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Abstract 

Myasthenia gravis is a B-cell-mediated, T-cell dependent neuroimmunological 

disorder characterized by excessive muscle weakness and fatigue. Adenosine is a 

ubiquitous molecule acting as a potent modulator of both neuronal and immunological 

responses through the activation of A2A adenosine receptors (Correia-de-Sá et al., 

1991; Csoka et al., 2008). The activation of A2A receptors on motor nerve terminals 

allows the recovery of neuromuscular transmission under fatigue conditions (Oliveira et 

al., 2004). The nucleoside, via A2A receptors, decreases cellular immunological 

responses by suppressing proliferation of effector CD4+CD25- T cells and of activated 

CD4+CD25+ T cells; it also increases immunosuppressive properties of regulatory 

CD4+CD25+FoxP3+ T cells populations (Csoka et al., 2008; Ohta et al., 2012). Taking 

this into consideration, disorders under the umbrella of neuroimmunology like 

Myasthenia gravis (MG) may benefit from therapeutic strategies targeting common 

molecular elements involved in both neuronal and immunological impairment. Recently, 

we demonstrated an impairment on A2A receptors modulatory action of neuromuscular 

transmission in two models of Myasthenia gravis: (1) the toxicological (TIMG) 

(Noronha-Matos et al., 2011) and (2) the experimental autoimmune (EAMG) models of 

MG (Almeida, 2012; Guerra-Gomes et al., 2013). In parallel, Li and collaborators 

(2012) reported a reduced A2A receptors expression by both T and B cells residing in 

spleen and lymph nodes following EAMG induction. In keeping with these concepts it is 

becoming increasingly appreciated that A2A receptor pathway impairment maybe a 

common feature of neuronal and immunological dysfunction operating in MG. In order 

to understand the potential application of the pharmacological manipulation of A2A 

receptors in therapeutic arsenal of MG, it is crucial to unravel the mechanisms 

associated to the reported A2A receptor deficits. Considering the dynamics between 

effector CD4+CD25- T cells, activated CD4+CD25+ T cells and regulatory 

CD4+CD25+FoxP3+ T cells subtypes on the modulation of immune responses and the 

differential effects of A2A receptor activation on these cell populations, it is of utmost 

relevance to assess A2A receptors potential changes in all CD4+ T cells populations. On 

the other hand, impairment of receptors sensitivity/efficiency may result from post-

translational modifications of the receptor as well as changes in receptor density and 

distribution in myasthenic endplates. This led us to evaluate A2A receptor density and 

distribution through cell compartments present on both motor endplates and CD4+ T 

cell population from EAMG animals by immunofluorescence confocal microscopy and 

by flow cytometry, respectively. One of the reported mechanisms affording for A2A 
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receptors neuroexcitatory and immunossupressor actions is the mobilization of 

extracellular Ca2+ through CaV1 channels (Oliveira et al., 2004) and the amount of ADO 

production through T lymphocytes membrane bound ecto-5'-nucleotidase (CD73) 

enzyme (Mandapathil et al., 2010), respectively. Taking this into consideration we 

sought to evaluate immunoreactivity against CaV1 channels on motor nerve endplates 

and to ecto-5'-nucleotidase (CD73) enzyme on CD4+ T cells population through their 

differential cell compartments.   

To this end, we took advantage of an animal model of experimental autoimmune 

Myasthenia gravis (EAMG) that has been developed by breaking of tolerance to a 

single T cell epitope of the self autoantigen induced by a single peptide corresponding 

to region 97-116 of the rat nAChR α subunit (Baggi et al., 2004). Wistar rats were 

immunized with R97-116 peptide in CFA (Complete Freund’s Adjuvant) on day 0; thirty 

days after, the animals were boosted with the same peptide in IFA. Control animals 

received CFA emulsion without the peptide; animals of the naive group were not 

submitted to any kind of treatment. The follow up of EAMG disease induction was 

assessed by monitoring the clinical scoring determined by the presence of tremor, 

hunched posture, muscle strength by grip strength test (BIOSEB, France) and 

fatigability. In agreement with other findings (Mu et al., 2009; Wu et al., 1997) the 

animals enrolled in the EAMG group exhibited two typical clinical phases: an 

acute/moderate and a progressive phase. None of the healthy animals, the naive and 

control group, presented detectable clinical signs. The EAMG animals were used 

during the progressive phase and presented signs of both immunological and neuronal 

imbalance. As already reported for human MG, the EAMG animals presented an 

increase in serum adenosine deaminase (ADA) activity (Chiba et al., 1995) and a 

reduction of FoxP3 expression on Treg cells (Balandina et al., 2005; Zhang et al., 2009). 

In parallel, an increased fatigue of diaphragm muscle contractions induced by indirect 

repetitive phrenic nerve stimulation and morphological changes of motor endplates was 

also confirmed on EAMG rats. These set of data indicates that this is a suitable model 

to study the immunopathophysiological mechanisms of MG.  

The reduction of A2A receptors density on EAMG CD4+ T cells compartment were  

observed in both activated CD4+CD25+T cells and regulatory CD4+CD25+FoxP3+ T cell 

populations, whereas only regulatory CD4+CD25+FoxP3+ T cells population presented 

a decreased expression of CD73 density. The conjunction of these findings plus the 

observation of increased ADA activity strengthens the hypothesis that the 

adenosinergic pathway may be involved in MG pathogenesis. In fact, the event of 

specific recognition of nAChR epitopes expressed on antigenic presenting cells (APCs) 

by T cells may lead to an increased secretion of ADA (Zavialov et al., 2010), which will 
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in turn decrease the amount of the endogenous ligand (ADO) for A2A receptor on 

activated and regulatory T cells. This will promote activated CD4+CD25+T cells 

proliferation and impairment of regulatory CD4+CD25+FoxP3+ T cells 

immunosuppressive properties (Ohta et al., 2012). The decreased expression of FoxP3 

transcription factor, which is under the control of A2AR (Deaglio et al., 2007), will 

consequently decrease CD73 expression reinforcing the paucity of endogenous ligand 

to activate A2A receptors on regulatory CD4+CD25+FoxP3+ T and activated 

CD4+CD25+T cells. The disruption of this adenosinergic loop on regulatory 

CD4+CD25+FoxP3+ T cells may decrease the expression of A2A receptors as an 

adaptive mechanism of regulatory CD4+CD25+FoxP3+ T and activated CD4+CD25+T to 

a chronic reduction in ADO levels. The preliminary results obtained for A2A receptor 

immunoreactivity on motor nerve terminals evaluated by confocal microscopy failed to 

show an evident modification on A2A density. The nature of immunolabeling by confocal 

microscopy technique failed to evidence differences on the density of epitopes, 

meaning that no accurate statements could be drawn regarding the variations on A2A 

receptor expression in EAMG animals. However, the immunofluorescence labeling for 

A2A receptor and Cav1.2L suggests that they are present at motor endplates of EAMG 

animals and have a pre-synaptic localization indicating that A2A receptors could 

constitute a potential pharmacological target to overcome tetanic failure operating in 

myasthenic conditions.   

These results bring further insights about the role of adenosine pathway (via A2A 

receptors activation) as a key regulator in the reestablishment of a proper dynamic 

plasticity of the neuroimmune system. 

 

Keywords: adenosine, A2A receptors, nAChR, experimental autoimmune 

Myasthenia gravis (EAMG), neuromuscular junction, CD4+ T cells. 
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Resumo 

A Miastenia gravis é uma doença neuroimunológica mediada por células B e 

dependente da acção de células T caracterizada por fraqueza muscular excessiva e 

fadiga. A adenosina é uma molécula ubiquitária que actua como um potente 

modulador das respostas neuronais e imunológicas, através da activação dos 

receptores A2A (Correia-de-Sá et al., 1991; Csoka et al., 2008). A activação dos 

receptores A2A nos terminais nervosos motores permite a recuperação da transmissão 

neuromuscular em condições de fadiga (Oliveira et al., 2004), diminui as respostas 

celulares imunes através da supressão da proliferação de células T efectoras 

CD4+CD25- e de células T activadas CD4+CD25+ e aumenta as propriedades 

imunossupressoras das populações de células T reguladoras CD4+CD25+FoxP3+ 

(Csoka et al., 2008; Ohta et al., 2012). Tendo em conta estas evidências, doenças que 

abranjam o espectro da neuroimunologia, como a Miastenia gravis (MG), podem 

beneficiar de estratégias terapêuticas direccionadas para elementos moleculares 

comuns envolvidos no comprometimento neuronal e imunológico. Recentemente, o 

nosso grupo demonstrou a existência de comprometimento na função moduladora dos 

receptores A2A na transmissão neuromuscular em dois modelos animais de Miastenia 

gravis: (1) o modelo toxicológico (TIMG) (Noronha-Matos et al., 2011) e (2) o modelo 

experimental auto-imune (EAMG) de MG (Almeida, 2012; Guerra-Gomes et al., 2013). 

Em paralelo, Li e colaboradores (2012) descreveram uma redução na expressão dos 

receptores A2A nas células T e nas células B do baço e dos gânglios linfáticos após a 

indução de EAMG. Assim sendo, considera-se cada vez mais a hipótese de que o 

comprometimento da via dos receptores A2A poderá ser um denominador comum nas 

disfunções neuronais e imunológicas existentes na MG. De forma a compreender a 

potencial aplicação da manipulação farmacológica dos receptores A2A na MG, é 

necessário desvendar os mecanismos associados aos défices descritos para os 

receptores A2A. Considerando a dinâmica entre as populações de células T efectoras 

CD4+CD25-, células T activadas CD4+CD25+ e células T reguladoras 

CD4+CD25+FoxP3+ na modulação da resposta imune e os efeitos diferenciais da 

activação dos receptores A2A nestas células, torna-se fundamental avaliar potenciais 

alterações nestes receptores em todas as populações de células T CD4+. Por outro 

lado, a disfunção na sensibilidade/eficiência destes receptores pode resultar de 

modificações pós-translacionais do receptor, assim como de alterações na densidade 

do receptor e na sua distribuição nas placas motoras de animais miasténicos. Isto 

levou-nos a avaliar a densidade e distribuição dos receptores A2A nos compartimentos 
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celulares presentes nas placas motoras e na população de células T CD4+ de animais 

EAMG por imunofluorescência aplicada à microscopia confocal e citometria de fluxo, 

respectivamente. Um dos mecanismos descritos relata que as acções 

neuroexcitatórias e imunossupressoras dos receptores A2A consistem quer na 

mobilização de Ca2+ através de canais CaV1 (Oliveira et al., 2004) como também na 

quantidade de ADO produzida através da enzima ecto-5’-nucleotidase (CD73) que se 

encontra ligada à membrana dos linfócitos T (Mandapathil et al., 2010), 

respectivamente. Tendo isto em consideração, procurou-se a avaliar a 

imunoreatividade dos canais CaV1 nas terminações nervosas motoras e da enzima 

ecto-5'-nucleotidase (CD73) em populações de células T CD4+ através dos seus 

compartimentos celulares diferenciais. 

Para esta finalidade, usamos um modelo animal experimental auto-imune de 

Miastenia gravis (EAMG) como ferramenta de estudo, que foi desenvolvido pela 

quebra de tolerância a um único epítopo da célula T do auto-antigénio induzido pela 

administração de um péptido correspondente à região 97-116 da subunidade α do 

receptor nicotínico de rato para a ACh (Baggi et al., 2004). Os ratos Wistar foram 

imunizados no dia 0 com o péptido R97-116 em CFA (Adjuvante completo de Freund); 

trinta dias após, os animais receberam um reforço com o mesmo péptido em IFA. Os 

animais controlo receberam apenas a emulsão de CFA sem o péptido; os animais do 

grupo naive não foram submetidos a qualquer tipo de tratamento. O acompanhamento 

da indução da doença em animais EAMG foi realizado através da monitorização do 

clinical scoring que era determinado pela presença de tremor, postura arqueada, força 

muscular demonstrada no grip test (BIOSEB, France) e fadiga. Em concordância com 

outras referências (Mu et al., 2009; Wu et al., 1997), os animais respeitantes ao grupo 

EAMG exibiram duas fases clínicas típicas: uma fase aguda/moderada e uma fase de 

progressão da doença. Nenhum dos animais saudáveis (naive e controlo) apresentou 

sinais clínicos detectáveis. Os animais EAMG foram utilizados durante a fase 

progressiva e apresentavam sinais de desequilíbrio, tanto imunológico como neuronal. 

Tal como já havia sido relatado para MG em humano, os animais EAMG apresentaram 

um aumento da actividade da adenosina deaminase (ADA) no soro (Chiba et al., 1995) 

e uma redução de expressão nas células FoxP3 Treg (Balandina et al., 2005;. Zhang et 

al., 2009). Em paralelo, também se confirmou a existência de um aumento na fadiga 

muscular induzida por estimulação indirecta repetitiva do nervo frénico e alterações 

morfológicas das placas motoras em ratos EAMG. Este conjunto de dados indica que 

este é um modelo adequado para estudar os mecanismos de imunofisiopatológicos da 

MG. 
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A redução na densidade dos receptores A2A no compartimento de células T CD4+ 

foi observada em ambas as populações de células T activadas CD4+CD25+ e T 

reguladoras CD4+CD25+FoxP3+ nos animais EAMG. Enquanto a análise para a 

densidade de CD73 revelou que apenas as células T reguladoras CD4+CD25+FoxP3+ 

apresentaram uma expressão diminuída. A conjunção destes resultados e a 

observação de um aumento da actividade da ADA fortalece a hipótese de que a via 

adenosinérgica poderá estar envolvida na patogénese da MG. Na verdade, o evento 

de reconhecimento específico de epítopos dos nAChR expressos nas células 

apresentadoras de antigénios (APCs) pelas células T pode levar a um aumento da 

secreção de ADA (Zavialov et al., 2010) que, por sua vez, diminui a quantidade do 

ligando (ADO) disponível para o receptor A2A nas células T reguladoras e T activadas. 

