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Resumo

O problema da mochila, o problema de emparelhamento máximo e o problema de dimen-

sionamento de lotes são exemplos clássicos de modelos de otimização combinatória que

têm sido amplamente estudados na literatura. Nos últimos anos têm sido investigadas

versões mais intrincadas, o que resulta numa melhor aproximação dos problemas do mundo

real e num aperfeiçoamento das técnicas de solução. O objetivo desta tese de doutora-

mento é estender as ferramentas algoŕıtmicas que resolvem problemas combinatórios com

apenas um decisor para jogos, isto é, para problemas combinatórios com vários decisores.

Frequentemente um processo de decisão depende de parâmetros que são controlados por

decisores externos. Por conseguinte, os jogos combinatórios são uma linha de investigação

fundamental, uma vez que refletem a realidade destes problemas.

Focamo-nos na classificação da complexidade computacional e no desenho de algoritmos

para determinar equiĺıbrios de jogos em programação inteira com utilidades quadráticas.

Num jogo em programação inteira, o objetivo de um jogador é formulado usando termi-

nologia de programação matemática. Cada jogador tem o intuito de maximizar a sua

utilidade, uma função que depende das suas variáveis de decisão (estratégias) e das dos

restantes. Iremos concentrar-nos em jogos onde as funções de utilidade de cada jogador

são quadráticas nas suas variáveis de decisão.

De forma a que esta tese seja auto-contida, começamos por fornecer as bases essenciais

da teoria de complexidade computacional, da programação matemática e da teoria dos

jogos. Seguir-se-á a apresentação das nossas contribuições, as quais estão divididas em

duas partes: competição de Stackelberg e jogos em simultâneo.

A primeira parte é sobre competições de Stackelberg (também conhecidas por programação

com dois ńıveis), onde os jogadores jogam de forma sequencial. Estudamos um dos

modelos mais simples de competição de Stackelberg combinatória, o qual é baseado

no problema da mochila. Caracterizamos a complexidade de calcular um equiĺıbrio e

desenhamos um algoritmo novo para atacar um problema de interdição com dois ńıveis, o

problema da mochila com restrições de interdição. Recentemente, a classe de problemas

de interdição tem recebido uma grande atenção por parte da comunidade de investigação.

A segunda parte é sobre jogos em simultâneo, isto é, jogos em que os jogadores selecionam

as suas estratégias ao mesmo tempo. Esta definição dá já uma ideia dos obstáculos que

iremos encontrar na determinação de estratégias racionais para os jogadores, uma vez

que as estratégias dos seus rivais terão de ser previstas antecipadamente. Neste contexto,
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investigamos a estrutura de 3 jogos em particular: o jogo de coordenação da mochila

(baseado no problema da mochila), o jogo das trocas de rins (baseado no problema de

emparelhamento máximo) e o jogo de dimensionamento de lotes (baseado no problema

de dimensionamento de lotes).

Em jeito de conclusão, depois do estudo destes três jogos olhamos para a situação mais

complexo, focando a nossa atenção no caso geral de jogos em simultâneo. Estabelecemos

a relação entre os jogos em simultâneo e competições de Stackelberg, provando que

encontrar uma solução para um jogo em simultâneo é pelo menos tão dif́ıcil como resolver

uma competição de Stackelberg. Por fim, constrúımos um algoritmo para aproximar um

equiĺıbrio para jogos em simultâneo.

Palavras-chave: Equiĺıbrios de Nash; jogos em programação inteira; competições de

Stackelberg; jogos em simultâneo.
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Abstract

The knapsack problem, the maximum matching problem and the lot-sizing problem are

classical examples of combinatorial optimization models that have been broadly studied

in the literature. In recent years, more intricate variants of these problems have been

investigated, resulting in better approximations of real-world problems and in improve-

ments in solution techniques. The goal of this Ph.D. thesis is to extend the algorithmic

tools for solving these (single) decision-maker combinatorial problems to games, that is, to

combinatorial problems with several decision makers. It is frequent for a decision process

to depend on parameters that are controlled by external decision makers. Therefore,

combinatorial games are a crucial line of research since they reflect the reality of these

problems.

We focus in understanding the computational complexity and in designing algorithms

to find equilibria to integer programming games with quadratic utilities. In an integer

programming game, a player’s goal is formulated by using the mathematical programming

framework. Each player aims at maximizing her utility, a function of her and other players’

decision variables (strategies). We will concentrate in games with quadratic utilities on

each player’s decision variables.

In order to make this thesis self-contained, we start by covering the essential background

in computational complexity, mathematical programming and game theory. It is followed

by the presentation of our contributions, which are fleshed out in two parts: Stackelberg

competition and simultaneous games.

The first part concerns Stackelberg competitions (also known as bilevel programming),

where players play sequentially. We study the most simple to model combinatorial

Stackelberg competitions, which are based on the knapsack problem. We characterize

the complexity of computing equilibria and we design a novel algorithm to tackle a bilevel

interdiction problem, the knapsack problem with interdiction constraints, a special class

of problems which have recently received significant attention in the research community.

The second part deals with simultaneous games, i.e., games in which players select their

strategies at the same time. This definition already gives a hint of the obstacles involved

in finding players’ rational strategies, since the opponents strategies have to be predicted.

In this context, we investigate the structure of three particular games: the coordination

knapsack game (based on the knapsack problem), the kidney-exchange game (based on the

maximum matching problem) and the lot-sizing game (based on the lot-sizing problem).

11



To conclude, after investigating these particular games, we move on to the more complex

case: general simultaneous games. We establish the connection of simultaneous games

with Stackelberg competitions, and prove that finding a solution to a simultaneous game

is at least as hard as solving a Stackelberg competition; finally, we devise an algorithm to

approximate an equilibrium for simultaneous games.

Keywords: Nash equilibria; integer programming games; bilevel programming; Stackel-

berg competition; simultaneous games.
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Chapter 1

Introduction

1.1 Context: Mathematical Programming and Game

Theory

This section succinctly provides an overview of mathematical programming and game

theory in order to introduce the problems that will be addressed. Chapter 2 will present

in detail the background and previous work in these fields.

Mathematical programming is the field that studies optimization. The focus is any

mathematical problem that implies maximizing or minimizing a function of many decision

variables, called objective function, possibly subject to a set of constraints defining the

so-called feasible region. It is suitable for modeling decision processes; therefore, it

has been broadly applied in management science and operations research. There are

powerful mathematical programming algorithms for solving linear programming problems,

i.e., problems for which the objective function and constraints are linear. The same

holds for concave quadratic programming problems, where the goal is to maximize a

concave quadratic objective function subject to a set of linear constraints. Recently,

the research community concentrates on mixed integer programming problems, for which

some constraints require part of the decision variables to be integer. This enables modeling

situations in which decision variables take discrete values (e.g. when a company has to

decide how many persons to employ, the company cannot employ a fraction of a person).

The drawback is that whereas for linear programming there are known algorithms which

are computational efficient - i.e., which require resources that are bounded by a polynomial

in the instance size - no such algorithms are known for general integer programming

problems. Solving general integer programming problems has been proven to be at least

as hard as solving any problem in NP, which is a complexity class believed to contain

hard problems. Nevertheless, in the last decade there has been a huge scientific advance

both in this setting and in computational power, resulting in software tools able to tackle

(in practice) large integer programming instances.

Game theory concerns games: situations where there is more than one decision maker

17
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(player), and players’ decisions (strategies) have influence in each others utilities. Game

theory is especially used to analyze economic models. In economic markets, the partici-

pants’ strategies will influence the market outcomes. There are many varieties of games

implying distinct research approaches, we name some. A game may have a finite number

of players or not; players may cooperate or not; there can exist full information about each

player’s utility and set of strategies or not; a game representation can vary: games can

be classified into situations in which each player’s set of strategies is finite and explicitly

given (class of finite games), or situations in which the set of strategies is uncountable

or not given explicitly (for example, in continuous games, each player set of strategies

can be a closed interval of R); players select strategies simultaneously or sequentially.

In this thesis, we concentrate on the case of full information non-cooperative continuous

games with a finite number of players, and in both two round and simultaneous games. In

order to define a game, one must describe the players, their strategies and their utilities,

as well as the game dynamic. A widely accepted solution to a game is the concept of

equilibrium, which is a profile of strategies, one for each player, such that each player has

no incentive to deviate from the equilibrium strategy if the opponents play according to

that equilibrium strategies. There are results concerning sufficient conditions for a game

to possess an equilibrium. Generally, however, the existence proofs are inefficient. In

fact, for a large class of games, it has been proven that the problem of computing one

equilibrium is at least as hard as solving any problem in the complexity class PPAD,

which contains problems believed to be computationally hard.

Note that in game theory each player aims at selecting the most rational strategy; in other

words, a player seeks her optimal decision. Thus, each player has an optimization problem

to solve; this merges the mathematical programming and the game theory frameworks.

Games using mixed integer programming formulations to describe a player’s optimization

problem have been seldom addressed. We call this category integer programming games.

In this context, there are four natural research questions. Do integer programming games

model real-world situations? Are there equilibria for integer programming games? How

to compute equilibria? What is the computational complexity of computing equilibria?

The literature in this context is scarce, focusing on special cases, using situation-specific

structure or using solution concepts different from equilibrium.

1.2 Organization and Contributions

We close this chapter by outlining the thesis organization and research contributions to

answer the questions raised above.
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Chapter 2. The fundamental background material and notation are presented in

Chapter 2, which is divided into three parts. In the first part, Section 2.1, the relevant

complexity classes are defined: polynomial time P, nondeterministic polynomial time

NP, second level of the polynomial hierarchy Σp
2 and Polynomial Parity Arguments on

Directed graphs PPAD. In Section 2.2 important mathematical programming definitions,

well-known techniques to solve relevant optimization problems and available software

tools are presented. Section 2.2.1 complements the mathematical programming intro-

duction through the presentation of pertinent classical integer programming examples:

the maximum matching in a graph, knapsack problem and lot-sizing problem. These

formulations are later used to define a player’s goal in the games at hand. The third part,

Section 2.3, introduces central game theory concepts, establishes the connection with

mathematical programming and formally defines integer programming games, the main

topic of this thesis. That section has two parts. The first part, Section 2.3.1, defines two-

round sequential games, known as Stackelberg competition or bilevel programming (under

pessimistic and optimistic assumptions), Stackelberg equilibria and interdiction problems,

and it also describes the challenges of computing these games’ solutions. It concludes with

literature review, which motivates further research in this field, and thus, our work in this

context. The second part, Section 2.3.2, defines simultaneous games, Nash equilibrium,

and presents known results about existence and characterization of equilibria. It follows

the relevant literature review about simultaneous games, which points out the novelty of

studying integer programming games. We conclude this chapter with the available solvers

for games.

Chapter 3. Chapter 3 presents our contributions on Stackelberg competitions. In

these games, there is a player called the leader that takes first her decision and another

called the follower that can observe the leader’s strategy prior to playing. In Section 3.1,

three natural generalizations of the knapsack problem to two levels are modeled, which

have in common the follower’s optimization program: a knapsack problem. The following

variants are considered: the follower’s knapsack capacity is decided by the leader; the

follower shares the knapsack capacity with the leader; and the items available for the

follower are decided by the leader. In Section 3.2, we prove that: these bilevel knapsack

variants are complete for the second level of the polynomial hierarchy under binary

encondings; two of them become polynomial solvable under unary encondings, whereas

the third becomes NP-complete; the third variant has a polynomial time approximation

scheme, whereas the other two cannot be approximated in polynomial time within any

constant factor, assuming P 6= NP. Additionally, in Section 3.3, for the third variant of

the bilevel knapsack problem (an interdiction problem) a novel algorithm is proposed and

tested in order to show its practical effectiveness. Furthermore, it gives insights about
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generalizing the presented ideas to interdiction problems with real-world applicability.

Chapter 4. Chapter 4 focuses on simultaneous games. Section 4.1 starts by presenting

our contributions for the simplest integer programming game that we could devise: the

coordination knapsack game. In Section 4.2 an application of game theory in the context

of health care is presented: Competitive Two-Player Kidney Exchange Game. This game

has good properties, in the sense that an equilibrium can be computed efficiently and

players would agree on the equilibrium to be played (a game may have multiple equilibria).

Moreover, the work developed expands results concerning matchings in graphs. A classical

game in economics, Cournot competition, is generalized in Section 4.3 in order to include

a lot-sizing problem for each player in the market. The complexity of this game is

investigated, allowing to identify cases in which an equilibrium for the game can be

computed efficiently. Finally, Section 4.4 tackles the general case of simultaneous integer

programming games. We start by proving that deciding about the existence of an

equilibrium to a simultaneous integer programming game (even with only two players

and linear utilities) is at least as hard as solving bilevel knapsack variants of Section 3.1,

enabling us to relate sequential and simultaneous games. We derive sufficient conditions

to guarantee equilibria. The section finishes proposing an algorithm to approximate

equilibria in finite time, as well as the associated computational results. To the best

of our knowledge, there are no previous algorithms in the literature capable of treating

games with such a general form and therefore, we hope our contribution to be a stepping

stone to future results in this context.

Chapter 5. The thesis concludes in Chapter 5, summarizing our contributions and

presenting future research directions.



Chapter 2

Background

In this chapter, we provide the essential background that supports our contributions. We

start defining the complexity classes P, NP, Σp
2 and PPAD that will be employed later

as a way of classifying the (in)tractability of the solution computation for the games

under our study. The games in this thesis are represented by mathematical programming

formulations, which are introduced next, along with duality theory (which is frequently

at the base of algorithmic approaches in this context, including the algorithm proposed

in Chapter 3). Computational complexity, most common used methods and solvers for

mathematical programming problems are also presented in this chapter, which terminates

with a game theory background, its connection to mathematical programming, and a

literature review.

2.1 Complexity: P, NP, Σp2 and PPAD classes

The first developments in complexity theory are traced back to 1965 [71]. It was the

frequency of intractable-looking problems faced by algorithm designers, that led to the

development of complexity theory in computer science.

In this section, we introduce the basic computational complexity concepts required for the

understanding of the work in this thesis. We refer the reader to Garey and Johnson [56],

Papadimitriou [101] and Stockmeyer [121] for a comprehensive and relevant background

in computational complexity.

A decision problem A consists of a set DA of instances and a subset YA ⊆ DA of YES

instances; the problem is to determine whether a given instance is a YES instance or

not. A deterministic algorithm solves problem A, if it halts for all input instances in DA

and returns the answer YES if and only if the instance is in YA, otherwise, returns the

answer NO. If the number of steps executed by the deterministic algorithm is bounded

by a polynomial in the input size, then it is a polynomial time deterministic algorithm;

we say that such algorithm is efficient. The polynomial time complexity class, denoted by

P, consists of all decision problems for which a polynomial time deterministic algorithm

21
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exists. Cobham [24] and Edmonds [47] were the first to identify the relevance of studying

the concept of efficient solvability, that is, to recognize the problems belonging to P.

A nondeterministic algorithm solves a decision problem A if the following two properties

hold for all instances I ∈ DA:

1. If I ∈ YA, then there exists a certificate S that, when guessed for input I, will lead

the algorithm to respond YES for I and S;

2. If I /∈ YA, then there exists no certificate S that, when guessed for input I, will

lead the algorithm to respond YES for I and S.

A nondeterministic algorithm that solves a decision problem A is said to operate in

polynomial time if there exists a polynomial p such that, for every instance I ∈ YA,

there is some guess S that checks whether the response is YES for I and S within time

p(|I|) (where |I| is the size of I). The nondeterministic polynomial time complexity class,

denoted by NP, consists of all decision problems that can be solved by polynomial time

nondeterministic algorithms. The class NP contains the problems in P and it is believed

to strictly contain P, i.e., that there are problems which cannot be solved efficiently. For

some problems in NP for which it is not known an efficient algorithm, there are pseudo-

polynomial time algorithms. An algorithm that solves problem A is called a pseudo-

polynomial time algorithm for A if its time complexity is bounded above by a polynomial

function of two variables: input size and magnitude of the largest number in the input. For

sake of simplicity, whenever it is said polynomial time, we mean deterministic polynomial

time.

A polynomial transformation (also called a reduction) from a decision problem A1 to a

decision problem A2 is a function f : DA1 → DA2 that can be executed by a polynomial

time deterministic algorithm such that for all instance I ∈ DA1 , I is a YES instance for

A1 (I ∈ YA1) if and only if f(I) is also a YES instance for A2 (f(I) ∈ YA2).

A decision problem A is complete for a complexity class C if A ∈ C and there is a

polynomial transformation from A′ to A for all A′ ∈ C. Therefore, complete problems

are the most difficult problems in their class. It was the difficulty at finding efficient

algorithms to solve some NP problems that was at the base of NP-completeness theory,

which is attributed to Cook [27]. Even conceptually simple problems can be NP-complete.
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Such an NP-complete example is the famous Partition problem [56].

Problem: Partition

Instance: A sequence a1, a2, . . . , an of positive integers.

Question: Does there exist a set S ⊆ {1, 2 . . . , n} such that

∑

i∈S

ai =
1

2

n∑

i=1

ai?

(PP)

The study of complexity classes that lie beyond NP was motivated by natural problems

for which their precise classification in terms of the known complexity classes failed. The

polynomial hierarchy was introduced by Meyer and Stockmeyer [91] in an attempt to

properly classify decision problems that appear to be harder than NP-complete. In this

thesis we focus on the second level of the polynomial hierarchy, denoted by Σp
2, built on

top (lower level) of NP-complete problems. The Σp
2 class consists in all decision problems

that are solvable by polynomial time nondeterministic algorithms with access to an NP

oracle. An NP oracle outputs the correct answer for problems in NP and each call to

the oracle is counted as one computational step. Equivalently, Σp
2 contains all decision

problems in the form ∃x∀y P (x, y), that is, as a logical formula starting with an existential

quantifier, followed by a universal quantifier, followed by a Boolean predicate P (x, y) that

can be evaluated in deterministic polynomial time. Lately, more and more problems have

been proven to be Σp
2-complete; see Johannes [70]. An example of a Σp

2-complete problem

is the Subset-Sum-Interval decision problem (see Eggermont and Woeginger [48]).

Problem: Subset-Sum-Interval

Instance: A sequence q1, q2, . . . , qk of positive integers; two positive

integers R and r with r ≤ k.

Question: Does there exist an integer S with R ≤ S < R + 2r such

that none of the subsets I ⊆ {1, . . . , k} satisfies
∑

i∈I

qi = S?

(SSI)

In this thesis, for some of our problems there is a proof of existence of a solution, but the

existence proof does not provide an efficient algorithm. These are intractable problems of

very different kind than decision problems and, thus, not suitable to be computationally

classified through the previously defined classes. This is the case for the End-Of-The-
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Line problem.

Problem: End-Of-The-Line

Instance: A directed graph G; a specified unbalanced vertex (i.e., the number

of incoming arcs differs from the number of outgoing arcs).

Question: Which is another unbalanced vertex?

(ETL)

For this problem, a solution is guaranteed to exist, by a parity argument. However,

note that simply investigating the remaining vertices in order to find the unbalanced one

cannot be guaranteed to be done in polynomial time ,since there is no specification on

how G is given in the input. To see this, consider the case that G has 2n vertices, one for

every binary string of length n, and the vertices adjacency are given through two boolean

circuits of polynomial size in n, call them predecessor and successor, such that, given a

vertex, the predecessor returns a list of the incoming edges and the successor returns a list

of the outgoing edges. In order to address the issue of giving a computational complexity

classification for this different type of problems, the class Polynomial Parity Arguments

on Directed graphs, denoted by PPAD, was introduced by Papadimitriou [102]. PPAD is a

class of problems that can be reduced to the End-Of-The-Line. Therefore, a problem is

PPAD-complete if End-Of-The-Line can be reduced to it. The PPAD class is believed

to contain hard computational problems (such as fixed point problems); in particular, it

is conjectured that P 6= PPAD.

For some hard problems, it is possible to compute an “arbitrarily close solution” within

polynomial time. In this thesis, we essentially study optimization problems; when these

problems are hard, finding an approximate optimal solution efficiently is relevant. We

conclude this section by defining approximation scheme for an optimization problem A to

be an algorithm that takes as input both an instance I ∈ DA and an accuracy requirement

ε > 0, and that then outputs a candidate solution with value Approx(I) such that

OPT (I)

Approx(I)
≤ 1 + ε for maximization problems

Approx(I)

OPT (I)
≤ 1 + ε for minimization problems

where OPT (I) is the optimal value for instance I. An algorithm is a polynomial time

approximation scheme if, for each fixed ε > 0, it returns the approximate solution in

polynomial time.
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2.2 Mathematical Programming

Definitions and Basic Results. In mathematical programming, a problem is defined

by a vector of decision variables, a function of that vector to be maximized or minimized,

called objective function, and a set of constraints defining the feasible region for the

decision variables. We denote the set of feasible vectors by X. The aim in a maximization

problem (respectively, minimization) is to find an optimal solution, i.e., a feasible vector

for the decision variables such that the corresponding objective function is maximized

(respectively, minimized). A problem is feasible if the set of feasible vectors for the decision

variables is not empty, otherwise, it is infeasible; a maximization problem (respectively,

minimization) is bounded if the objective function cannot assume arbitrarily large positive

(respectively, negative) values at feasible vectors, otherwise, it is said to be unbounded.

A linear programming problem (LP) can be expressed as

maximize
x

(max
x

) cᵀx (2.2.1a)

subject to (s.t.) Ax ≤ b (2.2.1b)

xi ≥ 0 for i = 1, . . . , n, (2.2.1c)

where x is an n dimensional column vector of decision variables (decision vector), c ∈ Rn,

b ∈ Rm, A is an m-by-n real matrix and (·)ᵀ is the transpose operator. The objective

function is defined in (2.2.1a). Constraints (2.2.1b) and (2.2.1c) define a polyhedron in

Rn, the feasible region X.

A set of points P is convex if for any set of points z1, z2, . . . , zk ∈ P and λ1, λ2, . . . , λk ∈ R+

with
∑k

i=1 λi = 1, the convex combination
∑k

i=1 λizi is in P (it is called affine combination

if λi ∈ R). The dimension of a convex set is n if and only if it has n + 1, but no more,

affinely independent points (i.e., none of these points is an affine combination of the

others). The polyhedron X defining the feasible region of an LP is a convex set. A face

of X is a set {x ∈ X : αᵀx = β} for some α ∈ Rn, β ∈ R so that the inequality αᵀx ≤ β

holds for all x ∈ X. A vertex of X is the unique element of a zero dimensional face of

X. It is a well-known result that if an LP has an optimum, then there is a vertex of X

that is an optimal solution. A facet of a n dimensional polyhedron is a face of dimension

n− 1. See Nemhauser and Wolsey [95] for details in polyhedral theory.

Duality Theory (see Dantzig [34]) plays an important role in the context of linear pro-

gramming. Introduced by von Neumann [129], the dual problem of the LP (2.2.1) is
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minimize
x

(min
x

) bᵀy (2.2.2a)

s.t Aᵀy ≥ c (2.2.2b)

yi ≥ 0 for i = 1, . . . ,m. (2.2.2c)

In this context, LP (2.2.1) is called the primal problem. In what follows we summarize

the primal-dual relationships.

Property 2.2.1 (Weak duality). If x is a feasible solution for the primal problem (2.2.1)

and y is a feasible solution for the dual problem (2.2.2), then cᵀx ≤ bᵀy.

Property 2.2.2 (Strong duality). If x∗ is an optimal solution for the primal prob-

lem (2.2.1) and y∗ is an optimal solution for the dual problem (2.2.2), then cᵀx∗ = bᵀy∗.

Property 2.2.3 (Complementary slackness property). If x is a feasible solution for the

primal problem (2.2.1) and y is a feasible solution for the dual problem (2.2.2), then

x and y are optimal for their respective problems if and only if xᵀ (Aᵀy − c) = 0n and

yᵀ (Ax− b) = 0m, where 0k is k-dimensional column vector of zeros.

Gale et al. [55] formulated the Duality Theorem.

Theorem 2.2.4 (Duality Theorem). The following are the only possible relationships

between the primal problem (2.2.1) and its dual problem (2.2.2).

1. If one problem has feasible solutions and a bounded objective function (and so has

an optimal solution), then so does the other problem, so both the weak and strong

duality properties are applicable.

2. If one problem has feasible solutions and an unbounded objective function (and so

no optimal solution), then the other problem has no feasible solutions.

3. If one problem has no feasible solutions, then the other problem has either no feasible

solutions or unbounded objective function.

A mixed integer programming problem (MIP) has the following additional constraints with

respect to an LP (problem (2.2.1)):

xi ∈ Z, for i = 1, . . . , B, (2.2.3)

where B < n. If B = n it is an integer programming problem (IP). The convex hull of a

set P , denoted by conv(P), is the set of all convex combinations of points in P :

conv(P) =

{
k∑

i=1

ziλi :
k∑

i=1

λi = 1 and zi ∈ P , λi ≥ 0 for all i

}
.
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The convex hull of the feasible region for an MIP is a polyhedron (i.e., it can be described

by a system of inequalities). It is easy to see that if an MIP has an optimum, then there is

a vertex of the convex hull of the feasible region for this MIP that is an optimal solution.

A quadratic programming problem (QP) has the following term added to the objective

function of an LP (problem (2.2.1)):

− 1

2
xᵀQx, (2.2.4)

where Q is an n-by-n real symmetric matrix. If integer requirements are added to the

constraints of an QP, we call the problem a mixed integer quadratic programming problem

(MIQP).

Solving Optimization Problems. If the objective function of a maximization (min-

imization) problem over a polyhedron X is concave (convex), typically, it means that it

can be solved efficiently, while the reverse, non-concave (non-convex) objective function,

usually, leads to intractability. LP’s were proven to be solvable efficiently through the

ellipsoid algorithm by Khachiyan [75]. However, a remarkably fast procedure is more

used in practice: the simplex method, by Dantzig [32] (which has worst-case exponential

time). In case the objective function of a (maximization) QP is a concave (which is

equivalent to the condition

xᵀQx ≥ 0, for all x,

i.e., Q is a positive semidefinite matrix), then it can be solved in polynomial time, e.g.,

through the ellipsoid method.

The decision version of an optimization problem is to ask whether there is a feasible value

for x such that the corresponding objective function is better than a predefined value. In

order to simplify the text and whenever the context makes it obvious, we will simply say

that an optimization problem is or not in NP according to its decision version.

If an QP is not concave (i.e., if matrix Q is not positive semedefinite), the problem is

NP-complete. The difficulty comes from the fact that QP can have multiple local optima

(x is a local optimum if there is a neighborhood Viz(x) ⊆ X such that for any y ∈ Viz(x),

cᵀx− 1

2
xᵀQx ≥ cᵀy − 1

2
yᵀQy

holds). IP is NP-complete, which implies that MIP and MIQP are NP-hard, since IP

is a special case of these problems. In practice, there are powerful software tools that

implement branch-and-bound, cutting planes and branch-and-cut techniques to tackle

these problems with the integer requirements.
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• The branch-and-bound scheme, proposed by Land and Doing [45], starts by solving

the continuous relaxation of the problem (i.e., solving the problem without inte-

grality requirements); given an optimal solution x∗ of the continuous relaxation

with a fractional value x∗i , for some 1 ≤ i ≤ B, the problem is divided into two

subproblems: one with constraint xi ≤ bx∗i c and another with xi ≥ bx∗i c + 1; each

subproblem is a node of the branch-and-bound tree. The process is repeated for

each node, until the continuous relaxation of the subproblem is infeasible, integer

feasible or the upper bound value of the subproblem is worse than the current best

found feasible solution (under these three cases, the node is fathomed).

• The cutting plane approach, presented by Gomory [60], also starts solving the con-

tinuous relaxation. Given any solution x∗ of the continuous relaxation, a separation

problem is solved, i.e., a problem whose aim is to find a valid linear inequality (cut)

that cuts off x∗ (an inequality which holds for any x ∈ conv(X) but is not satisfied

by x∗). The continuous relaxation with the addition of that inequality is solved, and

the process repeats until a solution satisfying the integer requirement is found, or

the problem is proven to be infeasible. See Cornuéjols [28] for a unified description

of different groups of cuts.

• Branch-and-cut combines the two methods just described in order to integrate their

advantages in a process which has been proven to be very effective; see Padberg and

Rinaldi [100].

We refer the interested reader to Jünger et al. [72] for a survey and state-of-the-art of

methods to solve MIPs.

Mathematical Programming Solvers. We restrict our attention to solvers for linear

and concave (maximization) problems since, in this thesis, the optimizations at hand

belong to one of these two classes.

As mentioned in the previous section, the difficulties of solving IPs, MIPs and MIQPs

come from the consideration of integer requirements in the decision variables. However,

recent software tools, both commercial and non-commercial, can in practice efficiently and

reliably tackle some of these optimization problems. In this context, the fastest solvers

are the open-source SCIP [116] (with SoPlex) and Cbc [20], and the commercial software

Xpress [135], CPLEX [67] and Gurobi [63]. In order to analyze these solvers’ evolution and

compare their performance, the research community has created archives of benchmark

instances. Since their foundation (SCIP in 2002; Cbc in 2005; Xpress in 1983; CPLEX

in 1988; Gurobi in 2009) up to their current versions (SCIP 3.2.0 (with SoPlex 2.2.0);

Cbc 2.0.4; Xpress 7.9.0; CPLEX 12.6.2; Gurobi 6.0.0) we can observe that there has

been a significant advance in terms of improving computational times and including new
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Figure 2.2.1: Matching in a Graph.

features (like solving MIP’s and MIQP). The commercial solvers are in general faster than

the referred open-source ones. On the other hand, the open-source solvers allow a better

understanding of the underlying methods, as well as their modification to implement and

test new algorithmic ideas.

The success of most of these solvers is not only due to the increase in computational

power, but rather to improvements in the implementation of a branch-and-cut structure

merged with sophisticated preprocessing and heuristic techniques.

2.2.1 Classical Examples

In this section, we will present three classical problems extensively studied in the liter-

ature of combinatorial optimization. We first present maximum matching problem in a

graph, which is an IP that can be solved in polynomial time (Section 2.2.1.1). Then, in

Section 2.2.1.2, we describe a model of the knapsack problem, which is also an IP, but is

known to be NP-complete. Section 2.2.1.3 concludes with an MIP model for the lot-sizing

problem, which is NP-complete but under some conditions can be solved in polynomial

time.

2.2.1.1 Maximum Matching in a Graph

A graph G = (V,E) is described by a set of vertices V and a set E of unordered pairs of

vertices, called the edges. A subset M of E is called a matching of a graph G if no two

edges in M share the same vertex. See Figure 2.2.1 for an illustration of a graph and a

possible matching.

The maximum matching in a graph (MMG) is the problem of finding a matching of

maximum carnality. For instance, the matching M in Figure 2.2.1 is not maximum; the

set M together with edge (5, 6) is a maximum matching.

Let us define some concepts of graph theory in matching and review some results. For
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a matching M in graph G = (V,E), an M -alternating path is a path whose edges are

alternately in E \M and M . An M -augmenting path is an M -alternating path whose

origin and destination are M -unmatched vertices. Next, we present a simple property

often used in this context.

Property 2.2.5. Let M be a maximum matching of a graph G = (V,E). Consider an

arbitrary R ⊂ M and the subgraph H of G induced by removing the R-matched vertices.

The union of any maximum matching of H with R is a maximum matching of G.

Next, we recall Berge’s theorem [11].

Theorem 2.2.6 (Berge). A matching M of a graph G is maximum if and only if it has

no augmenting path.

Berge’s theorem is constructive, leading to an algorithm to find a maximum matching:

start with an arbitrary matching M of G; while there is an M -augmenting path p, switch

the edges along the path p from in to out of M and vice versa: update M to M ⊕ p,

where ⊕ denotes the symmetric difference of two sets (i.e., the set of elements which are

in either of the sets but not in their intersection). The updated M is a matching with

one more edge, where the previously matched vertices are maintained matched.

Edmonds [47] proved that the problem of computing a maximum matching can be solved

in polynomial time for any graph. Edmonds built a polynomial time algorithm to find an

augmenting path for a matching. This algorithm together with Berge’s theorem leads to

a polynomial time iterative method: successively apply augmenting paths in a matching

until there is none and, thus a maximum matching was found.

See Chapter 5 of [13] for details about matching on graphs.

2.2.1.2 The Knapsack Problem

The knapsack problem is one of the most fundamental problems in combinatorial op-

timization. It has been studied extensively, as certified for example by the books by

Martello and Toth [87] and by Kellerer, Pferschy and Pisinger [74].

Consider a set of n items numbered from 1 to n. For each item i there is an associated

profit pi > 0 and weight wi > 0. The knapsack problem (KP) consists in finding which

items must be packed in a knapsack such that its capacity C is not exceeded and the
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profit is maximized. KP can be written as the following IP:

max
x

n∑

i=1

pixi (2.2.5a)

s. t.
n∑

i=1

wixi ≤ C, (2.2.5b)

xi ∈ {0, 1}, for i = 1, . . . , n, (2.2.5c)

where xi is the decision variable associated with packing item i (xi = 1) or not (xi =

0). The objective (2.2.5a) is to maximize the total profit for the packed items. Con-

straint (2.2.5b) ensures that the knapsack capacity is not exceeded and constraints (2.2.5c)

guarantee that the decision variables are binary. It is assumed that pi, wi and C are

positive integers.

Let us recall some standard concepts and results in this context. Assume that the items

are ordered by non-increasing profit-to-weight ratio, i.e.,

p1

w1

≥ p2

w2

≥ . . . ≥ pn
wn
. (2.2.6)

The item c defined by

c = min{j :

j∑

i=1

wi > C},

is called the critical item of the knapsack instance.

A famous property established by Dantzig [33] can be used to solve the continuous

relaxation of KP.

Theorem 2.2.7 (Dantzig [33]). Suppose that the items are ordered as in (2.2.6). An

optimal solution x∗ of the continuous relaxation of problem (2.2.5) is given by

x∗i = 1 for i = 1, . . . , c− 1

x∗i = 0 for i = c+ 1, . . . , n

x∗c =

(
C −

c−1∑

i=1

wi

)
/wc.

The continuous relaxation of KP immediately provides an upper bound.

Corollary 2.2.8. A trivial upper bound to KP (2.2.5) is given by

U =
c−1∑

i=1

pi + x∗cpc.

Although solving the continuous relaxation of KP can be done in polynomial time, the

same is unlikely to hold for KP itself since it is an NP-complete problem (see [56]).
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2.2.1.3 The Lot-Sizing Problem

Production planning is a classical problem in operations research, given its practical

applications and the related challenging models in mixed integer programming. In this

section, we focus on the simplest case, with only one machine, and planning the production

of only one item. The lot-sizing problem (LSP) can be described as follows. There is a

finite planning horizon of T > 0 periods. For each period t = 1, . . . , T , the demand

is Dt ≥ 0, the unit production cost (also known as variable cost) is Ct ≥ 0, the unit

inventory cost is Ht ≥ 0, the fixed set-up cost is Ft ≥ 0 and the production capacity is

Mt. The goal is to find a production plan such that the demand of each period is satisfied

and the total cost is minimized. Thus, we can model the problem as the following MIP:

min
x,h,y

T∑

t=1

Ctxt +
T∑

t=1

Htht +
T∑

t=1

Ftyt (2.2.7a)

s. t. xt + ht−1 = Dt + ht for t = 1, . . . , T (2.2.7b)

0 ≤ xt ≤Mtyt for t = 1, . . . , T (2.2.7c)

h0 = hT = 0 (2.2.7d)

ht, xt ≥ 0 for t = 1, . . . , T (2.2.7e)

yt ∈ {0, 1} for t = 1, . . . , T (2.2.7f)

where, for each period t = 1, . . . , T , xt is the production quantity, ht is the quantity

in inventory in the end of that period and yt indicates if there was production (yt =

1) or not (yt = 0). The objective (2.2.7a) is to minimize the total production cost.

Constraints (2.2.7b) model the conservation of product. Constraints (2.2.7c) ensure that

the quantities produced are non-negative, satisfy the production limit, and assure that

whenever there is production (xt > 0), the binary variable yt is set to 1, implying the

payment of the set-up cost. Constraint (2.2.7d) fixes the initial and final inventory

quantities to be 0, which is a simplification that does not reduce generality. Moreover,

through equation (2.2.7b), the objective function could be alternatively written without

the inventory costs; we assume such simplification from now on.

In the uncapacitated lot-sizing problem (ULSP), for each period t the production ca-

pacity Mt does not limit production, and the problem can be solved in polynomial time

through dynamic programming, as presented next. A well-known property that reveals

the structure of the ULSP is the following.

Proposition 2.2.9. There exists an optimal solution to ULSP in which ht−1xt = 0 for

all t.

This proposition allows to describe the optimal solution to ULSP as follows.
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Proposition 2.2.10. There exists an optimal solution to ULSP characterized by

i. a subset of periods 1 ≤ t1 < . . . tr ≤ T in which production takes place; the amount

produced in tj is Dtj + . . .+Dtj+1−1 for j = 1, . . . , r with tr+1 = T + 1;

ii. a subset of periods R ⊆ {1, . . . , T}\{t1, . . . , tr}; there is a set-up in periods {t1, . . . , tr}∪
R.

Proposition 2.2.10 shows that an optimal solution can be decomposed into a sequence of

intervals, [t1, t2 − 1], [t2, t3 − 1], ..., [tr, T ], plus some additional set-ups without produc-

tion (periods in R). Let G(t) be the minimum cost of solving ULSP over the first t periods,

that is, satisfying the demands D1, . . ., Dt, and ignoring the demands after period t, and

let φ(k, t) be the minimum cost of solving the problem over the first t periods subject to

the additional condition that the last set-up and production period is k ≤ t. From the

definition, it follows that

G(t) = min
k:k≤t

φ(k, t). (2.2.8)

Using the optimal solution description by Proposition 2.2.10 it is easy to conclude that

the value of φ(k, t) is equal to the minimum cost of solving the problem over the first k−1

periods plus the costs associated with producing in period k to satisfy the demand up to

period t. Therefore,

φ(k, t) = G(k − 1) + Fk + Ck

t∑

j=k

Dt. (2.2.9)

Now we have the tools to describe the dynamic programming procedure. Start with

G(0) = 0 and calculate G(1), G(2), ..., terminating with the optimal value, G(T ) through

the recursion

G(t) = min
k:k≤t

[
G(k − 1) + Fk + Ck

t∑

j=k

Dt

]
. (2.2.10)

In order to recover the optimal solution, some additional information must be kept. These

calculations can be done polynomially, in O(T 2) computing time. In fact, the computation

can be further improved in order to run in O(T log T ).

When the production capacities are constant over time, LSP remains polynomially solv-

able. However, if capacities are time-varying the problem becomes NP-complete. The

interested reader is referred to Pochet and Wolsey [106] for a complete treatment of

production planning problems.
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2.3 Game Theory

Basic Definitions. Game theory (Fudenberg and Tirole [53], Owen [99]) is a general-

ization of decision theory where players are concerned about finding their “best” strategies

subject to the fact that each controls some, but not all, actions that can take place. It can

be applied in a wide range of fields such as economics, political science, operations research

and evolutionary biology; in short, whenever multiple agents interact. In a game, each

player is a decision-maker and her utility is influenced by the other participants’ decisions.

A game is described by a set of players M , each player p ∈ M having a (nonempty) set

of feasible strategies Xp and a real-valued utility function Πp over all combinations of the

players’ feasible strategies, i.e., the domain is X =
∏

k∈M Xk. We call each xp ∈ Xp and

x ∈ X a player p pure strategy and a pure profile of strategies, respectively. In this thesis,

it is assumed that the games are non-cooperative (i.e., players have no compassion for the

opponents), players are rational and there is complete information, i.e., players have full

information about each other utilities and strategies.

In a finite game, the set of strategies for each player p is finite and explicitly enumerated,

that is, Xp = {1, 2, . . . , np}. Usually, it is represented in normal-form (or strategic-form),

this is, through a multidimensional matrix with an entry for each pure profile of strategies

x ∈ X, where that entry is an m dimensional vector of the players’ utilities associated

with x. The following example serves to illustrate the concepts just described.

Example 2.3.1. In the well-known “rock-scissors-paper” game there are two players,

M = {1, 2}. The set of feasible strategies for each player p ∈M is Xp = {rock, scissors, paper}.
The players’ utilities for each possible game outcome are given in the bimatrix of Table 2.1.

Player 1 is the row player and player 2 is the column player; for each combination of the

players’ strategies there is an entry in the bimatrix which is a vector of their utilities:

the first value is player 1 utility and the second value is player 2 utility. When the pure

strategy “rock” is played against “scissor”, the player selecting “rock” receives a utility of

1 paid by the opponent (who gets -1); when the pure strategy “scissors” is played against

“paper”, the player selecting “scissor” receives a utility of 1 paid by the opponent (who gets

-1); when the pure strategy “paper” is played against “rock”, the player selecting “rock”

receives a utility of 1 paid by the opponent (who gets -1).

In continuous games, broader sets of strategies with respect to finite games are considered:

each player p strategy set Xp is a nonempty compact metric space and the utility Πp is

continuous1. In particular, in continuous games, Xp can be a set with an exponential (in

1All finite games are continuous games: a finite set is a compact metric space under the discrete metric

and any function whose domain is endowed with the discrete metric is automatically continuous.
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Player 2

rock scissors paper

Player 1

rock (0,0) (1,-1) (-1,1)

scissors (-1,1) (0,0) (1,-1)

paper (1,-1) (-1,1) (0,0)

Table 2.1: Rock-scissors-paper game

the size of the representation of the game) or uncountable number of feasible strategies.

Next, we give an example of a continuous game that is not finite.

Example 2.3.2. There are two firms (the players), M = {A,B}, producing a homoge-

neous good and competing in the same market. Firm A and firm B decide the quantities

to produce, xA and xB, respectively. There is an associated unit production cost Cp > 0

and production capacity Wp, for each firm p ∈ M . The unit price function P (·) depends

on the quantity of good that is put in the market; it is linear and decreasing, therefore

P (xA +xB) = a− b(xA +xB) with a, b > 0 and parameter a is greater than 2CA and 2CB.

Thus, the utility of firm p ∈M is

Πp(xA, xB) =
(
a− b(xA + xB)

)
xp − Cpxp

and the feasible set of strategies is Xp = {xp : 0 ≤ xp ≤ Wp} (that is, the quantity xp

produced by firm p must be non negative and cannot exceed the production capacity).

In order to find “rational” strategies, the following definitions are commonly used. Let

the operator (·)−p for some p ∈ M denote (·) for all players except player p. A strategy

x̃p ∈ Xp is dominated if there is x̂p ∈ Xp such that for all x−p ∈ X−p

Πp(x̃p, x−p) ≤ Πp(x̂p, x−p). (2.3.1)

A strategy x̃p ∈ Xp is conditionally dominated given a profile of set of strategies R−p ⊆
X−p for the remaining players, if there is x̂p ∈ Xp satisfying

Πp(x̃p, x−p) < Πp(x̂p, x−p) ∀x−p ∈ R−p. (2.3.2)

A profile of strategies is said to be Pareto efficient if it is not dominated [114].

Up to this point, only pure strategies have been considered. However, there are games

for which pure strategies seem insufficient in providing a “rational strategy”. The next

example demonstrates this by showing that each pure profile of strategies is unstable.

Example (Continuation of Example 2.3.1). In this game, both players decide simulta-

neously a strategy. The question is: which strategy should each player select such that
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her utility is maximized? The maximum gain that player 1 can guarantee to herself

through a pure strategy is -1 and the minimum loss that player 2 can guarantee to herself

through a pure strategy is 1. In other words, assume that player 1 and player 2 are

pessimistic. Then, player 1 determines her max-min strategy: for each of player 1’s

strategies, determine her minimum gain and select player 1’s strategy that maximizes her

minimum gain (in this game, the three strategies lead to a minimum of -1 and thus, the

maximum gain that can be guaranteed is -1). Analogously, player 2 determines her min-

max strategy: for each of player 2’s strategies, determine her maximum loss and select

player 2’s strategy that minimizes her maximum loss. Player 1 max-min strategy leads to a

gain of -1 while player 2 min-max strategy leads to a loss of 1. Since these utility values do

not coincide (i.e., the gain of player 1’s max-min strategy is not the loss of player 2’s min-

max strategy), we conclude that none of the 6 pure profiles of strategies (game outcomes)

leads to a stable situation: each player has incentive to unilaterally deviate. However, if

we allow the use of more complex strategies it is possible to achieve an equilibrium, that

is, a strategy for each player such that both are simultaneously maximizing their utilities.

Motivated by Example 2.3.1, we introduce basic concepts of measure theory to formalize

the use of a probability distribution among a set of strategies. Let ∆p denote the space

of Borel probability measures (see Fremlin [52]) over Xp and ∆ =
∏

p∈M ∆p. Similarly

to pure strategy and profile definitions, σp ∈ ∆p and σ ∈ ∆ are called player p mixed

strategy and mixed profile of strategies, respectively. In a strict mixed strategy no pure

strategy is played with probability 1. For the sake of simplicity, whenever the context

makes it clear, we use the term strategy to refer to a pure one. We make the standard von

Neumann-Morgenstern expected utility assumption [130] that each player’s utility under a

profile of mixed strategies is the expected utility when all players choose their strategies

according to their respective probability distributions in an independent way. Therefore,

for σ ∈ ∆, each player p expected utility is

Πp(σ) =

∫

Xp

Πp(x)dσ. (2.3.3)

A player p best reaction (or best response) to a (fixed) strategy σ−p ∈ ∆−p of the opponents

is a solution to

max
xp∈Xp

Πp(xp, σ−p). (2.3.4)

Example (Continuation of Example 2.3.1). If both players decide to assign a probability

of 1
3

for each of their three strategies, applying the probability theory definition of expected

value, player 1 and player 2 could both guarantee an expected utility of 0 and none could

unilaterally improve it by deviating to a different strategy.
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Connecting Mathematical Programming and Game Theory. Until the famous

book by von Neumann and Morgenstern in 1944 [130], there were almost no papers about

game theory, except for the contributions of Borel in the early 1920’s [14–16] and von

Neumann in 1928 [127] and 1937 [128]. It was in the fall of 1947 that von Neumann

connected linear programming with games [34].

The observation of the players’ best strategies presented in the Example 2.3.1 is in fact

an application of von Neumann’s min-max Theorem for two-player zero-sum games, i.e.,

games where the sum of the players’ utilities for each profile of strategies is zero

∑

p∈M

Πp(x) = 0 ∀x ∈ X.

Theorem 2.3.3 (von Neumann’s min-max Theorem). Consider a two-player finite game

with M = {1, 2}, X1 = {1, 2, . . . , n1} and X2 = {1, 2, . . . , n2}. Let the game be a zero-

sum game, i.e, Π1(i, j) = −Π2(i, j). Then, there are probability distributions q1 and q2

(i.e.,
∑n1

i=1 q
1
i = 1,

∑n2

j=1 q
2
j = 1, q1

i ≥ 0, q2
j ≥ 0), satisfying

max
q1

min
q2|q1

n1∑

i=1

n2∑

j=1

Π1(i, j)q1
i q

2
j = min

q2
max
q1|q2

n1∑

i=1

n2∑

j=1

Π1(i, j)q1
i q

2
j (2.3.5a)

⇔max
q1

min
j

n1∑

i=1

Π1(i, j)q1
i = min

q2
max
i

n2∑

j=1

Π1(i, j)q2
j (2.3.5b)

where q1|q2 is to be read q1 given q2.

