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ABSTRACT 

 

In several countries, there is growing use of piperazine derivatives with recreational 

purposes. The most commonly piperaze derivatives used as drugs of abuse are 1-

benzylpiperazine (BZP), 1-(3-trifluoromethylphenyl)piperazine (TFMPP), 1-(4-

methoxyphenyl)piperazine (MeOPP) and 1-(3,4-methylenedioxybenzyl)piperazine 

(MDBP). Little is known about the toxic effects of these substances. The aim of this study 

was to conduct a toxicological evaluation of these drugs using in vitro models. The in vitro 

models used were: immortalized H9c2 rat cardiomyoblasts, human immortalized SH-

SY5Y neuroblastoma cells, HepaRG and HepG2 human hepatoma cell lines and primary 

rat hepatocytes in monolayer and sandwich cultures. Cytotoxicity and toxicological 

parameters such as energy status, oxidative stress, mitochondrial function, and cell death 

pathways were evaluated. Microarray studies of gene expression were performed in 

primary hepatocytes in sandwich culture. The piperazine derivatives showed cytotoxicity 

in all evaluated models, and the TFMPP derivative was the most potent. The mitochondria 

seem to be an important target of toxicity. In H9c2 cells, the drugs increased intracellular 

Ca2+ levels, led to loss of mitochondrial membrane potential (∆ψm) and ATP depletion, 

which was related to the opening of the mitochondrial permeability transition pore (MPTP). 

Similarly, mitochondrial depolarization and ATP depletion were observed in primary 

hepatocytes. On the other hand, in SH-SY5Y cells an increase in intracellular Ca2+ levels 

and a mitochondrial hyperpolarization were observed. In addition, a decrease in total 

glutathione levels was observed in all the models. With the exception of primary rat 

hepatocytes, oxidative stress did not appear to have a major influence on the cytotoxicity 

produced by piperazine derivatives. In all models, we observed an activation of apoptotic 

cell death pathways. Using the microarray technique in sandwich cultured primary rat 

hepatocytes, an up-regulation of genes linked to cholesterol biosynthesis was observed, 

which could be associated with a phospholipidosis toxicity mechanism. Overall, the results 

point to potential cardio-, neuro- and hepatotoxicity caused by piperazine-derived designer 

drugs, raising concern about their abuse. 

Keywords: piperazine designer drugs, in vitro models, cytotoxicity, toxicogenomics. 
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RESUMO 

 

Em diversos países do mundo, é crescente o uso de derivados da piperazina com fins 

recreacionais. Dentre os compostos piperazínicos mais comumente utilizados como 

drogas de abuso, estão a 1-benzilpiperazina (BZP), 1-(3-trifluormetilfenil)piperazina 

(TFMPP), 1-(4-metoxifenil)piperazina (MeOPP) e 1-(3,4-metilenodioxibenzil)piperazina 

(MDBP). Pouco se sabe ainda sobre os efeitos tóxicos destas substâncias. O objetivo 

deste trabalho foi realizar a avaliação toxicológica destes compostos por meio de 

modelos in vitro. Para tal, foram utilizados como modelos in vitro os cardiomioblastos de 

rato imortalizados H9c2, a linha imortalizada de neuroblastoma humano SH-SY5Y, as 

linhas imortalizadas de hepatoma humano HepG2 e HepaRG, bem como hepatócitos 

primários de rato cultivados em monocamada e em sandwich. Nestes sistemas, foram 

traçadas curvas de citoxicidade e avaliados parâmetros energéticos, de stress oxidativo, 

de função mitocondrial e vias de morte celular. Além disso, foram realizados estudos de 

expressão genética, através de microarrays, nos hepatócitos primários em sandwich. As 

drogas de abuso derivadas da piperazina demonstraram citotoxicidade em todos os 

modelos avaliados, e o derivado TFMPP mostrou ser o mais potente. A mitocôndria 

pareceu ser um importante alvo de toxicidade. Nas células H9c2 foi observado aumento 

dos níveis de Ca2+ intracelular, perda do potencial de membrana mitocondrial (∆ψm) e 

depleção de ATP, o que estava relacionado a abertura do poro mitocondrial de 

permeabilidade transitória (MPTP). De modo semelhante, a despolarização mitocondrial e 

depleção de ATP também foram observados em hepatócitos primários. Por outro lado, 

em SH-SY5Y foi observado aumento dos níveis de Ca2+ intracelular e hiperpolarização da 

mitocôndria. Além disso, a diminuição dos níveis totais de glutationa foi observada em 

todos os modelos. Com exceção dos hepatócitos primários de rato, o stress oxidativo não 

pareceu ter grande influência na citotoxicidade produzida pelos derivados da piperazina. 

Em todos os modelos, foi verificada uma ativação de vias apoptóticas de morte celular. 

Utilizando a técnica de microarrays em hepatócitos primários de rato cultivados em 

sandwich, foi observada uma sobreexpressão de genes envolvidos na biossíntese do 

colesterol, o que poderá estar relacionado com um mecanismo de fosfolipidose. De um 

modo geral, os resultados apontam para uma potencial cardio, neuro e hepatotoxicidade 

causadas pelas designer drugs derivadas da piperazina, levantando séria preocupação 

acerca do seu abuso. 

Palavras-chave: designer drugs derivadas da piperazina, modelos in vitro, citotoxicidade, 

estudos toxicogenómicos. 
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OUTLINE OF THE THESIS  

 

The thesis is organized in 6 chapters.  

 

Chapter I is an introduction to contextualize the state of art of the key topics within the 

thesis. The introduction summarizes current knowledge on dynamics, kinetics, and 

analytical methodologies for the identification of piperazine designer drugs, including BZP, 

MDBP, mCPP, TFMPP, and MeOPP. 

 

Chapter II comprises the aims of the thesis and explains how these articulate with the 

subsequent experimental results presented. 

 

Chapter III contains the main studies performed, including materials, methods, results and 

discussion which are presented in the form of published manuscripts or under submission 

in peer-reviewed journals. For each study, information concerning the journal and co-

authors is provided. 

Chapters IV to VI include a general discussion and main conclusions of the thesis, 

highlighting the most relevant achievements and also the prospects for future work. 
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1.1. General aspects 

The abuse of drugs is widespread all over the world. Synthetic drugs are among 

the most commonly abused and they are consumed mainly at parties and night clubs by 

young people. The so-called designer drugs are a heterogeneous group of psychoactive 

substances obtained through the modification of the chemical structure of some natural 

products or drugs (Mustata et al., 2009). The most common designer drugs are derived 

from phenylethylamine, as 3,4-methylenedioxymethamphetamine (MDMA). As soon as 

these drugs become forbidden, new derivatives appear in the market to evade the law. In 

this context, piperazine derived drugs appeared on the market, mainly head shops and 

the internet (Nelson et al., 2014), sold as ecstasy pills or under the names of “Rapture”, 

“Frenzy”, “Bliss”, “Charge”, “Herbal ecstasy”, “A2”, “Legal X” and “Legal E”. Generally, 

they are consumed as capsules, tablets or pills but also in powder or liquid forms (Gee et 

al., 2005). They can also appear as mixture of piperazines (as BZP/TFMPP) or in 

combination with other drugs of abuse, such as MDMA and cocaine (Staack et al., 2007). 

 The first documented abuse of a piperazine-derived drug occurred with N-

benzylpiperazine (BZP), in the USA, in 1996 (Austin and Monasterio, 2004). In September 

2004, the new ecstasy-like substance 1-(3-chlorophenyl)piperazine (mCPP) was detected 

in street drugs in Sweden and in the Netherlands by the Drug Information and Monitoring 

System (DIMS). mCPP has been found in 26 member states of European Union (EU) and 

in Norway (Bossong et al., 2005; Kovaleva et al., 2008). It was estimated that in 2006, 

approximately 823,000 tablets of mCPP were seized in the EU (Kovaleva et al., 2008). In 

the Netherlands, the number of mCPP tablets seized alone or in combination with MDMA 

increased significantly between 2004 and 2007 (Bossong et al., 2009). A survey in the 

UK, found that piperazines are among the most common active drugs in tablets 

purchased from internet supplier sites (Davies et al., 2010). In New Zealand, the 

piperazine designer drugs known as party pills became a recent phenomenon (Gee et al., 

2005; Sheridan et al., 2007). Piperazine designer drugs have also been detected in Japan 

(Takahashi et al., 2009) and Brazil (Lanaro et al., 2010). Markets for these drugs have 

also developed in Bulgaria, Sweden (Helander et al., 2014), South Africa (Cohen and 

Butler, 2011), and Poland (Biliński et al., 2012). Nowadays, piperazine derived drugs 

including BZP and mCPP are under control in the EU, USA, New Zealand, Australia, and 

Japan (Gee and Fountain, 2007). In Brazil, besides BZP and mCPP, 1-(3-

trifluoromethylphenyl)piperazine (TFMPP) is also under control. In competitive sports, the 

use of these substances is forbidden by the World Anti-Doping Agency (WADA). 
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 Although in the corresponding drug scene the designer drugs have the reputation 

of being safe, several experimental, clinical, and epidemiological studies indicate risks to 

humans including a life-threatening serotonin syndrome, hepatotoxicity, neurotoxicity, 

psychopathology, and abuse potential (Maurer et al., 2004).   

 Chemically, the piperazinic compounds are derived from piperazine, a cyclic 

molecule containing two nitrogens in opposite positions and four carbons distributed 

between the two nitrogen atoms (figure 1). They were originally used as anti-helmintic 

agents in the 1950s, and presently remain in human and veterinary pharmacotherapy 

(Haroz and Greenberg, 2006). Piperazine designer drugs can be divided into two classes, 

the benzylpiperazines such as BZP and its methylenedioxy analogue 1-(3,4-

methylenedioxybenzyl)piperazine (MDBP), and the phenylpiperazines such as mCPP, 1-

(4-fluorophenyl)piperazine (pFPP), 1-(3-trifluoromethylphenyl)piperazine (TFMPP), and 1-

(4-methoxyphenyl)piperazine (MeOPP) (figure 1). 

BZP can be manufactured by reacting piperazine monohydrochloride with benzyl 

chloride. Other methods described include mixing of piperazine hexahydrate, piperazine 

dihydrochloride monohydrate and benzyl chloride, leading to the predominant product 1-

BZP dihydrocloride, and the mixture of equal molar amounts of piperazine hexahydrate 

and benzyl chloride (Yeap et al., 2010). 

 BZP was originally synthesized by researchers from Burroughs, Wellcome & Co as 

a de-worming agent for cattle. However, there is no published data about the use of BZP 

as a treatment for intestinal parasites. In the 1970s, BZP was investigated as an anti-

depressant agent. Clinical trials were performed but they were abandoned due to 

reinforcing effects similar to dexamphetamine. Despite this finding, in the 1980s, BZP-

derived compounds were once more tested as anti-depressant agents, namely Trelibet 

(EGYT-475) and befuraline (DIV-145). There is evidence that they reached phase I and II 

clinical trials and were found to act as a pro-drug, being metabolized to active BZP in 

humans (Kerr and Davis, 2011, Monteiro et al., 2013).  
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Figure 1. Chemical structure of some piperazine designer drugs. 

 

1.2. Dynamics 

 Piperazine designer stimulants were designed to mimic the effects of traditional 

illicit stimulants such as cocaine or amphetamines. Because of this, comparison of their 

neurochemical and behavioural effects provides a logical starting point for evaluating 

relative abuse potential. Not surprisingly, as with the traditional illicit stimulants, designer 

stimulants primarily exert their behavioural and psychological effects by dynamically 

modulating monoamine transmission in brain (Watterson et al., 2013). 
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1.2.1. In vitro studies 

Among the piperazinic compounds used as drugs of abuse, BZP is the most 

studied. It has been reported that the combination of BZP and TFMPP (2:1, in most 

documented cases) in pills mimics the effects of MDMA in humans (de Boer et al., 2001). 

Studies in synaptosomes demonstrated that BZP is a releaser of 1-methyl-4-

phenylpyridinium ion ([3H]MPP+) (Baumann et al., 2005), whereas TFMPP and mCPP 

were releasers of serotonin ([3H]5-HT), and inactive at releasing dopamine ([3H]DA) 

(Baumann et al., 2014). These releasing properties are mediated by substrate activity at 

norepinephrine (NETs), dopamine (DATs) and serotonin (SERTs) transporters, although 

the piperazine derivatives were less potent than MDMA (Baumann et al., 2005). Indeed, 

TFMPP binds to all three transporters, however, it showed a higher releasing effect at 

SERT (Severinsen et al., 2012). 

In synaptosomes, mCPP was found to induce the release of 5-HT through SERT 

and possess agonist properties at some 5-HT receptors, as 5-HT2C, and antagonist 

properties at others, such as 5-HT2B. An important difference between mCPP and MDMA 

was their effect on dopamine release in this in vitro model. mCPP exhibited only minimal 

effects, which could result in weak reinforcing effects as compared with other drugs such 

as MDMA. However, the abuse potential of mCPP was not assessed in vivo to confirm 

this findings. Furthermore, mCPP lacks neurotoxic potential. It is able to release 5-HT 

without causing a long-term depletion since it releases only the cytoplasmic 5-HT, while 

MDMA induces the release of both cytoplasmic and vesicular 5-HT (Baumann et al., 

2001). 

In rat brain synaptosomes, BZP strongly inhibited the re-uptake of DA and 

norepinephrine (NE), but had a small effect on 5-HT re-uptake, while mCPP and MeOPP 

strongly inhibited 5-HT re-uptake and also inhibited re-uptake of NE and DA. In the same 

synaptosomes preparations, BZP strongly stimulated DA and NE release, but hardly 

affected the release of 5-HT. On the other hand, mCPP strongly stimulated the release of 

5-HT, DA and NE, while MeOPP had relatively high monoamine-releasing activity (Nagai 

et al., 2007). 

mCPP significantly decreased the production of nitric oxide, tumor necrosis factor-

α (TNF-α) and interleukin-1β (IL-1β) in rat microglia and astrocyte cultures. Also, mCPP 

attenuated the expression of inducible nitric oxide synthase and pro-inflammatory 

cytokines such as IL-1β and TNF-α at mRNA levels. In addition, mCPP inhibited nuclear 

factor-κ B (NFκB) activation and phosphorylation of p38 mitogen-activated protein kinase 
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in lipopolysaccharide (LPS)-stimulated microglia cells, indicating molecular mechanisms 

for anti-inflammatory effects for mCPP (Hwang et al., 2008). 

BZP and TFMPP showed cell proliferative effects in human breast cancer MCF7-

BUS cells, which were antagonized with tamoxifen co-incubation (Min et al., 2012). Both 

drugs presented binding affinities to the α estrogen receptor (ER-α) in a concentration-

dependent trend. The treatment with 10 µM BZP or TFMPP increased the mRNA 

expressions of progesterone receptor and pS2 genes in MCF7-BUS cells.  

1.2.2. In vivo studies 

Surprisingly, in spite of the potential in vitro estrogenic effect of these piperazine 

derivatives, in vivo studies found limited evidence of hormonal activity. No significant 

differences were found in uterus weight in the uterotrophic assay with immature female 

rats. Also, treatments (1, 4, 10, 25 mg/kg BZP or TFMPP i.p. once a day for 3 days) had 

no effects on body weight, lung, liver, kidney, and adrenal to body weight ratios. (Min et 

al., 2012). 

In mice, BZP exhibited a clear stimulant-like pattern of behavioural effects (Yarosh 

et al., 2007). BZP lacked hallucinogen-like actions in the test of drug-elicited head twitch 

response (1, 3, 10 and 30 mg/kg i.p.), induced a dose-dependent locomotor stimulant 

effect in the open-field (30 and 100 mg/kg i.p.), and fully substituted for the stimulant-like 

S(+)-enantiomer of MDMA (1, 3, 10 and 30 mg/kg i.p.). TFMPP and mCPP dose-

dependently and fully substituted for S(+)-MDMA (1 and 3 mg/kg i.p.) but produced a 

decrease in locomotor activity (30 mg/kg TFMPP or 3 and 10 mg/kg mCPP). Interestingly, 

TFMPP was active in the head twitch assay (10 mg/kg i.p.), while BZP and mCPP (1, 3 

and 10 mg/kg i.p.) showed no activity, but TFMPP failed to substitute for the hallucinogen-

like R(-)-MDMA (1 and 3 mg/kg i.p.) (Yarosh et al., 2007). It is therefore believed that the 

BZP/TFMPP combination aggregates the stimulant effect of BZP, through a dopaminergic 

action, with the hallucinogenous effects of TFMPP that are mediated via serotonergic 

pathways (Rosenbaum et al., 2012). 

When intravenously administered to rats, the behavioural effects of BZP (3 mg/kg 

iv at time 0 and 10 mg/kg iv 60 min later) were confirmed through the increase of DA and 

5-HT in brain dialysates monitored through 120 min. However, the increase of DA release 

was more pronounced than the increase of 5-HT (Baumann et al., 2005). Similar to 

MDMA, BZP provoked hyperlocomotion and stereotypic behaviours. In the same study, 

TFMPP (3 mg/kg iv at time 0 and 10 mg/kg iv 60 min later) induced extracellular elevation 
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only in 5-HT levels, although it was 3-fold less potent than MDMA and caused no 

alterations in ambulation and stereotypy (Baumann et al., 2005). Based on these findings, 

the authors proposed that the TFMPP pharmacological mechanisms include: (i) full 

agonist activity at multiple 5-HT receptors, (ii) partial agonist or antagonist activity at 5-

HT2A receptors, and (iii) SERT-mediated 5-HT releasing activity. Also, the effects of the 

co-administration of BZP and TFMPP (1:1) were investigated in rats (3 mg/kg iv at time 0 

and 10 mg/kg iv 60 min later). The drug mixture produced increased release of DA and 5-

HT in nucleus accumbens, as well as increases in ambulation and stereotypy (Baumann 

et al., 2005). Comparing the effects of TFMPP and mCPP, both drugs increased 

extracellular 5-HT, however TFMPP was more potent. mCPP produced modest elevations 

in DA whereas TFMPP decreased DA levels at later time points (about 400 min) 

(Baumann et al., 2014). 

BZP, administered at a single dose of 5 or 20 mg/kg intraperitoneally to rats, 

induced a dose-dependent increase in time spent in the compartment associated with the 

drug in the place-preference test experiment. Pharmacological blockade of dopamine D1-

like receptors attenuated BZP-produced conditioned place-preference, indicating that 

some acute effects of BZP can be due to the effects on central dopaminergic substrates 

(Meririne et al., 2006). Exposure of Sprague-Dawley rats to BZP (20 and 40 mg/kg i.p.) 

and methamphetamine (1 and 2 mg/kg i.p.) produced dose-dependent hyperactivity and 

stereotypy (Brennan et al., 2007). Repeated exposure to the same drugs for 5 days 

produced sensitized behavioural responses at 20 mg/kg BZP that were more apparent in 

the hyperactivity measures. Also, cross-sensitization between BZP and 

methamphetamine was evident hyperactivity and stereotypy when administering a low 

dose of methamphetamine (0.5 mg/kg i.p.) in BZP pre-treated rats (20 mg/kg i.p. for 5 

days) after a 2 day-withdrawal period (Brennan et al., 2007).  

Adolescent male and female rats treated intraperitoneally with 10mg/kg/day BZP 

from postnatal days 45 to 55 presented higher levels of anxiety-like behavior, compared to 

controls, 17 days after the last administration. The observed effects were possibly due to 

the interference of BZP with the maturation of anxiety-associated forebrain mechanisms 

(Aitchison and Hughes, 2006).  

After in vivo microdialysis of rat nucleus accumbens locally infused with mCPP, 

significant elevations in dialysate 5-HT were observed at 1, 10 and 100μM doses, and 

this effect was clearly dose-dependent. Furthermore, mCPP produced a significant rise in 

DA at 10 and 100 M, but the magnitude of mCPP-evoked DA increase was always 
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smaller than the corresponding 5-HT increase. A significant 5-HT increase was also 

observed after intravenous injection of 1, 3 and 10μmol/kg mCPP (Baumann et al., 2001). 

An effective reinforcing activity of 0.03, 0.1 and 0.3 mg/kg/inj iv.) BZP in rhesus 

monkeys was reported (Fantegrossi et al., 2005). In the same study, TFMPP (0.01, 0.03, 

0.1, 0.3 and 1 mg/kg/inj iv.) failed to maintain self-administration behaviour. When 

evaluated in monkeys trained to discriminate amphetamine from saline, BZP (ED50 9.3 

mg/kg iv.) had full amphetamine-like effects, suggesting that it has an abuse liability of the 

amphetamine type. When combinations of BZP and TFMPP were tested, they seemed to 

be less effective reinforcers than BZP alone (Fantegrossi et al., 2005). In the same study, 

high BZP intake by self administration produced several signs of intoxication, including 

stereotyped visual scanning around the room, involuntary head movements, jaw 

chattering, bizarre body postures, hyperactivity, and “fly catching” (fixating on an empty 

point in space and attempting to quickly grasp the area). In the same model, no signs of 

intoxication were observed for TFMPP (Fantegrossi et al., 2005). 

Adverse effects reported in humans after the abuse of mCPP include anxiety, 

dizziness, hallucinations, nausea, warm and cold flushes, migraine and panic attacks. 

mCPP often induces severe hallucinations and nausea. Its subjective effects resemble 

those of MDMA, both positive as well as negative. The agonist properties of mCPP at 5-

HT2 receptors can explain its hallucinogenic features since other hallucinogenic 

substances such as lysergic acid diethylamide exert their effects through the activation of 

these receptors (Bossong et al., 2005, 2010). Indeed, mCPP is an agonist of 5-HT2C, 5-

HT1A, 5-HT1B and 5-HT1D receptor subtypes, showing an entactogen profile different from 

other hallucinogens that act as 5-HT2A agonists. Neuroendocrine properties, namely the 

release of hormones such as adrenocorticotropic hormone (ACTH), cortisol, and prolactin 

were noted. These effects are also mediated via 5-HT receptors (Feuchtl et al., 2004). 

The activation of 5-HT3 receptors may be involved in the mCPP-induced nausea (Bossong 

et al., 2005, 2010). 

 The pharmacological effects described for piperazine designer drugs are 

summarized in table 1. 
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Table 1. Summary of pharmacological effects of piperazine designer drugs. 

Drug Effects Reference 

BZP 

locomotor stimulant effect 
Yarosh et al., 2007 substitution for S(+)-MDMA  

no hallucinogen-like actions in head twitch assay 

increase in DA and 5-HT in brain dialysates 
Baumann et al., 2005 

hyperlocomotion and stereotypic behaviours 

reinforcing effects at place preference test in rats Meririne et al., 2006 

cross-sensitization with methamphetamine Brennan et al., 2007 

higher levels of anxiety-like behavior in adolescent rats Aitchison and Hughes, 2006

reinforcing effects in rhesus monkeys Fantegrossi et al., 2005 

TFMPP 

decrease in locomotor activity 
Yarosh et al., 2007 substitution for S(+)-MDMA  

hallucinogen-like actions in head twitch assay 

increase in extracellular 5-HT Baumann et al., 2005 

no self-administration behaviour in rhesus monkeys Fantegrossi et al., 2005 

mCPP 

decrease in locomotor activity 
Yarosh et al., 2007 substitution for S(+)-MDMA  

no hallucinogen-like actions in head twitch assay 

increase in extracellular DA and 5-HT Baumann et al., 2005 

 

1.3. Kinetics 

Piperazines are readily absorbed from the gastrointestinal tract. A portion of the 

absorbed drug is metabolized and excreted in urine. There is wide variation in the rates at 

which piperazines are excreted by different individuals, which adds to the variability of 

their toxicity (Austin and Monasterio, 2004; Elliott, 2011). The piperazine designer drugs 

are mainly metabolized in liver, being the phenylpiperazines more extensively metabolized 

than the benzylpiperazines, and excreted almost exclusively as metabolites (Maurer et al., 

2004). The main metabolic reactions include hydroxylation, N-dealkylation and 

demethylenation. 

Biodistribution data are scarce however, the fact that this drugs have effects on mood and 

behaviour suggests that they cross the blood-brain barrier. A study of tissue distribution in 

the rat found higher concentrations of BZP in the kidneys, with a concentration ratio 

between plasma and kidneys of approximately 1:20, while the TFMPP concentration ratio 

between the plasma and the lungs (the organ with the highest TFMPP concentration) had 

a ten-fold difference at approximately 1:200, 30 min after dose. This study also reported 

that the ratios of BZP and TFMPP between plasma and all other analysed tissues (brain, 



INTRODUCTION 

 

11 

liver, kidneys, lungs, heart) were 1:40 and 1:385 respectively, 30 min after dose (Antia et 

al., 2009d). Additional toxicokinetic data for mCPP in rodents suggest poor protein binding 

(about 30-40%), accumulation in the brain, and renal elimination (Caccia, 2007). 

 The metabolism of BZP was qualitatively studied in male Wistar rats and the 

proposed pathways are presented in figure 2. This piperazine derivative was not 

extensively metabolized and was mainly excreted unchanged. Three metabolic targets 

could be identified for BZP: (i) the aromatic ring, (ii) the benzyl carbon and (iii) the 

piperazine heterocycle. The aromatic ring was metabolically altered by single or double 

hydroxylation (2 and 3, figure 2) through CYP450 activity, followed by catechol-O-

methyltransferase (COMT) catalyzed methylation to N-(4-hydroxy-3-

methoxybenzyl)piperazine (4, figure 2). Formation of the corresponding glucuronides 

and/or sulfates was postulated. N-Dealkylation at the benzyl carbon led to the liberation of 

piperazine (5, in figure 2). The piperazine heterocycle was degraded by double N-

dealkylation leading either to the formation of N-benzylethylenediamine (6, in figure 2) or 

benzylamine (7, in figure 2) (Staack et al., 2002; Staack and Maurer, 2005). 
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Figure 2. Proposed metabolism of 1-benzylpiperazine (BZP) in male Wistar rats. 1 = BZP; 2 = 4-
hydroxybenzylpiperazine; 3 = 3-hydroxybenzylpiperazine; 4 = N-(4-hydroxy-3-
methoxybenzyl)piperazine; 5 = piperazine; 6 = N-benzylethylenediamine; 7 = benzylamine. (Adapted 

from Staack & Maurer, 2005). 

 

 MDBP is the methylenedioxy derivative of BZP, and is also the main metabolite of 

the therapeutic drug fipexide (Vigilor®) that was withdrawn from the market worldwide due 

to adverse side effects, including liver toxicity (Sleno et al., 2007). The MDBP metabolism 

was qualitatively studied in male Wistar rats (figure 3) (Staack and Maurer, 2004). As 

described for BZP, MDBP was mainly excreted as unchanged parent compound. 

Metabolic alteration of the aromatic moiety, the benzyl carbon and the piperazine 

heterocycle was also described for MDBP. The main pathway is the demethylenation of 
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the 3,4-methylenedioxy moiety to the corresponding catechol and further methylation to N-

(4-hydroxy-3-methoxybenzyl)piperazine (2, in figure 3) followed by partial glucuronidation 

or sulfation leading to the formation of metabolites common with BZP. Likewise, N-

dealkylation at the benzyl carbon, leading to piperazine (3, in figure 3) was described. 

Degradation of the piperazine heterocycle by double N-dealkylation led to the 

corresponding benzylamine and N-benzylethylenediamine derivatives 3,4-

methylenedioxybenzylamine (4, in figure 3) and N-(3,4-

methylenedioxybenzyl)ethylenediamine (5, in figure 3) (Staack and Maurer, 2004; Staack 

and Maurer, 2005). Special concern regarding toxicity should be given to the catechol 

formation. Several drugs undergo bioactivation into ortho-quinone intermediates, via 

catechol metabolites, which have the ability to covalently bind to endogenous compounds 

such as the cysteinyl sulfhydryl group in gluthatione (GSH) to form GSH conjugates, as 

already described for MDMA metabolites (Carvalho et al., 2004; Jones et al., 2005). 