Isto irá promover a proliferação de células T activadas CD4+CD25+ e o 

comprometimento das propriedades imunossupressoras das células T reguladoras 

CD4+CD25+FoxP3+ (Ohta et al., 2012). A diminuição da expressão do factor de 

transcrição FoxP3, que se encontra sob o controlo de receptores A2A, (Deaglio et al., 

2007), irá, consequentemente, agravar a expressão de CD73 reforçando a falta de 

ligando endógeno para os receptores A2A presentes nas células T reguladoras 

CD4+CD25+FoxP3+ e nas células T activadas CD4+CD25+. A disrupção desta via 

adenosinérgica nas células T reguladoras CD4+CD25+FoxP3+ poderá promover uma 

diminuição na expressão dos receptores A2A como um mecanismo adaptativo das 

células T reguladoras CD4+CD25+FoxP3+ e T activadas CD4+CD25+ a uma redução 

crónica dos níveis de ADO. Os resultados preliminares obtidos para a 

imunoreactividade do receptor A2A em terminações nervosas motoras avaliados por 

microscopia confocal não mostraram alterações evidentes na densidade de receptores 

A2A. Porém, a natureza da técnica de imunomarcação por microscopia confocal não é 

a ideal para evidenciar ligeiras diferenças na densidade de epítopos, o que significa 

que devemos ter precauções nas inferências relativas às variações na expressão do 

receptor A2A em animais EAMG. No entanto, a marcação por imunofluorescência para 

os receptores A2A e para o Cav1.2L sugere que estes estão presentes nas placas 

motoras de animais EAMG e têm uma localização pré-sináptica, o que indica que os 

receptores A2A poderão constituir um potencial alvo farmacológico para superar a 

fadiga tetânica que ocorre em condições de Miastenia gravis. 

Estes resultados abrem novas perspectivas para o estudo do papel da sinalização 

adenosinérgica (por via da activação de receptores A2A) como um alvo-chave para o 

restabelecimento de uma plasticidade dinâmica adequada do sistema neuroimmune. 
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1. Introduction 

1.1.  Myasthenia gravis 
Myasthenia gravis (MG) is a B-cell mediated, T-cell dependent chronic autoimmune 

disorder characterized by impairment of the neuromuscular transmission due to an 

autoimmune attack to acetylcholine receptors (AChRs) present in the postsynaptic 

membrane at the skeletal muscle. However, other non-AChR components of the 

neuromuscular junction (NMJ), such as the muscle-specific receptor tyrosine kinase 

(MuSK) may also be targeted (Engel et al., 1977; Juel & Massey, 2007; Lindstrom et 

al., 1976). 

The antibodies block the binding site of the endogenous ligand of nAChR (nicotinic 

acetylcholine receptors) or even induce the loss of effective nAChRs expression by 

triggering a complement-mediated inflammatory destruction of the post-synaptic 

membrane of skeletal muscle cells at the motor endplate (Figure 1) (Tüzün et al., 

2003). Furthermore, the typical deep junctional folds are replaced by a relatively flat 

surface. The breakdown of self-tolerance in the thymus apparently leads to the 

development of anti-AChR autoantibodies (Baggi et al., 2012; Melms et al., 2006; 

Newsom-Davis et al., 1981) with induction or activation of AChR-specific CD4+ T helper 

cells and production of pro-inflammatory cytokines, consequently leading to the 

synthesis of high-affinity antibodies (Hoedemaekers et al., 1997; Vincent et al., 2003).  

Therefore, T cells play a pivotal role in MG since they lead the attack to the endplates 

by recognition of the antigen coupled to the major histocompatibility complex (MHC) 

class II molecules, promoting B cell production of anti-AChR antibodies by plasmocytes 

(Aricha et al., 2006; Juel & Massey, 2007; Vincent et al., 2003).  

 

Figure 1 - Binding of the antibodies (anti-AChR) leading to a decreased availability and number of nAChR and destruction of 

muscular membrane (via activation of complement system) are the hallmarks of MG development. Adapted from Burden (2011).   
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Recent prevalence rates estimates that there are approximately one million MG 

patients worldwide (Gilhus et al., 2011). Patients with MG present muscle weakness 

and fatigability, due to a neurotransmission impairment of signals from nerve to muscle. 

The elements of MG diagnosis include clinical history and examination findings of 

fluctuating and fatigable weakness. Signs of MG, typically involve ptosis (weakness of 

the upper or lower eyelid), diplopia (blurred vision), bulbar weakness (causing chewing 

difficulty) and, in extreme cases, respiratory muscle failure. The majority of seropositive 

patients have an abnormality of the thymus gland, either thymic hyperplasia (60%) or a 

thymoma (10%), although the exact relationship between the gland and MG largely 

remains obscure (Hirsch, 2007). Moreover, as previously referred, most of MG patients 

(85%) have IgG autoantibodies against binding sites on the AChR, while a minority of 

patients possess antibodies against MuSK and LRP4, other muscle endplate proteins 

(Cenacchi et al., 2011; Gertel-Lapter et al., 2013; Mossman et al., 1986). 

In normal situations the quantal content of neuromuscular transmission is higher 

than necessary to generate the action potential of the muscle fiber. However, in 

individuals with MG, the endplate potential generated by repetitive stimulation of the 

nerve gradually decreases to levels below the threshold of excitability of the muscle 

fiber (Kothari, 2004).  

 

1.1.1. Therapeutic approach in Myasthenia Gravis 

According to Gilhus et al. (2011), in MG the therapeutic opportunities can be defined 

according to the following clinical hallmarks: 

1) MG is a well-defined autoimmune disease and consequently responds to 

immunosuppressive disease-modulators;  

2) MG is due to an impairment of AChR stimulation in the postsynaptic skeletal 

muscle membrane and therefore responds to an increase in AChR activity; 

3) MG is characterized by muscle weakness, thus should respond to therapeutics 

that increase muscle function and counteract this symptom.  

Accordingly, neuromuscular function reestablishment could be achieved by two 

different approaches: symptomatic (acetylcholinesterase inhibitors) and the usage of 

immunosuppressive disease-modulating treatment (eg corticosteroids, azathioprine 

and monoclonal antibodies). Nowadays, crisis treatment involves the usage of 

acetylcholinesterase inhibitors (pyridostigmine, neostigmine and physostigmine). These 

drugs increase the availability of neurotransmitter by slowing down ACh hydrolysis, 

improving the contractile response. Thus, its action may lead to an increased margin of 

safety of neuromuscular transmission and consequently to activation of nicotinic and 
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muscarinic receptors present in motor nerve terminals (Faria et al., 2003; Oliveira et al., 

2002). However, as they act on all known acetylcholinesterases its toxicity is 

associated with cholinergic crisis, which is very similar to MG crisis (Kothari, 2004; 

Romi et al., 2005) 

The second approach (immunosuppressive therapy) is increasingly common, being 

established in even earlier stages of disease progression. It acts at several levels of the 

immune system, inhibiting both humoral and cellular immunity and reducing the 

destruction of the postsynaptic membranes.  

In clinically stable patients aged less than 60 years or with thymoma, thymectomy is 

established as part of the treatment. On the other hand, plasmapheresis can also be 

considered for removal of circulating antibodies or immunomodulation which consists in 

injecting intravenously immunoglobulins that bind to the anti-AChRs antibodies 

(Kothari, 2004; Romi et al., 2005). At present, few attempts have been made to 

manipulate pharmacologically the pre-synaptic component of the neuromuscular 

junction. However, the application of the cardiotoxic potassium-blocking agent, 4-

aminopyridine, proved to be able to improve neuromuscular transmission in MG (Lundh 

et al., 1979).  

Since these therapies have quite short-term benefits (Juel & Massey, 2007), it is 

critical to find new therapeutic strategies with less side effects. 

 

1.2.  Animal models for the study of Myasthenia gravis 

Animal models became a pivotal tool to better understand the underlying 

mechanisms of several diseases. Accordingly, the experimental autoimmune 

myasthenia gravis (EAMG) model has been proven to be a valuable model to 

understand the immunological and molecular aspects of MG pathogenesis. In this 

model, a very common approach is to inject antibodies raised against nAChR into the 

animal and/or their immunization with nAChRs isolated from Torpedo californica 

(Aricha et al., 2006).  

Baggi and collaborators (2004) described the induction of EAMG in Lewis rats by 

the injection of a synthetic peptide corresponding to the region 97-116 of the rat AChR 

subunit in Complete Freund’s Adjuvant (CFA) – a mixture of oils and water plus killed 

Mycobacterium tuberculosis strain, used to stimulate immune response. They found 

that breaking of tolerance to a single T cell epitope of the self autoantigen induces 

autoreactive T cells and specific antibodies to rat AChR. 

The EAMG model consists in a practical instrument for testing the ability of possible 

treatment methods for MG and other antibody-mediated autoimmune diseases. 
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However, experimental MG differs from human disease in a few features (Table 1). 

Despite, myasthenic patients commonly present thymic alterations, suggesting a 

potential role of the thymus in the pathogenesis of the disease (Meinl et al., 1991), 

induced animals develop EAMG after AChR-immunization and the auto-sensitization 

process seems to occur only in draining lymph nodes (Christadoss et al., 2000), 

apparently without affecting the thymus, as in MG patients. 

 

Table 1 – Similarities and differences between MG and EAMG. Adapted from Baggi et al., (2012). 

 Similarities Differences 

Immunopathological features 

Presence of anti-AChR 

antibodies in the serum 

 

Deposits of IgGs and C3 

complement component at the 

NMJ 

 

Loss of muscle nAChRs 

 

MHC class II-restricted 

presentation of AChR epitopes 

 

Involvement of T helper cells in 

B-cell antibody production 

Disease does not arise 

spontaneously in animals; need 

for induction factors 

 

Involvement of the thymus 

(present in MG, absent in EAMG) 

 

Thymic alterations are absent in 

EAMG; hypertrophy and 

thymomas are often present in 

MG patients 

 

Phagocytic cells detected in the 

acute phase of rat EAMG, are 

absent at the NMJ of human MG 

patients 

Clinical manifestations 

Muscle weakness, most 

prominent in the upper body 

 

Decreased response in the 

repetitive nerve stimulation test 

 

Reduction in the miniature end-

plate potential amplitude 

 

Temporary improvement in 

muscle strength after anti-AChE 

treatment (Tensilon test) 

 

Increased sensitivity to curare 

administration 

Absence of ocular signs 

 

Absence of relapse and 

remission periods 
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It is also possible to induce non-immunogenic MG in animals by administration of 

AChR-blocking toxins (e.g. α-Bungarotoxin) (Molenaar et al., 1991), which is named 

Toxin-Induced Myasthenia gravis (TIMG). In this model, rats receive repeated 

injections of α-bungarotoxin (α-BTX) for 3 weeks (one subcutaneous injection of 3-5μg 

of α-BTX each 48h). α-BTX is well established as an irreversible antagonist of muscle 

nAChR containing α1 subunits. Plomp and colleagues (1992) have demonstrated that 

the number of functional nAChRs in rat hemidiaphragms was significantly reduced after 

2-3 weeks of α-BTX treatment and an increase in the levels of neurotransmitter,  

without evidencing a structural damage of muscle membranes and/or changes in the 

endplate AChE activity (Van Kempen et al., 1999). Given that in EAMG animals occurs 

a destruction of the postsynaptic membrane in muscle, it precludes the evaluation of 

neurotransmission features accurately. So, in this point of view, TIMG model is a better 

tool when we aim to understand the underlying molecular mechanisms behind the 

neuromuscular transmission deficit. 

1.3. The neuromuscular junction: a specialized synapse 

The NMJ is a specialized chemical synapse between the axon of a motor neuron 

and a somatic muscle fiber, which purpose consists on efficiently transmitting electrical 

impulses originated in motor neuron to the skeletal muscle via the chemical transmitter 

acetylcholine (ACh), which results in its contraction. In healthy conditions, the NMJ is 

an integral part of an impressively efficient biological amplification system, which 

converts minute nerve action potentials into muscle contraction (Bowman, 2006; 

Robitaille et al., 1999; Rochon et al., 2001; Ruff, 2003). 

The development of advanced techniques (including electron microscopy and in 

vitro neurophysiologic studies) has considerably improved our knowledge of the 

microanatomy and physiology of the NMJ. The NMJ comprises portions of three 

distinct cells (tripartite synapse): the motor neuron (which accumulates mitochondria 

and synaptic vesicles (SVs)), the skeletal muscle fiber (corresponding to AChR-rich 

postsynaptic endplate) and the Schwann cell (that caps the motor nerve) (Figure 2). At 

mature NMJs it is possible to notice the emergence of secondary specializations that 

enhance neurotransmission and signal transduction. It involves the formation of active 

zones along the junctional surface, while organelles distribute themselves inside the 

nerve terminal asymmetrically to the synaptic cleft. Consequently, the formation of 

secondary clefts creates folds in the postsynaptic membrane where the nAChRs are 

clustered, while voltage-gated sodium channels concentrate in the depths of these 

folds (Hughes et al., 2006).  
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Figure 2 – Structure of the neuromuscular junction with prominence for its main components: the nerve terminal (presynaptic 

region), terminal Schwann cell and the muscle cell (specialized postsynaptic membrane). All three parts of the synapse contain 

organelles and molecules not found in extrasynaptic regions, or preferentially expressed when compared with extrasynaptic regions 

(Martyn et al., 2009). 

1.3.1. Presynaptic structure and function 

The presynaptic region consists of the distal part of the motor neuron, corresponding 

to the distal and demyelinated part of the motor nerve axon (Fagerlund & Eriksson, 

2009). The axon plays an essential role in this structure, since it innervates one or 

several muscle cells creating a cleft between its axon terminals (presynaptic part) and 

the sarcolemma of the muscle cell (postsynaptic part). The concept of motor unit arises 

from the combination of the terminal fibers from a motor axon with the muscle fibers. 