Theorem 2.3.3 allows to find the equilibria strategies for two-player zero-sum finite games

through linear programming. The right hand side of equation (2.3.5b) is equivalent to

solving

min
q2,v

v (2.3.6a)

s. t. Π1(1, 1)q2
1 +Π1(1, 2)q2

2 + . . . +Π1(1, n2)q2
n2
≤v (2.3.6b)

Π1(2, 1)q2
1 +Π1(2, 2)q2

2 + . . . +Π1(2, n2)q2
n2
≤v (2.3.6c)

... (2.3.6d)

Π1(n1, 1)q2
1+Π1(n1, 2)q2

2+ . . . +Π1(n1, n2)q2
n2
≤v (2.3.6e)

q2
1 +q2

2 + . . . +q2
n2

=1 (2.3.6f)

q2
1 ≥ 0, q2

2 ≥ 0, . . . , q2
n2
≥ 0 (2.3.6g)

and the associated dual optimal solution gives the q1 of the min-max Theorem 2.3.3 (recall

the duality results of Section 2.2).
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This was the first relationship between linear programming and game theory pointed

out. However, for non two-players zero-sum finite games, von Neumann theorem does not

necessarily hold, and alternative ways of computing “rational” strategies are required.

Integer Programming Games. Next, we define the particular representation of Xp

characterizing integer programming games. Based on the definition presented by Köppe

et al. [77], we define an integer programming game (IPG) as a non-cooperative game where

the feasible set of strategies for each player p is characterized through linear inequalities

and integer requirements on player p’s decision variables

Xp = {xp ∈ Rnp : Apxp ≤ bp, xpi ∈ N for i = 1, . . . , Bp} (2.3.7)

with Bp ≤ np. In this thesis, we will restrict our attention to IPGs. The example below

is an IPG.

Example 2.3.4. Consider Example 2.3.2, but now include set-up costs: whenever a firm

p ∈M produces a positive quantity, xp > 0, a fixed cost Fp must be paid. Then, the utility

of firm p ∈M becomes

Πp(xA, xB) =
(
a− b(xA + xB)

)
xp − Cpxp − Fpyp

and the feasible set of strategies is Xp = {(xp, yp) : yp ∈ {0, 1}, 0 ≤ xp ≤ Wpy
p}, that

is, the quantity xp produced by firm p must be non negative, cannot exceed the production

capacity and whenever xp > 0, the set-up cost is paid (yp = 1).

Remark: Note that Example 2.3.4 is also a continuous game, because each player set of

strategies is bounded and thus, a compact metric space. Example 2.3.1 is in the so-called

normal-form representation. However, game 2.3.1 could easily be formulated as an IPG by

associating a binary variable to each player pure strategy (which would model the strategy

selected), adding a constraint summing the decision variables up to one (this ensures that

one strategy is selected) and formulating the players’ objective functions according to the

utility values for combinations of the binary variables. In fact, this transformation applied

to any normal-form game leads to an equivalent IPG. Figure 2.3.1 depicts the relation

between the aforementioned game classes; we highlight that an IPG contains all finite

games and, if X is bounded and utility functions are continuous, it is a continuous game;

as in this thesis we restrict our attention to quadratic utility functions, the continuity of

the utilities is guaranteed.

In the next two sections, we distinguish between sequential games with two rounds (Sec-

tion 2.3.1), Stackelberg competition, and simultaneous games (Section 2.3.2). Although

in both types of games each player goal is to maximize her utility, the approach to find a

solution significantly varies.
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Finite
Games

Continuous Games IPGs

Figure 2.3.1: Games classes.

2.3.1 Stackelberg Competition

Basic Definitions. In the Stackelberg competition [131], also known as bilevel pro-

gramming (BP), there are two players that play two rounds. In the first round the so-called

leader takes action, and in the second round the other player (called the follower) observes

the leader’s decision and selects her strategy. The decision variables are split into two

groups, those that are controlled by the leader (on the upper level) and those controlled

by the follower (on the lower level). Both decision makers have an objective function

(utility) of their own and a set of constraints on their variables that define the set of

feasible strategies. Furthermore, there are coupling constraints that connect the decision

variables of leader and follower. Let the leader and follower decision vectors be x and y,

respectively. A mathematical formulation for a bilevel problem is

max
x,y

Πl(x, y) (2.3.8a)

s. t. x ∈ X ⊆ Rnx (2.3.8b)

where y solves the follower’s problem (2.3.8c)

max
y

Πf (x, y) (2.3.8d)

s. t. y ∈ Y (x) ⊆ Rny , (2.3.8e)

where the objective (2.3.8a) is the leader’s utility who controls the decision vector x, and

the objective (2.3.8d) is the follower’s utility who controls the decision vector y. Note

that problem (2.3.8) does not fully determine the follower’s behavior: there might be

many follower’s optimal solutions for a fixed leader decision that yield different objective

values for the leader. Which one will the follower choose? In the optimistic scenario

the follower always picks an optimal solution that yields the best objective value for

the leader, and in the pessimistic scenario she picks a solution that yields the worst
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objective value for the leader. In Section 3.3, we tackle a BP characterized by the fact

that both leader and follower share the same objective function (although with different

optimization directions) and this distinction about optimistic and pessimistic scenarios is

not needed; when leader and follower share the same objective function but the leader aims

to minimize, and the follower to maximize it, the problem is called min-max programming

problem.

A Stackelberg equilibrium is an optimal solution for the BP (2.3.8); note that the objective

function of an BP is the leader’s utility function. Let us give a classical example of a game

with two rounds, in order to clarify the concepts presented so far.

Example 2.3.5. The classical Stackelberg competition is modeled according to Exam-

ple 2.3.2, but without production capacity limitations. Let firm A be the leader and firm

B the follower. Thus, we aim at finding the solution (Stackelberg equilibrium) for

max
xA

(
a− b(xA + xB)

)
xA − CAxA (2.3.9a)

s. t. xA ≥ 0 (2.3.9b)

where xB solves the follower’s problem (2.3.9c)

max
xB

(
a− b(xA + xB)

)
xB − CBxB (2.3.9d)

s. t. xB ≥ 0. (2.3.9e)

Once the leader’s strategy xA is chosen, the follower selects her best reaction (which is

easy to compute, since the follower’s utility is concave), playing

xB(xA) =
(a− CB − bxA)+

2b
(2.3.10)

where α+ = max(0, α). Then, since we assume that the leader is rational and can predict

xB(xA), she replaces in her utility function xB by xB(xA) and computes the optimal

quantity x∗A

x∗A =
a− 2CA + CB

2b
. (2.3.11)

In conclusion, (x∗A, xB(x∗A)) is the Stackelberg equilibrium or, equivalently, the optimal

solution for the bilevel problem (2.3.9).

Interdiction problems (see Israel [68]) are a special type of BP that have received large

attention in the research community. These are min-max BPs where for each follower’s

variable, there is a leader’s binary variable and an interdiction constraint in the lower level

problem that enables the leader to make that follower’s variable unavailable. Formally,

in an interdiction problem, the follower’s constraints (2.3.8e) include a set of interdiction

constraints

y ≤ Uᵀ(1− x), (2.3.12)
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where U is a vector column of dimension nx = ny. In Section 3.3 of this thesis, we focus

on an interdiction problem.

Solving Bilevel Problems. When the follower’s problem is an LP, through strong

duality (recall Properties 2.2.2 and 2.2.3) applied to the follower’s optimization problem,

one can compute a single level programming problem equivalent to the BP. If the fol-

lower’s optimization problem is a concave QP then an equivalent single level programming

problem can be obtained by replacing her optimization problem by appropriate Karush-

Kuhn-Tucker (KKT) conditions (for details in these conditions see Karush [73] and Kuhn

and Tucker [79]). The introduction of integer requirements, leading to mixed integer

bilevel programs (MIBP), even if restricted to the follower’s decision variables, is enough

to make the transformation above not valid.

The decision version of a BP asks whether there exists an action of the leader such that

for any follower’s reaction, the leader’s objective value is guaranteed to be at least as good

as a predefined bound. The complexity class Σp
2 is the natural hotbed for bilevel problems

that are built on top of NP-complete single-level problems. If a problem is Σp
2-complete,

there is no way of formulating it as a single-level integer problem of polynomial size unless

the polynomial hierarchy collapses (a highly unlikely event which would cause a revolution

in complexity theory, quite comparable to the revolution that would be caused by a proof

that P=NP). In fact, even for the simplest MIBP with the leader’s problem as an LP, the

problem is Σp
2-complete (as is the case for the problem of Dempe and Richter [40] which

we prove to be Σp
2-complete in Section 3.2.1).

It is a well-known fact in MIBP research that the techniques that successfully work on

(classical, single-level) MIPs are not straightforward to generalize to the bilevel case.

Indeed, the BP obtained by relaxing the integrality restrictions does not provide an upper

bound on the maximization version of the original problem, and even if its solution is

integral, it is not necessarily optimal for the original problem. This is illustrated in the

following example.

1 2 3 4 5 6 7 8

1
2
3
4

x

y

OPT

original problem

1 2 3 4 5 6 7 8

1
2
3
4

x

y

OPT

continuous relaxation

Figure 2.3.2: Blue represents the feasible region for Problem (2.3.13) and associated

continuous relaxation.
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Example 2.3.6 (Example from Moore and Bard [93]). Consider the BP

min
x

− x− 10y

s. t. x ∈ Z+

where y is optimal to

min
y

y

s. t. 5x− 4y ≥ −6

− x− 2y ≥ −10

− 2x+ y ≥ −15

2x+ 10y ≥ 15

y ∈ Z+.

Observe Figure 2.3.2 which depicts the feasible region to our problem and to the as-

sociated continuous relaxation. An optimal solution is (x∗, y∗) = (2, 2) with objective

value (leader’s utility) equal to −22. An optimal solution for the continuous relaxation is

attained when (x̂, ŷ) = (8, 1) with objective value equal to -18. Observe that two important

properties used to prune the search space in the branch-and-bound scheme to MIPs do not

hold in this case. Namely,

• the continuous relaxation optimal value does not provide a lower bound to prob-

lem (2.3.13);

• the solution for the continuous relaxation satisfies the integrality constraints, how-

ever, it is not optimal to problem (2.3.13).

The only property that holds is the following: if the continuous relaxation for an MIBP is

infeasible, then the MIBP itself is infeasible.

Next, we review the literature about Stackelberg competition. Note that the class of

Stackelberg competitions we aim to tackle is in combinatorial optimization, and thus, is

more studied in the context of mathematical programming. For this reason, the term

bilevel programming will be used more often.

2.3.1.1 Previous Work

Generally speaking, multilevel optimization programs are extremely difficult from the

computational point of view and cannot be expressed in terms of classical integer pro-

gramming (which can only handle a single level of optimization). A ground-breaking paper

by Jeroslow [69] established that several multilevel problems are complete for various levels
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of the polynomial hierarchy in computational complexity theory. Further hardness results

for a broad range of families of multilevel optimization problems are due to Deng [43] and

Dudás, Klinz and Woeginger [46].

The optimization literature only contains a handful of results on the solution of general

MIBPs. Moore and Bard [93] adapt the classical branch-and-bound scheme for MIPs to

MIBPs, and propose a number of simple heuristics. Their approach is fairly basic and

can only handle small instances, with up to 20 integer variables. The main reason for the

lack of success with this adaptation is the failure of two of the pruning criteria, used for

solving MIPs, which do not hold for MIBPs (as Example 2.3.1 highlights). The challenge

is in computing upper bounds (maximization version) with good quality to MIBPs. The

usual approach is to solve the so-called high-point problem, which consists in dropping the

follower’s optimality condition and integrality constraints. This may provide good upper

bounds for problems in which the leader’s objective function takes (in some way) into

account the follower’s reaction. Unfortunately, for min-max problems, the lower bound

provided by solving the associated high-point problem is generally considerably far from

the optimum, so that the branch-and-bound tree is likely to be extremely big (this is

pointed out in the survey by Ben-Ayed [8]). Moore and Bard [93] procedure, applied

to a maximization version of an MIBP, in the root of the branch-and-bound tree, solves

the high point problem and proceeds as in the MIP approach by branching in order to

satisfy the integrality requirement and generating two subproblems; for each promising

node (integer solution) it solves the corresponding continuous relaxation of the bilevel

program; whenever an integer solution is computed, it verifies its bilevel feasibility by

solving the lower level problem for the fixed leader’s decision, to obtain a lower bound

(because a feasible solution is obtained).

The first significant advances to the MIBP branch-and-bound scheme are due to DeNegre’s

dissertation [41], which added a number of interesting ingredients, leading to a branch-and-

cut scheme, and in particular considered the so-called interdiction constraints. DeNegre

also provides some heuristics to improve the solutions obtained through the branch-and-

cut method.

Hemmati et al. [65] consider a more general bilevel interdiction problem on networks.

An effective cutting plane algorithm in the spirit of the one described in Section 3.3.1 is

proposed and enhanced with valid inequalities that are specific to the considered problem

on networks. Links to the general interdiction literature, especially from a homeland

security perspective, are provided by Smith [118] and Smith and Lim [119].

For an overview of this area, we refer the reader to the book edited by Dempe [38],

and also to the annotated bibliographies of Vicente and Calamai [132], Dempe [39], and
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Colson, Marcotte and Savard [25]. For a comprehensive survey on solution methodologies

for MIBPs, we refer the reader to Saharidis et al. [113].

In this thesis, we start by classifying in terms of complexity three “simple” MIBP’s

which have a formulation based on a natural generalization of the knapsack problem

with two levels. As expected for combinatorial optimization problems with two levels,

these bilevel knapsack variants are proven to be Σp
2-complete. For one of the bilevel

knapsack variants with interdiction constraints, we propose a novel algorithmic approach

that takes advantage from the fact that the problem is (i) min-max optimization and (ii)

has interdiction constraints. Therefore, the algorithmic methodology employed presents

interesting features for an adaptation to solve general interdiction problems.

2.3.2 Simultaneous Games

Basic Definitions. In a simultaneous game, players strategies are revealed at the

same time. The solution concept that will be used is the famous Nash equilibrium. A

Nash equilibrium (NE) is a profile of strategies σ ∈ ∆ such that for each player p ∈ M
the following inequalities hold:

Πp(σ) = Πp(σp, σ−p) ≥ Πp(xp, σ−p) ∀xp ∈ Xp. (2.3.14)

The equilibria inequalities (2.3.14) reflect the nonexistence of incentive for each player p

to deviate unilaterally to a strategy different from σp because there is no increase in the

utility value. In other words, each player p best reaction to σ−p is σp.

Next, we present two examples of simultaneous IPGs: a finite game (Example 2.3.7) and

a continuous game (Example 2.3.8), as well as the computation of their equilibria.

Example 2.3.7 (Prisoner’s dilemma). The prisoner’s dilemma is a well-known game

theory example. The players are two prisoners of a criminal gang that are suspected to

have committed a crime. Due to the lack of evidence to convict either, the police needs

them to testify against each other and, thus, interrogates them in separate rooms. Each of

the suspects has two possible strategies: ( Defect) testify against the other, which results in

receiving a reward; and ( Cooperate) keep silence. The bimatrix of Table 2.2 displays the

four possible pure outcomes for the game with the players utilities: if both cooperate, they

are released (both get 1); if only one testifies against ( Defect), she is released and collects

a reward (gets 2), while the other goes to the prison (gets -1); if both testify against,

both go to prison, but they will still collect a reward for testifying. Observe that for each

player, the strategy “ Defect” strictly dominates “ Cooperate”. Thus, ( Defect, Defect) is

the unique equilibrium of the game.
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Prisoner II

Cooperate Defect

Prisoner I
Cooperate (1,1) (-1,2)

Defect (2,-1) (0,0)

Table 2.2: Prisoner’s dilemma

Example 2.3.8 (Cournot duopoly). One of the earliest examples of game analysis is due

to Antoine A. Cournot in his model of duopoly [29]. We present the classical formulation,

which is modeled through Example 2.3.2 but without production capacity limitations; the

players play simultaneously. Each player p ∈ {A,B} aims to solve

max
xp

(
a− b(xA + xB)

)
xp − Cpxp (2.3.15a)

subject to xp ≥ 0. (2.3.15b)

In order to find the players’ optimal solutions, apply derivatives on their objective func-

tions and find their zeros (note that this is valid because both objective functions are

concave). In this way, we get the equilibrium (xA, xB) =
(
a+CB−2CA

3b
, a+CA−2CB

3b

)
.

Computing pure NE. A game is potential [92] if there is a real-valued function

Φ : X −→ R such that its value increases strictly when a player unilaterally switches

to a strategy that strictly increases her utility. A potential function is exact when this

increase is equal to the player’s utility increase. Potential games are guaranteed to have

pure NE.

Lemma 2.3.9 (Monderer and Shapley [92]). The maximum of a potential function for a

game is a pure Nash equilibrium.

Proof. By contradiction, suppose that there is a profile of strategies for which the potential

function attains its maximum value and it is not an NE. Then, at least one of the players

would have advantage in switching to a new strategy, which would imply that the potential

function would strictly increase its value in this new profile. However, that contradicts

the fact that the previous profile was a potential function optimum.

The proof of Lemma 2.3.9 suggests a method to compute an equilibrium. Tâtonnement

process or adjustment process: assign a profile of strategies for the players; while

there is a player with incentive to unilaterally deviate from the current profile of strategies,

replace her strategy by one that improves that player’s utility; otherwise, an equilibrium

was found. If a game is potential, its potential function value at a profile of strategies
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strictly increases as this process iterates to new profiles of strategies. If the potential

function has a maximum, this process converges to a pure NE.

There is no general procedure to decide if a game is potential and to compute a potential

function of it. However, many games satisfy the bilateral symmetric interaction property,

which is sufficient for a game to be potential. If in a game the utility function of each

player p ∈M has the form

Πp(x) =
∑

i∈M

wp,i(x
p, xi), (2.3.16)

where wp,i(x
p, xi) is a function with wp,i(x

p, xi) = wi,p(x
p, xi) for all i ∈ M then, the

bilateral symmetric interaction is satisfied. A bilateral symmetric interaction game is

one where utility functions can be decomposed into symmetric interaction terms, which

are bilaterally determined together with the term depending only on the players’ own

strategy. The Cournot Competition of Example 2.3.8 satisfies the bilateral symmetric

interaction game property: wA,B = wB,A = −bxAxB, wA,A = (a − bxA − CA)xA and

wB,B = (a− bxB − CB)xB.

Proposition 2.3.10 (Ui [123]). A bilateral symmetric interaction game is potential. A

potential function is

Φ(x) =
1

2

∑

i∈M

∑

j∈M

wi,j(x
i, xj), (2.3.17)

where each player p’s utility function has the form (2.3.16).

Proof. It is sufficient to prove that the difference in the potential function value when a

player p unilaterally deviates is equal to that player’s difference in the utility value

Φ(x)− Φ(x−p, x̂p)=
1

2

∑

i∈M

∑

j∈M

wi,j(x
i, xj)− 1

2

∑

i∈M\{p}

∑

j∈M\{p}

wi,j(x
i, xj) (2.3.18a)

− 1

2

∑

j∈M

wp,j(x̂
p, xj)− 1

2

∑

i∈M

wi,p(x
i, x̂p) (2.3.18b)

=
∑

j∈M

wp,j(x
p, xj)−

∑

j∈M

wp,j(x̂
p, xj) (2.3.18c)

=Πp(x)− Πp(x̂p, x−p). (2.3.18d)

The Cournot Competition of Example 2.3.8 is a potential game where a potential function

is Φ(xA, xB) = (a− bxA − CA)xA + (a− bxB − CB)xB − bxAxB.
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Computing NE for finite games. It has been argued that pure NE are more natural

game outcomes than mixed equilibria, given their simplicity, the difficulty of computing

equilibria and, thus, the players’ limitations in determining them. However, games might

fail to have pure equilibria. For example, in the famous children’s game “rock-scissors-

paper” (see Example 2.3.1) the only equilibrium is to uniformly randomize over the 3

strategies. Therefore, it is important to consider mixed equilibria when analyzing a game.

Furthermore, a game may have no equilibria. Nash [94] proved that a game possesses an

equilibrium if the set of strategies is finite.

Theorem 2.3.11 (Nash [94]). A finite game has an equilibrium.

The existence proof of this theorem does not provide a polynomial time algorithm for

determining an equilibrium. There are general algorithms to compute NE for finite

games, but they fail to be polynomial. See Nisan et al. [96] for comprehensive material in

algorithmic game theory. In fact, Daskalakis et al. [35] proved that finding an NE for finite

games is PPAD-complete (this is true even with only two players, see Chen et al. [23]).

The algorithms for finite games rely heavily on the following result.

Proposition 2.3.12. Consider a finite game and a profile of strategies σ ∈ ∆. Then, σp

is player p best reaction to σ−p if and only if for all x̂p ∈ Xp

σp(x̂p) > 0 implies Πp(x̂p, σ−p) = up, (2.3.19)

where up = maxxp∈Xp Πp(xp, σ−p) and σp(xp) is the probability assigned to the pure strategy

xp.

Proof. Note that

Πp(σ) ≤ up, (2.3.20)

since Πp(σ) is a convex combination: Πp(σ) =
∑

xp∈Xp σp(xp)Πp(xp, σ−p). Therefore,

Πp(σ) = up if and only if σp(x̂p) > 0 implies Πp(x̂p, σ−p) = up.

By Proposition 2.3.12, σp is a player p’s best reaction to the opponents strategies σ−p

if and only if all player p’s pure strategies with positive probability assigned in σp are

equally good (pure best responses) to σ−p.

The support of a strategy σp ∈ ∆p, denoted as supp(σp), is the set of all strategies xp ∈ Xp

such that σp(xp) > 0. Proposition 2.3.12 allows to reduce the problem of computing an

equilibrium σ to determining its support strategies and then, computing its probabilities

by solving the Feasibility Problem depicted in Figure 2.3.3. Constraints (2.3.21a) ensure

that the strategies played with positive probability by player p have equal utility value
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Feasibility Problem

Input: for all p ∈M a set of strategies Ap to be the support

Output: NE σ, if there exists both a mixed strategy profile σ

and a utility value up for all p ∈M such that

up =Πp(x̂p, σ−p) ∀p, ∀x̂p ∈ Ap (2.3.21a)

up ≥Πp(xp, σ−p) ∀p, ∀xp ∈ Xp (2.3.21b)
∑

xp∈Ap
σp(xp)=1 ∀p (2.3.21c)

σp(xp) ≥0 ∀p, ∀xp ∈ Ap (2.3.21d)

σp(xp) =0 ∀p, ∀xp ∈ Xp − Ap, (2.3.21e)

where Πp(x̂p, σ−p) =
∑

x∈A−p
Πp(x̂p, x)

∏

k∈M−{p}

σk(xk).

Figure 2.3.3: Feasibility Problem for finite games.

(Proposition 2.3.12); Constraints (2.3.21b) are the Nash equilibria conditions (2.3.14);

Constraints (2.3.21c) to (2.3.21e) guarantee that σp is a probability distribution for each

p ∈M .

In the literature there are many algorithmic approaches for computing equilibria of finite

games. These methods essentially differ in the way of enumerating supports for the

equilibria. One of the approaches to compute NE for finite games that performs better

in practice is PNS, developed by Porter, Nudelman and Shoham [107]. PNS enumerates

support sets and solves the associate Feasibility Problem until it is feasible and thus,

an NE of it was found. In order to possibly reduce the support enumeration search

space, an additional step eliminating conditionally dominated strategies from being in

the supports is included, decreasing the number of Feasibility Problems to be solved. In

this thesis, our goal is not restricted to finite games; we refer the reader interested on

finite games to the surveys and state-of-the-art algorithms collected in [133]. Note that

the algorithms for finite games when applied to IPG imply the explicit enumeration of all

profiles of strategies, which can be exponential in the size of the game representation or

even unsuitable when the set of feasible strategies is uncountable.

Computing NE for IPG. For IPG, if there is at least a player p for whom not

all variables are bounded, or there are continuous variables (i.e., Bp < np), Nash’s

Theorem 2.3.11 does not apply, since the set of strategies becomes infinite. In this case,
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Finite
Games

Continuous
Games

IPGsSeparable

Games

Figure 2.3.4: Games classes.

the most common existence theorem used is the following.

Theorem 2.3.13 (Glicksberg [58]). Every continuous game has a Nash equilibrium.

Therefore, an IPG is guaranteed to have an equilibrium if the players’ objective functions

are continuous and the set of strategies X is bounded (since IPG becomes a continuous

game).

Let the set of players be M = {1, . . . ,m}. A separable game is a continuous game with

utility functions Πp : X −→ R taking the form

Πp(x) =

k1∑

j1=1

. . .
km∑

jm=1

apj1...jmf
1
j1

(x1) . . . fmjm(xm), (2.3.22)

where apj1...jm ∈ R and the fpj : Xp −→ R are continuous. See Figure 2.3.4 for a clear

picture of the games classes relations. Separable games have the following property.

Theorem 2.3.14 (Stein et al. [120]). In a separable game, for every mixed strategy

σp there is a finitely supported mixed strategy τ p such that fpj (σp) = fpj (τ p) for all j

and |supp(τ p)| ≤ kp + 1. Moreover, if σp is countably-supported τ p can be chosen with

supp(τ p) ⊆ supp(σp).2

Combining Stein et al. and Glicksberg’s Theorems 2.3.14 and 2.3.13, Stein et al. [120]

conclude the following:

2Extend fp to the space of all finite-valued signed measures in Xp:

fp(σp) =

(∫
fp1 (xp)dσp, . . . ,

∫
fpkp

(xp)dσp

)
.
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Corollary 2.3.15. Every separable game has a Nash equilibrium. Moreover, for every

Nash equilibrium σ there is a Nash equilibrium τ such that each player p mixes among at

most kp + 1 pure strategies and Πp(σ) = Πp(τ).

Therefore, in case an IPG is a separable game, the search for an equilibrium can be

reduced to finding a finite set of strategies for each player p of size at most kp + 1 and

check through the Feasibility Problem (2.3.21) if they are the support on an equilibrium.

The utility functions of the games to be analyzed in this thesis are linear or quadratic

and, thus, the utilities are written in the form (2.3.22).

2.3.2.1 Previous Work

The literature on IPG is scarce and often focused on the particular structure of specific

games. Moreover, typically, the analysis is restricted to pure Nash equilibria.

Kostreva [78] provides the first attempt to address the computation of pure NE to

IPG. Kostreva [78] describes a theoretical approach to tackle IPG for which players’

utility functions and constraints are polynomial, and integer variables are required to

be binary. For each player’s binary variable x the penalty Mx(1 − x) is added to her

utility3, where M is a suitably large positive number. Then, the Karush-Kuhn-Trucker

(KKT) conditions are applied to each player’s continuous relaxation and merged into a

system of equations for which the set of solutions contains the set of pure equilibria.

To find the solutions for that system of equations the author recommends the use of

a path following in a homotopy [136] or Gröbner basis [30]. Additionally, it must be

verified which of the system’s solutions are equilibria4, implying solving each player’s

best response problem and resulting in long computational times. Gabriel et al. [54]

developed an optimization model for which the optimal solution is a pure Nash equilibrium

of a game that approximates an IPG with concave utilities when integer constraints

are relaxed. In [54], the players’ continuous relaxations are transformed in constrained

problems through the KKT conditions and the complementary conditions are relaxed

(not required to be satisfied) in order to satisfy the integer requirements. On the few

experimental results presented, this approach leads to the computation of a pure NE

for the original game. However, there is neither theoretical nor computational evidence

showing the applicability of these ideas to the general case. Deciding the existence of

pure equilibria in games with an exponential number of actions per player with general

utility functions (expressed as Turing machines or Boolean circuits) was proven to be

Σp
2-complete in Álvarez et al. [2] and Schoenebeck et al. [115].

3Note that the penalty Mx(1− x) makes a player’s best reaction problem non-concave.
4The KKT conditions applied to non-concave maximization problems are only necessary.
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Lee and Baldick [81] study the computation of mixed NE for an IPG in the context of

the electric power market. There, the player’s set of strategies is approximated through

a discretization of it, resulting in a normal-form (finite) game to which there are general

algorithms to compute NE. Nevertheless, there is a trade-off between having a good

discretized approximation and an efficient computation of NE: the more strategies are

contained in the discretization, the longer the time to compute an NE will be. Stein

et al. [120] restrict their attention to separable games. The authors are able to provide

bounds on the cardinality of the support of equilibrium strategies (Theorem 2.3.14) and

present a polynomial-time algorithm for computing ε-equilibria of two-player separable

games with fixed strategy spaces and utility functions satisfying the Hölder condition.

We expand the class of problems introduced by Köppe, Ryan and Queyranne [77] as

integer programming games (recall the strategy set formulation (2.3.7)); the difference is

in the fact that we allow continuous decision variables in addition to integer variables.

The utility functions in [77] are differences of piecewise-linear concave functions. This is

not the case for our models; e.g., for the IPG studied in Section 4.3, each player’s objective

function is quadratic in her decision variables. Moreover, since generating functions of

integer points inside of polytopes (bounded polyhedron) are used to study pure NE,

their approach would only be suitable if the players’ strategy sets are countable (which

is not the case when there are continuous variables). Finally, the application of Köppe,

Ryan and Queyranne’s results rely on computational implementations that are still in

preliminary stage, although theoretically it can be proven to run in polynomial time

(under restrictive conditions, like number of players fixed and sum of the number of

players’ decision variables fixed, to name few).

As we have seen in the previous section, the class of IPGs contains finite games for which

it has been proven that computing an equilibrium is PPAD-complete. Adding to this,

the fact that deciding if a profile of strategies is an equilibrium is itself an NP-complete

problem (since it implies to solve each player best reaction problem (2.3.4), which can, in

turn, be an IP) reveals the difficulty of tackling this class of problems.

In this thesis, the first simultaneous IPG that we present has a special structure associated

with the classical knapsack problem that enables to reduce the computation of pure

equilibria to solving a two-objective optimization problem. Then, we analyze a game

modeling the two-player kidney exchange markets for which our generalization of the

maximum matching theory enable us to efficiently compute an equilibrium in which the

players agree to play. The last particular game to be analyzed generalizes the classical

Cournot competition model by merging it with the lot-sizing problem, and illustrates the

difficulties of computing equilibria. Finally, in Section 4.4, general simultaneous IPGs

with quadratic objective functions are studied. Note that IPGs may have no equilibria;
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take, for instance, the case with a single player in which her optimization problem is

unbounded. To the best of our knowledge, there is no previous study classifying the

complexity of deciding if an IPG has an equilibrium. We prove that it is a Σp
2-complete

problem, even in the case with only two players and linear utility functions. We also prove

that deciding the existence of pure NE is Σp
2-complete. We conclude with an algorithm

and the associated computational validation for simultaneous IPGs.

2.3.3 Game Theory Solvers

As far as we know, MibS [109] is the only solver available to tackle general MIBP’s.

Essentially, the generality of the algorithmic approaches to solve an MIBP reduce to

determining optimal solutions for series of LP’s and/or MIP’s, and thus, the solvers

mentioned in Section 2.2 are integrated in these algorithms framework.

To the best of our knowledge, there are no general solvers for IPG. Thus, as mentioned in

the previous section, in the literature, either in the games analyzed there are no integrality

requirements to be satisfied or these are somehow taken into account in the players’

objective functions. This allows the problem of computing an equilibrium to be reduced

to solving a constrained programming problem for which the solvers in Section 2.2 might

be applied. However, the resulting constrained programming problems can be hard to

solve and only enable the computation of pure equilibria.

Alternatively, IPG equilibria have been approximated by enumerating part of the players’

feasible strategies and solving the resulting normal-form game (finite game). The most

well-known and up-to-date game theory solver for normal-form games is the open-source

Gambit [90], which results from a project initiated in the mid-1980’s by Richard McK-

elvey at the California Institute of Technology. Gambit includes famous algorithmic ap-

proaches, like Lemke-Howson [82], Govindan-Wilson [61, 62], Simplicial Subdivision [126]

and PNS [107]. In resemblance with the mathematical programming instances, there is a

computational testbed for normal-form games: GAMUT [97].



Chapter 3

Stackelberg Competition: Bilevel

Knapsack

1

Bilevel programming includes the classical single-level programming and therefore, it is

expected to be more intricate. For this reason, in this chapter, we concentrate in studying

the simplest mixed integar bilevel programming problems that one could devise.

The knapsack problem has been a fundamental “playground” for understanding single-

level programming. Thus, this methodological motivation together with the simplicity

of the KP model, lead us to study natural generalizations of KP to bilevel programming

which are formulated in Section 3.1. In particular, we study these problems computational

complexity (Section 3.2) and suggest a novel viable algorithmic approach for one of the

bilevel knapsack variants that have seldom address in the literature (Section 3.3).

3.1 Bilevel Knapsack Variants

Over the last few years, a variety of authors has studied certain bilevel variants of the

knapsack problem. Dempe and Richter [40] considered the variant where the leader

controls the weight capacity of the knapsack, and where the follower decides which items

are packed into the knapsack (Section 3.1.1). Mansi et al. [85] consider a bilevel knapsack

variant where the item set is split into two parts, one of which is controlled by the leader

and one controlled by the follower (Section 3.1.2). DeNegre [41] suggests yet another

variant, where both players have a knapsack of their own; the follower can only choose

from those items that the leader did not pack (Section 3.1.3). This section gives precise

definitions for these variants and provides further information on them.

1The results of this chapter appears in:

A. Caprara, M. Carvalho, A. Lodi, G. J. Woeginger. A Study on the Computational Complexity of the

Bilevel Knapsack Problem, SIAM Journal on Optimization 24(2), 2014, 823-838.

A. Caprara, M. Carvalho, A. Lodi, G. J. Woeginger. Bilevel knapsack with interdiction constraints,

INFORMS Journal on Computing, Volume 28, Issue 2, Spring 2016, 319-333.

53



54 CHAPTER 3. STACKELBERG COMPETITION: BILEVEL KNAPSACK

Throughout, we use ai, a
′
i, bi, b

′
i, ci, c

′
i and A, B, C, C ′ to denote item weights, cost

coefficients, upper bounds, and lower bounds. All these numbers are assumed to be non-

negative integers (or rationals). As usual, we will sometimes use the notation a(I) =∑
i∈I ai for an index set I, and a(x) =

∑
i aixi for a 0-1 vector x.

3.1.1 The Dempe-Richter (DeRi) variant

The first occurrence of a bilevel knapsack problem in the optimization literature seems

to be due to Dempe and Richter [40]. In their problem variant DeRi, as depicted in

Figure 3.1.1, the leader controls the capacity x of the knapsack while the follower controls

all items and decides which of them are packed into the knapsack. The objective function

of the leader depends on the knapsack capacity x as well as on the packed items, whereas

the objective function of the follower solely depends on the packed items.

max
x∈N

f1(x, y) = Ax+
n∑

i=1

aiyi (3.1.1a)

s. t. C ≤ x ≤ C ′ (3.1.1b)

where y1, . . . , yn solves the follower’s problem

max
y∈{0,1}n

n∑

i=1

biyi s.t.
n∑

i=1

biyi ≤ x (3.1.1c)

Figure 3.1.1: The bilevel knapsack problem DeRi.

All decision variables in this bilevel programming problem are integers; the knapsack

capacity x is integer, and the variables y1, . . . , yn ∈ {0, 1} encode whether item i is

packed into the knapsack (yi = 1) or not (yi = 0). We note that in the original model

in [40] the knapsack capacity x is continuous; one nasty consequence of this continuous

knapsack capacity is that the problem (3.1.1a)–(3.1.1c) may fail to have an optimal

solution (Example 3.1.1 illustrates such case). The computational complexity of the

problem remains the same, no matter whether x is integral or continuous.

Example 3.1.1. Consider the DeRi instance with n = 2, A = 1, C = 2, C ′ = 3, a1 = 3,

a2 = 1, b1 = 2 and b2 = 3. If x < 3, the follower only has the feasible strategy y = (1, 0),

leading to f1(x, (1, 0)) = x+3 which is greater or equal to 5; if x = 3, the follower optimal

solution is y = (0, 1) which leads to f1(3, (0, 1)) = 3 + 1 = 4. It follows that the leader
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would choose x as close as possible to 3 in order to maximize her objective value f1. This

shows that there is no optimal solution for this instance.

Dempe and Richter [40] discuss approximation algorithms for DeRi, and furthermore

design a dynamic programming algorithm that solves variant DeRi in pseudo-polynomial

time. Brotcorne, Hanafi and Mansi [17] derive another (simpler) dynamic program with a

much better running time. Plyasunov [105] provides conditions under which the problem

is non-degenerate and reduces to a series of linear programming problems.

3.1.2 The Mansi-Alves-de-Carvalho-Hanafi (MACH) variant

Mansi et al. [85] consider a bilevel knapsack variant where both players pack items into

the knapsack. There is a single common knapsack for both players with a prespecified

capacity of C. The item set is split into two parts, which are, respectively, controlled by

the leader and the follower. The leader starts the game by packing some of her items into

the knapsack, and then the follower adds some further items from her set. The objective

function of the leader depends on all items packed by leader and follower, whereas the

objective function of the follower solely depends on her own items. Figure 3.1.2 specifies

the bilevel problem MACH.

max
x∈{0,1}m

f2(x, y) =
m∑

j=1

ajxj +
n∑

i=1

a′iyi (3.1.2a)

s. t. y1, . . . , yn solves the follower’s problem

max
y∈{0,1}n

n∑

i=1

b′iyi s.t.
n∑

i=1

c′iyi ≤ C −
m∑

j=1

cjxj (3.1.2b)

Figure 3.1.2: The bilevel knapsack problem MACH.

Mansi et al. [85] describe several applications of their problem in revenue management,

telecommunication, capacity allocation, and transportation. Variant MACH has also been

studied in a more general form by Brotcorne, Hanafi and Mansi [18], who reduced the

model to one-level in pseudo-polynomial time.
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3.1.3 DeNegre (DNeg) variant

DeNegre [41] proposes another bilevel knapsack variant where both players hold their

own private knapsacks and choose items from a common item set. First, the leader packs

some of the items into her private knapsack, and then the follower picks some of the

remaining items and packs them into her private knapsack. The objective of the follower

is to maximize the profit of the items in her knapsack, and the objective of the hostile

leader is to minimize this profit.

min
x∈{0,1}n

f3(x, y) =
n∑

i=1

biyi (3.1.3a)

s. t.
n∑

i=1

aixi ≤ A (3.1.3b)

where y1, . . . , yn solves the follower’s problem

max
y∈{0,1}n

n∑

i=1

biyi s.t.
n∑

i=1

biyi ≤ B and (3.1.3c)

yi ≤ 1− xi for i = 1, . . . , n (3.1.3d)

Figure 3.1.3: The bilevel knapsack problem DNeg.

Figure 3.1.3 depicts the bilevel problem DNeg. The 0-1 variables x1, . . . , xn (for the

leader) and y1, . . . , yn (for the follower) encode whether the corresponding item is packed

into the knapsack. The interdiction constraint yi ≤ 1 − xi in (3.1.3d) enforces that the

follower cannot take item i once the leader has picked it. Note that leader and follower

have exactly opposing objectives.

In Section 3.3, we will actually study a slightly more general version, where the constraint∑n
i=1 biyi ≤ B in (3.1.3c) reads

∑n
i=1wiyi ≤ B, and thus has cost coefficients that differ

from the coefficients in the objective functions of leader and follower.

3.2 Computational Complexity

Recall the background Section 2.1 for essential concepts in the understanding of what

follows.
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In Section 3.2.1, we will show that all three bilevel knapsack variants are complete for the

complexity class Σp
2. The second line of investigation is presented in Section 3.2.2 where

we study these variants under so-called unary encodings (an integer n is represented as a

string of n ones). The classical knapsack problem becomes much easier and polynomial

solvable if the input in encoded in unary, and it is only natural to expect a similar

behavior from our bilevel knapsack problems. Indeed, two of them become polynomial

solvable if the input is encoded in unary, and thus show exactly the type of behavior

that one would expect from a knapsack variant. The third variant, however, behaves

stubbornly and becomes NP-complete under unary encodings, which is not the behavior

one would expect. Our third line of results in Section 3.3, studies the approximability

of the three bilevel variants. As a rule of thumb Σp
2-hard problems do not allow good

approximation algorithms. Indeed, the literature only contains negative results in this

direction that establish the inapproximability of various Σp
2-hard optimization problems

(see [76] and [124, 125]). Of particular interest is the paper [125] by Umans that derives

strong inapproximability results for Σp
2-hard optimization problems from certain error-

correcting codes. Two of our bilevel knapsack variants (actually the same ones that are

easy under unary encodings) behave exactly as expected and do not allow polynomial time

approximation algorithms with finite worst case guarantee, assuming P6=NP. For the third

variant, however, we derive a polynomial time approximation scheme. This is the first

approximation scheme for a Σp
2-hard optimization problem in the history of approximation

algorithms, and from the technical point of view it is the most sophisticated result in this

section. Section 3.2.4 concludes by summarizing our results.

3.2.1 Hardness Results under Binary Encodings

Throughout this section we consider bilevel knapsack problems where the input data is

encoded in binary. As usual, we consider the decision versions of these optimization

problems: “Does there exist an action of the leader that makes her objective value at

least as good as some given bound?”

The decision versions of our bilevel problems DeRi, MACH, DNeg ask whether there exists

a way of fixing the variables controlled by the leader, such that all possible settings of the

variables controlled by the follower yield a good objective value for the leader. Since this

question is exactly of the form ∃x∀y P (x, y), we conclude that all three considered bilevel

knapsack variants are indeed contained in Σp
2. Next, we prove that these variants are

Σp
2-hard. The Σp

2-hardness proofs in this section will all be done by reductions from the

decision problem Subset-Sum-Interval (SSI), which has been proved to be Σp
2-complete

by Eggermont and Woeginger [48].
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Theorem 3.2.1. The decision versions of the following bilevel problems (in binary en-

coding) are Σp
2-complete, both under the optimistic and under the pessimistic scenario:

(a) The Dempe-Richter (DeRi) variant.

(b) The Mansi-Alves-de-Carvalho-Hanafi (MACH) variant.

(c) The Caprara-Carvalho-Lodi-Woeginger (DNeg) variant.

Proof. It remains to show that the three bilevel knapsack variants encapsulate the full dif-

ficulty of class Σp
2 which will be done from reduction to problem Subset-Sum-Interval.

In our reductions, all feasible solutions that are optimal for the follower will yield the

same objective value for the leader. Hence the constructed instances do not depend

on whether the follower behaves benevolently or malevolently towards the leader, and

the theorem holds unconditionally under the optimistic scenario as well as under the

pessimistic scenario.

The hardness proof for DeRi. Our reduction starts from an instance of Subset-

Sum-Interval. We construct the following instance of DeRi.

• We set A = 0, C = R, and C ′ = R + 2r − 1.

• For i = 1, . . . , k, we create a so-called ordinary item i with leader’s profit ai = 0

and follower’s profit/weight bi = qi.

• Furthermore there is a special magic item 0 with leader’s profit a0 = 1 and follower’s

profit b0 = 1/2.

We claim that in the constructed instance of DeRi the leader can make her objective value

≥ 1 if and only if the Subset-Sum-Interval instance has answer YES.

(Proof of if). Assume that the Subset-Sum-Interval instance has answer YES, and

consider the corresponding integer S that cannot be represented as a subset sum. Then a

good strategy for the leader is to choose x = S for the knapsack capacity. Suppose for the

sake of contradiction that the follower does not pack the magic item. Then the weight of

the packed set (and hence the follower’s profit) is at most S− 1, which she could improve

by adding the magic item to it. This contradiction shows that the magic item must be

packed by the follower, which yields a profit of 1 for the leader.

(Proof of only if). Now assume that the Subset-Sum-Interval instance has answer

NO, and consider the optimal knapsack capacity x for the leader. There exists a subset

I ⊆ {1, . . . , k} with
∑

i∈I qi = x, and the corresponding set of ordinary items brings a

profit of x to the follower. If the follower packs the magic item, then her profit is at most

(x− 1) + 1/2 = x− 1/2. Consequently the follower will not pick the magic item, and the

objective value of the leader is 0. This completes the proof of Theorem 3.2.1.(a).
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The hardness proof for MACH. We will essentially recycle and imitate the hardness

argument from the preceding proof. Hence let us take an instance of Subset-Sum-

Interval and construct the following instance of MACH from it.

• For j = 0, . . . , r−1 we create a so-called padding item j that is owned by the leader.

The jth padding item has profit aj = 0 and weight cj = 2j.

• For i = 1, . . . , k, we create a so-called ordinary item i that is owned by the follower.

The ith ordinary item has profit a′i = 0 for the leader and profit/weight b′i = c′i = qi

for the follower.

• There is a magic item 0 owned by the follower, with profit a′0 = 1 for the leader and

profit/weight b′0 = c′0 = 1/2 for the follower.

• The knapsack capacity is C = R + 2r − 1.

This completes the construction of the MACH instance. Now let us discuss the possible

actions of leader and follower.

The leader decides which of the padding items are to be packed into the knapsack. Note

that the overall weight of a subset of padding items can take any value between 0 and

2r−1, and note, furthermore, that padding items bring no profit to the leader. Hence the

decision power of the leader boils down to deciding how much of the knapsack capacity

should be consumed by padding items; the remaining knapsack capacity after the leader’s

move can be any number between C − (2r − 1) = R and C − 0 = R+ 2r − 1. This means

that the leader has essentially the same decision power as in previous reduction.

Then the follower has to react. The follower selects some of the ordinary items and

possibly the magic item for the knapsack. As these items with their weights and profits

are identical to those used in the previous reduction, also the follower has the same decision

power. Summarizing, we see that leader and follower both face the same situation as in

the proof of Theorem 3.2.1.(a). This completes the proof of Theorem 3.2.1.(b).

The hardness proof for DNeg. We consider an instance of Subset-Sum-Interval,

and we define Q =
∑k

i=1 qi. We construct the following instance of DNeg.

• For j = 0, . . . , r− 1 we create a padding item pj with a(pj) = 1 and b(pj) = Q+ 2j.

• For j = 0, . . . , r − 1 we create a dummy item dj with a(dj) = 1 and b(dj) = Q.

• For i = 1, . . . , k, we create an ordinary item oi with a(oi) = r + 1 and b(oi) = qi.

• The knapsack capacities are A = r and B = R + 2r − 1 + rQ.

We claim that in the constructed instance of DNeg the leader can make her objective

value ≤ B − 1 if and only if the Subset-Sum-Interval instance has answer YES.
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(Proof of if). Assume that the integer S with R ≤ S < R + 2r cannot be represented

as a subset sum of the qi. Then we make the leader pick r items among the padding

items and dummy items whose b-values add up to a total of rQ + (S − R). How does

the follower react to this? We distinguish two cases. First, if the follower does not pick

all r remaining padding items and dummy items, then her objective value is at most the

b-value of the r most valuable padding items plus the b-value of all ordinary items; this

b-value is smaller than B. Second, if the follower does pick all r remaining padding items

and dummy items, then she picks a total b-value of rQ + (2r − 1) + (R − S) = B − S.

The remaining capacity in the follower’s knapsack hence equals S, and by the definition

of S there is no way of filling this remaining capacity with the ordinary items. Hence, the

followers objective value always remains strictly below B.

(Proof of only if). Now assume that the Subset-Sum-Interval instance has answer

NO. The leader must pack her knapsack with at most r padding items and dummy items,

and she must leave at least r of the padding items and dummy items for the follower. The

follower may react as follows. She arbitrarily picks r of the remaining padding items and

dummy items, whose total b-value will lie somewhere between rQ (if all of them are dummy

items) and rQ+ 2r− 1 (if all of them are padding items). Then the remaining capacity S

in the follower’s knapsack lies between B − (rQ+ 2r − 1) = R and B − rQ = R+ 2r − 1.

Since the Subset-Sum-Interval instance has answer NO, there exists a subset of the

numbers qi that adds up to S. The follower picks the corresponding ordinary items and

fills her knapsack up to its limit B. This completes the proof of Theorem 3.2.1.(c).

3.2.2 Complexity Results under Unary Encodings

Throughout this section we consider bilevel knapsack problems where the input data is en-

coded in unary. As the Σp
2-complete problem Subset-Sum-Interval from Section 3.2.1

is solvable in polynomial time under unary encodings (Eggermont and Woeginger [48]),

the hardness results in Theorem 3.2.1 do not carry over to the unary bilevel knapsack

versions. We will show that variants DeRi and MACH under unary encodings are solvable

in polynomial time, whereas variant DNeg under unary encodings is NP-complete.

