already introduced in the previous chapter, but it is repeated in

5.3

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

Specificity =
TN

TN + FP
(5.2)

Sensitivity =
TP

TP + FN
(5.3)

2http://blog.neuroelectrics.com/Portals/181943/images/Kcrossfold-

validation machine learning EEG.png
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Figure 5.2: 5 fold cross validation. Adapted from 2

5.4 Results

In order to present a more complete study, we show the results in three stages.

First, only the maximum absolute value of the segment as a feature. Then, we

use the maximum absolute values of the segment and its neighbouring segments

(Systole,Diastole). Finally, we perform all the possible combinations of the individual

and neighbourhood features to obtain the final feature set. The searched parameters

were the same as the representation ones:

• SWT,DWT and CWT Wavelet=[1,. . . ,40]

• DWT Scale=[1, . . . , 6]

• CWT Frequency(*)=[20, 40, . . . , 500]

• S-T Frequency(*)=[20, 40, . . . , 500]

• SWT Scale=[1, . . . , 12]

• SWT,DWT and CWT Coef=[ca, cd]

• EMD IMF=7

• HHT IMF=7

Table 5.1 shows the Digiscope and Istethoscope results, using individual features.

Focusing on the upper part of table, we can see the the CWT obtained the best

results. This was expected as the CWT also obtained the best results in Table.3.3 and

Table.3.4 in Chapter 3. By capturing only frequencies(420Hz), the CWT distinguishes

better S1 from S2 due to the fact that the S2 heart sound has a slightly higher frequency
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Approach Order Scale Coef Accuracy Sensitivity Specificity

SWT 9 3 cd 0.66 0.68 0.65

CWT 23 420(*) 0.70 0.71 0.69

DWT 39 4 ca 0.67 0.67 0.68

HHT 0.52 0.57 0.47

S-T 480(*) 0.58 0.57 0.58

EMD 0.51 0.53 0.49

Original Signal 0.56 0.55 0.56

Segment Duration 0.55 0.58 0.51

Digiscope

SWT 1 1 ca 0.65 0.67 0.64

CWT 2 300(*) 0.72 0.72 0.72

DWT 1 6 ca 0.72 0.73 0.72

HHT 0.53 0.55 0.50

S-T 500(*) 0.66 0.62 0.71

EMD 0.56 0.58 0.54

Original Signal 0.54 0.54 0.54

Segment Duration 0.49 0.52 0.46

Istethoscope

Table 5.1: Individual Classification Feature results. (*) : Frequency. Above the

double-line are the Digiscope Results, and below, the Istethoscope’s.

content. Still, the accuracy obtained by only the maximum of the segment in the CWT

representation at high frequencies is too low. We require more information about a

segment in order to perform a better Classification of S1 and S2. The SWT and

DWT obtain similar accuracies to the CWT. They use, however, different information

about the frequency content of a segment. The SWT combination of parameters

that obtain the highest accuracy uses scale 3 detail coefficients. These coefficients

contain frequency information in the range of [134-256Hz]. Like the CWT, choosing

a high frequency range in the SWT, allows the representation to give higher values

to the coefficients that contain higher frequency information. This results in a higher

difference between the coefficients that contain lower and higher frequency content.

The DWT uses scale 4 approximation coefficients which feature a frequency range

of [0-114Hz]. Unlike the CWT and SWT, DWT attenuates high frequency content,

usually associated more with the S2 heart sounds, the practical result is the same.

Accentuating the lower frequency content results in the same frequency differentiation
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done in the CWT and SWT. The other and the original signal results, shown in

rows 4 to 7, had the worst results. The HHT and EMD’s parameters were not

searched, as the information in the EMD’s intrinsic mode functions (IMF), varies

with the signal’s length and noise. The original signal could provide good results in

the Classification if the auscultation spots was always the same. In this scenario one

heart sound would always have an higher intensity than the other, allowing a simple

Classification using exclusively the original signal. Hence, the low accuracies obtained

using the original signal, suggest that different auscultation points were used in the

auscultations performed. The segment’s(heart sound) duration is known as the key

feature that performs a better distinction between S1 and S2 heart sounds. The bad

results obtained by the Segment’s Duration are due to the fact that the S1 and S2

lengths have similar lengths. What differs most from one another is the following

segment’s length,i.e. the systolic/diastolic period.

On the lower part of table5.1, we can see the Istethoscope results. Again, the CWT

achieved the best overall results. Despite using a lower frequency, the same principle

applies in this case. The lower frequency suggests the absence of high frequencies in the

Istethoscope’s heart sound segments. The SWT, in this case, uses an unexpected scale.

Given that the Istethoscope signals were downsampled to have a sampling frequency

of 2205Hz, approximation coefficients in scale 1 contain frequency information in the

range of [0-516Hz], so the previous CWT interpretation is, in this case, no longer valid.