 
Figure 3. Proposed metabolism of 1-(3,4-methylenedioxy)benzylpiperazine (MDBP) in male Wistar 
rats. 1 = MDBP; 2 = N-(4-hydroxy-3-methoxybenzyl)piperazine; 3 = piperazine; 4 = 3,4-
methylenedioxybenzylamine; 5 = N-(3,4-methylenedioxybenzyl)ethylenediamine. (Adapted from Staack 
& Maurer, 2004). 
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 mCPP is an active metabolite of therapeutic drugs such as trazodone, nefazodone, 

etoperidone, and mepiprazol, used as antidepressants and minor tranquilizers. The mCPP 

metabolism, represented in figure 4, was qualitatively studied in male Wistar rats (Staack 

and Maurer, 2003). Extensive metabolism was reported. However, small amounts of 

unchanged mCPP could be detected in urine. p-Hydroxy-mCPP (2, in figure 4) was 

identified as the major metabolite. In addition to the aromatic hydroxylation, degradation of 

the piperazine heterocycle by double N-dealkylation of mCPP to N-(3-

chlorophenyl)ethylenediamine (3, in figure 4) or to 3-chloroaniline (4, in figure 4) were 

described. Hydroxy-3-chloroaniline (5, in figure 4) was the only metabolite resulting from 

degradation of the piperazine moiety of hydroxy-mCPP. The aniline metabolites were 

partially N-acetylated (6 and 7, in figure 4). Glucuronidation and sulfation were postulated 

as phase II reactions (Staack and Maurer, 2003; Staack and Maurer, 2005). 

 
Figure 4. Proposed metabolism of 1-(3-chlorophenyl)piperazine (mCPP) in male Sprague-Dawley 
and Wistar rats. 1 = mCPP; 2 = p-hydroxy-mCPP; 3 = N-(3-chlorophenyl)ethylenediamine; 4 = 3-
chloroaniline; 5 = 4-hydroxy-3-chloroaniline; 6 = N-acetyl-3-chloroaniline; 7= N-acetyl-4-hydroxy-3-
chloroaniline. 
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 TFMPP is structurally closely related to mCPP, with the chloro moiety exchanged 

by the bioisosteric trifluoromethyl group. The TFMPP metabolism was qualitatively studied 

in male Wistar rats and the scheme can be visualized in figure 5 (Staack et al., 2003). It 

was extensively metabolized and almost exclusively excreted as metabolites. The major 

metabolic reaction was the aromatic hydroxylation to hydroxy-TFMPP (2, in figure 5) 

followed by partial glucuronidation or sulfation. Degradation of the piperazine heterocycle 

by double N-dealkylation led to the formation of N-(3-

trifluoromethylphenyl)ethylenediamine (3, in figure 5) or to 3-trifluoromethylaniline (5, in 

figure 5). The N-dealkylation of the hydroxylated TFMPP metabolite led to the formation of 

N-(hydroxy-3-trifluoromethylphenyl)ethylenediamine (4, in figure 5) or to hydroxy-3-

trifluoromethylaniline (7, in figure 5). Partial N-acetylation was reported for the aniline 

derivatives (6 and 8, in figure 5) (Staack et al., 2003; Staack and Maurer, 2005).  

 
Figure 5. Proposed metabolism of 1-(3-trifluoromethylphenyl)piperazine (TFMPP) in male Wistar 
rats. 1 = TFMPP; 2 = hydroxy-TFMPP; 3 = N-(3-trifluoromethylphenyl)ethylenediamine; 4 = N-
(hydroxy-3-trifluoromethylphenyl)ethylenediamine; 5 = 3-trifluoromethylaniline; 6 = N-acetyl-3-
trifluoromethylaniline; 7 = hidroxy-3-trifluoromethylaniline; 8 = N-acetyl-hidroxy-3-
trifluoromethylaniline. (Adapted from Staack et al., 2003). 
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In vivo studies using Wistar rats as extensive metabolizers and female Dark-Agouti 

rats as poor metabolizers identified CYP2D6 as being responsible for 80.9% of predicted 

total TFMPP hydroxylation clearance. For the same hydroxylation reaction, CYP1A2 and 

CYP3A4 were responsible for 11.5% and 7.6%, respectively (Staack et al., 2004a; Maurer 

et al., 2004). 

 The metabolism of MeOPP, shown in figure 6, was also qualitatively studied in 

male Wistar rats (Staack et al., 2004b). As with the other phenylpiperazines, MeOPP was 

extensively metabolized. O-Demethylation of the methoxy moiety was the major metabolic 

step. The formed hydroxyphenylpiperazine metabolite (2, in figure 6) was subsequently 

conjugated by partial glucuronidation or sulfation. 4-Methoxyaniline (3, in figure 6) and N-

(4-methoxyphenyl)ethylenediamine (4, in figure 6) were formed by degradation of the 

piperazine moiety of MeOPP. 4-Hydroxyaniline (5, in figure 6) could be detected as the 

piperazine-degraded metabolite of hydroxyphenylpiperazine and it was found to be 

partially glucuronated or sulfated. Furthermore, it was N-acetylated to N-acetyl-4-

hydroxyaniline (6, in figure 6), which corresponds to the analgesic drug acetaminophen 

(paracetamol) (Staack et al., 2004b; Staack and Maurer, 2005). 

 
Figure 6. Proposed metabolism of 1-(4-methoxyphenyl)piperazine (MeOPP) in male Wistar rats. 1 
= MeOPP; 2 = 4-hydroxyphenylpiperazine; 3 = 4-methoxyaniline; 4 = N-(4-
methoxyphenyl)ethylenediamine; 5 = 4-hydroxyaniline; 6 = N-acetyl-4-hydroxyaniline. 
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 Using baculovirus-infected insect cell microsomes containing human cDNA 

expressing CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, 

CYP2E1 and CYP3A4, Staack et al. (2004b) found that CYP2D6 is the main isoenzyme 

responsible for catalyzing the demethylation of MeOPP. These results were confirmed 

through the inhibition of CYP2D6 with quinidine. The metabolite formation rate was also 

significantly lower in liver microsomes of a single donor with poor CYP2D6 metabolizer 

genotype in comparison with pooled human liver microsomes (Stack et al., 2004b). 

Studies using human liver microsomes showed that the metabolism of BZP and TFMPP 

was significantly inhibited by the inhibitors of CYP2D6, CYP1A2 and CYP3A4. In the 

same study, it was observed that MDBP, TFMPP, MeOPP and mCPP inhibited CYP2C19. 

These data highlighted the potencial for interaction between piperazine-designer drugs 

and other drugs (Antia et al., 2009b). 

 The kinetics of BZP and TFMPP was studied in Wistar male rats after single or co-

administration of a 2 mg/kg dose of each substance by the intraperitoneal route (Wada et 

al., 2011). The plasma concentrations of BZP administered alone were comparable to 

those after co-administration, whereas the TFMPP concentrations tended to be higher 

after co-administration than after individual administration. For single administration of 

BZP, it was found a 219 min elimination half-life (t1/2), distribution volume of 5.1 L and a 

clearance of 0.017 L/min. For TFMPP single administration, there was a 147 min 

elimination half-life, distribution volume of 2.0 L and a clearance of 0.009 L/min. In co-

administration, TFMPP clearance decreased to 0.005 L/min (Wada et al., 2011). This 

study corroborates previous in vitro findings of metabolic inhibition caused by co-

incubation of BZP and TFMPP in human liver microsomes (Antia et al., 2009b). 

The kinetics of BZP was studied in healthy male humans after a single oral dose of 

200 mg BZP hydrochloride. The peak plasma concentration (Cmax) was found to be 262 

ng/mL, and it was reached 75 min (Tmax) post-dose. Absorption half-life was calculated to 

be 6.2 min. The clearance was 58.3 L/h and the t1/2 was 5.5 h. For the metabolites 3-

hydroxy-BZP and 4-hydroxy-BZP, Cmax was 13 ng/mL, reached at 75 min post-dose, and 

7 ng/mL, at 60 min post-dose, respectively. It was calculated that the total amount of BZP 

excreted in urine over the 24 h was approximately 12.25% of the dose, being 6% excreted 

in the unconjugated form. The metabolites were only present at very low concentrations 

(0.11%). This low recovery of the drug suggests low bioavailability, other routes of 

excretion, such as biliary excretion, or strong tissue or protein binding (Antia et al., 

2009a). 
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 The TFMPP pharmacokinetics was studied in humans after a single oral dose of 

60 mg. Cmax was 24.1 ng/mL, reached 90 min post-dose. The absortion half-life was 

calculated to be 24.6 min. Apparent clearance was 384.24 L/h. A single metabolite, 4-

hydroxy-TFMPP was detected in plasma, with a Cmax of 20.2 ng/mL, a Tmax of 90 min and 

a Tlag (time from administration to first quantifiable concentration) of 30 min. The authors 

demonstrated that there are two distinct disposition phases following Cmax, indicating a 

redistribution of the drug into organs such as kidney, liver, and brain. Analyses of urine 

showed that TFMPP is excreted primarily in its conjugated form, probably as an N-

glucuronide, accounting for around 70% of the excreted TFMPP. The metabolite 4-

hydroxy-TFMPP was also excreted mainly as a conjugate (around 90%), probably as a N-

glucuronide. The total amount of TFMPP excreted in urine was less than 1% of the dose 

administered, which, as well as for BZP, also suggests a low bioavailability, other routes 

of excretion (such as biliary excretion) or strong tissue or protein binding (Antia et al., 

2010). 

 When BZP (100 mg) and TFMPP (30 mg) were co-administered to healthy 

volunteers, the formation of the metabolites 3-hydroxy-BZP and 4-hydroxy-TFMPP was 

inhibited. This is thought to be the result of CYP2D6 inhibition which catalyses the 

hydroxylation of both BZP and TFMPP (Antia et al., 2009c). 

 The pharmacokinetic profile of mCPP was evaluated in healthy volunteers (8 

women and 6 men) who received an oral dosage of 0.5 mg/kg or an intravenous dose of 

0.1 mg/kg. Oral mCPP presented an absorption half-life of 60 min, 54 ng/mL Cmax in a 3.2 

h Tmax. The t1/2 was 4.3 h with a bioavailability of 47.5%. After intravenous injection, Cmax 

was 52 ng/mL reached at 18.6 min post-dose. The t1/2 was 5.8 h and the clearance was 

49.6 mL/h (Gijsman et al., 1998). 

 

1.4. Clinical studies 

Wilkins and collegues (2008) conducted a survey in New Zealand about patterns 

of uses and side effects of BZP/TFMPP party pills that included 2010 participants. The 

users were characterized as being mainly male (60%), from European origin (75%), and 

with mean age of 23 years. The majority of consumers (89%) used party pills in 

combination with other drugs such as alcohol (91%), tobacco (37%), and cannabis (21%). 

The most reported adverse physical symptoms were insomnia (54%), headaches (26%) 

and nausea (21%). Among the most reported psychological symptoms were short temper 
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(12%), confusion (11%), anxiety (10%), depression (10%), paranoia (9%) and auditory 

hallucinations (9%) (Wilkins et al., 2008). 

In humans, common experienced symptoms after BZP intake include anxiety, 

vomiting, headache, palpitations, confusion, collapse, and seizures (Gee et al, 2005). 

Some symptoms persisted for up to 24 hours after ingestion. Vital signs showed expected 

sympathomimetic effects in patients with tachycardia and hypertension. Physiological 

effects of BZP were not felt for up to 2 hours after oral ingestion. To experience a faster 

onset of action, some users have injected BZP intravenously, although this is reported as 

being painful due to the alkalinity of the solution (raw BZP in solution has a pH≥12) (Gee 

et al., 2005). The cardiovascular effects are, to some extent, predictable. Drugs acting on 

serotonergic, dopaminergic, or noradrenergic systems are likely to induce vasoconstriction 

and/or tachycardia and arrhythmia (Dawson and Moffatt, 2012). 

A study was performed with 27 adult women, divided in two groups, who received 

a single oral dose of 200 mg BZP (n=14) or placebo (n=13) and were submitted to 

physiological and mood measures. After 120 minutes of dosing, it was observed a 

significant increase in systolic and diastolic pressures and heart rate and a decrease in 

body temperature in BZP group. BZP was associated with a significant decrease in 

fatigue. The BZP group also reported feeling more vigorous and/or active by the end of 

the study (Lin et al., 2009). The physiological results were already expected, since in the 

periferic nervous system the actions of BZP are mediated by 2-adrenoceptors, which are 

related to reflex tachycardia and hypertension (Gee et al., 2005). 

A survey was conducted at the Christchurch Hospital (Christchurch, New Zealand) 

with 184 patients presented at the Emergency Department with possible BZP poisoning 

(Gee et al., 2008). Ninety-six patients had plasma BZP levels measured on admission, 

ranging from 0 up to 6.29 g/mL (mean 0.68 g/mL). Logistic regression using plasma 

BZP levels versus incidence of seizures revealed a trend towards higher levels of BZP 

being associated with seizures. Furthermore, 53.4% of the patients admitted to take BZP 

pills together with alcohol. However, a positive correlation between seizures and co-

ingestion of BZP and alcohol was not found (Gee et al., 2008). 

The effects of BZP combined with TFMPP were investigated in adult men after an 

oral dose of 100 mg BZP and 30 mg TFMPP. BZP/TFMPP administration produced a 

significant increase in systolic and diastolic blood pressure and heart rate. Also, it was 

found an increase in vigour/activity, ‘dysphoria’ and ‘dexamphetamine-like effects’ through 
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subjective like scales completed by the participants before and 120 min after drug 

administration (Lin et al., 2011). 

A study with 35 volunteers was performed to evaluate the effects of BZP/TFMPP 

association in party pills alone and in combination with alcohol (Thompson et al., 2010). 

The volunteers were divided into groups which received (i) double placebo, (ii) 300 mg 

BZP/74 mg TFMPP and alcohol placebo, (iii) placebo capsules and 57.6 g (6 units) of 

alcohol and (iv) 300 mg BZP/74 mg TFMPP and 57.6 g (6 units) of alcohol. Measures 

were taken between 3 and 6 h and 7 days after dosing. Blood levels of BZP and TFMPP 

peaked at 6.5 h with mean values of 585 and 41 ng/mL, respectively. Interestingly, 

BZP/TFMPP party pills alone significantly improved driving performance, by means of 

decreasing the standard deviation of the lateral position test. BZP/TFMPP also resulted in 

increased heart rate and blood pressure and in difficulty in getting to sleep. Nevertheless, 

BZP/TFMPP alone or with alcohol were accompanied by an increase in severe adverse 

events, such as agitation, anxiety, hallucinations, vomiting, insomnia and migraine, 

presented by 4 of 10 subjects in the BZP/TFMPP group and three of seven in the 

BZP/TFMPP combined with alcohol group. This led to the interruption of the study before 

getting a planned sample of 64 subjects (Thompson et al., 2010). 

 A randomized, double-blind, placebo-controlled study was conducted with 

30 volunteer men to investigate the effects of TFMPP in human information processing. 

Before and 2 h after taking 60 mg TFMPP orally, the participants were tested using 

electroencephalogram acquisition. The treatment reduced the interhemispheric transfer 

time but did not affect reaction time, suggesting that TFMPP may affect neurotransmitter 

systems involved in speeding of interhemispheric communication, such as glutamatergic, 

serotonergic, gabaergic and dopaminergic pathway (Lee et al., 2011). 

 In a study with 14 healthy volunteers (8 women and 6 men) who received 

an oral dosage of 0.5 mg/kg or an intravenous dose of 0.1 mg/kg of mCPP, it was 

observed a significant increase in heart rate and body temperature as well as an increase 

in plasma prolactin and cortisol. The stimulating effect of mCPP was confirmed through an 

electroencephalographic reading (Gijsman et al., 1998). In another study conducted by 

Feuchtl et al. (2004) with 12 healthy men, after intravenous and oral mCPP administration 

it was observed a significant increase in clinical response (anxiety, shivering, dizziness, 

heightened sensitivity toward light and noise, and fear of losing control). Also, there was 

an increase in plasma ACTH, cortisol and prolactin levels compared to placebo (Feuchtl et 

al., 2004). In a trial with 15 patients with depressed mood, the treatment with a single oral 



INTRODUCTION 

 

21 

dose of 0.5 mg/kg mCPP also demonstrated a significant increase in plasma ACTH, 

cortisol and prolactin (Klaassen et al., 2002). 

 

1.5. Case reports 

The case-reports of documented piperazine-related intoxications are summarized 

in table 2.  

There is a case report of a male young adult who attended a party and ingested 

four tablets of a substance called Rapture (containing BZP). Twelve hours after the 

ingestion, he developed an acute psychotic episode associated with intense persecutory 

delusional beliefs and auditory and visual hallucinations. The symptoms completely 

abated within 48 h, with only benzodiazepines treatment (Austin and Monasterio, 2004). 

A case of nephrotoxicity was reported in a 17 year-old man who ingested five BZP-

based herbal party pills and a small amount of alcohol. After a few hours he started to 

have bilateral loin pain, which gradually increased in the next day. After 36 h, he was 

admitted to a hospital because of the severity of the abdominal pain. He was found to 

have renal impairment with a serum creatinine level of 220 μmol/L, which increased to 320 

mol/L, 440 μmol/L and peaked at 778 μmol/L in the following days (reference value of 

serum creatinine in man: 80-115μmol/L). He was dialysed once and three weeks after 

admission his serum creatinine had returned to 92μmol/L. Although BZP intake 

confirmation was not done, the authors postulate that the acute renal failure observed 

may be related to a direct toxic effect of the party pills on the kidneys (Alansari and 

Hamilton, 2006). 

Nephrotoxic symptoms were also reported by a 38 year-old man with a 4 day 

history of constant bilateral flank pain radiating to the midline and groin, nausea and 

vomiting. No fever or urinary symptoms were reported. The patient had taken two tablets 

of BZP one week prior to admission and had also smoked cannabis. He had been taking 

BZP for about a year, initially one to two times a week and more recently only every 2-3 

weeks. Past medical history included long-standing depression, with regular intake of 20 

mg fluoxetine for over 10 years. At the admission, the patient was afebrile and in pain, 

with blood pressure 140/80 mmHg. Abdominal examination demonstrated bilateral renal 

angle tenderness only. Urinalysis demonstrated microscopic haematuria, sterile pyuria 

and proteinuria. Biochemistry demonstrated acute kidney injury with a serum creatinine 

200 µmol/L. Creatine kinase was 307 U/L (reference value of serum creatine kinase in 
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man is <200 U/L). A computed tomography urogram demonstrated two normal-sized 

kidneys with no evidence of renal calculi. After 48 h, renal function continued to decline. A 

renal biopsy was performed, pointing to interstitial nephritis. Electron microscopy showed 

swollen and convoluted epithelial cells pushing into urinary spaces. Management 

consisted of simple analgesia and i.v. rehydration. Renal function improved over the 

following 72 h (Berner-Meyer et al., 2012). 

Another case of nephrotoxicity was reported for a 22 year-old man with 2 days of 

constant bilateral flank pain radiating to the groin. There was an associated fever but no 

urinary symptoms. The patient had been using cannabis oil regularly and had recently 

experimented it with BZP 3-4 days prior to admission. At presentation, he was febrile 

(38°C) and in pain. Blood pressure was 124/62 mmHg. Abdominal examination 

demonstrated bilateral renal angle tenderness only. Urinalysis revealed microscopic 

haematuria, sterile pyuria, proteinuria and no glycosuria. Biochemistry demonstrated 

acute kidney injury with a serum creatinine of 210 µmol/L. Renal function kept declining 

reaching a peak of 280 µmol/L. Renal biopsy demonstrated a mild mesangioproliferative 

glomerulonephritis. Due to the continuing renal flank pain and renal function deterioration, 

the patient was treated with corticosteroids with a rapid resolution of renal failure (Berner-

Meyer et al., 2012). 

In another case, 3 young male adults ingested 4 tablets of a drug thought to be 

Ecstasy and presented dissociative symptoms, agitation with bruxism, nausea and 

features of sympathomimetic toxicity, with dilated pupils and tachycardia. Toxicological 

screening of blood and urine of the patients revealed the presence of BZP and TFMPP. 

Although the dissociative symptoms are not typical of previous reports of BZP toxicity, it is 

likely that the cause of these symptoms was the combination of both, TFMPP and BZP 

drugs (Wood et al., 2008). 

In New Zealand, it was reported a case of an adult female, with history of 

schizophrenia and substance abuse, who developed status epilepticus, hyperthermia, 

disseminated intravascular coagulation, rhabdomyolysis, and renal failure after BZP intake 

(Gee et al., 2010). In another case, the patient presented similar symptoms, however 

there was an association of BZP and MDMA. In spite of the serious adverse effects 

presented, after 30 and 25 days of hospitalization, respectively, the patients were 

discharged (Gee et al., 2010). 

In a non-fatal case of overdose by mCPP, a female patient developed anxiety, 

agitation, drowsiness, flushing, visual disturbances and tachycardia. The mCPP 
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concentration was 320 ng/mL in plasma and 2300 ng/mL in urine. However, 

amphetamine, benzoilecgonine and alcohol were also detected in small quantities in 

plasma (Kovaleva et al., 2008). 

A fatal case of a 23 year-old woman who ingested BZP and MDMA was described. 

She was admitted at the hospital with bradycardia, hypertension and reduced 

consciousness. The pacient died 57 h after admission with massive brain oedema 

(Balmelli et al., 2001). Another fatal case, in which BZP contributed to the death, was 

occured in Sweden. The victim was a man who had been taking ecstasy and A2 

(containing BZP). For forensic analysis, a femoral blood sample was collected and 

screened for amphetamines with a positive result. Confirmatory analysis found 1.7 μg 

BZP/g blood, and also detected MDMA, methylenedioxyamphetamine (MDA) and 

tetrahydrocannabinol in the blood sample (Wikström et al., 2004). 

A fatal case of a 20 year-old man with allergic asthma was reported. The medical 

history also included a posttraumatic pneumothorax. He was a regular user of ecstasy and 

cocaine, and in the late morning of the day of his death, he had taken half a scored 

“ecstasy” tablet. It was a white tablet, stamped with a “smiling sun” logo. In the afternoon 

his condition worsened. When he had a serious asthma attack, his mother gave him 2 

tablets of 20 mg prednisone. As the corticosteroid did not have the desired effect and the 

attack had lasted over an hour, the patient was taken to the hospital. Upon the arrival at 

the emergency, he showed tachycardia (123 beats/min), his blood pressure was 160/90 

mmHg, and the oxygen saturation was 90%. Auscultation revelead expiratory dyspnea 

with tachypnea, sibilant wheezing, and a symmetrical vesicular murmur. The patient 

condition worsered drastically, with agitation, diminished left vesicular murmur, and 

cardiorespiratory arrest, despite treatment with salbutamol aerosol. The patient was taken 

into intensive care, despite the intensive resuscitation attempts, with intubation and 

ventilation, external cardiac massage, the administration of vasopressive amines, external 

electric shocks and a total of 5 mg adrenaline, 120 mg methylprednisolone, 2 mg atropine, 

intravenous salbutamol, magnesium sulfate and sedation with midazolam and fentanyl, no 

cardiac activity reappeared and the patient was pronounced dead. Analysis of a tablet 

similar in appearance seized from the dealer by the police revealed the presence of 5.4 

mg metoclopramide and 45.8 mg mCPP. After the autopsy, analysis of biological fluids 

(hepatic blood and urine) showed the presence of metabolites of cocaine 

(benzoylecgonine and ecgonine methyl ester), metoclopramide and therapeutic 

concentrations of the drugs used at the hospital. mCPP was found in urine (15 ng/mL), 

bile (5.1 ng/mL), liver (0.3 ng/g) and humor vitreous (4.7 ng/mL). Hair analysis showed 
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chronic MDMA use. As no trace of mCPP was detected in hair samples, a hypothesis of 

first use was put forward (Gaillard et al., 2013). 
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1.6. Analysis 

There are several techniques used to detect and/or quantify piperazine designer 

drugs, from colorimetric tests to chromatographic analysis in different matrices.  

 

1.6.1. Colorimetric tests 

Colorimetric reactions are used for screening or preliminary identification of seized 

materials and residues extracted from biological samples. Colorimetric reagents that 

react with nitrogen are usually used for detection tests (Namera et al., 2011). An isomer 

of chlorophenylpiperazine (CPP) was identified in seized tablets using different 

strategies. Tablets were submitted to three common preliminary colorimetric tests, used 

to identify alkaloids (Marquis test), cocaine and derivatives (Scott test) and 

methamphetamines (Simons test). There is no specific colour test for piperazines 

derivatives. CPP presented no colour in the Marquis test, blue colour in the Scott test, 

and orange colour (untill 30s) and dark brown colour (after 2 min) in the Simons test 

(Lanaro et al., 2010). 

 

1.6.2. Immunoassays 

When piperazine designer drugs are analyzed by the current available test for the 

detection of amphetamines, false positive results may occur. In order to evaluate a broad 

range of clinical and forensic toxicological techniques, BZP was analyzed in two different 

amphetamine-like immunoassays. BZP presented cross reactivity at 300 and 12,000 

ng/mL in enzyme-multiple immunoassay technique (EMIT®) d.a.u.® Amphetamines system 

but was not detected by fluorescence polarization immunoassay (FPIA) using AxSYM® 

Amphetamine/Methamphetamine assay (de Boer et al., 2001). Indeed, false positive 

results for amphetamine compounds analyzed through EMIT® probably occur due to the 

formation of primary amines (Domingos et al., 2008), which are products of BZP 

biotransformation. Besides BZP and the product of its biotransformation N-

benzylethylenediamine, also TFMPP presents crossreactivity with amphetamines. 

Presently, there are no commercially available immunoassay tests for detection of 

piperazine derivatives (Peters et al., 2010). 
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1.6.3. Chromatography 

Chromatographic methods are commonly used to identify and quantify designer 

drugs. The chromatographic methods described for the analysis of piperazine designer 

drugs are summarized in table 3. 
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1.6.3.1. Planar chromatography 

Due to its simplicity and low cost, thin-layer chromatography (TLC) is widely used 

for detection of drugs of abuse. For an isomer of CPP, TLC was performed in three 

different solvent systems using iodoplatinate and Dragendorff´s reagents. CPP presented 

Rf values of 0.32 in methanol:ammonia (100:1.5; v/v), 0.58 in 

cyclohexane:toluene:diethylamine (75:15:10; v/v) and 0.21 in chloroform:acetone (4:1; v/v) 

(Lanaro et al., 2010). 

1.6.3.2. Column chromatography 

Lanaro and co-works tried to use a HPLC with diode array detector (DAD) method 

to identify the CPP isomers in tablets. The CPP presented a retention time of 7.4 min 

between 215 and 236 nm. The UV/Vis spectra presented a significative absortion at 208 

and 248 nm, however the corresponding isomer of CPP (ortho-, meta-, or para-) could not 

be identified (Lanaro et al., 2010). 

HPLC/UV analysis was performed in capsules through the REMEDi™ HS Drug 

Profiling System. Although BZP was not part of the standard library and therefore not 

identified, the system indicated some candidate drugs for the peak observed, namely the 

cyclic derivative of dinorpropoxyphene, 4-hydroxyphencyclidine, alphaprodine and 

phencyclidine itself. When analyzed by gas chromatography (GC) with a nitrogen 

phosphorous detector (NPD), BZP, TFMPP and MeOPP showed prominent peaks with 

good response factors as expected from molecules with two nitrogens. The GC mass 

spectrometry (MS) analyses of BZP, TFMPP and MeOPP was performed before and after 

acetylation and trifluoroacetylation. The analysis of non-derivatized piperazines was 

difficult due to the asymmetric peak shapes and tailing. Acetylation seemed to stabilize 

the piperazine ring, resulting in more stable ions and more characteristic mass spectra. 

The N-trifluoroacetyl derivatives showed to be even more stable than the N-acetyl 

derivatives however, the derivatization of MeOPP resulted in two different bis-N-

trifluoroacetyl derivatives instead of one mono-N-trifluoroacetyl derivative (de Boer et al., 

2001). 