When a nerve impulse reaches an axon ending, it results in the release of a 

neurotransmitter – ACh – which will bind to nAChRs located on the postsynaptic 

surface. ACh is synthesized in the cytoplasm of nerve terminals, and results from the 

reaction between its two immediate precursors: choline and acetyl coenzyme A (acetyl 

CoA). This single step reaction is catalyzed by an enzyme called by choline 

acetyltransferase (ChAT). ChAT is produced in the cholinergic cell body and 

transported down the axon to the nerve endings. Synaptic vesicles (SVs) containing 

ACh molecules are located across from the ACh-rich synaptic folds and are aligned 

near release sites denominated active zones. The content of a single vesicle is referred 

to as a ‘quantum’ of the transmitter.  The uptake of ACh into storage vesicle occurs 

through an energy-dependent pump that acidifies the vesicle. The acidified vesicle then 

uses a vesicular ACh transporter (VAChT) to exchange protons for ACh molecules. 
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When an action potential reaches the nerve terminal, the voltage-gated calcium (Ca2+) 

channels are activated triggering the fusion of SVs with the presynaptic endplate 

membrane and the ACh is released into the synaptic cleft.  

Thus, this presynaptic part of the NMJ is responsible for the efficiency of the 

neurotransmitter synthesis and transmitter incorporation. 

1.3.2. Synaptic cleft structure and function 

The synaptic cleft corresponds to a space of approximately 50nm that separates 

nerve terminal and specialized postsynaptic membrane. This structure is comprised of 

basal lamina, which contains several complex proteins (e.g. agrin) that have a key role 

in processes like integrity, formation, and clustering of the postsynaptic ACh receptors 

(Hirsch, 2007). 

The release of ACh into the synaptic cleft may be spontaneous or in response to a 

nerve impulse. After its diffusion, about 50% of the released ACh is either hydrolysed 

by acetylcholinesterase (AChE) or disperses out of the cleft before it reaches its target. 

AChE is synthesized in the neuronal cell body and distributed throughout the neuron by 

axoplasmic transport. This enzyme has a remarkable catalysis rate, one of the highest 

known in biology, ensuring a fast decrease of ACh levels after its release and, thus, 

preventing the desensitization of postsynaptic nAChRs. It is well known that drugs that 

inhibit AChE, such as pyridostigmine and edrophonium, prolong the duration of action 

of ACh on the postsynaptic compartment and are useful therapies for neuromuscular 

transmission disorders, as MG (Hirsch, 2007; Hughes et al., 2006).  

1.3.3. Postsynaptic membrane structure and function 

The postsynaptic component involves a folded muscle membrane, located opposite 

to the presynaptic nerve terminal, into which nAChRs, present at an extremely high 

concentration (> 10000/µm2), are clustered and fixed by cytoskeletal proteins, as 

dystroglycans (Fagerlund & Eriksson, 2009). Recent studies have reported that P2X2-

receptor-mediated signaling could be related with abnormalities in neuromuscular 

junction structure and skeletal muscle function, having a pivotal role in the formation of 

postsynaptic structures (Ryten et al., 2007).  

The safety factor for the neuromuscular transmission is ensured by the high 

concentration of receptors, being that away from the endplate the density of nAChRs is 

one thousand times lower (Paton & Waud, 1967). The fact that this part of the muscle 

membrane is in close proximity with the perijunctional zone, where there is a high 

density of sodium channels, allows this region to be more capable of amplifying the 
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responses to depolarization and consequently to promote the transduction processes 

that lead to muscle contraction (Cohen-Cory, 2002). 

The nAChRs belong to the superfamily of ligand-gated ion channels that includes 

GABAA, glycine, and 5-HT3 serotonin receptors (Dani & Bertrand, 2007). The common 

architecture of these receptors includes five subunits surrounding a central pore, 

organized in a pentameric unit (α2βεδ), arranged in a barrel-like fashion which allows 

the formation of a transmembrane pore on the top of the postsynaptic folds. In the 

absence of ACh, the central pore remains impermeable to the flow of cations (Figure 

3). On the other hand, activation of the nAChR by two molecules of ACh that will bind 

to the N-terminal domain of the interface between α/β and α/ε subunits leads to an 

influx of cations (i.e. Na+ and Ca2+) that will depolarize the cell membrane (Hughes et 

al., 2006).  

 

Figure 3 – Structure of the nicotinic acetylcholine receptors. (A) Schematic representation of the nACh receptor, showing that the 

five subunits in the muscle-type receptor join themselves to form a complex structure comprising 20 transmembrane domains that 

surround the axial cation-conducing channel. This is also possible to note the location of the two ACh-binding sites. Adapted from 

Karlin (2002). (B) Crystal structure of the nicotinic acetylcholine receptor (image obtained from Protein Data Bank (PDB) - PDB 

entry 2bg9). 

 

1.4.  Muscle fiber types: differences and similarities 

In mammalian skeletal muscle exist different fiber types, classified as either fast-

twitch or slow-twitch, and whose identity is dependent of the action of intrinsic 

myogenic control mechanisms that occur during embryogenesis and later controlled by 

neural and hormonal factors (Schiaffino & Reggiani, 2011). Specialization of skeletal 

muscle cells to several functional roles are related to their metabolic and contractile 

properties, being closely associated to which cells are grouped into separate fiber 

types (Rivero et al., 1998). 

The slow-twitch fibers (slow-oxidative), also called type I fibers, have an important 

role in aerobic type activities and therefore are used for endurance activities. These 
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fibers contain an increased number of mitochondria and myoglobin, and are capable of 

utilizing oxygen for the production of energy within the muscle, which makes them 

moderately resistant to fatigue.  

Conversely, fast-twitch muscle fibers (type II) have less mitochondria and 

consequently develop force faster but have more difficulty in sustaining their activity 

than slow-twitch fibers (Prakash et al., 1996). This fact makes them more suited for 

anaerobic activities such as weight training, sprinting, jumping and other intense type 

activities. Since these fibers are preferentially anaerobic, their system uses glucose as 

a prime energy source. Lactic acid is a sub-product of this reaction due to the 

continued dependence on glycolysis to produce adenosine 5’-triphosphate (ATP), 

resulting in a drop in the intracellular pH. This product accumulation in the muscle is 

responsible for fatigue and soreness, because as the pH drops, the ability of the 

muscle to produce ATP also diminishes. Type II fibers are further sub-classified as type 

IIa (or fast-oxidative glycolytic) or type IIb (or fast glycolytic) and also in IIx fibers 

(Prakash et al., 1996) according to immunohistochemical techniques (Brooke & Kaiser, 

1970; Rivero et al., 1998).  

 

Table 2 – Structural and functional properties of skeletal muscle fibers. Adapted from (Marieb & Hoehn, 2009). 

 

 Slow oxidative 

fibers 

Fast oxidative 

fibers 

Fast glycolytic 

fibers 

METABOLIC CHARACTERISTICS 

Speed of contraction Slow Fast Fast 

Myosin ATPase activity Slow Fast Fast 

Primary pathway for ATP 

synthesis 

Aerobic Aerobic (some 

anaerobic 

glycolysis) 

Anaerobic 

glycolysis 

Myoglobin content High High Low 

Glycogen stores Low Intermediate High 

Recruitment order First Second Third 

Rate of fatigue 

Slow (fatigue-

resistant) 

Intermediate 

(moderately 

fatigue-resistant) 

Fast (fatigable) 

 

The neuromuscular transmission response can be closely dependent of the 

morphological differences present at the NMJ of different fiber types. Figure 4 reveals 

the histochemical study of samples from rat hemidiaphragm muscle by the succinate 

dehydrogenase (SDH) reaction. SDH is located in the inner mitochondrial membrane 
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and is involved in the Krebs cycle, being responsible for the oxidation of succinate to 

fumarate. The activity of SDH allows distinguishing type I and II muscle fibers by their 

relative oxidative potential. Thus it is possible to identify fibers with a higher (type I) or 

less (type II) amount of mitochondria by the color intensity. 

 

 

Figure 4 – Succinate dehydrogenase (SDH) staining of diaphragm muscle cross-section from a control rat. Asterisks point to large 

fibers which stained lightly with SDH (fast glycolytic type II fibers) and circles indicate smaller fibers stained darkly with SDH 

(slow oxidative type I fibers). Adapted from Correia-de-Sá et al. (2013).  

An elegant study carried out by Prakash and collaborators (1996) showed that, in rat 

diaphragm muscle, type I fibers were innervated by the smallest axons and that their 

respective nerve terminals were small and less branched. In contrast, type IIa, IIx and 

IIb fibers were innervated by progressively larger axons and had a broader variability in 

nerve terminal morphology. Thus, there is a greater number of active zones at 

presynaptic terminals in type IIx and IIb fibers, and hence, the total number of synaptic 

vesicles released in response to a nerve action potential is superior at these fibers 

compared with type I and IIa fibers (Rowley et al., 2007).  

Prakash et al (1996) also observed that nerve terminals and endplates have an 

increased size and complexity from type I to type IIa, IIx and IIb muscle fibers (Figure 

5). 

 

 

 

Figure 5– Representative greyscale images of rat motor endplates. Absolute planar areas of endplates, progressively increase from 

type I, IIa, IIx to IIb fibers. These morphological differences may reflect differences in activation and in neuromuscular transmission 

(adapted from Prakash et al., 1996).  

Type I Type IIa Type IIx Type IIb 
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  Furthermore, they observed a progressive decrease in the extent of overlap of pre- 

and postsynaptic elements of the NMJ on these fiber types. This is an important remark 

since a superior extent of overlap would imply a smaller diffusion path for ACh in type I 

fiber NMJs, and consequently will lead to a lower probability of neurotransmission 

failure. In opposition, a reduced extent of overlap in type IIa, IIx and IIb fibers at NMJ 

could significantly decreases the safety margin of the neuromuscular transmission 

(Wood & Slater, 2001), thus leading to its impairment.  

Recently, our group provided evidences that myotoxic damage caused by a 

component of snake venom (Bothropstoxin-I) in hemidiaphragm preparations induce 

alterations in the area of type II fibers, whereas no changes were detected for type I 

fibers, suggesting a more resistant profile to myotoxic damage of slow oxidative fibers 

(Correia-de-Sá et al., 2013). In agreement with this, higher incidence of neuromuscular 

transmission failure in type II fibers was reported (Gertler & Robbins, 1978; Johnson & 

Sieck, 1993). 

 

1.5.  Adenosine as a neuromodulator 

Adenosine (ADO) is a ubiquitous molecule and an essential component of all living 

cells. This nucleoside is involved in key processes of the primary metabolism, 

especially the metabolism of nucleotides, nucleosides and amino acids that have 

sulfide groups and in the modulation of cellular metabolic state (e.g. transmethylation 

reactions and ammonia processing) (Cunha, 2001; Cunha, 2005; Stone, 1985). The 

first description that suggests that ADO and its precursor, adenosine triphosphate 

(ATP) could affect neuronal function has been advanced by Drury and Szent-Gyorgyi 

(1929). Later studies in the neuromuscular junction (Ginsborg & Hirst, 1972; Ribeiro & 

Walker, 1973) and cortical neurons (Phillis et al., 1974) have shown that actually ADO 

plays a neuromodulatory role. 

ATP is stored in synaptic vesicles and can also be released by nerve terminals 

during depolarization (Zimmermann, 1994). Previous studies using NMJs from different 

species reported that nerve stimulation triggers the release of ATP from the motor 

nerve terminal to the synaptic cleft (Magalhães-Cardoso et al., 2003; Santos et al., 

2003). Most commonly, ATP co-released with ACh from motor nerve terminals is 

metabolized extracellularly via the ecto-nucleotidase pathway that sequentially 

catabolizes ATP into AMP and then into ADO through the action of an ecto-5’-

nucleotidase (Magalhães-Cardoso et al., 2003), which is feed-forwardly inhibited by 

ATP and/or ADP (Cunha et al., 1996a). Interestingly, at the NMJ, AMP can be 

alternatively deaminated into the inactive metabolite, IMP through the action of 5´-
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AMP-deaminase at the rat NMJ, thus bypassing adenosine formation (Magalhães-

Cardoso et al., 2003). Moreover, ADO can either be released as such, from activated 

nerve terminals, Schwann cells and activated muscle fibers (reviewed in Cunha, 2005).  

Although there are no evidences of accumulation of ADO in synaptic vesicles or the 

release of this molecule as a quantum, the presence and accumulation of extracellular 

ADO in the synapses is related to the release of neurotransmitters and also with the 

frequency and intensity of neuronal firing (reviewed in Cunha, 2005). Cunha and co-

authors (1996a) and Wieraszko & Seyfried (1989) demonstrated that ATP release is 

greater the higher the frequency of nerve stimulation and the contribution of ADO 

derived from ATP increases by enhancing frequency nerve stimulation. On the other 

hand, the contribution of ADO released through equilibrative nucleoside transporters is 

predominant at lower nerve stimulation frequencies (Correia-de-Sá et al., 1996; Cunha 

et al., 1996b). In basal conditions, the intracellular concentration of ADO is typically 

around 10-50 nM in the cell types where it was so far quantified. When intracellular 

levels of ADO exceed its extracellular concentration, for example under stressful 

situations where the exacerbation of intracellular ATP consumption exceeds its 

capacity of rephosphorylation, transport through equilibrative nucleoside transporters is 

reversed, i.e., there is an increase in the extracellular ADO (Geiger & Fyda, 1991). 

Extracellular adenosine can be inactivated by cellular uptake through the equilibrative 

nucleoside transporters (Geiger & Fyda, 1991) or by deamination to inosine by 

adenosine deaminase (ADA) (Correia-de-Sa & Ribeiro, 1996). 

The extracellular adenosine is able to act on metabotropic adenosine receptors 

located in the cell membrane of neighbouring cells (as well as of the cell that released 

adenosine). The activation of the different types of adenosine receptors can then 

modify cell metabolism according to the set-up of adenosine receptors and to the 

primary metabolism of each particular cell type (Cunha, 2005). Although ADO does not 

meet all the requirements to be considered a neurotransmitter, it is able to modulate 

the activity of the nervous system at a presynaptic level, exerting its action through its 

specific receptors (Correia-de-Sá et al., 1996; Cunha, 2001).  