This scale suggests that applying a low pass filter with a cut-off frequency of 516Hz

smooths the Original Signal in a way that it attenuates the extremely high frequency

noise, allowing a more clear distinction of S1 and S2 heart sounds. The DWT, on the

other hand, uses completely different frequency information while achieving the same

results as the CWT. Approximation coefficients in the downsampled Istethoscope on

scale 6 represent the signal’s frequency content in the range of [0,28Hz]. This results

in an attenuation of the rest of the frequency content of the signal, which will capture

more S2’s than S1’s given their slightly higher frequency content. S-T achieved better

results in the Istethoscope. This result increase suggests that higher frequencies are

more present in this dataset than on the Digiscope. These higher frequencies allow a

better distinction of S1 from S2 heart sounds. All of the other representations achieved

similar results to the Digiscope’s.

Table.5.2 shows the Classification results using the maximum absolute value of the

heart sound and its neighbouring segments, Systole and Diastole. Using the segments

information and its neighbourhood increases the SWT result, in both Digiscope and

Istethoscope by 10%. This means that, despite the Systolic and Diastolic period
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Approach Order Scale Coef Accuracy Sensitivity Specificity

SWT 30 6 ca 0.75 0.77 0.73

CWT 3 340(*) 0.71 0.73 0.68

DWT 33 6 ca 0.70 0.70 0.71

HHT 0.51 0.54 0.48

S-T 460(*) 0.61 0.62 0.61

EMD 0.50 0.54 0.46

Original Signal 0.59 0.62 0.56

Segment Duration 0.81 0.83 0.80

Digiscope

SWT 38 4 ca 0.76 0.83 0.69

CWT 3 260(*) 0.73 0.75 0.70

DWT 33 4 ca 0.74 0.76 0.72

HHT 0.45 0.48 0.41

S-T 460(*) 0.68 0.71 0.64

EMD 0.51 0.53 0.50

Original Signal 0.58 0.60 0.57

Segment Duration 0.70 0.71 0.67

Istethoscope

Table 5.2: Neighbourhood Classification Feature results. (*) : Frequency.

having usually low maximums, they form different patterns for S1 and S2 heart sounds.

SWT uses scales 6 and 4 approximation coefficients which contain frequency content

in the range of [0-17Hz] and [0-63Hz] in the Digiscope and Istethoscope datasets,

respectively. The low frequency ranges allow us to distinguish more accurately the

Systolic from the Diastolic periods. The CWT did not have a significant result increase

using the neighbouring segments suggesting the absence of differentiating patterns in

the neighbouring segments. DWT achieved the best results, in both the Digiscope and

Istethoscope datasets, using the same scale and coefficients as the SWT. These results

show the robustness of the parameters using the heart sound’s neighbourhood. The

Segment duration had the highest result increase in the Digiscope dataset. This was

expected since the lengths of S1 and S2 are in many cases indistinguishable, while the

Systolic and Diastolic periods have different lengths—the Diastolic period is usually

longer. The Istethoscope Segment Duration results had almost -10% accuracy than

the Digiscope’s. The noise, which heavily present in this dataset, introduces some

randomness in the systolic and diastolic periods maximum absolute values resulting
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Type of Feature Approach Accuracy Sensitivity Specificity

Individual CWT+ST 0.86 0.88 0.84

Neighbourhood SWT+DWT+ST 0.83 0.86 0.80

Digiscope

Individual CWT+DWT+HHT+ST+EMD 0.90 0.91 0.89

Neighbourhood CWT+DWT+ST 0.92 0.90 0.94

Istethoscope

Table 5.3: Combination of the best Classification Features.

in the 10% decrease.

Table.5.3 shows the results of the best combination of Individual and Neighbourhood

features, in the terms of accuracy, for the Digiscope and Istethoscope datasets. Sur-

prisingly, the features contained information about the same frequency content, as

it is the case of SWT with DWT and CWT with S-T. It was also unexpected to

see the S-T be part of every top combination of features. This particular results

suggest that other Transforms, such as the Wavelet or the Hilbert-Huang, are not able

to capture some information that S-T can. While the other representations try to

solve time/frequency trade-off by attributing longer windows to lower frequencies and

vice-versa, the S-Transform uses the same window length for all frequencies. Since S-

Transform achieves the best Classification result using high frequencies, we argue that

its lack of time-frequency resolution results in aggregating multiple high frequencies

into a single coefficient. Consequently, creating higher valued coefficients that allow

a better distinction between S1 and S2 heart sounds. Comparing to Moukadem’s

results, we see that these combinations of features in the Digiscope dataset achieved

lower results. This can be explained by the fact that our approach was tested on

younger patients. Distinguishing heart sounds in children pose a much more complex

problem than in older patients. As the children’s heart rate is higher than other age

groups, the length of the Systolic and Diastolic periods become indistinguishable, and

consequently, its Time/Frequency content as well. Although we achieve good results in

the Istethoscope dataset, facing its instance/patient variability and the signal’s noise,

their validity is arguable. Since the Istethoscope dataset has only 20 auscultations,

and we perform 5-fold cross validation, this results in testing four instances in each

iteration. As we have more features than instances, the over-fitting inherent to this

particular model is even more present. For a more robust result in this dataset, more

auscultations would be needed.
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5.5 Discussion

In this chapter, we presented descriptive features based on the representations intro-

duced in chapter 3. We picked the maximum of a segments, in a given representa-

tion, as a representative feature. This feature resembles the visual process in which

a clinician annotates an heart sound signal. We started by comparing individual

features —features that described only the segment itself. Then, we concatenated

the neighbouring systole and diastole to a segment and used them to perform the

Classification. We called this type of features, neighbourhood features. Finally,

we varied the concatenation of the best individual and neighbourhood features to

maximize the accuracy of the Classification procedure.