A GC/MS method was validated for screening of amphetamine and piperazine 

derivatives (including BZP, TFMPP, mCPP, MeOPP and MDBP) in human blood plasma 

(Peters et al., 2003). Tsutsumi et al. (2005) developed a GC/MS and a HPLC with 

electrospray ionization and mass spectrometry (ESI-MS) methods for determination of 

BZP, TFMPP and their main hydroxylated metabolites in urine. The authors concluded 

that both methods were sensitive, however, the derivatization process for GC/MS 
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presented a low reproducibility for the hydroxylated metabolites while the HPLC/ESI-MS 

allowed accurate quantitation (Tsutsumi et al., 2005). 

A GC/MS method for forensic purposes was described by Wikström et al. (2004). 

The method applied liquid-liquid extraction in urine and blood samples, and a 

derivatization step with trifluoroacetic acid anhydride (TFAA). It was used a SIM analysis 

with m/z 181, corresponding to the trifluoroacetylpiperazine, as quantifier ion. The method 

was applied in 56 individual cases from southern Sweden, including prison cases, 

autopsies, drug abusers, traffic drivers and treatment care. This confirmatory analysis also 

differentiate BZP from 10 amphetamine analogues, including amphetamine, 

metamphetamine, phenmetrazine, ephredrine, norephedrine, 3,4-

methylenedioxyamphetamine (MDA), MDMA, 3,4-methylenedioxyethylamphetamine 

(MDEA), N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB) and phentermine 

(Wikström et al., 2004). 

Urine of seven U.S. service members was submitted to immunoassay and GC/MS 

screening, after solid phase extraction (SPE) and without previous derivatization (Vorce et 

al., 2008). BZP and TFMPP were identified. For quantitation by HLPC-ESI/MS, the ions 

m/z 91, 177 (MH+), and 178 were selected for the SIM monitoring for BZP and m/z 188, 

231 (MH+), and 232 for TFMPP. mCPP was used as internal standard with monitoring m/z 

154 and 197 (MH+) ions. The MH+ ion was used for quantitation (Vorce et al., 2008). BZP 

and TFMPP were also detected in postmortem blood through HPLC/UV in three fatalities 

(road traffic deaths and a fatal fall). However, in these cases BZP and TFMPP were not 

the direct cause of death. In all cases, other drugs and/or ethanol were found. BZP was 

found at concentrations of 0.71, <0.50, and 1.39 mg/L and TFMPP was found at 

concentrations of 0.05 and 0.15 mg/L (Elliott and Smith, 2008). Antia et al. (2010) 

validated a method by HPLC/MS for quantification of BZP, TFMPP and the metabolites 3-

hydrozy-BZP, 4-hydroxy-BZP and 4-hydroxy-TFMPP in plasma and urine samples. Using 

human hair as biological matrice, TFMPP, mCPP and MeOPP were analyzed by GC/MS 

as trimethylsilyl derivatives (Barroso et al., 2010). 

A HPLC with atmospheric pressure ionization mass spectrometry (API/MS) 

method was proposed for the determination of hallucinogenic designer drugs in urine of 

users, which included mCPP (Pichini et al., 2008). In another method, the isomers oCPP, 

mCPP and pCPP were differentiated by retention time and the mCPP could be identified 

and quantified by a HPLC MS/MS method in tablets, biological fluids and hair (Gaillard et 

al., 2013). A HPLC/MS method for screening of MDA and piperazine-derived designer 
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drugs in urine was validated. The method appeared to be suitable for identification of 

designer drugs and could also provide semi-quantitative data (Montesano et al., 2013). 

A psychoactive drugs data library was developed in order to quickly confirm the 

presence of a potentially hazardous designer drug. Data in this library is based on 

capacity factor (k’) ratio of each drug with the internal standard, the UV spectrum and the 

MS data, after HPLC/DAD and GC/MS analysis. The piperazinic compounds include BZP, 

mCPP, MeOPP and MDBP. Surprisingly, TFMPP was used as internal standard 

(Takahashi et al., 2009). An extensive HPLC/MS/MS screening method was also 

proposed for identification of several amphetamines, tryptamines and piperazines in 

serum (Wohlfarth et al., 2010). BZP and TFMPP were identified in plasma of rats after 

derivatization with 4-(4,5-diphenyl-1-H-imidazol-2-yl)benzoyl chloride (DIB-Cl), a 

fluorescence labeling reagent, by HPLC-fluorescence detection (FD) (Wada et al., 2011). 

Chemiluminescence detection (CD) was also applied in the determination of piperazines 

in party pills, after a chromatographic separation. The method explored the 

chemiluminescent reaction of benzyl and phenylpiperazines with tris(2,2’-

bipyridine)ruthenium(III) (Waite et al., 2013). 

The stability of BZP and TFMPP in biological matrices for up to 14 days were 

evaluated (whole blood, plasma and urine) through ultrahigh performance liquid 

chromatography (UPLC) coupled to triple quadrupole ion trap mass spectrometer (IT-MS). 

Three conditions were tested, which includes storage at -20°C (freezer), 4°C (refrigerator) 

and 22°C (room temperature). Samples proved to be relatively stable except for whole 

blood and plasma samples at room temperature (Johnson and Botch-Jones, 2013). 

 

1.6.4. Capillary electrophoresis (CE) 

A method based on a chiral capillary electrophoresis (CE) separation was 

optimized for analysis of amphetamine and piperazine designer drugs in tablets (Bishop et 

al., 2005). CE was also successfully applied on the analysis of 17 confiscated pills in 

Brazil. The method allowed the separation of the three CPP isomers (oCPP, mCPP and 

pCPP) and identified mCPP as the main ingredient in such pills (Široká et al., 2013). 
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1.7. Intoxication and treatment 

At low doses, the effects of BZP (50 – 100 mg) and TFMPP (5 – 25 mg) tend to be 

mild, producing feelings of euphoria and wakefulness. Ingestion of high doses of 

piperazine derivatives results in symptoms similar to sympathomimetic toxicity. Most 

common symptoms include insomnia, headaches, nausea, anxiety, depression, paranoia 

and auditory hallucinations. At high doses, patients may experience palpitations, 

tachycardia, hypertension and hyperthermia. Neurological effects at high doses can 

include tremors, myoclonus and seizures (Schep et al., 2011). Renal manifestations are 

generally considered a consequence of sympathomimetic toxicity. However, severe 

toxicity may cause prolonged seizures and hyperthermia that can lead to rhabdomyolysis 

and acute tubular necrosis (Luciano & Perazella, 2014). 

Patients with seizure disorders, psychiatric illness or coronary disease should avoid 

BZP as should those taking prescribed sympathomimetics or anticholinergics. Coingestion 

with MDMA or amphetamine should also be cautioned against, as this combination could 

lead to fatal toxicity (Gee et al., 2005). 

When patients present to healthcare facilities with BZP toxicity, an electrocardiogram 

and an estimation of plasma sodium should be done. Those with moderate to severe 

toxicity may require treatment with benzodiazepines, intravenous fluids, and antiemetics 

(Gee et al, 2005). The efficacy of gastric lavage and activated charcoal following 

piperazine designer drugs ingestion has not been assessed formally but is unlikely to be 

of clinical importance in patients presenting more than 1 h after ingestion (Schep et al., 

2011). These patients should be observed for 6-8 h post-BZP ingestion in case of delayed 

seizures. Seizures should be treated with benzodiazepines and airway management. 

Barbiturates may be required in status epilepticus (Gee et al., 2005). Antipsychotics have 

not usually been recommended as first line agents for the control of agitation as they may 

interfere with thermoregulation, precipitate extrapyramidal side-effects including dystonic 

reactions, or induce cardiac dysrhythmias or hypotension (Schep et al., 2011).  

If control of blood pressure is required, intravenous isosorbide dinitrate, 

nitroglycerine, -adrenergic blocking agents or sodium nitroprusside should be 

administered until blood pressure elevation is controlled. Clonidine has also been used 

successfully to control blood pressure in a patient with BZP poisoning (Gee et al., 2010; 

Schep et al., 2011). 
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The use of designer drugs has substantially increased since the 1990s. They have 

been produced clandestinely with the intent of eliciting feelings of euphoria similar to those 

experienced with the use of controlled substances and the internet has been primarily 

used in the production, sale, and purchase of these compounds. Among these new 

substances, piperazine designer drugs emerged in the market in the early 2000s. In the 

drug scene, piperazines have the reputation of being safe. Although several reports 

indicate a potential risk to humans, there are presently no studies regarding their toxicity 

at the cellular level that could help understanding the detrimental effects of these drugs. 

The overall aim of the present thesis was to study the toxicity of the piperazine designer 

drugs BZP, TFMPP, MeOPP and MDBP using different in vitro models.  

The strategy pursued to achieve the main objective proposed comprised the 

following steps: 

a) To evaluate the potential cardiotoxicity of BZP, TFMPP, MeOPP and MDBP in the rat 

cardiomyoblast H9c2 cell line. 

b) To evaluate the potential neurotoxicity of BZP, TFMPP, MeOPP and MDBP in human 

neuroblastoma SH-SY5Y differentiated cells. 

c) To evaluate the potential hepatotoxicity of BZP, TFMPP, MeOPP and MDBP in the 

human hepatoma cell lines, HepG2 and HepaRG, and in primary rat hepatocytes. 

d) To predict hepatotoxic mechanisms with a toxicogenomic approach using sandwich 

cultured rat hepatocytes. 
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Abstract 

Background and purpose 

Abuse of synthetic drugs is widespread worldwide. Studies indicate that piperazine 

designer drugs act as dopaminergic and serotonergic substrates in the brain. This work 

aimed to investigate the cytotoxicity of N-benzylpiperazine (BZP), 1-(3-

trifluoromethylphenyl)piperazine (TFMPP), 1-(4-methoxyphenyl)piperazine (MeOPP) and 

1-(3,4-methylenedioxybenzyl)piperazine (MDBP) in the differentiated human 

neuroblastoma SH-SY5Y cell line. 

Experimental approach  

 Cytotoxicity was evaluated after 24 h incubations through the MTT reduction and 

neutral red uptake assays. Oxidative stress (ROS/RNS production and GSH content) and 

energetic (ATP content) parameters, as well as intracellular Ca2+, mitochondrial 

membrane potential, DNA damage (commet and LMW assays) and cell death mode were 

also evaluated. 

Key results 

Complete cytotoxicity curves were obtained after 24 h incubations with each drug. 

A significant decrease in intracellular total GSH content was noted for all the tested drugs. 

All drugs caused a significant increase of intracellular free Ca2+ levels, accompanied by 

mitochondrial hyperpolarization. However, ATP levels remained unchanged. The 

investigation of cell death mode revealed a predominance of early apoptotic cells. The 

commet and the LMW assays revealed that, under our experimental conditions, 

piperazine designer drugs elicited cytotoxicity but not genotoxicity in differentiated SH-

SY5Y cells.  

Conclusions and implications 

Among the tested drugs, TFMPP seemed to be the most cytotoxic. Overall, 

piperazine designer drugs are potentially neurotoxic compounds, supporting concerns on 

risks associated with the abuse of these drugs.  
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Abbreviations 

5-HT, serotonin; % TDNA, percentage of DNA in the comet tail; ATP, adenosine 

triphosphate; BZP, N-benzylpiperazine; BSA, bovine serum albumin; DAT, dopamine 

transporter; DCFH-DA, dichlorodihydrofluorescein diacetate; DCFH, 

dichlorodihydrofluorescein; DMEM, Dulbecco’s modified Eagle’s medium; DTNB, 5,5’-

dithio-bis(2-nitrobenzoic) acid; EDTA, ethylenediaminetetracetic acid; FBS, fetal bovine 

serum; GSH, reduced glutathione; GSSG, oxidized glutathione; LMW, low molecular 

weight; mCPP, 1-(3-chlorophenyl)piperazine; MDBP, 1-(3,4-

methylenedioxybenzyl)piperazine; MDMA, 3,4-methylenedioxymethamphetamine; 

MeOPP, 1-(4-methoxyphenyl)piperazine; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide; β-NADPH, reduced β-nicotinamide adenine dinucleotide; 

NEAA, non-essential aminoacids; pFPP, 1-(4-fluorophenyl)piperazine; PI, propidium 

iodide; ROS, reactive oxygen species; RNS, reactive nitrogen species; SERT, serotonin 

transporter; TFMPP, 1-(3-trifluoromethylphenyl)piperazine; TMRE, tetramethylrhodamine 

ethyl ester perchlorate; TNB, 5-thio-2-nitrobenzoic acid; TPA, 12-O-tetradecanoylphorbol-

13-acetate 

 

Introduction 

 Designer drugs, synthethic drugs, new psychoactive substances or, more recently, 

legal highs, are terms used to designate a class of substances synthesized from chemical 

precursors to produce compounds with similar effects but structurally different from 

controlled substances. The abuse of designer drugs has increased substantially since the 

1990s. They have been produced clandestinely and the internet has been used for the 

production, sale and purchase of these compounds. It is estimated that more than 70% of 

users of legal highs manifest adverse effects, with approximately 5% of these individuals 

requiring hospitalization (Bilinski et al., 2012; Albertson, 2013). Among these new 

substances, piperazine designer drugs emerged in the market in the early 2000s. They 

can be divided into two classes, the benzylpiperazines, such as N-benzylpiperazine (BZP) 

and its methylenedioxy- analogue 1-(3,4-methylenedioxybenzyl)piperazine (MDBP), and 

the phenylpiperazines, such as 1-(3-chlorophenyl)piperazine (mCPP), 1-(4-

fluorophenyl)piperazine (pFPP), 1-(3-trifluoromethylphenyl)piperazine (TFMPP), and 1-(4-
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methoxyphenyl)piperazine (MeOPP) (figure 1). Generally, they are consumed as 

capsules, tablets or pills but also in powder or liquid forms (Gee et al., 2005) under 

several names, such as “Rapture,” “Frenzy,” “Bliss,” “Charge,” “Herbal ecstasy,” “A2,” 

“Legal X”, “Legal E” or simply party pills. Very often these are mixtures of different 

piperazines combined with adulterants including caffeine, vitamins or even drugs, such as 

3,4-methylenedioxymethamphetmine (MDMA, “Ecstasy”) and cocaine (Staack et al., 

2007).  

 

Figure 1. Chemical structure of some piperazine designer drugs. 

 

The most commonly abused piperazines are BZP and TFMPP. TFMPP acts both 

presynaptically, as a substrate releaser at the serotonin transporter (SERT), and as a non-

selective 5-HT receptor agonist. On the other hand, BZP acts on central dopaminergic 

substrates such as D1-like receptors and dopamine transporters (DATs). It has been 

reported that the combined use of BZP and TFMPP in pills (mixed at a 2:1 ratio, in most 

cases) mimics the effects of MDMA in humans. It is therefore believed that this 

combination aggregates the stimulant effect of BZP, through its dopaminergic action, with 

the hallucinogenic effects of TFMPP, via serotonergic activation. Less information is 

available on MeOPP and MDBP derivatives, however they have relatively high 
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monoamine reuptake and releasing activities, as revealed in rat brain synaptossomes (for 

review see Arbo et al., 2012). 

The nervous system is particularly sensitive to toxic insults due to a number of 

intrinsic characteristics, such as dependence upon aerobic metabolism, the presence of 

axonal transport, or the processes of neurotransmission. Piperazine designer drugs cross 

the blood-brain barrier and animal studies reported that tissue concentrations were up to 

40 times higher than blood for BZP and 385 times higher for TFMPP (Antia et al., 2009), 

indicating that they achieve high tissue concentrations. High plasma levels of BZP were 

associated with seizures in party pills abusers (Gee et al., 2008). In case-reports, 

neurobehavioral symptoms already described include psychotic episode (Austin and 

Monasterio, 2004), dissociative symptoms (Wood et al., 2008), status epilepticus (Gee et 

al., 2010), anxiety, agitation and drowsiness (Kovaleva et al., 2008). There is one case of 

death after BZP intake in who a 23 year-old woman died after a massive brain oedema, 

but the patient ingested MDMA concomitantly (Balmelli et al., 2001), and therefore an 

inequivocal direct relationship between BZP intake and death could not be established. 

Notwithstanding, in the drug scene, piperazines have the reputation of being safe, 

and there are presently no studies regarding their neurotoxicity that could help 

understanding the aforementioned detrimental effects of these drugs. Thus, the aim of this 

work was to study the in vitro neurotoxicity of the piperazine designer drugs BZP, TFMPP, 

MeOPP, and MDBP using the differentiated human neuroblastoma SH-SY5Y cell line. 

 

Methods 

 

Chemicals 

 N-Benzylpiperazine (BZP, 99.3% purity) was purchased from Chemos GmbH 

(Regenstauf, Germany), 1-(3-trifluoromethylphenyl)piperazine (TFMPP, 98% purity) was 

acquired from Alfa Aesar (Karlsruhe, Germany), 1-(4-methoxyphenyl)piperazine (MeOPP, 

96% purity) was purchased from Acros Organics (New Jersey, USA), and 1-(3,4-

methylenedioxybenzyl)piperazine (MDBP, 97% purity) was purchased from Aldrich 

Chemistry (Steinheim, Germany). Heat inactivated fetal bovine serum (FBS), trypsin 

(0.25%)-ethylenediamine tetraacetic acid (EDTA) (1 mM), antibiotic (10,000 U/mL 
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penicillin, 10,000 µg/mL streptomycin), Hanks balanced salt solution (HBSS), and 

phosphate buffer (PBS) and non-essential aminoacids (NEAA) were obtained from Gibco 

Laboratories (Lenexa, KS, USA). Fluo-3 AM and SyberGold were obtained from Molecular 

Probes (Eugene, OR). Agarose was obtained from Bioron (Ludwigshafen, Germany). 

Flow cytometry reagents (BD Facs-FlowTM and Facs-CleanTM) were purchased from BD 

Biosciences (Becton, Dickinson, and Company, San Jose, CA, USA). All other chemicals 

and reagents were obtained from Sigma-Aldrich (St. Louis, USA) 

 

Cell culture and differentiation 

SH-SY5Y cells (ATCC, Manassas, VA, USA) were routinely cultured in 25 cm2 

flasks (Corning Costar, Corning, NY, USA) using DMEM with GlutMAX™ and 4.5 g/L 

glucose, supplemented with 10% heat inactivated FBS, 1% NEAA, 100 U/mL of penicillin, 

and 100 µg/mL of streptomycin. Cells were maintained at 37 °C in a humidified 5% CO2-

95% air atmosphere. Cultures were subcultivated weekly by trypsinization (0.25% 

trypsin/EDTA). The SH-SY5Y cells used in all experiments were taken between the 21st 

and 31st passages. To increase the dopaminergic neuronal phenotype, SH-SY5Y cells 

were differentiated as described previously (Barbosa et al., 2014a,b). Briefly, cells were 

seeded at an initial density of 25,000 cells/cm2, in complete medium containing 10 µM 

retinoic acid, and cultured for 3 days. After seeding, the final volume of medium in 48- and 

6-well culture plates (Corning Costar, Corning, NY, USA) was 250 µL and 2 mL, 

respectively. After 3 days in vitro, 50 or 400 µL of medium containing 480 nM 12-O-

tetradecanoylphorbol-13-acetate (TPA) were added to each well of the 48- or 6-well 

culture plates (80 nM final TPA concentration), respectively, and cells were cultured for 

another 3 days. Stock solutions of retinoic acid (10 mM) and TPA (80 µM) were prepared 

in DMSO. Final concentration of DMSO in each well was 0.2% (v/v). 

 

Cytotoxicity assays 

The cytotoxicity was evaluated through the MTT reduction and NR uptake assays. 

Cells were seeded at a density of 100,000 cells/mL in 48-well plates (final volume of 250 

µL; ~25,000 cells/cm2). Stock solutions of BZP were made up in PBS. Stock solutions of 

TFMPP, MeOPP and MDBP were made in DMSO. In these cases, 0.1% DMSO in culture 

medium was used as negative control. All stock solutions were stored at -20 °C and 
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freshly diluted on the day of the experiment. Concentration-response curves were 

obtained incubating the cells with 0 – 20 mM of BZP, TFMPP, MeOPP, or MDBP for 24 h 

at 37°C. Triton X-100 1% was used as positive control. 

 

MTT reduction assay 

 The MTT reduction assay was performed as previously described (Barbosa et al., 

2014b). This assay measures cellular dehydrogenases activity, an indicator of 

metabolically active mitochondria, and therefore of cell viability. After the 24h incubation 

period, the cells were incubated at 37°C with fresh medium containing 0.5 mg/mL MTT. 

After 3 h incubation, the cell culture medium was removed, and the formed formazan 

crystals dissolved in DMSO. The absorbance was measured at 550 nm in a multi-well 

plate reader (BioTek Instruments, Vermont, USA). Results were presented as percentage 

of cell death versus concentration. All drugs were tested in 3 independent experiments 

with each concentration tested in 6 replicates within each experiment. 

 

Neutral red (NR) uptake assay 

The NR uptake assay was performed as described by Arbo et al. (2014). At the 

end of 24 h incubations of differentiated SH-SY5Y cells, the medium was replaced by 

fresh medium containing 50 µg/mL NR. The cells were incubated at 37°C for 3 h. 

Thereafter, the cells were lysed with a 50% ethanol:1% glacial acid acetic solution. The 

absorbance was measured at 540 nm in a multi-well plate reader. The percent cell death 

relative to the control cells was used as the cytotoxicity measure. All drugs were tested in 

3 independent experiments with each concentration tested in 6 replicates within each 

experiment. 

 

Measurement of intracellular reactive oxygen (ROS) and nitrogen (RNS) species 

The intracellular ROS and RNS production was monitored by means of the DCFH-

DA assay as previously described (Barbosa et al., 2014b). Cells were seeded as 

described for cytotoxicity and differentiated for 6 days. The cells were incubated with the 

piperazine designer drugs (500 or 1000 µM BZP, 5, 50 or 100 µM TFMPP, and 250 or 500 
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µM MeOPP or MDBP) at 37 °C for 24 h. H2O2 (150 µM) was used as a positive control. 

Fluorescence was recorded on a fluorescence microplate reader set to 485 nm excitation 

and 530 nm emission at times 0, 1, 2, 3, 4, 5, 6, 7, 8, and 24 h after incubation. The data 

obtained were calculated as fold increase over control conditions from 3 independent 

experiments with each concentration tested in 3 replicates within each experiment. 

 

Measurement of intracellular glutathione levels 

Cells were seeded at a density of 119,000 cells/mL in 6-well plates (final volume of 

2 mL, ~25,000 cell/cm2) and differentiated for 6 days. Cells were incubated at 37°C with 

the piperazine designer drugs (500 or 1000 µM BZP, 5, 50 or 100 µM TFMPP, and 250 or 

500 µM MeOPP or MDBP). After a 24 h incubation period, the medium was removed and 

the cells were scraped with PBS in ice (pH=7.4). After centrifugation (210 g, 5 min, 4 °C), 

the supernatant was removed and the cell pellet was lysed with 5% HClO4 and centrifuged 

(16,000 g, 10 min, 4 °C). The tGSH levels were evaluated by the DTNB/GSSG reductase 

assay, as previously described (Barbosa et al., 2014b). The stoichiometric formation of 5-

thio-2-nitrobenzoic acid (TNB) was followed every 10 s for 3 min at 415 nm and at 30 °C, 

and then compared with a standard curve. For the determination of GSSG, 10 µL of 2-

vinylpyridine were added to 200 µL aliquots of the acidic supernatants and mixed 

continuously for 1 h, in ice, for derivatization of the sulfhydryl groups (SH). GSSG was 

then measured by the same DTNB-GSH reductase recycling assay. The GSH content 

was calculated according to the formula: [GSH = tGSH – (2 x GSSG)]. The final results 

were expressed as % of control from 5 independent experiments with each concentration 

tested in 3 replicates within each experiment. 

 

Measurement of intracellular ATP levels 

Cells were seeded, treated, and incubated following the same protocol used for the 

measurement of GSH levels. After centrifugation (210 g, 5 min, 4 °C), the supernatant 

was removed. The pellet was lysed with 5% HClO4, centrifuged (16,000 g, 10 min, 4 °C), 

and the supernatant obtained was frozen at -20°C until further determination of the ATP 

intracellular content. The ATP levels were quantified by a bioluminescence assay, as 

described by Rossato et al. (2013). The emitted light intensity was determined using a 

luminescence microplate reader and compared with a standard curve. The final results 
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were expressed as % of control from 5 independent experiments with each concentration 

tested in 2 replicates within each experiment. 

 

Flow cytometry analysis of intracellular Ca2+ levels 

Intracellular Ca2+ levels were evaluated with the sensitive fluorochrome Fluo3-AM. 

A protocol previously described (Barbosa et al., 2014b) was used with minor 

modifications. Cells were seeded at a density of 119,000 cells/mL in 6-well plates (final 

volume of 2 mL, ~25,000 cells/cm2). After 6 days of differentiation, the medium was 

replaced by fresh medium containing 100 or 350 µM BZP, 0.5, 1 or 5 µM TFMPP, and 25 

or 50 µM MeOPP or MDBP. Twenty-four hours after exposure, the cells were harvested 

by trypsinization (0.25% trypsin/EDTA), centrifuged (300 g, 5 min, 4 °C), and then loaded 

with 10 μM Fluo3-AM in 50 μL serum-free DMEM without phenol red, for 30 min, at 37 °C, 

in a water bath with shaking. After this incubation period, the cells were centrifuged (300 

g, 5 min, 4 °C) washed with HBSS (with Ca2+ and Mg2+), centrifuged again and kept on ice 

until flow cytometry analysis. 

Sample analysis was performed in a FACSCaliburTM flow cytometer (BD, CA, 

USA), equipped with a 488 nm argon ion laser, using CellQuest software (BD 

Biosciences). The green fluorescence of Fluo3 was measured by a 530 ± 15 nm band-

pass filter (FL1). After resuspending the cell pellet in HBSS (with Ca2+ and Mg2+) with 0.5 

μg/mL propidium iodide (PI) (after permeating dead cells, PI interlaces with the nucleic 

acid helix with consequent increase in fluorescence intensity emission at 615 nm), data 

from at least 15,000 viable cells (based on their forward and side light scatter) were 

collected from each test condition. In order to detect a possible contribution from cells 

auto-fluorescence to the analyzed fluorescence signals, portions of cell suspension (with 

or without exposure to the drugs), which were not incubated with Fluo3-AM, were 

analyzed in the 530 ± 15 nm band-pass filter (FL1). Results are presented as Fluo3 

fluorescence intensity (% of control) from at least 6 independent experiments with each 

concentration tested in 2 replicates within each experiment. 
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Assessment of mitochondrial membrane potential (∆ψm) 

 Assessment of mitochondrial integrity was performed by measuring TMRE 

inclusion as described by Dias da Silva et al. (2013). Cells were seeded as described for 

cytotoxicity. After 6 days of differentiation, the medium was gently aspirated and the cells 

were incubated with the piperazine designer drugs (500 or 1000 µM for BZP, 5, 50 or 100 

µM for TFMPP, and 250, 500, 1000 or 2000 µM MeOPP or MDBP). Fluorescence was 

measured on a fluorescence microplate reader set to 544 nm excitation and 590 nm 

emission. The data obtained were calculated as the percentage of control conditions from 

at least 6 independent experiments with each concentration tested in 2 replicates within 

each experiment.  

 

Cell death mode: apoptosis vs necrosis 

 Cell death analysis was performed by staining differentiated SH-SY5Y cells with 

Annexin V-FITC and PI (FITC Annexin V Apoptosis Detection Kit, BD Biosciences, USA) 

as described by Arbo et al. (2014). To perform the assay, SH-SY5Y cells were seeded at 

a density of 100,000 cells/mL in 48-well plates (final volume of 250 µL, ~25,000 cells/cm2). 

After 6 days of differentiation, the cells were incubated with 17.5 µM BZP, 0.92 µM 

TFMPP, 3.7 µM MeOPP and 2.3 µM MDBP. After the 24 h incubation period, the medium 

was removed and 100 µL binding buffer was added, followed by 2 µL PI and 3 µL annexin 

V-FITC. Plates were incubated in the dark at room temperature. After 15 min, the cells 

were observed under a fluorescence microscope (Nikon, Tokyo, Japan). Five pictures per 

well were taken and the percentages of early apoptotic cells were estimated by counting 

the annexin V-positive but PI-negative cells, whereas the percentages of late apoptotic 

cells were estimated by counting the number of cells which were both annexin V-positive 

and PI-positive. Necrotic cells were the PI-positive but annexin V-negative ones. 