  

1.6.  Adenosine receptors 

Adenosine is a neuromodulator with the ability to exert its physiological effects via 

cell surface receptors.  

Purinergic receptors were first formally described in 1976 (Burnstock, 1976). Two 

years later these receptors were divided into two groups: specific receptors for 
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nucleosides (P1 receptors) and nucleotides (P2 receptors), which mediate the 

physiological effects of ADO and ATP, respectively (Figure 6) (Burnstock, 1978). 

 

Figure 6 - The purinergic receptors family. (A) The purinergic receptors are divided into two major families: the P1, or adenosine, 

receptors and P2 receptors, which bind ATP and/or UTP. Adapted from 

http://www.ncbi.nlm.nih.gov/books/NBK27952/figure/A1251/?report=objectonly, accessed August 8, 2013. (B) Schematic 

representation of P1 adenosine receptors which are coupled to G-proteins that mediate responses through inhibition or activation of 

adenylate cyclase (AC). Adapted from Fields & Burnstock (2006). 

 

ADO receptors have seven putative transmembrane (TM) domains and are coupled 

to heterotrimeric G proteins. There are four types of metabotropic receptors, 

denominated as A1, A2A, A2B and A3 receptors (Fredholm et al., 2001). A1 and A3 

receptors are coupled to Gi/o inhibitory proteins, while A2A and A2B are coupled to Gs 

excitatory proteins (Linden, 2001; Ribeiro et al., 2003). The binding of ADO to its 

receptor triggers a series of signal transduction mechanisms that are initiated by the 

receptor associated G proteins (Figure 7). 

 

Figure 7 – Schematical representation of the signal transduction pathways associated with the activation of the human adenosine 

receptors. Abbreviations: ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate; DAG, diacylglycerol; Gi, Gαi 

http://www.ncbi.nlm.nih.gov/books/NBK27952/figure/A1251/?report=objectonly
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family of G proteins; Gs, Gαs family of G proteins; Go, Gαo family of G proteins; Gq, Gαq family of G proteins; IP3, inositol (1,4,5)-

triphosphate; P, phosphate moiety; PKC, protein kinase C; PLC, phospholipase C. (Moro et al., 2005). 

 

The A1 adenosine receptor is a well-characterized and widely distributed receptor 

that has an inhibitory action in most tissues. Its activation inhibits adenylate cyclase 

(AC) activity through the activation of pertussis toxin-sensitive G proteins, therefore 

leading to a cellular decrease of cAMP levels (Fredholm et al., 2001; Linden, 1991). 

Moreover, when Gαo subunit dissociates occurs an increase of arachidonic acid and 

inositol triphosphate/diacylglycerol concentration as a result of phospholipase 2A and 

phospholipase C activation, respectively (Poulsen & Quinn, 1998). For instance, A1 

receptor function in cardiac muscle and neurons involve activation of pertussis toxin-

sensitive K+ channels and KATP channels and is responsible for inhibiting Q-, P- and N- 

type Ca2+ channels (Fredholm et al., 2001; Jacobson & Gao, 2006). 

A2A receptors are coupled to stimulatory G proteins and can be found ubiquitously in 

the body, with a marked expression in the immune system and the striatopallidal 

system in the brain (Hasko et al., 2008). Several studies reported the presence of A2A 

receptors in the carotid body, T cells, human and porcine cardiovascular tissues, 

anglioblasts in the nerve fiber layer in dog retina, gastrointestinal tract and hippocampal 

nerve terminals evaluated by immunohistochemical techniques, reviewed by Fredholm 

el al (2002). This receptor activation mediates the activation of AC, leading to an 

increase of intracellular cAMP levels (Fredholm et al., 2001), but other actions including 

mobilization of intracellular calcium have also been described (Fredholm et al., 2002). 

A1 and A2A receptors are responsible for the major effects exerted by ADO, namely 

at modulating synaptic transmission. Co-existence of both inhibitory A1 and facilitatory 

A2A receptors on the same nerve terminal was first described by neurochemical and 

electrophysiological methods at the rat NMJ (Correia-de-Sá et al., 1991); this 

publication contained the first demonstration that ADO could facilitate the release of 

neurotransmitter via the activation of cyclic AMP-coupled A2A receptors. At the NMJ, 

ADO plays a dual neuromodulatory role via the activation of presynaptic inhibitory A1 

and excitatory A2A receptors, which activity is highly dependent on the nerve stimulation 

pattern (Correia-de-Sá et al., 1996). Moreover, previous studies from our laboratory 

reported that endogenous ADO generated in TIMG motor endplates during repetitive 

nerve firing may be insufficient to preserve transmitter release via tonic activation of 

presynaptic facilitatory A2A receptors (Noronha-Matos et al., 2011). 



ICBAS/FCUP 

Introduction 

15 

 

1.7.  Adenosine effects on acetylcholine release via A1 and A2A 

receptors  

The modulatory pattern of neuromuscular transmission is adjusted to the stimulation 

conditions through the action of ADO, particularly when this nucleoside is build-up from 

the catabolism of released ATP (Magalhães-Cardoso et al., 2003). The tonic inhibitory 

effect mediated by A1 receptors is observed at low frequency stimuli. In contrast, tonic 

activation of A2A receptors on motor nerve terminals is predominant during high 

stimulation frequencies, due to the accumulation of adenosine in the synaptic cleft 

which may overcome neuromuscular tetanic fade.  

ADO by activating A2A receptors is responsible for the fine-tuning control of Ca2+ 

influx through either P- or L-type channels (Figure 8) (Oliveira et al., 2004). Previous 

studies from our laboratory reported that during short stimulation trains, Cav2.1 (P-type) 

Ca2+ channels clustered at active zones regulate nerve-evoked ACh release from adult 

mammalian motor nerve terminals. However, P-type channels function rapidly decline 

due to a Ca2+-dependent inactivation system, thus contributing to a neurotransmission 

tetanic failure. Though, data indicated that tetanic depression of ACh release could be 

overcome during intermittent high-frequency bursts due to tonic activation of A2A 

receptors operating additional Ca2+ recruitment via high-capacity/slow inactivating CaV1 

L-type channels located away from the active zones. The predominance of inhibitory 

A1/excitatory A2A tonus is dependent on the stimulation pattern (train versus bursts), 

which also tightly regulates the amount of extracellular ADO formed from released 

ATP.  In fact, the activity of the ecto-nucleotidase pathway appears to represent the 

rate-limiting step of formation of ATP-derived adenosine, since ATP is released 

synchronously with ACh. During 50 Hz-trains, ATP is able to reach high enough levels 

capable of inhibiting ecto-5’-nucleotidase (CD73). Interburst intervals favor recovery 

from enzymatic inhibition, as there is a delayed burst-like formation of ADO leading to 

high synaptic concentrations of the nucleoside similar to those required to promote the 

activation of facilitatory A2A receptors. Altogether, these findings show that strong ADO 

facilitatory tonus operated by A2A receptors on ACh release during tetanic stimulation, 

is closely related with time-dependent endogenous ADO formation from released 

adenine nucleotides and attenuation of the inhibitory action mediated by A1 receptors.   

In parallel, there is a co-ordinated shift in Ca2+ channel dynamics operating ACh 

exocytosis, from the predominant fast desensitizing CaV2.1 (P-type) to the “facilitatory” 

CaV1 (L-type) channel during high frequency bursts, in a way completely reversed by 

blocking A2A receptor activation. This mechanism represents a novel form of synaptic 

plasticity mediated by ADO at the rat motor endplate and offer new clinical prospects 
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by manipulating A2A receptors activation in order to recruit spared voltage sensitive 

calcium channels (VSCCs)  in order to overcome tetanic depression during intermittent 

neuronal firing (Oliveira et al., 2004). 

 

 

Figure 8 -  Fine-tuning control of Ca2+ recruitment through P- and L-type VSCCs by endogenous adenosine generated during 

motoneuronal firing. Adapted from Oliveira et al., (2004). 

Besides the neurotransmitter ACh, synaptic vesicles also contain other substances 

such as peptides, or ATP, being the entire contents released in the synaptic cleft. It is 

quite clear that there is an excess of released ACh into the synaptic cleft, around 10 

times the necessary amount of ACh needed to achieve the postsynaptic ACh receptor 

threshold, which represents the high safety margin of neuromuscular transmission 

(Hirsch, 2007). Generally, one action potential results in the exocytosis of 50-300 SVs, 

still the release of a quantum is not always controlled. In the absence of an action 

potential, a small quantum of ACh is spontaneously released into the NMJ and cause 

very small depolarizations called miniature endplate potential (MEPP) at the end of the 

postsynaptic membrane.  

Besides postsynaptic ACh binding to nAChRs, it can also exert its action at the pre-

synaptic component regulating its own release through the activation of both 

muscarinic (M1 excitatory and M2 inhibitory) and nicotinic (containing α3β2 subunits) 

receptors (Oliveira et al., 2002; Timóteo et al., 2003). Moreover, functional studies 

show that several molecules, as adenosine (Burnstock, 2009; Ribeiro & Walker, 1975) 

and neuropeptides (Correia-de-Sá & Ribeiro, 1994; Correia-de-Sa et al., 2001), can 

modulate ACh release.  

  

1.8.  Adenosine receptors in the control of the immune system 

ADO is a nucleoside that is constitutively present at low levels in the extracellular 

space, but rapidly increases its concentration in conditions of ischemia, hypoxia, 

trauma and inflammation (Hasko et al., 2008). A growing body of evidence confirms its 

important immunosuppressive role by acting through adenosine receptors, thus 



ICBAS/FCUP 

Introduction 

17 

 
regulating the immune system. Activation of T lymphocytes starts from the recognition 

of antigen by T cell antigen receptor and CD4 or CD8 co-receptors. After TCR 

stimulation, lymphocyte activation can result in T cell proliferation, cytokine secretion 

and cellular cytotoxicity (Gessi et al., 2007).  

Several studies indicate that A2A receptors are the main purinergic actors in the 

regulation of lymphocytes response. In fact, A2A receptors activation inhibits IL-2 

secretion by naive CD4+ T cells, leading to decreases in B cell proliferation (Naganuma 

et al., 2006; Sevigny et al., 2007), and partially restore the imbalance between 

Th1/Th2/Th17/Treg cells (Li et al., 2012). In this regard, A2A receptors play an 

immunosuppressive action in CD4+ T helper cells that are known to assist auto-reactive 

B cells to produce anti-AChR antibodies both in MG and EAMG model (Berrih-Aknin et 

al., 2013; Conti-Fine et al., 2008; Elson & Barker, 2000). Furthermore, it was found that 

the adenosine-A2A receptor pathway mediates a negative feedback 

immunosuppressive mechanism that regulates properties of regulatory T cells (Treg) 

(Ohta et al., 2012). Treg cells are produced in the thymus where they start expressing 

forkhead box P3 (FoxP3) transcription factor, which entitles these cells to act in the 

maintenance of immunological self-tolerance and in the regulation of immune 

responses by suppressing the proliferation and cytokine production of effector 

autoreactive T cells that arise de novo or escape thymic deletion (Becker et al., 2006; 

Hasko & Cronstein, 2013; Miyara & Sakaguchi, 2007). Most endogenous CD4+ Treg 

cells constitutively express the CD25 molecule (IL-2 receptor α-chain) (Aricha et al., 

2008). The trigger to these cells activation is believed to be related with high-affinity 

interactions that occur between TCRs and class II MHC-peptide complexes in thymus, 

which “instruct” developing thymocytes to up-regulate FoxP3 and become Treg cells 

(Kuczma et al., 2009). In autoimmune disorders, such as MG, it has been reported 

decreased levels of FoxP3 expression, which is correlated with an impaired Treg 

function (Balandina et al., 2005; Zhang et al., 2009). Interestingly, A2A receptors 

stimulation was reported to up-regulate FoxP3 mRNA (Zarek et al., 2008). Treg cells 

also express high levels of CD39 and CD73 ecto-NTPDases on the surface of FoxP3 

Tregs, whose action leads to extracellular adenosine production from released adenine 

nucleotides; on its own, the nucleoside will exert its immunosuppressive action on 

CD4+CD25- T cells by acting on A2A receptors (Figure 9) (Hasko & Cronstein, 2013). 

Consequently, A2A receptors exert its effects on many aspects of T-cell function as 

(Hasko et al., 2008; Milne & Palmer, 2011):  

a) Inhibiting T-cell activation and proliferation; 

b) Inhibiting proinflammatory cytokine production; 

c) Enhancing the production of anti-inflammatory cytokines; 
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d) Supressing proliferation of developing and mature Th1 and Th2; 

e) Promoting the generation of Tregs by up-regulating FoxP3 expression. 

 

 

Figure 9 - Adenosine mediates immunosuppression and is generated by the ectonucleotidases CD39 and CD73 that are expressed 

on the surface of FoxP3 Tregs. This nucleoside binds to adenosine A2A receptors: A) increases FoxP3 expression levels in these cells 

and B) inhibits T effector-cell proliferation and consequently B cell activation. Adapted from (Hasko et al., 2008). 

 

Thus, although the autoantibodies produced by B cells play a central role in the 

pathogenesis of MG, CD4+ T cells (more specifically Tregs) and A2A receptors are 

increasingly assumed as viable targets for future neuroimmune-orientated therapeutic 

strategies of autoimmune myasthenic disorders.  

Aricha and collaborators (2008) described that Tregs cells transferred from healthy rat 

donors to myasthenic rats suppressed EAMG when treatment was initiated at the acute 

phase of disease. However, the same suppressive activity of Tregs was not observed for 

EAMG rats when compared to healthy donors, being an indicator of impairment in the 

Treg cell compartment in EAMG. Moreover, a recent study from this group reported that 

rats treated with antibodies to IL-6, a regulator of Treg/Th17 balance, suppress EAMG at 

acute and chronic phase of the disease (Aricha et al., 2011). They also reported a 

reduction in the frequency of CD4+CD25highFoxP3 cells in peripheral blood 

lymphocytes of myasthenic rats at an initial stage of the disease as compared  to 

control littermates (Aricha et al., 2008).  