A polynomial time solution for unary-DeRi. We consider the bilevel knapsack

variant DeRi in (3.1.1a)–(3.1.1c). Our main tool is the polynomial time algorithm for

the standard knapsack problem under unary encodings; see for instance Martello and

Toth [87].

The leader simply checks all values x in the interval C ≤ x ≤ C ′. For every fixed value
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of x, the optimization problem of the follower is a standard knapsack problem in unary

encoding, and hence can be solved in polynomial time. The leader determines the corre-

sponding optimal objective value V (x) of the follower, and then computes the resulting

objective value for herself under the optimistic and under the pessimistic scenario; this

amounts to solving another standard knapsack problem under unary encoding. In the

end the leader chooses the value x that brings her the best objective value.

This result is essentially due to Dempe and Richter [40]. A more sophisticated analysis

of the approach yields the time complexity in the following theorem.

Theorem 3.2.2. (Brotcorne, Hanafi and Mansi [17])

The bilevel knapsack problem DeRi in unary encoding can be solved to optimality in

polynomial time O(nC ′), both for the optimistic scenario and the pessimistic scenario.

A polynomial time solution for unary-MACH. Next let us turn to variant MACH

in (3.1.2a)–(3.1.2b). In a preprocessing phase we compute the following auxiliary infor-

mation; note that the 0-1 variables x1, . . . , xm and y1, . . . , yn in these auxiliary problems

have the same meaning as in the problem (3.1.2a)–(3.1.2b).

• For z = 0, . . . , C we determine the maximum value g(z) of
∑m

j=1 ajxj subject to the

constraint
∑m

j=1 cjxj = z.

• For t = 0, . . . , C, we determine the maximum value h(t) of
∑n

i=1 b
′
iyi subject to the

constraint
∑n

i=1 c
′
iyi ≤ t.

• For u = 0, . . . ,
∑n

i=1 b
′
i and v = 0, . . . , C, we determine the maximum value kmax(u, v)

and the minimum value kmin(u, v) of
∑n

i=1 a
′
iyi subject to the constraints

∑n
i=1 b

′
iyi =

u and
∑n

i=1 c
′
iyi ≤ v.

The computations of the values g(z) and h(t) are again standard knapsack problems

under unary encoding, and hence solvable in polynomial time. The computation of the

values kmax(u, v) and kmin(u, v) can also be done in polynomial time by routine dynamic

programming methods; we omit the straightforward details.

What are the options of the leader? The leader will pack a certain subset of her items

into the knapsack, whose overall weight we want to denote by z :=
∑m

j=1 cjxj. Then

the follower is left with a remaining knapsack capacity of C − z. The follower will pick

an item set that gives her the largest possible personal profit, which by definition equals

h(C−z). The follower’s item set gives the leader a resulting profit of kmax(h(C−z), C−z)

in the optimistic scenario and a profit of kmin(h(C− z), C− z) in the pessimistic scenario.

Summarizing, once the leader has chosen her value of z, then her maximum profit in the
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optimistic scenario equals

g(z) + kmax(h(C − z), C − z), (3.2.1)

whereas her maximum profit in the pessimistic scenario equals

g(z) + kmin(h(C − z), C − z). (3.2.2)

Hence the decision making of the leader boils down to picking a value z from the range

0 ≤ z ≤ C that maximizes the expression in (3.2.1), respectively, (3.2.2). And as all the

data is encoded in unary, this once again can be done in polynomial time. We summarize

our findings in the following theorem.

Theorem 3.2.3. The bilevel knapsack problem MACH in unary encoding can be solved

in polynomial time, both for the optimistic scenario and the pessimistic scenario.

NP-completeness of unary-DNeg. Our reduction is from the standard Vertex-

Cover problem in undirected graphs; see Garey and Johnson [56].

Problem: Vertex-Cover

Instance: An undirected graph G = (V,E); an integer bound t.

Question: Does G possess a vertex cover of size t, that is, a subset T ⊆ V

such that every edge in E has at least one of its vertices in T?

(VC)

A Sidon sequence is a sequence s1 < s2 < · · · < sn of positive numbers in which all

pairwise sums si + sj with i < j are different. Erdős and Turán [49] showed that for

any odd prime p, there exists a Sidon sequence of p integers that all are below 2p2. The

argument in [49] is constructive and yields a simple polynomial time algorithm for finding

Sidon sequences of length n whose elements are bounded by O(n2). For more information

on Sidon sequences, the reader is referred to O’Bryant [98].

We start our polynomial time reduction from an arbitrary instance G = (V,E) and k of

Vertex-Cover. Let n = |V | ≥ 10, and let v1, . . . , vn be an enumeration of the vertices

in V . We construct a Sidon sequence s1 < s2 < · · · < sn whose elements are polynomially

bounded in n. We define S =
∑n

i=1 si as the sum of all numbers in the Sidon sequence,

and we construct the following instance of DNeg as specified in (3.1.3a)–(3.1.3d).

• For every vertex vi, we create a corresponding vertex-item with leader’s weight

a(vi) = 1 and follower’s weight b(vi) = S + si.

• For every edge e = [vi, vj], we create a corresponding edge-item with leader’s weight

a(e) = t+ 1 and follower’s weight b(e) = 5S − si − sj.
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• The capacity of the leader’s knapsack is A = t, and the capacity of the follower’s

knapsack is B = 7S.

We claim that in the constructed instance of DNeg the leader can make her objective

value ≤ 7S − 1 if and only if the Vertex-Cover instance has answer YES.

(Proof of if). Assume that there exists a vertex cover T of size |T | = t. Then a good

strategy for the leader is to put the t vertex-items that correspond to vertices in T into

her knapsack, which fills her knapsack of capacity A = t to the limit. Suppose for the sake

of contradiction that afterwards the follower can still fill her knapsack with total weight

7S. Then the follower must pick at least one edge-item (she can pack at most six vertex-

items, and their weight would stay strictly below 7S). Furthermore, the follower cannot

pick two edge-items (since every edge-item has weight greater than 4S). Consequently

the follower must pick exactly one edge-item that corresponds to some edge e = [vi, vj].

The remaining space in the follower’s knapsack is 2S + si + sj and must be filled by two

vertex-items. By the definition of a Sidon sequence, the only way of doing this would be

by picking the two vertex-items corresponding to vi and vj. But that’s impossible, as at

least one of the vertices vi and vj is in the cover T so that the item has already been

picked by the leader. This contradiction shows that the follower cannot reach an objective

value of 7S.

(Proof of only if). Now let us assume that the graph G does not possess any vertex cover

of size t, and let us consider the game right after the move of the leader. Since the leader

can pack at most t vertex-items, there must exist some edge e = [vi, vj] in E for which

the leader has neither picked the item corresponding to vi nor the item corresponding to

vj. Then the follower may pick the vertex-item vi, the vertex-item vj, and the edge-item

e, which brings her a total weight of 7S.

Theorem 3.2.4. The decision version of the bilevel knapsack problem DNeg in unary

encoding is NP-complete, both for the optimistic scenario and the pessimistic scenario.

Proof. The above construction can be performed in polynomial time. As the elements in

the Sidon sequence are polynomially bounded in |V |, also their sum S and all the integers

in our construction are polynomially bounded in |V |. In particular, this yields that the

unary encoding length of the constructed DNeg instance is polynomially bounded in |V |.
Together with the above arguments, this implies that DNeg in unary encoding is NP-hard.

It remains to show that DNeg in unary encoding is contained in NP. We use the optimal

move of the leader as NP-certificate. This certificate is short, as it just specifies a subset

of the items. To verify the certificate, we have to check that the follower cannot pick any

item set of high weight. Since all weights are encoded in unary, this checking amounts to
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solving a standard knapsack problem in unary encoding, which can be done in polynomial

time.

3.2.3 Approximability and inapproximability

Our Σp
2-completeness proofs in Section 3.2.1 have devastating consequences for the poly-

nomial time approximation of problems DeRi and MACH. Recall that our reduction for

problem DeRi yields the following: it is Σp
2-hard to distinguish the DeRi instances in

which the leader can reach an objective value of 1 from those DeRi instances in which

the leader can only reach objective value 0. An analogous statement holds for problem

MACH. As a polynomial time approximation algorithm with finite worst case guarantee

would be able to distinguish between these two instance types, we get the following result.

Corollary 3.2.5. Problems DeRi and MACH do not possess a polynomial time approxi-

mation algorithm with finite worst case guarantee, unless P=NP holds (which is equivalent

to P=Σp
2).

The statement in Corollary 3.2.5 is not surprising at all: the literature on the approxima-

bility of Σp
2-hard optimization problems consists entirely of such negative statements that

show the inapproximability of various problems; see Ko and Lin [76] and Umans [124].

The following theorem breaks with this old tradition, and presents the first approximation

scheme for a Σp
2-hard optimization problem in the history of approximation algorithms.

Theorem 3.2.6. Problem DNeg has a polynomial time approximation scheme.

The rest of this section is dedicated to the proof of Theorem 3.2.6. We apply and extend

a number of rounding tricks from the seminal paper [80] by Lawler, we use approximation

schemes from the literature as a black box, and we also add a number of new ingredients

and rounding tricks.

Throughout the proof we will consider a fixed instance I of problem DNeg. Without loss

of generality (w.l.o.g.) we assume that no item i in the instance satisfies bi > B: such

items could never be used by the follower, and hence are irrelevant and may as well be

ignored. Let ε with 0 < ε < 1/3 be a small positive real number; for the sake of simplicity

we will assume that the reciprocal value 1/ε is integer.

Our global goal is to determine in polynomial time a feasible solution for the leader that

yields an objective value of at most (1+ε)4 times the optimum (Approx(I)
OPT (I)

≤ (1+ε)4 ). This

will be done by a binary search over the range 0, 1, . . . , B that (approximately) sandwiches

the optimal objective value between a lower and an upper bound. Whenever we bisect
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the search interval between these bounds at some value U , we have to decide whether the

optimal objective value lies below or above U . If the optimal objective value lies below

U , then Lemma 3.2.8 and Lemma 3.2.9 (both derived next) show how to find and how to

verify in polynomial time an approximate solution for the leader whose objective value is

bounded by (1+ε)3 U . If these lemmas succeed then we make U the new upper bound. If

the lemmas fail to produce an approximate objective value of at most (1 + ε)3 U , then we

make U the new lower bound. The binary search process terminates as soon as the upper

bound comes within a factor of 1 + ε of the lower bound. Note that we then lose a factor

of 1 + ε between upper and lower bound, and that we lose a factor of at most (1 + ε)3

by applying the lemmas. All in all, this yields the desired approximation guarantee of

(1 + ε)4 and completes the proof of Theorem 3.2.6. See Figure 3.2.1 for an illustration of

these ideas.

Approx(I) ≤ U(1 + ε)3, U ≤ L(1 + ε), L ≤ OPT (I)

⇒ Approx(I) ≤ OPT (I)(1 + ε)4

0 B

L UOPT (I) U(1 + ε)3L(1 + ε)

Approx(I)

Figure 3.2.1: Approximation of the optimal value for a DNeg instance I. Let L and U

be a lower and upper bound, respectively, for OPT (I).

How do handle the central cases. We start by assuming that U is an upper bound

on the optimal objective value of the considered instance with

B/2 ≤ U ≤ B/(1 + ε). (3.2.3)

The items i = 1, . . . , n are partitioned according to their b-values into so-called large items

that satisfy U < bi, into medium items that satisfy εU < bi ≤ U , and into small items

that satisfy bi ≤ εU . We denote by L, M , S respectively the set of large, medium, small

items. Furthermore a medium item i belongs to class Ck, if it satisfies

kε2U ≤ bi < (k + 1)ε2U.

Note that only classes Ck with 1/ε ≤ k ≤ 1/ε2 play a role in this classification. By (3.2.3)

the overall size of 2/ε medium items exceeds the capacity of the follower’s knapsack.

Hence the follower can fit at most 2/ε medium items into her knapsack.
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In the following we will analyze two scenarios. In the first scenario, the solution x∗

used by the leader and the solution y∗ for the follower both will carry a superscript∗.

The sets of large, medium, small items packed by x∗ into the leader’s knapsack will be

denoted respectively by L∗x, M
∗
x , S∗x, and the corresponding sets for y∗ and the follower

will be denoted L∗y, M
∗
y , S∗y . In the second scenario we use analogous notations with the

superscript#. The first scenario is centered around an optimal solution x∗ for the leader.

The second scenario considers another feasible solution x# for the leader that we call the

aligned version of x∗.

• Solution x# packs all large items into the knapsack; hence L#
x = L.

• Solution x# packs the following medium items from class Ck (note that M#
x ⊆M∗

x):

(i.) If |Ck −M∗
x | ≤ 2/ε, then solution x# packs all items in M∗

x ∩ Ck.
(ii.) If |Ck −M∗

x | > 2/ε, then x# packs an item i ∈M∗
x ∩ Ck if and only if there are

at most 2/ε items j ∈ Ck −M∗
x with smaller b-value bj ≤ bi. (By this choice,

the 2/ε items with smallest b-value in Ck −M∗
x coincide with the 2/ε items

with smallest b-value in Ck −M#
x .)

• For the small items we first determine a (1+ε)-approximate solution to the following

auxiliary problem (Aux): find a subset Z ⊆ S of the small items that minimizes

b(Z), subject to the covering constraint a(Z) ≥ a(L#
x ∪M#

x ) + a(S) − A. Solution

x# then packs the complementary set S#
x = S − Z.

This completes the description of x#, which is easily seen to be a feasible action for the

leader. Note that also the optimal solution x∗ packs all the large items, as otherwise the

follower may pack a large item and push the objective value above the bound U . Then

L#
x = L∗x and M#

x ⊆M∗
x imply a(L∗x ∪M∗

x) ≥ a(L#
x ∪M#

x ), which yields

A ≥ a(L∗x ∪M∗
x ∪ S∗x) ≥ a(L#

x ∪M#

x ) + a(S∗x). (3.2.4)

As a(S∗x) = a(S) − a(S − S∗x), we conclude from (3.2.4) that the set S − S∗x satisfies the

covering constraint in the auxiliary problem (Aux). Hence, the optimal objective value of

(Aux) is upper bounded by b(S − S∗x), and any (1 + ε)-approximate solution Z to (Aux)

must satisfy b(Z) ≤ (1 + ε) b(S − S∗x), which is equivalent to

b(S − S#

x ) ≤ (1 + ε) b(S − S∗x). (3.2.5)

The following lemma demonstrates that the aligned solution x# is almost as good for the

leader as the underlying optimal solution x∗.

Lemma 3.2.7. Given an optimal solution (x∗, y∗) with f3(x∗, y∗) ≤ U , let x# be the

solution aligned to x∗. If the leader uses x#, then every feasible reaction y# for the

follower yields an objective value f3(x#, y#) ≤ (1 + 2ε)U .
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Proof. Suppose for the sake of contradiction, that there exists a reaction y# for the follower

that yields an objective value of f3(x#, y#) > (1 + 2ε)U . Based on y# we will construct

another solution y∗ for the follower:

• Solution y∗ does not use any large item; hence L∗y = ∅.
• Solution y∗ picks the same number of items from every class Ck as y# does. It

avoids items in x∗ and selects the |Ck∩M#
y | items in Ck−M∗

x that have the smallest

b-values.

• Finally we add small items from S − S∗x to the follower’s knapsack, until no further

item fits or until we run out of items.

Solution y# packs at most 2/ε medium items, and hence uses at most 2/ε items from Ck.
By our choice of medium items for x# we derive b(Ck ∩M∗

y ) ≤ b(Ck ∩M#
y ) for every k,

which implies

b(M∗
y ) ≤ b(M#

y ) ≤ B. (3.2.6)

Solution y∗ only selects items that are not used by x∗, and inequality (3.2.6) implies that

all the selected items indeed fit into the follower’s knapsack. Hence, y∗ constitutes a

feasible reaction of the follower if the leader chooses x∗.

Next, let us quickly go through the item types. First of all, neither solution y∗ nor solution

y# can use any large item, so that we have

b(L∗y) = b(L#

y ) = 0. (3.2.7)

For the medium items, the ratio between the smallest b-value and the largest b-value in

class Ck is at least k/(k+ 1) ≥ 1− ε. Hence, we certainly have b(Ck ∩M∗
y ) ≥ (1− ε) b(Ck ∩

M#
y ), which implies

b(M∗
y ) ≥ (1− ε) b(M#

y ). (3.2.8)

Let us turn to the small items. Suppose that y∗ cannot accommodate all small items

from S − S∗x in the follower’s knapsack. Then some small item i with bi < εU does not

fit, which with (3.2.3) leads to b(y∗) > B − εU ≥ U . As this violates our upper bound

U on the optimal objective value, we conclude that y∗ accommodates all such items and

satisfies S∗y = S − S∗x. This relation together with (3.2.5) and the disjointness of the sets

S#
x and S#

y yields

b(S∗y) = b(S − S∗x) ≥
b(S − S#

x )

1 + ε
≥ b(S#

y )

1 + ε
> (1− ε) b(S#

y ). (3.2.9)

Now let us wrap things up. If the leader chooses x∗, the follower may react with the
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feasible solution y∗ and get an objective value

f3(x∗, y∗) = b(L∗y) + b(M∗
y ) + b(S∗y)

> (1− ε) b(L#

y ) + (1− ε) b(M#

y ) + (1− ε) b(S#

y )

= (1− ε) f3(x#, y#) > (1− ε)(1 + 2ε)U > U.

Here we used the estimates in (3.2.7), (3.2.8), and (3.2.9). As this objective value violates

the upper bound U , we have reached the desired contradiction.

Lemma 3.2.8. Given an upper bound U on the objective value that satisfies (3.2.3),

one can compute in polynomial time a feasible solution x for the leader, such that every

reaction y of the follower has f3(x, y) ≤ (1 + ε)3 U .

Proof. If we did not only know the bound U but also an optimal solution x∗, then we

could simply determine the corresponding aligned solution x# and apply Lemma 3.2.7.

We will bypass this lack of knowledge by checking many candidates for the set M#
x . Let

us recall how the aligned solution x# picks medium items from class Ck.

• If |Ck −M∗
x | ≤ 2/ε then M#

x ∩ Ck = M∗
x ∩ Ck. Note that there are only O(|Ck|2/ε)

different candidates for M#
x ∩ Ck.

• If |Ck −M∗
x | > 2/ε then M#

x ∩ Ck is a subset of M∗
x ; an item i from M∗

x ∩ Ck enters

M#
x if there are at most 2/ε items j ∈ Ck −M∗

x with bj ≤ bi. Note that M#
x ∩ Ck is

fully determined by the 2/ε items with smallest b-value in Ck −M∗
x . As there are

only O(|Ck|2/ε) ways for choosing these 2/ε items, there are only O(|Ck|2/ε) different

candidates for M#
x ∩ Ck.

Altogether there are only O(|Ck|2/ε) ways of picking the medium items from class Ck.
As every class satisfies |Ck| ≤ n and as there are only 1/ε2 classes to consider, we get

a polynomial number O(n2/ε3) of possibilities for choosing the set M#
x in the aligned

solution. Summarizing, we only need to check a polynomial number of candidates for set

M#
x .

How do we check such a candidate M#
x ? The aligned solution always uses L#

x = L,

and the auxiliary problem (Aux) is fully determined once M#
x and L#

x have been fixed.

We approximate the auxiliary problem by standard methods (see for instance Pruhs and

Woeginger [108]), and thus also find the set S#
x in polynomial time. This yields the

full corresponding aligned solution x#. It remains to verify the quality of this aligned

solution for the leader, which amounts to analyzing the resulting knapsack problem at

the follower’s level. We use one of the standard approximation schemes for knapsack as

for instance described by Lawler [80], and thereby get a (1 + ε)-approximate solution for

the follower’s problem.
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While checking and scanning through the candidates, we eventually must hit a good

candidate M#
x that yields the correct aligned version x of an optimal solution. By

Lemma 3.2.7 the corresponding objective value f3(x, y) is bounded by (1 + 2ε)U . Then

the approximation scheme finds an objective value of at most (1+ε)(1+2ε)U ≤ (1+ε)3U .

This completes the proof of the lemma.

How do handle the boundary cases. Finally let us discuss the remaining cases

where U does not satisfy the bounds in (3.2.3). The first case U > B/(1 + ε) is trivial, as

the objective value never exceeds the follower’s knapsack capacity B; hence in this case

the objective value will always stay below (1 + ε)U . The second case U < B/2 is settled

by the following lemma.

Lemma 3.2.9. Given an upper bound U < B/2 on the objective value, one can compute

in polynomial time a feasible solution x for the leader, such that every reaction y of the

follower has f3(x, y) ≤ (1 + ε)U .

Proof. If the objective value is below B/2, then the leader must pick all items i with

bi ≥ B/2; otherwise the follower could pick one and push the objective value to B/2 or

more. Once the leader has chosen her solution x, all remaining items will fit into the

follower’s knapsack: the knapsack has free capacity of at least B − U > B/2, and hence

every item i with bi < B/2 will fit there.

With these observations, the goal of the leader boils down to the following: partition

the item set into two parts Zl and Zf such that the value b(Zf ) is minimized subject

to the condition that the items in Zl altogether fit into the leader’s knapsack. This

minimization problem belongs to the class of subset selections problems studied by Pruhs

and Woeginger [108]: determine a subset Zf of items that has minimum cost b(Zf ) subject

to the feasibility constraint that the total size of all items outside Zf is at most the size of

the leader’s knapsack. This subset selection problem can be solved in pseudopolynomial

time by routine dynamic programming; the resulting time complexity is bounded in B,

in n, and in the logarithm of A. With this, Theorem 1.2 in [108] yields the existence of

an approximation scheme which yields the desired solution x for the leader.

3.2.4 Summary

We have analyzed the computational complexity of three bilevel knapsack problems from

the literature. All three problems DeRi, MACH, DNeg turn out to be Σp
2-complete

under the standard binary encoding of the input. Our results provide strong evidence
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that bilevel knapsack problems cannot be formulated as a classical single-level integer

problem of polynomial size; otherwise the entire polynomial hierarchy would collapse to

its first level which is considered to be extremely unlikely in the area of computational

complexity theory. Furthermore, we have settled the complexity of these three bilevel

knapsack problems under unary encodings of the input: unary-DeRi and unary-MACH

are polynomially solvable, whereas unary-DNeg is NP-complete. Finally, we studied the

approximability of the three problems. DeRi and MACH turned out to be inapproximable,

whereas DNeg has a polynomial time approximation scheme.

Our investigations provide a complete and clean picture of the complexity landscape of

the considered bilevel knapsack problems. We expect that our results will also be useful

in classifying and understanding other bilevel problems, and that our hardness proofs will

serve as stepping stones for future results.

3.3 Bilevel Knapsack with Interdiction Constraints

In this section, we will investigate a more general version of the bilevel knapsack variant

defined in Section 3.1.3 which can be modeled through the following bilevel formulation:

(DNeg) min
(x,y)∈{0,1}n×{0,1}n

n∑

i=1

biyi (3.3.1a)

s. t.
n∑

i=1

aixi ≤ A (3.3.1b)

where y1, . . . , yn solves the follower’s problem

max
y∈{0,1}n

n∑

i=1

biyi s.t.
n∑

i=1

wiyi ≤ B and (3.3.1c)

yi ≤ 1− xi for i = 1, . . . , n, (3.3.1d)

where x and y are the binary decision vectors controlled by the leader and the follower,

respectively. Since it is in fact this general version that was originally suggested in the

PhD thesis of DeNegre [41], we keep the label DNeg to designate it. Without loss of

generality, we will throughout make the following three assumptions:

bi, ai, wi, A and B are positive integers (3.3.2)

ai < A and wi < B for all i (3.3.3)

n∑

i=1

ai > A and
n∑

i=1

wi > B. (3.3.4)
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In addition to our methodological motivation, DNeg can model a real-world application,

called Corporate Strategy problem which is described in [41]: a Company B wishes to

determine its marketing strategy for the upcoming fiscal year. Company B has to decide

which demographic or geographic regions to target, subject to a specified marketing

budget. There exists a cost to establish a marketing campaign for each target region

and an associated benefit. Company B’s goal is to maximize its marketing benefit. The

larger Company A has market dominance; whenever Company A and Company B target

the same region, Company B is unable to establish a worthwhile marketing campaign. In

other words, Company A can interdict regions for the marketing problem to be solved by

Company B.

Our goal is to end up with an algorithm to find the exact optimal solution. In Section 3.3.1,

we review the algorithmic approaches to bilevel knapsack variants highlighting the diffi-

culties that general MIBP methods encounter when solving DNeg and then propose one

straightforward scheme for problem DNeg. In Section 3.3.2, we devise our algorithm for

DNeg which is the central contribution in this section. Section 3.3.3 presents the compu-

tational results for our algorithm when applied on new randomly generated instances and

on instances from the literature.

3.3.1 Knapsack Bilevel Algorithms

Brotcorne et al. [18] consider a bilevel knapsack problem in which the decision of the

leader only modifies the budget available for the follower. The algorithm in [18] may

be summarized as follows: compute an upper bound for the follower’s budget, by ignor-

ing the resources consumed by the leader; solve the follower’s 0–1 KP considering this

budget bound through the standard knapsack dynamic programming approach (see for

instance [86]). More precisely, the best follower’s reactions for all her possible budgets

from 0 to the bound are computed. (Note that in this case, different decisions of the leader

may yield the same subproblem for the follower.) With this, the authors are able to define

the follower’s best reaction set for any fixed leader’s decision through linear constraints,

reducing the problem to single-level. If we mimic this procedure for problem DNeg, we

would have to consider all the leader’s interdictions that imply different reactions of the

follower. However, in this case for every possible decision of the leader, the follower’s

KP is modified in terms of the (not interdicted) items available and not in terms of her

budget. Since different decisions of the leader always yield different problems for the

follower, the number of lower level subproblems for the follower grows with the number

2n of item subsets and hence is exponential. In short, this is the reason why the methods
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developed in [18] cannot be applied to DNeg.

Yet another bilevel knapsack variant occurs in the work of Chen and Zhang [22], where

the leader’s decision only interferes with the follower’s objective function, but not with

the follower’s feasible region. This variant is computationally much easier, since the

leader wants to maximize the social welfare (total profit) that leads to a coordination and

alignment of the leader’s and the follower’s interests.

Next, we focus in the general MIBP algorithms when applied to DNeg. As mentioned

in Section 2.3.1.1, these methods adapt the Branch-and-Bound techniques for single level

optimization to the bilevel case. In the root node, the high-point problem is solved

which in the case of being applied to DNeg has an optimal value of zero, and hence

does not provide an interesting lower bound for solving DNeg. Under this approach,

the method continues by standard variable branching, and once a node has an integer

solution verify its bilevel feasibility (which amounts to solving a KP for the follower).

A bilevel feasible solution represents an upper bound and therefore helps to prune some

nodes. Unfortunately, for all possible leader’s decisions the high-point problem may have

its optimum equal to zero if y = 0 (thus, these nodes are not pruned), meaning that the

method would enumerate all the possible leader’s decisions. Note, that the number of

feasible leader’s solutions is Θ (2n), so that this all boils down to a standard brute force

approach.

DeNegre [41] considers interdiction problems, and constructs a Branch-and-Cut scheme

by adding some new ingredients to the basic method. (In [41] the disjunction is stated for

the general interdiction problems, but for sake of clarity, we explicitly show it here for the

DNeg problem.) Consider a node t where the optimal solution (xt, yt) is integer but not

bilevel feasible (that is, the best follower’s reaction to xt is ŷ with
∑n

i=1 biŷi >
∑n

i=1 biy
t
i).

In such a node t, the method either adds valid inequalities (cuts) such that xt becomes

infeasible (the so-called nogood cuts), or exploits the interdiction structure of the problems

by branching on the following disjunction: either the leader packs a set of items such that∑
i:xti=0 xi ≥ 1 or the leader packs a set of items such that

∑
i:xti=0 xi ≤ 0 and the follower

has a profit
∑n

i=1 biyi ≥
∑n

i=1 biŷi. In Section 3.3.2, we will build a method that uses this

disjunction idea to solve DNeg, but in a more sophisticated and efficient way.

Hemmati et al. [65] proposed a cutting plane scheme for an interdiction problem in the

context of networks. Next, we describe a natural cutting plane approach to solve DNeg

exactly. The ideas of this approach will be an ingredient of our algorithm that will be

stated in Section 3.3.2.
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Cutting plane approach Problem DNeg is equivalent to the following single-level

linear optimization problem:

(BKP ) min
(p,x)∈R×{0,1}n

p (3.3.5a)

subject to
n∑

i=1

aixi ≤ A (3.3.5b)

p ≥
n∑

i=1

yibi (1− xi) ∀y ∈ S (3.3.5c)

Here S is the collection of all feasible packings for the follower. As the size of S isO (2n), the

use of the cutting plane approach is the standard method to apply; see Algorithm 3.3.1.1.

In Algorithm 3.3.1.1, the function BestReaction receives as input the leader’s decision xk

from the optimal solution of a BKP with S, and computes a rational reaction y
(
xk
)

for

the follower, that is, the KP optimum to interdiction xk.

Note that this type of single-level reformulation works for all interdiction problems where

the lower level optimization problem can be replaced by a set of constraints explicitly

taking into account all possible reactions to the leader’s strategy. Note furthermore that

this reformulation is exponential in size.

Algorithm 3.3.1.1 CP- Cutting Plane Approach

Input: An instance of DNeg.

Output: Optimal value and an optimal solution to DNeg.

1: k ← 1

2: Initialize S (e.g., with the best follower’s reaction when there is no interdiction)

3: Let
(
pk, xk

)
be an optimal solution to BKP with S

4: y(xk)← BestReaction
(
xk
)

5: while pk <
n∑

i=1

biyi(x
k) do

6: Add constraint p ≥
n∑

i=1

yi(x
k)bi (1− xi) to BKP // update S

7: k ← k + 1

8: Solve BKP and let
(
pk, xk

)
be the optimal solution

9: y(xk)← BestReaction
(
xk
)

10: end while

11: return p,
(
xk, y(xk)

)
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3.3.2 CCLW Algorithm: a Novel Scheme

Motivated by the previous section, we propose a new approach to tackle DNeg. The

algorithm initialization is studied by computing an upper bound for DNeg. Then, we

will construct a naive iterative method for solving DNeg exactly. This basic scheme will

be enhanced through a sequence of improvements in what follows. One such improvement

takes into account the ideas of the cutting plane approach presented in the previous

section, thus mixing the advantages of this method with ours.

An Upper bound for DNeg. The unsuccessful search for dual lower bounds in bilevel

optimization motivated us to try a completely different approach, which first computes a

primal upper bound. In practice, this approach is very effective and enabled us to quickly

find an optimal solution in almost all our experiments.

The following theorem formulates the first upper bound for DNeg that our algorithm com-

putes. The underlying idea is simple: the set of follower’s feasible strategies is extended

(through the continuous relaxation of her optimization program) and, consequently, the

follower’s profit is greater than or equal to the one obtained with the original set of

strategies. This provides an upper bound to DNeg.

Theorem 3.3.1. The optimal solution value of the following continuous bilevel formula-

tion provides an upper bound on the optimal solution value of problem DNeg:

(UB) min
(x,y)∈{0,1}n×[0,1]n

n∑

i=1

biyi (3.3.6a)

s. t.
n∑

i=1

aixi ≤ A (3.3.6b)

where y1, . . . , yn solves the follower’s problem

max
y∈[0,1]n

n∑

i=1

biyi s.t.
n∑

i=1

wiyi ≤ B and (3.3.6c)

yi ≤ 1− xi for i = 1, . . . , n (3.3.6d)

Proof. The follower’s problem (3.3.6c)-(3.3.6d) is a relaxation of problem (3.3.1c)-(3.3.1d)

since the binary requirement on the variables y is removed. Therefore, given any fixed

leader’s interdiction x, the optimal value of problem (3.3.6c)-(3.3.6d) is greater or equal

than the optimal value of problem (3.3.1c)-(3.3.1d) and thus, provides an upper bound.

To complete the proof note that problems DNeg and UB both are always bilevel feasible

which implies that UB always provides an upper bound to DNeg.
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From the last proof, it is easy to see that an analogous result holds for any (general)

min-max MIBP. Our motivation for introducing UB is that it can be written as a single-

level MIP, thus leading to the possibility of applying effective solution methods as well as

reliable software tools.

Theorem 3.3.2. The bilevel problem UB is equivalent to the following:

(MIP 1) min
x∈{0,1}n,z∈[0,∞)n+1,u∈[0,∞)n

z0B +
n∑

i=1

ui (3.3.7a)

s. t.
n∑

i=1

aixi ≤ A (3.3.7b)

ui ≥ 0 for i = 1, . . . , n (3.3.7c)

ui ≥ zi − bixi for i = 1, . . . , n (3.3.7d)

wiz0 + zi ≥ bi for i = 1, . . . , n. (3.3.7e)

Proof. The two main ingredients of our proof are the use of duality theory (presented in

Section 2.2) and the convex relaxation by McCormick [89].

The follower’s optimization problem (continuous relaxation of her KP) is feasible and

bounded for any x. Hence, it always has an optimal solution. In this way, according to

the strong duality principle (Property 2.2.2), we can write the single-level formulation

equivalent to UB in the following way:

min
x∈{0,1}n,z∈[0,∞)n+1,y∈[0,1]n

n∑

i=1

biyi (3.3.8a)

s. t.
n∑

i=1

aixi ≤ A (3.3.8b)

z0B +
n∑

i=1

(1− xi) zi =
n∑

i=1

biyi (3.3.8c)

n∑

i=1

wiyi ≤ B (3.3.8d)

xi + yi ≤ 1 for i = 1, . . . , n (3.3.8e)

wiz0 + zi ≥ bi for i = 1, . . . , n, (3.3.8f)

where the new variables zi are the dual variables of the follower’s continuous relaxation

problem.
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Note that we can further simplify the above formulation by removing the decision vector y,

min
x∈{0,1}n,z∈[0,∞)n+1

z0B +
n∑

i=1

(1− xi) zi (3.3.9a)

s. t.
n∑

i=1

aixi ≤ A (3.3.9b)

wiz0 + zi ≥ bi for i = 1, . . . , n (3.3.9c)

Let us clarify this equivalence. Observe that any feasible solution (x∗, z∗, y∗) of (3.3.8)

implies that (x∗, z∗) is feasible for (3.3.9) and thus, (3.3.9) provides a lower bound to

(3.3.8). On the other hand, given any optimal solution (x∗, z∗) of (3.3.9), we may consider

x∗ fixed in the follower’s continuous relaxation problem and obtain an associated primal

optimal solution y∗. This ensures that (x∗, z∗, y∗) is feasible to (3.3.8) and, in particular,

optimal.

Finally, the bilinear terms xizi are linearized by adding the extra variables ui = (1− xi) zi
and the associated McCormick constraints (3.3.7c) and (3.3.7d).

Before showing how the solution of MIP 1 will be used to obtain an algorithm for problem

DNeg, it is worth noting that UB can be alternatively written as

min
(x,y)∈{0,1}n×[0,1]n

n∑

i=1

biyi (1− xi)

s. t.
n∑

i=1

aixi ≤ A

where y1, . . . , yn solves the follower’s problem

max
y∈[0,1]n

n∑

i=1

biyi (1− xi) s.t.
n∑

i=1

wiyi ≤ B.

It is easy to verify that this is a reformulation of UB (same optimal solution value) and,

that for any fixed vector x we can use strong duality to obtain an equivalent single-level

optimization problem. Indeed, for any fixed vector x, the interdiction constraints are

embedded into the objective function, by setting to 0 the profit of all interdicted items.

The advantage of this reformulation is that no variables of the leader do appear in the

right hand side of the follower’s constraints, which implies that there are no bilinear terms

in its dual. However, in practice the reformulation does not have a significant impact on

the computation times.

So far, we have built a Mixed Integer Linear Problem MIP 1 to compute an upper bound

on DNeg. The first step of our algorithm is to solve MIP 1 to optimality and to obtain
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Figure 3.3.1: Illustration of the upper bounds to DNeg, where (x∗, y∗) is an optimal

solution to DNeg, (x1, y1) is an optimal solution to MIP 1 and (x1, y (x1)) is the

corresponding bilevel feasible solution.

the leader’s decision vector x1. This then is followed by solving the following KP, which

is the follower’s best reaction to x1:

(KP 1) max
y∈{0,1}n

n∑

i=1

biyi (3.3.11a)

s. t.
n∑

i=1

wiyi ≤ B (3.3.11b)

yi ≤ 1− x1
i for i = 1, . . . , n, (3.3.11c)

Let y (x1) be an optimal solution of KP 1. Then
∑n

i=1 biyi (x
1) is our new upper bound.

Figure 3.3.1 provides a pictorial illustration of the relationships between these solutions.

We will see in Section 3.3.3 that on our randomly-generated test instances, (x1, y (x1))

provides a very tight approximation of the optimal solution value to DNeg. Before

continuing, we note that if in the optimal solution of UB the follower’s vector y is binary,

then that solution is bilevel feasible but not necessarily optimal for DNeg.

Example 3.3.3. Consider an instance with 3 items where

b = (4, 3, 3) , a = (2, 1, 1) , w = (4, 3, 2) , A = 2 and B = 4.

It is easy to check that the optimal solution for UB is binary with x = (0, 1, 1) and

y = (1, 0, 0) with value 4. However, the optimal solution for DNeg has x = (1, 0, 0) and

y = (0, 1, 0) (or y = (0, 0, 1)) with value 3. Indeed, when x = (1, 0, 0) and the follower

has the possibility of packing fractions of items, then the follower’s reply is y =
(
0, 2

3
, 1
)

with value 5.

Iterative method. The basic scheme to solve problem DNeg is given by Algo-

rithm 3.3.2.1. It consists of iteratively computing upper bounds by solving, at each

iteration k, the MIP proposed in the previous section amended by a nogood constraint
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(NG0) that forbids the leader to repeat her last strategy xk−1 (see for instance [7] or [31]):

∑

i:xki =1

(1− xi) +
∑

i:xki =0

xi ≥ 1. (3.3.12)

In this way, essentially the leader’s strategies are enumerated until the last MIP is proven

infeasible.

Algorithm 3.3.2.1 Basic Iterative Method

Input: An instance of DNeg.

Output: Optimal value and an optimal solution to DNeg.

1: k ← 1; BEST ← +∞;

2: Build MIP k

3: while MIP k is feasible do

4: xk ← arg min{MIP k}
5: y

(
xk
)
← BestReaction

(
xk
)

// solves the follower’s KP by fixing xk

6: if
∑n

i=1 biyi
(
xk
)
< BEST then

7: BEST ←∑n
i=1 biyi

(
xk
)
;

8:
(
xBEST , yBEST

)
←
(
xk, y

(
xk
))

9: end if

10: MIP k+1 ← add (NG0) in xk to MIP k

∑

i:xki =1

(1− xi) +
∑

i:xki =0

xi ≥ 1

11: k ← k + 1

12: end while

13: OPT ← BEST ;
(
xOPT , yOPT

)
←
(
xBEST , yBEST

)
;

14: return OPT,
(
xOPT , yOPT

)

In Algorithm 3.3.2.1, as in Algorithm 3.3.1.1, function BestReaction receives as input

the leader’s decision xk from the optimal solution of an MIP k, and computes a rational

reaction y
(
xk
)

for the follower, that is, the KP optimum to interdiction xk. It is easy

to see that Algorithm 3.3.2.1 finds an optimal solution to DNeg. However, it is a very

inefficient process and a number of improvements can be applied to make it more effective

both in theory and in practice. More precisely, we will propose several improvements

that lead to an enhanced and substantially faster version of Algorithm 3.3.2.1; this final

version is presented in the end of this section.

Throughout the paper we use the notation of Algorithm 3.3.2.1. The leader interdiction

computed in iteration k is denoted by xk, the follower’s optimal solution to xk is denoted by
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y(xk), BEST and (xBEST , yBEST ) are the minimum value and associated solution among

all bilevel feasible values computed up to iteration k, and OPT and (xOPT , yOPT ) are

DNeg optimal value and associated solution. Denote by yk the follower’s optimal relaxed

solution to xk which, although not used from the algorithmic point of view, theoretically,

it will play an important role.

Strengthening the Nogood Constraints. Let us first concentrate on strengthening

the nogood constraints.

A feasible strategy xk for the leader is maximal, if @j ∈ {i : xki = 0} such that
∑n

i=1 aix
k
i +

aj ≤ A. A strategy for the leader is maximal, if she does not have enough budget left

to pick more items. A maximal strategy dominates an associated non-maximal strategy,

since it leaves the follower with a smaller set of options: at least one further item cannot

be taken by the follower due to the interdiction constraints. Algorithm 3.3.2.2 takes a not

necessarily maximal strategy and turns it into a maximal one.

Algorithm 3.3.2.2 MakeMaximal

Input: An instance of DNeg and a leader’s feasible solution xk of it.

Output: A leader’s maximal feasible solution containing the items of the input xk.

1: Residual← A−∑n
i=1 aix

k
i

2: i← 1

3: while i ≤ n and Residual > 0 do

4: if xki = 0 and Residual − ai ≥ 0 then

5: Residual← Residual − ai
6: xki ← 1

7: end if

8: i← i+ 1

9: end while

10: return xk

Once a strategy xk for the leader and its corresponding bilevel solution
(
xk, y

(
xk
))

have

been evaluated, there is no need to keep xk feasible, because we want to concentrate in new

bilevel feasible solutions potentially decreasing the follower’s profit. If xk is a maximal

strategy for the leader, then
∑

i:xki =0 xi ≥ 1 is called a strong maximal constraint (NG1).

It is easy to see that a NG1 constraint dominates a NG0 one when both are associated

with the same leader interdiction.

The strong maximal constraints can be strengthened further in the following way. Let(
xk, y

(
xk
))

denote a bilevel feasible solution for DNeg. There is no point in generating
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new solutions for the leader where the set of items picked by the follower in y
(
xk
)

is

available, as the follower would have a profit at least as high as the previous one. If xk

is a maximal strategy for the leader, then
∑

i:yi(xk)=1 xi ≥ 1 is called a nogood constraint

for the follower (NG2).

It is easy to see that given a maximal strategy for the leader, the corresponding strong

maximal constraint is dominated by the associated nogood constraint for the follower, as

yi
(
xk
)

= 1 implies xki = 0. If
(
xk, y(xk)

)
is not the optimal solution of DNeg then, under

the strategy y(xk), the follower is packing an item interdicted in any optimal solution.

This establishes the validity of the nogood constraints for the follower.

Thus, at each iteration k of the algorithm in which the (standard) nogood cuts are replaced

by the follower’s nogood cuts, either an optimal solution has already been obtained or

any optimal strategy for the leader satisfies all the follower’s nogood constraints already

added. This shows the correctness of the substitution of (standard) nogood with follower’s

nogood constraints.

A further strengthening of the follower’s nogood constraints can be achieved by paying

close attention to the cutting plane approach described in Section 3.3.1.

Theorem 3.3.4. Consider an iteration k of Algorithm 3.3.2.1. If BEST is not the

optimal value of problem DNeg, then there is an optimal admissible interdiction x∗ for the

leader such that
n∑

i=1

biyi (1− x∗i ) ≤ BEST − 1 ∀y ∈ {0, 1}n such that
n∑

i=1

wiyi ≤ B. (3.3.13)

Proof. Let (x∗, y∗) be an optimal solution of DNeg. Then

n∑

i=1

yibi (1− x∗i ) ≤
n∑

i=1

biy
∗
i ∀y :

n∑

i=1

wiyi ≤ B.

Moreover, if BEST at iteration k is not an optimal value of DNeg, then
∑n

i=1 biy
∗
i ≤

BEST − 1.

With the help of Theorem 3.3.4, it is easy to derive the following new type of valid

constraints, to be introduced in each iteration k to strengthen MIP k:

(NG3) cutting plane constraint
n∑

i=1

yi
(
xk
)
bi (1− xi) ≤ BEST − 1. (3.3.14)

In this way, whenever BEST is updated in the iterative procedure, also the right-hand-

sides of the previous cutting plane constraints are updated.
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It is easy to show that a cutting plane constraint dominates a follower’s nogood constraint

when associated with the same leader interdiction. Indeed, after solving MIP k in an

arbitrary iteration k, a best reaction of the follower to xk is computed and then it is

checked whether this leads to a better solution for DNeg. At that point, the following

inequality holds:
n∑

i=1

biyi
(
xk
)
≥ BEST.

Hence, in order to satisfy the associated cutting plane constraint

n∑

i=1

yi
(
xk
)
bi (1− xi) ≤ BEST − 1,

the leader must interdict at least one item packed with the strategy y
(
xk
)
.

Next, the general dominance of the cutting plane constraints over the remaining presented

ones is established.

Proposition 3.3.5. Consider Algorithm 3.3.2.1 amended by making the leader’s strategy

maximal (after step 4) (call it Algorithm0) and replacing the nogood constraint (step 10)

by

- Algorithm1: the strong maximal constraint;

- Algorithm2: the follower’s nogood constraint;

- Algorithm3: the cutting plane constraint.

Assume that if in an iteration k, Algorithm2 and Algorithm3 have a common optimal

interdiction xk then, both select xk and the same associated best reaction y(xk). Then,

for i = 1, 2, 3, Algorithmi returns the optimal solution after a number of iterations less or

equal than Algorithmi−1.

Proof. For Algorithmi denote as MIP k,i and F k,i the optimization problem MIP k and

the associated feasible region for the leader maximal interdictions at iteration k. Define

F k,i as equal to the empty set if Algorithmi had returned the optimal solution in a number

of iterations less or equal to k. Denote xk,i as the leader optimal solution to MIP k,i.

For each Algorithmi note that the purpose of each iteration k is to cut off non optimal

leader’s maximal interdictions, therefore it is enough to concentrate on the set F k,i. In

other words, it is sufficient to show that F k,i ⊆ F k,i−1 holds for any iteration k since

it directly implies that Algorithmi enumerates a less or equal number of bilevel feasible

solutions in comparison with Algorithmi−1. We will prove that this result holds for i = 1, 2

through induction in k.



82 CHAPTER 3. STACKELBERG COMPETITION: BILEVEL KNAPSACK

In the first iteration, k = 1, all algorithms solve the same MIP 1 and thus, F 1,2 = F 1,1 =

F 1,0.

Next, assume that Fm,i ⊆ Fm,i−1 holds for m = k. The induction hypothesis implies that

the optimal solution value of MIPm,i−1 is a lower bound to MIPm,i.

Recall that we have argued before that for the same leader interdiction: the nogood

constraint is dominated by the strong maximal constraint; the strong maximal constraint

is dominated by the follower’s nogood constraint.

By contradiction, suppose that Fm+1,i 6⊆ Fm+1,i−1. This implies the existence of x ∈
Fm+1,i such that x /∈ Fm+1,i−1. Since Fm+1,i ⊂ Fm,i ⊆ Fm,i−1, then x ∈ Fm,i−1.

Therefore, x only violates the additional constraint of Fm+1,i−1 associated with Fm,i−1.

This is only possible if x is the optimal solution of MIPm,i−1. Because MIPm,i−1 provides

a lower bound to MIPm,i and x ∈ Fm,i, x is the optimal solution of MIPm,i. However,

this means that x will be cut off from Fm,i and thus x /∈ Fm+1,i, leading to a contradiction.

It remains to prove that Algorithm3 finishes in a number of iterations less or equal than

Algorithm2. To this end the following assumption is necessary.