Campthotecin 12 µM was used as a positive control for apoptosis. The results are 

expressed as % cell population from 4 independent experiments.  

 

Comet Assay 

 Cells were seeded as described for cytotoxicity. After 6 days of differentiation, the 

medium was aspirated and the cells were incubated with the piperazine designer drugs 

(500 or 1000 µM for BZP, 5, 50 or 100 µM for TFMPP, and 250 or 500 µM MeOPP or 
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MDBP). At the end of the 24 h incubation period, cells were harvested by trypsinization 

(0.05% trypsin/EDTA), centrifuged (300 g, 5 min, 4 °C), and then ressuspended in HBSS 

(without Ca2+ and Mg2+). The alkaline comet assay was performed as described by Singh 

et al (1988) with minor modifications (Costa el al., 2008). A medium-throughput version of 

the comet assay, 12-Gel Comet Assay Unit ™ (Severn Biotech Ltd) was used. Briefly, two 

aliquots of 5 μl of each cell suspension were dispersed in 0.6% (w/v) low-melting point 

agarose in PBS and dropped onto a frosted slide pre-coated with 1% layer of normal 

melting point agarose. Slides were immersed into cold (4ºC) lysis solution (2.5 M NaCl, 

100 mM Na2EDTA, 10 mM Tris-base, 0.25 M NaOH, pH 10; 1% Triton X100) for at least 1 

h at 4 ºC in the dark. Slides were then incubated with electrophoresis solution (1 mM 

Na2EDTA, 300 mM NaOH) for 20 min at 4 ºC before electrophoresis, carried out for 20 

min at 30 V (1.1 V/cm). After that, the slides were neutralised by washing them in PBS for 

10 min and rinsed in distilled water for a further 10 min. DNA was fixed by immersing the 

slides in 70% ethanol for 15 min and in absolute ethanol for a further 15 min before letting 

them dry overnight. Dryed slides were stained with SYBR®Gold and 100 cells (50 cells 

per gel) were scored using the semi-automated image analysis system Comet Assay IV 

(Perceptive Instruments, UK). Microscopic analyses were performed on a Nikon Eclipse 

E400 Epi-fluorescence microscope. The percentage of DNA in the comet tail (% TDNA) 

was the DNA damage parameter evaluated to describe comet formation (Doktorovova et 

al., 2014). Concurrently with the comet assay, an extra and identical replicate comet slide 

was prepared, lysed and immediately fixed and stained without electrophoresis for 

evaluation of the cytotoxicity through the Low Molecular Weight (LMW) DNA diffusion 

assay (Vasquez, 2010). Gels were prepared from at least 4 independent experiments with 

each concentration tested in 2 replicates in each experiment. 

 

Statistical analysis 

 For the cytotoxicity evaluation, concentration-response curves were fitted by the 

least squares method. The comparisons between curves (bottom, top and logEC50) were 

made using the extra sum-of-squares F test. Results of all other biochemical measures 

are presented as mean ± standard error of the mean (SEM) from at least 3 independent 

experiments. Normality of the data distribution was assessed by the Kolmogorov–Smirnov 

test. Statistical comparisons between groups were performed with one-way ANOVA 

(when data followed normal distribution) or the Kruskal–Wallis test. Significance was 
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accepted at p<0.05. Details of the statistical analysis are provided in the text and legend 

of the figures. 

 

Results 

Piperazine designer drugs elicited concentration-dependent cytotoxicity in differentiated 

SH-SY5Y cells 

 Figure 2 presents the obtained concentration-response curves for MTT (A) and NR 

(B) assays. All tested drugs produced concentration-dependent cytotoxic effects. A 

summary of the calculated EC50 values (representing the half-maximum-effect 

concentrations from the fitted curves) is presented in Table 1. Significant differences were 

observed for the EC50 values of the curves. It was evident that TFMPP was the most 

cytotoxic of the tested piperazine designer drugs. For the NR uptake assay, the EC50 

values were higher than those obtained for the MTT assay. However, the cytotoxicity 

profile observed was quite similar to those observed for the MTT reduction assay (Table 

1, figure 2B). 

 

 

Figure 2. Concentration-response (cell death) curves of the tested piperazine designer drugs after 
24 h incubation in differentiated SH-SY5Y cells at 37°C. Cell viability was evaluated by the MTT 
reduction (A) and the neutral red uptake (B) assays. Data are presented as percentage of cell 
death relative to the respective negative controls. Three independent experiments were performed 
(six replicates tested for each concentration within each experiment). Curves were fitted using least 
squares as the fitting method. 
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Table 1. EC50 values of the piperazine designer drugs 

Designer Drug EC50 MTT (µM) EC50 NR (µM) 

BZP 721.4#$& 4920#$&

TFMPP 41.0*$& 386*$&

MeOPP 274.7# 3819*#

MDBP 144.3*# 3954*#

* compares to BZP, # compares to TFMPP; $ compares to MeOPP; & compares to MDBP. The cytotoxicity 
curves were fitted using least squares as the fitting method. Comparisons were made using the extra sum-of-
squares F test (p<0.05). 

Piperazine designer drugs elicited tGSH depletion in differentiated SH-SY5Y cells 

 Under our experimental conditions no significant changes in reactive species 

generation were found for any of the tested piperazine drugs (data not shown). 

Changes in the intracellular amounts of GSH and GSSG are strong indicators of 

redox disturbances. Intracellular levels of oxidized glutathione (GSSG) were found to be 

below the quantification limit of the method (0.25 µM). Therefore, only intracellular total 

GSH results are presented. Piperazine designer drugs elicited a significant (p<0.01, 

ANOVA/Bonferroni) concentration-dependent depletion of the intracellular total GSH 

levels (figure 3). 

 

Figure 3. Intracellular contents of total glutathione (tGSH) in differentiated SH-SY5Y cells after 24 
h incubations with the tested piperazine designer drugs at 37 °C. Results are expressed as % 
control±SEM (n=5 independent experiments run in triplicates). Statistical comparisons were made 
using one-way ANOVA/Bonferroni post-hoc test (** p<0.01; *** p<0.001 vs control). 
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Piperazine designer drugs disturbed Ca2+ homeostasis  

 Intracellular Ca2+ homeostasis is critical for maintaining the normal cell function 

and variations in intracellular Ca2+ levels can determine cell survival or death (Oliveira and 

Gonçalves, 2009). As depicted in figure 4, incubation of differentiated SH-SY5Y cells with 

piperazine designer drugs significantly increased the intracelular Ca+2 levels in a 

concentration-dependent manner (p<0.05, Kruskal-Wallis/Dunn’s). 

 

Figure 4. Intracellular levels of Ca2+ in differentiated SH-SY5Y cells after 24 h incubations with the 
tested piperazine designer drugs at 37 °C. Results are expressed as % control±SEM (n=6 
independent experiments run in duplicate). Statistical comparisons were made using the non-
parametric Kruskal-Wallis/Dunn’s post hoc test (* p<0.05; ** p<0.01; **** p<0.0001 vs control). 

 

Piperazine designer drugs hyperpolarized mitochondria  

As shown in figure 5, a significant increase in ∆ψm (p<0.05, ANOVA/Bonferroni) 

can be observed after 24 h incubations of differentiated SH-SY5Y cells. 



Study II: In vitro neurotoxicity evaluation of piperazine designer drugs in differentiated human 
neuroblastoma SH-SY5Y cells 

 

81 

 

Figure 5. Mitochondrial membrane potential (∆ψm) measured as TMRE incorporation in 
mitochondria of differetiated SH-SY5Y cells after 24 h incubations with the tested piperazine 
designer drugs at 37 °C. Results are expressed as % control±SEM (n=6 independent experiments 
run in duplicate). Statistical comparisons were made using one-way ANOVA/Bonferroni post-hoc 
test (* p<0.05; *** p<0.001 vs control). 

 

Energetic status was evaluated through the measurement of intracellular ATP 

levels, which remained unaltered under our experimental conditions at the concentrations 

tested. 

 

Piperazine designer drugs induced apoptosis in differentiated SH-SY5Y cells 

 The mode of cell death was investigated with the piperazine designer drugs at non 

cytotoxic concentrations. Figure 6 depicts the relative number (% of cell population) of 

viable, early apoptotic, late apoptotic and necrotic differentiated SH-SY5Y cells. At the 

tested concentrations, a high number of cells presenting early apoptosis features, i.e., 

stained only with annexin V-FITC could be observed relative to the control cell population. 

For TFMPP and MeOPP, also a significant number of cells that were double-stained with 

both annexin V-FITC and PI were found after the drug incubations. These cells are likely 

undergoing secondary necrosis and present features of both types of cell death. The 

number of necrotic cells did not significantly differ from control cells for any of the 

piperazine designer drugs. 
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Figure 6. Annexin V/PI staining of differentiated SH-SY5Y cells after 24 h incubations with the 
tested piperazine designer drugs at 37 °C. The differentiated SH-SY5Y cell population was divided 
into alive, early apoptotic (annexin V+/PI-), late apoptotic (annexin V+/PI+), and necrotic (annexin 
V-/PI+) cells. Results are expressed as % cell population±SEM (n=3 independent experiments). 
Statistical comparisons were made using one-way ANOVA/Bonferroni post-hoc test (* p<0.05; ** 
p<0.01; *** p<0.001 vs control). 

 

Piperazine designer drugs elicited cytototoxicity but not genotoxicity in differentiated SH-

SY5Y cells 

 Genotoxicity is the capacity of a compound or material to damage DNA. DNA 

damage is generally considered as the underlying cause of hereditary changes. However, 

cell death also leads to DNA fragmentation. Depending on the degree and stage of 

apoptosis/necrosis of the cells at the time that the comet slides are prepared, cytotoxicity-

related DNA fragmentation can contribute to increased DNA migration levels in the total 

cell population that can be misinterpreted as a genotoxic effect (i.e. ‘false positive’) or it 

can contribute to decreasing DNA migration levels (i.e. ‘false negative’) due to the loss of 

detectable DNA following lysis and electrophoresis (Vasquez, 2010). Therefore, it must be 

ascertained whether detected positive responses in the comet assay are due to 

genotoxicity rather than cytotoxicity.  

As shown in figure 7A, piperazine designer drugs did not induce DNA breaks in the 

alkaline comet assay under our experimental conditions. However there was a significant 

increase (p<0.01, ANOVA/Bonferroni) in DNA migration in LMW DNA diffusion test as 

depicted in figure 7B. The DNA degradation caused by endonuclease activity during 
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apoptosis or necrosis indicates that piperazine designer drugs caused cytotoxicity, but not 

genotoxicity, to the tested cells. 

 

Figure 7. DNA damaged in alkaline comet assay (A) and low molecular weight (LMW) DNA 
diffusion assay (B) in differentiated SH-SY5Y cells after 24 h incubations with the tested piperazine 
designer drugs. Values are expressed as means±SEM from 4 independent experiments (n=4). 
Statistical comparisons were made using one-way ANOVA/Bonferroni post-hoc test (** p<0.01; *** 
p<0.001 vs control). 

  

Discussion & Conclusions 

 For the first time, we demonstrate that piperazine designer drugs produce 

cytotoxicity to differentiated SH-SY5Y cells. These cells are a fairly homogeneous 

neuroblast-like cell line. They exhibit neuronal marker enzyme activity (tyrosine and 

dopamine-β-hydroxylases), specific uptake of norepinephrine (NA), and express 

neurofilament proteins. They also express opioid, muscarinic, and nerve growth factor 

receptors. Retinoic acid/TPA-differentiated SH-SY5Y cells develop a dopaminergic 

phenotype and have higher levels of tyrosine hydroxylase, DAT (Barbosa et al., 2014b), 

and dopaminergic D2 and D3 receptors but lower levels of VMAT than undifferentiated 

cells (Xie et al., 2010).  

Among the four tested piperazine designer drugs, TFMPP was the most potent 

cytotoxic compound. The MTT reduction and the NR uptake assays were used to 

determine the cytotoxicity profile of the piperazine designer drugs. In spite of the 

differences in the obtained EC50 values, the cytotoxicity profile of the drugs was similar for 

the two tests. Discrepancies among different viability tests are quite commonly noted in 

the literature (Putnam et al., 2002; Weyermann et al., 2005; Pohjala et al., 2007; Kim et 
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al., 2009; Zwolak, 2013) and were also observed in our previous study on the in vitro 

cardiotoxicity of piperazine designer drugs (Arbo et al., 2014). The difference between 

these two assays is that MTT measures the activity of succinate dehydrogenase, an 

enzyme present in the mitochondrial inner membrane (Putnam et al., 2002), while NR is 

based on the storage of NR dye in the lysosomes and Golgi apparatus (Zwolak, 2013). 

Any damage to lysosomes/Golgi apparatus decreases the cellular accumulation of the 

dye. On the other hand, mitochondrial succinate dehydrogenase is sensitive to local 

changes in ion concentrations and flux. It is not uncommon for some chemicals to induce 

an increase in cellular metabolic activity, which would result in increased mitochondrial 

succinate dehydrogenase activity (Putnam et al., 2002). Thus, as piperazine derivatives 

alter ionic concentration through the disruption of Ca2+ homeostasis, MTT is probably not 

the best test to evaluate the cytotoxicity of these drugs, but could be a good marker of the 

mitochondrial disfunction. 

 Oxidative stress is a well-described mechanism underlying the toxicity of many 

xenobiotics, which plays an essential role in the cytotoxic effects of several amphetamine 

derivatives that induce the formation of highly reactive species (Barbosa et al., 2014b; 

Dias da Silva et al., 2014). Interestingly, piperazine designer drugs did not induce 

significant changes in reactive species formation. In spite of this, our data indicate a 

decrease in intracelular tGSH content after 24 h incubation with all piperazine designer 

drugs. GSH has an important protective role in the cell. Changes in the intracellular 

amounts of GSH and GSSG are therefore strong indicators of redox disturbances. A 

previous in vitro study showed that these drugs do not interfere with the activity of GSH 

reductase (GR), the enzyme responsible for the reduction of GSSG into GSH (Arbo et al., 

2014). As a protection of the cells against oxidative stress, the GSSG formed through the 

free radicals neutralizing reactions of GSH could be extruded to the extracellular medium, 

contributing to the decrease in the tGSH levels. Also, depletion may be caused by 

inhibition of GSH biosynthesis (Gao et al., 2010), which occurs in the cytosol and involves 

two enzymes: γ‐glutamylcysteine ligase and GSH synthase, the first catalyzing the rate-

limiting step of this biosynthetic pathway (Marí et al., 2013). A key role in GSH 

homeostasis is also played by γ‐glutamyl transpeptidase (GGT), which breaks down 

extracellular GSH and provides cysteine, the rate‐limiting substrate for intracellular de 

novo synthesis of GSH (Zhang et al., 2005). Further studies to clarify the mechanisms 

involved are therefore necessary to better understand the changes in the redox status of 

the cells caused by these piperazine designer drugs.  
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 Apart from ATP synthesis, mitochondrial Ca2+ uptake represents a major function 

of mitochondria, thus regulating Ca2+-dependent signalling pathways (Griffths, 2000). 

Perturbations of sequestration of Ca2+ within the mitochondrial matrix have been reported 

to play an integral role in glutamatergic excitotoxic injury (Vergun et al., 1999; Vergun et 

al., 2001). Alterations in cytosolic Ca2+ levels can be induced by several factors. The best 

known is that mitochondria and other intracellular Ca2+ stores, such as the endoplasmic 

reticulum, become overfilled with Ca2+, leading to exaggerated increases in cytosolic Ca2+ 

levels. Modulation of Ca2+ re-uptake due to changes in Ca2+-ATPase expression or Ca2+-

ATPase inhibition are also responsible for increasing cytosolic Ca2+ levels. Although the 

effects of excess cytosolic Ca2+ can initially be subtle and have negligible effects, with 

increasing age (or chronic low level toxicological exposure), the Ca2+ homeostatic 

machinery becomes less effective, ultimately leading to Ca2+-induced neuronal cell death 

(Al-Mousa and Michelangeli, 2012). Piperazine designer drugs altered the Ca2+ 

homeostasis, increasing free Ca2+ levels. In the same cellular model, MDMA and its 

metabolites increased the intracellular free Ca2+ levels but when an intracellular Ca2+ 

quelator was used, it was shown that Ca2+ did not influence the cell death induced by the 

compounds (Barbosa et al., 2014b). Methadone caused necrotic-like death in SH-SY5Y 

cells after Ca2+ homeostasis perturbation and mitochondrial dysfunction (Perez-Alvarez et 

al., 2010). In our previous study, using H9c2 cardiomyoblasts, piperazine designer drugs 

increased intracellular Ca2+ levels, and led to mitochondrial permeability transition pore 

opening and cell death (Arbo et al., 2014). 

The ∆ψm is the central parameter controlling the accumulation of Ca2+ and ATP 

synthesis. Piperazine designer drugs induced an increase in ∆ψm, which can be seen as 

mitochondrial hyperpolarization. A hyperpolarization of ∆ψm has been previously 

described in hippocampal neurons exposed to staurosporine (Poppe et al., 2001) and 30 

min oxygen glucose deprivation (Iijima et al., 2003), and also in primary rodent cortical 

neurons exposed to HIV-1 regulatory protein transactivator of transcription protein (Perry 

et al., 2005). A positive correlation was established between ∆ψm and neuronal survival, 

with neurons displaying a more pronounced ∆ψm hyperpolarization surviving longer 

(Ward et al., 2007). Hyperpolarization silences DA-containing neurons by inhibiting their 

spontaneous activity, which ultimately controls DA release in the somatodendritic and 

terminal areas. Transient reduction in neuronal activity could be neuroprotective, as it 

lowers ATP consumption necessary to maintain ion gradients, but it may also reduce the 

expression of activity-dependent genes, such as neurotrophins. Notably, the 

hyperpolarized state is also accompanied by intracellular accumulation of Ca2+ and Na+ 
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ions that might initiate a cascade of unfavourable events that establish a permanent 

damage to neurons (Guatteo et al., 2005). According to our findings, the increase in 

intracellular Ca2+ levels may lead to mitochondrial hyperpolarization and this, in turn, to 

the conservation of ATP levels. 

 Apoptotic cells are characterized by a set of distinct morphological changes, which 

can be classified as early and late apoptotic changes. The early marker of apoptosis is the 

release of phosphatidilserine on the cell surface (it is normally concentrated in the luminal 

layer of the cytoplasmic membrane), while, at the later stage, the entire 

phosphatidylserine is flipped on the outer membrane (Kumar et al., 2012). When the rate 

of apoptosis is substantially increased, the cells undergo secondary necrosis (or late 

apoptosis) with breakdown of membrane potential, cell swelling and cell contents release. 

When the cell death mode was investigated, we found a high number of cells that were at 

an early apoptotic stage and a low number of necrotic cells. This indicates that piperazine 

designer drugs probably activate preferentially apoptotic cell death cascade instead of 

necrotic process. 

Apoptotic cell cascade comprise several pathways, the most common involves 

downstream caspase activation. Another important pathway involves calpains, that are 

Ca2+-dependent proteases involved in apoptotic and necrotic processes which could, in 

turn, be activated by piperazine designer drugs due to the increased intracellular Ca2+ 

levels (Jiang et al., 2010). Previous studies in SH-SY5Y cells showed that increased 

intracellular Ca2+ levels induced the degradation of the apoptotic protease-activating 

factor-1 (APAF-1), reducing the ability of cytochrome c to activate caspase-3-like 

proteases and inducing apoptotic pathways dependent on calpains (Reimertz et al., 

2001). This pathway was also observed after incubation of SH-SY5Y cells with prion 

protein fragment PrP-(106-126) (O’Donovan et al., 2001). 

 In conclusion, we describe, for the first time, the potential of piperazine designer 

drugs to induce neurotoxicity in an in vitro model. Among the tested designer drugs, 

TFMPP was the most potent in inducing cytotoxicity. In differentiated SH-SY5Y cells, 

piperazine designer drugs induced cell death by causing disturbances in Ca2+ 

homeostasis, leading to apoptosis. Considering that these drugs have already been 

implicated in human intoxications, further studies are needed not only to clarify the 

mechanisms involved in the observed cytotoxic effects of the isolated drugs but also to 

address the effects of combinations of them. 
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Abstract 

Piperazine derived drugs emerged on the drug market in the last decade and have 

been often found as one of the main psychoactive substances present in tablets and pills 

sold on the internet. The aim of this study was to investigate in vitro the potential 

hepatotoxicity of the designer drugs N-benzylpiperazine (BZP), 1-(3-

trifluoromethylphenyl)piperazine (TFMPP), 1-(4-methoxyphenyl)piperazine (MeOPP) and 

1-(3,4-methylenedioxybenzyl)piperazine (MDBP) in two human hepatic cell lines (HepaRG 

and HepG2) and in primary rat hepatocytes. Cell death was evaluated by the MTT assay, 

after 24h-incubations. Among the tested drugs, TFMPP was the most potent. HepaRG 

cells and primary hepatocytes revealed to be the most and the least resistant cellular 

models, respectively. To ascertain whether the CYP450 metabolism could explain their 

higher susceptibility, primary hepatocytes were co-incubated with the piperazines and the 

CYP450 inhibitors metyrapone and quinidine. Our results support that the CYP450-

mediated metabolism contributes to the detoxification of these drugs. Additionally, we 

further evaluated in primary cells the intracellular contents of reactive species, ATP, 

reduced (GSH) and oxidized (GSSG) glutathione, changes in mitochondrial membrane 

potential (∆ψm) and caspase-3 activation. Overall, an increase in reactive species 

formation, followed by intracellular GSH and ATP depletion, loss of ∆ψm and caspase-3 

activation could be observed for all piperazines, in a concentration-dependent manner. In 

conclusion, piperazine designer drugs produce hepatic detrimental effects that can vary in 

magnitude among the different analogues. The observed cytotoxic effects highlight the 

risk associated with the abuse of these drugs. 

 

Keywords: piperazine designer drugs, hepatotoxicity, HepaRG cells, HepG2 cells, 

primary rat hepatocytes. 
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Introduction 

Piperazine derived drugs emerged on the drug market in last decade and have 

been often found as one of the main psychoactive substances present in tablets and pills 

sold on the internet (Davies et al. 2010). Initially, these drugs were commercialized as a 

legal alternative to 3,4-methylenedioxymethamphetamine (MDMA or ecstasy) but 

nowadays they are prohibited in most countries (Bulcão et al. 2012; Arbo et al. 2012). 

Pharmacologically, piperazine designer drugs present a clear stimulant-like pattern 

of behavioural effects associated with increases in monoamines release (Baumann et al. 

2005; Meririne et al. 2006; Yarosh et al. 2007). Users have experienced amphetamine-like 

sympathomimetic effects including, tachycardia, hypertension, anxiety, vomiting, 

headache, migraine, palpitations, confusion, collapse, and seizures (Gijsman et al. 1998; 

Feutchtl et al. 2004; Gee et al. 2005; Thompson et al. 2010; Lin et al. 2011). Acute 

psychotic episodes and hallucinations (Austin and Monasterio, 2004), severe 

nephrotoxicity (Alansari and Hamilton, 2006), hyperthermia, disseminated intravascular 

coagulation, rhabdomyolysis and renal failure (Gee et al., 2010), sympathomimetic toxicity 

(Wood et al., 2008; Kovaleva et al., 2008), and even a lethal intoxication case with death 

after massive brain oedema (Balmelli et al., 2001) have also occurred. Recent preliminary 

evidence suggest that BZP is highly toxic to heart and kidney cell lines, which may explain 

the symptoms of renal and cardiovascular toxicity in users (Arbo et al., 2012; Monteiro et 

al., 2013, Arbo et al., 2014). Hepatic liver failure has also been reported after BZP intake 

(Cole, 2011; Monteiro et al., 2013). 

Pharmacokinetic data is limited, however, there is evidence indicating that 

piperazine designer drugs are mainly metabolized in the liver, where they can also 

accumulate (Antia et al. 2009), being the phenylpiperazines, such as 1-(3-

trifluoromethylphenyl)piperazine (TFMPP), and 1-(4-methoxyphenyl)piperazine (MeOPP) 

more extensively metabolized than the benzylpiperazines, such as N-benzylpiperazine 

(BZP) and its methylenedioxy-analogue 1-(3,4-methylenedioxybenzyl)piperazine (MDBP) 

(Maurer et al. 2004). They are excreted almost exclusively as metabolites in urine in 

humans and animal models (Maurer et al. 2004) but there is wide variation in the 

excretion rate by different individuals, which can add to the variability of their toxic effects 

(Austin and Monasterio 2004). 
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Hepatocytes are of particular interest as they have a central function in the 

metabolic fate and, consequently, in the process of detoxification and toxification of 

xenobiotics. Also, the liver is known to be one of the main targets for the toxicity of 

amphetamine like-drugs in humans (Carvalho et al. 2010). Therefore, the study of the 

hepatic deleterious effects triggered by piperazine designer drugs is of particular interest. 

The aim of the current work was to evaluate and compare the potential hepatotoxicity of 

BZP, TFMPP, MeOPP, and MDBP in different in vitro models, including human hepatoma 

HepG2 and HepaRG cell lines, and rat primary hepatocytes. 

 

Material and Methods 

Chemicals 

N-Benzylpiperazine (BZP, 99.3% purity) was purchased from Chemos GmbH 

(Regenstauf, Germany), 1-(3-trifluoromethylphenyl)piperazine (TFMPP, 98% purity) from 

Alfa Aesar (Karlsruhe, Germany), 1-(4-methoxyphenyl)piperazine (MeOPP, 96% purity) 

from Acros Organics (New Jersey, USA), and 1-(3,4-methylenedioxybenzyl)piperazine 

(MDBP, 97% purity) from Aldrich Chemistry (Steinheim, Germany). Dulbecco’s modified 

eagle’s medium (DMEM) with high glucose, heat-inactivated fetal bovine serum (FBS), 

0.25% trypsin/1 mM EDTA, antibiotic solution (10,000 U/mL penicillin, 10,000 µg/mL 

streptomycin), Hanks balanced salt solution (HBSS), and phosphate buffer (PBS) were 

purchased from Invitrogen Corporations (Paisley, UK). Unless stated otherwise, all other 

chemicals and reagents were obtained from Sigma-Aldrich (St. Louis, USA). 

 Stock solutions of BZP were made up in PBS. Stock solutions of TFMPP, MeOPP 

and MDBP were made in dimethyl sulfoxide (DMSO). In these cases, DMSO did not 

exceed 1% in culture media and it was used as solvent control. In all experiments, a 

comparison between solvent and negative (cells treated with cell culture medium) control 

was performed and no statistically significant differences between negative and solvent 

controls were observed (p>0.05). All stock solutions were stored at -20 °C and freshly 

diluted on the day of the experiment. 
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Immortalized Cell Culture 

HepG2 cells were kindly provided by Prof. Ricardo Dinis-Oliveira (Department of 

Sciences, Advanced Institute of Health Sciences—North, CESPU, CRL, Gandra, 

Portugal). Cells were routinely cultured in 75 cm2 flasks using DMEM with high glucose 

medium, supplemented with 10% FBS and 1% antibiotic solution. Cells were maintained 

in a humidified 5% CO2 – 95% air atmosphere at 37°C, and the medium was changed 

every 2-3 days. Cultures were passaged by trypsinization (0.25% trypsin/1 mM EDTA) 

when cells reached 70-80% confluence, and were subcultured over a maximum of 10 

passages. For the MTT assay, cells were seeded at a density of 80,000 cells/well onto 96-

well plates (BD Biosciences, Oxford, UK) in a volume of 100 μL of complete culture 

medium, to obtain confluent monolayers within 24 hours. The following day the cells were 

incubated with the test drugs in cell culture medium without FBS. To enable reliable, 

complete concentration–response curves for each drug, HepG2 cells were exposed in 

triplicates to a wide range of concentrations (from 39 μM to 35 mM for BZP; 4.6 μM to 3 

mM for TFMPP; 51.4 μM to 16.36 mM for MeOPP; and 68.5 μM to 30 mM for MDBP), in 

four independent experiments. 