It was demonstrated that T cells from EAMG rats express less FoxP3 than healthy 

rats. It was also found that Treg cells can improve disease manifestations in a 
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preventive regime. Regarding their use as a therapeutical approach, these cells failed 

to significantly alter the course of the disease (Nessi et al., 2010).  

The impairment of suppressive function by Treg cells from EAMG rats was also 

reported by Gertel-Lapter et al. (2013), where they demonstrated that Tregs have a 

lower ability to suppress the proliferation of T effector (Teff) and B cells in response to 

polyclonal activation in co-cultures of Treg/Teff cells, as compared with control 

littermates.  

Another line of research proposed to investigate if A2A receptors activation with an 

agonist (CGS21680) could modulate ongoing EAMG (Li et al., 2012). The first finding 

was that A2A receptor expression was reduced in both T and B cells from spleen and 

lymph nodes of myasthenic rats. Thus, we can conclude that the immunosuppressive 

effect mediated by A2A receptors is compromised. Also, in vitro stimulation of A2A 

receptors with a selective agonist inhibited the production of antibodies against nAChR 

and the proliferation of AChR-specific lymphocytes. This work further indicates that A2A 

receptors stimulation is able of increasing Treg cell levels and changed the profile of 

Th1, Th2 and Th17 cells. This therapeutic strategy proved to be similar to the previous 

approaches, in other words, a preventive treatment proved to be more efficient than a 

therapeutic one.  
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2. Aim   

It is becoming increasingly appreciated that drugs targeted on adenosine pathways 

can exert beneficial effects in neuroimmune disorders. 

In the presence of immune and neuronal challenges, the adenosine system acts as 

a sensor, which through dynamic action between ecto-enzymes and adenosine 

receptors, adapts neuronal and immunological responses to the stimulation conditions. 

In light of this, it is likely that in the context of diseases, induction of the mechanisms 

associated to adenosinergic pathway may be dysfunctional. Our main goal is to unravel 

the pathophysiological role of adenosinergic pathway, in particular A2A receptors, on 

autoimmune Myasthenia gravis.  

Unraveling of these mechanisms may give important insights through which 

pharmacological modulation of the adenosine pathway may have potential application 

in Myasthenia gravis therapeutic management.   

Considering that the EAMG model shares the majority of the cardinal features of 

human Myasthenia gravis our studies were conducted in Wistar rats immunized by a 

single peptide corresponding to aminoacids 97-116 of the rat nAChR α subunit. Our 

model of breakdown of self-tolerance in Wistar rats, was screened for signs of 

immunological and neuronal imbalance by evaluating (1) serum ADA activity, (2) 

FoxP3 expression in CD4+CD25+T-cell populations (Treg), (3) tetanic failure (fatigue) of 

diaphragm muscle contractions by indirect phrenic nerve stimulation with intermittent 

50 Hz-bursts and (4) morphological alterations of motor nerve endplates.   

Considering the proposed hypothesis we evaluated A2A receptor density and 

distribution through cell compartments present on motor endplates and CD4+ T cell 

population from EAMG animals by immunofluorescence confocal microscopy and flow 

cytometry, respectively. Regarding the mechanisms that accounts for A2A receptors 

neuroexcitatory and immunossupressor actions like the mobilization of extracellular 

Ca2+ through CaV1 channels (Oliveira et al., 2004) and the amount of ADO production 

through T lymphocytes membrane bound ecto-5'-nucleotidase (CD73) enzyme, 

respectively, we sought to evaluate immunoreactivity against CaV1 channels on motor 

nerve endplates and to ecto-5'-nucleotidase (CD73) enzyme on CD4+ T cells 

population through their differential cell compartments. 
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3. Materials and Methods 
 

3.1.  Experimental Autoimmune Myasthenia gravis (EAMG) rat 

model induction and clinical assessment 

The animals (Wistar rats) were handled as stated in the Portuguese Decree-Law 

nº113/2013 of 7th August concerning the protection of animals used for experimental 

procedures and for other scientific purposes. We also followed the rules of Federation 

for Laboratory Animal Science Associations (FELASA). Wistar rats were kept at a 

constant temperature (21ºC) and a regular light (06.30-19.30h) dark (19.30-06.30h) 

cycle, with food and water ad libitum. The rat induction was carried as follows (Baggi et 

al., 2004): the animals (6-8 weeks) were anaesthetized and immunized subcutaneously 

at four sites (two hind footpads and shoulders) with 50 µg of R97-116 peptide – a 

synthetic peptide corresponding to a specific region on the α subunit of the rat nicotinic 

AChR – in 200 µl of CFA (Complete Freund’s Adjuvant) on day 0 and were boosted on 

day 30 with the same peptide in 200 µl of IFA (Incomplete Freund’s Adjuvant). On both 

immunizations PBS (phosphate-buffered saline) was also added, because it 

corresponds to the solution in which the peptide was reconstituted. CFA is an 

immunopotentiator consisting of an inactivated and dried antigen from Mycobacterium 

tuberculosis, emulsified in mineral oil, while IFA lacks M. tuberculosis.  Control animals 

received CFA emulsion without the peptide and the naive group animals were not 

submitted to any sort of treatment. On the beginning of the induction protocol all control 

and naive animals presented the same age and similar weight as the animals 

conducted to the EAMG group. Each experimental animal was weighed and assessed 

for muscle strength by grip test at the beginning of the experiments and twice weekly 

until sacrifice 6 to 8 weeks later. Results are expressed as the mean of the evaluations 

for each animal at each time point. 

 

3.2.  EAMG clinical evaluation 

Evaluation of disease manifestations in immunized and healthy (naive and control) 

rats was performed by assessing several parameters. Clinical scoring was based on 

the presence of tremor, hunched posture, muscle strength by grip strength test 

(BIOSEB, France), and fatigability after exercise (repetitive paw grips on the cage grid). 

Disease severity was expressed by assigning several degrees (Baggi et al., 2004), as 

indicated in table 2.  
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Table 2 - Clinical score used to grade EAMG severity. 

Clinical score 

Grade 0 Normal muscle strength and no 
muscle weakness  

Grade 1 Normal at rest, but weak after 
exercise (chin on the floor; inability to 
raise head; hunched back)  

Grade 2 Weakness at rest  

Grade 3 Moribund, dehydrated and 
quadriplegic  

Grade 4 Dead  

 

3.3.  Preparation and experimental conditions 

The control, naive and EAMG animals were euthanized by decapitation and 

submitted to surgical isolation of the phrenic nerve hemidiaphragm. The experiments 

were performed using either left or right phrenic nerve-hemidiaphragm preparations (4-

6mm width). Each muscle was superfused (5 mlmin−1, 37°C, pH 7.4) with gassed (95% 

O2-5% CO2) Tyrode solution (pH 7.4) containing (mM): NaCl 137, KCl 2.7, CaCl2 1.8, 

MgCl2 1, NaH2PO4 0.4, NaHCO3 11.9 and glucose 11.2, at 37ºC (Correia-de-Sá et al., 

1996).  

3.4.  Adenosine deaminase assay 

The whole blood was collected from three different groups of rats after decapitation 

and was allowed to clot by leaving it undisturbed at 4ºC during approximately 6 hours. 

The portion of the sample that was separated from the clot was collected, and then 

centrifuged at 4,000 rpm for 20 minutes at 4ºC. The resulting supernatant is, from now 

on, designated as serum. Following centrifugation, the samples were separated in 

aliquots and stored at -20ºC until its analysis. 

The determination of the catalytic activity of adenosine deaminase (ADA) in serum 

was carried out according to a kinetic colorimetric method based on hydrolytic action of 

ADA on adenosine to form inosine, which by the action of purine nucleoside 

phosphorylase (PNF), xanthine oxidase and peroxidase give rise to a colored 

compound whose formation may be monitored at 550 nm. The reaction is as follows:  
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While handling, the serum samples from all groups of animals were maintained at 2-

8°C, which corresponds to the ideal temperature for preserving ADA stability. 

Hemolyzed samples were not considered in this determination. ADA activity was 

measured in a Cobas Mira S autoanalyser (Roche Diagnostics, Switzerland) at 37ºC, 

according to the method of Giusti (1974). 

 

3.5.  Myographic recordings 

For tension response recordings, the innervated diaphragm strips were mounted in 

a 10-ml capacity isolated organ bath chamber. Tension responses were recorded 

isometrically at a resting tension of 50 mN with a force transducer and displayed on a 

Hugo-Sachs (Germany) recorder. These experimental conditions allowed a well-

preserved contraction pattern for several hours after the initial stabilization period. 

Tetanic failure (fatigue) of diaphragm muscle contractions was induced by indirect 

nerve stimulation (intermittent 50 Hz-bursts). 

 

3.6.  Immunofluorescence staining and confocal microscopy 

observation 

3.6.1. Tissue preparation 

3.6.1.1. Tissue fixation and preservation 

After dissection, muscle fragments were stretched to all directions, pinned onto Petri 

dishes coated with Sylgard® and incubated with Tyrode’s solution continuously gassed 

without or with 0.1% collagenase (type I; Sigma Aldrich) for different periods of time 

(10, 20 and 30 min), in order to increase permeability of the antibodies at the NMJ. The 

collagenase solution was changed every 10 min and after the enzymatic treatment it 

was discharged and the hemidiaphragms were rinsed with Tyrode’s solution. Tissues 

were then fixed in PLP solution (paraformaldehyde 2%, lysine 0.075 M, sodium 



ICBAS/FCUP 

Materials and Methods 

24 

 
phosphate 0.037 M, sodium periodate 0.01 M) overnight at 4°C; washed 3 x 10 min 

with 0.1 M sodium phosphate solution; cryoprotected with cryoprotectant solution 

(anhydrous glycerol 20%, sodium phosphate 0,1 M) overnight at 4°C and stored in the 

cryoprotectant solution at -20ºC.  

 

3.6.1.2. Tissue sectioning 

At the time of sectioning, the selected tissue previously stored at -20°C was washed 

10 min with 0.1 M sodium phosphate solution; embedded in a cryoprotective 

embedding medium (Thermo Scientific), and placed in a cryostat (Leica CM1950; Leica 

Microsysteems, Nussloch, Germany) at -25°C for 30 minutes to stabilize the 

temperature. Then, after the tissue is properly oriented, serial longitudinal sections of 

the muscle strips (45 µm) were cut. 

 

3.6.1.3. Blocking and permeabilization 

After sectioning, tissue fragments were incubated free floating, overnight at 4°C with 

a blocking buffer solution, consisting in foetal bovine serum 10%, bovine serum 

albumin 1%, Triton X-100 1% and 0,05% NaN3 in PBS. Triton X-100, which is part of 

the composition of blocking buffer, increases membrane permeability thus facilitating 

the incubation of the tissues with antibodies (Ramos-Vara et al., 2008). Incubation of 

the sections with blocking buffer is essential to prevent the formation of non-specific 

binding of the primary antibodies, thus reducing the probability of occurrence of 

nonspecific background labeling (Ramos-Vara, 2005). In order to evaluate the 

morphology of motor endplates, muscle strips were incubated with an α-BTX peptide 

conjugated with tetramethyl rhodamine (TMR-α-BTX diluted 1:1500; Molecular Probes) 

for 15 min; washed 2 x 10 min in PBS supplemented Triton X-100 0.3%, and 10 

minutes in PBS; mounted on optical-quality glass slides using the antifading 

VectaShield medium (VectorLabs), and stored in the dark at 4ºC. 

 

3.6.1.4. Antibody labeling 

In this work the indirect immunofluorescence technique was performed in order to 

visualize the reaction that occurs between the antigen and antibody. This technique 

consists in the binding of the primary antibody to the antigen of interest, followed by the 

application of a secondary antibody coupled to a fluorophore that specifically 

recognizes the primary antibody (Ramos-Vara, 2005). 
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3.6.1.5. Incubation with primary antibodies 

After blocking and permeabilization, samples were incubated with primary 

antibodies (see table 3) diluted in the incubation buffer (foetal bovine serum 5%, serum 

albumin 0.5%, Triton X-100 0.5% and 0,05% NaN3 in PBS), at 4°C, for 48 h. For 

immunofluorescence double staining, antibodies were mixed before application to the 

samples.  

 
Table 3– Primary and secondary antibodies used in immunohistochemistry experiments. 

Antigen Host Code Supplier Dilution 

 
Primary antibodies 
 

    

Adenosine receptor 
A2A 

Rabbit (rb) A2AR21-A AlphaDiagnostics 1:75 

Cav1.2L Rabbit (rb) ACC-003 Alomone Labs 1:100 

     

Secondary antibodies 
 
 
 

   

Alexa Fluor 488 anti-
rb IgG 

Donkey A-21206 Molecular probes 1:750 

 

3.6.1.6. Incubation with secondary antibodies 

After incubation, the sections were washed in PBS supplemented Triton X-100 0.3% 

(3 cycles of 10 min). Then, species-specific secondary antibodies (table 3) diluted in 

the incubation buffer previously referred, were applied to tissues samples overnight, at 

4°C in the dark. All procedures from the time of incubation of these antibodies were 

performed in the dark to avoid excitation of fluorochromes. The secondary antibodies 

used must be chosen taking into account the host of the primary antibody, since they 

will specifically recognize its immunoglobulins. Another important aspect is the choice 

of fluorophores coupled to the secondary antibodies. In particular, while planning 

multiple label fluorescence staining protocols for laser scanning confocal fluorescence 

microscopy experiments, the judicious choice of probes is paramount in obtaining the 

best target signal while simultaneously minimizing bleed-through artifacts. After 

incubation with the secondary antibodies, the samples were incubated for 15 min at 

room temperature with the TMR-α-BTX peptide (1:1500; Molecular Probes) to provide 

nAChR detection and washed in 3 cycles of 10 min with PBS. Finally, tissue samples 

were mounted on optical-quality glass slides using the antifading VectaShield medium 

(VectorLabs), and stored in the dark at 4ºC. Non-specific binding was assessed by the 
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inclusion of negative controls by omission of primary antibodies from the reaction 

solution (Ramos-Vara et al., 2008). 