As mentioned before, in the first iteration MIP 1,2 = MIP 1,3 and thus, by the proposition

assumption, y(x1,2) = y(x1,3). This fact, implies that MIP 2,2 = MIP 2,3 since BEST =∑n
i=1 piyi(x

1,2) means that the NG3 constraint is equivalent to NG2 with respect to

y(x1,2). Moreover, y(x2,2) = y(x3,2) and, consequently, the associated NG3 constraint

dominates NG2. We conclude that F 3,3 ⊆ F 3,2. At this point, Algorithm3 has advantage

over Algorithm2 because the set of interdictions F 3,3 is at most as large as F 2,3. Note that

if there is an iteration k ≥ 3 such that y(xk,3) 6= y(xk,2) then, Algorithm3 is reducing the

set of feasible interdictions through NG3 associated with y(xk,3) and Algorithm3 might

end up computing y(xk,2) latter on in an iteration m > k which shows that Algorithm3

progresses more or as fast as Algorithm2.

We conclude this series of cut improvements with two observations. First, the im-

provements described above are purely based on the fact that we are dealing with an

interdiction problem. Hence, any type of interdiction problem for which we can prove an

adaptation of Theorem 3.3.2 can be attacked by the basic iterative method with cutting

plane constraints. Secondly, all constraints described so far depend solely on the decision

variables of the leader. Therefore, the statement of Theorem 3.3.2 also applies to all

improvements, and each MIP k is equivalent to a bilevel optimization problem in which

the follower solves a relaxed knapsack problem.
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Stopping Criteria. Our next goal is to add a condition for the whole algorithm to

stop. Let bmax = max
i=1,...,n

bi.

Proposition 3.3.6. At an iteration k of the Basic Iterative Method, BEST cannot be

decreased in the current and forthcoming iterations if

n∑

i=1

biy
BEST
i + bmax ≤

n∑

i=1

biy
k
i .

Proof. Let OPT be the optimal value to DNeg and assume that the proposition condition

holds. For any leader’s optimal solution x∗, Corollary 2.2.8 implies that the optimal value

of the follower’s continuous knapsack with interdiction x∗ lies within the interval

[OPT,OPT + bmax] . (3.3.15)

Because yBEST is the follower’s strategy corresponding to the best solution computed up

to iteration k, obviously,

n∑

i=1

biy
BEST
i + bmax ≥ OPT + bmax.

Then
∑n

i=1 biy
k
i is not in the range (3.3.15) which implies that xk is not an optimal inter-

diction. Furthermore, since the optimal value of the MIP s is monotonically increasing

with the algorithm iterations, none of the upcoming iterations returns a leader’s optimal

solution.

In other words, the quantity bmax is an upper bound on the amount by which the

continuous solution value of any follower’s reaction can decrease. If
∑n

i=1 biy
k
i − bmax

is already bigger than the current incumbent solution value, then no further improvement

is possible since (of course)
∑n

i=1 biy
k+1
i ≥∑n

i=1 biy
k
i .

Saving some Knapsack Computations. In an iteration k of our algorithm, the

leader’s interdiction just built may lead to an improvement if the following necessary

condition holds. The following observation follows from Corollary 2.2.8.

Proposition 3.3.7. At an iteration k, the pair
(
xk, y

(
xk
))

does not decrease BEST if

n∑

i=1

biy
k
i − bckykck ≥

n∑

i=1

biy
BEST
i ,

where ck is the critical item for the follower’s continuous knapsack with interdiction xk.
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Thus, whenever the above condition is violated, we do not need to compute the best

reaction by solving the associated KP. Our next goal is to embed the condition of

Proposition 3.3.7 as a constraint inside MIP k. For that purpose, the following lemma

and theorem will be crucial. Lemma 3.3.8 follows from Corollary 2.2.8.

Lemma 3.3.8. Let xk be a leader’s interdiction. Then

n∑

i=1

biy
k −

n∑

i=1

biyi
(
xk
)
≤ bck .

Note that bck provides yet another upper bound on the value of the improvement due to

BestReaction. The following theorem makes the upper bound independent of the critical

item computation. Let wmax = max
i=1,...,n

wi.

Theorem 3.3.9. Let xk be a leader’s interdiction. Then, for the corresponding follower’s

relaxed rational reaction to xk there exists a dual solution that satisfies

zk0wmax ≥
n∑

i=1

biy
k
i −

n∑

i=1

biyi
(
xk
)
.

Proof. By Theorem 2.2.7, there exists a solution in which at most one entry of yk is not

binary in the relaxed best reaction to xk; furthermore, if such an entry does exist then its

value equals yk
ck

. By the complementary slackness Property 2.2.3, there is a corresponding

optimal dual solution with zk
ck

= 0. The ck dual constraint (3.3.8f) implies

zk0wck ≥ bck ⇒ zk0wmax ≥ zk0wck ≥ bck .

By using Lemma 3.3.8, we get

zk0wmax ≥ zk0wck ≥ bck ≥
n∑

i=1

biy
k −

n∑

i=1

biyi
(
xk
)
.

Otherwise, if all follower’s variables are binary

n∑

i=1

biy
k −

n∑

i=1

biyi
(
xk
)

= 0 ≤ zk0wmax,

because zk0 ≥ 0.

In order to use the upper bound derived above, the following proposition establishes yet

another necessary condition which is similar in spirit to Proposition 3.3.7.
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Proposition 3.3.10. At an iteration k, BEST will not decrease if

n∑

i=1

bibyki c > BEST − 1.

In other words, if we round down the relaxed rational reaction of the follower to the leader

strategy xk, then the resulting feasible solution for the follower has a profit strictly smaller

than the best bilevel feasible bound known. Because of Theorem 3.3.9

n∑

i=1

biy
k −

n∑

i=1

biyi
(
xk
)
≤

n∑

i=1

biy
k −

n∑

i=1

bibyki c ≤ bck ≤ zk0wmax,

and it is easy to see that also the following holds:

zk0B +
n∑

i=1

uki︷ ︸︸ ︷(
1− xki

)
zki −zk0wmax ≤ BEST − 1. (3.3.16)

The following theorem turns condition (3.3.16) into an inequality that can be added to

MIP k.

Theorem 3.3.11. In the end of iteration k, the strong cut

z0B +
n∑

i=1

ui − z0wmax ≤ BEST − 1,

is valid for MIP k+1.

Proof. The dual of the follower’s relaxed problem with the introduction of the strong cut

(and replacing ui) is

(Dual) minz≥0 z0B +
n∑

i=1

(
1− xki

)
zi (3.3.17a)

s. t. wiz0 + zi ≥ bi for 1 = 1, . . . , n. (3.3.17b)

z0B +
∑n

i=1

(
1− xki

)
zi − z0wmax ≤ BEST − 1, (3.3.17c)

and the follower’s relaxed problem is

(Primal) maxy≥0

n∑

i=1

yibi − (BEST − 1) yn+1 (3.3.18a)

s. t.
∑n

i=1 yiwi − (B − wmax) yn+1 ≤ B (3.3.18b)

yi −
(
1− xki

)
yn+1 ≤ 1− xki for i = 1, . . . , n. (3.3.18c)
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Essentially, we are dealing with a new item n+ 1 whose profit −(BEST − 1) and weight

−(B −wmax) are both negative. We will show that no optimal solution will use this new

item: then ykn+1 = 0 holds, and the above primal problem collapses to the previous KP

continuous relaxation for which the critical item exists. Hence, let us first ignore the new

item and solve the continuous knapsack as before. Let c be the critical item, and let S

be the set of (indices of) items that are fully taken. Then, clearly

∑
i∈S bi∑
i∈S wi

≥ bc
wc
.

Moreover, by Proposition 3.3.10 we may assume
∑

i∈S bi ≤ BEST −1. Finally
∑

i∈S wi ≥
B − wmax, as otherwise c would not be the critical item. Altogether, this yields

BEST − 1

B − wmax
≥
∑

i∈S bi∑
i∈S wi

≥ bc
wc
.

As the profit-to-weight ratio of the new item is at least as large as the profit-to-weight

ratio of the critical item and as profit and weight of the new item are negative, the new

item will not be used in an optimal solution.

In the next section we will show that this cut is crucial in practice, as it significantly

reduces the number of leader interdictions in the enumeration. This is the reason why the

iterative approach is currently superior to the cutting plane (CP) approach. It is relatively

easy to embed additional conditions to reduce the search space of the iterative approach,

whereas additional cutting planes to enhance CP seem difficult to be developed.

Pre-processing. For the approach developed so far, it is crucial to compute good

upper bounds to the profit and weight of the items that may act as critical item. We

describe a pre-processing routine that tightens these bounds and hence leads to a stronger

approach.

Recall that in this context we are dealing with the continuous relaxation of KP for the

follower. Suppose that the follower could pack all the items from 1 to c− 1 as illustrated

in Figure 3.3.2. Since the follower has incentive to fully pack the available items from 1

to c−1, these items can never be critical. Another interesting observation is that some of

the less valuable items for the follower are never packed by her and hence are not critical:

this occurs because the follower uses all her budget on the most valuable available items.

All in all, we are interested in computing a bound on the maximum follower’s weight

interdicted by the leader. This trivially can be achieved by solving the following relaxed



3.3. BILEVEL KNAPSACK WITH INTERDICTION CONSTRAINTS 87

ratio
1

w1 w2

2 . . .

wc

c . . .

wn

n

B

ratio
1

w1 w2

2 . . .

wc

c . . . t

wt

. . .

wn

n

B + b
∑n
i=1 wix

int
i c

Figure 3.3.2: Illustration of the follower’s preferences when her knapsack is relaxed: items

from 1 to c− 1 and from t+ 1 to n are never critical.

KP:

xint = arg maxx∈[0,1]n

n∑

i=1

wixi (3.3.19a)

s. t.
n∑

i=1

aixi ≤ A. (3.3.19b)

Therefore, the leader interdicts at most b∑n
i=1wix

int
i c of the total available weight of the

follower. It is easy to see from Figure 3.3.2 that the items from t+1 to n are never critical.

In conclusion, with t = min{j : B + b∑n
i=1 wix

int
i c ≤

∑j
i=1 wi} we have

bmax = max
i=c,...,t

bi and wmax = max
i=c,...,t

wi.

The running time of this pre-processing is O (n log n), and hence slightly more expensive

than the simple O (n) procedure by computing bmax and wmax by taking all n items.

We could improve these bounds even further by adding so-called sensitive intervals for

identifying the critical item candidates; see [18]. However, this comes at the cost of adding

more constraints to our MIPs. For that reason, we will apply this improvement only to

the very hard instances as explained in Section 3.3.3.

CCLW algorithm. Our main algorithm is summarized in Algorithm 3.3.2.3. For ease

of reference, we call it the Caprara-Carvalho-Lodi-Woeginger Algorithm (CCLW).
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Algorithm 3.3.2.3 CCLW

Input: An instance of DNeg.

Output: Optimal value and an optimal solution to DNeg.

1: Compute bmax, wmax according to the Pre-processing

2: k ← 1; BEST ← +∞;

3: Build MIP k

4: while MIP k is feasible do

5: xk ← arg min{MIP k}
6: if BEST + bmax ≤ Optimal value of MIP k

(
=
∑n

i=1 biy
k
i

)
then

7: STOP;

8: else

9: xk ←MakeMaximal
(
xk
)

10: y
(
xk
)
← BestReaction

(
xk
)

// solves the follower’s KP by fixing xk

11: if
∑n

i=1 biyi
(
xk
)
< BEST then

12: BEST ←∑n
i=1 biyi

(
xk
)
;

13:
(
xBEST , yBEST

)
←
(
xk, y

(
xk
))

14: MIP k+1 ← if k = 1 add strong cut

z0B +
n∑

i=1

ui − z0wmax ≤ BEST − 1,

otherwise update the right hand side of the strong cut and NG3s with BEST -1.

15: end if

16: MIP k+1 ← add NG3 in y
(
xk
)

to the MIP k :

∑

i:yi(xk)=1

bi (1− xi) ≤ BEST − 1

17: end if

18: k ← k + 1

19: end while

20: OPT ← BEST ;
(
xOPT , yOPT

)
←
(
xBEST , yBEST

)
;

21: return OPT ,
(
xOPT , yOPT

)
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3.3.3 Computational Results

In this section we computationally evaluate the algorithms from the preceding section in

two phases. First, we compare CCLW with CP. There we also discuss the importance

of the main ingredients of algorithm CCLW, as well as the structural difficulty of DNeg

instances with respect to our algorithms. Secondly, we compare CCLW with the results

of [41] and [42].

All algorithms have been coded in Python 2.7.2, and each MIP has been solved with

Gurobi 5.5.0. The experiments were conducted on a Quad-Core Intel Xeon processor at

2.66 GHz and running under Mac OS X 10.8.4.

Method Comparisons CP and CCLW will be compared against each other. Moreover,

we will discuss the structural difficulty of bilevel knapsack instances with respect to the

performance of CCLW.

Generation of instances. For building the follower’s data, we have used the knapsack

generator described in [86]; the profits bi and weights wi are taken with uncorrelated

coefficients from the interval [0, 100]. For each value n, 10 instances were generated;

these instances are available upon request. According to [86], the budget B is set to

d INS
11

∑n
i=1 wie for the instance number “INS”. The leader’s data, ai and A all were

generated by using Python’s random module; see [51]. In particular, ai and A were

chosen uniformly at random from [0, 100] and [B − 10, B + 10], respectively. Note that if

the leader’s budget is significantly smaller than the follower’s budget, then there are fewer

feasible solutions for the leader and the instance would be easier. On the other hand, if

the leader’s budget is significantly bigger than the follower’s budget, then all the items

may be packed by leader and follower together, and again the instance would be easier.

We will see below that CCLW is very efficient for these cases.

CP versus CCLW. In an attempt of asserting the importance of each ingredient of

algorithm CCLW, we performed some tests with its basic scheme (Algorithm 3.3.2.1).

It turned out that within one hour of CPU time, the Basic Iterative Method can only

solve instances with up to 15 items. Although this is comparable to the size of problems

reported in [41, 42] (discussed in detail in the end of this section), both CP and CCLW

can go much higher in terms of number of items. For this reason, no detailed results for

Algorithm 3.3.2.1 are reported here.

Table 3.1 reports the results of algorithms CP and CCLW. For each instance, the table
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shows the number of items (n ∈ {35, 40, 45, 50}), the instance identifier (“INS”), and the

optimal value (“OPT”). For algorithm CP, we further report the number of cutting plane

iterations (“#It.s”), and the CPU time in seconds (“time”), while for algorithm CCLW

we report the value of MIP 1 (“ObjF”), the number of iterations (“#MIPs”), the iteration

in which the optimal solution has been found (“OPTIter”), and the CPU time in seconds

(“time”). Finally, for algorithm CCLW we also report some data on the most expensive

MIP solved, namely the CPU time in seconds (“WMIP time”) and the number of nodes

(“WMIP nodes”). The algorithms had a limit of one hour to solve each instance. The red

entries (in square brackets) mark the cases where algorithm CP reached the time limit,

and in such cases we report the lower bound value instead of the computing time.

The results in Table 3.1 clearly illustrate that algorithm CCLW is superior to algorithm

CP. In particular, CCLW usually finds an optimal solution within 2 iterations, which

shows that in practice we will find the optimum very early and the only challenge is to

prove optimality. Looking at the number of MIPs solved and at the computing times, we

observe that for any number of items algorithm CCLW is extremely powerful for instances

with INS ≥ 5. An optimal solution is computed by MIP 1 and optimality is proved by

MIP 2, except in three cases with INS = 5. Considering the way in which the instances

are generated, the next theorem shows that this behavior is structural.

Theorem 3.3.12. If for any leader’s maximal interdiction the follower can pack the

remaining items, then CCLW solves DNeg in two iterations.

Proof. Given that the follower is able to pack all the items left by any maximal interdiction

of the leader, we get that the follower’s budget constraint is not binding. In particular,

the solution of the follower’s relaxed problem to any leader’s maximal interdiction is

binary. Hence, the MIPs’ optimal values are bilevel feasible and the DNeg optimum is

consequently found in the first iteration of CCLW.

In the second iteration, MIP 2 uses the additional strong cut

z0B +
n∑

i=1

ui − z0wmax ≤ BEST − 1.

The dual variable z0 corresponds to the follower’s budget constraint (3.3.6c). As initially

noted, constraint (3.3.6c) is not binding which together with the complementary slackness

Property 2.2.3 implies that the associated optimal dual solution has z0 = 0. However,

with z2
0 = 0 the strong cut imposes

n∑

i=1

u2
i ≤ BEST − 1.
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CP CCLW

WMIP WMIP

n INS OPT #It.s time ObjF #MIPs OPTiter time time nodes

35 1 279 16 0.34 288.07 14 2 0.79 0.05 14

2 469 40 1.59 474.00 33 1 2.57 0.09 171

3 448 253 55.61 455.88 203 1 40.39 0.50 1,635

4 370 397 495.50 374.56 11 1 1.48 0.14 363

5 467 918 [451] 472.00 5 2 0.72 0.19 660

6 268 155 71.43 268.00 2 1 0.06 0.03 0

7 207 298 144.46 207.00 2 1 0.06 0.03 0

8 41 11 0.25 41.00 2 1 0.04 0.01 0

9 80 25 0.97 80.00 2 1 0.03 0.00 0

10 31 8 0.12 31.00 2 1 0.03 0.00 0

40 1 314 24 0.66 326.12 21 1 1.06 0.05 60

2 472 77 6.67 483.78 67 2 7.50 0.19 805

3 637 338 324.61 644.78 244 1 162.80 2.52 4,521

4 388 530 1,900.03 396.56 3 1 0.34 0.13 165

5 461 653 [457] 466.18 2 1 0.22 0.15 66

6 399 534 2,111.85 399.00 2 1 0.09 0.04 0

7 150 254 83.59 150.00 2 1 0.05 0.02 0

8 71 33 1.73 71.00 2 1 0.04 0.01 0

9 179 404 137.16 179.00 2 1 0.08 0.03 4

10 0 2 0.03 0.00 2 1 0.03 0.00 0

45 1 427 45 1.81 434.60 33 1 2.37 0.08 74

2 633 97 13.03 642.36 74 1 11.64 0.25 903

3 548 845 [547] 558.69 387 1 344.01 2.86 10,638

4 611 461 [566] 624.84 108 1 38.90 1.01 8,611

5 629 462 [568] 630.00 15 7 3.42 0.30 1,179

6 398 639 3,300.76 398.00 2 1 0.07 0.03 0

7 225 141 60.43 225.00 2 1 0.04 0.01 0

8 157 221 60.88 157.00 2 1 0.05 0.01 0

9 53 23 0.83 53.00 2 1 0.05 0.01 0

10 110 11 0.40 110.00 2 1 0.05 0.01 0

50 1 502 58 2.86 514.12 39 1 4.55 0.12 114

2 788 733 1,529.16 798.0 695 2 1,520.56 7.29 6,352

3 631 467 [612] 638.47 212 1 105.59 2.03 7,909

4 612 310 [586] 621.04 17 1 3.64 0.32 954

5 764 287 [657] 768.88 3 1 0.60 0.27 369

6 303 385 1,046.85 303.00 2 1 0.05 0.01 0

7 310 617 2,037.01 310.00 2 1 0.09 0.04 0

8 63 49 2.79 63.00 2 1 0.05 0.01 0

9 234 717 564.97 234.00 2 1 0.10 0.05 3

10 15 5 0.09 15.00 2 1 0.04 0.01 0

Table 3.1: Comparison between CP and CCLW.
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This means that the optimal value of MIP 2 is strictly better then the value obtained

in MIP 1. But this is absurd, as MIP 2 equals MIP 1 plus an additional constraint (the

strong cut). Consequently MIP 2 is infeasible, and CCLW stops in the second iteration.

As INS increases its value, larger budget capacities are associated with the leader and

the follower. Therefore, it is likely that these instances fall into the condition of Theo-

rem 3.3.12.

Strength of the CCLW Ingredients. In order to evaluate the effectiveness of CCLW

main algorithmic ingredients, we have performed two additional sets of experiments. First,

we considered what happens to the basic enumerative scheme (Algorithm 3.3.2.1) if it

is strengthened by the nogood cuts (NG3) described in Section 3.3.2. The results are

reported in Table 3.2 for instances with n ∈ {30, 35}.

WMIP WMIP

n INS OPT ObjF #MIPs OPTiter time time nodes

30 1 272 282.80 13 2 0.27 0.02 9

2 410 423.29 34 1 0.95 0.04 223

3 502 513.63 110 1 10.56 0.28 1,036

4 383 385.00 151 2 36.65 1.06 7,094

5 308 308.00 301 1 121.27 1.85 7,730

6 223 223.00 239 1 44.22 0.81 5,580

7 146 146.00 121 1 8.32 0.15 1,072

8 88 88.00 70 1 2.03 0.05 281

9 113 113.00 83 1 2.71 0.07 674

10 82 82.00 73 1 1.99 0.04 276

35 1 279 288.07 19 2 0.72 0.04 16

2 469 474.00 53 1 3.20 0.08 524

3 448 455.88 303 1 102.23 1.31 2,673

4 370 374.56 474 1 1,203.90 19.49 74,265

5 467 472.00 1,152 2 tl 9.30 26,586

6 268 268.00 234 1 222.66 5.78 35,510

7 207 207.00 471 1 321.08 3.97 28,962

8 41 41.00 42 1 1.24 0.04 49

9 80 80.00 98 1 5.28 0.09 285

10 31 31.00 33 1 0.85 0.03 9

Table 3.2: Algorithm 3.3.2.1 with strengthened nogood constraints (NG3).



3.3. BILEVEL KNAPSACK WITH INTERDICTION CONSTRAINTS 93

The results in Table 3.2 show that this (simple) strengthening already allows us to

double the size of the instances that the basic scheme can settle (recall the discussion

at the beginning of the previous section). More precisely, all instances with 30 items

can be solved to optimality in rather short computing times, whereas size 35 becomes

troublesome.

If we compare these results to the corresponding results in Table 3.1, we note that

the number of MIPs needed to prove optimality is much bigger, in particular for the

cases INS ≥ 3. This behavior becomes dramatic for INS ≥ 5 where CCLW generally

proves optimality in 2 iterations (as suggested by Theorem 3.3.12), whereas the improved

version of the basic scheme still needs a large number of iterations. The difference in

behavior seems to be mainly caused by the strong cut presented in Theorem 3.3.11. This

observation is also confirmed by our second set of experiments, in which we removed the

strong cut from algorithm CCLW. The corresponding results are reported in Table 3.3.

Indeed, the results in Table 3.3 illustrate that without the strong cut, the number of MIPs

required by CCLW blows up significantly. The algorithm is only slightly better (because

of the stopping criteria) than the basic iterative scheme with strengthened nogood cuts

(see Table 3.2).

WMIP WMIP

n INS OPT ObjF #MIPs OPTiter time time nodes

35 1 279 288.07 14 2 0.89 0.04 16

2 469 474.00 33 1 1.76 0.05 207

3 448 455.88 218 1 43.27 0.50 1,443

4 370 374.56 277 1 216.96 2.40 14,651

5 467 472.00 1,152 2 tl 9.26 26,586

6 268 268.00 59 1 3.76 0.10 756

7 207 207.00 202 1 25.86 0.27 1,667

8 41 41.00 21 1 0.62 0.03 49

9 80 80.00 30 1 1.06 0.04 207

10 31 31.00 2 1 0.03 0.00 0

Table 3.3: CCLW without the strong cut.

Solving Large(r) Instances. What are the computational limits of Algorithm CCLW?

How does it scale to larger values of n? Table 3.4 provides some partial answers to these

questions by displaying the results for CCLW on instances with 55 items. Again, we see

that MIP 1 is very effective in computing the leader’s strategy, as in most of the cases

we obtain the optimal DNeg solution already at iteration 1. In general, the machinery

discussed in the previous sections seems to be able to keep the enumeration of leader
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strategies under control: CCLW succeeds in solving all but two instances. The two

exceptions are the instances with INS ∈ {3, 4}, on which CCLW exceeded its time limit

of 1 hour of CPU time (the “tl” entries in the table).

CCLW

WMIP WMIP

n INS OPT ObjF #MIPs OPTiter time time nodes

55 1 480 489.21 103 2 18.57 0.37 1,090

2 702 706.15 419 1 443.53 4.33 11,097

3 778 783.67 926 1 tl 8.85 21,491

4 889 899.34 787 1 tl 14.67 41,813

5 726 726.00 2 1 0.24 0.13 158

6 462 462.00 2 1 0.09 0.04 0

7 370 370.00 2 1 0.08 0.03 0

8 387 387.00 2 1 0.10 0.04 0

9 104 104.00 2 1 0.06 0.01 0

10 178 178.00 2 1 0.06 0.02 0

Table 3.4: CCLW computational results on instances with n = 55.

For the most challenging instances, we implemented a pre-processing step based on the

idea of computing sensitive intervals (as done in [18]). Ideally, in each iteration k of

CCLW we would like to know the profit bck of the critical item in the optimal solution

for the follower’s continuous knapsack. (Recall Theorem 3.3.9 which shows that zk0wmax

is an upper bound on bck in each iteration k.) To reach this goal, we compute sensitive

intervals with the function

φ(Z+
0 −→ Z+

0 ) :
c∑

i=1

wixi −→ max
i=c′,...,t

bi, (3.3.20)

where c′ = min{j :
∑c

i=1wixi +B ≤∑j
i=1 wi}. In this way, instance INS = 4 in Table 3.4

was solved within the time limit. The computation took 2,796.20 CPU seconds, and the

speed-up was mainly due to a strong reduction in the number of MIPs (693 versus at

least 787). In principle, sensitivity interval pre-processing could achieve the same kind

of reduction in all considered instances. Note however that this pre-processing adds 5

constraints and up to n binary variables to every MIP solved by CCLW. Hence, there is

a tradeoff between performing fewer iterations and working with larger MIPs, and this is

also the reason why we decided not to include sensitivity interval pre-processing in the

standard version of CCLW: it slightly slows down the computing time, whereas only few

additional hard instances can be solved with it. (Note that it does not manage to solve

the instance n = 55 and INS = 3 to optimality.)



3.3. BILEVEL KNAPSACK WITH INTERDICTION CONSTRAINTS 95

All in all, we conclude that new algorithmic ideas will be needed to attack the hard

instances with INS ≤ 4 for larger values of n. For instance for n = 100, computation

times of 1 hour CPU time (as we reached for the smaller instances in this section) seem

currently out of reach.

Literature Comparison. DeNegre [41] and DeNegre and Ralphs [42] solved knapsack

interdiction instances by using the Branch-and-Cut procedure described in Section 2.3.1.1.

These authors present two branching strategies: maximum infeasibility and strong branch-

ing. We compare our method CCLW against these two procedures in Table 3.5 (the

instances have kindly been provided by the authors of [41, 42]). The data in the table

averages over 20 instances, and the computing times for [42] refer to an Intel Xeon 2.4GHz

processor with 4GB of memory. A “-” indicates that due to memory requirements, no

instance of the corresponding size was solved.

Branch and Cut [42]

Maximum Infeasibility Strong Branching CCLW

n Avg CPU time Avg CPU time Avg CPU time

10 3.17 4.69 0.009

11 6.63 9.13 0.009

12 13.27 17.50 0.009

13 27.54 35.84 0.010

14 60.08 71.90 0.011

15 124.84 145.99 0.011

16 249.19 296.16 0.014

17 516.65 - 0.013

Table 3.5: Summary of results for instances in [41, 42].

Although it is always difficult to compare different computing codes running on different

computers, we believe that from the results in Table 3.5 it is safe to conclude that,

for these instances, CCWL outperforms the Branch-and-Cut method. In particular, the

highest average number of Branch-and-Bound nodes explored by Gurobi for solving the

MIPs is 4.55 for the instances with n = 16, thus the impact of the parallelism associated

with our computing platform to be Quad-Core is negligible. We noticed that in all the

instances introduced in [41, 42], CCLW executes only two iterations and the optimum

is always found in the first iteration. The second iterations are only needed to prove

optimality, due to the fact that both leader and follower have enough capacity to pack

all the items. Theorem 3.3.12 shows that in these cases the strong cut makes MIP 2

infeasible.



96 CHAPTER 3. STACKELBERG COMPETITION: BILEVEL KNAPSACK

3.3.4 Summary

We have analyzed a special class of interdiction problems and proposed an exact algorithm

for solving it. Our method uses a new way of generating (enumerating) solutions, which

seems to hit the optimal solution at a very early stage and thus allows us to concentrate on

techniques for proving optimality. This behavior is quite different from classical Branch-

and-Bound methods, which usually starts from infeasible (super-optimal) solutions and

apply extensive enumerations. Of course, the classical branch-and-bound scheme has

proven very effective for classical MIPs, whereas our results might indicate that this is not

the case for MIBPs. Furthermore, we introduce a new cut for the leader’s variables which

seems to be much stronger than the ones used in the literature and which significantly

decreased the number of enumerated bilevel feasible solutions. Also cuts limiting the

objective function range had a big impact in speeding up the method.

We were able to solve instances with up to 100 binary variables, which is significantly

larger than the size of instances solved in the literature. Our method is very efficient

on instances where both leader and follower have a large budget. Consequently, the

challenging and hard instances are those in which the budget of both leader and follower

forces them to evaluate a large number of strategies.

The comparison of our algorithm CCLW with the best ones from the literature demon-

strates its advantage, and stresses the importance that problem-specific algorithms cur-

rently have in solving bilevel programming. A promising line for future research on

general interdiction problems is to exploit the follower’s integrality relaxation; this is

in harsh contrast to the classical high-point relaxation where the follower is forgotten as

a decision-maker.



Chapter 4

Simultaneous Games

In this chapter, we will focus in simultaneous integer programming games. To warm-up,

Section 4.1 investigates a simple IPG, called the coordination knapsack game, where each

player’s optimization problem is a knapsack problem. Section 4.2 describes a game in

the context of kidney exchange, called the competitive two-player kidney exchange game,

and generalizes results from matching on graphs in order to solve the game efficiently.

The competitive uncapacitated lot-sizing game is modeled in Section 4.3 through the

generalization of the classical Cournot Competition to a finite time horizon and inclusion

of lot-sizing decisions in the optimization programs of each firm (player) participating

in the market. The chapter concludes in Section 4.4 by classifying the complexity of

simultaneous IPGs and proposing a general algorithmic approach for computing at least

one approximate equilibrium.

97
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4.1 Two-Player Coordination Knapsack Game

1

Our Game Model. In resemblance to the methodological motivation to study bilevel

knapsack variants, we start the study of simultaneous IPGs by modeling a game which

is very simple to describe. Again, the knapsack problem is in the base of our game.

The two-player coordination knapsack game (CKG) consists in a game played by a set

of players M = {A,B}, where each player’s goal is to maximize the individual valuation

over a set of n items. The optimization problem for each player p ∈M is

max
xp∈{0,1}n

n∑

i=1

cpix
A
i x

B
i (4.1.1a)

s. t.
n∑

i=1

wpi x
p
i ≤ W p. (4.1.1b)

The objective (4.1.1a) models the fact that player p ∈ M gets profit cpi ≥ 0 associated

with item i if and only if xAi = xBi = 1. In other words, the benefit is only perceived for

items which are chosen by both players. Each player p has to select a subset of items that

does not exceed the capacity constraint (4.1.1b) of her knapsack.

Another motivation to study the CKG is that it models situations in which a firm has to

decide a set of new technologies to invest in, subject to a budget constraint and taking

into account that the revenue is restricted to the technologies that were also adopted by

other firms.

Literature Review. In the literature, to the best of our knowledge, the most similar

game to CKG that has been studied is the two-group knapsack game by Wang et al. [134].

Wang et al. [134] consider a game in which two groups simultaneously bid (select) on a

common pool of potential projects (items); the profit of a particular project can be wholly

taken by the sole bidder group or shared proportionally by two group bidders according

to each group power in the market. The main difference between this game model [134]

and CKG is twofold: (1) in [134] there is a profit for sole bidders and (2) shared projects

(items) benefit the two groups proportionally, enabling existence conditions for the game

to be potential and thus, to have at least a pure equilibrium (recall Lemma 2.3.9).

1The results of this chapter appear in:

M. Carvalho, J. P. Pedroso. Two-Player Coordination Knapsack Game, working paper.
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Our Contributions and Organization of the Section. In general, CKG is not

potential; see Example 4.1.1 below. Moreover, potential function arguments only allow

to determine one (pure) equilibrium. In this work, we are able to prove the existence of

pure equilibria and to characterize the equilibria set.

Example 4.1.1 (CKG is not potential). Consider an CKG instance with n = 4 items,

profits equal to cA = (13, 7, 5, 6) and cB = (5, 6, 7, 10), weights equal to wA = (1, 1, 1, 1)

and wB = (1, 1, 1, 2), and total capacities equal to WA = 2 and WB = 3. Observe the

players’ utilities for the following profiles of strategies:

xA = (1, 0, 0, 1) and xB = (1, 1, 1, 0), ΠA =13 and ΠB = 5

xA = (1, 0, 0, 1) and xB = (0, 1, 0, 1), ΠA =6 and ΠB = 10

xA = (0, 1, 1, 0) and xB = (0, 1, 0, 1), ΠA =7 and ΠB = 6

xA = (0, 1, 1, 0) and xB = (1, 1, 1, 0), ΠA =12 and ΠB =13.

By the definition of potential function Φ(xA, xB), the above utility’ values imply that it

satisfies

Φ((1, 0, 0, 1), (1, 1, 1, 0)) < Φ((1, 0, 0, 1), (0, 1, 0, 1))

Φ((1, 0, 0, 1), (0, 1, 0, 1)) < Φ((0, 1, 1, 0), (0, 1, 0, 1))

Φ((0, 1, 1, 0), (0, 1, 0, 1)) < Φ((0, 1, 1, 0), (1, 1, 1, 0))

Φ((0, 1, 1, 0), (1, 1, 1, 0)) < Φ((1, 0, 0, 1), (1, 1, 1, 0)),

which is impossible.

In Section 4.1.1, we prove the existence of pure NE and reduce the computation of Pareto

efficient pure NE to a two-objective optimization problem. To conclude, in Section 4.1.2,

it will be shown that the utilities for any mixed equilibria of CKG lie in the convex hull

formed by the utilities associated with the game pure NE.

4.1.1 Computing Pure Equilibria

If player A packs the set of items SA, then it is easy to see that player B can restrict

her best reaction to this set; let a player B’s optimal response to SA be SB ⊆ SA. It is

feasible for both players to pack the items SB and this is an equilibrium.

Lemma 4.1.2. If selecting the set of items S satisfies constraint (4.1.1b) for all p ∈M ,

then it is an equilibrium for both players to only pack the items S.
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As a consequence of this lemma, we conclude that any CKG has a pure equilibrium, since

it is feasible for both players to pack the set of items S = ∅.

Corollary 4.1.3. CKG has a pure equilibrium.

As an implication of Lemma 4.1.2, the search of pure equilibria can be restricted to the

strategies in which the players select exactly the same items. A profile x = (xA, xB) ∈ X
is called coordination profile if xA = xB. Given x ∈ X, a coordination profile of x is x̃ ∈ X
such that x̃Ai = x̃Bi = xAi x

B
i .

Corollary 4.1.4. For any pure equilibrium x̂ ∈ X, there is another equilibrium x̃ ∈ X
which is a coordination profile of x̂, and Πp(x̂A, x̂B) = Πp(x̃A, x̃B) for all p ∈M .

The reason why this game has “coordination” in its name is based on Lemma 4.1.2 and

Corollary 4.1.4: when the players choose the same set of items to pack (coordinate), an

equilibrium is attained.

Each player has potentially O(2n) feasible strategies, thus the potential number of equi-

libria is also O(2n). In the presence of multiple equilibria, the concept of Nash equilibrium

may be refined. We will concentrate in Pareto efficient equilibria (defined in Section 2.3).

Pure Pareto efficient equilibria which are coordination profiles can be described through

the computation of the Pareto frontier of a two-objective optimization program.

Theorem 4.1.5. Each pure Pareto efficient equilibrium for CKG has a coordination

profile which is an equilibrium and a solution of the following two-objective optimization

programming problem:

max
x∈{0,1}n

(
n∑

i=1

cAi xi,

n∑

i=1

cBi xi

)
(4.1.4a)

s. t.
n∑

i=1

wAi xi ≤ WA (4.1.4b)

n∑

i=1

wBi xi ≤ WB. (4.1.4c)

Proof. This is a direct consequence of Corollary 4.1.4.

If the data is integer, in order to solve the optimization (4.1.4), one could reduce this

search to solving a series of MIPs: simply remove one of the objective functions, say

player B’s objective function, and solve the resulting one-objective optimization problem
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(this will provide the preferable pure NE for player A); add the constraint that player

B must have a profit of at least one unit greater than the one just computed and solve

this new one-objective optimization problem; repeat this process until the optimization

problem becomes infeasible (player B cannot get higher profits). Alternatively, it could

be applied the dynamic programming method proposed by Delort and Spanjaard [37].

This problem may be solved, e.g., by SYMPHONY [122], which is a software tool that

tackles two-objective MIP’s.

4.1.2 Summary

We have shown that the coordination knapsack game possesses a pure Nash equilibrium,

and that for each Pareto efficient profile there is an associate pure NE, which is in the set

of solutions of a two-objective mixed integer programming problem. The literature is rich

in proposing methods capable of handling two-objective MIPs, which is out of the scope

of this thesis.

The developed work enables us to reach some conclusions about mixed equilibria of the

CKG. The expected utilities for mixed equilibria are convex combinations of utilities

evaluated for pure profiles. Thus, by definition of convex hull for a set, the expected

utilities for mixed equilibria lie in the convex hull of the set of utilities for pure profiles.

This convex hull can easily be determined given the Pareto frontier for the two-objective

program (4.1.4) and the fact that each player’s utility is never negative; see Figure 4.1.1.

We were not able to experimentally find any instance of CKG with a Pareto efficient

mixed equilibrium, thus we have the following conjecture:

Conjecture 4.1.6. The Pareto efficient equilibria of an CKG is completely defined by its

pure equilibria.

In Section 4.4, CKG is generalized to allow more than two players, to data that may

be non-positive, and to adding to each player’s utility independent profits/costs for each

item. This general version will be rich in (strictly) mixed equilibria. Indeed, for some

instances there is no pure equilibrium.



102 CHAPTER 4. SIMULTANEOUS GAMES

ΠA

ΠB

Figure 4.1.1: Pareto frontier of a CKG. The green dots represent the players’ utilities

in a Pareto efficient pure equilibrium; the grey area represents all the utilities that are

dominated; the dashed line in red is the convex hull boundary for the set of utilities’

values.
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4.2 Competitive Two-Player Kidney Exchange Game

2

The Context. The kidney exchange problem can be described as follows. A patient

suffering from renal failure can see her life quality improved through the transplantation

of a healthy kidney. Whenever possible, a patient receives a kidney transplant from a

deceased donor, or from a compatible living donor that is a patient’s relative or friend.

Unfortunately, these two possibilities of transplantation can only satisfy a tiny fraction

of the demand, since deceased donors are scarce and patient-donor incompatibilities may

occur.

To potentially increase the number of kidney transplants, some countries’ recent legislation

(e.g., United Kingdom [84], Netherlands [36]) allows a pairwise exchange: e.g., for two

patient-donor pairs P1 and P2 the patient of pair P1 receives a kidney from the donor

of pair P2 and vice versa. The idea can be extended to allow more than two pairs to

Pairwise exchange Exchange of size L

P1 P2
P1 P2 P3

. . . PL−1 PL

Figure 4.2.1: Kidney exchanges.

be involved in an exchange (for L-pairs, P2 receives a kidney from the donor P1, P3

from the donor of P2, etc, and, finally, P1 from the donor of PL, closing a cycle; see

Figure 4.2.1), and to include undirected (altruistic) donors, as well as pairs with other

characteristics [26]. The general aim is to define a match that maximizes the number

of transplants in a pool. Because in most cases the operations must take place at the

same time, for logistic reasons the number of pairs that can be involved in an exchange is

limited to a maximum value, say L. Furthermore, because additional compatibility tests

that must be performed prior to transplant may uncover new incompatibilities, resulting

in the cancellation of all transplants involved in the cycle, it is preferable for the cycles

to be shorter.

2The results of this section appear in:

M. Carvalho, A. Lodi, J. P. Pedroso, A. Viana. Nash Equilibria in the Two-Player Kidney Exchange

Game, Mathematical Programming, 2016 (accepted).
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Abraham et al. [1] formulated the kidney exchange program (KEP) as an integer program-

ming problem with an exponential number of variables, which maximizes the number

of vertices covered in a digraph by vertex-disjoint cycles of size at most L. In this

model, the vertices of the digraph represent patient-donor pairs and the arcs represent

the compatibilities between pairs. A compact model, where the number of variables

and constraints increases polynomially with the problem size, has been proposed by

Constantino et al. [26].

In the previous models, there is a centralized decision-maker deciding the exchange

program. However, there are other potential decision makers to be considered that can

influence the exchange program. In Cechlárová et al. [21], patient-donor pairs are the

players in a cooperative kidney exchange game that is structurally different from what

is presented in this paper because the players, the set of actions and utilities interact

differently, as will be clear later with our game model description.

Multi-Agent Kidney Exchange. Although some countries have a national kidney

exchange pool with the matches being done by a central authority, other countries have

regional (or hospital) pools, where the matches are performed internally with no collabo-

ration between the different entities. Since it is expected that as the size of a patient-donor

pool increases more exchanges can take place, it became relevant to study kidney exchange

programs involving several hospitals or even several countries. In such cases, each entity

can be modeled as a self-interested agent that aims at maximizing the number of its

patients receiving a kidney (see Ashlagi and Roth [5, 6]).

To the extent of our knowledge, work in this area concentrates on the search of a

strategyproof mechanism that decides all exchanges to be performed in a multi-hospital

setting. A mechanism is strategyproof if the participating hospitals do not have incentive

to hide information from a central authority that decides the exchanges to be executed

through that mechanism. For the 2-hospital kidney exchange program with pairwise

exchanges, the deterministic strategyproof mechanism in Ashlagi et al. [4] provides a

2-approximation ratio on the maximum number of exchanges, while the randomized

strategyproof mechanism in Caragiannis et al. [19] guarantees a 3
2
-approximation ratio.

Additionally, Ashlagi et al. [4] built a randomized strategyproof mechanism for the multi-

hospital case with approximation ratio 2, again only for pairwise exchanges. In these

mechanisms, in order to encourage the hospitals to report all their incompatible pairs,

social welfare is sacrificed. In fact, in [4] it is proven that the best lower bound for

a strategyproof (randomized) mechanism is 2 (8
7
), which implies that no mechanism

returning the maximum number of exchanges is strategyproof. In this context, the

question is whether, analyzing the hospitals interaction from a standpoint of a non-
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cooperative game, Nash equilibria would improve the program’s social welfare.

A Game Model. We can formalize and generalize KEP to a competitive N -player

kidney exchange game (N–KEG) with two sequential moves: first, simultaneously, each

player n, for n = 1, . . . , N , decides the internal exchanges to be performed; second,

an independent agent (IA) takes the first-stage unused pairs and decides the external

exchanges to be done such that the number of pairs participating on it is maximized. Let

us define V n as the vertex set of player n, V =
⋃N
n=1 V

n and C as the set of cycles with

size at most L. Let Cn = {c ∈ C : c ∩ V n = c} be the subset of cycles involving only

player n’s patient-donor pairs, and I = C \⋃N
n=1 C

n be the subset of cycles, involving at

least two patient-donor pairs of distinct players. Each player solves the following bilevel

programming problem:

max
xn∈{0,1}|Cn|

∑

c∈Cn
wnc x

n
c +

∑

c∈I

wnc yc (4.2.1a)

s. t.
∑

c∈Cn:i∈c

xnc ≤ 1 ∀i ∈ V n (4.2.1b)

where y solves the problem

max
y∈{0,1}|I|

∑

c∈I

N∑

n=1

wnc yc (4.2.1c)

s.t.
∑

c∈I:i∈c

yc ≤ 1−
N∑

n=1

∑

c∈Cn:i∈c

xnc ∀i ∈ V. (4.2.1d)

Player n controls a binary decision vector xn with size equal to the cardinality of Cn. An

element xnc of xn is 1 if cycle c ∈ Cn is selected, 0 otherwise. Similarly, the IA controls the

binary decision vector y with size equal to the cardinality of I. The objective function

(4.2.1a) translates on the maximization of player n’s patients receiving a kidney: wnc
the number of player n’s patient-donor pairs in cycle c (which is the size of c if it is an

internal). Constraints (4.2.1b) ensure that every pair is in at most one cycle. The IA

objective (4.2.1c) represents the maximization of patient-donor pairs receiving a kidney

in the second-stage. Constraints (4.2.1d) are analogous to (4.2.1b), but also ensure that

pairs participating in the first-stage exchanges are not selected by the IA.

In the way that we defined N–KEG, it is implicit that it is a complete information

game. Initially, every player decides the pairs to reveal, and only revealed pairs will be

considered in each player utility as well as in the second stage IA decision process. Note

that there is no incentive for hiding information, as each player has complete control over

her internal exchanges, and, therefore, can guarantee to be at least as good as if it was

by herself. Moreover, if there were hidden pairs, they would not be considered in the IA
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decision, and thus, the players would not benefit from external exchanges including them.

Consequently, the players do not have advantage in hiding information, and therefore,

this is intrinsically a complete information game.

The formulation above brings up the following research question: is the generalization of

KEP to N–KEG relevant? In particular, it is worth noting that the special case of KEP

with L = 2 can be formulated as a maximum matching problem and consequently, solved

in polynomial time. Moreover, the multi-agent kidney exchange literature focuses mainly

in exchanges with size 2. Thus, the most natural and relevant extension to look at is

2–KEG with pairwise exchanges.

Our Contributions. In this section, we concentrate on the non-cooperative 2-player

kidney exchange game (2–KEG) with pairwise exchanges (i.e., L = 2). A player can be

a hospital, a region or even a country. Under this setting it is inefficient to follow the

classical normal-form game approach by specifying all the players’ strategies. Note also

that in our formulation of N–KEG, players’ strategies are lattice points inside polytopes

described by systems of linear inequalities. Thus, N–KEG and, in particular, 2–KEG

belongs to the class of IPG.

We show that 2–KEG has always a pure Nash equilibrium (NE) and that it can be

computed in polynomial time. Furthermore, we prove the existence of an NE that is also

a social optimum, i.e., the existence of an equilibrium where the maximum number of ex-

changes is performed. Finally, we show how to determine an NE that is a social optimum,

always the preferred outcome of both players, and can be computed in polynomial time.

Our work indicates that studying the players interaction through 2–KEG turns the ex-

change program efficient both from the social welfare and players’ point of view. In

contrast, as mentioned before, there is no centralized mechanism that is strategyproof

and at the same time guarantees a social optimum. Although we provide strong evidence

that under 2–KEG the players’ most rational strategy is a social optimum, we note the

possibility of multiple equilibria. We show that the worst case Nash equilibrium in terms

of social welfare is at least 1
2

of the social optimum. Thus, the worst case outcome for

our game is comparable with the one for the best deterministic strategyproof mechanism

(recall that it guarantees a 2-approximation of the social optimum). The 2–KEG opens

a new research direction in this field that is worth being explored.

Organization of the Section. Section 4.2.1 formulates 2–KEG in mathematical terms.

Section 4.2.2 proves the existence of a Nash equilibrium that maximizes the social welfare

and measures the Nash equilibria quality enabling the comparison of our game with
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strategyproof mechanisms. Section 4.2.3 proves that the players have incentive to choose

Nash equilibrium that are socially optimal. Section 4.2.4 refines the concept of social

welfare equilibria motivating for a unique rational outcome for the game. Section 4.2.5

discusses extensions to our model and Section 4.2.6 draws some conclusions.

4.2.1 Definitions and Preliminaries

We recall Section 2.2.1.1 where the essential background in matching is provided.