HepaRG cells were purchased from Life Technologies (Invitrogen, France) and 

cultured in 75 cm2 flasks using Williams’ Medium E with L-glutamine, supplemented with 

10% FBS and 1% antibiotic solution, 50 μM hydrocortisone 21-hemisuccinate sodium salt 

and 5 μg/mL insulin. Cells were maintained in a humidified 5% CO2 – 95% air atmosphere 

at 37°C, and the medium was changed every 2-3 days. Cultures were passaged by 

trypsinization (0.25% trypsin/1 mM EDTA) when cells reached 70-80% confluence, and 

were subcultured over a maximum of 10 passages. For the MTT assay, cells were seeded 

at a density of 144,000 cells/well onto 96-well plates (BD Biosciences, Oxford, UK) in a 

volume of 100 μL of complete culture medium and allowed to grow. When cells reached 

confluence, differentiation was induced by replacing the complete culture medium with 

differentiation medium (Williams’ Medium E with L-glutamine with no FBS, supplemented 

with 1% antibiotic solution, 50 μM hydrocortisone 21-hemisuccinate sodium salt, 5 μg/mL 

insulin, and 2% DMSO). The differentiation medium was replaced every 48h, during 15 

days. The following day, HepaRG cells were incubated with the test drugs in culture 

medium without FBS to a wide range of concentrations (from 14 μM to 40 mM for BZP; 1 

μM to 3 mM for TFMPP; 3 μM to 20 mM for MeOPP; and 3 μM to 20 mM for MDBP), in 

triplicates, in eight independent experiments. 
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Animals 

Male Wistar rats with a body weight of 200–250 g were purchased from Charles-

River Laboratories (Barcelona, Spain). The animals had access to food (standard rat 

chow) and tap water ad libitum and were kept under controlled temperature (20±2°C), 

humidity (40 – 60%) and lighting (12 h light/dark cycle conditions). The animals were 

acclimatized in polyethylene cages, for 1 week prior to use. Surgical procedures for the 

isolation of hepatocytes were performed under anesthesia with isoflurane (IsoFlo®, Abbot 

Laboratories, Berkshire, UK), and were carried out always between 10:00 and 11:00 a.m. 

This study was approved by the local committee for the welfare of experimental animals 

and was performed in accordance with national legislation. 

 

Isolation and culture of primary rat hepatocytes 

Hepatocytes isolation was performed by collagenase perfusion as previously 

described (Moldéus et al. 1978) with some modifications. Briefly, after perfusion with a 

chelating agent (600 µM EGTA) to allow the cleavage of the hepatic desmosomes, 

hepatic collagen was hydrolyzed by ex situ perfusion with a 100 U/mL collagenase type 1, 

from Clostridium histolyticum solution supplemented with 5.3 µM CaCl2. The hepatocytes 

were dissociated in Krebs–Henseleit buffer and the obtained suspension was purified by 

low-speed centrifugations and incubated for 30 min, at 4 °C, with 1% antibiotic. The initial 

viability of the isolated hepatocytes suspensions was always above 85%, as estimated by 

the trypan blue exclusion test. A suspension of 5x105 viable cells/mL in complete culture 

medium (William’s E medium supplemented with 10 % FBS, 2 ng/mL insulin, 5 nM 

dexamethasone, 1% antibiotic solution, 10 μg/mL gentamicin, and 0.25 µg/mL 

amphotericin B) was seeded onto 96-well plates (BD Biosciences, Oxford, UK). Cells were 

incubated at 36.5 °C with 5% CO2, overnight for cell adhesion. The following day, the cells 

were incubated in cell culture medium without FBS with a wide range of concentrations 

(from 45 μM to 40 mM for BZP; 0.4 μM to 2.5 mM for TFMPP; 2.22 μM to 20 mM for 

MeOPP; and 2.22 μM to 20 mM for MDBP) of the test drugs for the cytotoxicity 

experiments. Each concentration was tested in triplicate in nine independent experiments. 

Since primary rat hepatocytes proved to be the most sensitive model to the cytotoxicity 

induced by the piperazine designer drugs, all the subsequent assays to clarify the 

hepatotoxic mechanisms were performed in this cellular model by testing three different 

concentrations for each test substance that corresponded to 3 different cytotoxicity levels, 

the EC20, EC40 and EC60 of each drug according to the MTT concentration-response 
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curves. The concentrations tested were: 1.06, 1.66, and 2.78 mM for BZP; 88, 113, and 

152 μM for TFMPP; 1.44, 1.82, and 2.37 mM for MeOPP; and 2.40, 3.18, and 4.38 mM for 

MDBP. 

 

Cytotoxicity Assays 

For the evaluation of cytotoxicity, the MTT reduction assay was performed. The 

MTT assay measures succinate dehydrogenase activity, an indicator of metabolically 

active mitochondria, and therefore of cell viability. A protocol previously described by Dias 

da Silva et al. (2013a) was used with some modifications. Briefly, after 24 h incubations 

with piperazine designer drugs, the medium was removed and fresh medium containing 

0.5 mg/L MTT in HBSS was added. The cells were incubated at 37°C, for 30 min. Then, 

the cell culture medium was removed and the formed formazan crystals dissolved in 100 

μL of DMSO. The absorbance was measured at 550 nm in a multi-well plate reader 

(BioTek Instruments, Vermont, USA) after 15 min shaking. Since MTT is photosensitive all 

steps of the procedure were executed under light protection. Results were graphically 

presented as percentage of cell death related to control versus concentration (mM). 1% 

DMSO was used as solvent control and 1% Triton X-100 as positive control. 

 

Influence of CYP metabolism on piperazine designer drugs cytotoxicity 

To clarify the influence of CYP450 metabolism on the cytotoxicity elicited by the 

tested piperazines, primary rat hepatocytes were seeded at 5x105 viable cells/mL density 

onto 96 well-plates. After 24 h, the cells were co-incubated with each tested piperazine 

designer drug and 500 µM metyrapone (non selective inhibitor of the cytochrome P450) or 

100 µM quinidine hydrochloride monohydrate (CYP2D6 inhibitor) (Turpeinen et al. 2004). 

The CYP2D6 was specifically inhibited because it is the main CYP450 isoenzyme 

responsible for the piperazine designer drug metabolism in vivo (Staack and Maurer, 

2005). After 24 h, cell mortality was determined through the MTT assay. The final results 

were expressed as % of control conditions from 3 independent experiments with each 

concentration tested in 3 replicates within each experiment. 
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Measurement of intracellular reactive oxygen (ROS) and nitrogen (RNS) species 

The intracellular ROS and RNS production was monitored by means of the DCFH-

DA assay as previously described (Dias da Silva et al. 2014a). On the day of the 

experiment, primary rat hepatocytes seeded onto 96-well plates at a density of 5x104 

viable cells/well and incubated with 10 µM DCFH-DA for 30 min, at 37 °C, in the dark. As 

DCFH-DA is a non-water-soluble powder, it was initially prepared as a 4 mM stock 

solution in DMSO and made up to the final concentration in fresh culture medium 

(ensuring that the final concentration of DMSO did not exceed 0.05%) immediately before 

each experiment. The cells were then rinsed with HBSS and incubated with the EC20, 

EC40 and EC60 of each piperazine designer drug (based on the MTT concentration-

response curves), at 37 °C during 24h. Fluorescence was recorded on a fluorescence 

microplate reader (BioTek Instruments, Vermont, USA) set to 485 nm excitation and 530 

nm emission. The data are presented as the percentage of control conditions from four 

independent experiments with each concentration tested in six replicates within each 

experiment. 

 

Measurement of intracellular reduced glutathione (GSH), and oxidized glutathione 

(GSSG) 

Primary rat hepatocytes were seeded onto 6-well plates at 1x106 viable cells/well 

density. After 24 h incubations with the EC20, EC40 and EC60 of each drug at 37 °C, the 

cells were rinsed with HBSS and scrapped/precipitated with 5% perchloric acid (HClO4, 

w/v). After centrifugation (16,000 g, 10 min, 4°C), the supernatants were collected and 

kept at -80°C until further determination of GSH and GSSG. The pellet obtained was 

resuspended in 0.3 M NaOH and used for protein quantification, determined by the Lowry 

assay (Lowry et al. 1951). 

The intracellular levels of GSH and GSSG were evaluated by the DTNB-GSSG 

reductase-recycling assay, as previously described (Dias da Silva et al. 2014a). Data from 

four independent experiments were normalized to the protein content and the final results 

were expressed as nmol per mg of protein. 
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Measurement of intracellular ATP 

Samples were prepared as described for the GSH and GSSG measurement. The 

ATP levels were quantified by a bioluminescence assay, as described by Pontes et al. 

(2008). Briefly, the thawed acidic supernatant was neutralized with an equal volume of 

0.76 M KHCO3 and centrifuged for 1 min at 16,000 g, at 4 °C). The ATP contents were 

then measured in duplicate in 96-well white plates, by adding 75 µL of the neutralized 

supernatants, standards or blank (5% HClO4, w/v) and 75 µL of the luciferin/luciferase 

solution [0.15 mM luciferin, 300,000 light units of luciferase from Photinus pyralis 

(American firefly), 50 mM glycine, 10mM MgSO4, 1 mM Tris, 0.55 mM EDTA, 1% BSA (pH 

7.6)]. The emitted light intensity was determined using a luminescence microplate reader 

(BioTek Instruments, Vermont, USA) and compared with a standard curve performed 

within each experiment. Data were normalized to the protein content, determined by the 

Lowry assay (Lowry et al. 1951), and results from four independent experiments were 

expressed as nmol per mg of protein. 

 

Assessment of mitochondrial membrane potential (∆ψm) 

 Assessment of mitochondrial integrity was performed by measuring TMRE 

inclusion as described by Dias da Silva et al. (2014a). Primary rat hepatocytes, seeded at 

a 5x104 viable cells/well density onto 96-well plates, were incubated with each piperazine 

designer drug at EC20, EC40 and EC60 for 24 h. At the end of the incubation period, the 

medium was replaced by fresh medium containing 2 µM TMRE, and incubated at 37 °C, 

for 30 min, in the dark. As TMRE is a non water-soluble powder, a 2 mM stock solution 

was initially prepared in DMSO and stored at -20 oC, protected from light. Afterwards, the 

medium was gently aspirated and replaced by 0.2% BSA in HBSS. Fluorescence was 

measured on a fluorescence microplate reader (BioTek Instruments, Vermont, USA) set to 

544 nm excitation and 590 nm emission. The data obtained were calculated as the 

percentage of control conditions from four independent experiments with each 

concentration tested in six replicates within each experiment. 

 

Caspase-3 activity assay 

 Primary rat hepatocytes were seeded at a density of 1x106 viable cells/well onto 6-

well plates. After 24 h incubation, at 37°C, with each piperazine designer drug at EC20, 
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EC40 and EC60, the cells were detached and collected to a tube (2 wells per tube), 

centrifuged (210 g, 5 min, 4 °C), and the supernatant was discarded. One hundred and 

fifty microliters of lysis buffer (50 mM HEPES, 0.1 mM EDTA, 0.1 % CHAPS, 

supplemented with 1 mM DTT, pH 7.4) were added to the pellets, vortex-mixed and 

incubated on ice for 5 min before centrifugation (16,000 g, 10 min, 4 °C).  In a 96-well 

plate, 50 µL of the supernatant, which contains the cytoplasmic fraction, was mixed with 

200 µL of assay buffer (100 mM NaCl, 50 mM HEPES, 1 mM EDTA, 0.1% CHAPS, 10% 

glycerol, supplemented with 10 mM DTT, pH 7.4). The reaction was started by adding 5 

µL of caspase-3 peptide substrate Ac-DEVD-pNA (final concentration 80 µM), with 

subsequent incubation at 37 °C for 24h. Caspase-3 releases the p-nitroaniline moiety of 

the substrate, which presents high absorbance at 405 nm. All steps were performed on 

ice and the caspase-3 activity was determined at 405 nm in a multi-well plate reader 

(BioTech Instruments, Vermont, US) as previously described (Arbo et al. 2014). Caspase-

3 substrate Ac-DEVD-pNA (stock solution at 4 mM) and DTT were prepared in DMSO. 

The absorbance of blanks, used as non-enzymatic control, was subtracted from each 

value of absorbance and the data normalized with the amount of protein of each sample. 

The protein content in the cytoplasmic fraction was quantified using the Bio-Rad DC 

protein assay kit as described by the manufacturer, and bovine albumin solutions were 

used as standards. Results from four independent experiments were expressed as fold 

increase of controls. Campthotecin (12 µM) was used as positive control. 

 

Statistical Analysis 

The normalized MTT data were fitted to the dosimetric logit model (Dias da Silva et 

al. 2014a), that was chosen based on a statistical goodness-of-fit principle (Scholze et al. 

2001). Comparisons between concentration-response curves were performed using the 

extra sum-of-squares F test. Results of ROS/RNS GSH, GSSG, ∆ψm, ATP, and caspase-

3 assays are presented as mean ± standard error of the mean (SEM) from 4 independent 

experiments. Normality of the data distribution was assessed by the Kolmogorov–Smirnov 

normality test. Statistical comparisons between groups were performed by one-way 

analysis of variance (ANOVA) followed by Dunn’s multiple comparison test. Solvent and 

negative control values obtained in the MTT assay were compared by the Student’s 

unpaired t-test.  In all cases, significance was accepted at p values <0.05. All statistical 

calculations were performed using GraphPad Prism software, version 5.01 (GraphPad 

Software, San Diego, CA, USA). 
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Results 

Piperazine designer drugs elicited hepatotoxicity in vitro 

Figure 1 presents the concentration-response curves of each piperazine designer 

drug in the three in vitro models evaluated in this work, human derived HepG2 and 

HepaRG cells and primary rat hepatocytes. Exposure to piperazine drugs resulted in 

concentration-dependent cytotoxicity. A summary of the calculated EC50 values 

(representing the half-maximum-effect concentrations from the curves) is presented in 

Table 1. Significant differences were observed for the EC50 values of the curves (p<0.05, 

F test). Based on these data, it was evident that, under our experimental conditions, 

TFMPP was the most cytotoxic piperazine designer drug in the three in vitro models 

evaluated. HepaRG cells proved to be the most resistant model to the toxicity elicited by 

all piperazine drugs, except for MDBP, when cells were exposed to concentrations higher 

than the EC50. In the case of BZP, there was no significant difference between HepG2 

and HepaRG cytotoxicity curves. Primary rat hepatocytes showed to be the most sensitive 

cells to study the hepatotoxicity of the piperazine designer drugs, and therefore all further 

toxicological evaluations were carried out in this model. 

 

Figure 1. Concentration-response (cell death) curves of piperazine designer drugs in HepG2 and 
HepaRG cells and primary rat hepatocytes after 24h incubations at 37°C. Viability was evaluated 
through the MTT reduction assay. Data are presented as percentage of cell death relative to the 
respective negative controls. At least four independent experiments were performed (six replicates 
tested for each concentration within each experiment). Curves were fitted using the dosimetric logit 
model. 
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Table 1. EC50 values of the piperazine designer drugs in the MTT assay, after 24h-incubations at 

37 oC. 

Designer 

Drug 

EC50 (mM) 

HepG2 HepaRG Rat Hepatocytes 

BZP 6.75bcd 6.58bcd 2.15bd 

TFMPP 0.31acd 0.46acd 0.13acd 

MeOPP 3.31ab 4.33abd 2.08bd 

MDBP 3.62ab 3.65abc 3.74abc 

The cytotoxicity curves were fitted using the dosimetric logit model, p values <0.05 were considered 
statistically significant. a Compares to BZP. b Compares with TFMPP. c Compares with MeOPP. d Compares 
with MDBP. 

 

Metabolism does not contribute to the cytotoxicity of piperazine designer drugs in rat 

primary hepatocytes 

 The metabolism of piperazine designer drugs is dependent of CYP450 activity. 

Figure 2 presents the concentration-response curves obtained after the co-incubation with 

each piperazine designer drug and 500 µM metyrapone (non selective inhibitor of 

CYP450) or 100 µM quinidine (inhibitor of CYP2D6) in primary rat hepatocytes. There was 

no significant difference between negative and solvent controls and the CYP450 inhibitors 

alone at the concentrations tested. The attained EC50 values are displayed in Table 2. 

With the exception of MDBP incubations with metyrapone, where no differences were 

observed, all other curves representing the co-incubation of the piperazine designer drugs 

with the CYP inhibitors showed a deviation to the left in relation to the curves obtained 

with the drugs alone. This indicates that the CYP450-mediated metabolism has a 

detoxifying effect, and it is most likely that the parent compounds are more toxic than their 

metabolites. 
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Figure 2. Concentration-response (cell death) curves of primary rat hepatocytes after 24h of co-
incubation of each piperazine designer drug with 500 µM metyrapone or 100 µM quinidine at 37°C. 
Viability was evaluated through the MTT reduction assay. Data are presented as percentage of cell 
death relative to the respective negative controls. Three independent experiments were performed 
(six replicates tested for each concentration within each experiment). Curves were fitted using the 
dosimetric logit model. 

 

 

Table 2. EC50 values of the piperazine designer drugs co-incubated with CYP450 inhibitors 

metyrapone (500 µM) and quinidine (100 µM) in the MTT assay, after 24h at 37 oC. 

Designer 

Drug 

EC50 (mM) 

No inhibitor 

Metyrapone  

(500 µM) 

Quinidine  

(100 µM) 

BZP 3.06 2.35* 1.93* 

TFMPP 0.30 0.24* 0.16* 

MeOPP 1.71 1.68 1.10* 

MDBP 1.70 1.58 1.13* 

The cytotoxicity curves were fitted using the dosimetric logit model, *statistically significant comparing to the 
piperazine drugs alone (p<0.05). 
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Piperazine designer drugs induce oxidative stress in rat primary hepatocytes 

Oxidative stress plays an important role in drug-induced hepatotoxicity for many 

different compounds including drugs of abuse (e.g. cocaine and amphetamines), and 

pharmaceuticals (e.g. azathioprine and paracetamol) (Pandit et al. 2012). As depicted in 

figure 3, piperazine designer drugs induced the production of reactive species after 24h 

incubations in primary rat hepatocytes, as evaluated by the DCFH-DA assay. This effect 

was significant (p<0.05, ANOVA/Dunn’s) and concentration-dependent to all drugs tested. 

Interestingly, among the same cytotoxicity level, MeOPP significantly (p<0.0001, 

ANOVA/Dunn’s) induced more reactive species formation than the other drugs. At 

equipotent cytotoxic concentrations, no significant differences were observed among BZP, 

TFMPP and MDBP. 

 

Figure 3. Reactive species (ROS/RNS) production, measured through the DCFH-DA assay, in rat primary 
hepatocytes after 24h-incubations with each piperazine designer drug at 37°C. Results are expressed as 
percentage control ± SEM (n = 4 independent experiments run in triplicates). Statistical comparisons were 
made using one-way ANOVA/Dunn’s post-hoc test (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001 vs control). 
Comparing the same cytotoxicity levels $ vs BZP, # vs TFMPP, & vs MeOPP. 

 

Changes in the intracellular amounts of GSH and GSSG are also strong indicators 

of redox disturbances and were investigated with the DTNB–GSSG reductase recycling 

assay. In figure 4, a significant (p<0.001, ANOVA/Dunn’s) GSH depletion was noted at all 

concentrations of BZP and MDBP. A concentration-dependent effect was observed for 
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MeOPP, where a significant (p<0.001, ANOVA/Dunn’s) depletion was observed at EC40 

and EC60 compared to control. For BZP it was also possible to observe a significant 

(p<0.01, ANOVA/Dunn’s) increase in GSSG levels at the tested EC20 and EC40. 

Interestingly, these results agree with the generation of reactive species, since the highest 

GSH depletion was observed at EC60 MeOPP, which also induced the highest formation 

of reactive species. Comparing all piperazine designer drugs at equipotent cytotoxic 

concentrations, MDBP and BZP had a greater effect in GSH depletion. BZP significantly 

increased (p<0.01, ANOVA/Dunn’s) the GSSG intracellular levels to a greater extent than 

that observed for any of the other drugs. TFMPP did not induce any alteration in GSH 

homeostasis. 

 

Figure 4. Intracellular contents of GSH and GSSG in rat primary hepatocytes after 24h of incubation with BZP 
(A), TFMPP (B), MeOPP (C) and MDBP (D). Results are expressed as mean ± SEM (n=4 independent 
experiments). Statistical comparisons were made using one-way ANOVA/Dunn’s post-hoc test (*p<0.05; 
**p<0.01; ***p<0.001; ****p<0.0001 vs control GSH; xx p<0.01 vs control GSSG). Comparing the same 
cytotoxicity levels $ vs BZP GSH, # vs TFMPP GSH, & vs MeOPP GSH; a vs BZP GSSG, b vs TFMPP 
GSSG, c vs MeOPP GSSG. 
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Piperazine designer drugs induce mitochondrial impairment and disturb energetic status in 

rat primary hepatocytes 

 To investigate whether the piperazine drugs could disturb the mitochondrial 

function, the mitochondrial membrane potential (∆ψm) was evaluated. A significant loss of 

∆ψm impairs oxidative phosphorylation, depleting cells of energy, and inducing cell death. 

In figure 5, a significant (p < 0.01, ANOVA/Dunn’s) loss in ∆ψm can be observed after 24 

h incubations of primary rat hepatocytes with all drugs at all concentrations, except for 

EC20 TFMPP, in relation to control. Comparing all drugs at the same toxicity levels, the 

highest mitochondrial depolarization was observed with MDBP, at EC20 and EC40. This 

loss of ∆ψm was significantly higher (p<0.01, ANOVA/Dunn’s) than for all the other drugs 

at equipotent concentrations. MeOPP and BZP presented similar effects at the same 

cytotoxicity level. On the other hand, TFMPP presented the lowest effect on ∆ψm. 

 

Figure 5. Mitochondrial membrane potential (∆ψm) measured as TMRE incorporation in mitochondria of rat 
primary hepatocytes after 24 h incubations with the tested piperazine designer drugs at 37 °C. Results are 
expressed as percentage control ± SEM (n = 4 independent experiments run in triplicates). Statistical 
comparisons were made using one-way ANOVA/Dunn’s post-hoc test (**p<0.01; ****p<0.0001 vs control). 
Comparing the same cytotoxicity levels $ vs BZP, # vs TFMPP. 

 

ATP is the key intermediate for energy exchange, it is related with cellular 

energetics, metabolic regulation, and signaling. All cells require ATP to remain alive and 

carry out their specific functions and, because ATP is transiently depressed by many 
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forms of cellular stress, its levels reflect the functional integrity of viable cells. Figure 6 

shows that the intracellular ATP levels measured in primary rat hepatocytes exposed to 

the tested piperazine designer drugs for 24 h at 37 °C were significantly depleted for all 

concentrations, with the exception of EC20 BZP, and EC20 and EC40 TFMPP. 

Interestingly, the drug presenting the highest ATP depletion (p<0.05 ANOVA/Dunn’s) was 

MDBP, which also presented the highest ∆ψm loss. As observed for the ∆ψm loss 

induced by MeOPP and BZP, a similar effect in the same cytotoxicity level for these two 

drugs was observed for ATP depletion. Among all drugs, TFMPP exerted the lowest effect 

on ATP levels. 

 

Figure 6. Intracellular ATP levels in primary rat hepatocytes after 24h of incubation with piperazine designer 
drugs at 37 °C. Results are expressed as mean ± SEM (n=4 independent experiments). Statistical 
comparisons were made using one-way ANOVA/Dunn’s (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001 vs 
control). Comparing the same cytotoxicity levels $ vs BZP, # vs TFMPP. 

 

Piperazine designer drugs induce caspase activation in primary rat hepatocytes 

Caspase activation is one the main events leading to apoptosis. As can be seen in 

figure 7, a significant (p<0.01, ANOVA/Dunn’s) increase in caspase-3 activity occurred at 

almost all concentrations of the tested piperazine designer drugs after 24 h incubations in 

primary rat hepatocytes. Among all tested drugs, the highest caspase-3 activation was 

observed with MDBP (p<0.01, ANOVA/Dunn’s). A concentration-response effect was 

noted for MeOPP and BZP. At equipotent concentrations, TFMPP presented the lowest 

caspase-3 activation. 
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Figure 7. Caspase-3 activity fold increase in primary rat hepatocytes after 24h incubations with piperazine 
designer drugs at 37 °C. Results are expressed as mean ± SEM (n=4 independent experiments). Statistical 
comparisons were made using one-way ANOVA/Dunn’s (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001 vs 
control). Comparing the same cytotoxicity levels $ vs BZP, # vs TFMPP. 

 

Discussion 

Synthetic drugs are highly abused and consumed mainly at parties and night 

clubs, especially by young people. The effects experienced by users after piperazine 

designer drugs intake resemble those of the amphetamines (Lin et al. 2011). The liver is 

acknowledged to be one of the main targets of toxicity for amphetamine-like compounds 

(Carvalho et al. 2010) and cathinone derivatives (Araujo et al. 2014). The available 

information on the toxic effects of piperazine designer drugs of abuse is currently very 

limited, but recent studies indicate that these drugs present cardiotoxic effects in vitro 

(Arbo et al. 2014). 

For the first time, we demonstrate that piperazine designer drugs produced 

hepatotoxicity to three different in vitro models (HepG2 and HepaRG cells, and primary rat 

hepatocytes) being TFMPP the most potent designer drug in all of them. We select the 

human-derived hepatoblastoma cell line HepG2 not only because these cells have been 

extensively used as a test system for the prediction of toxicity, carcinogenicity and cell 

mutagenicity in humans (Donato et al. 2008; Liu and Zeng 2009) but also because they 

have been previously used for the characterization of the cytotoxic effects of other 
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designer drugs of abuse, including amphetamines (Dias da Silva et al. 2013abc, 2014a). 

However, there is a major limitation of this cellular model concerning drug metabolism 

since, in these hepatic cells, drug-metabolizing enzymes, namely CYP isoforms, are 

expressed at very low levels when compared with primary hepatocytes or with the in vivo 

situation (Guo et al. 2011; Lin et al. 2012). To overcome this limitation, the cytotoxicity 

studies were also conducted in HepaRG cells. This is another human cell line derived 

from a hepatocellular carcinoma which exhibits extensive differentiation after 2 weeks in 

culture. After acquiring a differentiated hepatocyte-like morphology, they retain a unique 

set of drug-metabolizing enzymes at levels comparable to those observed with primary 

human hepatocytes in culture. Comparing to HepG2 cells, HepaRG present a higher level 

of CYP1A1, CYP2B6, CYP2C9, CYP2E1 and CYP3A4 mRNA but lower CYP2D6 mRNA 

(Aninat et al. 2006, Rodrigues et al. 2013). The main metabolic pathways described for 

the piperazine designer drugs in animals and in humans comprise reactions catalyzed by 

CYP2D6 which include the hydroxylation of BZP (Staack and Maurer 2005), TFMPP 

(Staack et al. 2003), and MeOPP (Staack et al. 2004) and the demethylenation of MDBP 

(Staack and Maurer 2004). Since CYP2D6 is present at low levels in both immortalized 

cellular models, we also included rat primary hepatocytes in this study. Primary 

hepatocytes have some drawbacks such as, unpredictable viability, limited growth activity 

and lifespan, early phenotypic alterations after seeding, besides huge variations in 

functional activities, especially CYP levels. Nevertheless, primary hepatocytes are the 

most suitable model for investigating the induction of CYPs by chemical inducers and the 

metabolic profiles of new drugs (Aninat et al. 2006).  