3.6.1.7. Confocal microscopy 

Confocal microscopy allows acquiring images with an optimized and improved 

resolution, as compared to a conventional fluorescence microscope. The key feature of 

confocal microscopy is its ability to acquire in-focus images from selected depths which 

are acquired point-by-point and reconstructed with a computer, allowing three-

dimensional reconstructions of topologically complex objects (Semwogerere & Weeks, 

2005). 

In this work, the glass slides were examined with a microscope confocal laser 

scanning Olympus Fluoview FV1000 (Tokyo, Japan) using the following lasers: a multi-

line Argon, which emits in the range of 488nm and can therefore excite fluorophore 

Alexa Fluor 488 and a He-Ne laser, which emits at a wavelength of 543 nm and that 

will excite the TMR-α-BTX peptide. Tissue samples were subjected to a sequential 

scanning, and the images were acquired in multiple planes (Z-stack). 

The images obtained were then processed using the software associated the 

confocal microscope, the FluoViewer FV10-ASW. Regarding the evaluation of the 

morphological component, the area (μm2) of labeling by TMR-α-BTX was measured 

using the Image J 1.46r software (NIH, Bethesda, MD, USA). 

 

3.7.  Isolation and immunophenotypic characterization of CD4
+ 

T 

cells 

3.7.1. Immunomagnetic positive selection of CD4
+
 T cells 

The ability to separate a heterogeneous cell population considering the cellular 

properties/characteristics is a relevant analytical tool to study functional and expression 

features of specialized cell types within complex biological systems. The characteristics 

that are considered to differentiate cell populations include DNA content, cellular 

pigment content, total protein content, intracellular pH, membrane organization and the 

key probe from a clinical point of view is the presence of specific surface markers (e.g. 

presence of CD4 and CD8 on lymphocytes) (Chalmers et al., 1998). 

According to the study which is pretended to be performed, a myriad of labels and 

“handles” can be chosen. The most specific labels include the ones that bind only to 

specific cell-associated molecules. In order to study the immune events associated with 
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the tripartite immunological synapse in MG, the need to purify CD4+ T cells from 

heterogeneous cell population in lymph nodes arises.  

Mononuclear cell suspensions from draining lymph nodes (popliteal and inguinal) 

were prepared by rubbing and pressing the lymph nodes between two microscope 

slides and subsequently filtered through pipettes with glass wool. After counting, the 

cells were magnetically labeled with CD4 microbeads (Miltenyi Biotech). Next, the cell 

suspension was loaded onto a MACS® LS column (Miltenyi Biotech) which was placed 

in the magnetic field of a MidiMACS separator (Miltenyi Biotech). The unlabeled cells 

run through and this cell fraction is depleted. CD4+ cells stay attached to the column 

until the removal of the column from the magnetic field and immediately flush by firmly 

applying the plunger supplied by the manufacturer. This procedure is denominated 

positive immunomagnetic cell isolation (Figure 10). CD4+ T cells total population were 

targeted for immunophenotypic characterization of the lymphocyte population by flow 

cytometry. 

 

Figure 10 – Schematic representation of Immunomagnetic MACS® Cell Separation steps. Adapted from MACS® Technology 

Gold Standard in Cell Separation flyer (Miltenyi-Biotec, 2011).  
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3.7.2. Immunophenotypical characterization of CD4, CD25, FoxP3, 

A2A receptors and CD73 markers on CD4
+
 T cell subsets  

After positive immunomagnetic cell isolation, CD4+ T cells were re-suspended in 

FACS buffer (BSA 0.5% in PBS pH 7.2) at a cell concentration 1x106 cells/ml, and then 

incubated with normal donkey serum (1:5) during 15 min on ice. Subsequently the 

samples were incubated with the following primary antibodies: FITC-conjugated anti-rat 

CD4 (1:100, eBioscience), PE-conjugated anti-rat CD25 (1:100; eBioscience), anti-

canine A2A adenosine receptor (1:50; Alpha Diagnostics) and anti-rat CD73 (1:750; 

kindly provided by Dr. Jean Sévigny) during 30 min at 4°C in the dark. Given that anti-

A2A receptor and anti-CD73 were not coupled to a fluorophore we applied an indirect 

immunofluorescent labeling with rabbit IgG (Fc specific)-Biotin antibody (1:750, Sigma 

Aldrich) following by the incubation with Streptavidin PE-Cy7 (1:100; eBioscience).  

For analysis of FoxP3 expression, cells were incubated overnight with 

fixation/permeabilization working solution (eBioscience) at 4°C in the dark. Cells were 

washed twice with 150 μL of permeabilization buffer (PB). Then, antibody to FoxP3 

conjugated with Cy5 (1:100, eBioscience) was supplemented to 10% rat serum 

previously added to each well, incubated at 4°C for 30 min in the dark. Stained cells 

were washed once with PB and resuspended in FACS buffer.  

3.7.3. Flow cytometry analysis 

The flow cytometer (Beckman Coulter Epics XL) used in this work is equipped with 

argon lamp that allows the evaluation of 6 basic parameters: size (FSC) and granularity 

(SSC), type 1 fluorescence (FL1), type 2 fluorescence (FL2) type 3 fluorescence (FL3) 

and type 4 fluorescence (FL4). FL1, FL2, FL3 and FL4 correspond to fluorescent 

signals emitted by the excitation of FITC, PE, PerCP-Cy5 and PE-Cy7, respectively. 

The identification of interest cell populations, as well as determining the percentage of 

these populations and sub-populations was performed by a computerized system and 

Cell Quest software (BD Bioscience). Initially it was selected a total population of 

lymphocytes, region R1, based on size and granularity parameters. Then, a region (R2) 

was drawn to select the CD4+ T cell population and graphics of FL1 (CD4) vs FL2 

(CD25) were constructed to identify the segregation of CD4+ T cell population into three 

subpopulations: CD4+CD25- (R3), CD4+CD25+ (R4) and CD4+CD25+FoxP3+ (R5).  

 

3.8.  Presentation of data and statistical analysis 

The data are expressed as mean±SEM from an n number of experiments. Statistical 

analysis of data was carried out using paired or unpaired Student's t-test or two-way 
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analysis of variance (ANOVA). p values <0.05 were considered to represent significant 

differences. 
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4. Results and Discussion 

  

4.1.  Clinical evaluation of Experimental Autoimmune Myasthenia 

gravis animal model (EAMG) induction by Wistar rats 

immunization with a synthetic peptide from the rat nAChR α 

subunit  

 

Experimental autoimmune Myasthenia gravis (EAMG) is most frequently assessed  

by (1) monitoring clinical evaluation of muscle weakness with the grip strength test 

(BIOSEB, France),  and by (2) observing the following signs: presence of tremor, 

hunched posture, fatigability, inability to raise the head and reduced mobility. As 

previously described in Material and Methods, the clinical diagnostic of EAMG 

manifestation is performed based on the scale presented in Table 2 (Baggi et al., 

2004). This procedure is crucial to follow the in vivo induction of EAMG disease and it 

is instrumental to select the animals with Myasthenia gravis for further studies. EAMG 

was induced in Wistar rats by immunization with R97-116 peptide from nAChR α 

subunit emulsified in CFA.   

Figure 11A illustrates the onset and progression of the disease expressed in terms 

of mean clinical scoring for naive, control and EAMG rats.  
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Figure 11 – Mean clinical score assessment and variations in body weight in naive, control and EAMG rats. A) Clinical 

manifestations of EAMG were only evident in R97-116 immunized rats (▲; received the R97-116 peptide corresponding to a 

specific region on the α subunit of the rat nicotinic AChR made up in a solution containing CFA), while the naive (●; not submitted 

to any kind of treatment) and control animals (■; only received the CFA emulsion without the R97-116 peptide) did not show signs 

of muscle weakness (maximal score: 4 points). B) The weight variation over time shows no differences in the growth curves from 

three groups of animals. The presented data result from the clinical evaluation and body weight assessment of seven animals from 

naive and eight animals from control and EAMG groups. 

 

As can be seen in figure 11A, Wistar rats immunized with R97-116 peptide 

presented clinical signs of EAMG. The graph shows two distinct episodes of clinical 

disease: (1) an acute/moderately phase and (2) a progressive phase. The immunized 

Wistar rats exhibited a moderate EAMG score (0.25±0.13, n=8) starting on day 11, 

which subsided 21 days after immunization. The EAMG clinical signs relapsed 29 days 

after the first immunization (0.625±0.18, n=8) and increased thereafter. Interestingly, no 

changes in the average weight were observed in EAMG rats as compared to control 
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and naive animals (Figure 11B); these findings indicate that muscle weakness 

observed in EAMG animals did not preclude food intake. CFA-treated animals showed 

no clinical manifestations of EAMG. These results are in agreement with the findings 

reported by other groups (Baggi et al., 2004; Mu et al., 2009) in Lewis rats. Thus, our 

data indicate that clinical manifestations of EAMG can also be successfully induced in 

Wistar rats by immunization with a single peptide of the self AChR. 

 

4.2.  Evaluation of immunological and neuronal imbalance features 

commonly associated with Myasthenia gravis 

 

ADA is involved in the development and maintenance of the immune system 

(Chechik et al., 1981; Chechik & Sengupta, 1981; Van der Weyden & Kelley, 1976). 

Measurements of serum ADA activity have been used to assess T cell dysfunction; 

exacerbation of serum ADA activity is positively correlated with the clinical score of 

myasthenic patients (Chiba et al., 1995). Therefore, measurement of total serum ADA 

activity may be an important biochemical marker to assess the gravity of MG (Chiba et 

al., 1995). In light of this, the total serum ADA activity was assessed in EAMG Wistar 

animals. 

  

 

Figure 12 – Serum adenosine deaminase (ADA) activity in naive, control and EAMG rats. Results are mean ± SEM of 9 to 13 

experiments. *,** P< 0.05 (one-way ANOVA following Tukey’s multiple comparisons test).  

 

Our results indicate that serum ADA activity in EAMG animals was significantly 

higher (40±7 U/L) as compared with control (18±3 U/L) and naive (25±6 U/L) 

littermates (Figure 12). 
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Interestingly, our results are in agreement with previous reports referring that 

increased serum ADA activity may be a hallmark of MG pathophysiology, since  ADA 

influences proliferation and differentiation of lymphocytes, specially T-lymphocytes 

(Shore et al., 1981). In addition, we also showed that inoculation of R97-116 peptide 

into Wistar rats induces a dysfunction on cellular immunity. This effect seems to be 

specific, since exacerbation of total serum ADA activity was observed only in EAMG 

animals, whereas the adjuvant used for the immunization protocol, CFA, failed to 

modify ADA activity.  

Considering that ADA hydrolysis adenosine into its inactive metabolite, inosine, and 

that adenosine is an important immunosuppressive nucleoside by inhibiting T-cell 

activation and by stimulating Treg suppressive function via A2A adenosine receptors 

activation (Csoka et al., 2008), the levels of serum adenosine maybe crucial to 

determine the magnitude of immunological responses mediated by effector T cells 

(TCD4+), activated T cells (TCD4+CD25+) and regulatory T cells (TCD4+CD25+FoxP3+). 

So, this led us to evaluate T cells subset frequencies in draining lymph nodes from 

EAMG Wistar rats and control littermates by flow cytometry. To this end, the volume of 

TCD4+CD25-, TCD4+CD25+ and TCD4+CD25+FoxP3+ reservoir in the cell suspension 

obtained from draining popliteal and inguinal lymph nodes were analysed. We chose to 

study lymph nodes for our molecular analysis because they correspond to the major 

site of regulatory CD4+CD25+FoxP3+ T cells accumulation which allows this cell 

subtype to exert its major immunosuppressive activity on both effector and activated T 

cells (Samy et al., 2005).  

After the extraction of popliteal and inguinal lymph nodes it was possible to observe 

a marked difference in the morphology of naive and control lymph nodes as compared 

to EAMG rats. Namely, it is quite apparent that EAMG animals have swollen and 

enlarged lymph nodes, being indicative of the occurrence of an active immune 

response (Figure 13). Moreover, secondary lymphoid organs correspond to areas 

within lymphoid tissue where B-cells interact with helper T-cells to produce antibodies, 

so it is expected to observe an increase in the size of lymph nodes in EAMG animals 

due to increased mobilization of immunological cells towards these compartments. In 

fact, cell suspensions obtained from draining popliteal and inguinal lymph nodes gave 

significantly higher yield in EAMG animals (1.4x108±0.2; mean cell number±SE) as 

compared to naive (1.2x107±0.2) and control (2.5x107±0.4) animals. These results are 

indicative that EAMG animals present lymphoid hyperplasia which usually occurs in 

autoimmunity conditions.  
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Figure 13 – Illustrative representation of inguinal and popliteal lymph nodes morphology from naive, control and EAMG animals. 

 

The percentage of TCD4+CD25- and TCD4+CD25+ cells subsets among the TCD4+ 

population observed in EAMG animals were similar to healthy animals (control and 

naive) (Figure 14A). However, the analysis of FoxP3 expressing cells among 

TCD4+CD25+ population by flow cytometry in healthy and EAMG rats (Figure 14B) 

demonstrate that EAMG animals have an altered expression profile of FoxP3 (42±5%, 

n=8) as compared to both control (57±4%,n=9) and naive (56±2%,n=26) animals. Our 

results are in agreement with previous studies reporting altered expression of FoxP3 

with concomitant Treg functional defects in patients affected with common autoimmune 

disorders, including adult T cell leukemia (Karube et al., 2004), psoriasis (Sugiyama et 

al., 2005) and MG (Zhang et al., 2009). Moreover, our data demonstrate that EAMG 

induced in Wistar rats by immunization with the synthetic peptide corresponding to the 

region α97-116 of the rat AChR α subunit presents the same pivotal sign of 

immunological imbalance, as that observed for the Lewis rats counterpart (Nessi et al., 

2010) and human MG (Balandina et al., 2005; Zhang et al., 2009).   
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Figure 14 – Evaluation of the percentage of T cells subsets was performed by flow cytometry for surface levels of CD4, CD25 and 

the intracellular levels of FoxP3. Cell suspension from all groups of animals were isolated from lymph nodes obtained 6-8 weeks 

after the first immunization with R97-116 (EAMG), control (CFA) and from age matched naive (not subjected to any kind of 

treatment) rats. A) Percentage of TCD4+CD25- and TCD4+CD25+ cells subsets among the TCD4+ population is not altered in all 

groups of animals. B) Occurrence of regulatory CD4+CD25+FoxP3+ T cells is diminished in myasthenic rats. Data are expressed as 

the mean±SD of n=8-26 rats representative of 6-8 independent experiments. *,** P< 0.05 (one-way ANOVA following Tukey’s 

multiple comparisons test). 