Let the players of 2–KEG be labeled player A and player B. For representing a 2–KEG

as a graph, let V be a set of vertices representing the incompatible patient-donor pairs

of players A and B, and E be the set of possible pairwise exchanges, i.e., the set of

edges (i, j) such that the patient of i ∈ V is compatible with the donor of j ∈ V and

vice versa. For each player n, V n ⊆ V and En ⊆ E are her patient-donor pairs and

internal compatibilities, respectively. A player n’s strategy set is the set of matchings in

graph Gn = (V n, En). A profile of strategies is the specification of a matching Mn in Gn =

(V n, En) for each player n = A,B. The independent agent controls the external exchanges

EI ⊆ E, i.e., (a, b) ∈ EI if a ∈ V A and b ∈ V B. Let EI(MA,MB) be a subset of EI such

that no edge is incident upon a vertex covered by MA or MB. For a player B’s matching

MB define the player A’s reaction graph GA(MB) = (V,EA∪EI(∅,MB)) and for a player

A’s matching MA define the player B’s reaction graph GB(MA) = (V,EB ∪ EI(∅,MA)).

In the figures of this section, we will represent vertices that belong to V A as gray circles

and vertices that belong to V B as white diamonds.

On the first stage of 2–KEG, each player n decides simultaneously a matching Mn of

graph Gn to be executed. On the second stage of the game, given player A’s first-stage

decision MA and player B’s first-stage decision MB, the IA decides the external exchanges

to be performed such that the number of pairs covered by its decision is maximized. In

other words, the IA finds a maximum matching M I(MA,MB) of EI(MA,MB). In the

end of the game, player A’s utility is 2|MA| + |M I(MA,MB)| and player B’s utility is

2|MB|+ |M I(MA,MB)|.

An important factor for a game is that its rules are executed efficiently. For 2–KEG

this means that the IA optimization problem must be easy to solve. As mentioned in

Section 2.2.1.1, computing a maximum matching can be solved in polynomial time for

any graph. Therefore, given the players’ decisions, the IA optimization problem is solved

in polynomial time.

A legitimate question that must be answered is if the game is well defined in the sense

that the rules are unambiguous. Note that the utility of each player depends on the IA
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decision rule. In the general N–KEG case, there might be situations where there are

multiple optimal IA’s decisions that benefit the players differently. However, for 2–KEG

that is not possible, because only pairwise exchanges are considered. That is, any IA

matching leads to equal benefits for both players.

Proposition 4.2.1. 2–KEG is well defined.

One apparent difficulty in the treatment of the game has to do with the bilevel optimiza-

tion problem (4.2.1) of each player. However, computing a player’s optimal strategy to a

fixed matching of the other player can be simplified. From the standpoint of player A, the

best reaction MA to a player B’s fixed strategy MB can be computed by dropping the

IA objective function (4.2.1c) (game rule) and solving the single level matching problem

in the reaction graph GA(MB). Basically, we are claiming that player A best reaction

predicts the appropriate IA decision given MA and MB. This holds because IA’s edges

have a positive impact on the utility of player A.

Lemma 4.2.2. Let MB be a matching of player B in 2–KEG. Player A’s best reaction

to MB can be achieved by solving a maximum weight matching problem on the graph

GA(MB), where the edges of GA in EA have weight 2 and those in EI(∅,MB) weight 1.

The equivalent for player B also holds.

4.2.2 Nash Equilibria and Social Welfare

In what follows, we will concentrate on pure equilibria. According with the equilibria

conditions (2.3.14), a player A’s matching MA of GA and a player B’s matching MB of

GB is a pure Nash equilibrium for 2–KEG if

2|MA|+ |M I(MA,MB)| ≥ 2|RA|+ |M I(RA,MB)| ∀ matching RA of GA

2|MB|+ |M I(MA,MB)| ≥ 2|RB|+ |M I(MA, RB)| ∀ matching RB of GB.

Along this section, we use NE to refer to pure Nash equilibria. A mixed-strategy Nash

equilibrium attributes a probability distribution over the players’ feasible decisions; there-

fore, its description may involve many players’ strategies, which would be computationally

unsuitable; furthermore, the pure equilibria study shows that their consideration is enough

to achieve a good and efficiently computable outcome for both players.

In Section 4.2.2.1, we prove the existence of NE for 2–KEG and that it can be computed

in polynomial time. Through these results, in Section 4.2.2.2 we prove the existence of an

NE that maximizes the social welfare (sum of the players’ utilities or, equivalently, number

of vertices matched). In Section 4.2.2.3, we measure the quality of the NE in terms of
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social welfare. This analysis allow us to conclude that the worst case Nash equilibrium to

2–KEG and the best deterministic strategyproof mechanism guarantee that at least 1
2

of

the number of vertices matched in a social optimum is achieved.

4.2.2.1 Existence of a Pure Nash Equilibrium

In order to prove the existence of an NE we will use the concept of potential function to

games, as defined in Section 2.3.2. For 2–KEG, a potential function Φ is a real-valued

function over the set of player A’s matchings in GA and player B’s matchings in GB such

that the value of Φ increases strictly when a player switches to a new matching that

improves her utility.

Observe that a player A’s decision does not interfere in the set of player B’s matchings in

GB. In particular, player A cannot influence the part of player B’s utility related with a

matching in GB. The symmetric observation holds for player B’s decision. With this in

mind, it is not difficult to find an exact potential function to 2–KEG.

Proposition 4.2.3. Function Φ(MA,MB) = 2|MA|+2|MB|+|M I(MA,MB)| is an exact

potential function of 2–KEG.

A profile of strategies for which the potential function maximum is attained is an NE

(Lemma 2.3.9).

Theorem 4.2.4. There exists at least one pure Nash equilibrium to 2–KEG and it can

be computed in polynomial time.

Proof. A matching corresponding to the maximum of the function Φ of Proposition 4.2.3 is

an NE of 2–KEG. Computing a maximum to Φ is equivalent to solving a maximum weight

matching problem, where the edges in EA and EB weight 2 and the edges in EI weight

1. This can be done in polynomial time (see, e.g., Papadimitriou and Steiglitz [103]).

Consider the 2–KEG instance represented in Figure 4.2.2. In this case, the NE achieved by

computing the potential function maximum is MA = {(4, 5)}, MB = {(2, 3)} (and thus,

M I(MA,MB) = ∅). There is another NE that does not correspond to a potential function

maximum: RA = ∅, RB = ∅ and consequently M I(RA, RB) = {(1, 2), (4, 3), (5, 6)}. The

latter helps all the patient-donor pairs, and thus is more appealing to the players. This

observation, motivates the need of studying efficient Nash equilibria that are possibly not

achieved through the potential function maximum.
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1 2 3 4 5 6

Figure 4.2.2: 2–KEG instance with two distinct Nash equilibria.

4.2.2.2 Social Welfare Equilibrium

In what follows, we introduce a refinement of the NE concept in 2–KEG: the social welfare

equilibrium.

A social optimum of 2–KEG is a maximum matching of the overall graph gameG = (V,E),

corresponding to an exchange program that maximizes the number of patients receiving

a kidney. A social welfare equilibrium (SWE) is an NE that is also a social optimum.

Observe that any NE, and thus any SWE, is a local maximum of Φ if the neighborhood

of a strategy profile consists of a player’s unilateral deviation. In what follows, we will

use this fact to prove the existence and efficient computation of an SWE.

Theorem 4.2.5. There is always a social welfare equilibrium to 2–KEG.

Proof. Let M be a maximum matching (and thus, a social optimum) of the graph G

representing a 2–KEG, where EA ∩ M and EB ∩ M are players’ A and B strategies,

respectively. If M is not an NE, let us assume, w.l.o.g., that player A has incentive to

deviate from EA ∩M , given player B’s strategy EB ∩M . Let MA be player A’s best

reaction to EB ∩ M . Observe that we can assume that MA ∪ M I(MA, EB ∩ M) is a

maximum matching of A in the reaction graph GA(EB ∩ M). If it is not, by Berge’s

Theorem 2.2.6, there is a maximum matching such that it does not decrease the number

of player A’s matched vertices. Therefore, by Property 2.2.5, |MA|+ |M I(MA, EB∩M)|+
|EB ∩M | = |M |.

Given that A has incentive to deviate, it holds by definition of potential function that

Φ(EA∩M,EB ∩M) < Φ(MA, EB ∩M). If MA together with EB ∩M is not an NE, then

we can repeat the procedure above (alternating the player) until an NE is obtained (as

the tâtonnement process in Section 2.3.2). Note that the value of the potential function

increases strictly, which means that no feasible profile of strategies is visited more than

once and social welfare does not decrease. In addition, players have a finite number of

feasible matchings, which implies that this process will terminate in an equilibrium.

Besides the fact that an SWE is an appealing NE to the players, it also has the advantage

of being computable in polynomial time through the algorithm of the last proof (translated

to pseudo-code in Algorithm 4.2.2.1). It is a well-known result that weighed matching
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problems can be solved in polynomial time (see, e.g., [103]). Therefore, it remains to

prove that the number of iterations is polynomially bounded in the size of the instance.

The next trivial result can be used to this end.

Lemma 4.2.6. An upper bound to the maximum value of the 2–KEG potential function

Φ(MA,MB) = 2|MA|+ 2|MB|+ |M I(MA,MB)| is |V A|+ |V B|.

As noted before, the potential function Φ strictly increases whenever a player has incentive

to unilaterally change her strategy. Therefore, our algorithm will in the worst case stop

once the maximum value to Φ is reached, which is bounded by |V A|+ |V B|. Taking into

account that the value of Φ is always an integer number, the number of evaluations of Φ

through the process is also bounded by |V A|+ |V B|.

Theorem 4.2.7. The computation of a social welfare equilibrium to 2–KEG can be done

in polynomial time.

Algorithm 4.2.2.1

Input: A 2–KEG instance G.

Output: A social welfare Nash equilibrium.

1: M ← maximum matching of G

2: MA ←M ∩ EA, MB ←M ∩ EB, M I ←M ∩ EI initial matchings

3: while ∃ player n ∈ {A,B} with incentive to deviate from Mn do

4: Rn ← player n’s best reaction to M−n such that it is also a maximum matching of

Gn(M−n) solve a maximum weight matching on Gn(M−n) and, after, apply (unweighted)

augmenting paths to the solution until a maximum matching is obtained

5: Mn ← Rn, M I ←M I(Rn,M−n) update solution

6: end while

7: return MA, MB

4.2.2.3 Price of Stability and Price of Anarchy

In order to measure the quality of the Nash equilibria of a given game, we use the standard

measures: price of stability and price of anarchy (see Chapter 17 of [96]). The price of

stability (PoS) is the ratio between the highest total utilities value of one of its equilibria

and that of a social optimum; the price of anarchy (PoA) is the ratio between the lowest

total utilities value within its equilibria and that of a social optimum.

The following two results set PoS and PoA for 2–KEG.

Corollary 4.2.8. The price of stability of the 2–KEG is 1.
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Proof. Since we proved existence of a social welfare equilibrium

PoS =
highest total utilities value among all Nash equilibria

social optimum
= 1.

Theorem 4.2.9. The price of anarchy is 1
2

for the 2–KEG.

Proof. By the definition of price of anarchy, we have

PoA =
lowest total utilities value among all Nash equilibria

social optimum
.

Let MA, MB and M I(MA,MB) be the matchings of player A, B and the IA, respectively,

that lead to the Nash equilibrium with lowest total utilities value, that is

z∗ = 2|MA|+ 2|MB|+ 2|M I(MA,MB)|.

Let M be a maximum matching of the game graph G. Therefore, the social optimum is

equal to

z = 2|M ∩ EA|+ 2|M ∩ EB|+ 2|M ∩ EI |.

By the definition of NE, we know that under MA and MB, none of the players has

incentive to deviate, thus

z∗ ≥ 2|M ∩ EA|+ |M I(M ∩ EA,MB)|+ 2|M ∩ EB|+ |M I(MA,M ∩ EB)|
⇔z∗ ≥ 2|M ∩ EA|+ 2|M ∩ EB|+ 2|M ∩ EI | − 2|M ∩ EI |+ |M I(M ∩ EA,MB)|

+ |M I(MA,M ∩ EB)|
⇔z∗ ≥ z −

(
2|M ∩ EI | − |M I(MA,M ∩ EB)| − |M I(M ∩ EA,MB)|

)
. (4.2.2a)

The set M ∩ EI may include matchings of vertices also matched under MA or MB,

therefore

2|M ∩ EI | ≤ 2|MA|+ 2|MB|+ |RA|+ |RB|,

where Rn is a subset of E considering all the edges in M ∩ EI but not in Mn and

incident with a vertex of V n, for n = A,B. See Figure 4.2.3. The number of player B’s

vertices matched in M I
(
M ∩ EA,MB

)
is equal or greater than RB, because this external

matching has available the vertices incident with the edges of RB and can match them

with any vertex not in M ∩ EA, thus

|RB| − |M I(MA,M ∩ EB)| ≤ 0.
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M ∩ EA ∩MA M ∩ EB ∩MBMA

M ∩ EA

EA EB

M ∩ EB

RA M ∩ EI RB

MB

Figure 4.2.3: Illustration of the solutions associated with the worst Nash equilibrium and

the social optimum.

In a completely analogous way, it can be shown that

|RA| − |M I(M ∩ EA,MB)| ≤ 0.

The inequalities above imply

2|M ∩ EI | − |M I(MA,M ∩ EB)| − |M I(M ∩ EA,MB)| ≤ 2|MA|+ 2|MB| ≤ z∗,

which together with inequality (4.2.2a) results in

z∗ ≥ z − z∗ ⇔ z∗

z
≥ 1

2
.

Now, we will use an instance to prove that the bound 1
2

is tight.

Consider a 2–KEG represented by the graph of Figure 4.2.4. It is easy to see that

the worst Nash equilibrium in terms of total utilities is MA = {(1, 2)}, MB = ∅ and

M I
(
MA,MB

)
= ∅ with a total of z∗ = 2. On the other hand, the social optimum

is M = {(1, 3) , (2, 4)} with a value of z = 4. In this instance the price of anarchy is
z∗

z
= 2

4
= 1

2
.

4.2.3 Rational Outcome: Social Welfare Equilibrium

In this section, we will prove that the social welfare equilibria are Pareto efficient (defined

in Section 2.3) and any NE that is not social optimal is dominated by an SWE. Conse-

quently, from both the social welfare and the players’ point of view, these equilibria are

the most desirable game outcomes. Moreover, recall that in Section 4.2.2.2, we presented

an algorithm that computes an SWE in polynomial time emphasizing its practicality.

Below we show that no SWE is dominated, i.e., all SWE are Pareto efficient.
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1

2

3

4

Figure 4.2.4: The price of anarchy is 1
2
.

Lemma 4.2.10. In 2–KEG any social welfare equilibrium is Pareto efficient.

Proof. Let MA and MB be players’ A and B strategies, respectively, in a SWE. Assume

that this SWE is not Pareto efficient, that is, there is a player A’s feasible strategy RA

and a player B’s feasible strategy RB that dominate this equilibrium. Without loss of

generality, these assumptions translate into:

2|MA|+ |M I(MA,MB)| ≤ 2|RA|+ |M I(RA, RB)|

2|MB|+ |M I(MA,MB)| < 2|RB|+ |M I(RA, RB)|.

Summing the two inequalities above and simplifying, we obtain:

|MA|+ |M I(MA,MB)|+ |MB| < |RA|+ |M I(RA, RB)|+ |RB|,

which contradicts the assumption that the equilibrium given by MA and MB is a social

optimum (maximum matching).

Note that this result also holds for more than two players which reinforces the interest of

studying SWE.

In the next section, we prove any NE that is not a social optimum is dominated by an SWE.

In order to achieve this result we need the following theorem, which fully characterizes a

player’s best reaction.

Theorem 4.2.11. In 2–KEG, let MB be a player B’s fixed matching. A player A’s

matching MA can be improved if and only if there is a MA∪M I(MA,MB)-alternating path

in GA(MB) whose origin is a vertex in V A, unmatched in this path, and the destination

is a

i. MA ∪M I(MA,MB)-unmatched vertex belonging to V A, or

ii. M I(MA,MB)-matched vertex in V B, or

iii. M I(MA,MB)-unmatched vertex in V B.
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The symmetric result for player B also holds.

Proof. Consider a fixed match MB of GB.

(Proof of if). Let MA be a player A’s strategy. Recall Lemma 4.2.2 in which we state

that given MB, we can assume that player A controls the IA decision. If there is a path

p in GA(MA) satisfying i., ii. or iii., then, (MA ∪M I(MA,MB))⊕ p improves player A’s

utility in comparison with MA ∪M I(MA,MB); see Figure 4.2.5 for an illustration.

1 2 3 4 5 6
MA M I(MA,MB)

Case i. - The matching {(2, 3), (4, 5)} ⊕ {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)} increases player A’s

utility by two units.

1 2 3 4 5 6 7
M I(MA,MB) MA M I(MA,MB)

Case ii. - The matching {(2, 3), (4, 5), (6, 7)}⊕{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7)} increases

player A’s utility by one unit.

1 2 3 4 5 6
MA M I(MA,MB)

Case iii. - The matching {(2, 3), (4, 5)} ⊕ {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)} increases player A’s

utility by one unit.

Figure 4.2.5: Possibilities for player A’s to have an incentive to deviate from strategy MA,

given the opponent strategy MB.

(Proof of only if). Let MA be player A’s best reaction to MB and consider a feasible

player A’s strategy RA that is not her best reaction to MB. We will show that assuming

that there is no RA ∪M I(RA,MB)-alternating path of GA(MB) as stated in the theorem

leads to a contradiction.

Note that given any two matchings M1 and M2 of a graph, in the induced subgraph with

edges M1 ⊕M2, each vertex can be incident to at most two edges; hence, any connected

component of M1 ⊕M2 is either an even cycle with edges alternately in M1 and M2, or

a path with edges alternately in M1 and M2. Let us define HA as the subgraph of GA

that results from considering the edges in MA ⊕RA, and H as the subgraph of GA(MB)

that results from considering the edges in (MA ∪M I(MA,MB))⊕ (RA ∪M I(RA,MB)).

Connected components of HA and of H are either even cycles or paths.
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If |MA| > |RA|, HA has more edges of MA than of RA, and therefore there exists a path

p of HA that starts and ends with edges of MA. If the origin and destination of p are

M I(RA,MB)-unmatched, then p is an RA ∪M I(RA,MB)-alternating path as stated in

i., which contradicts our assumption. Thus, for all paths of HA starting and ending with

edges of MA, it holds that all their vertices are both MA-matched and RA∪M I(RA,MB)-

matched (see Figure 4.2.6). Therefore, the advantage of MA ∪M I(MA,MB) over RA ∪

MA RA MA

M I(RA,MB)M I(RA,MB)

p

Figure 4.2.6: The path p is not an RA ∪M I(RA,MB)-alternating path of type i.

M I(RA,MB) must be outside HA. Analogously, if |MA| ≤ |RA|, we also conclude that

the advantage of MA ∪M I(MA,MB) over RA ∪M I(RA,MB) must be outside HA.

In this way, there is a ∈ V A and b ∈ V B such that (a, b) ∈ M I(MA,MB), but a is RA ∪
M I(RA,MB)-unmatched. Then, since we assumed that there is no RA ∪M I(RA,MB)-

alternating path as stated in the theorem (and the IA does not violate the game rules),

the path of H starting in a must end in a vertex a′ ∈ V A that is RA ∪M I(RA,MB)-

matched and MA ∪ M I(MA,MB)-unmatched. Therefore, the number of V A vertices

covered by MA ∪M I(MA,MB) and RA ∪M I(RA,MB) on this component is the same

(see Figure 4.2.7). In conclusion, any path of H starting in a vertex of V A that is

a

b

a′

M I(MA,MB)

RA ∪M I(RA,MB)

Figure 4.2.7: Path component of H. The white circle is a vertex for which it is not

important to specify the player to which it belongs.

RA ∪ M I(RA,MB)-unmatched and M I(MA,MB)-matched does not give advantage to

MA ∪M I(MA,MB) over RA ∪M I(RA,MB). This contradicts the fact that strategy RA

is not a player A’s best reaction to MB.
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4.2.3.1 Computation of a Dominant SWE

We present in Algorithm 4.2.3.1 a method that, given a 2–KEG graph and a socially

suboptimal Nash equilibrium, computes an SWE that we claim dominates the given

equilibrium.

Algorithm 4.2.3.1

Input: A 2–KEG instance G and an NE M of G.

Output: M if it is an SWE, else an SWE dominating it.

1: S ← a maximum matching of G

2: if |M | = |S| then

3: return M

4: end if

5: t← 1

6: P t ← paths from M ⊕ S with both extreme edges in S M -augmenting paths

7: M t ←M ⊕ p1 ⊕ . . .⊕ pr where {p1, p2, . . . , pr} = P t
8: while there is an M t-alternating path x = (v0, v1, . . . , v2m) of type ii. in Gn(M t∩E−n)

for some n ∈ {A,B} do

9: Assume (v0, v1) ∈ EI ∩M t with v0 ∈ V −n and v1 ∈ V n.

10: j ← maxi=0,...,2m−1{i : (vi, vi+1) ∈ q for some q ∈ P t}
11: y ← (u0, u1, . . . , uk, uk+1, . . . , uf ) ∈ P t used to determine j with (uk, uk+1) =

(vj, vj+1)

12: z ← (v2m, v2m−1, . . . , vj+1, uk+2, . . . , uf )

13: M t+1 ←M t ⊕ y ⊕ z
14: P t+1 ← (P t − {y}) ∪ {z}
15: t← t+ 1

16: G′ ← subgraph of Gn(M t∩E−n) induced by considering only edges of x from v0 to

vj = uk and of y from u0 to uk = vj

17: if there is a x ← M t-alternating path of type ii. in G′ starting in (v0, v1) go to

step 10

18: end while

19: return M t.

In what follows we provide a proof of the correctness of this algorithm. For sake of clarity,

first of all, we provide an illustration of how the algorithm works by applying it to a

2–KEG instance.

Example 4.2.12. Consider the 2–KEG instance represented in Figure 4.2.8.

A Nash equilibrium M that is not a maximum matching is represented by bold edges in

the top-left graph of Figure 4.2.9. The matching M is a Nash equilibrium, since there is
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Figure 4.2.8: A 2–KEG instance.

no M-alternating path as stated in Theorem 4.2.11; and it is not a maximum matching

because there are M-augmenting paths, e.g., (25, 24, 5, 6, 20, 21, 22, 23). We will apply

Algorithm 4.2.3.1 to this NE in order to achieve one that is an SWE and dominates it.

The algorithm starts by computing an arbitrary maximum matching S, represented in the

top-right graph of Figure 4.2.9; the symmetric difference between M and S is represented

in the center-left graph of that figure. There are 6 connected components in S ⊕M , three

of which include M-augmenting paths:

P1 = {(33, 32, 31, 30, 3, 4, 26, 27, 28, 29), (25, 24, 5, 6, 20, 21, 22, 23),

(15, 14, 13, 12, 11, 10, 19, 18, 17, 16)}.

Therefore, at the end of step 7 we obtain a maximum matching M1, represented at the

center-right of Figure 4.2.9.

The algorithm proceeds searching for an M1-alternating path of type ii. in Gn(M1 ∩
E−n) for some n ∈ {A,B}, i.e., the algorithm will check if M1 is an SWE. In this

step, path x = (1, 2, 3, 4, 5, 6, 7, 8, 9) is found, which shows that M1 is not an equi-

librium. The M-augmenting path y = (25, 24, 5, 6, 20, 21, 22, 23) is replaced by z =

(9, 8, 7, 6, 20, 21, 22, 23), leading to matching M2 represented at the bottom-left graph of

Figure 4.2.9. Next, step 17 is used to verify if there is an M2-alternating path of type

ii. considering only the edges (1, 2), (2, 3), (3, 4), (4, 5), (5, 24), (24, 25). There is: path

(1, 2, 3, 4, 5, 24, 25). The M-augmenting path (33, 32, 31, 30, 3, 4, 26, 27, 28, 29) is modified

into (25, 24, 5, 4, 26, 27, 28, 29), obtaining M3 represented in the lower-right graph of Fig-

ure 4.2.9. In the next iteration no M3-alternating path of type ii. can be found, and thus

the algorithm terminates. M3 is an SWE that dominates M .

Next we will prove that for any socially suboptimal NE, the Algorithm 4.2.3.1 returns a

dominant SWE.
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Figure 4.2.9: Computation of a dominant SWE in the 2–KEG instance of Figure 4.2.8

starting from the initial equilibrium in the top-left graph, and the initial maximum

matching of top-right graph.

The algorithm starts by computing a maximum matching S. If the Nash equilibrium

from the input is a maximum matching, the algorithm returns it and stops. Otherwise,

it proceeds. At iteration t, P t is the set of M -augmenting paths used to compute the

maximum matching M t. In this way, step 7 augments M in order to obtain a maximum

matching M1. Note that |P1| augmenting paths of M are used in order to get M1 and that

the symmetric difference of a matching with an associated augmenting path only adds

additional covered vertices. Therefore, none of the M -matched vertices is M1-unmatched,

which shows that the players’ utilities associated with M1 are equal to or greater than

the ones achieved through M .

Note that if there is an M1-alternating path of type i. or iii., then it is also an augmenting

path of M1 contradicting the fact that M1 is a maximum matching. Therefore, by

Theorem 4.2.11, if M1 is not a Nash equilibrium then there is an M1-alternating path of

type ii. in GA(M1 ∩ EB) or GB(M1 ∩ EA). In this case, the algorithm will remove the

M1-alternating path of type ii. through steps 8 to 15. In these steps an M -augmenting

path y ∈ P1 is replaced by a new M -augmenting path z. Thus, it is obvious that the new
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maximum matching M2 dominates the utilities achieved through M .

Suppose that in step 8 an M t-alternating path x of type ii. is found. Since M is an NE,

the path x cannot be M -alternating. Thus, x intersects at least one M t-matched edge of

a y ∈ P t. The algorithm picks such y accordingly with the one closest to v2m, since this

rule ensures that y never intersects x from vj+1 = uk+1 to v2m. Then, through step 13,

v2m is made M t+1-matched, which eliminates the M t-alternating path x of type ii.. See

Figure 4.2.10 for illustration.

v0 v1 . . . vj = uk vj+1 = uk+1 . . . v2m

u0 uf

M t M t

x

y
z

Figure 4.2.10: Modification of y to z through x. White circle vertices mean that there is

no need to specify the player to which the vertices belong.

So far, we proved that at any iteration t of Algorithm 4.2.3.1, the current maximum

matching M t dominates M and that if there is an M t-alternating path of type ii., we

eliminate it in the next maximum matching M t+1. It remains to show that the elimination

of paths of type ii. will stop, leading to an SWE.

By construction, the size of the augmenting path sets is maintained during the algorithm

execution. Indeed, in each iteration, an M -augmenting path is replaced by a new one.

Lemma 4.2.13. |P t| = |Pk| ∀t, k ≥ 1.

For an M -augmenting path y = (u0, u1, . . . , uf ), define σ(y) as the number of times that y

switches the player’s graph plus one unit if the first internal edge that follows the extreme

u0 ∈ V i is in E−i, and plus one unit if the last internal edge that precedes the extreme

uf ∈ V j is in E−j. For instance, the path

1 2 3 4 5 6 7 8

has σ-value equal to 3: count two unities because, the first extreme vertex, 1, is in V B

while the following internal edge, (2, 3), is in EA and add 1 unit because the rest of
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the path is in EB. Indeed, the σ-value of M -augmenting paths has to be greater or

equal to two, otherwise it is not a Nash Equilibrium (i.e., there is an M -alternating path

as described in Theorem 4.2.11, or the independent agent is not choosing a maximum

matching as obliged by the game rule). The following lemma states that the σ-value of

the paths in P t is non-increasing.

Lemma 4.2.14. In an iteration t of Algorithm 4.2.3.1 σ(y) ≥ σ(z).

Proof. Consider an arbitrary iteration t of Algorithm 4.2.3.1. Without loss of generality,

assume that the M t-alternating path x of type ii. found is in GA(M t ∩ EB).

In step 11, y = (u0, u1, . . . , uf ) is the selected augmenting path in P t. In order to get z, the

part of y from u0 to uk is replaced by a path that has all the edges in EA∪EI . Note that

there must be an internal edge in y after uk+1, otherwise M is not an equilibrium: the path

(uf , uf−1, . . . , uk+1, vj+2, vj+3, . . . , v2m) would be an M -alternating path in GA(M ∩ EB)

satisfying one of the conditions of Theorem 4.2.11. Thus, we continue the proof by

distinguishing two possible cases: the first internal edge in y after uk+1 is in EB or EA.

Case 1: The first internal edge in y after uk+1 is in EB. Then, σ(z) is equal to one plus

the number of times that the path y from uk+1 to uf switches the player’s graph

plus one unit if the last internal edge before uf ∈ V i is in E−i. Observe that σ(y)

is greater or equal to the number of times that the path y from uk+1 to uf switches

the player’s graph plus one unit if the last internal edge before uf ∈ V i is in E−i.

In order to get equal, the part of y from u0 to uk+1 must have the edges in EB ∪EI

and u0 ∈ EB. However, this contradicts the fact that M is a Nash equilibrium: one

of the vertices uk or uk+1 has to be in V A, otherwise y is not in player A’s graph. If

uk+1 ∈ V A, then uk+2 ∈ V B, which means that the part of x from v2m to (uk+1, uk+2)

is an M -alternating path of type ii. in GA(M ∩ EB). Otherwise, if uk ∈ V A, then

uk−1 ∈ V B and the part of y from u0 to uk is an M -alternating path of type ii. in

GB(M ∩ EA). In conclusion, σ(y) ≥ σ(z).

Case 2: The first internal edge in y after uk+1 is in EA. Then, σ(z) is equal to the

number of times that the path y from uk+1 to uf switches the player’s graph plus

one unit if the last internal edge before uf ∈ V i is in E−i. Note that σ(y) is greater

or equal to the number of times that the path y from uk+1 to uf switches the player’s

graph plus one unit if the last internal edge before uf ∈ V i is in E−i. In conclusion,

σ(y) ≥ σ(z).

An immediate consequence it the following corollary.
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Corollary 4.2.15. If σ(y) > σ(z) holds in iteration t, then z will never evolve during the

rest of the algorithm to be equal to y.

Proof. Assume that σ(y) > σ(z) in iteration t. By Lemma 4.2.14, if z is selected in a

forthcoming iteration then the resulting (modified) path has a σ-value less or equal to

σ(z) and, in particular, less than σ(y). Therefore, it is impossible that from iteration z

this path evolves to y, since that contradicts Lemma 4.2.14.

Whenever Algorithm 4.2.3.1 at iteration t modifies y such that σ(y) > σ(z), we get that

the maximum matching M t will never be computed again in later iterations.

Corollary 4.2.16. Algorithm 4.2.3.1 can only cycle after iteration t if σ(y) = σ(z).

Now, we will prove that when a modification of an augmenting path y to z has σ(y) =

σ(z), then the algorithm finds an M t+1-alternating path of type ii. in step 17. This

particular search for such a path is the important ingredient for the algorithm to stop

after a finite number of iterations. If we remove this step from Algorithm 4.2.3.1 and

we simply arbitrarily search for the elimination of paths of type ii. then the algorithm

can cycle. For instance, in Example 4.2.12, when we are in iteration 2 and we do not

perform the search as stated in step 17, then we can compute the M2-alternating path

(1, 2, 11, 10, 7, 6, 5, 24, 25) that would lead us to M3 = M1, making the algorithm to cycle.

Lemma 4.2.17. If σ(y) = σ(z) at the end of step 15 of Algorithm 4.2.3.1, then a path

of type ii. is found in step 17.

Proof. Suppose that the algorithm is in the end of step 15. Without loss of generality,

the proof concentrates only on the case for which x is in GA(M t−1 ∩ EB), since for x in

GB(M t−1 ∩ EA) the proof is analogous.

We will make use of Lemma 4.2.14 proof in order to conclude that under the lemma

hypothesis, σ(y) = σ(z), the edges of y from u0 to uk are in EA∪EI . Case 1 of that proof

implies that in order to get σ(y) = σ(z), the edges of the path y from u0 to uk should be

in EA∪EI and u0 ∈ V A. In order to get σ(y) = σ(z) in case 2, we also get that the edges

of the path y from u0 to uk should be in EA ∪ EI and u0 ∈ V A.

Next, we will show that there is an M t-alternating path of type ii. from (v0, v1) to u0 that

only uses the edges of x from v0 to vj and y from u0 to uk. Therefore, for sake of clarity,

consider y′ = (u0, u1, . . . , uk) and x′ = (v0, v1, v2, . . . , vj). Recall that uk = vj.

In step 17, the new M t-alternating path of type ii. x can be built as follows. Start to

follow x′ from v0 until it intersects a vertex uj1 in y′ (note that y′ intersects x′ at least in

uk = vj). Consider the following possibilities.
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Case 1: If (uj1 , uj1−1) ∈M t, then x = (v0, v1, . . . , uj1 , uj1−1, . . . , u0) is an M t-alternating

path of type ii..

Case 2: If (uj1 , uj1+1) ∈M t, then (uj1 , uj1−1) ∈M t−1 and (uj1 , uj1−1) ∈ x′, which implies

uj1+1 /∈ x′. Follow y′ by index increasing order starting in uj1+1 until it is reached

a vertex uj2 = vi1 of x′ (note that such vertex exists since at least uk = vj ∈ x′,

with k > j1 + 1). The vertex uj2−1 /∈ x′, otherwise, we would have stopped in uj2−1.

Thus, (uj2 , uj2−1) /∈ M t−1. Otherwise, x′ would not be an M t−1-alternating path.

In conclusion, (uj2 , uj2−1) ∈M t.

Next, we follow x′ by index decreasing order starting in uj2 = vi1 until we intersect

a vertex uj3 of y′ (which has to occur, since we noted before that at least uj1−1

is in x′). If (uj3 , uj3−1) ∈ M t, then the rest of the M t-alternating is found as in

case 1. Otherwise, (uj3 , uj3+1) ∈ M t and we proceed as in the beginning of case 2.

This process will terminate in u0 since we are always adding new vertices to our

M t-alternating path and the number of vertices is finite.

Corollary 4.2.18. The algorithm can only cycle if it remains in steps 15 to 17.

Theorem 4.2.19. After a finite number of executions of steps 15 to 17, the algorithm

fails to find such a path in step 17.

Proof. The length of the path (v0, v1, v2, . . . , vj) considered in step 17 strictly decreases

in each consecutive execution of steps 15 to 17.

As a corollary of the above Theorem we can now state the desired result.

Corollary 4.2.20. After a finite number of iterations, the Algorithm 4.2.3.1 stops and

finds an SWE that dominates the NE given in the input.

4.2.4 Refinement of SWE

Although Algorithm 4.2.2.1 computes an SWE, the results obtained in Section 4.2.3 (see

Theorem 4.2.11) allow the definition of a simpler polynomial time algorithm returning

an SWE. Furthermore, the algorithm will solve another aspect left open in the previous

sections where we discussed the advantage of SWE among the set of NE for 2–KEG. This

refinement to select an NE is still not sufficient to get uniqueness, i.e., there are 2–KEG

instances for which there is more than one SWE. The algorithm presented in this section

will solve this issue.
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Example 4.2.21. Consider the 2–KEG instance represented in Figure 4.2.11. There are

four maximum matchings M1 to M4, of which matchings M1 and M2 are NE (SWE).

Under M1 player A has utility 4 and player B has utility 2; in contrast, under M2 both

players have utility 3.

This instance has two distinct SWE, and by repeating the relevant pattern we can create

instances with multiple distinct SWE. For example, the game of Figure 4.2.12 has eight

SWE.

Instance M1 M2 M3 M4
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Figure 4.2.11: 2–KEG instance with four different maximum matchings, and two SWE,

M1 and M2.
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Figure 4.2.12: 2–KEG instance with eight SWE.

In this context it seems rational to search for the social welfare equilibrium that minimizes

the number of external exchanges, since that decreases the dependency of the players on

each other; in practice, this seems to be a more desirable solution. Therefore, in what

follows, we will show how to find such an equilibrium in polynomial time.

Consider Algorithm 4.2.4.1. This algorithm based on the number of vertices, |V |, it

associates weight 2 + 2|V | for internal edges and weight 1 + 2|V | for external edges.
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Then, a maximum weight matching is returned. We will prove that this algorithm can

be executed in polynomial time and that it computes a social welfare equilibrium that

minimizes the number of external exchanges.

Algorithm 4.2.4.1

Input: A 2–KEG instance G.

Output: An SWE that minimizes the number of external exchanges.

1: for e in EA ∪ EB do

2: we ← 2 + 2|V |
3: end for

4: for e in EI do

5: we ← 1 + 2|V |
6: end for

7: M ← maximum weight matching in G given edge weights we, ∀e ∈ E
8: return M

Lemma 4.2.22. Algorithm 4.2.4.1 can be executed in polynomial time.

Proof. It is a well-known result that weighed matching problems can be solved in poly-

nomial time (see, e.g., [103]). Therefore, step 7 can be executed in polynomial time.

Additionally, the attribution of weights for the graph edges is linear in the number of

edges. Therefore, the algorithm can run in polynomial time.

In order to prove that Algorithm 4.2.4.1 outputs an SWE, we need to prove that M is a

maximum matching and an NE.

Lemma 4.2.23. Algorithm 4.2.4.1 returns a maximum matching.

Proof. In step 7 of the algorithm, the maximum weight on an edge in the maximum weight

matching problem considered is 2 + 2|V |. Thus, any matching of size k has a total weight

not greater than k(2 + 2|V |). If that is not a maximum matching, i.e., if k < |S|, where

S is a maximum matching for G, the total weight is bounded above by

k(2 + 2|V |) = 2k(1 + |V |) ≤ 2(|S| − 1)(1 + |V |) = 2|S||V |+ 2(|S| − |V | − 1) < 2|S||V |,

where the last inequality comes from the fact that |S| < |V |.

A maximum matching on the graph game has a total weight at least equal to |S|(1 +

2|V |) = |S|+ 2|S||V |. Therefore, a maximum matching has always a total weight greater

than any non maximum matching. In conclusion, a maximum weight matching with the

proposed edge weights is also a matching with maximum cardinality.
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Lemma 4.2.24. Algorithm 4.2.4.1 returns an NE.

Proof. Let M be the output of Algorithm 4.2.4.1.

By Lemma 4.2.23 we know that M is a maximum matching. If M is not an NE, then

some player must have incentive to deviate; w.l.o.g., assume that player A has incentive

to deviate from M ∩ EA. Then, there must be an M -alternating path p of type ii. in

GA(M ∩ EB) such that M ⊕ p increases player A’s utility

2|(M ⊕ p) ∩ EA|+ |(M ⊕ p) ∩ EI | > 2|M ∩ EA|+ |M ∩ EI |.

On the other hand, the matching |M ⊕ p| must have a total weight not greater than the

one associated with M , i.e.,

(2 + 2|V |)|M ∩ EA|+ (2 + 2|V |)|M ∩ EB|+ (1 + 2|V |)|M ∩ EI | ≥
(2 + 2|V |)|(M ⊕ p) ∩ EA|+ (2 + 2|V |)|(M ⊕ p) ∩ EB|+ (1 + 2|V |)|(M ⊕ p) ∩ EI |.

Since the path p only uses the edges in EA∪EI , the set M ∩EB is equal to (M⊕p)∩EB.

Hence, in this inequality, we can remove the second term of both sides and rewrite as

<0︷ ︸︸ ︷
2|M ∩ EA|+ |M ∩ EI | − 2|(M ⊕ p) ∩ EA| − |(M ⊕ p) ∩ EI |+
2|V |

(
|M ∩ EA|+ |M ∩ EI | − |(M ⊕ p) ∩ EA| − |(M ⊕ p) ∩ EI |

)
≥ 0.

Player A’s utility is bigger with M ⊕ p than with M . Thus, in this inequality the first

four terms lead to a negative number. This implies that

|M ∩ EA|+ |M ∩ EI | > |(M ⊕ p) ∩ EA|+ |(M ⊕ p) ∩ EI | ≥ 0,

which is impossible since, M and M ⊕ p have the same cardinality and, in particular,

|M ∩ (EA ∪ EI)| = |(M ⊕ p) ∩ (EA ∪ EI)|.

Finally, it remains to prove that Algorithm 4.2.4.1 returns a matching that minimizes the

number of external edges on it among the set of SWE.

Lemma 4.2.25. Algorithm 4.2.4.1 outputs a matching that minimizes the number of

external edges among the set of social welfare equilibria.

Proof. Let M be the matching returned by Algorithm 4.2.4.1. We will prove by showing

that assuming another SWE M ′ contains more internal exchanges than M leads to a

contradiction. Since both M and M ′ are maximum matchings, M ′ has a total weight

greater than M ; but this contradicts the fact that the algorithm returns a maximum

weight matching (where the internal edges weight more than the external ones).
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The next theorem concludes this section.

Theorem 4.2.26. Algorithm 4.2.4.1 computes an SWE that minimizes the number of

external exchanges in polynomial time.

Unfortunately, for some 2–KEG instances this refinement of the SWE still does not lead

to an unique solution.

Example 4.2.27. Consider the 2–KEG instance of Figure 4.2.13. There are two SWE

that minimize the number of external exchanges, M1 and M2. These matchings lead both

players to an utility of 3.

1 2 3 4

56

M1

M2

M2 M1

M2

M1

Figure 4.2.13: 2–KEG instance with two distinct SWE that lead both players to the same

utility.

However, the players utilities under social welfare equilibria that minimize the number of

external exchanges are unique as we will prove next.

Theorem 4.2.28. In any SWE that minimizes the number of external exchanges, for a

fixed instance, the players’ utilities are always the same.

Proof. Consider an instance of 2–KEG for which there are two different SWE minimizing

the number of external exchanges, say M1 and M2, of Algorithm 4.2.4.1. The proof is

by contradiction, by assuming that player A’s utilities with M1 and M2 are different.

Without loss of generality,

2|M1 ∩ EA|+ |M1 ∩ EI | > 2|M2 ∩ EA|+ |M2 ∩ EI |.

Build the subgraph H of G induced by the edges in the set (M1 ⊕ M2) ∩ (EA ∪ EI).

As player A covers more of her vertices through M1 than through M2, there must be at

least one vertex a ∈ V A such that a is M1-matched and M2-unmatched. Consider each

distinct component p of H; p is a path starting in, say, vertex a. There are three possible

cases. Namely,

Case 1: path p terminates in an M2-matched vertex of V A. Then, it is not this compo-

nent that gives advantage to M1.
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Case 2: path p terminates in an M2-matched vertex of V B. Then, p is an M2-alternating

path of type ii.; by Lemma 4.2.24, this contradicts the fact that M2 is an NE.

Case 3: path p terminates in an M1-matched vertex. Then, p is an augmenting path to

M2; by Lemma 4.2.24, this contradicts the fact that M2 is a maximum matching.

We finish this section by noting that another desirable SWE is that in which the difference

of players’ utilities is minimized, i.e., the discrepancy of the players’ utilities is minimized

resulting in a more “fair” outcome. It is easy to show that the social welfare equilibrium

introduced in this section, i.e., that minimizing the number of external matchings achieves

simultaneously the goal of minimizing the difference of players’ utilities.

Theorem 4.2.29. If M is an SWE with minimum number of external matchings then,

it also an SWE that minimizes the difference of players’ utilities.

Proof. Let MA, MB and M I(MA,MB) be the social welfare equilibrium that minimizes

the number of external matchings. Let RA, RB and M I(RA, RB) be the social welfare

equilibrium that minimizes the difference in the players utilities, i.e., the value of |2|RA|+
|M I(RA, RB)| − 2|RB| − |M I(RA, RB)|| = ||RA| − |RB|| is the minimum among all social

welfare equilibria.

If |M I(MA,MB)| = |M I(RA, RB)|, then the matching RA ∪ RB ∪ M I(RA, RB) is also

an SWE that minimizes the number of external matchings. Thus, by the uniqueness of

the players’ utilities under this refinement of the SWE, MA ∪MB ∪M I(MA,MB) also

minimizes the difference of players’ utilities.

If |M I(MA,MB)| 6= |M I(RA, RB)| then, |MA|+ |MB| > |RA|+ |RB| since, by hypothesis

|M I(MA,MB)| < |M I(RA, RB)| and both matchings have maximum cardinality. Without

loss of generality, there must be a path p that starts and ends in MA-matched vertices and

alternates between edges in MA and edges in RA. Matching RA∪RB ∪M I(RA, RB) is an

NE which implies that p cannot be a path as described in Theorem 4.2.11. Therefore, the

extreme vertices of p must be M I(RA, RB)-matched which does not show any advantage

of MA∪M I(MA,MB) and RA∪M I(RA, RB) over each other in terms of player A’s utility.

In this way, it follows that both matchings lead to the same utility for both players.

In conclusion, one may argue that the players will select social welfare equilibria since,

given any Nash equilibrium, both players can improve their utilities through an SWE.

Additionally, choosing an SWE that minimizes the number of external exchanges is a

desirable propriety for both players, and we demonstrated that such equilibrium can
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be found in polynomial time. Moreover, players are indifferent among such equilibria,

because utilities remain the same for any of them. Thus, it seems reasonable to consider

that the players will agree in the SWE to be played.

4.2.5 Model Extensions

In what follows, we discuss extensions to the results when our assumptions (exchanges

size, players’ utilities and number of players) are relaxed.

A common problem of these extensions is that the IA decision may become undefined

(in contrast with Proposition 4.2.1), in the sense that there might exist more than one

optimal solution maximizing the number of external exchanges that would benefit the

players differently. In order to deal with this issue, we could, for example, impose a public

preference on the external exchanges to the IA, associate a probability for each equivalent

optimal solution of the IA or assume that the players are pessimistic/optimistic about

the IA decision.

Relaxation of Exchanges Maximum Size to L > 2. In the literature about kidney

exchange programs, besides cycles of size two (matchings), typically cycles of size three

(3-way exchanges) are allowed. In the latter case, we conjecture that (recall the notation

introduced to N–KEG in Problem 4.2.1)

Φ(xA, xB) =
∑

c∈CA
wcx

A
c +

∑

c∈CB
wcx

B
c +

∑

c∈I:wAc =wBc =1

yc +
3

2

∑

c∈I:wAc =2∨wBc =2

yc

is a (non-exact) potential function and thus, a maximum is an NE. However, for general

values of L the game may fail to have a pure Nash equilibrium, as shown in Figure 4.2.14.

The main difference when L > 3 is that in this case external cycles may help strictly more

patients of a same player than an internal exchange, while for L = 3 an external exchange

helps at most as many patients as an internal one.

Besides cyclic exchanges, researchers have also included chains, where, there is an altruis-

tic donor starting the exchange (see Figure 4.2.15). Allowing exchanges beyond matchings

(L = 2) and chains is an extension with positive impact in the social optimum, and it

calls for studying the existence of pure Nash equilibria with good social properties.

Change in Players’ Utilities. Investigating different players’ utilities is of crucial

importance. The literature on the kidney exchange program is rich of examples analyzing

different solution selection criteria (e.g., see [44]).
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1 2 3

4

567

8 9 SA = ∅, SB = ∅, SI(SA, SB) = {(2, 6, 5, 4, 3, 2)}

SA = {(1, 2, 1)}, SB = ∅, SI(SA, SB) = ∅

SA = {(1, 2, 1)}, SB = {(5, 6, 5)}, SI(SA, SB) = ∅

SA = ∅, SB = {(5, 6, 5)}, SI(SA, SB) = {(2, 8, 9, 3, 2)}

Player A has incentive to deviate

Player B has incentive to deviate

Player A has incentive to deviate

Player B has incentive to deviate

Figure 4.2.14: A game instance with L = 5. Player A can select {(1, 2, 1)} or ∅; Player B

can select {(5, 6, 5)} or ∅. Let SP be player P internal exchange program, for P = A,B,

and SI(SA, SB) the IA external exchange program. The diagram on the right hand side of

the graph shows that none of the (pure) game outcomes is a Nash equilibrium (implying

that the game cannot be potential).

altruistic donor patient donor patient

Figure 4.2.15: Example of a chain of length 2.