The best performing individual feature was the CWT, confirming the claim we made

in chapter 3. The best performing neighbourhood feature was the Duration. This

was expected as the neighbourhood duration included the adjacent diastolic duration,

which is the primary feature used in a manual clinical annotation to distinguish S1

from S2. The combination of CWT and the S-T individual features achieved the

best result for the Digiscope dataset while the combination of CWT, DWT and S-

T neighbourhood features performed best in the Istethoscope dataset. Although we

achieve good results in the Istethoscope dataset, their validity is arguable since we

have more features than instances, over-fitting an already biased model to the data.

We end this thesis with the following chapter. It shows an overview of the presented

heart sound segmentation stages and highlights our main findings in each of them.



Chapter 6

Conclusion

Throughout this thesis, we showed different Heart Sound Segmentation approaches

divided by four main stages: pre-processing, representation, segmentation and classifi-

cation. In the pre-processing chapter, we started by doing an exploratory analysis

of the frequency content of both Digiscope and Istethoscope datasets. Then, we

illustrated the effects of different filters on a heart sound and the effects of down-

sampling. We chose not to apply any type of filtering as we focused more heavily

on the subsequent stages and to show that it is possible to perform a good heart

sound signal segmentation without the use of this kind of preprocessing. We only

downsampled the Istehoscope dataset as it was unfeasible to perform exhaustive tests

in the representation, segmentation and classification stages.

In the Representation stage we presented several representations and compared their

performance in terms of peak detection and classification capabilities. We found that

the Shannon Energy Envelope was the best representation for detection and CWT for

classification.

We proposed a Segmentation stage divided into two distinct phases: Peak and Bound-

ary Detection. In the Peak Detection phase we introduced a novel method that is

based on the Stationary Wavelet Transform inflection points. These points performed

an initial segmentation followed by a Hierarchical Clustering procedure that auto-

matically picked segments that contained S1 and S2 heart sounds. We varied the

Wavelet order, scale and coefficients parameters to minimize the total error. The best

performing combination in the Digiscope dataset was the approximation coefficients of

the Daubechies wavelet of order 9 at scale 10. This parameter combination achieved

a total error of 56732 while the winning approach of the Classifying Heart Sounds
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Figure 6.1: Overview of the presented work. The underlined text highlights the best

performing methods.



CHAPTER 6. CONCLUSION 75

Challenge achieved 72242. In the Istethoscope dataset as we noticed some very

different patterns in its auscultation caused by the misuse of used iPhone, we resorted

to the Shannon Entropy instead of the Shannon Energy Envelope. This change allowed

us to detect some missing segments, achieving a total error of 706535, while the

best performing approach in the challenge had 1243640. In the Boundary Detection

method, we introduced two novel methods: the Longest Increasing/Decreasing Sub-

Sequence and the Difference between Variations method. These two methods were

compared with a baseline threshold based approach. Both methods out-performed the

baseline approach, with the Difference between variation being the best of the two.

Finally in the classification stage, we presented 2 types of features: Individual and

Neighbourhood Features. We found that the Neighbourhood features performed better

than the individual ones. This was due to patterns available in adjacent segments.

Both type of features were combined within each other to find the combination of

features that maximized the Accuracy. We found that a combination of individual

features performed best in the Digiscope dataset and the Neighbourhood features in

the Istethoscope Dataset. We argued that the results in the Istethoscope dataset were

not fully reliable as there were shortage of data in this dataset.

The main contribution of this thesis was featured in an article published in the

conference ”Computing in Cardiodology”[MCRA13]. An improvement could be made

by finding a wavelet that detected peaks without the hierarchical clustering we used

in this work. Without a doubt, the greatest improvement would be to find a specific

wavelet that created the boundaries using the SWT’s inflection points. In the future we

hope to address these shortcomings, thus creating a better heart sound segmentation

approach.



Appendix A

Acronyms

HSS - Heart Sound Segmentation

PCG - Phonocardiogram

AM - Amplitude Modulation

SWT - Stationary Wavelet Transform

DWT - Discrete Wavelet Transform

CWT - Continuous Wavelet Transform

S-T - S-Transform

HHT - Hilbert Huang Transform

EMD - Empirical Mode Decomposition

IMF - Intrinsic Mode Function

KNN - K-Nearest Neighbours

UPGMA - Unweighted Pair Group Method with Arithmetic Mean

FT - Fourier Transform

DTFT - Discrete-Time Fourier Transform

AR - Auto-Regressive model
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