 

Reduced muscle strength during repetitive nerve stimulation reflects the 

immunological imbalance operating in Myasthenia gravis. To assess the contractile 

properties of the respiratory neuromuscular system in EAMG rats, phrenic nerve 

hemidiaphragm preparations from EAMG animals were used for myographic 

recordings under fatigue conditions produced by high-frequency (50 Hz) intermittent 
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(17 pulses per sec, during 3 minutes) nerve stimulation. Figure 15 shows that the 

muscle fatigue was more intense in EAMG animals than in both naive and control 

littermates. The results support the hypothesis that immunization of Wistar rats with 

R97-116 peptide is able of generating animals with a symptomatic myasthenic profile 

exhibiting immunological impairment, similar to that occurring in MG patients. 

 

 

Figure 15 – Percentage of muscle strength reduction evaluated in isolated hemidiaphragm preparations from myasthenic and control 

animals at the end of the period of intermittent nerve stimulation (3 min, 50 Hz, 17 pulses). Results are mean ± SEM of 5 to 10 

experiments. *,** P< 0.05 (one-way ANOVA following Tukey’s multiple comparisons test). 

 

Taking into account that neuromuscular transmission failure results from a B 

mediated antibody attack orchestrated by T cells leading to postsynaptic muscle 

nAChR clusters disorganization, we decided to look for morphological alterations 

(Figure 16) of motor nerve endplates from EAMG animals by immunofluorescence 

confocal microscopy. Previous studies performed in our laboratory demonstrated that 

immunofluorescence labeling of postsynaptic nAChR was instrumental to evaluate 

morphological changes on motor nerve terminals from myasthenic animals induced 

with an antagonist to nAChR (TIMG) (Noronha-Matos et al., 2011). 

Figure 16 is composed of representative images of type I and II muscle fibers from 

both healthy (naive and control) and myasthenic (EAMG) rats obtained by labeling 

postsynaptic nAChR with TMR-α-BTX (red).  

 

0

20

40

60

80

100
Naive

Control

EAMG

*,** P<0.05
n=5-10

*
**

R
e

d
u

c
ti

o
n

 o
f 

c
o

n
tr

a
c

ti
le

 f
o

rc
e

 (
%

)



ICBAS/FCUP 

Results and Discussion 

37 

 

 

Figure 16 – Analysis of the morphology of motor endplates (Wistar rats) loaded with TMR-α-BTX from naive, control and 

myasthenic rats. A) Illustration of the differences for both slow (type I) and fast (type II) muscle fibers from healthy (naive and 

control) and myasthenic (EAMG) rats. B) Representation of the area (pixel) of muscle endplates (types I and II) from all groups of 

animals. Each column represents pooled data from two animals of each group; the number of motor endplates is shown at the 

bottom of each column. *P< 0.05 (Student’s t-test).  

 

We used the description of Prakash and co-workers (1996) to distinguish the 

morphological characteristics of different skeletal muscle fibers co-existing in 

hemidiaphragm preparations. Planar area quantification of motor endplates, using the 

Image J software to select and measure areas based on color, showed a significant 

reduction in the area of endplate acetylcholine receptor clusters for both type I and II 

diaphragm muscle fibers from myasthenic animals, as compared to naive rats. These 

changes are in agreement with a work by Noronha-Matos (2011), reporting structural 

changes of motor endplates, more specifically reductions in motor endplate areas in 

TIMG animals. In fact, the existence of morphological disarrangements for EAMG 

motor endplates, is in agreement with previous reports indicating that muscle 

weakness is a consequence of cellular mediated attack of antibodies to nAChRs 

located postsynaptically leading to increased AChR endocytosis and destruction of 

NMJ mediated by complement system activation (Juel & Massey, 2007). Regarding 

histological analysis of samples from patients with MG, it also supports these 

evidences since motor endplates also present considerable variation in size and 

morphology (Macdermot, 1960). 

The overall set of data suggests that immunization with a single peptide fragment, 

which sequence is homologous to a region of α subunit of the rat nicotinic AChR in 

Wistar rats, shares clinical, pathological and physiological features of human MG as 

closely as possible, thus this model might be extensively used to unravel the 

pathogenic mechanisms and explore therapeutic approaches for MG (Tuzun et al., 

2012).   
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4.3.  A2A receptors and CD73 expression is altered in CD4
+
 T cells 

subsets in lymph nodes of EAMG rats  

 

A2A receptors are arising as important negative regulators of T-cell function and its 

importance is being recognized in the immunopathogenesis of MG (Li et al., 2012). 

ADO by activating A2A receptors plays a dual role on T cells; its action inhibits T-cell 

receptor (TCR)-mediated signaling, which consequently leads to a decrease in IL-2 

production and CD25 expression, decreasing T effector cell proliferation (Csoka et al., 

2008; Hasko et al., 2008; Milne & Palmer, 2011). On the other hand, activation of A2A 

receptors is pivotal at regulating FoxP3 expression in Treg cells (Zarek et al., 2008). Li 

and collaborators (2012) have recently reported a reduction on A2A receptors 

expression by both T cells and B cells residing in lymph nodes of EAMG animals. 

However, the differential modification of A2A receptors expression in subtypes of T cells 

has not been described till date. In order to evaluate A2A receptors differential 

expression on TCD4+CD25- , TCD4+CD25+ and TCD4+CD25+FoxP3+ cells populations, 

the cell suspension obtained from inguinal and popliteal lymph nodes was enriched in 

the cells of interest, CD4+ T cells total population, by positive immunomagnetic cell 

isolation.  

Figure 17 corresponds to representative forward scatter (FSC) vs. side scatter 

(SSC) plots and scatter plot of two-color fluorescence obtained for the cell suspension 

before and after CD4+ T cells isolation. The population of T cells was identified on the 

FSC vs. SSC scatter plot based on their size and granularity and gated (R1) to 

determine the percentage of T cells on the cell suspension (Figure 17A e 17C). The 

positive immunomagnetic cell sorting revealed to be very effective in isolating CD4+ T 

cells. The percentage of these cells initially corresponded to 28.10±0.05% (n=4) to 

naive, 34.78±3.46% (n=4) to control and 38.25±5.48% (n=4) for myasthenic animals, 

and after isolation this procedure afforded an enrichment of these cells to 85.08±0.78% 

(n=4) in naive, 81.93±2.37% (n=4) for control and 79.8±2.96% (n=4) for EAMG rats. 
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Figure 17 – Flow cytometry profile of CD4+ lymphocytes population before and after positive immunomagnetic cell sorting. A) and 

C) show T cells profile using forward scatter (FSC) vs. side scatter (SSC) plot, before and after isolation, respectively. B) and D) are 

two color fluorescent dot plots representative of CD4+ T lymphocytes labeled with mAbs specific for molecules (CD4 and CD25) 

expressed on lymphocyte subsets, before and after the isolation procedure, respectively.  

 

Although no differences were found in the density levels of A2A receptor on the 

CD4+CD25- T cell population a reduced expression of these receptors on CD4+CD25+ 

cells and on Tregs cells was observed in EAMG animals as compared to healthy (naive 

and control) animals (Figure 18). These observations are in agreement with recent 

studies demonstrating a reduction of A2A receptors expression at the total pool of CD4+ 

T cells population obtained from lymph nodes of myasthenic animals (Li et al., 2012). In 

agreement with these results, it has been reported that reduced expression levels of 

A2A receptors in myasthenic rats compromise Tregs immunosuppressive activity, since  

activation of these receptors is responsible for up-regulating FoxP3 expression in these 

cells (Zarek et al., 2008). Moreover, A2A receptors play an important role in the Th1/Th2 

paradigm by decreasing the proliferation and IL-2 production of effector T cells. Indeed, 

Nessi and collaborators (2010) put the hypothesis that the incapacity of Treg cells to 

revert ongoing EAMG may be due to inadequate control of Teffs leading to B cell 

activation and differentiation into AChR Ab-secreting plasma cells. This incapacity 

might be associated with the reduction in the expression levels of A2A receptors, since 

activation of these receptors lead to apoptosis of effector T cells.  
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X Parameter: FL1 LOG FL1 LOG (Log) Y Parameter: FL3 LOG FL3 LOG (Log)

Region Ev ents % Gated % Total X Mean X Geo Mean Y Mean Y Geo Mean

R1 2667 100.00 6.50 247.14 237.17 26.07 17.12

R2 2667 100.00 6.50 247.14 237.17 26.07 17.12

R3 0 0.00 0.00 *** *** *** ***

R4 2667 100.00 6.50 247.14 237.17 26.07 17.12

R5 2591 97.15 6.32 246.70 236.74 26.80 18.60

R1
R2

R3

R4

Region Statistics

File: 2012-10-17 521.LMD Log Data Units: Linear Values

Sample ID: Patient ID: 

Tube: Panel: 

Acquisition Date: 17-OCT-12 Gate: G2

Gated Ev ents: 8840 Total Ev ents: 56048

X Parameter: FL1 LOG FL1 LOG (Log) Y Parameter: FL2 LOG FL2 LOG (Log)

Region Ev ents % Gated % Total X Mean X Geo Mean Y Mean

R1 8840 100.00 15.77 307.36 302.57 31.01

R2 8840 100.00 15.77 307.36 302.57 31.01

R3 8212 92.90 14.65 308.24 303.96 12.73

R4 576 6.52 1.03 295.90 284.31 282.28

R5 6569 74.31 11.72 309.65 304.52 37.52

Quadrant Statistics

File: 2012-10-17 521.LMD Log Data Units: Linear Values

Sample ID: Patient ID: 

Tube: Panel: 

Acquisition Date: 17-OCT-12 Gate: G2

Gated Ev ents: 8840 Total Ev ents: 56048

X Parameter: FL1 LOG FL1 LOG (Log) Y Parameter: FL3 LOG FL3 LOG (Log)

Quad Location: 31, 25

Quad Ev ents % Gated % Total X Mean X Geo Mean Y Mean

UL 0 0.00 0.00 *** *** ***

UR 237 2.68 0.42 300.31 286.22 51.68

LL 0 0.00 0.00 *** *** ***

LR 8603 97.32 15.35 307.56 303.03 5.08

Region Statistics

File: 2012-10-17 521.LMD Log Data Units: Linear Values

Sample ID: Patient ID: 

Tube: Panel: 

Acquisition Date: 17-OCT-12 Gate: G1

Gated Ev ents: 20906 Total Ev ents: 56048

X Parameter: FL1 LOG FL1 LOG (Log) Y Parameter: FL2 LOG FL2 LOG (Log)

Region Ev ents % Gated % Total X Mean X Geo Mean Y Mean Y Geo Mean Px,Py

R1 20906 100.00 37.30 163.05 53.63 18.96 4.87 6, 1

R2 8840 42.28 15.77 307.36 302.57 31.01 12.25 2, 3

R3 8680 41.52 15.49 297.58 287.16 12.54 10.02 2, 3

R4 636 3.04 1.13 281.44 263.86 284.50 191.63 2, 3

R5 9312 44.54 16.61 262.87 210.61 30.44 7.99 2, 4

Quadrant Statistics

File: 2012-10-17 521.LMD Log Data Units: Linear Values

Sample ID: Patient ID: 

Tube: Panel: 

Acquisition Date: 17-OCT-12 Gate: G3

Gated Ev ents: 8212 Total Ev ents: 56048

X Parameter: FL1 LOG FL1 LOG (Log) Y Parameter: FL3 LOG FL3 LOG (Log)

Quad Location: 33, 26

Quad Ev ents % Gated % Total X Mean X Geo Mean Y Mean

UL 0 0.00 0.00 *** *** ***

UR 14 0.17 0.02 371.99 345.32 32.30

LL 0 0.00 0.00 *** *** ***

LR 8198 99.83 14.63 308.13 303.89 4.76

Quadrant Statistics

File: 2012-10-17 521.LMD Log Data Units: Linear Values

Sample ID: Patient ID: 

Tube: Panel: 

Acquisition Date: 17-OCT-12 Gate: G4

Gated Ev ents: 576 Total Ev ents: 56048

X Parameter: FL1 LOG FL1 LOG (Log) Y Parameter: FL3 LOG FL3 LOG (Log)

Quad Location: 43, 26

Quad Ev ents % Gated % Total X Mean X Geo Mean Y Mean Y Geo Mean

UL 0 0.00 0.00 *** *** *** ***

UR 209 36.28 0.37 295.98 282.52 52.06 46.73

LL 0 0.00 0.00 *** *** *** ***

LR 367 63.72 0.65 295.85 285.34 12.89 10.62

R3

R4

R5

Region Statistics

File: 2012-10-17 521.LMD Log Data Units: Linear Values

Sample ID: Patient ID: 

Tube: Panel: 

Acquisition Date: 17-OCT-12 Gate: G4

Gated Ev ents: 576 Total Ev ents: 56048

X Parameter: FL1 LOG FL1 LOG (Log) Y Parameter: FL3 LOG FL3 LOG (Log)

Region Ev ents % Gated % Total X Mean X Geo Mean Y Mean Y Geo Mean

R1 576 100.00 1.03 295.90 284.31 27.11 18.18

R2 576 100.00 1.03 295.90 284.31 27.11 18.18

R3 0 0.00 0.00 *** *** *** ***

R4 576 100.00 1.03 295.90 284.31 27.11 18.18

R5 564 97.92 1.01 296.11 284.47 27.66 19.33

R1
R2

Before isolation

After isolation
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Figure 18 – Graphic representation of A2A receptor (A) and CD73 (B) expression on CD4+ T cells subtypes from naive, control and 

EAMG rats analysed by flow cytometry. Data are expressed as the mean±SD of n=4 independent experiments. *P< 0.05 (Student’s 

t-test). 