A simple extension would be to assume that the players prioritize maximum matchings

that maximize “hard-to-match” vertices. In this case, we could still have an SWE. We first

compute an SWE for 2–KEG. If this SWE is not an equilibrium for this extension, then,

w.l.o.g., there is a M -unmatched vertex a ∈ V A hard-to-match and a MA∪M I(MA,MB)-

alternating path p that terminates in a player A M -matched vertex that is not hard-to-

match. Because the maximum matching M ′ = M ⊕ p improves player A utility and does

not create alternating paths of type ii. (see Theorem 4.2.11), we just need to repeat this

process until no player has incentive to deviate.

However, for more complicated players’ utilities the game may fail to have pure Nash

equilibria. For instance, consider the compatible graph of Figure 4.2.16. The IA behavior

remains as before: maximize the number of external exchanges among the available

vertices; be indifferent between the players’ evaluation of the different matchings; have

a deterministic decision, that is, for any combination of the players’ strategies (internal

matchings) the external exchange selected by the IA is known. In Figure 4.2.17, we have

all the possible outcomes for the game. Observe that none of these 4 possible outcomes

is a Nash equilibrium and thus, no pure equilibrium exists.

Another extension in this context is to Bayesian games. In this case, the players would

not know their opponents evaluations/utilities for the exchanges. Under this incomplete

information scenario, it would be interesting to explore how the players can build believes
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1 2

34 5

1,1

0,5

1,1

5,0
5,1

5,1

1,10

Figure 4.2.16: The players’ utility of each matching is given by the numbers in the edges:

player A value is in red and player B value in green.

MA = ∅ MA = ∅ MA = {(1, 4)} MA = {(1, 4)}
MB = ∅ MB = {(2, 3)} MB = ∅ MB = {(2, 3)}
M I(MA,MB) = {(1, 3), (2, 4)} M I(MA,MB) = ∅ M I(MA,MB) = {(3, 5)} M I(MA,MB) = ∅
ΠA = 10 ΠA = 0 ΠA = 6 ΠA = 5

ΠB = 2 ΠB = 5 ΠB = 10 ΠB = 5

1 2

34 5

1 2

34 5

1 2

34 5

1 2

34 5

Figure 4.2.17: All possible outcomes for the game.

about the opponents’ objectives by repeatedly observing the game outcomes and, thus,

use them to compute (Bayesian) equilibria.

Increase Number of Players to N > 2. Extending our results about the existence

of an NE and an SWE dominating it is immediate. Let {1, 2, . . . , N} be the set of players.

Then, (by extending our notation in an obvious way)

Φ(M1,M2, . . . ,MN) =
N∑

P=1

2|MP |+ |M I(M1,M2, . . . ,MN)|

is a (non-exact) potential function, and a optimum of it is an NE. The function is potential,

since whenever a player increases her utility it is because she is increasing the number of

internal exchanges. An increase in the number of internal exchanges has a greater impact

in the value of Φ than external exchanges. The results in Section 4.2.3 remain valid in

this setting. The ideas presented analyze each player’s incentives for deviation, which

hold for more than 2 players, because we can think of a player opponents’ as a single one

(reducing the study to 2–KEG).

It remains to investigate, if there is an NE which the players would agree to choose.
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4.2.6 Summary

In this section, we have shown that the two-player kidney exchange game has always a pure

Nash equilibrium and that it can be computed in polynomial time. Furthermore, we have

proven the existence of a NE that is also a social optimum. Finally, and more importantly,

we have shown that for any NE there is always a social welfare Nash equilibrium that is

a preferred outcome for both players.

There is no uniqueness result for social welfare equilibria. In order to find rational guide-

lines for the players’ strategies, we add to the social welfare equilibrium the requirement

that it must be the one that minimizes the number of external exchanges. For this type

of solution, we were able to prove uniqueness in terms of the players’ utilities and to show

that it can be efficiently computed, thus strengthening the fact that this is a realistic

outcome for the game.

Although we show that a social welfare equilibrium can be computed in polynomial time, a

full characterization of the Pareto frontier of social welfare equilibria (with respect to pure

Nash equilibria) remains to be done. This is an interesting subject for future research.

Our work also indicates that studying the players interaction through 2–KEG turns the

exchange program efficient both from the social welfare and the players’ point of view.

These results motivate further research in the generalization of the game to more than

two players, to exchanges including more than two patient-donor pairs and to different

evaluation metrics of the exchanges. Some of these generalizations have been preliminarily

discussed in Section 4.2.5.

Additional inspiration for future research is given by the recent paper Hajaj et al. [64],

where a strategyproof mechanism for a multi-period dynamic model was shown to lead

to a global maximum matching that cannot be guaranteed by a mechanism for the static

case. Therefore, given that 2–KEG already provides such solution as a rational outcome

in the static case, investigating the 2–KEG by playing it repeatedly as the players’ pools

of patient-donor pairs change over time would be another line to explore in the future

work.
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4.3 Competitive Uncapacitated Lot-Sizing Game

3

Our Game Model. In this section, Pedroso and Smeers [104] Cournot competition

model is analyzed. We investigate the authors’ competitive uncapacitated lot-sizing

game (ULSG) version. The ULSG is a game that merges the lot-sizing problem (see

Section 2.2.1.3) with Cournot competition (see Example 2.3.8). A player is a firm with its

own production facility, modeled as an uncapacitated lot-sizing problem. For each time

period, instead of fixed demands to be satisfied by each player, a Cournot competition is

played. The lot-sizing part turns the game combinatorial, i.e., an IPG, and the Cournot

competition models the players interaction.

Literature in Lot-Sizing Games. The generality of the lot-sizing games formulated

in the literature have in common (with the ULSG) that players model their production

through a lot-sizing programming problem, and differ in the way in which the players

affect each others utilities. There is literature about lot-sizing games focusing on the

underlying cooperative direction. In this type of games, instead of searching for a Nash

equilibrium, the goal is to find coalitions between the players such that they do not have

incentive to leave them (it would lead to an utility decrease); e.g. see Heuvel et al. [66].

To the best of our knowledge, the literature in non-cooperative (competitive) lot-sizing

games significantly differs from our setting. Maskin and Tirole [88] analyze an oligopoly,

where set-up costs are considered and firms are committed to a particular action in the

short-run. In opposition to the model that we present in this section, in [88], firms

move sequentially and set-up costs are considered to be sufficiently large so that no two

firms can operate profitably. Federgruen and Meissner [50] analyze a Bertrand (price)

competition. In this model, each player decides a market price which is maintained

throughout the game. Given these market prices, the demand in each time period for each

player is determined. The authors are able to get sufficient conditions for the existence

and efficiency of computing one Nash equilibrium if the set-up costs are constant during

the whole time horizon for each player. It is also mentioned the Cournot competition

associated with this model. In this last case, a player’s strategy reduces to deciding a

basic deseasonalized target volume quantity through which the demand is determined for

each time period (the authors note that this case is considerably more difficult). Li and

Meissner [83] consider a lot-sizing game version in which the players’ strategies are the

3The results of this chapter appear in:

M. Carvalho, M. Van Vyve, C. Telha. Competitive Uncapacitated Lot-Sizing Game, working paper.
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production capacities purchased at the beginning of the time planning and, afterwards,

each player solves a lot-sizing programming problem. The cost of buying capacity depends

on the total capacity purchased by the players. After this choice is taken, the players’

problem is just a single-item lot-sizing problem with limited capacity. The authors prove

the existence of a capacity equilibrium under modest assumptions. In the models of these

two papers ([50] and [83]), as well as in our model, the producers decide their strategies

initially and stay committed to them until the end of the time horizon.

Pedroso and Smeers [104] apply a tâtonnement process (recall Section 2.3.2) in order to

compute an equilibrium to the competitive lot-sizing game. In the authors’ computational

experiments, this process successfully computes an equilibrium. Thence, their work opens

the questions of the method conditions to converge to an equilibrium and how efficient it

is.

Our Contributions and Organization of the Section. In Section 4.3.1, we formalize

the competitive uncapacitated lot-sizing game, which is a novel Cournot Competition

model. Section 4.3.2 describes the players’ best responses once the opponents’ strategies

are fixed, and, in particular, a dynamic programming method to find a player’s best

response in polynomial time. It is proven that ULSG is potential in Section 4.3.3,

immediately implying the existence of a (pure) Nash equilibrium. For the case of a single

period and for the case of only set-up costs, algorithms to find a pure NE in polynomial

time are described in Section 4.3.4 and Section 4.3.5, respectively. There may exist

multiple equilibria for an ULSG, and thus, refinements to the equilibrium concept are

usually used (as we did for the two-player kidney exchange game); we show that it is NP-

hard to find a pure NE for the single-period case with respect to a given linear objective

function, but one can compute such an optimal equilibrium in pseudo-polynomial time.

In Section 4.3.6 we remark that our results can be easily extended if inventory costs are

considered. Section 4.3.7 summarizes the open questions.

4.3.1 Model and Notation

The ULSG establishes the connection between the classical uncapacitated lot-sizing model

and the Cournot competition. The model we have built has a discretized finite time

horizon of T periods. In each period t there is a market for a homogeneous product. We

assume that for each period t, the market unit price is Pt, represented by the demand

function Pt = (at − btqt)
+ where α+ = max(α, 0), qt is the total quantity placed in

the market, and at , bt are given parameters modeling the market size and the level of

players interaction, respectively. The set of firms (players) competing in this multi-period
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market is M = {1, 2, . . . ,m}. The production structure of each firm is represented by an

uncapacitated lot-sizing model. That is, each firm p has to decide how much to produce

in each time period t (production variable xpt ) and how much to place in the market

(variable qpt ); we assume that a firm is fully committed to a strategy for the finite time

horizon T . For each firm p and period t, there are set-up and variable (linear) production

costs, denoted by F p
t and Cp

t , respectively, no upper limit on production quantities, and

a producer can build inventory by producing in advance (inventory variable for period t

is hpt ). We assume that there are no inventory costs (in Section 4.3.6 this assumption is

removed). In this way, we obtain the following model for each player (firm) p = 1, 2, . . . ,m:

max
yp,xp,qp,hp

Πp(yp, xp, hp, qp, q−p) =
T∑

t=1

Pt(qt)q
p
t −

T∑

t=1

Cp
t x

p
t −

T∑

t=1

F p
t y

p
t (4.3.1a)

s. t. xpt + hpt−1 = hpt + qpt for t = 1, . . . , T (4.3.1b)

0 ≤ xpt ≤ Bypt for t = 1, . . . , T (4.3.1c)

hp0 = hpT = 0 (4.3.1d)

hpt , q
p
t ≥ 0 for t = 1, . . . , T (4.3.1e)

ypt ∈ {0, 1} for t = 1, . . . , T (4.3.1f)

where B is a sufficient large number and qt =
∑m

i=1 q
i
t (total quantity introduced in the

market of period t). The total quantity introduced in the market of period t is the

responsible for the optimization program (4.3.1) to induce a game. The goal of player

p is to maximize the utility (4.3.1a), which is simply the sum of her profit minus the

production costs in each period t. Constraints (4.3.1b) represent the conservation of

product. Constraints (4.3.1c) ensure that the quantities produced are non-negative and

whenever there is production (xpt > 0), the binary variable ypt is set to 1, implying the

payment of the set-up cost F p
t . We assume that the initial and final inventory quantities

are zero, which is captured by equations (4.3.1d). Inventory quantities and output

quantities must be non-negative, Constraints 4.3.1e. The variables ypt are restricted to be

binary through constraint (4.3.1f).

Let yp, xp, hp be T dimensional vectors of player p’s decision variables for each time

period t. Finally, for theoretical purposes, let us assume that variable and set-up costs

are positive integers, and define producing in period T + 1 as not participating in the

game.
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4.3.2 Best Responses

Recall from Section 2.2.1.3 that in ULSP the demand is fixed and the problem reduces

to minimizing the costs. A well-known and fundamental property of ULSP is that it has

an optimal solution with no inventory at the begin of a period with positive production

(Proposition 2.2.9). The same property holds for a player p’s optimal solution for (4.3.1).

Proposition 4.3.1. Let q−p ∈ X−p be fixed. There exists an optimal solution to (4.3.1)

(best response to q−p) in which hpt−1x
p
t = 0 for t = 1, 2, . . . , T .

Proof. Suppose that qp is an optimal solution to (4.3.1) given q−p. The optimal production

plan to player p reduces to an ULSP with demand qp. Therefore, Proposition 2.2.9 holds,

and thus, there is an optimal solution such that hpt−1x
p
t = 0 for t = 1, 2, . . . , T .

Proposition 4.3.1 is the essential ingredient to determine the optimal output quantities

for player p.

Proposition 4.3.2. Let q−p ∈ X−p and player p’s positive production periods t1 < t2 <

. . . , < tr be fixed. There is an optimal solution to problem (4.3.1) satisfying

qpt (q
−p) = 0, for t = 1, 2, . . . , t1 − 1

qpt (q
−p) =

(at − bt
∑

i 6=p q
i
t − Cp

tj)
+

2bt
, for t = t1, . . . , T

with j = arg max
tu≤t

u=1,2,...,r

tu.

Proof. Let T p = {t1, t2, . . . , tr} be as stated in the proposition. By Proposition 4.3.1, in

period t ≥ t1, the optimal output quantity qpt is produced in the latest production period

tj prior to t, so the production variable can be simply replaced by xptj =
∑min(tj+1,T )

t=tj
qpt .

The optimal value for qpt in 4.3.1 can be determined by optimizing an univariate concave

quadratic function (the part of the utility function associated with qpt ), that is,

(at − btqpt − bt
∑

i 6=p

qit)q
p
t − Cp

tjq
p
t

leading to the formulas of this proposition.

Recall from Section 2.2.1.3 that ULSP can be solved in polynomial time through dynamic

programming. If q−p ∈ X−p is fixed, a similar idea extends to efficiently compute an

optimal production plan for player p.
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Lemma 4.3.3. Solving player p’s best reaction (4.3.1) for q−p can be done in polynomial

time.

Proof. Let Gp(t, q−p) be the maximum utility of player p over the first t periods, given the

opponents’ strategies q−p. Then, Gp(t, q−p) can be written as player p’s maximum utility

when the last production period was k

Gp(t, q−p) = max
k:k≤t
{Gp(k − 1, q−p) +

t∑

u=k

(au − bu(qpu +
m∑

j 6=p

qju))q
p
u − F p

k − Cp
k

t∑

u=k

qpu},

where qpu is computed according with Proposition 4.3.2. Thus, computing Gp(T, q−p),

which is equivalent to solve the best reaction problem (4.3.1) for q−p, can be done in

O(T 2) time (recall the dynamic programming method for ULSP described at the end of

Section 2.2.1.3).

In an equilibrium each player is selecting her best reaction (optimal solution of prob-

lem (4.3.1)) to the opponents’ strategies on that equilibrium. Thus, once the players’

production periods are fixed, we can apply Proposition 4.3.2 simultaneously for all the

players, obtaining a system of equations in the output variables q which can be simplified

and solved, resulting in the following proposition.

Proposition 4.3.4. Let T p be the set of production periods for each player p for an

ULSG. Then, an optimal output quantity for player p is4

qpt = 0, for t = 1, 2, . . . ,min{T p} − 1

qpt =
(Pt(St)− Cp

tpj
)+

bt
, for t = min{T p}, . . . , T,

where tpj = max
u∈T p,u≤t

u (last production period prior to t for player p), St = {i : t ∈
T i for i = 1, 2, . . . ,m} (players participating in the market of period t) and Pt(St) =
at+

∑
i∈St

Ci
ti
j

|St|+1
(market price of period t). In particular, player p’s utility is

Πp(T 1, . . . , Tm) =
∑

t∈T p
−F p

t +
T∑

t=min{T p}

(Pt(St)− Cp
tpj

)+

bt
(Pt(St)− Cp

tpj
). (4.3.4)

In conclusion, the sets of production periods for all the players are sufficient to describe an

NE. This fact significantly simplifies the game analysis in Section 4.3.4 and Section 4.3.5.

4By optimal output quantities it must be understood the quantities of an NE for the game in which

production periods are fixed beforehand.
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In what follows, we use the notation of Proposition 4.3.4: St is the set of players partic-

ipating in the market of period t and Pt(St) is the unit market price of period t for the

set of players St.

Proposition 4.3.4 leads to a natural variant of ULSG: restrict each player p’s strategy

to her set T p ⊆ {1, . . . , T, T + 1} of production periods and her utility is computed

accordingly with utility (4.3.4); call this modified game ULSG-sim. Proposition 4.3.4

associates output quantities to each profile of strategies in ULSG-sim. Because these

output quantities are optimal for the fixed sets of production in ULSG-sim, the set of NE

of ULSG-sim propagates to the original ULSG:

Proposition 4.3.5. Any NE of an ULSG-sim is an NE of the associated ULSG.

In Section 4.3.5, we compute a NE for a special case of the ULSG-sim (and hence for

the ULSG), using a potential function argument. The ULSG-sim, however, is not always

a potential game like the ULSG (as we will show in the next section). Moreover, the

latter can have even a larger set of NE. This shows the advantages and disadvantages

of investigating ULSG through ULSG-sim. The following two examples illustrate that

ULSG-sim may not be potential (Example 4.3.6) and that an NE for ULSG does not have

to be an NE of ULSG-sim (Example 4.3.7).

Example 4.3.6 (ULSG-sim is not a potential game). Consider the instance of ULSG-sim

with m = 2, T = 2, a1 = 20, a2 = 40, b1 = b2 = 1, F 1
1 = 17, F 1

2 = 10, F 2
1 = 18, F 2

2 = 10,

C1
1 = 7, C1

2 = 5, C2
1 = 17 and C2

2 = 1. The following relations for the players’ utilities:

Π1({1}, {1}) < Π1({2}, {1})
Π2({2}, {1}) < Π2({2}, {3})
Π1({2}, {3}) < Π1({1}, {3})
Π2({1}, {3}) < Π2({1}, {1})

imply that a potential function Φ must satisfy Φ({1}, {1}) < Φ({1}, {1}) which is impos-

sible.

Example 4.3.7 (An NE for ULSG may not be an NE of ULSG-sim). Consider the

following instance with m = 2, T = 2, a1 = 12, a2 = 9, b1 = b2 = 1, F 1
1 = 15, F 1

2 = 5,

F 2
1 = 7, F 2

2 = 19 and C1
1 = C1

2 = C2
1 = C2

2 = 0. Note that the absence of variable costs

implies that it is a dominant strategy to produce only once.

In the original game, x1 = q1 = (0, a2

3b2
) = (0, 3) and x2 = ( a1

2b1
+ a2

3b2
, 0), q2 = ( a1

2b1
, a2

3b2
) =

(6, 3) represents a profile of strategies that is a Nash equilibrium of ULSG with player 1’s



4.3. COMPETITIVE UNCAPACITATED LOT-SIZING GAME 139

utility equal to 4 and player 2’s utility equal to 38; if player 1 (player 2) does not participate

in the game her utility decreases to zero, thus player 1 (player 2) does not have incentive

to unilaterally deviate from the equilibrium and not produce; if player 1 decides to produce

in period 1, then, by Proposition 4.3.2, she would produce x1 = ( a1

4b1
+ a2

3b2
, 0) and introduce

in the market q1 = ( a1

4b1
, a2

3b2
), decreasing her utility to 3; if player 2 decides to produce

in period 2, then, by Proposition 4.3.2, she would produce x2 = (0, a2

3b2
) and place on the

market q2 = (0, a2

3b2
), decreasing her utility to -10.

Let us verify if the profile of strategies in ULSG-sim associated with the NE to ULSG

described above, T 1 = {2} and T 2 = {1}, is an NE for ULSG-sim. Player 1’s utility

for the profile of strategies under consideration is 4. Since player 1’s utility is positive,

the player has incentive to participate in the game. It remains to check if player 1 has

incentive to produce in period 1. If player 1 deviates to T 1 = {1} then the associated utility

is −F 1
1 +

a2
1

9b21
+

a2
2

9b22
= −15 + 16 + 9 = 10 which is greater than when player 1 produces in

period 2. Thus, T 1 = {2} and T 2 = {1} is not an equilibrium of ULSG-sim.

4.3.3 Existence and Computation of Nash Equilibria

As pointed out in Simon [117] and Rubinstein [112], players tend to prefer simple strategies

which might be sub-optimal. This reason together with the fact that ULSG has always a

pure equilibrium (as we prove next), justify that we concentrate our investigation only in

pure Nash equilibria.

If there were no set-up costs and T = 1, we would be under the classical Cournot

competition where, clearly, the players with smallest variable costs will be the ones sharing

the market; this will be treated in detail in Section 4.3.4. If we relax T to be arbitrary

but keep the restriction of only variable costs, the problem is equivalent to solving the

Cournot competition for each period t separately and considering the player p’s variable

cost in period t equal to minu=1,...,tC
p
u, this is, each player participates in market t by

producing in advance in the least expensive period. In summary:

Theorem 4.3.8. When F p
t = 0 for p = 1, 2, . . . ,m and t = 1, 2, . . . , T , then the set of NE

for ULSG, projected onto the variables (x, h, q) is contained in a polytope and the market

price is equal for all the NE. Furthermore, unless the problem is degenerate (i.e., there

are at least two players for which the production costs coincide with the market price in

an equilibrium), there is only one NE, and it can be computed in polynomial time.

Next, we investigate the effect on the equilibria search when set-up costs are introduced

in the game.
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In what follows, we show that our game possesses at least one NE through the concept of

potential game (recall Section 2.3.2).

Proposition 4.3.9. The ULSG is a potential game that contains NE, one of them being

a maximizer in X of the game exact potential function

Φ(y, x, h, q) =
m∑

p=1

T∑

t=1

[
−F p

t y
p
t − Cp

t x
p
t +

(
at −

bt
2

(2qpt +
∑

i 6=p

qit)

)
qpt

]
(4.3.6a)

=
m∑

p=1

[
Πp
(
yp, xp, qp, q−p

)
+

T∑

t=1

(
qpt bt

2

∑

i 6=p

qit

)]
. (4.3.6b)

Proof. The fact that ULSG is a potential game and the function (4.3.6) is an exact

potential of it is a direct result from Ui’s Proposition 2.3.10 [123]. Lemma 2.3.9 by

Monderer and Shapley states that a strategy maximizing the potential function of a

potential game is a pure Nash equilibrium. More generally, if we define the neighborhood

of a point (y, x, h, q) ∈ X to be any point in X such that only one player modifies her

strategy then, any local maximum of the potential function Φ(y, x, h, q) is an NE. It only

remains to check that the potential function Φ has indeed a maximum in the domain of

feasible strategies. This follows from the fact that Φ is a linear combination of binary

variables (and hence, bounded) plus a concave function (see Appendix A).

Given that ULSG is potential and its potential function has an optimum, the tatônnement

process described in Section 2.3.2, when applied to ULSG, is guaranteed to compute

(converge to) an NE. This process requires to solve the players’ best reactions 4.3.1 in

each of its iterations; although, each iteration can be performed in polynomial time (by

Lemma 4.3.3), we could not prove that the number of iterations is polynomial in the size

of the input which would imply that the tatônnement process runs in polynomial time.

Alternatively, in order to find an equilibrium, one could compute a maximum of the

potential function Φ(y, x, h, q) in X which amounts to solve a concave MIQP, see the

proof in Appendix A. Once the binary variables y are fixed, i.e., production periods have

been decided, maximizing the potential function amounts to solve a concave quadratic

problem and therefore, a maximum can be computed efficiently. In particular, recall

from Theorem 4.3.8, that if there are no set-up costs (which is equivalent to say that

the binary variables ypt are set to zero and constraints (4.3.1c) are removed) there is

(in general) a unique equilibrium which can be found in polynomial time. Once set-up

costs are considered, the analyses seems to complicate as indicated by the fact that a

player’s advantage in the game is not anymore a mirror of her variable cost alone. Since
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computing an equilibrium through the potential function maximization implies solving an

MIQP which in general is hard, we will restrict our study to simpler cases (single period

and only set-up costs) in an attempt to get insight in the understanding of the game’s

equilibria.

4.3.4 Single Period

In all this section we restrict our attention exclusively to the case with a single period (T =

1). For simplicity, we drop the subscript t from our notation. Note that in this setting

there is no inventory to consider (variables hp disappear) and the quantities produced

are exactly those placed in the market (xp = qp). Additionally, by Proposition 4.3.4, the

problem of computing equilibria reduces to decide the set of players producing strictly

positive quantities. We start by proving that an NE can be computed in polynomial

time. Then, we show that characterizing the set of NE is a NP-complete problem, and

that admits a pseudo-polynomial time algorithm. All these results follow from a simpler

characterization of the equilibrium conditions that we now describe.

In an NE, a subset of producers S ⊆ {1, 2, . . . ,m} plays a strictly positive quantity. By

the definition of NE, no player in S has incentive to stop producing (leave S) and a

player not in S has no incentive to start producing (enter in S). Therefore, applying

Proposition 4.3.4, a player p in S must have non-negative utility

− F p +
(P (S)− Cp)+

b
(P (S)− Cp) ≥ 0 ⇔ P (S) ≥

√
F pb+ Cp, (4.3.7)

while a player p not in S must have non-positive utility if she enters S, even if producing

the optimal quantity (P (S)−Cp)+

2b
given by Proposition 4.3.2

− F p +
(P (S)− Cp)+

2b

(P (S)− Cp)

2
≤ 0 ⇔ P (S) ≤ 2

√
F pb+ Cp. (4.3.8)

To find one NE efficiently, we refer to Algorithm 4.3.4.1. In a nutshell, this algorithm

uses the lower bounds to P (S) given by conditions 4.3.7 to order the players in step 1.

Starting from S = ∅, it adds a player to S whenever she has advantage to join the current

S (step 4). Since a player p will only join S if her variable cost Cp is smaller than the

market price, it is easy to see that P (S) decreases whenever a player is added to S (note

that P (S) is simply the average of the variable costs together with the parameter a).

Thus, once in iteration k, if player p did not had incentive to enter S then, she will

never have it in the future updates of S. This shows that in the end of the algorithm,

the players not in S do not have incentive to enter it. On the other hand, taking into

account the order of the players, whenever player p has incentive to be added to S, we
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have P (S ∪{p}) >
√
F pb+Cp ≥

√
F ib+Ci for all i ∈ S, ensuring condition (4.3.7). This

shows that the algorithm outputs correctly an NE.

In Algorithm 4.3.4.1, step 1 involves ordering a set of numbers with size m which can be

done in O(m logm) time. Then, a cycle follows which can cost O(m) time. In this way,

it is easy to conclude that the algorithm runs in time O(m logm).

Theorem 4.3.10. Algorithm 4.3.4.1 outputs an NE and runs in O(m logm) time.

Algorithm 4.3.4.1

Input: A single period ULSG instance.

Output: A subset S of players producing strictly positive quantities in an NE.

1: Assume that the players are ordered according with
√
F 1b+C1 ≤

√
F 2b+C2 ≤ . . . ≤√

Fmb+ Cm.

2: Initialize S ← ∅
3: for 1 ≤ p ≤ m do

4: if Cp + 2
√
F pb < P (S) then

5: S ← S ∪ {p}
6: else

7: if P (S ∪ {p}) ≥
√
F pb+ Cp then

8: Arbitrarily decide to set p in S.

9: end if

10: end if

11: end for

12: return S

In particular, the last theorem implies that there is always (at least) one NE. To see that

there can be more than one, consider an instance where all players have Cp = 0 and F p =

F . Then Algorithm 4.3.4.1 will stop adding elements when P (S) = a/(|S|+ 1) < 2
√
Fb.

But since the ordering is arbitrary, this means that any set S of cardinality da/(2
√
Fb)e−1

is a NE. Therefore it makes sense to define the optimization problem (decision version):

Problem: Optimize 1-Period Uncapacitated Lot Sizing Game

Instance: Positive reals a, b, B, vectors C,F ∈ Zm+ and p ∈ Zm. (1P-LSG-OPT)

Question: Is there a subset S of {1, 2, . . . ,m} such that
∑

i∈S

pi ≥ B (4.3.9a)

Cp +
√
F pb ≤ P (S) ∀k ∈ S (4.3.9b)

Cp + 2
√
F pb ≥ P (S) ∀k /∈ S ? (4.3.9c)
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It turns out that 1P-LSG-OPT is NP-complete and thus, likely to be an intractable

problem. We prove this through a reduction from Partition (PP) (given a set of n

positive integers, find if they can be split into two groups with identical sum), which is

NP-complete [56].

Theorem 4.3.11. 1P-LSG-OPT is NP-complete.

Proof. Given a set S ⊆ {1, 2, . . . ,m}, constraints (4.3.9a), (4.3.9b) and (4.3.9c) can be

verified in polynomial time in the size of the instance. Therefore, 1P-LSG-OPT is in

NP.

We show that 1P-LSG-OPT is NP-complete by reducing Partition to it. Let {ai}i=1..m

be an instance of Partition. Set A = 1
2

∑m
i=1 ai and M = 1 + 2A. We construct the

following instance of 1P-LSG-OPT.

• Set b = 1, a = Am, and B = M − A.

• I = {1, 2, . . . ,m} is a set of m players such that for each element i = 1, 2, . . . ,m−1

set Ci = ai, F
i = (A − Ci)2 and pi = −ai, and Cm = am, Fm = (A − Cm)2 and

pm = −am +M .

• D = {m+ 1,m+ 2, . . . , 2m− 1} is a set of m− 1 dummy players such that for each

element i = m+ 1,m+ 2, . . . , 2m, 2m− 1 set Ci = 0, F i =
(
A
2

)2
and pi = 0.

• Set an upper bound player UB with CUB = A, FUB = 0 and pUB = −3M .

(Proof of if). For a YES instance of Partition, there is Z ⊆ {1, 2, . . . ,m} so that∑
i∈Z ai = A and m ∈ Z. Note that S = Z ∪ {m + 1,m + 2, . . . , 2m − |Z|} is a solution

to 1P-LSG-OPT, with |S| = m, and whose market price P (S) equals

a+
∑

i∈S C
i

|S|+ 1
=
Am+

∑
i∈Z ai

m+ 1
=
Am+ A

m+ 1
= A.

Let us verify that the S is indeed a YES instance for 1P-LSG-OPT.

Inequality (4.3.9a) is satisfied: since m ∈ Z ⊆ S, then

M −
∑

i∈Z

ai = M − A⇒
∑

i∈S

pi = B.

Inequalities (4.3.9b) hold for S:

Cp +
√
F pb = ap +

√
(A− ap)2 = A = P (S), ∀p ∈ S ∩ I = Z

Cp +
√
F pb = 0 +

√(
A

2

)2

=
A

2
≤ P (S), ∀p ∈ S ∩ D.
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Inequalities (4.3.9c) hold: using ap < A for p = 1, 2, . . . ,m, it follows that

Cp + 2
√
F pb = 2A− ap ≥ A = P (S), ∀p ∈ S ∩ I
Cp + 2

√
F pb = A = P (S), ∀p ∈ S ∩ D

CUB + 2
√
FUBb = A = P (S).

(Proof of only if). It is easy to check that the pi values and B are set in such a way that

any YES instance S of 1P-LSG-OPT must contain player m, but cannot contain the

upper bound player UB.

Using inequalities (4.3.9b) and (4.3.9c) for players m and UB, respectively, it follows that

P (S) must be equal to A. In particular

P (S) = A⇒ Am+
∑

i∈S∩I ai

|S|+ 1
= A⇒

∑

i∈S∩I

ai = A(|S|+ 1−m).

Clearly 0 ≤∑i∈S∩I ai ≤ A, but furthermore, the first inequality is strict, since m ∈ S. It

follows that m− 1 < |S| ≤ m, so |S| = m, and
∑

i∈S∩I ai = A.

Theorem 4.3.11 shows that maximizing a linear function over the set of NE is hard,

assuming P 6= NP . Yet, we can build a pseudo-polynomial time algorithm to solve this

problem: let Lp = Cp +
√
F pb and Up = Cp + 2

√
F pb for p = 1, 2, . . . ,m. We propose

to solve this problem using Algorithm 4.3.4.2, where H(k, l, r, s, C) is the optimal value

of the problem limited to players {1, 2, . . . , k}, where |S| = l, the tightest lower bound is

Lr, the tightest upper bound is Us and
∑

i∈S C
i = C.

From each (k, l, r, s, C), we can choose to either add k + 1 or not to the set S, leading

to the updates of lines 3 and 4, respectively. At the end, the optimal objective function

value is given by the maximum entry H(m, l, r, s, C) leading to a feasible solution. It is

easy to build the optimal S by a standard backward pass of the underlying recursion.

Therefore we have established the following result.

Theorem 4.3.12. Finding the optimal NE in the 1-period lot-sizing game can be solved

in O(m4
∑m

k=1C
k) time.

Remark. The potential function (4.3.6) restricted to this case, i.e., T = 1 and domain

2m (power set of {1, 2, . . . ,m}), is submodular. It is well-known that general submodular

functions are hard to maximize. This is the reason why we built an algorithm to compute

an NE which is not based on this function.
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Algorithm 4.3.4.2

Input: A single period ULSG instance and a vector p ∈ Zm.

Output: The optimal value of the input function associated with p over the set of NE.

1: Initialize H(·)← −∞ but H(0, 0, 0, 0, 0)← 0.

2: for k = 0 : m− 1; l, r, s = 0 : k; C = 0 :
∑k

i=0C
i do

3: H(k + 1, l + 1, arg maxi=k+1,r Li, s, C + Ck)←
max(H(k + 1, l + 1, arg maxi=k+1,r Li, s, C + Ck), H(k, l, r, s, C) + pk+1)

4: H(k + 1, l, r, arg mini=k+1,s Ui, C)←
max(H(k + 1, l, r, arg mini=k+1,s Ui, C), H(k, l, r, s, C))

5: end for

6: return arg maxl,r,s,C{H(m, l, r, s, C)|Lr ≤ a+C
l+1
≤ Us}.

4.3.5 Congestion Game Equivalence: only set-up costs

Throughout this section, we approach the ULSG with only set-up costs, i.e., Ck
t = 0 for

all k = 1, 2, . . . ,m and t = 1, 2, . . . , T .

There are two immediate important observations valid in this special case. One is that it

is always optimal for a player to produce only once in order to minimize the set-up costs.

Another is that the strategies in an NE depend only on the number of players sharing

the market in each period. From Proposition 4.3.4, if St are the players participating in

period t, then their revenue is
a2
t

bt(|St|+1)2 , with a market price of Pt(St) = at
|St|+1

.

These observations lead us to a connection with congestion games. A congestion game is

one where a collection of players has to go from a (source) vertex in a digraph to another

(sink) and the cost of using an arc of the graph depends on the number of players also

selecting it in their paths; each player’s goal is to minimize the cost of her path; see

Rosenthal [111]. We can easily reformulate ULSG-sim as a congestion game: consider a

digraphG = (N ,A), whereN = S∪T with S = {s1, s2, . . . , sm} and T = {1, 2, . . . , T, T+

1}, and A = F ∪ P with F = {(sk, t) : k = 1, 2, . . . ,m and t = 1, 2, . . . , T + 1} and

P = {(t, t + 1) : t = 1, 2, . . . , T}. The cost of arcs (sk, t) ∈ F equals F k
t ; the cost of arcs

(t, t+1) ∈ P equals − a2
t

bt(1+n)2 , where n is the number of players selecting this arc. Finally,

for each player k the source vertex is sk and the sink is T + 1. Figure 4.3.1 illustrates this

transformation. This reformulation has polynomial size since, the number of vertices is

m+T + 1 and the number of arcs is m(T + 1) +T (note that the size of ULSG is O(mT )

since mT set-up costs are given).

Any congestion game is a potential game as proved by Rosenthal [111] (as well as the

converse; see Monderer and Shapley [92]) and the author also provides a potential function.
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1 2 T T + 1

− a21
b1(1+|S1|)2

− a22
b2(1+|S1|+|S2|)2

− a2T−1

bT−1(1+
∑T−1

u=1 |Su|)2
− a2T
bT (1+

∑T
u=1 |Su|)2

s1

F 1
1 F 1

2

s2

0
F 1
T

F 2
1 F 2

2 F 2
T 0

. . .

Figure 4.3.1: Congestion game for ULSG-sim with m = 2.

In our case it is

Φ(t1, . . . , tm) =
m∑

k=1

−F k
tk +

T∑

t=1

nt∑

k=1

a2
t

(k + 1)2bt
, (4.3.13)

where tk ∈ {1, 2, . . . , T + 1} is the period in which player k produces and nt = #{k : tk ≤
t, k = 1, . . . ,m}. Using the same proof argument as for Proposition 4.3.6, one can prove

that a maximizer of 4.3.13 is an NE for ULSG-sim and thus, by Proposition 4.3.5, for

ULSG.

For this specific problem, maximizing the potential function (4.3.13) is equivalent to solve

the min-cost flow problem in the following network (see Figure 4.3.2):

• consider a digraph G = (N ′,A′) where N ′ = {s} ∪ S ∪ T with S = {s1, s2, . . . , sm}
and T = {1, 2, . . . , T, T+1}, andA′ = I∪F∪P ′ with I = {(s, sk) : k = 1, 2, . . . ,m},
F = {(sk, t) : k = 1, 2, . . . ,m and t = 1, 2, . . . , T + 1} and P ′ = {(t, t + 1) : t =

1, 2, . . . , T and k = 1, . . . ,m} (m parallel arcs).

• for (s, sk) ∈ I the cost is 0 and capacity is 1;

• for (sk, t) ∈ F the cost is F k
t and capacity is 1; set F k

T+1 = 0;

• for (t, t+ 1) ∈ P ′ and k = 1, . . . ,m, the cost is − a2
t

bt(1+k)2 and capacity is 1;

• the supply is m in vertex s and the demand at T + 1 is m.

Observe that this reformulation is polynomial in the size of an ULSG instance: the network

has 1+m+T+1 vertices and m+m(T+1)+mT arcs. The advantage of this reformulation

is that solving a min-cost flow problem can be done in polynomial time; Goldberg and

Tarjan [59].

There is another alternative approach to compute a, possibly distinct, NE. A maximum

of the potential function (4.3.6) is an NE and it is in the subset of strategies in which

the players decide the production period and choose the optimal quantities accordingly

with Proposition 4.3.4. Therefore, restricting function (4.3.6) to this subset of strategies,
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s1 s2 sm

T + 1
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Figure 4.3.2: Minimum cost flow approach to optimize (4.3.13). All arcs have unit

capacity.

it simplifies to

Φ(t1, t2, . . . , tm) =
m∑

p=1


−F p

tp +
T∑

t=tp

a2
t

bt(nt + 1)2
+

T∑

t=tp

a2
t

2(nt + 1)
(nt − 1)

a2
t

(nt + 1)bt




=
m∑

p=1

−F p
tp +

T∑

t=1

a2
t

2bt(nt + 1)
nt (4.3.14a)

=
m∑

p=1

−F p
tp +

T∑

t=1

nt∑

i=1

a2
t

2i(i+ 1)bt
. (4.3.14b)

Once again, computing the maximum of (4.3.14b) is equivalent to solve a min-cost flow

problem similar to the one in Figure 4.3.2 (the difference is in the cost of the arcs (t, t+1)

which are { a2
t

2k(k+1)bt
}k=1,...,m for t = 1, . . . , T ).

We remark that there are instances for which the optimal solutions for the maximums

of 4.3.13 and 4.3.14b do not coincide and thus, two distinct NE can be computed in

polynomial time.

The results of this section are summarized in the following theorem.

Theorem 4.3.13. When Ck
t = 0 for k = 1, 2, . . . ,m and t = 1, 2, . . . , T , an NE for

an ULSG can be computed in polynomial time by solving a minimum-cost network flow

problem.
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4.3.6 Extension: inventory costs

Recall from Section 2.2.1.3 that in the lot-sizing problem (2.2.7) inventory costs are

taken into account, a natural aspect in real-world applications that influences the optimal

production plan; as noted there, using the flow conservation constraints (2.2.7b), an ULSP

can be transformed in an equivalent one without inventory costs which are included in the

new variable costs. In ULSG, if each player p’s objective (4.3.1a) considers inventory costs

Hp
t for each period t, an analogous replacement of the inventory variables hpt (through

constraint (4.3.1b)) results in new variable production costs, but also in new market prices;

these market prices depend on each player’s inventory costs; therefore, since in the results

previously presented, we consider equal market prices for each player, the inclusion of

inventory costs requires an adaption of them.

Proposition 4.3.14. Consider an ULSG with each player p’s utility function equal to

Πp(yp, xp, hp, qp, q−p) =
T∑

t=1

Pt(qt)q
p
t −

T∑

t=1

Cp
t x

p
t −

T−1∑

t=1

Hp
t h

p
t −

T∑

t=1

F p
t y

p
t . (4.3.15)

The results presented in Section 4.3.2 and Section 4.3.3 for each player p hold if at is

replaced by apt = at +
∑T−1

u=t H
p
u, Cp

t is replaced by Ĉp
t = Cp

t +
∑T−1

u=t H
p
u and Pt(St) is

replaced by P p
t (St) = apt +

∑
i∈St

(
Ĉi
ti
j

−ait

)
|St|+1

.

Proof. One can use constraints (4.3.1b) to eliminate the inventory variables in player

p’s objective function (4.3.15). Thus, using hpt =
∑t

u=1(xpt − qpt ) in the objective func-

tion (4.3.15), leads to

Πp(yp, xp, hp, qp, q−p) =
T∑

t=1

(apt − btqt)+qpt −
T∑

t=1

Ĉp
t x

p
t −

T∑

t=1

F p
t y

p
t .

and the proof follows.

4.3.7 Summary

In the uncapacitated lot-sizing game, the production cost of player p in period t depends

on two parameters: the variable cost Cp
t and the set-up cost F p

t . When we consider

production costs with only one of these parameters or a single period, the problem of

computing a pure equilibrium becomes tractable, although characterizing the set of pure

equilibria is NP-complete. Table 4.1 summarizes our findings.

It remains open the question of whether it is a tractable problem to find an optimal NE

when there are no variable costs and if an NE can be efficiently computed for the general
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Problem Compute one NE Characterize the set of NE

ULSG with T = 1 P NP-complete

ULSG with F = 0 P P

ULSG with C = 0 P ?

ULSG ? NP-complete

Table 4.1: Computational complexity of ULSG.

case. As we will see in the next section, in practice, it is fast to compute one equilibrium

for ULSG.

A typical constraint in the lot-sizing problem 2.2.7 is the presence of positive initial and

final inventory quantities, which for the uncapacitated case can be assumed to be 0,

without loss of generality, by modifying the demands (see Pochet and Wolsey [106]). In

one hand, considering positive initial and final inventory quantities in ULSG for each

player does not interfere with the fact that the game is potential, since the the objective

function does not change. On the other hand, this is problematic when characterizing each

player’s best response, since in the game there is no fixed demand to satisfy. Therefore,

it is interesting to study the influence of relaxing the assumption that initial and final

inventories are zero in future research.

When production capacities are introduced in LSP, it becomes NP-complete (see [106]).

Thus, if there are players’ production capacities for each period in our game, solving each

player’s best response becomes NP-complete. Note that this does not interfere in the

formulation of a player’s utility function, and thus the game remains potential with only

the potential function domain reduced (set of pure profiles of strategies X).

Therefore, including more restrictions (e.g. positive initial and/or final inventory quanti-

ties, production capacities) on the lot-sizing model of each player will not change the fact

that the game is potential (with the potential function concave) and thus, that it posses

a pure NE. It remains to understand the computational complexity of maximizing the

potential function (and thus, computing an NE).
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4.4 Integer Programming Games

5

Motivation. Mixed integer programming has been extensively studied. Along with

its success modeling decision problems, we have seen a remarkable rise in the power of

solvers to tackle them; recall Section 2.2. Many state-of-the-art game theory tools are

confined to finite games and “well-behaved” continuous games6; see Section 2.3.2. Our

aim is to investigate the continuous game class, where the players’ sets of strategies mix

finite and uncountable sets; to this end, the players’ best reactions are described through

mixed integer programming problems. We call problems in this class integer programming

games; see Figure 2.3.1.

In the previous sections, real-world interactions were modeled as simultaneous IPGs,

highlighting the importance of exploring them. Note that for these games, enumerating

all players’ feasible strategies (as in finite games) can be impractical, and the players’

objectives (best reactions) may lead to non-concave problems. Thus, the standard ap-

proaches for finite games and “well-behaved” continuous games are not directly applicable

to IPGs.

In what follows, we study IPGs where each player’s utility function is quadratic in her

variables. Recalling the notation to define IPG in Section 2.3, each player p’s utility

function is

Πp(xp, x−p) = cpxp +
∑

k∈M

(xk)ᵀQp
kx

p, (4.4.1)

where cp ∈ Rnp and Qp
k is an nk-by-np real matrix. Note that in the games previously

described in this chapter, the players’ utilities have the form (4.4.1). We make this

assumption on the players’ utilities for sake of clarity, although the algorithm that will be

presented for the computation of equilibria is also applicable to games with more general

utility functions.

Our Contributions and Organization of the Section. We aim at investigating

Nash equilibria to simultaneous IPGs. In Section 4.4.1, it is proven that the existence

of NE to an IPG is Σp
2-complete and sufficient conditions for equilibria existence are

5The results of this chapter appear in:

M. Carvalho, A. Lodi, J. P. Pedroso. Computing Nash equilibria: integer programming games, working

paper.
6In “well-behaved” continuous games, players’ best reaction problems (2.3.4) (maximization problems)

must satisfy certain differentiability and concavity requirements.
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derived. Section 4.4.2 starts by showing the challenge of extending integer program-

ming methods to computing NE and formalizes a novel algorithm to compute an NE

for IPGs. In Section 4.4.3, implementation details to our algorithm are described and

validated, through computational results for a generalization of the coordination knapsack

game (4.1.1) and the competitive uncapacitated lot-sizing game (4.3.1). Finally, we

conclude in Section 4.4.4.

4.4.1 NE Complexity and Existence

It can be argued that players’ computational power is bounded and thus, since the space

of pure strategies is simpler and contained in the space of mixed strategies – i.e., the

space of Borel probability measures – pure equilibria are more plausible outcomes for

games with large sets of pure strategies. In this way, it is important to understand the

complexity of determining a pure equilibrium to an IPG.

According with Nash famous Theorem 2.3.11, all purely integer bounded IPGs have a

Nash equilibrium. However, some IPGs do not possess a pure equilibrium, as illustrated

in the following example.

Example 4.4.1. Consider a simultaneous two-player game with M = {A,B}. Player A

solves

max
xA

18xAxB − 9xA

s. t. xA ∈ {0, 1}

and player B

max
xB

− 18xAxB + 9xB

s. t. xB ∈ {0, 1}.

Let us show that none of the pure profiles of strategies is an equilibrium. Under the profile

(xA, xB) = (0, 0), player B has incentive to deviate to xB = 1; for the profile (xA, xB) =

(1, 0), player A has incentive to deviate to xA = 0; for the profile (xA, xB) = (0, 1),

player A has incentive to deviate to xA = 1; for the profile (xA, xB) = (1, 1) player B has

incentive to deviate to xB = 0. Thus, there is no pure NE.

In Section 4.4.1.1, we classify both the computational complexity of deciding if there is a

pure and a mixed NE for an IPG. It will be shown that even with linear utilities and two

players, these problems are Σp
2-complete (defined in Section 2.1). Then, in Section 4.4.1.2,

we state sufficient conditions for the game to have (finitely supported) Nash equilibria.
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4.4.1.1 Complexity of the NE Existence

Theorem 4.4.2. The problem of deciding if an IPG has a pure NE is Σp
2-complete.

Proof. The problem of deciding if an IPG has a pure NE is in Σp
2, since we have to

decide if there is a solution in the space of pure strategies such that for any unilateral

deviation of a player, her utility is not improved (and evaluating the utility value for a

profile of strategies can be done in polynomial time, because we consider them to be in

the form (4.4.1)).