 In all models, TFMPP was the most cytotoxic drug, which agrees with previous 

findings in cardiomyoblast H9c2 cells (Arbo et al. 2014). The main differences among the 

in vitro models used in this work concerns their metabolic capacity. Since the susceptibility 

of the primary hepatocytes to the cytotoxicity of the piperazine drugs was remarkably 

higher than those of the HepG2 and HepaRG cells, except for MDBP, it could be 

anticipated that their higher metabolic competence could explain these differences. 

Surprisingly, when we co-incubated the piperazine designer drugs with the CYP inhibitor 

metyrapone and the CYP2D6 inhibitor quinidine, an increase in the potency of the drug 

was observed. The deviation of the curves to the left, which is even more evident when 

cells were co-incubated with quinidine, suggests that metabolism plays a detoxifying role 

for the piperazine designer drugs. 

 The discrepancies in EC50 values of immortalized cells and primary hepatocytes 

are quite expected. The immortalization process adds new characteristics to the cells, 
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namely the continuous growth and an almost unlimited life-span, which can induce 

different physiological responses compared to the primary cells. Therefore, an advantage 

of the use of primary cells is that the cell phenotype comprises a much more reliable 

situation (Astashkina et al., 2012). Since the immortalized cells are from human origin and 

the primary hepatocytes from rats, it is also necessary to consider possible interspecies 

differences that could explain different rates of metabolism and toxicological 

susceptibilities. 

 Oxidative stress is a well-described mechanism underlying the toxicity of many 

xenobiotics, which plays an essential role in the cytotoxic effects of several amphetamine 

derivatives that induce the formation of highly reactive species (Dias da Silva et al. 

2014b). Piperazine designer drugs induce the formation of these reactive species in 

primary rat hepatocytes, a situation also observed with amphetamine derivatives in 

primary rat hepatocytes (Pontes et al. 2008) and HepG2 cells (Dias da Silva et al. 2014a). 

Interestingly, MeOPP presented a pro-oxidant effect higher than the other drugs, and this 

could be due to the MeOPP metabolism. Two possible metabolic reactions, which include 

an N-dealkylation, followed by an N-acetylation, lead to the formation of N-acetyl-4-

hydroxyaniline that corresponds to the analgesic drug acetaminophen (paracetamol) 

(Staack et al., 2004; Staack and Maurer, 2005), that can be further metabolized into N-

acetyl-p-benzoquinone imine, a highly oxidative and GSH depleting chemical. On the 

other hand, this finding is not corroborated by our previous works with these piperazine 

designer drugs in rat cardiomyoblasts H9c2, where there was not observed any significant 

increase of reactive species (Arbo et al. 2014). However, comparing the two in vitro 

models, rat hepatocytes have a much more efficient metabolic capacity than the rat 

derived cardiomyoblast cells, which could lead to an exacerbated production of free 

radicals. 

GSH has an important protective role which involves its oxidant neutralizing and its 

lipid peroxidase and/or tocopheryl radical-regenerating activities. GSH depletion may 

render the cells more vulnerable to the deleterious effects of free radicals, increasing their 

susceptibility towards oxidative injury. Events reflecting GSH depletion have been 

considered as potential biomarkers of drug-induced hepatotoxicity (Yuan and Kaplowitz 

2009). Piperazine designer drugs elicited intracellular GSH depletion, which is related to 

the increased intracellular production of reactive species. The expected increases in 

intracellular GSSG levels were not observed for all drugs, possibly due to GSSG efflux. 

The formed GSSG is extruded for the extracellular medium as a protective response of 

the cells against oxidative stress. With the exception of BZP, the decreases in intracellular 
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GSH contents were not accompanied by an increase in GSSG levels. This is not 

surprising, and has been previously reported for amphetamine derivatives in hepatocytes 

(Hiramatsu et al. 1990; Carvalho et al. 1996; Carvalho et al. 2004; Dias da Silva et al. 

2014a). 

Regarding GSH homeostasis, an important role, contributing to GSH depletion, 

can be played by the metabolism of hepatocytes, leading to conjugation reactions with 

GSH (Carvalho et al. 2001), which was also verified with cardiomyoblasts (Arbo et al. 

2014). In fact, it has been shown that the aromatic hydroxylation of amphetamine into p-

hydroxyamphetamine leads to the formation of the glutathione-S-yl-p-

hydroxyamphetamine conjugate through a reaction that is catalyzed by CYP2D6 and likely 

involves the formation of an arene epoxide intermediate (Carvalho et al. 1996). An 

alternative mechanism involving the formation of catechol metabolites that are oxidized 

into quinone intermediates following demethylenation of MDMA (Hiramatsu et al. 1990) 

and methylenedioxyamphetamine (MDA) (Carvalho et al. 2004) has also been shown to 

produce the corresponding glutathione-S-yl-N-methyl-α-methyldopamine and glutathione-

S-yl-α-methyldopamine conjugates. There is a striking similarity between these metabolic 

pathways and those that were already described for the piperazine designer drugs in 

animals and in humans (Staack and Maurer 2005). Interestingly, MDBP, which produces a 

catechol intermediate as a metabolite, induced a significant GSH depletion at all tested 

concentrations. In addition, depletion may also be caused by inhibition of GSH 

biosynthesis (Gao et al. 2010). For example, γ‐glutamyl transpeptidase (GGT) plays a key 

role in GSH homeostasis by breaking down extracellular GSH and providing cysteine, the 

rate‐limiting substrate, for intracellular de novo synthesis of GSH (Zhang et al. 2005). 

There are growing reports that mitochondria is a primary or secondary drug target 

and that its impairment is one of the major contributors to drug-induced liver injury 

(Scatena et al. 2007). Our data point to a depolarization of mitochondria, and ATP 

depletion after 24 h incubations of primary rat hepatocytes with piperazine designer drugs. 

The ∆ψm is crucial for maintaining the physiological function of the mitochondrial 

respiratory chain, a process responsible for ATP generation. A significant loss of ∆ψm 

impairs oxidative phosphorylation, depleting cells of energy and inducing cell death. 

Translocation of protons from the matrix to the intermembrane space to establish ∆ψm is 

coupled to the mitochondrial electron transport chain (Yuan and Acosta 1996). Inhibition 

of complex I and/or II of the electron transport chain leads to an increase of reactive 

oxygen species and a decrease in ATP production with subsequent accumulation of 

dysfunctional proteins, which impairs mitochondrial function (Usta et al. 2009). Depletion 
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of ATP is a typical feature of hypoxic and toxic injury, and leads to inhibition of two hepatic 

anabolic processes, namely gluconeogenesis and plasma protein synthesis, which have 

in common a substantial requirement for ATP (Ponsoda et al. 1995). Interestingly, the 

impairment of mitochondrial function, leading to ATP depletion, was also observed in our 

previous studies using H9c2 rat cardiomyoblasts (Arbo et al. 2014), which can indicate 

that this as one of the main mechanism of toxicity of piperazine designers drugs. Among 

all the tested drugs, the highest mitochondrial depolarization, and consequently, ATP 

depletion, was observed with MDBP. 

Mitochondria also play a major role in apoptosis, by mediating and propagating 

death signals originated from the inside (intrinsic apoptotic pathway) or outside (extrinsic 

apoptotic pathway) of the cell, and loss of ∆ψm is an early apoptotic event. The observed 

activation of downstream caspase-3 is an indicative of the preference for apoptosis, as the 

main cell death mode and agrees well to what has already been described for 

amphetamines tested under normothermic conditions (Capela et al. 2013; Dias da Silva et 

al. 2013c). As with the effects observed in ∆ψm and ATP depletion, MDBP presented the 

highest downstream caspase-3 activation. Interestingly, after 24h incubations of rat 

cardiomyoblasts with these piperazine designer drugs, signs of apoptosis were also 

found, but no activation of caspase-3 was observed (Arbo et al. 2014). 

 In conclusion, we have demonstrated for the first time the in vitro hepatotoxic 

effects of piperazine designer drugs in three in vitro models, the HepG2, HepaRG cells, 

and primary rat hepatocytes. The rat primary hepatocytes were the most sensitive model 

in detecting deleterious effects and TFMPP was the most potent drug. In rat hepatocytes, 

piperazine designer drugs induced oxidative stress, loss of ∆ψm, ATP depletion and 

caspase-3 activation. Comparing all drugs at equipotent cytotoxic concentrations, 

differences in mechanisms of toxicity were evident, especially for TFMPP, indicating that 

additional toxicity endpoints should be evaluated for a better comprehension of the 

mechanisms involved in the cytotoxicity of the piperazine designer drugs. It should be 

noted that these drugs are frequently consumed in associations [the most common is 

BZP:TFMPP (2:1)] in the same tablet, or as adulterants of ecstasy tablets. As previously 

observed with amphetamine designer drugs, marked toxicity can occur when the drugs 

are combined at individually non-cytotoxic concentrations (Dias da Silva et al 2013ab, 

2014ab). Since different combinations of piperazine designer drugs have already been 

implicated in human intoxications, further studies are needed not only to clarify the 

mechanisms involved in the observed cytotoxic effects but also to address the effects of 

drug combinations. 
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Abstract 

The piperazine derivatives most frequently consumed for recreational purposes are 1-

benzylpiperazine (BZP), 1-(3,4-methylenedioxybenzyl)piperazine (MDBP), 1-(3-

trifluoromethylphenyl)piperazine (TFMPP), and 1-(4-methoxyphenyl)piperazine (MeOPP). 

Generally, they are consumed as capsules, tablets or pills but also in powder or liquid 

forms. In the corresponding drug scene piperazine designer drugs have the reputation of 

being safe, but preliminary data show that these compounds exhibit cytototoxicity in 

different in vitro models. The aim of this work was to evaluate the hepatotoxicity of BZP, 

TFMPP, MeOPP, and MDBP, using primary cultured rat hepatocytes, using a 

toxicogenomic approach. MDBP presented the highest number of altered probe sets. 

Among the four piperazine designer drugs, 65 probe sets and 4 transcription factors were 

found to be overlapped. From the total number of probe sets, genes with a fold change 

higher than 2.0 were selected as up-regulated, while genes with a fold change less than 

0.3 were selected as down-regulated. The majority of up-regulated genes are related to 

cholesterol biosynthesis, which is, in turn, one of the events related to liver 

phospholipidosis. 

 

Keywords: piperazine designer drugs, hepatotoxicity, primary rat hepatocytes, 

microarrays. 

 

Introduction 

 Piperazines were originally developed as antihelminthic drugs for the management 

of intestinal roundworm and tapeworm infestations. In the 1970s, 1-benzylpiperazine 

(BZP) was investigated as an anti-depressant agent. Clinical trials were performed but 

they were abandoned due to reinforcing effects similar to dexamphetamine (Musselman 

and Hampton, 2014). The first documented BZP abuse occurred in the USA in 1996 

(Austin and Monasterio, 2004). Since then, piperazine derived drugs appeared on the 

market, mainly in the internet, sold as “party pills” or under different street names, such as 

“Rapture”, “Frenzy”, “Bliss”, “Charge”, “Herbal ecstasy”, “A2”, “Legal X”, “Legal E.”, 

“Nemesis”, “Head Rush”, “XXX”, “Strong as Hell” and “Exotic Super Strong”. The most 

common derivatives are the benzylpiperazines, such as BZP and its methylenedioxy-

analogue 1-(3,4-methylenedioxybenzyl)piperazine (MDBP), and the phenylpiperazines, 
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such as 1-(3-chlorophenyl)piperazine (mCPP), 1-(3-trifluoromethylphenyl)piperazine 

(TFMPP), and 1-(4-methoxyphenyl)piperazine (MeOPP) (Arbo et al., 2012). Generally, 

they can be consumed as capsules, tablets or pills but also in powder or liquid forms (Gee 

et al., 2005). 

 Studies using synaptossomes have shown that, although less potent than 

amphetamine designer drugs, the piperazines have substrate activity at the dopamine and 

serotonin transporters (Baumann et al., 2005). Several in vivo studies have confirmed a 

clear stimulant-like pattern of behavioural effects associated with increases in dopamine 

and serotonin release (Baumann et al., 2005; Meririne et al., 2006; Yarosh et al., 2007). At 

low doses, the effects tend to be mild, producing feelings of euphoria and wakefulness. 

Most common symptoms include insomnia, headaches, nausea, anxiety, depression, 

paranoia and auditory hallucinations Ingestion of high doses results in a sympathomimetic 

toxicity, and patients experience palpitations, tachycardia and hypertension. Neurological 

effects include tremors, myoclonus and seizures (Elliot 2011; Arbo et al., 2012; 

Musselman and Hampton, 2014). 

 In humans, the piperazine designer drugs are readily absorbed from the 

gastrointestinal tract (Antia et al., 2009, 2010; Schep et al., 2011) and they are mainly 

metabolized in the liver (Maurer et al., 2004). The liver is an important organ that plays a 

central role in the metabolic homeostasis of the body, which consists of metabolism, 

synthesis, storage and redistribution of carbohydrates, fat, and vitamins. In addition, the 

liver produces a large number of proteins including serum albumin, enzymes, and 

cofactors (Taub, 2004). Xenobiotic metabolism is also one of the liver functions, making it 

a primary target for chemicals, drugs and microbial agents. Since the liver is the organ 

involved in and is a major target organ for chemicals, hepatoxicity is a major issue in 

pharmaceutical drug development and drug-induced liver injury is one of the most 

proeminent causes of market withdrawls (Sahu, 2007). 

 DNA microarray technology enables to monitor and quantify the expression of 

thousands of genes simultaneously. This technology has the potential to more 

comprehensively contribute to the understanding of toxicity than any available traditional 

approach, since toxic changes in cells generally result from alterations not just in a single 

or few molecules, but in many molecular cascades. It may also help to identify early, 

sensitive biomarkers of toxicity, since alterations in gene expression are thought to 

precede the toxic outcome. These markers could then be used to develop screening tests 

to predict the toxicity of particular compounds. The combination of microarrays with 

conventional toxicological tools is rapidly contributing to the knowledge of the mechanisms 
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underlying cellular toxicity, and has emerged as the field of toxicogenomics (Sawada et 

al., 2005). 

 In the corresponding drug scene, piperazine designer drugs have the reputation of 

being safe, however preliminary data show that these compounds exhibits cytotoxicity in 

different in vitro models. The aim of this work was to evaluate the hepatotoxicity of BZP, 

TFMPP, MeOPP, and MDBP, using the primary cultured rat hepatocytes and a 

toxicogenomic approach, that could help understanding the aforementioned detrimental 

effects of these drugs. 

 

Material and Methods 

Cell culture materials and chemicals 

 Williams medium E, penicillin/streptomycin solution, amino acids solution, 

SeraPlus (FBS) were purchased from PAN Biotech (Aidenbach, Germany). Gentamicin 

(10 mg/mL) was obtained from Invitrogen Corp. (Karlsruhe, Germany), and DMEM (10x) 

from Biozol (Eching, Germany). Dexamethasone, reduced glutathione (GSH), oxidized 

glutathione (GSSG), glutathione reductase (GR, EC 1.6.4.2), 2-vinylpyridine, reduced β-

nicotinamide adenine dinucleotide (β-NADH), luciferin, and luciferase were obtained from 

Sigma-Aldrich (St. Louis, USA). Rat-tail tendon collagen I for sandwich culture was 

provided by Roche (Mannheim, Germany). N-Benzylpiperazine (BZP, 99.3% purity) was 

purchased from Chemos GmbH (Regenstauf, Germany), 1-(3-

trifluoromethylphenyl)piperazine (TFMPP, 98% purity) from Alfa Aesar (Karlsruhe, 

Germany), 1-(4-methoxyphenyl)piperazine (MeOPP, 96% purity) from Acros Organics 

(New Jersey, USA), and 1-(3,4-methylenedioxybenzyl)piperazine (MDBP, 97% purity) 

from Aldrich Chemistry (Steinheim, Germany). 

 

Animals 

 Male Wistar rats with a body weight of 300 – 400 g were purchased from Charles 

River (Sulzfeld, Germany). The animals had free access to food (sniff, Soest, Germany) 

and water and were kept under controlled temperature (18 – 26°C), humidity (30 – 70%) 

and lighting (12 h light/dark cycle conditions). Before the experiments, the animals were 

acclimated for a minimum of 6 days. This study was approved by the local committee for 
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the welfare of experimental animals and was performed in accordance with national 

legislation. 

Isolation and culture of primary rat hepatocytes 

 Rat hepatocytes were isolated from male Wistar rats (300 – 400 g) using a 

modified two-step isolation described by Hengstler et al. (2000). The rats were 

anesthetized using an i.p. injection of a combination of 20 mg/kg xylazine (Rompun 2%, 

Bayer, Leverkusen, Germany) and 61.5 mg/kg ketamine (Ratiopharm, Ulm, Germany). 

The liver was perfused via the vena portae for 15 min with an EGTA-buffer at 37°C. 

Constant temperature was achieved using an inline heating system (SAHARAInline, 

Transmed Sarstedt Group, Bad Wünnenberg, Germany). The EGTA-buffer consists of 

248 mL glucose-solution (9 g/L D-glucose), 40 mL KH-buffer (60 g/L NaCl, 1.75 g/L KCl, 

and 1.6 g/L KH2PO4; adjusted to pH 7.4), 40 mL HEPES-buffer (60 g/L HEPES; adjusted 

to pH 8.5), 60 mL amino acid solution (0.27 g/L L-alanine, 0.14 g/L L-aspartic acid, 0.4 g/L 

L-asparagine, 0.27 g/L L-citrulline, 0,14 g/L L-cysteine, 1.0 g/L L-histidine, 1.0 g/L L-

glutamic acid, 1.0 g/L L-glycine, 0.4 g/L L-isoleucine, 0,8 g/L L-leucine, 1.3 g/L L-lysine, 

0.55 g/L L-methionine, 0.65 g/L L-ornithine, 0.55 g/L L-phenylalanine, 0.55 g/L L-proline, 

0.65 g/L L-serine, 1.35 g/L L-threonine, 0.65 g/L L-tryptophan, 0.55 g/L L-tyrosine, 0.8 g/L 

L-valine; (amino acids that could not be dissolved at neutral pH were dissolved by addition 

of 10 M NaOH at pH 11 and thereafter adjusted to pH 7.6), 2 mL glutamine solution (7 g/L 

L-glutamine; freshly prepared) and 0.8 mL EGTA-solution (47.5 g/L EGTA; dissolved by 

addition of NaOH, adjusted to pH 7.6). Subsequently, perfusion was continued for 15 min 

with collagenase buffer (37°C) consisting of 155 mL glucose solution, 25 mL KH-buffer, 25 

mL HEPES-buffer, 38 mL amino acid solution, 10 mL CaCl2 solution (19 g/L CaCl2 x 2 

H2O), 2.5 mL glutamine solution and 90 mg collagenase type I (Sigma, Taufkirchen, 

Germany) that were dissolved in the prewarmed mixture of the aboved mentioned 

solutions immediately before use. After perfusion, the liver was dissected and dissociated 

in suspension buffer [124 mL glucose-solution, 20 mL KH-buffer, 20 mL HEPES-buffer, 30 

mL amino acid solution, 2 mL glutamine solution, 1.6 mL CaCl2 solution, 0.8 mL MgSO4 

solution (24.6 g/L MgSO4 x 7 H2O) and 0,4 g bovine serum albumine that was dissolved in 

the mixture of the solutions mentioned above]. The liver cell suspension was filtered 

through a 100 µm cell strainer, centrifuged for 5 min at 50 g, washed twice with 

suspension buffer, centrifuged again and resuspended in 30 mL suspension buffer. 

Trypan blue exclusion rate was determined and only hepatocyte suspensions with a 

viability greater than 80% were used. The collagen sandwich cultures were prepared as 

described by Schug et al. (2008). Collagen was dissolved by adding 12 mL of 0.2% (v/v) 
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acetic acid to the lyophilized powder. After dissolving overnight at 4 °C, 1.2 mL of 10x 

DMEM were added and the acid solution was neutralized by adding 1 M NaOH solution. 

After this, 250 µL of the collagen solution was added to each well of the 6-well plate 

(Sarstedt, Nümbrecht, Germany) and left to solidify for 1 h. For attachment, 2 mL of 

Williams Medium E (WME) (with 10% FBS, 100 U/mL penicillin, 0.1 mg/mL streptomycin, 

10 µg/mL gentamicine, 100 nM dexamethasone) were added to each well. Hepatocytes 

were plated at a density of 1 x 106 cells per well. After a 3 h attachment at 37 °C and 5% 

CO2 in a humidified atmosphere the cells were washed twice with warm (37 °C) WME. 

The medium was removed again and a second layer of collagen was added. After 30 min 

of gelation, WME was added, including the same additives mentioned before, but without 

FBS. The cells were incubated overnight before piperazine designer drugs treatment. 

 

Cytotoxicity Assay 

 After incubation overnight, the sandwich cultures were exposed to the test drugs. 

Concentration-response curves were obtained by incubating the cells with 0 – 20 mM of 

BZP, TFMPP, MeOPP, or MDBP for 72 h at 37°C. Stock solutions of BZP were made up 

in PBS. Stock solutions of TFMPP, MeOPP and MDBP were made in DMSO. In these 

cases, 0.1% DMSO in culture medium was used as negative control. All stock solutions 

were stored at -20 °C and freshly diluted on the day of the experiment. Cytotoxicity was 

measured by the resazurin fluorometric method (CellTiter-Blue® Cell Viability Assay, 

Promega GMBH, Mannheim, Germany). This assay is based on the ability of living cells to 

convert a redox dye, resazurin, into a fluorescent product, resorufin. The assay was 

performed by adding 600 µL of the CellTiter-Blue® reagent directly to the medium 4 h 

before the end of the 72 h incubation-time. Resorufin was measured at a wavelength of 

560 nm excitation and 590 nm emission with a fluorescence reader. Results were 

graphically presented as percentage of cell death versus concentration (µM). All drugs 

were tested in 3 independent experiments with each concentration tested in 3 replicates 

within each experiment. 

 

Drugs challenge for the evaluation of toxicity biomarkers 

 Based on individual cytotoxicity data, three concentrations were chosen for each 

compound. The concentrations selected for energetic and redox status evaluation were 
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625, 210 and 0.5 µM for BZP; 35, 12 and 0.5 µM for TFMPP; 522, 175 and 0.5 for MeOPP 

and 467, 160 and 0.5 µM for MDBP. The highest concentrations correspond to EC20, the 

intermediate to 1/3 of EC20 and the lowest are the common blood concentrations found in 

intoxication cases. For the microarray study, hepatocytes were incubated with 625, 35, 

522 and 467 µM BZP, TFMPP, MeOPP and MDBP, respectively. Incubations were done 

at 37°C for 24 h. 

 

Measurement of intracellular glutathione levels 

After a 6 and 24 h incubation period, the medium was removed and the cells were 

kept on ice while being scraped in PBS, pH=7.4. After centrifugation (210 g, 5 min, 4 °C), 

the supernatant was removed. The pellet of cells was lysed with 5% HClO4 and 

centrifuged (16,000 g, 10 min, 4 °C). The obtained supernatant was frozen at -20 °C until 

further determination of tGSH levels, evaluated by the DTNB-GSH reductase recycling 

assay, as previously described (Dias da Silva et al., 2014). Briefly, the acidic supernatant 

was neutralized with an equal volume of 0.76 M KHCO3 and centrifuged (16,000 g, 2 min, 

4 °C). Total glutathione was determined by transfering, in triplicate, 100 µL of the 

neutralized supernatants, standards or blank (5% HClO4, w/v) to a 96-well plate, followed 

by the addition of 65 µL of freshly prepared reagent containing 0.24 mM NADPH and 0.7 

mM DTNB in phosphate buffer (71.5 mM Na2HPO4, 71.5 mM NaH2PO4 and 0.63 mM 

EDTA, pH 7.5). The plates were then incubated for 15 min, at 30 °C, in a microplate 

reader (BioTek Instruments, Vermont, USA), prior to the addition of 40 µL per well of a 

freshly prepared 10 U/mL glutathione reductase solution in phosphate buffer. The 

stoichiometric formation of 5-thio-2-nitrobenzoic acid (TNB) was followed every 10 s for 3 

min at 415 nm at 30 °C, and compared with a standard curve performed for all readings. 

For the determination of GSSG, 10 µl of 2-vinylpyridine were added to 200 µl aliquots of 

the acidic supernatants and mixed continuously for 1 h at 0 °C for derivatization of the 

sulfhydryl groups (SH). GSSG was then measured as described for tGSH. The GSH 

content was calculated by subtracting the GSSG from the tGSH values [GSH = tGSH – (2 

x GSSG)]. Data were normalized to the protein content, determined by the Lowry assay 

(Lowry et al., 1951), and the final results were expressed as nmol per mg of protein from 3 

independent experiments with each concentration tested in 3 replicates within each 

experiment. 
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Measurement of intracellular ATP levels 

After a 6 and 24 h incubation period, the medium was removed and the cells were 

kept on ice while being scraped in PBS, pH=7.4. After centrifugation (210 g, 5 min, 4 °C), 

the supernatant was removed. The pellet of cells was lysed with 5% HClO4, centrifuged 

(16,000 g, 10 min, 4 °C), and the supernatant obtained was frozen at -20°C until further 

determination of the ATP intracellular content. The ATP levels were quantified by a 

bioluminescence assay, as described by Pontes et al. (2008). Briefly, the acidic 

supernatant was neutralized with an equal volume of 0.76 M KHCO3 and centrifuged 

(16,000 g, 1 min, 4 °C). The ATP contents were then measured in duplicate in 96-well 

white plates, by adding 100 µL of the neutralized supernatants, standards or blank (5% 

HClO4, w/v) and 100 µL of the luciferin/luciferase solution [0.15 mM luciferin, 300,000 light 

units of luciferase from Photinus pyralis (American firefly), 50 mM glycine, 10mM MgSO4, 

1 mM Tris, 0.55 mM EDTA, 1% BSA (pH 7.6)]. The emitted light intensity was determined 

using a luminescence microplate reader (BioTek Instruments, Vermont, USA) and 

compared with a standard curve performed within each experiment. Data were normalized 

to the protein content, determined by the Lowry assay (Lowry et al., 1951) from 3 

independent experiments with each concentration tested in 2 replicates within each 

experiment. 

 

RNA isolation and processing 

 After the 24 h incubation time, the medium was removed and 1 mL of QIAzol 

(QIAGEN, Hilden, Germany) was added immediately. RNA isolation was performed 

according to the manufacturer’s instructions. The RNA was quantified using a NanoDrop 

2000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and the integrity of 

RNA was confirmed with a standard sense automated gel electrophoresis system 

(Experion, Bio-Rad, Hercules, CA, USA). 

 

Microarray analysis 

 For global gene expression profiling, the Affymetrix Rat GenChip® Genome 430 

2.0 array was used. All labeling reagents and instrumentation regarding microarrays were 

acquired from Affymetrix (Santa Clara, USA). 
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 Microarray analysis was done only for the highest concentration tested of each 

drug. A total of 100 ng RNA were transcribed into cDNA by oligo dT primers, and reverse 

transcribed to biotinylated cRNA with the GeneChip 3’ IVT Express Kit. After 16 hours of 

in vitro transcription, the amplified RNA was purified using magnetic beads and 15 μg of 

amplified RNA was fragmented with the fragmentation buffer using the Affymetrix’s 

protocol. In the next step, 12.5 μg of labeled and fragmented cRNA were hybridized to Rat 

Genome 430 2.0 AffymetrixGeneChips along with a hybridization cocktail and placed in a 

hybridization oven rotating at 60 RPM at 45 °C for 16 h. Microarrays were washed using 

an Affymetrix fluidics station 450 and stained initially with streptavidin-phycoerytherin. For 

each sample, the signal was further enhanced by incubation with biotinylated goat anti-

streptavidin followed by a second incubation with streptavidin-phycoerytherin, and a 

second round of intensities were measured. Microarrays were scanned with an Affymetrix 

Gene-Chip Scanner-3000-7G controlled by GCOS software. Rat Genome 430 2.0 

Affymetrix GeneChips contain over 45,000 probe sets from over 34,000 well-characterized 

mouse genes. GeneChips microarray study followed MIAME guidelines issued by the 

Microarray Gene Expression Data group.  