 

 On the other hand, ecto-5'-nucleotidase (CD73) is an enzyme responsible for 

adenosine formation from the catabolism of adenine nucleotides, which has a critical 

role in the functional activation of T cells. Some studies reported alterations in CD73 

activity on several diseases, such as lymphoproliferative disorders and systemic lupus 

erythematosus (Gessi et al., 2007). According to Vivekanandhan and collaborators 
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(2005) abnormal expression levels of these enzymes may be associated with an 

autoimmune pathology. The production of adenosine represents one of the 

immunosuppressive mechanisms mobilized by Treg cells and expression of CD73 is 

under the control of FoxP3 transcription factor (Zarek et al., 2008). Taking this into 

consideration and the previously observed decreased expression of FoxP3 in the 

regulatory CD4+CD25+FoxP3+ T cells population from EAMG animals we decided to 

evaluate the expression of CD73 in all CD4+ T cells populations.  

Figure 18 shows that CD73 expression profile is altered in Treg cells from myasthenic 

rats as compared with healthy littermates. No differences were observed for other T 

cell populations tested. Firstly, this may have functional repercussions since 

CD39/CD73 pathway is responsible for increasing the production of ADO by T 

regulatory cells, which, in turn will exert an immunosuppressive action on CD4+CD25- T 

activated cells by acting on A2A receptors (Mandapathil et al., 2010). Secondly, 

abnormal levels observed for CD73 expression in EAMG rats may significantly 

compromise the regulatory loop of ADO accumulation in the close vicinity of regulatory 

CD4+CD25+FoxP3+ T cells since a decreased tonic A2A receptors activation on 

regulatory CD4+CD25+FoxP3+ T cells may impair the up-regulation of FoxP3 mRNA 

(Zarek et al., 2008) which will in turn decrease CD73 expression (Deaglio et al., 2007).  

 

4.4.  Adenosine A2A receptors are present on presynaptic cellular 

components of motor endplates but its function is impaired at 

EAMG motor nerve terminals 

 

Previous findings showed that activation of A2A receptors at the rat neuromuscular 

junction is responsible for mediating the neurofacilitatory actions of ADO (Correia-de-

Sá et al., 1991). We demonstrated that tonic activation of A2A receptors on motor nerve 

terminals may overcome neuromuscular tetanic fade during high frequencies of nerve 

stimulation (Oliveira et al., 2004), which might be of clinical interest to overcome 

neuromuscular transmission deficits observed in MG. Our group has previously 

reported that endogenous ADO generated in TIMG motor endplates during repetitive 

nerve firing may be insufficient to preserve transmitter release via tonic activation of 

presynaptic facilitatory A2A receptors (Noronha-Matos et al., 2011). Additionally, 

functional studies performed at Laboratory of Pharmacology and Neurobiology from 

ICBAS-UP demonstrated that motor endplates from EAMG rats have impaired A2A 

receptors activity, since the application of a enzymatically stable A2A receptor agonist,  
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CGS21680C, failed to modify evoked [3H]-ACh release (Almeida, 2012; Guerra-Gomes 

et al., 2013). 

All together, these evidences leave open the question whether impairment of A2A 

adenosine receptors may result from post-translational modifications of the receptor 

protein structure, or to changes in receptor expression and distribution in EAMG motor 

endplates. In order to answer this question, we evaluated A2A receptor 

immunoreactivity among cell compartments of rat motor endplates from naive, control 

and EAMG littermates by immunofluorescence confocal microscopy.  

The NMJ structure is quite intricate due to the presence of intramuscular connective 

tissue components, which totally conceal the surface of NMJ (Desaki & Uehara, 1981). 

In fact, there are not many studies reporting immunofluorescence experiments of 

adenosine receptors in the NMJ and our group demonstrated that the characteristic 

morphology of NMJ hampers the accessibility of antibodies to the motor endplate 

(Viegas, 2011). So, we proposed to perform an epitope retrieval method to increase the 

sensibility of the immunohistochemical detection of epitopes for A2A receptors. Thereby, 

hemidiaphragm strips from naive animals were enzymatically digested with 0.1% type 

IA collagenase with different incubation times (10, 20 and 30 minutes), so that we 

might determine the best experimental conditions to enable the detection of the 

proteins of interest. 

Figure 19 revealed that the longest incubation time (30 minutes) appears to increase 

the accessibility of antibodies to the endplate, since immunoreactivity for A2A receptor 

was significantly ameliorated in these conditions. Immunofluorescence experiments 

also show that after 30 minutes of treatment, besides improving the labeling for A2A 

receptor in the motor endplate, also increased the staining intensity at nerve terminals. 

Furthermore, in contrast to collagenase-treated muscle sections for 10 and 20 minutes, 

where immunofluorescence labeling is rather faint, the majority of the motor endplates 

which were positive for TMR-α-BTX labeling muscle type nicotinic receptors also 

exhibit significant immunoreactivity against adenosine A2A receptors located at the 

presynaptic component. 
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Figure 19 - Confocal immunofluorescence analysis of A2A adenosine receptors in rat hemidiaphragm muscle from naive rats. A) 

NMJs with 10’, B) 20’ and C) 30’ treatment with collagenase (0,1%) double stained with TMR-α-BTX and A2A adenosine receptors, 

respectively. Scale bar: 30 μm 

 

Taking into account these observations, we analysed the immunoreactivity of A2A 

receptor in hemidiaphragm sections from naive, control and EAMG rats treated with 

collagenase during 30 minutes (Figure 20). Since functional studies showed that the 

activity of adenosine A2A receptors was impaired in myasthenic animals, we aimed at 

evaluating if the expression of these receptors was altered in EAMG motor nerve 

terminals. Our first finding was that skeletal muscle fragments from EAMG rats 

probably would not require such a long enzymatic digestion time as naive animals. This 

may be due to the fact that these animals have a more fragile tissue as compared to 

healthy littermates, since its muscle membrane is damaged due to the attack mediated 

by the complement system.  
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Figure 20 - Confocal immunofluorescence analysis (top and side views) of A2A adenosine receptors in rat hemidiaphragm muscle 

from naive, control and EAMG rats. Hemidiaphragm sections were treated with collagenase (0.1%) for 30 min and double labeled 

with A2A receptor (green) and TMR-α-BTX (red), respectively. Scale bar: 10µm. 

 

Careful comparison of the immunoreactivity for A2A receptor in healthy (naive and 

control) and myasthenic (EAMG) rats is consistent with a presynaptic localization of 

these receptors. In fact, using as a reference the fluorescent labeling of nAChR 

clusters with TMR-α-BTX (motor endplate region), A2A receptors appear to be 

distributed predominantly in regions appearing to ‘‘interlink’’ synaptic buttons. Despite 

the fact that we observed no dramatic changes in the A2A receptor immunolabeling of 

motor nerve terminals from EAMG animals as compared to healthy animals, variations 

on A2A receptors expression cannot be rule out. We also found no evidence to suggest 

localization of these receptors in skeletal muscle fibers. Since, the staining pattern 

observed for A2A adenosine receptors was not restricted to synaptic buttons, we cannot 

rule out at this stage the presence of A2A receptors on nerve axons and perisynaptic 

Schwann Cells. 
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Despite we observed no evident changes in the A2A receptor immunolabeling of 

motor nerve terminals in all groups of animals, its function is impaired. Previous 

evidences indicates that at the NMJ, A2A receptors stimulate the activity of the 

adenylcyclase/AMPc transduction system, recruiting calcium through intracellular 

calcium reservoirs and through the activation of CaV1 (L-type) channels (Correia-de-Sá 

et al., 2000). Moreover, our group also reported that A2A receptors operating Ca2+ influx 

via “quiescent” high-capacity / slow-inactivating CaV1 (L-type) channels may contribute 

to overcome tetanic depression during neuronal firing in normal rats (Oliveira et al., 

2004). So, we put the hypothesis that the functional impairment observed for these 

receptors could be related to changes in the effector mechanism.  

 Immunofluorescence staining for Cav1.2L (Figure 21) reveals that these channels 

have a presynaptic localization, still exhibit a more marked staining in nerves than in the 

motor endplate. Preliminary results seem to indicate that there are no differences in 

Cav1.2L immunoreactivity in all groups of animals, so it would be interesting to further 

explore the inherent signalling pathway of A2A receptors.  

 

 

Figure 21 – Confocal immunofluorescence analysis (top and side views) of Cav1.2L channels in rat hemidiaphragm muscle from 

naive, control and EAMG rats. Hemidiaphragm sections were treated with collagenase (0.1%) for 30 min and double labeled with 

Cav1.2L (green) and TMR-α-BTX (red), respectively. Scale bar: 10µm. 
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5. Conclusions and future perspectives 

Adenosine is an extracellular signaling nucleoside that has a dynamic role in the 

regulation of neuromodulatory (Correia-de-Sá et al., 1991; Oliveira et al., 2004) and 

immunosuppressive (Hasko et al., 2008; Koshiba et al., 1999; Lukashev et al., 2003) 

processes, via the activation of excitatory A2A receptors. The study of adenosine-

receptor-based therapies, namely acting on A2A adenosine receptors, urges in order to 

provide new insights into the investigation of treatment strategies.  

In this sense, our study is pioneering as we proposed to study the mechanisms 

associated with A2A receptors and their net contribution in the immune and neuronal 

dysfunction operating in MG. In fact, our results point to an impairment of A2A 

adenosine receptors at both levels: neuronal and immunological.  

Regarding the immune component, we show here that there is a down regulation of 

A2A receptors on subsets of activated CD4+CD25+ and regulatory CD4+CD25+FoxP3+ T 

cells, thus compromising adenosine immunosuppressive effect. Li and co-workers 

(2012) have already reported a reduced A2A receptor expression by CD4+ T cells 

isolated from spleen and lymph nodes of EAMG rats. However, considering that the 

immunological synapse is a dynamic system, where all CD4+ T cells populations 

interact with each other, it is crucial to evaluate these receptors on these populations. 

The observed down regulation in CD4+CD25+ and Treg cells certainly compromises A2A 

receptors ability to stimulate immunosuppressive activity of Treg (Ohta et al., 2012) and 

to inhibit the proliferation of effector and activated T cells (Hasko & Cronstein, 2013). 

Moreover, previous studies have already reported that A2A receptors stimulation is 

responsible for the up-regulation of the key transcription factor controlling T regulatory 

cells, FoxP3 (Zarek et al., 2008). These observations are consistent with our results 

showing that there is a decrease of FoxP3 expression in EAMG rats, since it is 

regulated by A2A receptors. In the light of these results, we also observed that CD73 

expression was compromised in Treg cells of myasthenic rats. This might be due to the 

fact of FoxP3 be a transcription factor for the expression of CD73. Moreover, a 

decrease of the pool of A2A receptors might be a consequence of CD73 conditional 

expression.  

Our study also provides further evidences of immunological imbalance in EAMG 

model, by measuring serum ADA activity. In fact, increased serum ADA activity 

observed in EAMG animals is a proof that cellular immunity is being stimulated (al-

Shammary, 1997). Interestingly, this immunological sign as well as the reduction in the 
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expression levels of CD73 might influence the endogenous levels of adenosine, which 

in turn compromises the function of A2A receptors.  

All together, the results obtained so far allow us to hypothesize that initiation of the 

autoimmune process is triggered by a lymphocyte hyperactivity, which leads to 

increased serum ADA levels, with a consequent increase in its activity. The 

exacerbated activity of this enzyme results in decreased levels of endogenous 

adenosine, thus compromising the immunosuppressive activity of A2A receptors. 

Therefore, A2A mediated effects, as the suppression of CD4+CD25+ lymphocyte 

population and the stimulation of immunosuppressive activity of Tregs are impaired. It is 

important to note that at this stage of the disease, the impairment of A2A receptor 

function is only associated with low levels of ligand in the extracellular environment. 

Consequently, deficits in the A2A receptor activation lead to a dysfunction of Treg cells, 

since these receptors influence the expression of FoxP3 and CD73. At this stage, we 

may speculate that the existent dysfunction in two key steps for the accumulation of 

ADO (ADA and CD73) might be crucial since it will decisively trigger the onset of the 

disease. Together, these events might influence the reduction in the pool of A2A 

receptors in a later stage of the disease. Likewise, the mechanism by which Treg exerts 

its immunosuppressive activity is suppressed. In the context of this hypothesis is 

possible to understand the results obtained by Li and collaborators (2012), reporting 

that a preventive treatment, i.e. intervention at an early stage of the disease with 

CGS21680, was effective in down-modulating MG manifestations. Contrariwise, 

therapeutic treatment fails to ameliorate ongoing EAMG.  

Concerning the neuronal component, despite we observed that the A2A-receptor-

mediated facilitation is compromised in EAMG rats (Almeida, 2012), 

immunofluorescence experiments did not allow a clear view of this phenomenon. 

However, caution must be taken with the use of immunofluorescence confocal 

microscopy as a technique to analyze variation in expression levels of the receptors, 

since it is semi-quantitative. Though, these results by confirming a presynaptic 

localization of A2A receptors, as well as the integrity of CaV1 expression (effector 

mechanism) in EAMG rats, reinforces the hypothesis that a therapeutic intervention on 

A2A receptors might be pivotal in the recovery of muscle weakness observed in MG. In 

short, it is necessary to conduct further studies to understand the mechanisms involved 

on A2A function conditioning, as well as understand how to recover it in myasthenic 

conditions. 
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Figure 22 - Adapted scheme showing the importance of A2A receptors on neuroimmune system: implications for the immunological 

and neuronal synapse. 
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