It remains to prove Σp
2-hardness; we will reduce DNeg to it. Recall from Section 3.1.3

that the input of DNeg are non-negative integers a1, . . ., an, b1, . . ., bn, A and B; from

the proof of Theorem 3.2.1, the decision version of DNeg asks whether there is a leader

strategy that makes her objective value less or equal to B− 1. Our reduction starts from

an instance of DNeg. We construct the following instance of IPG.

• The game has two players, M = {Z,W}.
• Player Z controls a binary decision vector z of dimension 2n+ 1; her set of feasible

strategies is
n∑

i=1

aizi ≤ A

zi + zi+n ≤ 1 i = 1, . . . , n

z2n+1 + zi+n ≤ 1 i = 1, . . . , n.

• Player W controls a binary decision vector w of dimension n+ 1; her set of feasible

strategies is

Bwn+1 +
n∑

i=1

biwi ≤ B. (4.4.5)

• Player Z’s utility is (B − 1)wn+1z2n+1 +
∑n

i=1 biwizi+n.

• Player W ’s utility is (B − 1)wn+1 +
∑n

i=1 biwi −
∑n

i=1 biwizi −
∑n

i=1 biwizi+n.

We claim that in the constructed instance of IPG there is an equilibrium if and only if

the DNeg instance has answer YES.

(Proof of if). Assume that the DNeg instance has answer YES. Then, there is x satisfying∑n
i=1 aixi ≤ A such that

∑n
i=1 biyi ≤ B − 1 for any y satisfying constraints (3.1.3c)

and (3.1.3d). Choose as strategy for player Z, ẑ = (x,

n︷ ︸︸ ︷
0, . . . , 0, 1) and for player W

ŵ = (

n︷ ︸︸ ︷
0, . . . , 0, 1). We will prove that (ẑ, ŵ) is an equilibrium. First, note that these

strategies are guaranteed to be feasible for both players. Second, note that none of the

players has incentive to deviate from (ẑ, ŵ):
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• Player Z’s utility is B−1, and B−1 ≥∑n
i=1 biwi holds for all the remaining feasible

strategies w of player W .

• Player W ’s has utility B − 1 which is the maximum possible given ẑ.

(Proof of only if). Now assume that the IPG instance has answer YES. Then, there is a

pure equilibrium (ẑ, ŵ).

If ŵn+1 = 1 then, by (4.4.5), ŵ = (

n︷ ︸︸ ︷
0, . . . , 0, 1). In this way, since player Z maximizes her

utility in an equilibrium, ẑ2n+1 = 1, forcing ẑi+n = 0 for i = 1, . . . , n. The equilibrium

inequalities (2.3.14) applied to player W , imply that for any of her feasible strategies w

with wn+1 = 0:

B − 1 ≥
n∑

i=1

biwi(1− ẑi),

which shows that DNeg is a YES instance with the leader selecting xi = ẑi for i = 1, . . . , n.

If ŵn+1 = 0, under the equilibrium strategies, player Z’s utility term (B − 1)ŵn+1z2n+1 is

zero. Thus, since in an equilibrium player Z maximizes her utility, it holds that ẑi+n = 1

for all i = 1, . . . , n with ŵi = 1. However, this implies that player W ’s utility is non-

positive given the profile (ẑ, ŵ). In this way, player W would strictly improve her utility

by unilaterally deviating to w = (
︷ ︸︸ ︷
0, . . . , 0, 1). In conclusion, wn+1 is never zero in a pure

equilibrium of the constructed game instance.

Extending the existence property to mixed equilibria would increase the chance of an IPG

to have an NE, and thus, a solution. The next theorem shows that the problem remains

Σp
2-complete.

Theorem 4.4.3. The problem of deciding if an IPG has an NE is Σp
2-complete.

Proof. Analogously to the previous proof, the problem belongs to Σp
2.

It remains to show the Σp
2-hardness; we will reduce DeRi to it. Recall from Section 3.1.1

that the input of DeRi are non-negative integers a1, . . ., an, b1, . . ., bn, A, C and C ′; from

the proof of Theorem 3.2.1, the decision version of DeRi asks whether there is a leader

strategy that makes her objective value greater or equal to 1. Our reduction starts from

an instance of DeRi. We construct the following instance of IPG.

• The game has two players, M = {Z,W}.
• Player Z controls a non-negative variable z and a binary decision vector (z1, . . . , zn+1);
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her set of feasible strategies is

n∑

i=1

bizi ≤ z

zi + zn+1 ≤ 1, i = 1, . . . , n

z ≤C ′(1− zn+1)

z ≥ C(1− zn+1).

• Player W controls a non-negative variable w and binary decision vector (w1, . . . , wn).

• Player Z’s utility is Az +
∑n

i=1 aiziwi + zn+1.

• Player W ’s utility is zn+1w +
∑n

i=1 biwizi.

We claim that in the constructed instance of IPG there is an equilibrium if and only if

the DeRi instance has answer YES.

(Proof of if). Assume that the DeRi instance has answer YES. Then, there is x such that

C ≤ x ≤ C ′ and Ax +
∑n

i=1 aiyi ≥ 1 for a y satisfying
∑n

i=1 biyi ≤ x. As strategy for

player Z choose ẑ = C ′ and (ẑ1, . . . , ẑn, ẑn+1) = (y1, . . . , yn, 0); for player W choose ŵ = 0

and (ŵ1, . . . , ŵn) = (y1, . . . , yn). We prove that (ẑ, ŵ) is an equilibrium. First, note that

these strategies are guaranteed to be feasible for both players. Second, note that none of

the players has incentive to deviate from (ẑ, ŵ):

• Player Z’s utility cannot be increased, since it is equal or greater than 1 and for

i = 1, . . . , n such that ẑi = 0 the utility coefficients are zero.

• Analogously, player W ’s utility cannot be increased, since for i = 1, . . . , n such that

ŵi = 0 the utility coefficients are zero and the utility coefficient of ŵẑn+1, is also

zero.

(Proof of only if). Assume that DeRi is a NO instance. Then, for any x in [C,C ′] the

leader is not able to guarantee a utility of 1. This means that in the associated IPG,

player Z has incentive to choose z = 0 and (z1, . . . , zn, zn+1) = (0, . . . , 0, 1). However, this

player Z’s strategy leads to a player W ’s unbounded utility. In conclusion, there is no

equilibrium.

Remark. In the proof of Theorem 4.4.3, it is not used the existence of a mixed

equilibrium to the constructed IPG instance. Therefore, it implies Theorem 4.4.2. The

reason for presenting these two theorems is because in Theorem 4.4.2, the reduction is

a game where the players have finite sets of strategies, while in Theorem 4.4.3, in the

reduction, a player has an infinite set of strategies.
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4.4.1.2 Existence of NE

Recall the theoretical results of Stein et al. [120], presented previously, in Section 2.3.2.

The simultaneous IPGs that we study in this thesis have quadratic utility functions given

by function (4.4.1); therefore, it is easy to see that each player p’s utility can be written

in the form of function (2.3.22), as required for separable games. Thus, we conclude:

Lemma 4.4.4. If the set of strategies’ profiles X for an IPG is bounded and the players’

utilities have the form (4.4.1), then IPG is a separable game.

Lemma 4.4.4 and Corollary 2.3.15 give sufficient conditions for the existence of equilibria,

and, moreover, the existence of finitely supported equilibria.

Corollary 4.4.5. If the set of strategies’ profiles X for an IPG is bounded, then it is

a continuous game and it has a Nash equilibrium. In addition, if the utilities have the

form (4.4.1), for any Nash equilibrium σ there is a Nash equilibrium τ such that each

player p mixes among at most 1 + np + np(np−1)

2
pure strategies and Πp(σ) = Πp(τ).

Proof. In order to write player p’s utility (4.4.1) in the form (2.3.22), there must be

a function fpjp(x
p) for 1, xp1, . . ., xpnp , x

p
1x

p
1, xp1x

p
2, . . ., xp1x

p
np , x

p
2x

p
2, . . ., xpnpx

p
np ; thus,

kp = 1 + np + np(np−1)

2
in Corollary 2.3.15.

It is realistic to assume that the set of strategies X for an IPG is bounded. In other

words, the players’ strategies are likely to be bounded due to limitations in the players’

resources, which guarantees that an IPG has an equilibrium. Moreover, by Corollary 4.4.5,

this condition implies that the set of NE can be restricted to the finitely supported NE,

which simplifies the equilibria computation.

4.4.2 Algorithm to Compute an NE

In this section an algorithm for the computation of an NE is proposed. But first, let us

classify the complexity of finding an equibrium for a separable IPG.

When the definition of IPG was introduced, we remarked in Section 2.3 (see Figure 2.3.1),

that any finite game can be transformed (in polynomial time) in an IPG. Furthermore,

we mentioned Chen et al. [23]’s result, stating that solving a finite game (even with only

two players) is PPAD-complete. Therefore:

Corollary 4.4.6. The problem of computing an equilibrium to a separable IPG is PPAD-

hard.
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In what follows, we assume that the IPGs in hand have X bounded, i.e., they are separable

games, and thus, their set of NE can be characterized by finitely-supported equilibria

(Corollary 4.4.5). Next, in Section 4.4.2.1, we show that the standard idea in mathematical

programming of relaxing integrality requirements does not provide IPGs with interesting

information. Thus, the problem must be tackled from another perspective. The algorithm

designed in Section 4.4.2.2 will approximate an IPG iteratively, incorporating the Porter-

Nudelman-Shoham method (PNS) [107] (described in Section 2.3.2) and mathematical

programming solvers (see Section 2.2). The basic algorithm is modified in Section 4.4.2.3

in an attempt to improve its performance.

4.4.2.1 Game Relaxation

A typical procedure to solve optimization problems consists in relaxing constraints that

are hard to handle and use the information associated with the solution of the relaxed

problem to guide the search for the optimum. Thus, in this context, such ideas seem a

natural direction to investigate. Call relaxed integer programming game (RIPG) the game

resulting from an IPG when the integrality constraints are removed. In the following

examples, we compare the NE between an IPG and the associated RIPG.

Example 4.4.7 (RIPG with more equilibria than IPG). Consider an instance with two

players, in which player A solves

max
xA

5xA1 x
B
1 + 23xA2 x

B
2 subject to 1 ≤ xA1 + 3xA2 ≤ 2 and xA ∈ {0, 1}2,

and player B solves

max
xB

5xA1 x
B
1 + 23xA2 x

B
2 subject to 1 ≤ xB1 + 3xB2 ≤ 2 and xB ∈ {0, 1}2.

It is easy to see that the IPG has an unique equilibrium: (xA, xB) = ((1, 0), (1, 0)). This

equilibrium also holds for the corresponding RIPG. However, RIPG possesses at least one

more equilibrium: (xA, xB) = ((0, 2
3
), (0, 2

3
)).

Example 4.4.8 (RIPG with fewer equilibria than IPG). Consider the duopoly game such

that player A solves

max
xA

12xA1 x
B
1 + 5xA2 x

B
2 subject to 2xA1 + 2xA2 ≤ 3 and xA ∈ {0, 1}2,

and player B solves

max
xB

12xA1 x
B
1 + 5xA2 x

B
2 + 100xB1 subject to 2xB1 + xB2 ≤ 1 and xB ∈ {0, 1}2.
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It is easy to see that there are at least 2 equilibria: (xA, xB) = ((0, 0), (0, 0)) and (xA, xB) =

((0, 1), (0, 1)); however, from this set of equilibria to the IPG, none is an equilibrium of

the associated RIPG. In fact, in RIPG, it is always a dominant strategy for player B to

select xB = (1
2
, 0), and the unique equilibrium is (xA, xB) = ((1, 0), (1

2
, 0)). In conclusion,

the game has at least 2 equilibria while the associated relaxation has 1.

These examples show that no bounds on the number of NE and, thus, on the players’

utilities in an NE can be extracted from the relaxation of an IPG. Moreover, to the best

of our knowledge, the methods to compute equilibria of RIPGs are restricted to pure

equilibria.

4.4.2.2 Algorithm Formalization

Recall the Nash equilibria conditions (2.3.14): find (σ1, . . . , σm) such that

σp ∈ ∆p ∀p ∈M (4.4.7a)

Πp(σp, σ−p) ≥ Πp(xp, σ−p) ∀p ∈M, ∀xp ∈ Xp, (4.4.7b)

that is, determine a mixed profile of strategies such that no player has incentive to

unilaterally deviate from it. The number of pure strategies in each Xp is likely to be

uncountable or, in case the variables are all required to be integer and bounded, to be

exponential. Thus, in general, the equilibria inequalities (4.4.7b) are unsuitable to be

written for each pure strategy in Xp. We call sample game of an IPG to the finite game

that results from restricting the players to a finite subset of feasible strategies of X.

Following the motivation idea of column generation [57] and cutting plane [60] approaches,

not all variables and constraints in problem (4.4.7) may be needed to find a solution.

In this context, the natural idea to find a solution to the constrained programming

problem (4.4.7) is through generation of strategies: start by solving the constrained

problem for a finite subset of feasible strategies S = S1 × S2 × . . . Sm (this is, compute

an equilibrium for the sample game); while there is a strategy for player p that gives her

an incentive to deviate from the computed equilibrium, add the “destabilizing” strategy

to Sp. We call this scheme sample generation method (SGM). Figure 4.4.1 illustrates the

increase in the number of players’ strategies as SGM progresses. Intuitively, we expect

that SGM will enumerate the most “relevant” strategies and/or “saturate” the space X

after a sufficient number of iterations and, thus, converge to an equilibrium. Hopefully,

we would not need to enumerate all feasible strategies in order to compute an equilibrium.

In an IPG, there might exist players’ decision variables which are continuous. Under this

case, as the following example illustrates, SGM can only guarantee the computation of
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Player 2

S2
x2,2 · · · x2,j

Player 1

S1

↓
x1,1 −→
...

. . .
↓

x1,j+1

Figure 4.4.1: SGM: Sample generation method for m = 2. The notation xp,k represents

the player p’s strategy added at iteration k. A vertical (horizontal) arrow represents player

1 (player 2) incentive to unilaterally deviate from the previous sample game’s equilibrium

to a new strategy of her.

an ε-equilibrium, that is, a profile of strategies σ ∈ ∆ such that for each player p ∈M the

following inequalities hold

Πp(σ) + ε ≥ Πp(xp, σ−p) ∀xp ∈ Xp. (4.4.8)

A 0-equilibrium is a NE. In this way, ε > 0 becomes an input of SGM and this method

stopping criteria is the following: if there is no player able to unilaterally increase more

than ε her utility at the equilibrium σ of the current sample game, return σ.

Before providing the SGM a proof of correctness, in an attempt to clarify the method, we

apply it to an instance of IPGs.

Example 4.4.9 (Computing an equilibrium with SGM). Consider an IPG with two

players, M = {1, 2}. Player i wishes to maximize the utility function maxxi>0−(xi)2 +

x1x2. The player i’s best reaction is given by xi(x−i) = 1
2
x−i . The only equilibrium is

(x1, x2) = (0, 0). Initialize SGM with the sample game Si = {10} for i = 1, 2, then in

each iteration each player reduces by half the value of her variable, see Figure 4.4.2. Thus,

SGM converges to the equilibrium (0, 0). If in the input of SGM, ε = 10−6 then, after 14

iterations, SGM would return an ε-equilibrium of the game.

Theorem 4.4.10. If X is bounded, then in a finite number of steps, SGM computes

1. an equilibrium if all players’ decision variables are integer;

2. an ε-equilibrium if each player p’s utility function is Lipschitz continuous in Xp.

Proof. Since X is bounded, by Corollary 4.4.5, there is a finitely supported NE.
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x1

x2

x1(x2) = x2

2

x2(x1) = x1

2

10

10

Figure 4.4.2: Players’ best reaction functions.

SGM stops once an equilibrium of the sample game coincides with an equilibrium (case

1) or ε-equilibrium (case 2) of the IPG. Suppose that the method does not stop. This

means that in every iteration at least a new strategy is added to the current S.

Case 1: Given that X is bounded and players’ variables are integer, each player has a

finite number of strategies. Thus, after a finite number of iterations, the sample

game will coincide with IPG, i.e., S = X. This means that an NE of the sample

game is an NE of the IPG.

Case 2: Each player p utility function is Lipschitz continuous in Xp, which means that

there is a positive real number Lp such that

|Πp(xp, σ−p)− Πp(x̂p, σ−p)| ≤ Lp ‖ xp − x̂−p ‖ ∀xp, x̂p ∈ Xp,

where ‖ · ‖ is the Euclidean norm.

The set S strictly increases from one iteration of SGM to the next one. Thus, after

a sufficient number of iterations, for each player p, given xp ∈ Xp there is x̂p ∈ Sp

such that ‖ xp − x̂p ‖≤ ε
Lp

. Let σ be an NE of the sample game. Then

Πp(xp, σ−p)− Πp(σ)=Πp(xp, σ−p)− Πp(x̂p, σ−p) + Πp(x̂p, σ−p)− Πp(σ)

≤Πp(xp, σ−p)− Πp(x̂p, σ−p)

≤|Πp(xp, σ−p)− Πp(x̂p, σ−p)|
≤Lp ‖ xp − x̂−p ‖≤ Lp

ε

Lp
≤ ε.

The first step follows from the fact that σ is an NE of the sample game and thus

Πp(x̂p, σ−p) ≤ Πp(σ). The next inequality holds because we are just applying the
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absolute value. The third step follows from the fact the player p’s utility is Lipschitz

continuous in Xp. In this way σ is an ε-equilibrium of the IPG.

Remark: As pointed out by Stein et al. [120] for a specific separable game, it seems that

there must be some bound on the speed of variation of the utilities in order to guarantee

that an algorithm computes an equilibrium in finite time; the Lipschitz condition ensures

this bound. A utility function which is linear in that player’s variables is Lipschitz

continuous; a quadratic utility function when restricted to a bounded set satisfies the

Lipschitz condition as will be the case of the competitive uncapacitated lot-sizing game.

A relevant fact about computing equilibria for a sample game with the set of strategies

S ⊆ X is that S is finite and, consequently, enables the use of general algorithms to

compute mixed equilibria (Nash’s Theorem 2.3.11 states that any finite game has a Nash

equilibrium). Given the good results achieved by PNS [107] for the computation of an NE

in normal-form games (finite games), this is the method that our algorithm will apply to

solve the sample games (additional advantages for adopting PNS will be given in the end

of this section). Recall from Section 2.3.2 that PNS solves the constrained program (4.4.7)

associated with a sample game (i.e., X = S in (4.4.7)) through the resolution of simpler

subproblems (note that in constraints (4.4.7b) the expected utilities Πp(σp, σ−p) are highly

non-linear due to the multiplication of the probability variables). To this end, PNS bases

its search for an equilibrium σ by guessing its support and solving the associated Feasibility

Problem (2.3.21). PNS reduces the set of candidates for support enumeration by making

use of conditionally dominated strategies, since such strategies will never be selected

with positive probability in an equilibrium. In addition, in the support enumeration of

our implemention of PNS we require the equilibrium to satisfy the property given by

Corollary 4.4.5: each player p has a support size of at most 1 + np + np(np−1)

2
.

We conclude SGM description by highlighting an additional advantage of PNS, besides

being in practice the fastest algorithm. The authors’ implementation of PNS [107] searches

the equilibria by following a specific order for the enumeration of the supports. In specific,

for two players’ games, |M | = 2, the algorithm starts by enumerating supports, first,

by increasing order of their total size and, second, by increasing order of their balance

(absolute difference in the players’ support size). The idea is that in the case of two

players, each equilibrium is likely to have supports with the same size and small. When

|M | > 2, PNS exchanges the importance of these two criteria. We expect SGM to start

converging to an equilibrium as it progresses. Therefore, it may be advantageous to

use the past computed equilibria to guide the support enumeration. Including rules for
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support enumeration in PNS is straightforward. On the other hand, doing so for other

state-of-the-art algorithms is not as easy. For instance, the well-known Lemke-Howson

algorithm [82] implies to start the search for equilibria in an artificial equilibrium or in an

equilibrium of the game (allowing to compute a new one). Thus, since at iteration k of

SGM, none of the equilibria computed for the sample games in iterations 1 to k− 1 is an

NE of the current sample game, there is no direct way of using past information to start

or guide the Lemke-Howson algorithm. Moreover, this algorithm’s search is performed by

enumerating vertices of polytopes built according to the game strategies. Therefore, since

in each iteration of SGM a new strategy is added to the sample game, these polytopes

change deeply.

4.4.2.3 Modified SGM

Finally, through the tools described, we can slightly change SGM in an attempt to speed

up the computation of an equilibrium. Its new version will be a depth-first search: while

in SGM the size of the sample game strictly increases from one iteration to the next one,

in its depth-first search version it will be possible to backtrack to previous sample games,

with the aim of decreasing the size of the sample game. In each iteration of the improved

SGM, we search for an equilibrium in the support the last strategy added to the sample

game; in case such equilibrium does not exist, the method backtracks, and computes a

new equilibrium to the previous sample game. While in each iteration of SGM all supports

can be considered, in the modified SGM (m-SGM) we limit the search to the ones with

the new added strategy. Therefore, this modified SGM attempts to keep the size of the

sample game small and decrease the number of supports enumerated.

Next, we concentrate in proving under which conditions the m-SGM computes an ε-

equilibrium in finite time and provide its detailed description.

Theorem 4.4.11. Let S = S1 × S2 × . . . × Sm represent a sample game associated with

some IPG. If the normal-form game that results from S has a unique equilibrium σ, then

one of the following implications holds:

1. σ is an equilibrium of the IPG;

2. given any player p with incentive to deviate from σp to xp ∈ Xp, the normal-form

game associated with S′ = S1 × . . . Sp−1 × Sp ∪ {xp} × Sp+1 × . . .× Sm has xp in the

support of all its equilibria.

Proof. Suppose σ is not an equilibrium of the IPG. Then, by the definition of equilibrium,

there is a player, say player p, with incentive to unilaterally deviate to some xp ∈ Xp (that

is not in Sp). By contradiction, assume that there is an equilibrium τ in S′ such that xp
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ALGORITHMS DESCRIPTION

Initialization(IPG) Returns sample game of the IPG with one feasible strategy for each player.

PlayerOrder(Sdev0 , . . . , Sdevk ) Returns a list of the players order that takes into account the algorithm

history.

DeviationReaction(p, σ
−p
k
,Πp(σk), ε, IPG) If there is xp ∈ Xp such that Πp(xp, σ

−p
k

) > Πp(σk) + ε, returns xp;

otherwise, returns any player p’s feasible strategy.

SortSizes(σ0, . . . , σk−1) Returns an order for the support sizes enumeration that takes into account

the algorithm history.

SortStrategies(S, σ0, . . . , σk−1) Returns a order for the players’ strategies in S that takes into account the

algorithm history.

PNSadaptation(S, x(k), Sdevk+1
, Sizesord, Strategiesord) Applies PNS in order to return a Nash equilibrium σ of the sample game S

of the IPG such that x(k) ∈ supp(σ) and Sdevk+1
∩ supp(σ) = ∅; makes

the support enumeration according with Sizesord and Strategiesord.

Table 4.2: Specialized algorithms.

is played with zero probability (it is not in the support of τ). First, τ is different from

σ because now S′ contains xp. Second, τ is an equilibrium for the game restricted to S,

contradicting the fact that σ was its unique equilibrium.

In this way, if in an iteration of SGM the sample game has an unique NE, in the subsequent

iteration, we can prune the support enumeration search of PNS by forcing the new strategy

added to be in the support of the NE to be computed. Note that it might occur that in

the consecutive sample games there is more than one NE and thus, an equilibrium with

the new added strategy in the support may fail to exist (Theorem 4.4.11 does not apply).

Therefore, backtracking is introduced so that a previously processed sample game can be

revisited and its support enumeration continued in order to find a new NE and to follow

a promising direction in the search. This algorithm is described in pseudo-code 4.4.2.1.

The algorithms called by it are described in Table 4.2 and can be defined independently.

We will propose an implementation of them in Section 4.4.3.2.

Let us explain in more detail our method for which Figure 4.4.3 can be illustrative.

Fundamentally, whenever m-SGM 4.4.2.1 moves forward, Step 3, a new strategy x(k+ 1)

is added to the sample game k that is expected to be in the support of the equilibrium

of that game (due to Theorem 4.4.11). For the sample game k, if the algorithm fails to

compute an equilibrium with x(k) in the support and Sdevk+1
not in the supports, “if” part

of Step 4, the algorithm backtracks : revisits the sample game k − 1 with Sdevk added, so

that no equilibrium is recomputed. It is crucial for the correctness of the m-SGM 4.4.2.1

that it starts from a sample game of the IPG with an unique equilibrium; to this end, the

initialization determines one feasible solution for each player. See example B.0.21 in the

Appendix B to clarify the application of the m-SGM 4.4.2.1.
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Algorithm 4.4.2.1 Modified SGM

Input: An IPG instance and ε > 0.

Output: ε-equilibrium, last sample game and number of the last sample game.
Step 1 Initialization:

S =
∏

p∈M
Sp ← Initialization(IPG)

k ← 0

set Sdevk , Sdevk+1
and Sdevk+2

to be
∏

p∈M
∅

σk ← (1, . . . , 1) is Nash equilibrium of the current sampled game S
list← PlayerOrder(Sdev0 , . . . ,Sdevk

)
Step 2 Termination:

while list non empty do
p← list.pop()

x(k + 1)← DeviationReaction(p, σ−pk ,Πp(σk), ε, IPG)

if Πp(σk) + ε < Πp(x(k + 1), σ−pk ) then
go to Step 3

return σk, S, k
Step 3 Generation of next sampled game:

k ← k + 1
Spdevk ← Spdevk ∪ {x(k)}
Sp ← Sp ∪ {x(k)}
Sdevk+2

←
∏

p∈M
∅

Step 4 Solution of sampled game k
Sizesord ← SortSizes(σ0, . . . , σk−1)
Strategiesord ← SortStrategies(S, σ0, . . . , σk−1)
σk ← PNSadaptation(S, x(k),Sdevk+1

, Sizesord, Strategiesord)
if PNSadaptation(S, x(k),Sdevk+1

, Sizesord, Strategiesord) fails to find equilibrium then
S← S\Sdevk+1

remove from memory σk−1 and Sk+2

k ← k − 1
go to Step 4

else
list← PlayerOrder(Sdev0

, . . . ,Sdevk)
go to Step 2

1
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Sdev1 x(1)

Sdev1

Sdev2 x(2)

Sdev1

Sdev2

Sdev1

Sdev2 x(2)

Sdev1

Sdev2

Sdev3 x(3)

Sdev1

Sdev2

Sdev3

Sdev1

Sdev2

Sample game 1

Sample game 0

Sample game 2

Sample game 3

x(1)

x(2)

backtracking

x(2)

x(3)
backtracking

backtracking

Figure 4.4.3: Sample games generated by m-SGM.
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Next, modified SGM 4.4.2.1 correctness will be proven.

Lemma 4.4.12. In the m-SGM 4.4.2.1, the sample game 0 is never revisited.

Proof. If the sample game 0 is revisited, it would be because the algorithm backtracks.

Suppose that at some sample game k > 0, the algorithm consecutively backtracks up

to the sample game 0. Consider the first sample game j < k that is revisited in this

consecutive bactracking such that the last time that it was built by the algorithm it had

an unique equilibrium where x(j) was in the support and its successor, sample game j+1,

had multiple equilibria. By Theorem 4.4.11, when the algorithm moves forward from this

sample game j to j + 1, all its equilibria have x(j + 1) in their support. Therefore, at

this point, the m-SGM successfully computes an equilibrium and moves forward. The

successor, sample game j + 2, by construction, has at least one equilibrium and all its

equilibria must have x(j + 1) or x(j + 2) in the supports. Thus, either the algorithm

(case 1) backtracks to the sample game j + 1 or (case 2) proceeds to the sample game

x(j + 3). In case 1, the algorithm successfully computes an equilibrium with x(j + 1) in

the support and without x(j+ 2) in the support, since the backtracking proves that there

is no equilibrium with x(j + 2) in the supports and, by construction, the sample game

j + 1 has multiple equilibria. Under case 2, the same reasoning holds: the algorithm will

backtrack to the sample game j + 2 or move forward to the sample game j + 3. In this

way, because of the multiple equilibria in the successors of sample game j, the algorithm

will never be able to return to the sample game j and thus, to the sample game 0.

Observe that when a sample game k − 1 is revisited, the algorithm only removes the

strategies Sdevk+1
from the current sample game k, “if” part of Step 4. This means that

in comparison with the last time that the algorithm builds the sample game k− 1, it has

the additional strategies Sdevk . Therefore, there was a strictly increase in the size of the

sample game k − 1.

Lemma 4.4.13. There is a strict increase in the size of the sample game k when the

m-SGM 4.4.2.1 revisits it.

Corollary 4.4.14. If X is bounded, then in a finite number of steps, modified SGM

4.4.2.1 computes

1. an equilibrium if all players’ decision variables are integer;

2. an ε-equilibrium if each player p’s utility function is Lipschitz continuous in Xp.

Proof. The while Step 2 ensures that when the algorithm stops, it returns an equilibrium

(case 1) or ε-equilibrium (case 2). Since by Lemma 4.4.12 the algorithm does not revisit
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sample game 0, it does not run into an error. Moreover, if the algorithm is moving forward

to a sample game k, there is a strict increase in the size from the sample game k − 1 to

k. If the algorithm is revisiting a sample game k, by Lemma 4.4.13, there is also a strict

increase of it in comparison with the previous sample game k. Therefore, applying the

reasoning of Theorem 4.4.10 proof, the m-SGM will compute an equilibrium (case 1) or

ε-equilibrium (case 2) in a finite number of steps.

Remark. The m-SGM 4.4.2.1 is initialized with a sample game that contains one

strategy for each player and thus, ensures that the equilibrium of it is unique. However,

note that in our proof of the algorithm correctness any initialization with a sample game

with an unique equilibrium is valid. Furthermore, the m-SGM 4.4.2.1 might be easily

adapted in order to be initialized with a sample game containing more than one NE. In

the adaptation, backtracking to the sample game 0 can occur and thus, the PNS support

enumeration must be total, this is, all NE of the sample game 0 must be feasible. The

fundamental reasoning is similar to the one of the proof of Lemma 4.4.12: if there is

backtracking up to the initial sample game 0, it is because it must contain an NE not

previously computed, otherwise the successors would have successfully computed one.

4.4.3 Computational Investigation

Section 4.4.3.1 presents the two (separable) simultaneous IPGs in which m-SGM 4.4.2.1

and SGM will be tested. In Section 4.4.3.2, our implementations of the specific com-

ponents in Table 4.2 are described, which have practical influence in the algorithms’

performance. Our algorithms are validated in Section 4.4.3.3 by computational results on

instances of two IPGs, the knapsack game and the competitive uncapacitated lot-sizing

game.

4.4.3.1 Games: case studies

Next, the two games in which we test our algorithms are described: the knapsack game is

the simplest purely integer programming game that one could devise, and the competitive

uncapacitate lot-sizing game has practical applicability. The two-player kidney exchange

game of Section 4.2 can be successfully solved in polynomial time, and, for that reason,

we do not run m-SGM and SGM on its instances.

Let us label the set of players according with M = {1, 2, . . . ,m}.
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Knapsack game. This game is very similar to the two-player coordination knapsack

game of Section 4.1. One of the most simple and natural IPGs would be one with each

player’s utility function linear. This is our main motivation to analyze the knapsack game.

Under this setting, each player p aims to solve

max
xp∈{0,1}n

n∑

i=1

vpi x
p
i +

m∑

k=1,k 6=p

n∑

i=1

cpk,ix
p
ix

k
i (4.4.10a)

s. t.
n∑

i=1

wpi x
p
i ≤ W p. (4.4.10b)

The parameters of this game are integer (but are not required to be non-negative). This

model can describe situations where m entities aim to decide in which of n projects to

invest such that each entity budget constraint (4.4.10b) is satisfied and the associated

utilities are maximized (4.4.10a).

In the knapsack game, each player p’s set of strategies Xp is bounded, since she has

at most 2n feasible strategies. Therefore, by Corollary 4.4.5, it suffices to study finitely

supported equilibria.

Since utilities are linear, through the proof of Corollary 4.4.5, we deduce that the bound

on the equilibria supports for each player is n + 1. We can sightly improve this bound

using the basic polyhedral theory revised in Section 2.2. First, note that a player p’s

optimization problem is linear in her variables, implying her set of pure optimal strategies

to a fixed profile of strategies σ−p ∈ ∆−p to be in a facet of conv(Xp). Second, the part

in the utilities of player p’s opponents that depends on player p’s strategy, only takes into

account the expected value of xp. The expected value of xp is a convex combination of

player p’s pure strategies. Thus, putting together these two observations, when player

p selects an optimal mixed strategy σp to σ−p, the expected value of xp is in a facet

of conv(Xp). A facet of conv(Xp) has dimension n − 1, therefore, by Carathéodory’s

theorem [12], any point of this facet can be written as a convex combination of n strategies

of Xp.

Lemma 4.4.15. Given an equilibrium σ of the knapsack game, there is an equilibrium τ

such that |supp(τ p)| ≤ n and Πp(σ) = Πp(τ), for each p = 1, . . . ,m.

Competitive Uncapacitated Lot-Sizing Game. The Competitive Uncapacitated

Lot-Sizing Game (ULSG) was studied in Section 4.3. Each player p’s utility function (4.3.1a)

is quadratic due to the term
∑t

t=1−bt(qpt )2. Next we show that it satisfies the Lipschitz

condition in order to guarantee that our algorithms compute an ε-equilibrium in finite

time. Noting that player p does not have incentive to select qpt >
at
bt

(since it would result
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in null market price), we get

|
T∑

t=1

bt(q
p
t )

2 −
T∑

t=1

bt(q̂
p
t )

2|=|
T∑

t=1

bt
(
(qpt )

2 − (q̂pt )
2
)
|

=|
T∑

t=1

bt ((qpt ) + (q̂pt )) ((qpt )− (q̂pt )) |

≤

√√√√
T∑

t=1

b2
t ((qpt ) + (q̂pt ))

2

√√√√
T∑

t=1

((qpt )− (q̂pt ))
2

≤

√√√√
T∑

t=1

b2
t

(
2at
bt

)2

· ‖ qp − q̂p ‖

≤

√√√√
T∑

t=1

4a2
t · ‖ qp − q̂p ‖ .

In the third step we used Cauchy–Schwarz inequality. In the forth inequality we use the

upper bound at
bt

on the quantities placed in the market.

Proposition 4.3.6 states that ULSG is a potential game and a maximum of its poten-

tial function is a (pure) equilibrium. This is an additional motivation to analyze our

algorithms in this problem: it can be compared with the maximization of the associated

potential.

4.4.3.2 Implementation Details

Both our implementations, the m-SGM 4.4.2.1 and SGM, use the following specialized

functions.

Initialization(IPG). Algorithm 4.4.2.1 stops once an equilibrium is computed. There-

fore, the equilibrium computed when applied to a game with more than one NE will

depend on its initialization as the following examples illustrates.

Example 4.4.16. Consider an instance of the two-player ULSG (4.3.1) with the following

parameters: T = 1, a1 = 15, b1 = 1, C1
1 = C2 = 0, F 1

1 = F 2
1 = 15. It is a single-

period game, therefore the quantities produced are equal to the quantities placed in the

market (this is, x1
1 = q1

1 and x2
1 = q2

1). Given the simplicity of the players’ optimization

programs (4.3.1), we can analytically compute the players’ best reactions that are depicted

in Figure 4.4.4.
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x1

x2

x1(x2) = 15−x2

2

x2(x1) = 15−x1

2

7.5

3

3

Figure 4.4.4: Players’ best reaction functions.

The game possesses two (pure) equilibria: (x̂1, ŷ1, x̂2, ŷ2) = (0, 0, 7.5, 1) and (x̃1, ỹ1, x̃2, ỹ2) =

(7.5, 1, 0, 0). Thus, the equilibrium that m-SGM 4.4.2.1 determines depend on its initial-

ization: Figure 4.4.4 depicts the convergence to (x̂1, ŷ1, x̂2, ŷ2) when the initial sample

game is S = {(2, 1)} × {(5, 1)} and to (x̃1, ỹ1, x̃2, ỹ2) when the initial sample game is

S = {(4, 1)} × {(1, 1)}.

In an attempt to keep as small as possible the size of the sample games (i.e., number

of strategies explicitly enumerated), the initialization implemented computes a single

strategy for each player. We experimented initializing the algorithm with the social

optimal strategies (strategies that maximize the total players’ utilities), pure equilibrium

for the potential part of the game 7 and optimal strategies if the players were alone in

the game (i.e., opponents’ variables were set to be zero). There was no evident advantage

for one of this initializations. This result was somehow expected, since, particularly

for the knapsack game instances, it is not evident whether the game has an important

coordination part (in the direction of social optimum) or an important conflict part.

Therefore, our implementation uses the players’ strategies if they were alone in the game,

given that these optimizations must be simpler.

PlayerOrder(Sdev0 , . . . ,Sdevk). The equilibrium returned by our algorithm depends on

the players’ order when we check their incentives to deviate: for the equilibrium σk of

7We only experimented this for the knapsack game, since the ULSG is already potential. We consider

the potential part of the knapsack game to be when the parameters cpk,i in each player’s utility function

are replaced by 1
2 (cpk,i + ckp,i).
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the sample game k, there might be more than one player with incentive to deviate from

σk, thus the successor will depend on the player that is selected. If players’ index order

is considered, the algorithm may take longer to converge to an equilibrium: it will be

likely that it first finds an equilibrium of the game restricted to players 1 and 2, then

an equilibrium of the game restricted to players 1, 2 and 3, and so on. Thus, this

implementation sorts the players by increasing order of number of previous iterations

without receiving a new strategy.

DeviationReaction(p, σ−pk ,Πp(σk), ε, IPG). When checking if a player p has incentive

to deviate, it suffices to determine whether she has a strategy that strictly increases her

utility when she unilaterally deviates to it. Nowadays, there are powerful software tools

to tackle mixed integer quadratic programming problems8. Thus, our implementation

solves the player p’s best reaction problem (4.3.1) to σ−pk . We use Gurobi 5.6.3 to solve

these reaction problems.

SortSizes(σ0, . . . , σk−1). The authors of PNS [107] recommend that the support strate-

gies’ enumeration starts with support sizes ordered, first, by total size, and, second, by a

measure of balance (except in case of a 2-players game where the criteria importance is

reversed). However, in our method, from one sample game to its successor or predecessor,

the sample game at hand just changes by one strategy, and thus we expect that the

equilibria will not change too much either (in particular, the support sizes of consecutive

sample games are expected to be close). Therefore, our criteria to sort the support sizes

is by increasing order of

For m = 2: first, balance, second, maximum player’s support size distance to the one of

the previously computed equilibrium, third, maximum player’s support size plus 1

distance to the one of the previously computed equilibrium and, fourth, sum of the

players’ support sizes;

For m ≥ 3: first, maximum player’s support size distance to the one of the previously

computed equilibrium, second, maximum player’s support size plus 1 distance to

the one of the previously computed equilibrium, third, sum of the players’ support

sizes and, fourth, balance.

For the initial sample game, the criteria coincide with PNS.

8In the knapsack game, a player’s best reaction problem is an integer linear programming problem. In

the ULSG, a player’s best reaction problem is a concave mixed integer quadratic programming problem

(the proof that it is a concave MIQP is analogous to the one in Appendix A).



4.4. INTEGER PROGRAMMING GAMES 171

SortStrategies(S, σ0, . . . , σk−1). Following the previous reasoning, the strategies of the

current sample game are sorted by decreasing order of their probability in the predecessor

equilibrium. Thus, the algorithm will prioritize finding equilibria using the support

strategies of the predecessor equilibrium.

Note that the function PNSadaptation(S, x(k),Sdevk+1
, Sizesord, Strategiesord) is specific for

the m-SGM. The basic SGM calls PNS without any requirement on the strategies that

must be in the support of the next equilibrium to be computed; in order words, x(k) and

Sdevk+1
are not in the input of the PNS.

4.4.3.3 Computational Results

In this section, we will present the computational results for the application of the modified

SGM and SGM to the knapsack and competitive uncapacitated lot-sizing games in order

to validate the importance of the modifications introduced. For the competitive lot-

sizing game, we further compare these two methods with the maximization of the game’s

potential function (which corresponds to a pure equilibrium). For building the game’s

data, we have used the Python’s random module; see [51]. All algorithms have been

coded in Python 2.7.2. Since for both the knapsack and competitive uncapacitated lot-

sizing games the Feasibility Problems 2.3.3 are linear (due to the bilateral interaction

of the players in each of their objective functions), we use Gurobi 5.6.3 to solve them.

The experiments were conducted on a Quad-Core Intel Xeon processor at 2.66 GHz and

running under Mac OS X 10.8.4.

Knapsack Game. In our computations, the value of ε was zero since this is a purely

integer programming game. The parameters vpi , c
p
k,i, and wpi are drawn independently from

a uniform distribution in the interval [−100, 100] ∩ Z. For each value of the of the pair

(n,m), 10 independent instances were generated. The budget W p is set to b INS
11

∑n
i=1w

p
i c

for the instance number “INS”.

Tables 4.3 and 4.4 report the results of m-SGM and SGM algorithms. The tables show the

number of items (n), the instance identifier (“INS”), the CPU time in seconds (“time”),

the number of sample games (“iter”), the type of equilibrium computed, pure (“pNE”)

or strictly mixed (“mNE”), in the last case, the support size of the NE is reported, the

number of strategies in the last sample game (
∏m

p=1 |Sp|) and the number of backtrackings

(“numb. back”). We further report the average results for each set of instances of size

n. The algorithms had a limit of one hour to solve each instance. Runs with “tl” in the

column time, indicate the cases where algorithms reached the time limit. In such cases,

the support size of the last sample game’s equilibrium is reported and we do not consider
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them in the average results row.

As the instance size grows, both in the size n as in the number of players m, the results

make evident the advantage of the m-SGM. Since a backward step is unlikely to take place

and the number of sample games is usually equal for both algorithms, the advantage is

in the support enumeration: m-SGM 4.4.2.1 reduces the support enumeration space by

imposing at iteration k the strategy x(k) to be in the support of the equilibrium, while

SGM does not. Later in the section, we discuss the reasons why backtracking is unlikely

to occur.

In Table 4.3, we can observe that for instance 4 with n = 100, the m-SGM performed

more iterations than SGM. The reason for this atypical case is due to the fact that both

algorithms have different support enumeration priorities, and therefore, they compute the

same equilibria on their initial iterations, but at some point, the algorithms may determine

different equilibria, leading to different successor sample games, and thus, terminating

with different outputs. This event is be more likely to occur on games with several

equilibria.

We note that the bound n for the players’ support sizes in an equilibrium (recall Lemma 4.4.15)

did not contribute to prune the search space of PNS support enumeration, since the

algorithm terminates with sample games of smaller size.

Competitive Uncapacitated Lot-Sizing Game. In our computations, the value of

ε was 10−6. The parameters at, bt, F
p
t and Cp

t are drawn independently from a uniform

distribution in the intervals [20, 30] ∩ Z, [1, 3] ∩ Z, [10, 20] ∩ Z, [5, 10] ∩ Z, respectively.

For each value of the pair (m,T ), 10 instances were generated.

A player p’s best reaction (4.3.1) for a fixed (y−p, x−p, q−p, h−p) can be computed in poly-

nomial time (Lemma 4.3.3), however, for easiness of implementation and fair comparison

with the computation of the potential function optimum, we do not use the dynamic

programming procedure, but Gurobi 5.6.3.