 

Microarray data processing and statistical analysis 

 Concentration-response curves were fitted by the least squares method. The 

comparisons between curves (bottom, top and log EC50) were made using the extra sum-

of-squares F test. Results from biochemical measures were presented as mean ± 

standard error of the mean (SEM). Normality of the data distribution was assessed by the 

Kolmogorov-Smirnov normality test. Significance was accepted at p<0.05. Statistical 

comparisons between groups were performed with one-way ANOVA followed by 

Bonferroni post-hoc. 

 Affymetrix gene expression data were processed using the statistical programming 

language ‘R-version 2.15.1’. For the normalisation of the entire set of Affymetrix gene 

expression arrays was used the Robust Multi-array Average (RMA) algorithm (Irizarry et 

al., 2003), that applies background correction, log2 transformation, quantile normalisation 

and a linear model fit to the normalised data to obtain a value for each probe set (PS) on 

each array. After normalisation, gene expression for each gene was adjusted by 

comparing the expression to the corresponding control array expression (paired design). 

 Differential expression was calculated using the R package limma (Smyth et al., 

2005). Here, the combined information of the complete set of genes is used by an 
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empirical Bayes adjustment of the variance estimates of single genes. This form of a 

moderated t test is abbreviated here as ‘Limma t test’. The resulting p values were 

multiplicity-adjusted to control the false discovery rate (FDR) by the Benjamini-Yekutieli 

procedure. As a result, for each compound a gene list was obtained, with corresponding 

estimates for fold change and p values of the Limma t test (unadjusted and FDR-

adjusted). 

 Principal component analysis (PCA) plots were used to visualize expression data 

in two dimensions, representing the first two principal components, that is, the two 

orthogonal directions of the data with the highest variation. The software ‘R – version 

2.15.1’ was used for all calculations and display of PCA. Genes which showed change 

ratios greater than 2 or less than 0.3-fold in the triplicate arrays have been considered as 

up or down-regulated and subjected to gene ontology (GO) and pathway analyses. 

Transcription factor binding sites enrichment (TFBSE) was performed using the PRIMA 

algorithm (Elkon et al., 2003) provided in the Expander software suite (version 6.04) 

(Ulitsky et al., 2010). The Venn diagrams for the comparison of gene expression, GO 

terms and transcription factor binding sites (TFBS) among the tested piperazine designer 

drugs were constructed according to Chow and Rodgers (2005). The size of the circles 

and areas was chosen proportional to the number of elements included. 

 

Results 

Piperazine designer drugs elicited concentration-dependent cytotoxicity to primary 

cultured rat hepatocytes 

A comprehensive concentration-response analysis was carried out by incubating 

the primary rat heatocytes with 0-20 mM of each piperazine designer drug for 72 h. Figure 

1 presents the obtained concentration-response curves showing that in the resazurin 

assay, all tested drugs produced concentration-dependent cytotoxic effects. A summary of 

the calculated EC50 values (representing the half-maximum-effect concentrations from the 

fitted curves) is presented in Table 1. Significant differences were observed for the EC50 

values of the curves. Based on these data, it was evident that, under our experimental 

conditions, TFMPP (EC50 0.104 mM) was the most cytotoxic of the tested piperazine 

designer drugs to primary rat hepatocytes, followed by MDBP (EC50 1.01 mM), MeOPP 

(EC50 1.23 mM) and BZP (EC50 2.34 mM). 
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Figure 1. Concentration-response (cell death) curves of the tested piperazine designer drugs after 72 h 
incubations with primary rat hepatocytes at 37°C. Cell viability was evaluated by the rezasurin assay. Data are 
presented as percentage of cell death relative to the respective negative controls. Three independent 
experiments were performed (three replicates tested for each concentration within each experiment). Curves 
were fitted using least squares as the fitting method. 

 

Table 1. EC50 values of the piperazine designer drugs 

Designer Drug EC50 (mM) 

BZP 2.34 

TFMPP 0.104* 

MeOPP 1.23*# 

MDBP 1.01*#$ 

* compares to BZP, # compares to TFMPP. The cytotoxicity curves were fitted using least squares as the 
fitting method. Comparisons were made using the extra sum-of-squares F test (p<0.05). 

 

Piperazine designer drugs did not cause redox or energetic imbalance in primary rat 

hepatocytes 

Changes in the intracellular amounts of GSH and GSSG are strong indicators of 

redox disturbances and were investigated with the DTNB-GSSG reductase recycling 

assay. No differences from control incubations were found after 6 h incubations for any of 

the tested drugs. However, a significant (p<0.05, ANOVA/Bonferroni) increase in total 

GSH of cells incubated with 625 µM BZP for 24 h was observed. This corresponded to a 

24% and a 56% increase in reduced GSH and GSSG levels, respectively, in comparison 

to control (figure 2). All other compounds did not induce any change in total GSH, reduced 

GSH or GSSG levels. When intracellular ATP levels were evaluated, no alterations were 
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found at 6 or 24 h incubation-time (data not shown). Overall, the highest concentrations 

tested did not present cytotoxicity to the primary rat hepatocytes, being therefore suitable 

for microarray studies. 

 
Figure 2. Intracellular contents of total glutathione (tGSH), reduced glutathione (GSH) and oxidized 
glutathione (GSSG) in primary rat hepatocytes after 24 h incubations with the tested piperazine 
designer drugs at 37 °C. Results are expressed as nmol/mg protein ± SEM (n=4 independent 
experiments run in triplicates). Statistical comparisons were made using one-way 
ANOVA/Bonferroni post-hoc test (* p<0.05 vs control). 

 

Piperazine designer drugs induce transcriptional changes in rat primary hepatocytes 

 To identify global changes in gene expression associated with piperazine designer 

drugs induced hepatotoxicity, microarray analysis were performed. Figure 3 presents the 

number of probe sets significantly altered (up- or down-regulated) for each compound and 

the Venn diagram presenting the overlapping genes. MDBP presented the highest 

number of altered probe sets. Among the four piperazine designer drugs, 65 probes were 

found to be overlapped. From the total number of probe sets, genes with a fold change 

higher than 2.0 were selected as up-regulated, while genes with a fold change less than 

0.3 were selected as down-regulated. The selected overlapped genes are summarized in 

table 2. As can be seen, the number of up-regulated genes is higher than the down-

regulated ones. Among the overlapped genes are gpnmb, which codifies the 

transmembrane protein NMB, a molecule that participates in the cell adhesion processes, 
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and fads1 that codifies the enzyme fatty acid desaturase 1. Desaturase enzymes regulate 

unsaturation of fatty acids through the introduction of double bonds between defined 

carbons of the fatty acyl chain. Surprisingly, 5 of the up-regulated overlapped genes are 

related to the cholesterol pathway, according to the GO analysis. These genes are 

msmo1, idi1, cyp51, sqle, and fdps that codify the enzymes responsible for cholesterol 

biosynthesis. The first enzyme on cholesterol biosynthethic pathway up-regulated by the 

piperazine designer drugs is isopentenyl-diphosphate ∆ isomerase (or isopentenyl 

pyrophosphate isomerase, IPP isomerase, idi1 gene), an isomerase that catalyzes the 

conversion of isopentenyl pyrophosphate (IPP) to the more-reactive electrophile 

dimethylallyl pyrophosphate (DMAPP). This isomerization is a key step in the biosynthesis 

of isoprenoids through the mevalonate pathway. Farnesyl pyrophosphate synthase (fdps 

gene), catalyzes the next reaction of this route, which are sequential condensation 

reactions of dimethylallyl pyrophosphate with 2 units of 3-isopentenyl pyrophosphate to 

form farnesyl pyrophosphate. Squalene epoxidase (sqle gene) is an enzyme that uses 

NADPH and molecular oxygen to oxidize squalene to 2,3-oxidosqualene (squalene 

epoxide). This is the first oxygenation step in sterol biosynthesis and it is thought to be 

one of the rate-limiting enzymes of this pathway. Lanosterol 14 α-demethylase (or 

CYP51A1, cyp51 gene) is a cytochrome P450 enzyme that is involved in the conversion 

of lanosterol to 4,4-dimethylcholesta-8(9),14,24-trien-3β-ol. This demethylation step is 

regarded as the initial checkpoint in the transformation of lanosterol to other sterols that 

are widely used within the cell. The last up-regulated enzyme is sterol-C4-methyloxidase 

that catalyzes one of the final reactions of cholesterol synthesis. Regarding the down-

regulated probe sets, only one gene was common to all four piperazine derivatives, and 

this was related to the enzyme betaine-homocysteine-S-methyltransferase (bhmt gene). 

This is a zinc metallo-enzyme that catalyzes the transfer of a methyl group from betaine to 

homocysteine to produce dimethylglycine and methionine, participating in the metabolism 

of glycine, serine, threonine and also methionine. When the TFBS were analysed, four 

transcription factors overlapped among the four piperazine designer drugs evaluated 

(figure 4).  
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Figure 3. Overlap of differentially expressed probe sets after 24h incubation of primary rat 
hepatocytes with piperazine designer drugs. Overlaps are displayed as Venn diagrams with 
absolute numbers of altered elements in the circles. 
 

Table 2. Function and protein encoded by overlapped genes that were significantly altered  

Gene Protein Function 

Up-regulated 

Gpnmb transmembrane glycoprotein NMB cell adhesion molecule 

Fads1 fatty acid desaturase 1 fatty acid metabolism 

Msmo1 sterol C4-methyloxidase cholesterol biosynthesis 

Idi1 isopentenyl-diphosphate-∆-isomerase cholesterol biosynthesis 

Cyp51 lanosterol 14-α demethylase, CYP51A1 cholesterol biosynthesis 

Sqle squalene epoxidase cholesterol biosynthesis 

Fdps farnesyl diphosphate synthase cholesterol biosynthesis 

 

Down-regulated 

Bhmt betaine-homocysteine S-methyltransferase cysteine and methionine metabolism 
 

 



Study IV: Hepatotoxicity of piperazine designer drugs: a toxicogenomic approach 

139 

 
Figure 4. Overlap of differentially expressed transcription factor binding sites (TFBS) after 24h 
incubation of primary rat hepatocytes with piperazine designer drugs. Overlaps are displayed as 
Venn diagrams with absolute numbers of altered elements in the circles. 

 

Discussion 

We have demonstrated here that piperazine designer drugs produce cytotoxicity to 

primary rat hepatocytes. Among the four tested piperazine designer drugs, TFMPP was 

the most potent in eliciting cytotoxic effects, which was in accordance with previous 

studies obtained in H9c2 cell line (Arbo et al., 2014). For toxicogenomic testing the 

highest nontoxic concentration was evaluated (Waldmann et al., 2014), which can explain 

the lack of effect in the redox and energetic status of the cells. The overall redox state of a 

cell is important for intracellular signalling and gene activation, and a vital aspect of 

cellular response to chemical stress and in terms of defence and cell repair (Mates and 

Sanchez-Jimenez, 1999). GSH also has a role in signal transduction, gene expression 

and apoptosis (Arrigo, 1999). A slight increase in GSH content was observed, and this 

can be understood as a compensatory mechanism, through which the increase of cellular 

antioxidant capacity tries to compensate the increase in oxidation (Finne et al., 2008). 
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The overall goal of the toxicogenomic study was to identify gene expression 

markers describing toxic effects elicited by the piperazine designer drugs. In recent years, 

cultivated hepatocytes have been applied in gene expression studies aimed at the 

identification of hepatotoxic or carcinogenic compounds (Klingmüller et al, 2006; Suzuki et 

al., 2008; Uehara et al., 2008; Legendre et al., 2014). Sandwich hepatocytes cultures 

supplemented with dexamethasone seem to be the most adequate model to detect gene 

expression alterations since they preserve a honeycomb shape and polarity of 

hepatocytes, transporters, and prevent up-regulation of epithelial to mesenchymal 

transition markers (Luttringer et al., 2002; Schug et al., 2008, Godoy et al., 2010; Kim et 

al., 2010). However, two major limitations when using cultivated primary hepatocytes in 

toxicogenomics must be considered. First, hepatocytes undergo massive gene expression 

alterations, particularly during the first 24 h in culture. Therefore, gene expression 

alterations induced by test compounds have to be analysed against a rather “noisy” 

background. Second, huge discrepancies between test compound-induced gene 

expression in the liver in vivo and in hepatocytes in vitro have been reported (Godoy et al., 

2009; Schug et al., 2013). It is, therefore, necessary to phenotypically anchor the findings 

obtained after such toxicogenomic approaches. 

In spite of the number of down-regulated probes being higher than the up-

regulated ones, only the bhmt was commonly regulated by the four piperazine designer 

drugs. The bhmt gene codifies the enzyme betaine-homocysteine-S-methyltransferase 

(BHMT), a liver and kidney metaloenzyme that catalyzes the methyl transfer from betaine 

to homocysteine to form methionine and dimethylglycine (Kořínek et al., 2013). It has 

been shown that BHMT plays a protective role in homocysteine-induced injury in cultured 

hepatocytes (Ji et al., 2007). The major effect of BHMT inhibition is an increase in 

homocysteine and a decrease in S-adenosylmethionine levels. The decrease in S-

adenosylmethionine activates a process leading to hepatocyte proliferation and 

transformation. Indeed, patients with hyperhomocysteinemia develop hepatic steatosis, 

which can progress into hepatocellular carcinoma (Selicharová et al., 2013). In agreement 

with a steatosis hepatotoxic mechanism, we also found an up-regulation of the Fads1 

gene, which encodes fatty acid ∆5-desaturase. Fads1 gene is known to be related with 

lipogenesis, suggesting that it participates in the process of steatogenesis (Glaser et al., 

2010; Tateno et al., 2011). GPNMB is a type I transmembrane protein expressed in a 

wide variety of normal tissues, which was also found to be up-regulated by all the drugs. 

GPNMB is associated with poor prognosis in breast cancer and has been implicated in 

two different angiogenesis pathways (Agostini et al., 2012), so it is possible that GPNMB 

also plays a role in hepatocarcinoma. 
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Nevertheless, the majority of the up-regulated genes that were found are related to 

cholesterol biosynthesis. In the body, cholesterol is either derived from the diet or from de 

novo synthesis occurring mainly in the liver through the mevalonate pathway. This 

pathway comprises several enzymes, such as sterol C4-methyloxidase (msmo1), 

isopentenyl-diphosphate-∆-isomerase (idi1), lanosterol 14-α demethylase (cyp51), 

squalene epoxidase (sqle), and farnesyl diphosphate synthase (fdps). Cholesterol 

metabolism may play a role in the development of non-alcoholic fatty liver disease. For 

example, in steatotic livers, cholesterol biosynthesis is still activated despite a cholesterol 

overload in hepatocytes, indicating that cholesterol metabolism is deregulated (Enjoji and 

Nakamuta, 2010). Additionally, in mice, dietary cholesterol exacerbates hepatic steatosis, 

and the expression of genes fdps, idi1, sqle and cyp51 were found to be altered after 3 

weeks of treatment with an atherogenic, Western or high fat diets (Renaud et al, 2014). 

Cholesterol, as well as phospholipids, are critical components of the plasma 

membrane of living cells. While cholesterol also functions as the precursor of steroid 

hormones, phospholipids function as emulsifying agents to maintain the proper colloidal 

state of the cytoplasm. Several toxicants are known to disrupt phospholipid metabolism. 

For example, lead exposure was associated with cholesterogenesis and phospholipidosis 

in exposed animals (Ademuyiwa et al., 2009). Phospholipidosis is often observed in 

various tissues, including liver, kidney, and lung, and it is characterized by intracellular 

accumulation of phospholipids and the appearance of membranous lamellar bodies 

(Hirode et al., 2008). Four possible mechanisms have been suggested for the induction of 

phospholipidosis based on toxicogenomic data: (1) inhibition of lysosomal phospholipase 

activity – this is generally regarded as the primary mechanism of induction; (2) inhibition of 

lysosomal enzyme transport; (3) enhanced phospholipid biosynthesis; and (4) enhanced 

cholesterol biosynthesis - this considered to be an indirect trigger (Sawada et al., 2005). In 

drug-induced phospholipidosis, accumulation of phospholipids in lamellar bodies is also 

accompanied by increased levels of neutral lipids and cholesterol. Changes of the cellular 

cholesterol turnover are sensored by the sterol regulatory element binding proteins 

(SREBP) type transcription factors. Specifically, the SREBPs regulate multiple genes of 

the cholesterol biosynthesis and uptake pathway (Anderson and Borlak, 2006). This 

transcription factor enters the nucleus, binds to sterol regulatory elements and induces 

several genes involved in sterol and lipid biosynthesis (Hubbert et al., 2007). Drugs known 

to induce phospholipidosis by up-regulation of cholesterol biosynthetic pathway include 

propiconazole (Murphy et al., 2012), fluoxetine, imipramine, and hydroxyzine (Sawada et 

al., 2005; Hirode et al., 2008). 
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Gene expression is primarily controlled through the action of transcription factors 

that respond to environmental, autocrine, or paracrine signals. The regulation of 

cholesterol levels is a complex process involving cross regulatory feedback mechanisms 

using a variety of sensors (Murphy et al., 2012). Hepatic lipid synthesis is regulated by the 

lipogenic transcription factor sterol regulatory element binding proteins (SREBPs), one of 

the overlapped transcription factors found on TFBSE analysis. SREBPs are ~130 kDa 

proteins attached to the endoplasmic reticulum and nuclear membranes through 

transmembrane-spanning domains. SREBP1 and SREBP2 are encoded by separate 

genes, and SREBP1 is expressed as two subtypes, 1a and 1c. In the liver, SREBP1c is 

the predominant subtype (Mater et al., 1999). A two-step proteolytic cleavage of SREBP 

occurs within the Golgi complex and releases a basic helix-loop-helix-leucine zipper 

transcription factor denoted nuclear SREBP (nSREBP). The cleavage is controlled by the 

endoplasmic reticulum cholesterol content, which is sensed by SREBP cleavage 

activating protein (SCAP). SCAP, together with Insig proteins, retains SREBP within the 

endoplasmic reticulum when cholesterol is abundant, but escorts it to the Golgi complex 

on cholesterol depletion (Yan et al., 2007). Processed SREBP1 and-2 bind to specific 

promoters and, in turn, enhance the transcription of genes involved in cholesterol 

biosynthesis and transport (Szántó et al., 2014). SREBP is also involved in a complex 

feedback regulation which includes insulin signalling (Ribaux and Iynedjian, 2003; Reed et 

al., 2008; Kohjima et al., 2008), FoxO transcription factors (Deng et al., 2012), and 

oxysterols (Ren et al., 2007). 

Another overlapped transcription factor found among the four piperazine designer 

drugs evaluated is HNF4. This is a member of the nuclear hormone receptor family of 

transcription factors. It binds DNA as a homodimer and, although initially believed to be an 

orphan receptor, its activity may be modulated by the binding of fatty acyl-CoA thioesters. 

The ability of HNF4 to regulate liver genes, as well as its expression throughout hepatic 

development, suggested a significant role for this factor in differentiation of the hepatocyte 

lineage (Watt et al., 2003). Regarding to cholesterol pathways, HNF4 regulates the 

transcription of apolipoprotein A-I in hepatocytes (Mogilenko et al., 2009). 

In conclusion, piperazine designer drugs elicited cytotoxicity in sandwich cultures 

of primary rat hepatocytes. In spite of the negligible toxicity observed through some 

classical biochemical markers, such as GSH/GSSG and ATP, microarray analysis showed 

to be more sensitive and revealed that piperazine designer drugs can enhance cholesterol 

biosynthesis, which may eventually lead to phospholipidosis. The hope is that, in the near 

future, gene biomarkers will allow the testing of multiple drug toxicities simply by 
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measuring gene expression. The toxicogenomic approach used in this study should be 

helpful in the examination of the mode of action and identification of gene markers for 

these drugs. However, these findings need validation through other tests.  
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4.1  Integrated discussion 

The consumption of drugs of abuse is a worldwide problem, and the internet has 

contributed to the easy access to such drugs. Piperazine designer drugs have been 

marketed in UK (Davies et al., 2010), Japan (Takahashi et al., 2009), Brazil (Lanaro et al., 

2010), France (Gaillard et al., 2013), Bulgaria (Helander et al., 2014), Belgium (Kovaleva 

te al., 2008), Sweden (Wilkström et al., 2004), South Africa (Cohen and Butler, 2011), 

Poland (Biliński et al., 2012), New Zealand (Gee et al., 2005; Sheridan et al., 2007), 

Australia and in the USA (Gee and Fountain, 2007). In spite of they have been 

commercialized as a secure alternative to MDMA, studies and case-reports, reviewed by 

Schep and collegues (2011) and Arbo and co-workers (2012), indicate risks for humans. 

When this thesis was proposed, these drugs were freely commercialized in Portugal and 

other EU countries. However, at that time, there were no toxicological or mechanistic 

studies about them. Therefore, the present thesis aimed to study the mechanisms of 

toxicity of piperazine designer drugs exploring different in vitro models, corresponding to 

the main target organs usually affected by drugs of abuse. To achieve this objective we 

used i) H9c2 rat cardiomyoblasts, to study the cardiotoxicity; ii) differentiated human 

neuroblastoma derived SH-SY5Y cells, to evaluate the neurotoxicity; and iii) four in vitro 

approaches to evaluate the hepatotoxicity, the human derived HepG2 and HepaRG cells, 

and the monolayers and sandwich cultures of primary rat hepatocytes. 

The H9c2 is a clonal cardiomyoblast cell line derived from embryonic rat ventricles. 

These cells maintain many molecular markers of cardiomyocytes and show morphological 

characteristics of immature embryonic cardiomyocytes (Hescheler et al., 1991). On the 

other hand, H9c2 cells adopt features of skeletal muscle because the cells express 

nicotinic receptors and synthesize a muscle-specific creatine phosphokinase isoenzyme 

(Kimes and Brandt, 1976). Also, the cells do not express gap junctions, T tubules, or 

myofibrils with organized sarcomeres. However, they are considered a valuable model to 

assess in vitro cardiotoxicity, especially because these cells have preserved several 

elements of the electrical and hormonal signal pathway found in adult cardiac cells 

(Hescheler et al., 1991) and adequately mimic the metabolic capacity of the rat heart 

(Zordoky and El-Kadi, 2007; Aboutabl and El-Kadi, 2007). Recently, our group showed 

through this model that mitoxantrone cause energetic imbalance in the cardiac cells and 

that the metabolism contributes to the toxicity (Rossato et al., 2013ab). 

Human SH-SY5Y cells are a comparatively homogeneous neuroblast-like cell line, 

frequently used as an in vitro neuronal model. Although they do not present all the 

characteristics of adult neurons in the brain, these cells may acquire a neuronal 
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dopaminergic phenotype after stimulation with several agents, making them a useful 

research tool to elucidate the toxicity mechanism of drugs (Presgraves et al., 2003). They 

exhibit neuronal marker enzyme activity (tyrosine and dopamine-β-hydroxylases), specific 

uptake of NE, and express one or more neurofilament proteins. They also express opioid, 

muscarinic, and nerve growth factor receptors. Although SH-SY5Y cells have been widely 

used either in their undifferentiated or differentiated state, use of undifferentiated cells 

involves some limitations, such as the proliferation during the experiment, which makes it 

difficult to distinguish whether neurotoxic agents influence the proliferation rate or the rate 

of cell death (Datki et al., 2003). Furthermore, SH-SY5Y cells in culture are 

unsynchronized and do not always exhibit the typical markers of mature neurons, which 

leads to uncertainty in experiments. Differentiation leads to a functionally mature neuronal 

phenotype. Upon differentiation, cells stop proliferating, become a more stable population 

and show extensive neurite outgrowth, with morphological similarity to living neurons in 

the brain. In addiction, SH-SY5Y differentiated cells possess more biochemical, 

ultrastructural, morphological and electrophysiological similarity to neurons and express a 

variety of neuronal-specific markers (Presgraves et al., 2003). However, according to the 

differentiation agent used, cells may acquire different phenotypes. SH-SY5Y cells 

differentiated with retinoic acid present a mature cholinergic phenotype, with no significant 

differences in DAT and tyrosine hydroxylase expression (Cheung et al., 2009). However, 

they present higher expression of choline acetyl transferase and vesicular monoamine 

transporter (VMAT), confirming the enhancement of cholinergic phenotype. On the other 

hand, SH-SY5Y cells differentiated with 12-O-tetradecanoylphorbol-13-acetate (TPA) 

acquire a more characteristic adrenergic neuronal phenotype, as observed by the 

increase of tyrosine hydroxylase expression and NE and neuropeptide Y biosynthesis 

(Presgraves et al., 2003). When used retinoic acid/TPA in combination, differentiated SH-

SY5Y cells develop a dopaminergic phenotype and have higher levels of tyrosine 

hydroxylase, DAT, and dopaminergic D2 and D3 receptors but lower levels of VMAT than 

undifferentiated cells (Xie et al., 2010). Differentiated SH-SY5Y cells have been used by 

our group to study the neurotoxic effects of MDMA and metabolites (Ferreira et al., 2013; 

Barbosa et al., 2014ab) and other neurotoxicants (Martins et al., 2013). 

The human-derived hepatoblastoma cell line HepG2 has been extensively used as 

a test system for the prediction of hepatic toxicity, carcinogenicity and cell mutagenicity in 

humans. These cells show many liver specific functions, express conjugating enzymes, 

but lack a functional expression of almost all the relevant human liver CYP450 enzymes 

(Donato et al., 2008). Most of the CYP450 isoforms examined in HepG2 cells presented 

values that were 2-3 orders of magnitude lower than in human hepatocytes (Guo et al. 
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2011; Lin et al. 2012). In our lab, this in vitro system was previously used for the 

characterization of the cytotoxic effects of amphetamine derivatives (Dias da Silva et al. 

2013ab, 2014ab).  

The HepaRG cells are derived from a human hepatocellular carcinoma and also 

show features of a well differentiated hepatocyte. When seeded at a low density, they 

acquire an elongated undifferentiated morphology, actively divide, and after having 

reached confluency, form typical hepatocyte-like colonies surrounded by biliary ephitelial-

like cells. Moreover, contrary to other human hepatoma cell lines, including the HepG2 

cells, HepaRG cells not only express several CYP450s, but also the nuclear constitutive 

androstane receptor (CAR) and pregnane X receptor (PXR) at levels comparable to those 

found in cultured primary human hepatocytes (Donato et al., 2008). Comparing to HepG2 

cells, HepaRG present a higher level of CYP1A1, CYP2B6, CYP2C9, CYP2E1 and 

CYP3A4 mRNA and lower CYP2D6 mRNA (Aninat et al. 2006, Rodrigues et al. 2013). 

Interestingly, the main metabolic pathways described for the piperazine designer drugs in 

animals and in humans comprise reactions catalyzed by CYP2D6, which include the 

hydroxylation of BZP (Staack and Maurer 2005), TFMPP (Staack et al. 2003), and 

MeOPP (Staack et al. 2004) and the demethylenation of MDBP (Staack and Maurer 

2004).  