As previously proved, Proposition 4.3.6, the ULSG is potential, which implies the existence

of a pure equilibrium. In particular, each sample game of the competitive lot-sizing game

is potential and thus has a pure equilibrium. In fact, our algorithms will return a pure

equilibrium: both m-SGM and SGM start with a sample game with only one strategy for

each player and thus, one pure equilibrium; this equilibrium is given to the input of our

PNS implementation, which implies that players’ supports of size one will be prioritized

leading to the computation of a pure equilibrium; this pure equilibrium will be in the input

of the next PNS call, resulting in a pure equilibrium output; this reasoning propagates
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m-SGM SGM

n INS time iter pNE mNE
∏m

p=1 |S
p| numb. back time iter pNE mNE

∏m
p=1 |S

p|
20 0 0.04 4 0 [2,2] [3, 2] 0 0.03 4 0 [2,2] [3, 2]

1 0.08 7 0 [2,2] [5, 3] 0 0.07 7 0 [2,2] [5, 3]

2 0.35 15 0 [4,4] [9, 7] 0 0.41 15 0 [4,4] [9, 7]

3 0.75 13 0 [5,5] [7, 7] 0 0.97 13 0 [5,5] [7, 7]

4 0.04 4 1 0 [3, 2] 0 0.04 4 1 0 [3, 2]

5 0.03 3 1 0 [2, 2] 0 0.03 3 1 0 [2, 2]

6 0.09 8 0 [3,3] [5, 4] 0 0.09 8 0 [3,3] [5, 4]

7 0.62 15 0 [4,4] [8, 8] 0 0.99 15 0 [4,4] [8, 8]

8 0.05 5 0 [2,2] [3, 3] 0 0.05 5 0 [2,2] [3, 3]

9 0.08 7 0 [3,3] [4, 4] 0 0.07 7 0 [3,3] [4, 4]

avg. numb. avg. numb.

time iter |S1| |S2| pNE mNE time iter |S1| |S2| pNE mNE

0.21 8.10 4.90 4.20 2 8 0.27 8.10 4.90 4.20 2 8

n INS time iter pNE mNE
∏m

p=1 |S
p| numb. back time iter pNE mNE

∏m
p=1 |S

p|
40 0 1.09 16 0 [5,5] [8, 9] 0 1.58 16 0 [5,5] [8, 9]

1 0.31 11 0 [3,3] [6, 6] 0 0.33 11 0 [3,3] [6, 6]

2 0.37 12 0 [4,4] [7, 6] 0 0.42 12 0 [4,4] [7, 6]

3 0.67 15 0 [4,4] [8, 8] 0 0.92 15 0 [4,4] [8, 8]

4 0.08 5 0 [2,2] [3, 3] 0 0.08 5 0 [2,2] [3, 3]

5 0.16 8 0 [3,3] [5, 4] 0 0.16 8 0 [3,3] [5, 4]

6 0.17 8 0 [3,3] [5, 4] 0 0.16 8 0 [3,3] [5, 4]

7 0.54 15 0 [5,5] [7, 9] 0 0.58 15 0 [5,5] [7, 9]

8 0.08 5 0 [2,2] [3, 3] 0 0.08 5 0 [2,2] [3, 3]

9 0.23 9 0 [2,2] [6, 4] 0 0.22 9 0 [2,2] [6, 4]

avg. numb. avg. numb.

time iter |S1| |S2| pNE mNE time iter |S1| |S2| pNE mNE

0.37 10.40 5.80 5.60 0 10 0.45 10.40 5.80 5.60 0 10

n INS time iter pNE mNE
∏m

p=1 |S
p| numb. back time iter pNE mNE

∏m
p=1 |S

p|
80 0 3.43 16 0 [5,6] [8, 9] 0 5.45 16 0 [5,6] [8, 9]

1 0.59 12 0 [4,4] [7, 6] 0 0.58 12 0 [4,4] [7, 6]

2 0.71 13 0 [4,4] [8, 6] 0 0.87 13 0 [4,4] [8, 6]

3 73.72 19 0 [7,7] [10, 10] 0 134.31 19 0 [7,7] [10, 10]

4 152.74 24 0 [7,7] [12, 13] 0 325.08 24 0 [7,7] [12, 13]

5 94.00 21 0 [7,7] [12, 10] 0 163.71 21 0 [7,7] [12, 10]

6 116.15 23 0 [6,6] [15, 9] 0 215.98 23 0 [6,6] [15, 9]

7 11.89 20 0 [4,4] [10, 11] 0 23.08 20 0 [4,4] [10, 11]

8 65.78 22 0 [7,7] [11, 12] 0 110.19 22 0 [7,7] [11, 12]

9 4.07 17 0 [4,4] [10, 8] 0 6.99 17 0 [4,4] [10, 8]

avg. numb. avg. numb.

time iter |S1| |S2| pNE mNE time iter |S1| |S2| pNE mNE

52.31 18.70 10.30 9.40 0 10 98.62 18.70 10.30 9.40 0 10

n INS time iter pNE mNE
∏m

p=1 |S
p| numb. back time iter pNE mNE

∏m
p=1 |S

p|
100 0 tl 26 0 [7, 7] [14, 13] 0 tl 25 0 [6, 6] [13, 13]

1 tl 28 0 [8, 8] [17, 12] 0 tl 27 0 [7, 7] [16, 12]

2 tl 27 0 [8, 8] [14, 14] 0 tl 27 0 [8, 8] [14, 14]

3 tl 25 0 [6, 6] [13, 13] 0 tl 25 0 [6, 6] [13, 13]

4 667.49 24 0 [9,9] [13, 12] 0 605.92 23 0 [9,9] [12, 12]

5 1547.82 25 0 [9,9] [13, 13] 0 2464.84 25 0 [9,9] [13, 13]

6 tl 30 0 [8, 8] [17, 14] 0 tl 26 0 [7, 7] [14, 13]

7 1.97 16 0 [5,5] [9, 8] 0 2.57 16 0 [5,5] [9, 8]

8 tl 27 0 [8, 8] [14, 14] 0 tl 26 0 [7, 7] [14, 13]

9 tl 27 0 [8, 8] [15, 13] 0 tl 27 0 [8, 8] [15, 13]

avg. numb. avg. numb.

time iter |S1| |S2| pNE mNE time iter |S1| |S2| pNE mNE

739.09 21.67 11.67 11.00 0 3 1024.44 21.33 11.33 11.00 0 3

Table 4.3: Computational results for the knapsack game with m = 2.
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m-SGM SGM

n INS time iter pNE mNE
∏m

p=1 |S
p| numb. back time iter pNE mNE

∏m
p=1 |S

p|
10 0 0.10 7 0 [2, 1, 2] [4, 2, 3] 0 0.08 7 0 [2, 1, 2] [4, 2, 3]

1 0.09 6 0 [2, 1, 2] [3, 2, 3] 0 0.09 6 0 [2, 1, 2] [3, 2, 3]

2 0.15 8 0 [3, 2, 2] [4, 3, 3] 0 0.15 8 0 [3, 2, 2] [4, 3, 3]

3 0.21 10 0 [2, 1, 2] [5, 3, 4] 0 0.21 10 0 [2, 1, 2] [5, 3, 4]

4 0.05 4 1 0 [2, 2, 2] 0 0.04 4 1 0 [2, 2, 2]

5 1.67 13 0 [3, 3, 3] [5, 6, 4] 0 2.54 13 0 [3, 3, 3] [5, 6, 4]

6 0.08 6 0 [2, 2, 1] [3, 3, 2] 0 0.07 6 0 [2, 2, 1] [3, 3, 2]

7 0.33 11 0 [2, 1, 2] [5, 4, 4] 0 0.41 11 0 [2, 1, 2] [5, 4, 4]

8 0.20 10 0 [2, 2, 1] [4, 5, 3] 0 0.31 10 0 [2, 2, 1] [4, 5, 3]

9 0.05 4 1 0 [2, 2, 2] 0 0.04 4 1 0 [2, 2, 2]

avg. numb. avg. numb.

time iter |S1| |S2| |S3| pNE mNE time iter |S1| |S2| |S3| pNE mNE

0.29 7.90 3.70 3.20 3.00 2 8 0.39 7.90 3.70 3.20 3.00 2 8

n INS time iter pNE mNE
∏m

p=1 |S
p| numb. back time iter pNE mNE

∏m
p=1 |S

p|
20 0 0.20 8 0 [2, 2, 1] [4, 4, 2] 0 0.21 8 0 [2, 2, 1] [4, 4, 2]

1 0.40 10 0 [2, 1, 2] [4, 4, 4] 0 0.52 10 0 [2, 1, 2] [4, 4, 4]

2 6.22 19 0 [2, 2, 3] [7, 6, 8] 0 11.55 19 0 [2, 2, 3] [7, 6, 8]

3 15.06 23 0 [4, 5, 3] [8, 11, 6] 0 26.17 23 0 [4, 5, 3] [8, 11, 6]

4 0.21 9 0 [2, 1, 2] [5, 2, 4] 0 0.19 9 0 [2, 1, 2] [5, 2, 4]

5 0.18 8 0 [2, 1, 2] [4, 3, 3] 0 0.17 8 0 [2, 1, 2] [4, 3, 3]

6 97.26 21 0 [4, 2, 5] [9, 5, 9] 0 212.14 21 0 [4, 2, 5] [9, 5, 9]

7 0.16 8 0 [2, 1, 2] [4, 3, 3] 0 0.15 8 0 [2, 1, 2] [4, 3, 3]

8 0.65 15 0 [3, 3, 1] [6, 8, 3] 0 0.74 15 0 [3, 3, 1] [6, 8, 3]

9 0.29 10 0 [2, 2, 2] [4, 4, 4] 0 0.28 10 0 [2, 2, 2] [4, 4, 4]

avg. numb. avg. numb.

time iter |S1| |S2| |S3| pNE mNE time iter |S1| |S2| |S3| pNE mNE

12.06 13.10 5.50 5.00 4.60 0 10 25.21 13.10 5.50 5.00 4.60 0 10

n INS time iter pNE mNE
∏m

p=1 |S
p| numb. back time iter pNE mNE

∏m
p=1 |S

p|
40 0 26.08 25 0 [2, 3, 4] [8, 7, 12] 0 52.65 25 0 [2, 3, 4] [8, 7, 12]

1 0.78 12 0 [2, 2, 3] [5, 4, 5] 0 0.91 12 0 [2, 2, 3] [5, 4, 5]

2 tl 29 0 [4, 5, 4] [11, 11, 9] 0 tl 27 0 [4, 4, 4] [10, 10, 9]

3 tl 29 0 [5, 5, 5] [10, 11, 9] 1 tl 27 0 [5, 6, 5] [10, 10, 9]

4 382.06 22 0 [4, 3, 6] [9, 6, 9] 0 792.33 22 0 [4, 3, 6] [9, 6, 9]

5 806.95 28 0 [5, 3, 5] [10, 8, 12] 0 1585.39 28 0 [5, 3, 5] [10, 8, 12]

6 tl 25 0 [6,3,4] [9, 9, 9] 0 tl 23 0 [4,2,3] [9, 8, 8]

7 1133.06 23 0 [5, 5, 6] [9, 8, 8] 0 1897.04 23 0 [5, 5, 6] [9, 8, 8]

8 1151.67 24 0 [7, 3, 7] [10, 6, 10] 0 1743.75 24 0 [7, 3, 7] [10, 6, 10]

9 14.14 22 0 [2, 4, 4] [6, 8, 10] 0 20.36 22 0 [2, 4, 4] [6, 8, 10]

avg. numb. avg. numb.

time iter |S1| |S2| |S3| pNE mNE time iter |S1| |S2| |S3| pNE mNE

502.11 22.29 8.14 6.71 9.43 0 7 870.35 22.29 8.14 6.71 9.43 0 7

Table 4.4: Computational results for the knapsack game with m = 3.
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through the algorithms’ execution. Even though our algorithms find a pure equilibrium, it

is expected that the potential function maximization method will provide an equilibrium

faster than our methods, since the former deeply depend on the initialization (which in

our implementation does not take into account the players’ interaction).

Table 4.5 reports the results for the m-SGM, SGM and potential function maximization.

The table displays the number of periods (T ), the number of players (m) and the average

CPU time in seconds (“time”). For our methods, a column reports the averages for the

number of sample games (“avg. iter”), the number of strategies in the last sample game

(“avg. |Sp|”) and the number of backtrackings (“avg. numb. back”). The columns

“numb. pNE” display the number of instances solved by each method. In this case all

instances were solved within the time frame of one hour.

In this case, m-SGM does not present advantages with respect to SGM. This is mainly

due to the fact that the sample games always have pure equilibria and our improve-

ments have more impact when many mixed equilibria exist. The maximization of the

potential functions allowed the computation of equilibria to be faster. This highlights

the importance of identifying if a game is potential. On the other hand, the potential

function maximization allows the determination of one equilibrium, while our method

with different Initialization and/or PlayerOrder implementations may return different

equilibria and, thus, allow larger exploration of the set of equilibria.

Algorithm PlayerOrder has a crucial impact in the number of sample games to be ex-

plored in order to compute one equilibrium. In fact, when comparing our implementation

with simply keeping the players’ index order static, the impact on computational times

is significant.

In the application of our two methods in all the studied instances of these games, back-

tracking never occurred. Indeed, we noticed that this is a very unlikely event (even

though it may happen, as in Example B.0.21). This is the reason why both m-SGM

and SGM, in general, coincide in the number of sample games generated: it is in the

support enumeration for each sample game that the methods differ; the fact that the last

added strategy is mandatory to be in the equilibrium support of the m-SGM makes it

faster. The backtracking will reveal useful for problems in which it is “difficult” to find

the strategies of a sample game that enable to define an equilibrium of an IPG. At this

point, for the games studied, in comparison with the number of pure profiles of strategies

that may exist in a game, not too many sample games had to be generated in order to

find an equilibrium, meaning that the challenge is to make the computation of equilibria

for sample games faster.
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m-SGM SGM Potential Function Maximization

avg. numb. avg. numb. avg numb.

m T time iter |S1| |S2| |S3| numb. back pNE time iter |S1| |S2| |S3| pNE time pNE

2 10 0.58 14.90 8.00 7.90 0 10 0.49 14.90 8.00 7.90 10 0.01 10

20 1.14 15.60 8.60 8.00 0 10 1.00 15.60 8.60 8.00 10 0.01 10

50 3.33 16.00 9.00 8.00 0 10 3.02 16.00 9.00 8.00 10 0.03 10

3 10 2.57 30.60 11.40 10.80 10.40 0 10 2.20 30.60 11.40 10.80 10.40 10 0.01 10

20 4.51 32.00 12.00 11.10 10.90 0 10 3.88 32.00 12.00 11.10 10.90 10 0.03 10

50 10.69 33.10 12.10 11.50 11.50 0 10 9.36 33.10 12.10 11.50 11.50 10 0.08 10

Table 4.5: Computational results for the competitive uncapacitated lot-sizing game.

Comparison: m-SGM and PNS. In the case of the knapsack game, the number of

strategies for each player is finite. In order to find an equilibrium of it, we can explicitly

determine all feasible strategies for each player and, then apply directly PNS. In Tables 4.6

and 4.7, we compare this procedure with m-SGM, for n = 5, n = 7 and n = 10 (in these

cases, each player has at most 25 = 32, 27 = 128 and 210 = 1024 feasible strategies,

respectively). We note that the computational time displayed in these tables under the

direct application of PNS does not include the time to determine all feasible strategies for

each player (although, for n = 5, n = 7 and n = 10 is negligible). Based on these results

it can be concluded that even for small instances, m-SGM already performs better than

the direct application of PNS, where all strategies must have been enumerated.

4.4.4 Summary

Literature in computational equilibria lacks the study of games with diverse sets of

strategies with practical interest. This work presents the first attempt to address the

computation of equilibria to integer programming games.

We started by classifying the game’s complexity in terms of existence of pure and mixed

equilibria. For both cases, it was proved that the problems are Σp
2-complete. However, if

the players’ set of strategies is bounded, the game is guaranteed to have an equilibrium.

Even when there are equilibria, the computation of one is a PPAD-complete problem,

which is likely to be a class of hard problems.

Under our game model, each player’s goal is described through a mathematical program-

ming model. Therefore, we mixed tools from mathematical programming and game theory

to devise a novel method to determine Nash equilibria. Our basic method, SGM, itera-

tively determines equilibria to finite games which are samples of the original game; in each

iteration, by solving the player’s best reactions to an equilibrium of the previous sample

game, it is verified if the determined equilibrium coincides with an ε-equilibrium of the

original game. Once none of the players has incentive to deviate from the equilibrium of

the current sample game, the method stops and returns it. In order to make the algorithm

faster in practice, special features were added. For this purpose, we devised the modified
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m-SGM direct PNS

n m INS time iter pNE mNE
∏m

p=1 |S
p| numb. back time pNE mNE

∏m
p=1 |S

p|
5 2 0 0.00 1 1 0 [1, 1] 0 0.02 1 0 [31, 11]

1 0.01 2 1 0 [1, 2] 0 0.01 1 0 [10, 7]

2 0.01 2 1 0 [1, 2] 0 0.03 1 0 [29, 21]

3 0.01 3 0 1 [2, 2] 0 0.11 0 1 [16, 16]

4 0.02 4 1 0 [3, 2] 0 0.01 1 0 [17, 12]

5 0.01 2 1 0 [2, 1] 0 0.01 1 0 [16, 17]

6 0.01 2 1 0 [2, 1] 0 0.02 1 0 [17, 16]

7 0.01 2 1 0 [2, 1] 0 0.01 1 0 [17, 15]

8 0.02 4 1 0 [3, 2] 0 0.01 1 0 [15, 16]

9 0.00 1 1 0 [1, 1] 0 0.01 1 0 [16, 9]

avg. numb. avg. numb.

time iter |S1| |S2| pNE mNE time |S1| |S2| pNE mNE

0.01 2.30 1.80 1.50 9 1 0.03 18.40 14.00 9 1

m INS time iter pNE mNE
∏m

p=1 |S
p| numb. back time pNE mNE

∏m
p=1 |S

p|
3 0 0.03 4 0 1 [1, 3, 2] 0 0.07 0 1 [1, 6, 17]

1 0.01 1 1 0 [1, 1, 1] 0 0.07 1 0 [10, 22, 29]

2 0.02 3 1 0 [2, 2, 1] 0 0.05 1 0 [13, 29, 9]

3 0.02 4 1 0 [2, 2, 2] 0 0.04 1 0 [22, 21, 8]

4 0.02 3 1 0 [2, 1, 2] 0 0.07 1 0 [16, 17, 16]

5 0.06 6 0 1 [2, 2, 4] 0 0.83 0 1 [15, 16, 16]

6 0.02 3 1 0 [2, 2, 1] 0 0.07 1 0 [16, 16, 18]

7 0.01 2 1 0 [2, 1, 1] 0 0.03 1 0 [11, 12, 15]

8 0.01 2 1 0 [2, 1, 1] 0 0.08 1 0 [12, 24, 12]

9 0.02 3 1 0 [2, 1, 2] 0 0.11 1 0 [13, 19, 18]

avg. numb. avg. numb.

time iter |S1| |S2| |S3| pNE mNE time |S1| |S2| |S3| pNE mNE

0.02 3.10 1.80 1.60 1.70 8 2 0.14 12.90 18.20 15.80 8 2

n m INS time iter pNE mNE
∏m

p=1 |S
p| numb. back time pNE mNE

∏m
p=1 |S

p|
7 2 0 0.03 2 1 0 [1, 2] 0 0.61 1 0 [69, 120]

1 0.03 4 0 1 [2, 3] 0 212.07 0 1 [103, 72]

2 0.02 4 0 1 [3, 2] 0 24.31 0 1 [53, 64]

3 0.01 2 1 0 [2, 1] 0 0.27 1 0 [82, 99]

4 0.01 3 1 0 [2, 2] 0 0.07 1 0 [43, 45]

5 0.02 4 0 1 [2, 3] 0 0.27 1 0 [62, 57]

6 0.01 3 1 0 [2, 2] 0 0.18 1 0 [69, 62]

7 0.03 5 0 1 [3, 3] 0 106.34 0 1 [88, 68]

8 0.01 2 1 0 [2, 1] 0 0.19 1 0 [82, 49]

9 0.01 3 1 0 [2, 2] 0 0.32 1 0 [34, 60]

avg. numb. avg. numb.

time iter |S1| |S2| pNE mNE time |S1| |S2| pNE mNE

0.02 3.20 2.10 2.10 6 4 34.46 68.50 69.60 7 3

m INS time iter pNE mNE
∏m

p=1 |S
p| numb. back time pNE mNE

∏m
p=1 |S

p|
3 0 0.03 4 0 1 [1, 3, 2] 0 0.45 1 0 [1, 85, 25]

1 0.12 7 0 1 [3, 4, 2] 0 tl 0 0 [91, 65, 18]

2 0.01 2 1 0 [2, 1, 1] 0 4.79 1 0 [80, 35, 65]

3 0.03 4 1 0 [2, 2, 2] 0 3.03 1 0 [24, 39, 61]

4 0.03 4 1 0 [3, 2, 1] 0 2.70 1 0 [48, 69, 32]

5 0.03 4 1 0 [2, 2, 2] 0 1.44 1 0 [64, 66, 66]

6 0.02 3 1 0 [2, 2, 1] 0 5.48 1 0 [64, 64, 67]

7 0.02 3 1 0 [2, 1, 2] 0 6.29 1 0 [59, 59, 95]

8 0.02 3 1 0 [1, 2, 2] 0 1.27 1 0 [46, 42, 62]

9 0.14 9 0 1 [4, 4, 3] 0 tl 0 0 [69, 94, 69]

avg. numb. avg. numb.

time iter |S1| |S2| |S3| pNE mNE time |S1| |S2| |S3| pNE mNE

0.05 4.30 2.20 2.30 1.80 7 3 3.18 48.25 57.37 59.12 8 0

Table 4.6: Computational results for the m-SGM and PNS to the knapsack game with

n = 5, 7.
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m-SGM direct PNS

n m INS time iter pNE mNE
∏m

p=1 |S
p| numb. back time pNE mNE

∏m
p=1 |S

p|
10 2 0 0.04 4 0 1 [2, 3] 0 tl. 0 0 [792, 436]

1 0.01 2 1 0 [2, 1] 0 6.87 1 0 [253, 385]

2 0.05 7 0 1 [4, 4] 0 tl. 0 0 [924, 883]

3 0.05 6 0 1 [3, 4] 0 51.00 1 0 [382, 396]

4 0.01 2 1 0 [2, 1] 0 11.10 1 0 [426, 489]

5 0.02 3 1 0 [2, 2] 0 10.59 1 0 [468, 474]

6 0.01 2 1 0 [1, 2] 0 9.93 1 0 [511, 481]

7 0.02 4 1 0 [3, 2] 0 12.75 1 0 [470, 510]

8 0.03 5 0 1 [3, 3] 0 tl. 0 0 [803, 482]

9 0.03 4 0 1 [2, 3] 0 tl. 0 0 [293, 811]

avg. numb. avg. numb.

time iter |S1| |S2| pNE mNE time |S1| |S2| pNE mNE

0.03 3.90 2.40 2.50 5 5 17.04 418.33 455.83 6 0

m INS time iter pNE mNE
∏m

p=1 |S
p| numb. back time pNE mNE

∏m
p=1 |S

p|
3 0 2.65 19 0 1 [5, 7, 9] 0 1228.25 1 0 [26, 806, 282]

1 0.21 11 0 1 [5, 5, 3] 0 tl. 0 0 [318, 762, 879]

2 0.70 12 0 1 [4, 6, 4] 0 tl. 0 0 [458, 263, 455]

3 0.04 5 1 0 [2, 3, 2] 0 1136.29 1 0 [334, 529, 690]

4 0.08 7 0 1 [3, 4, 2] 0 tl. 0 0 [351, 555, 659]

5 0.05 6 1 0 [3, 3, 2] 0 tl. 0 0 [610, 480, 518]

6 0.06 7 1 0 [3, 3, 3] 0 2453.11 1 0 [462, 520, 513]

7 0.05 6 1 0 [3, 3, 2] 0 437.29 1 0 [519, 375, 342]

8 0.09 8 0 1 [3, 5, 2] 0 tl. 0 0 [347, 698, 571]

9 0.04 5 1 0 [3, 2, 2] 0 tl. 0 0 [716, 773, 817]

avg. numb. avg. numb.

time iter |S1| |S2| |S3| pNE mNE time |S1| |S2| |S3| pNE mNE

0.40 8.60 3.40 4.10 3.10 5 5 1313.73 335.25 557.50 456.75 4 0

Table 4.7: Computational results for the m-SGM and PNS to the knapsack game with

n = 10.

SGM. Our algorithms were experimentally validated through two particular games: the

knapsack and the competitive uncapacitated lot-sizing games. For the knapsack game, the

m-SGM provides equilibria to medium size instances within the time frame of one hour.

The results show that this is a hard game which is likely to have strictly mixed equilibria.

The hardness comes from the conflicts that projects selected by different players have in

their utilities. For the competitive uncapacitated lot-sizing game, its property of being

potential makes our algorithms’ iterations fast (since there is always a pure equilibrium,

that is, an equilibrium with a small support size) and, thus, the challenge is in improving

the methods’ initialization.

Note that for the instances solved by our algorithms, there is an exponential (knapsack

game) or uncountable (ULSG) number of pure profiles of strategies. However, by observ-

ing the computational results, a small number of explicitly enumerated pure strategies was

enough to find an equilibrium. For this reason, the explicitly enumerated strategies (the

sample games) are usually “far” from describing (even partially) a player p’s polytope

conv(Xp) and thus, at this point, this information is not used in PNS to speed up its

computations. For instance, Corollary 4.4.5 and Lemma 4.4.15 did not reduce the number

of supports enumerated by PNS in each iteration of m-SGM. Due to the fact that it is

in PNS that our algorithms struggle the most, its improvement is the first aspect to

further study; we believe that exploring the possibility of extracting information from

each player’s polytope of feasible strategies will be the crucial ingredient for this.
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There is a set of natural questions that this work opens. Can we adapt m-SGM to compute

all equilibria (or characterize the set of equilibria)? Can we compute an equilibrium

satisfying a specific property (e.g. computing the equilibrium that maximizes the social

welfare, computing a non-dominated equilibrium)? Will in practice players play equilibria

that are “hard” to find? If a game has multiple equilibria, how to decide among them?

From a mathematical point of view, the first two questions embody a big challenge, since

there seems to be hard to extract problem structure to the general IPG class of games.

The two last questions raise another one, which is the possibility of considering different

solution concepts to IPGs.
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Chapter 5

Conclusions and Open Questions

In this thesis, we discuss integer programming games, a class of games characterized

by a novel representation of the players’ sets of strategies. To this end, mathematical

programming formulations are used to model each player’s optimization problem, in a

context where each player’s decision affects the opponents utility (objective function).

Therefore, IPG is a two direction generalization; on the one hand, finite, infinite or even

exponential sets of strategies fit in the IPG framework, generalizing important games

in the literature (such as finite and “well-behaved” continuous games); on the other

hand, it generalizes mathematical programming problems with a single decision-maker.

With regard to the game’s dynamics, we focused on Stackelberg competitions (bilevel

programming) and simultaneous games. In both cases, as motivated in Chapter 1, our

goal was threefold: real-world applicability, the study of games’ computational complexity

and the development of algorithms to compute solutions.

Applications. The contributions of this thesis do not reduce to new mathematical

results. Our achievements are enriched by the fact that the games modeled are a step

forward in the direction of successfully approximate real-world problems.

The bilevel knapsack problems presented in Chapter 3 are games played sequentially

by two players (the leader and the follower); these games share in common the fol-

lower’s optimization problem, which is a knapsack. Given these problems’ simplicity,

they are likely to be sub-problems of mixed integer bilevel programming models of real-

world applications. In particular, the bilevel knapsack with interdiction constraints is

of high importance due to its min-max structure and to the interdiction constraints,

which establish the connection with robust optimization (Ben-Tal et al. [9]) and security

planning problems (Smith [118], Smith and Lim [119]). Robust optimization focuses

on mathematical programming problems with uncertainty, where instead of assuming

the underlying probability distribution for the uncertainty parameters, it considers the

worst-case scenario; in specific, a min-max bilevel programming problem is formulated,

where the upper level models the mathematical programming problem with uncertainty

parameters, which are controlled by the lower level. In security planning problems, bilevel

programming is used to model situations where the goal is to minimize the maximum
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damage that an attack can lead to in a network by enforcing the security in parts of

it, which are interdicted to the attacker. Therefore, since the bilevel knapsack with

interdiction constraints is a particular case of these two larger classes of problems, the

developed work provides insights to approach more general problems in these settings.

Portfolio management is suitable to be modeled through a knapsack game: each player

has a limited budget (knapsack constraint) and aims at maximizing the profit associated

with her investments; these profits depend on other investors’ decisions. Thus, the two-

player coordination knapsack game (Section 4.1) and its generalization in Section 4.4 are

the simplest discrete portfolio models that one can devise. Our study shows that these

models are likely to have many equilibria, and thus, it is problematic to predict the most

probable/rational outcome. The addition of more complex constraints to the knapsack

game, allowing to model more complex portfolio management problems, would decrease

the number of players’ feasible strategies, which could potentially decrease the number

of equilibria. Thus, formulating portfolio management situations under IPG settings

deserves further research.

Multi-player kidney exchange programs are procedures recently proposed in order to

potentially increase the number of kidney transplants to patients in need. In this thesis,

for the first time in the literature, the kidney exchange program is investigated from a

non-cooperative game theory point of view: the players are the entities owning a pool

of incompatible (with respect to kidney transplantation) patient-donor pairs, and each

player goal is to maximize the number of patients in her pool receiving a kidney. The

competitive two-player kidney exchange game devised in Section 4.2 yields a market design

with optimal social outcomes. The success in solving the proposed game results from

the generalization of a polynomialy-solvable single decision-maker optimization problem

(the maximum matching problem) to many decision makers (players). Moreover, our

preliminary analysis of the game beyond two players and pairwise exchanges, indicates a

promising line of research.

The competitive uncapacitated lot-sizing game of Section 4.3 is suitable to approximate

the real challenge that firms face when planning their production. In this game, the

players are firms producing a homogeneous good, where each firm’s utility reflects her

production costs and revenues, which depend on the opponent firms’ strategies. We were

able to prove the existence of an equilibrium (solution), by proving the existence of a

potential function and of its maximum. If more complex constraints are included on

it – e.g., production capacities, initial and final inventory quantities, backlogging, lower

bounds on production, to name a few – the game remains potential and, thus, has a pure

equilibrium. The existence of a solution (equilibrium) to this game under these more

general constraints keeps the interest of understanding it in deep.
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Computational Complexity. As broadly accepted in the game theory community,

an equilibrium is a solution to a game; that is what we propose to compute. Thereby,

it matters to determine under which conditions equilibria exist and if equilibria can be

computed efficiently.

The bilevel knapsack problems considered here have always an optimal solution (equilib-

rium), but we proved that it is Σp
2-complete to compute it. Thus, assuming P 6= NP , there

is no efficient algorithm that can find a solution in polynomial time. For simultaneous

IPGs, even deciding the existence of equilibria was proven to be Σp
2-complete. For the three

particular simultaneous IPGs of Chapter 4, we showed the existence of (pure) equilibria,

and thus, the challenge is in computing equilibria and, in case of multiple equilibria, to

decide the players’ preferred ones.

The two-player coordination knapsack game has several equilibria, which motivated us to

focus on its Pareto efficient pure equilibria; their computation was proven to amount to

solve NP-complete problems. For the competitive two-player kidney exchange game, we

were able to characterize players’ best reactions and to efficiently compute an equilibrium

to which we argue that the players converge. Concerning the competitive uncapacitated

lot-sizing game, for a special type of instances, algorithms to compute an equilibrium in

polynomial time were presented, while the complexity of the general case remains open.

For general simultaneous integer programming games we were able to determine sufficient

conditions for the existence of equilibria: the players’ sets of strategies must be bounded.

For these games, computing an equilibrium is PPAD-complete, which implies that it is

unlikely to exist an algorithm able to do it in polynomial time. Furthermore, the PPAD

class does not seem to provide the proper landscape for classifying the computational

complexity of computing an equilibrium in simultaneous IPGs. In fact, PPAD class has

its root in finite games that are an easier class of games, in comparison with general

IPGs. Note that for IPGs, verifying if a profile of strategies is an equilibrium implies

solving each player’s best response optimization, which is an NP-complete problem, while

for finite games this computation can be done efficiently. In this context, it would be

interesting to explore the definition of a “second level PPAD” class, that is, a class of

problems for which a solution could be verified in polynomial time if there was access to

an NP oracle.

Algorithms. The main goal of this work was to develop algorithms to compute as

efficiently as possible equilibria, and thus, to serve as a decision support tool.

For the bilevel knapsack problem with interdiction constraints, a novel algorithmic ap-

proach solves medium-sized instances in reasonable time. Its good performance (in
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practice) is due to two different types of cuts, which are determined during the algorithm

execution, enabling to reduce the search space for the optimal solution. Hence, the

algorithm adaptation to robust optimization and security planning models is of great

interest. In Ralphs et al. presentation [110], it was conjectured that the NG3 cuts

(Section 3.3.2) are Benders cuts, i.e., they lead to the exact function representing the

optimal value for the follower’s problem. Therefore, applying Benders’ Principle [10]

to a follower’s problem, we would get a generalization of the NG3-cuts to any bilevel

programming problem, which is a key idea in our algorithm.

For the two-player coordination knapsack game (CKG), the competitive two-player kidney

exchange game (2–KEG) and the competitive uncapacitated lot-sizing game (ULSG),

we where able to propose algorithms to compute an equilibrium. For the CKG, we

can determine the set of Pareto efficient equilibria by solving a two-objective integer

programming problem. For 2–KEG, an algorithm capable of determining efficiently an

equilibrium has been devised, and it is argued that it would lead to the rational outcome

for the players. For the ULSG, it is proven that it is a potential game, and, consequently, a

tâtonnement process allows to converge to an equilibrium. However, to determine whether

convergence is obtained in polynomial time is an open problem. In the design of these

algorithms, we exploited the problems’ specific structure in order to devise methods as

effective as possible. It may be observed that the algorithmic ideas associated with each of

these three simultaneous IPGs are very distinct, which results from exploring each game

specific structure.

The last part of the thesis, Section 4.4, concerns a method, the modified sample generation

method, capable of approximating an equilibrium in finite time for more general simultane-

ous IPGs. Moreover, given a specific IPG, our algorithm can be enhanced with specialized

methods, as detailed in Section 4.4.3.2. The open questions that follow from this work

are: How to characterize the set of all equilibria? How to decide among equilibria?

Is the equilibria definition still suitable as a solution concept of simultaneous IPGs?

Simultaneous IPGs are quite hard to understand from the perspective of determining

equilibria. Therefore, assuming that the games outcomes are equilibria might be an

unreasonable assumption. This leads to two types of research lines. One is to explore

game design, i.e., study policies for the games in order to have a unique equilibrium.

Another is to study other definitions of solution, e.g., approximated equilibria or robust

strategies (to assume that the rivals choose the strategy that minimizes a player utility).

IPG is a new framework encompassing well-known game models, as well as more general

situations, making it an interesting tool for better formulation of real-world applications.

This thesis deepens the mathematical knowledge of this class of games, unveiling new

algorithmic approaches but, at the same time, putting in evidence the intrinsic complexity
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carried in IPGs. Therefore, undoubtedly, the additional study of IPGs is an appealing

subject for further research.
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Appendix A

Potential Function Concavity

The canonical form in MIQP for the potential function 4.3.6 is:

T∑

t=1

m∑

p=1

[−F p
t y

p
t − Cp

t x
p
t + atq

p
t ]−

1

2
qᵀQq

where:

Q =




2b1 b1 b1 . . . b1 0 0 0 . . . 0 0 . . . 0 0 0 . . . 0

b1 2b1 b1 . . . b1 0 0 0 . . . 0 0 . . . 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
. . .

...
... . . .

...

b1 b1 b1 . . . 2b1 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0

0 0 0 . . . 0 2b2 b2 b2 . . . b2 0 . . . 0 0 0 . . . 0

0 0 0 . . . 0 b2 2b2 b2 . . . b2 0 . . . 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
. . .

...
... . . .

...

0 0 0 . . . 0 b2 b2 b2 . . . 2b2 0 . . . 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
. . .

...
... . . .

...

0 0 0 . . . 0 0 0 0 . . . 0 0 . . . 2bT bT bT . . . bT

0 0 0 . . . 0 0 0 0 . . . 0 0 . . . bT 2bT bT . . . bT
...

...
...

. . .
...

...
...

...
. . .

...
...

...
. . .

...
... . . .

...

0 0 0 . . . 0 0 0 0 . . . 0 0 . . . bT bT bT . . . 2bT




and:

q =
(
q1

1 q2
1 . . . qm1 q1

2 q2
2 . . . qm2 . . . q1

T q2
T . . . qmT

)
.

If the matrix Q is positive semi-definite, then the problem of maximizing the potential

function 4.3.6 continuous relaxation over X becomes concave; as mentioned in Section 2.2,

there are polynomial time algorithms to solve concave quadratic programming optimiza-

tions. If the eigenvalues of Q are all positive, then Q is positive definite (in particular,

semi-definite). Matrix Q is a block matrix, thus the eigenvalues of Q are the eigenvalues of

each of its blocks. See Anton and Rorres [3] for details in linear algebra. The eigenvalues

for each of the diagonal blocks of Q are given in the following lemma.
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Lemma A.0.17. A matrix with the form:

B =




2b b b . . . b

b 2b b . . . b
... · · · . . . . . .

...

b b b . . . 2b




has exactly two distinct eigenvalues: (m+ 1)b and b.

Proof. Suppose that (x1, x2, . . . , xm) is an eigenvector forB corresponding to an eigenvalue

λ. Then by definition:




2b b b . . . b

b 2b b . . . b
... · · · . . . . . .

...

b b b . . . 2b







x1

x2

...

xm




= λ




x1

x2

...

xm



⇔




bx1 + bx2 + . . . bxm

bx1 + bx2 + . . . bxm
...

bx1 + bx2 + . . . bxm




=




x1(λ− b)
x2(λ− b)

...

xm(λ− b)



.

One solution for the system above is the eigenspace associated with the eigenvalue b:

Eb = {(x1, x2, . . . , xm) : x1 + x2 + . . .+ xm = 0},

which has dimension m − 1 (number of linear independent vectors). Another solution is

the eigenspace associated with the eigenvalue (m+ 1)b:

E(m+1)b = {(x1, x2, . . . , xm) : x1 = x2 = . . . = xm},

which has dimension 1.

Note that Eb∩E(m+1)b = {(0, 0, . . . , 0)}, and thus the dimension of Eb∪E(m+1)b is m, which

cannot exceed the dimension of B. Therefore, all distinct eigenvalues were found and are

(m+ 1)b and b.

Corollary A.0.18. For an ULSG with m players, the eigenvalues associated with Q are:

{(m+ 1)b1, (m+ 1)b2, . . . , (m+ 1)bT , b1, b2, . . . , bT}.

Corollary A.0.19. For an ULSG with m players, the associated Q is symmetric positive

definite.

Proof. All eigenvalues of Q are positive, since bt > 0 for t = 1, . . . , T .

Corollary A.0.20. Maximizing function 4.3.6 over the set of feasible strategies X is a

concave MIQP.



Appendix B

Applying modified SGM

Example B.0.21. Consider the two-player game described by the following best reactions.

PlayerA : max
xA∈{0,1}n

− 14xA1 + 15xA2 + 12xA3 − 35xA4 − 13xA5 + 27xA6 + 18xA7 +

95xA1 x
B
1 + 16xA2 x

B
2 − 9xA3 x

B
3 − 62xA4 x

B
4 + 61xA5 x

B
5 + 89xA6 x

B
6 + 97xA7 x

B
7

s. t. 87xA1 + 25xA2 + 11xA3 − 60xA4 − 22xA5 + 46xA6 − 45xA7 ≤ 30.

P layerB : max
xB∈{0,1}n

5xB1 − 45xB2 + 41xB3 − 4xB4 + 18xB5 + 34xB6 + 39xB7 +

96xA1 x
B
1 − 59xA2 x

B
2 + 85xA3 x

B
3 − 43xA4 x

B
4 − 58xA5 x

B
5 − 56xA6 x

B
6 − 77xA7 x

B
7

s. t. − 28xB1 − 71xB2 + 39xB3 − 32xB4 + 32xB5 + 10xB6 − 47xB7 ≤ −70.

Since all decision variables are binary, in the input of both SGM and modified SGM ε is

zero. Figure B.0.1 summarizes the sampled games resultant from the application of SGM.

Generated sampled games

Player B

(1, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 0, 0, 0) (1, 1, 1, 1, 0, 1, 0) (1, 0, 0, 0, 0, 0, 1) (1, 1, 1, 0, 1, 0, 1)

(0, 1, 0, 0, 0, 1, 1) (262,-104)
↓

(76,-62) (165,-84) (157,-33) (173,-78)

Player A (0, 1, 1, 0, 1, 1, 1) (313,-77) → (66,23)
↓

(155,1) (156, -33) (224, -51)

(1, 0, 0, 0, 1, 0, 1) (244,49) (86,93) → (86,127) → (183,63)
↓

(244,19)

(1, 0, 0, 1, 0, 1, 1) (215,8) (29,50) (118,28) (188,63)
↓

(188, 77)

(1, 1, 1, 1, 0, 0, 1) (133,90) (36,76) (36,110) (188,63) → (195, 103)

Figure B.0.1: SGM applied to Example B.0.21.

The modified SGM 4.4.2.1 generates one strategy less than SGM, as we will see next. In

what follows, each iteration of the modified SGM 4.4.2.1 is described, which is comple-

mented with Figures B.0.2 and B.0.3.

Sampled game 0. The NE is σ0 = (1; 1). Player A has incentive to deviate to

x(1) = (0, 1, 1, 0, 1, 1, 1).
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Sampled game 1. The NE is σ1 = (0, 1; 1). Player B has incentive to deviate to

x(2) = (1, 1, 1, 1, 0, 0, 0).

Sampled game 2. The NE is σ2 = (1, 0; 0, 1). Player A has incentive to deviate to

x(3) = (1, 0, 0, 0, 1, 0, 1).

Sampled game 3. The NE is σ = (0, 0, 1; 0, 1). Player B has incentive to deviate to

x(4) = (1, 1, 1, 1, 0, 1, 0).

Sampled game 4. The NE is mixed with supp(σA4 ) = {(0, 1, 0, 0, 0, 1, 1), (1, 0, 0, 0, 1, 0, 1)},
supp(σB4 ) = {(1, 1, 1, 1, 0, 0, 0), (1, 1, 1, 1, 0, 1, 0)}, and σ4 = (17

28
, 0, 11

28
; 0, 79

89
, 10

89
). Player B

has incentive to deviate to x(5) = (1, 0, 0, 0, 0, 0, 1).

Sampled game 5. The NE is mixed with supp(σA5 ) = {(0, 1, 0, 0, 0, 1, 1), (1, 0, 0, 0, 1, 0, 1)},
supp(σB5 ) = {(1, 1, 1, 1, 0, 1, 0), (1, 0, 0, 0, 0, 0, 1)}, and σ5 = ( 64

115
, 0, 51

115
; 0, 0, 26

105
, 79

105
). Player

A has incentive to deviate to x(6) = (1, 0, 0, 1, 0, 1, 1).

Sampled game 6. The NE is mixed with supp(σA6 ) = {(1, 0, 0, 0, 1, 0, 1), (1, 0, 0, 1, 0, 1, 1)},
supp(σB6 ) = {(1, 1, 1, 1, 0, 0, 0), (1, 0, 0, 0, 0, 0, 1)}, and σ6 = (0, 0, 13

43
, 30

43
; 0, 5

62
, 0, 57

62
). Player

A has incentive to deviate to x(7) = (1, 1, 1, 1, 0, 0, 1).

Sampled game 7. The NE is mixed with supp(σA7 ) = {(1, 0, 0, 1, 0, 1, 1), (1, 1, 1, 1, 0, 0, 1)},
supp(σB7 ) = {(1, 0, 0, 0, 0, 0, 1)}, and σ = (0, 0, 0, 47

82
, 35

82
; 0, 0, 0, 1). Player B has incentive

to deviate to x(8) = (1, 1, 1, 0, 1, 0, 1).

Sampled game 8. There is no NE with x(8) = (1, 1, 1, 0, 1, 0, 1) in the support of

player B. Thus, initialize backtracking.

Revisiting sampled game 7. There is no NE with x(7) = (1, 1, 1, 1, 0, 0, 1) in the

support of player A. Thus, initialize backtracking.

Revisiting Sampled game 6. The NE is mixed with supp(σA6 ) = {(0, 1, 0, 0, 0, 1, 1),

(1, 0, 0, 0, 1, 0, 1), (1, 0, 0, 1, 0, 1, 1)}, supp(σB6 ) = {(1, 1, 1, 1, 0, 0, 0), (1, 1, 1, 1, 0, 1, 0),
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(1, 0, 0, 0, 0, 0, 1)}, and σ6 = (109
448
, 0, 11

28
, 163

448
, 0; 0, 409

2314
, 766

3471
, 47

78
). This is an equilibrium of

the original game.



206 APPENDIX B. APPLYING MODIFIED SGM

Sampled game 0

Player B

(1, 1, 1, 1, 1, 1, 1)

Player A (0, 1, 0, 0, 0, 1, 1) (262,-104)

Sampled game 1

Player B

(1, 1, 1, 1, 1, 1, 1)

Player A
(0, 1, 0, 0, 0, 1, 1) (262,-104)

(0, 1, 1, 0, 1, 1, 1) (313,-77)

Sampled game 2

Player B

(1, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 0, 0, 0)

Player A
(0, 1, 0, 0, 0, 1, 1) (262,-104) (76,-62)

(0, 1, 1, 0, 1, 1, 1) (313,-77) (66,23)

Sampled game 3

Player B

(1, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 0, 0, 0)

(0, 1, 0, 0, 0, 1, 1) (262,-104) (76,-62)

Player A (0, 1, 1, 0, 1, 1, 1) (313,-77) (66,23)

(1, 0, 0, 0, 1, 0, 1) (244,49) (86,93)

Sampled game 4

Player B

(1, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 0, 0, 0) (1, 1, 1, 1, 0, 1, 0)

(0, 1, 0, 0, 0, 1, 1) (262,-104) (76,-62) (165,-84)

Player A (0, 1, 1, 0, 1, 1, 1) (313,-77) (66,23) (155,1)

(1, 0, 0, 0, 1, 0, 1) (244,49) (86,93) (86,127)

Sampled game 5

Player B

(1, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 0, 0, 0) (1, 1, 1, 1, 0, 1, 0) (1, 0, 0, 0, 0, 0, 1)

(0, 1, 0, 0, 0, 1, 1) (262,-104) (76,-62) (165,-84) (157,-33)

Player A (0, 1, 1, 0, 1, 1, 1) (313,-77) (66,23) (155,1) (156, -33)

(1, 0, 0, 0, 1, 0, 1) (244,49) (86,93) (86,127) (183,63)

Sampled game 6

Player B

(1, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 0, 0, 0) (1, 1, 1, 1, 0, 1, 0) (1, 0, 0, 0, 0, 0, 1)

(0, 1, 0, 0, 0, 1, 1) (262,-104) (76,-62) (165,-84) (157,-33)

Player A (0, 1, 1, 0, 1, 1, 1) (313,-77) (66,23) (155,1) (156, -33)

(1, 0, 0, 0, 1, 0, 1) (244,49) (86,93) (86,127) (183,63)

(1, 0, 0, 1, 0, 1, 1) (215,8) (29,50) (118,28) (188,63)

Sampled game 7

Player B

(1, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 0, 0, 0) (1, 1, 1, 1, 0, 1, 0) (1, 0, 0, 0, 0, 0, 1)

(0, 1, 0, 0, 0, 1, 1) (262,-104) (76,-62) (165,-84) (157,-33)

Player A (0, 1, 1, 0, 1, 1, 1) (313,-77) (66,23) (155,1) (156, -33)

(1, 0, 0, 0, 1, 0, 1) (244,49) (86,93) (86,127) (183,63)

(1, 0, 0, 1, 0, 1, 1) (215,8) (29,50) (118,28) (188,63)

(1, 1, 1, 1, 0, 0, 1) (133,90) (36,76) (36,110) (188,63)

Sampled game 8

Player B

(1, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 0, 0, 0) (1, 1, 1, 1, 0, 1, 0) (1, 0, 0, 0, 0, 0, 1) (1, 1, 1, 0, 1, 0, 1)

(0, 1, 0, 0, 0, 1, 1) (262,-104) (76,-62) (165,-84) (157,-33) (173,-78)

Player A (0, 1, 1, 0, 1, 1, 1) (313,-77) (66,23) (155,1) (156, -33) (224, -51)

(1, 0, 0, 0, 1, 0, 1) (244,49) (86,93) (86,127) (183,63) (244,19)

(1, 0, 0, 1, 0, 1, 1) (215,8) (29,50) (118,28) (188,63) (188, 77)

(1, 1, 1, 1, 0, 0, 1) (133,90) (36,76) (36,110) (188,63) (195, 103)

Figure B.0.2: Modified SGM applied to Example B.0.21. The strategies in cyan are

mandatory to be in the equilibrium support to be computed.
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Revisiting sampled game 7

Player B

(1, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 0, 0, 0) (1, 1, 1, 1, 0, 1, 0) (1, 0, 0, 0, 0, 0, 1) (1, 1, 1, 0, 1, 0, 1)

(0, 1, 0, 0, 0, 1, 1) (262,-104) (76,-62) (165,-84) (157,-33) (173,-78)

Player A (0, 1, 1, 0, 1, 1, 1) (313,-77) (66,23) (155,1) (156, -33) (224, -51)

(1, 0, 0, 0, 1, 0, 1) (244,49) (86,93) (86,127) (183,63) (244,19)

(1, 0, 0, 1, 0, 1, 1) (215,8) (29,50) (118,28) (188,63) (188, 77)

(1, 1, 1, 1, 0, 0, 1) (133,90) (36,76) (36,110) (188,63) (195, 103)

Revisiting sampled game 6

Player B

(1, 1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 0, 0, 0) (1, 1, 1, 1, 0, 1, 0) (1, 0, 0, 0, 0, 0, 1)

(0, 1, 0, 0, 0, 1, 1) (262,-104) (76,-62) (165,-84) (157,-33)

Player A (0, 1, 1, 0, 1, 1, 1) (313,-77) (66,23) (155,1) (156, -33)

(1, 0, 0, 0, 1, 0, 1) (244,49) (86,93) (86,127) (183,63)

(1, 0, 0, 1, 0, 1, 1) (215,8) (29,50) (118,28) (188,63)

(1, 1, 1, 1, 0, 0, 1) (133,90) (36,76) (36,110) (188,63)

Figure B.0.3: Continuation of Figure B.0.2. The strategies in gray are not considered in

the support enumeration.
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Appendix C

List of Acronyms

BP - Bilevel programming

CKG - Two-player coordination knapsack game

DeRi - Dempe-Richter bilevel knapsack problem

DNeg - DeNegre bilevel knapsack problem

IA - Independent agent

IP - Integer programming problem

IPG - Integer programming game

KEP - Kidney exchange problem

KKT - Karush-Kuhn-Tucker conditions

KP - Knapsack problem

LP - Linear programming

LSP - Lot-sizing problem

MACH - Mansi-Alves-de-Carvalho-Hanaf bilevel knapsack problem

MIBP - Mixed integer bilevel programs

MIP - Mixed integer programming

MIQP - Mixed integer quadratic programming problem

MMG - Maximum matching in a graph

m-SGM - Modified sampled generation method

NE - Nash equilibrium

NG0 - Nogood constraint

NG1 - Strong maximal constraint

NG2 - Nogood constraint for the follower

NG3 - Cutting plane constraint

N–KEG - N -player kidney exchange game

PNS - Porter, Nudelman and Shoham’s algorithm

QP - Quadratic programming
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RIPG - Relaxed integer programming game

SGM - Sampled generation method

SWE - Social welfare equilibrium

ULSG - Competitive uncapacitated lot-sizing game

ULSG-sim - Modified ULSG

ULSP - Uncapacitated lot-sizing problem
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