Hepatoma cells have been recognized as a good model to evaluate enzyme 

induction and non-metabolic dependent toxicity. However, they do not constitute a real 

alternative to primary hepatocytes to screen chemicals bioactivated by drug-metabolizing 

enzymes (Donato et al., 2008). Cultured hepatocytes are the most suitable model for 

investigating induction of CYPs by chemical inducers and metabolic profiles of new drugs 

(Aninat et al. 2006), so this in vitro model was also included in this work. Nevertheless, 

dedifferentiation is well know to occur in primary monolayer cultures, where hepatocytes 

lost many of their specific properties such as reduced synthesis of serum proteins; a 

progressive fall in levels of glucose-6-phosphatase; and a decrease in CYP450s and 

NADPH CYP450-reductase (Luttringer et al., 2002). Moreover, hepatocytes features such 

as polarity and bile canalicular transport are progressively lost in monolayer cultures. After 

a few days, hepatocytes start to spread and acquire a fibroblast-like shape (Godoy et al., 

2009). In spite of these disandvantages, monolayer hepatocyte cultures have been used 

successfully by our group to describe the toxic effects of MDMA and ethanol consumption 

(Pontes et al., 2008), paraquat (Sousa et al., 2009) and synthetic cathinones (Araújo et 

al., 2014). 
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After the isolation procedure, the hepatocytes can be maintained in different 

extracellular matrice configurations (single or double collagen matrices, Matrigel, Vitrogen) 

in customized culture media (Luttringer et al., 2002). In collagen-sandwich cultures, 

hepatocytes are mantained between two collagen gels and remain stable over extended 

periods. Moreover, in this extracellular matrice, the cells preserve a honeycomb shape 

and polarity, and prevents upregulation of epithelial to mesenchymal transition markers 

(Godoy et al., 2009). Besides, collagen-sandwich cultures exhibit the preservation of other 

differentiated functions, including secretion of urea, expression of plasma proteins such as 

albumin and fibrinogen, the presence of bile canaliculi, as well as the synthesis of gap 

junction and tight junction proteins (Kim et al., 2010). However, even the collagen 

sandwich culture technique is not able to completely abolish dedifferentiation. Therefore, 

further factors, such as hormonal additives might be required. For instance, 

dexamethasone has been reported to contribute to the maintenance of differentiated 

hepatocytes functions, increase fibronectin secretion, induce tyrosine aminotransferases, 

promote an ordered arrangement of the cytoskeleton , enhance gap junctions expression 

and function, regulate the P-glycoprotein expression, support CYP450 activity and curtail 

the decrease in protein synthesis observed in hepatocytes during the initial 24 h after 

isolation (Luttringer et al., 2002; Godoy et al., 2010). On the other hand, it is known that 

culture conditions may influence signal transduction pathways (Klingmüller et al., 2006). 

RNA expression levels in vitro strongly depend on culture conditions and may deviate 

from in vivo situation. Studing the gene expression patterns induced by the hepatotoxicant 

methapyrilene in three different systems (sandwich, Matrigel and 2D cultures), Schug et al 

(2008) proved that collagen-sandwich cultures were the most adequate system for 

detection of gene expression alterations. Based on this, we selected this in vitro model in 

our toxicogenomic studies. 

Previous works have demonstrated that different cell lines shown equal predictivity 

to most toxicants. That happens because all cell lines have the same machinery for cell 

survival and replication. Besides, in immortalized cells, the endpoints utilized for toxicity 

evaluation, such as oxidative stress, inflammation, apoptosis, energetic dysfunction, can 

potentially contribute to a variety, or the majority, of organ toxicities (Lin and Will, 2012). 

Our studies showed that piperazine designer drugs presented different responses in our in 

vitro models. TFMPP, MeOPP and MDBP were highly cytotoxic to differentiated human 

neuroblastoma SH-SY5Y cells, presenting the lowest EC50 values among all models, 

while BZP was more cytotoxic to H9c2 rat cardiomyoblasts. The effects in cardiac cells 

were somehow expected, since these drugs have a predominance of adrenergic effects in 

the periphery (Schep et al., 2011). Therefore, these data might indicate that BZP has a 
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greater affinity for adrenoceptors than the other drugs. Comparing the hepatic in vitro 

models, the primary rat hepatocytes were clearly more susceptible to cytotoxicity than the 

immortalized cells, which presented the highest EC50 values. This indicates the 

importance of the metabolism to the piperazine designer drugs cytotoxicity since the main 

difference among these 3 models is their metabolic capacity. Regarding the relative 

potency of the drugs, it was clear that TFMPP was the most cytotoxic derivative in all in 

vitro models. 

Besides the cytotoxicity studies, some common toxicological mechanisms of drugs 

of abuse were also evaluated, namely the oxidative stress, the Ca2+ homeostasis, the 

energetic status, the mitochondrial function and the cell death mode. 

The formation of reactive species and the resulting oxidative and/or nitrosative 

stress is a common toxicological pathway of several drugs of abuse, including 

amphetamines, cocaine and alcohol (Carvalho et al., 2012; Uys et al., 2014). Cellular 

homeostasis is regulated through reduction and oxidation (redox) reactions resulting from 

the transfer of electrons from one species to another. The formation of oxidative and 

nitrosative species (ROS/RNS) is a consequence of redox reactions that are important to 

physiology, whose dysregulation is attributed to pathology. Oxidative stress corresponds 

to a disturbance in the pro-oxidant/antioxidant balance in favor of the former, resulting in 

potential damage. Reactive species are capable of irreversibly modifying and damaging 

lipids and proteins or compromising the function of enzymes or transporters (Sies, 1997). 

Oxidative stress can occur in all tissues and organs. Our data showed that piperazine 

designer drugs significantly (p<0.05, ANOVA/Dunn’s) induced reactive species formation 

only in rat primary hepatocytes, at all concentrations tested. Using equipotent 

concentrations of the drugs at their EC20, EC40 and EC60, the highest increase in 

ROS/RNS was observed after MeOPP incubations. In the other in vitro models evaluated, 

namely H9c2 and SH-SY5Y cells, no overproduction of reactive species was observed. 

Primary hepatocytes are an efficient metabolic in vitro system, whose reactions could lead 

to an increased production of reactive species. Indeed, this is observed in the metabolism 

of MDMA, where the N-demethylation reactions lead to the formation of a free catecholic 

group, which, in turn, can auto-oxidate into reactive o-quinones (Carvalho et al., 2004). 

The metabolism of piperazine designer drugs, catalyzed by CYP450 isoenzymes, can 

lead to several products, namely catechol intermediates (Staack and Maurer, 2004) and 

paracetamol (Staack et al., 2004), which can be further metabolized into N-acetyl-p-

benzoquinone imine, a highly oxidative molecule. 
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In mammalian cells, GSH is considered the major cytosolic redox buffer. Under 

normal physiological conditions, GSH is mainly in the reduced form. GSH can directly 

scavenge ROS or indirectly through a reaction catalyzed by glutathione peroxidase (GPx). 

The elimination of H2O2 by GPx is accomplished with the concomitant oxidation of 

reduced GSH, leading to formation of oxidized glutathione (GSSG). Therefore, the 

reduction of GSH accompanied by an increase in GSSG levels is considered a good 

indicator of oxidative stress (Griffith, 1999). Our results showed that in H9c2 cells, only 

MDBP, at 1000 and 2000 μM, significantly (p<0.05, ANOVA/Bonferroni) reduced the total 

GSH intracellular levels. However, in differentiated SH-SY5Y cells, 500 and 1000 μM 

BZP, 100 μM TFMPP, and 250 and 500 μM MeOPP and MDBP elicited a significant 

(p<0.01, ANOVA/Bonferroni) total GSH depletion. A similar result was observed using 

equipotent concentrations of the drugs in rat primary hepatocytes. The piperazine 

designer drugs, with the exception of TFMPP and of the lowest concentration of MeOPP, 

significantly (p<0.001, ANOVA/Dunn’s) depleted GSH intracellular levels. For MeOPP, this 

depletion was concentration-dependent (p<0.001, ANOVA/Dunn’s) and it was the highest 

among all the piperazines. In hepatocytes, the reduction in GSH levels is accompainned 

by an overproduction of reactive species, therefore, this GSH depletion would be a 

physiological response to the oxidative stress. Moreover, in hepatocytes incubated with 

BZP, an increase in GSSG was also observed, corroborating to this hypothesis. However, 

the increase in GSSG levels can promote the GSSG efflux from the cell through multidrug 

resistance proteins or the formation of mixed disulfides in cellular proteins (Cole and 

Deeley, 2006). This GSSG efflux is a cellular response that protects the cells from 

oxidative stress that is why an increase in intracellular GSSG is, sometimes, not seen. In 

SH-SY5Y and H9c2 cells, whose metabolic capacity is much lower than hepatocytes, 

other GSH depletion mechanisms should be considered, which include formation of GSH-

conjugates and enzymatic inhibition of GSH biosynthesis (Gao et al., 2010).  

One of the GSH biosynthetic pathways was investigated through the in vitro 

incubation of piperazine designer drugs with the enzyme glutathione reductase (GR). The 

formed GSSG is reduced to two molecules of GSH by the action of GR. This enzyme 

presents thiol groups that are sensitive to chemical modifications induced by redox 

conditions. Under extreme oxidising environments, aggregates of GR may be formed, 

which decrease its activity (Remião et al., 2000). Under our experimental conditions, the 

piperazine designer drugs do not seem to have any influence on the GR activity, 

indicating that other enzymes from the GSH homeostasis could be involved. 
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Interestingly, GSH depletion has been observed after cocaine, methamphetamine 

and cronic alcohol abuse (Uys et al., 2014). In hepatocytes, formation of GSH-conjugates 

with amphetamine derivatives is a classical feature (Hiramatsu et al. 1990; Carvalho et al. 

1996; Carvalho et al. 2004; Dias da Silva et al. 2014a). The aromatic hydroxylation of 

amphetamine into p-hydroxyamphetamine leads to the formation of the glutathione-S-yl-p-

hydroxiamphetamine conjugate through a reaction catalyzed by CYP2D6 (Carvalho et al. 

1996). The formation of catechol metabolites, which are oxidized into quinone 

intermediates following demethylenation of MDMA (Hiramatsu et al. 1990) and MDA 

(Carvalho et al. 2004) has also been shown to produce the corresponding glutathione-S-

yl-N-methyl-α-methyldopamine and glutathione-S-yl-α-methyldopamine conjugates. Due 

to the similarity between the main metabolic pathways that were already described for the 

piperazine designer drugs (Staack and Maurer 2005) and those of the amphetamines, the 

formation of such GSH-conjugates with the piperazines is possible. The biosynthesis of 

GSH occurs in the cytosol, and it is dependent on two enzymes: γ-glutamylcysteine ligase 

and GSH synthase (Marí et al., 2013). Besides, the break down of extracellular GSH to 

provide cysteine is the rate-limiting substrate for the intracellular de novo GSH synthesis, 

a reaction catalyzed by the enzyme γ‐glutamyl transpeptidase (GGT) (Zhang et al., 2005). 

It is possible that these three enzymes might be targets for inhibition by piperazine 

designer drugs or their metabolites. 

Mitochondria are considered the ‘powerhouse’ of the cell, since one of them major 

functions is energy production through ATP generation. Mitochondria provide ATP via 

oxidative phosphorylation, which occurs in the electron transport chain, localized in the 

inner mitochondrial membrane (Van Laar and Berman, 2013). Mitochondria also 

participate in other pathways of normal cell functioning, namely Ca2+ handling and 

apoptotic cell death. Ca2+ uptake is driven by the electrochemical potential gradient 

generated by the combination of the mitochondrial membrane potential (∆ψm) and the low 

concentration of Ca2+ in the matrix (Duchen, 1999). It is well established that mitochondria 

accumulate Ca2+ ions during cytosolic Ca2+ elevations in a variety of cell types (Kumar et 

al., 2012). The downward electrochemical gradient across the inner membrane directs 

Ca2+ into the mitochondria through an uniporter. Once inside the mitochondria it can either 

be buffered or it can be transported back out of the mitochondria via a Na+/Ca2+ antiporter 

(Szabadkai and Duchen, 2008). If mitochondrial buffering capacity is overwhelmed by 

elevated Ca2+, mitochondrial matrix Ca2+ increases to levels high enough to trigger the 

opening of the mitochondrial permeability transition pore (MPTP). This involves the 

formation of pores in the inner membranes with ≤1.5 kDa, allowing the influx of water and 

solutes into the matrix. Although MPTP can ‘flicker’ and be reversible, sustained 
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transitions lead to the collapse of ∆ψm, cessation of ATP production, and cell death (Dong 

et al., 2006). In cell death, one well understood role of mitochondria is to regulate the 

release of proteins from the space between the inner and outer mitochondrial membranes 

to the cytosol, such as cytochrome c, apoptosis inducing factor (AIF) or SMAC/Diablo, 

thus leading to downstream caspase activation and apoptotic cell death (Danial and 

Korsmeyer, 2004). 

Due to the importance of mitochondria to normal cell processes, several aspects of 

mitochondrial function were evaluated. A significant increase (p<0.05, Kruskal-

Walis/Dunn’s) of intracellular free Ca2+ levels were observed after incubation with 1000 

μM BZP, 50 and 100 μM TFMPP, 500 μM MeOPP, and 1000 μM MDBP in H9c2 

cardiomyoblasts and 350 μM BZP, 1 and 5 μM TFMPP, 25 and 50 μM MeOPP and 1000 

μM MDBP in neuroblastoma SH-SY5Y cells, indicating that these drugs cause 

perturbations in cellular Ca2+ homeostasis. However, when we evaluated the ∆ψm, 

distinct responses were noted, which includes a significant (p<0.01, ANOVA/Bonferroni) 

∆ψm loss at 100, 500 and 1000 μM TFMPP and 500, 1000 and 2000 μM MeOPP or 

MDBP in H9c2 cells and a significant (p<0.05, ANOVA/Bonferroni) hyperpolarization of 

differentiated SH-SY5Y neurons at 1000 μM BZP, 50 and 100 μM TFMPP and 1000 and 

2000 μM MeOPP or MDBP. With the increase in Ca2+ levels, the mitochondria buffering 

capacity was overwhelmed and led to the loss of ∆ψm, mitochondrial depolarization and 

the significant (p<0.05, ANOVA/Bonferroni) depletion of ATP, which was verified at 1000 

and 2000 μM BZP, 500 μM TFMPP, 2000 μM MeOPP and 1000 and 2000 μM MDBP. 

This happens in response to mitochondrial depolarization, when the ATP synthase reverts 

to an ATPase activity, consuming ATP and pumping protons outwards, in a futile, energy 

consuming cycle (Duchen, 1999), in an attempt of ∆ψm maintenance (Mathur et al., 

2000). All these events led to the MPTP opening, which was confirmed by the significant 

(p<0.05, two-way ANOVA/Bonferroni) increase in cell viability after co-incubation of 1500 

and 2000 μM BZP, 50 and 100 μM TFMPP and 2000 μM MeOPP or MDBP with 1 μM 

cyclosporine A, a MPTP inhibitor. MPTP opening is catastrophic for the cell and will lead 

inexorably to cell death, either through ATP consumption, acute energy failure and 

necrosis or through the leakage of cytochrome c from mitochondria and the initiation of 

apoptosis (Duchen, 1999). 

On the other hand, in differentiaded SH-SY5Y cells in spite of the increase in the 

intracellular free Ca2+ levels, cells exhibited a mitochondrial hyperpolarization. This is a 

physiological response, there is evidence that neurons displaying a more pronounced 

∆ψm hyperpolarization survives longer (Ward et al., 2007). This happens because 
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hyperpolarization reduces neuronal activity and lowers ATP consumption, maintaining ion 

gradients and protecting neurons from death. However, it may also reduce the expression 

of activity-dependent genes, such as neurotrophins (Guatteo et al., 2005). This is 

supported by our data once ATP remained unaltered, even with the increased intracellular 

Ca2+ levels. 

 On the contrary, in primary rat hepatocytes, it was observed a significant (p<0.01, 

ANOVA/Dunn’s) loss of ∆ψm for the piperazine designer drugs at all concentrations 

tested, with the exception of EC20 TFMPP, with subsequent overproduction of reactive 

species and ATP depletion. The reduction of intracellular ATP levels was significant 

(p<0.05, ANOVA/Dunn’s) for all concentrations, with the exception of EC20 BZP and 

TFMPP and EC40 TFMPP. In the liver, depletion of ATP is a typical feature of hypoxic and 

toxic injury, and leads to inhibition of two hepatic anabolic processes, namely 

gluconeogenesis and plasma protein synthesis, which have in common a substantial 

requirement for ATP (Ponsoda et al. 1995). As it occurred in H9c2 cardiomyoblasts, the 

MPTP opening in hepatocytes can be expected since reactive species production, loss of 

∆ψm and ATP depletion are key events that end up in mitochondrial collapse. 

 Similarly, studies conducted with MDMA also showed involvement of increased 

intracellular Ca2+ concentrations and loss of ∆ψm in the cytotoxic effects using H9c2 cells 

(Tiangco et al., 2005). Increases in the intracellular free Ca2+ levels for the mixture of 

MDMA and its metabolites were also noted in differentiated SH-SH5Y cells. However, by 

using an intracellular Ca2+ quelator, the authors concluded that Ca2+ did not participate in 

the cell death pathway caused by this mixture. On the other hand, the antioxidant N-

acetylcysteine prevented the mitochondrial disruption (Barbosa et al., 2014b), proving that 

for MDMA neurotoxicity the oxidative stress plays an important role. In HepG2 cells, a 

mixture of amphetamines led to increase of reactive species and loss of ∆ψm (Dias da 

Silva et al., 2014a). Mytochondrial dysfunction was also observed in MDMA-treated rats 

(Song et al., 2010). The involvement of reactive species and MPTP opening is also 

described in mitochondria isolated from rat liver and incubated with different 

concentrations of methamphetamine (Mashayekhi et al., 2014).  

 As stated before, mitochondrial disfunction can lead to MPTP opening and thus, to 

cell death, that occur either by necrosis or apoptosis. Necrosis is an unregulated 

phenomenon involving damage of membrane integrity, cellular disruption and swelling of 

cytoplasmic organelles; whereas apoptosis is characterized by organized plasma 

membrane blebbing, cell shrinkage and typical modifications of nuclear morphology, such 

as chromatin condensation and fragmentation (Eguchi et al., 1997). Our experiments 



CHAPTER IV   
 

160 

showed that piperazine designer drugs induced apoptotic pathways in all in vitro models, 

namely H9c2 cardiomyoblasts, human neuroblastoma SH-SY5Y cells and primary rat 

hepatocytes. The early marker of apoptosis is the exposition of phosphatidilserine on the 

cell surface, which is normally concentrated in the luminal layer of the cytoplasmic 

membrane. At the later stage, the entire phosphatidylserine is flipped on the outer 

membrane (Kumar et al., 2012). When the rate of apoptosis is substantially increased, the 

cells undergo secondary necrosis (or late apoptosis) with breakdown of membrane 

potential, cell swelling and cell contents release. After staining H9C2 cells approximately 

at EC30 with annexin V-FITC and PI, there was a significantly (p<0.01, ANOVA/Bonferroni) 

higher number of cells at an early apoptotic stage and low necrotic cells. However, there 

was also a significantly (p<0.05, ANOVA/Bonferroni) elevated number of cells double-

stained and most likely undergoing secondary necrosis. On the other hand, in SH-SY5Y 

cells a clear apoptotic pattern was observed, with a significant increase (p<0.01, 

ANOVA/Bonferroni) in the number of early apoptotic cells for all drugs at non cytotoxic 

concentrations. Interestingly, only in primary rat hepatocytes the activation of the 

downstream effector caspase-3 was noticed. A significant (p<0.01, ANOVA/Dunn’s) 

increase in caspase-3 activity was observed for all concentrations, except for EC20 BZP 

and TFMPP and EC40 TFMPP, showing that while the hepatocytes signalize for classical 

apoptotic pathways, in other tissues alternative mechanisms for apoptosis induction that 

are independent of caspases activation may be occurring. 

 In fact, apoptosis has been described for amphetamines. In primary cultures of 

hippocampal neurons, 400 µM MDMA and 50 µM 2,5-dimethoxy-4-iodoamphetamine 

(DOI) induced caspase dependent and independent mechanisms of death, involving both 

the mitochondria machinery and the activation of cell death receptors (Capela et al., 

2013). In differentiated SH-SY5Y cells, a mixture of MDMA and metabolites elicited 

apoptosis through caspase-3 activation (Barbosa et al., 2014b). In HepG2 cells, the death 

mechanisms induced by different amphetamines, alone or in combination, seemed to 

depend on both temperature and time of exposure. In spite of the overexpression of 

several apoptosis markers, including proteins of BCL-2 family and activation of 

caspase3/7, at 37 ºC, in unfavorable environments, such as hyperthermia (40.5 ºC) and 

long incubation periods (48 h), necrotic features were also observed (Dias da Silva et al., 

2013b). Corroborating these findings, while MDMA induced apoptosis in hepatic stellate 

cells (Montiel-Duarte et al., 2004), the combination of MDMA and ethanol evoked necrotic 

features (Pontes et al, 2008). 
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An alternative apoptotic pathway involved in cardiomyocite (Parra et al., 2013) and 

neuronal cell death (Reimertz et al., 2001; O’Donovan et al., 2001) includes activation of 

calpains. Calpains are Ca2+-dependent proteases involved in apoptotic and necrotic 

processes which could, in turn, be activated by piperazine designer drugs due to the 

increased intracellular Ca2+ levels (Jiang et al., 2010). 

The potential genotoxicity of the piperazine designer drugs was evaluated through 

the comet assay in differentiated SH-SY5Y cells. Under our experimental conditions, no 

signs of genotoxicity were observed, however, it was observed a significant (p<0.01, 

ANOVA/Bonferroni) increase in DNA degradation caused by endonuclease activity during 

apoptosis or necrosis at 100 μM TFMPP and 250 and 500 μM MeOPP or MDBP. 

 Our data pointed to mitochondria and GSH homeostasis as targets of piperazine 

designer drugs toxicity. However, toxic changes in cells generally result from alterations 

not just in a single or few molecules, but in many molecular cascades. Moreover, 

mitochondrial dysfunction and oxidative stress are common mechanisms of toxicity and 

they are generally secondary events in the toxic insult. The DNA microarray technology 

has the potential to more comprehensively contribute to the understanding of toxicity than 

any available traditional approach. This technology also helps to identify early, sensitive 

biomarkers of toxicity, since alterations in gene expression are thought to precede the 

toxic outcome. The combination of microarrays with conventional toxicological tools has 

contributed to the knowledge of the mechanisms underlying cellular toxicity of several 

xenobiotics (Sawada et al., 2005). 

 The sandwich cultures of primary rat hepatocytes were selected as the best in vitro 

model for toxicogenomic studies (Schug et al., 2008). The sandwich cultures were 

incubated with a non cytotoxic concentration of each piperazine designer drug. The 

transcriptomic data were generated through the Affymetrix microarray technology and 

analyzed based on previous works (Grinberg et al., 2014). 

 In spite of the number of down-regulated probes being higher than the up-

regulated ones, the number of common up-regulated probes by the four piperazine 

designer drugs was higher. The four piperazine designer drugs presented a very 

homogenous response, therefore we looked for a common pathway played by the drugs 

in liver toxicity. The majority of the up-regulated genes were related to cholesterol 

biosynthesis. In the body, cholesterol is either derived from the diet or from de novo 

synthesis occurring mainly in the liver through the mevalonate pathway. This pathway 

comprises several enzymes, such as sterol C4-methyloxidase (msmo1), isopentenyl-
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diphosphate-∆-isomerase (idi1), lanosterol 14-α demethylase (cyp51), squalene 

epoxidase (sqle), and farnesyl diphosphate synthase (fdps), whose genes were up-

regulated. 

 Phospholipids, including cholesterol, are critical components of the plasma 

membrane of living cells. Phospholipids function as emulsifying agents to maintain the 

proper colloidal state of the cytoplasm, while cholesterol also functions as the precursor of 

steroid hormones. Phospholipidosis is observed in various tissues, including liver, kidney, 

and lung, and it is characterized by intracellular accumulation of phospholipids and the 

appearance of membranous lamellar bodies (Hirode et al., 2008). Based on previous 

toxicogenomic data, four possible mechanisms have been suggested for the induction of 

phospholipidosis: (1) inhibition of lysosomal phospholipase activity – this is generally 

regarded as the primary mechanism of induction; (2) inhibition of lysosomal enzyme 

transport; (3) enhanced phospholipid biosynthesis; and (4) enhanced cholesterol 

biosynthesis - this considered to be an indirect trigger (Sawada et al., 2005). The last one 

seems to fit in the overexpression genes found after piperazine designer drugs incubation, 

however, this data needs in vivo confirmation. Drugs known to induce phospholipidosis by 

up-regulation of cholesterol biosynthetic pathway include propiconazole (Murphy et al., 

2012), fluoxetine, imipramine, and hydroxyzine (Sawada et al., 2005; Hirode et al., 2008). 

 Gene expression is primarily controlled by transcription factors, which respond to 

environmental, autocrine, or paracrine signals. The regulation of cholesterol levels is a 

complex process involving cross regulatory feedback mechanisms using a variety of 

sensors (Murphy et al., 2012). In the liver, lipid synthesis is regulated by the lipogenic 

transcription factor sterol regulatory element binding proteins (SREBPs). In accordance to 

our data, SREBP was one of the overlapped transcription factors found in common for all 

piperazine designer drugs. 

 Overall, the results of the thesis show that piperazine designer drugs are 

potentially cardio, neuro and hepatotoxic compounds in vitro, raising concerns about its 

use, in spite of being marketed as safe by smartshops and websites. It also raises 

questions about the use of piperazine designer drugs in combinations among them, 

namely the association of BZP and TFMPP in the same tablet, or with other drugs, such 

as ethanol, tobacco, amphetamines and cannabinoids. As previously observed with 

amphetamine designer drugs (Dias da Silva et al., 2013abc, 2014ab), marked toxicity can 

occur when the drugs are combined at individually non-cytotoxic concentrations. 
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 From the experimental studies herein described, it was possible to conclude that: 

 

a) Piperazine designer drugs presented cytotoxicity to different in vitro models, including 

H9c2 rat cardiomyoblasts, human neuroblastoma SH-SY5Y cells, human hepatoma 

derived HepG2 and HepaRG cells and rat primary hepatocytes; 

 

b) In vitro cardiotoxicity of piperazine designer drugs seems to be related with increased 

intracellular Ca2+ levels, mitochondrial depolarization, ATP depletion and MPTP 

opening, leading to cell death either by apoptsis or necrosis; 

 

c) In vitro neurotoxicity seems to be related with increased intracellular Ca2+ levels, 

mitochondrial hyperpolarization and induction of apoptotic pathways; 

 
d) Piperazine designer drugs did not present genotoxicity to differentiated SH-SY5Y 

cells when evaluated by the comet assay; 

 

e) Primary rat hepatocytes were more sensitive to piperazine designer drugs than 

HepG2 and HepaRG cells, indicating a potential role of the metabolism in the 

cytotoxicity; 

 

f) In vitro hepatotoxicity seems to be related with overproduction of reactive species and 

GSH depletion, causing oxidative stress, and mitochondrial dysfunction, ultimately 

leading to apoptosis; 

 

g) Mitochondria seem to be an important target of piperazine designer drugs; 

 

i) Gene expression analysis pointed to a possible phospholipidosis mechanism of 

toxicity however, this should be further confirmed in vivo. 
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Future studies are required in order to confirm and better understand some 

findings. Regarding the role of GSH in the piperazine designer drugs cytotoxicity, the 

formation of GSH adducts should be further investigated. Moreover, the role of oxidative 

stress in the in vitro cardio and neurotoxicity should be confirmed by other biomarkers, 

such as carbonilated proteins and lipoperoxidation. The apoptotic pathways involved in 

piperazine designer drugs-induced cell death need a better comprehension by studing 

alternative cascades such as the calpains activation, cytochrome c release or the 

induction of pro-apoptotic factors such as the proteins from the BCL-2 family. The role of 

dopaminergic and serotonergic receptors in the piperazine designer drugs-induced 

neurotoxicity should be considered. Also, the influence of MPTP opening in the piperazine 

designer drugs-induced in vitro hepatotoxicity deserves experimental evaluation. 

Regarding the gene array studies, the potential phospholipidosis mechanisms should be 

confirmed, since discrepancies between gene expression in vitro and the real in vivo 

situation are not uncommon. In vivo metabolomics could be an interesting tool to better 

elucidate the phospholipidosis hypothesis and the role of the metabolism in piperazine 

designer drugs toxicity. The evaluation of potential nephrotoxicity is needed, since there 

are case-reports on acute renal effects of these drugs. 

The recreational abuse of substances is a very complex issue since new drugs of 

abuse are continually appearing in the market. Continuous research can lead to a better 

understanding of the mechanisms of toxicity of these drugs and to improve treatments and 

diagnosis. Finally, future research should aim to evaluate the interaction among different 

compounds, since in a real life scenario these drugs are often consumed in association 

with ethanol, tobacco and other drugs of abuse. 

 

 

 

 

 

 

 

 

 



 

 

 




