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“Uma vez escolhido o caminho, jamais olhemos para trás” 
Paulo Coelho - Escritor brasileiro  

 

A presente tese integra-se numa linha de investigação sobre o contributo, de 

determinadas células do sistema imune, na imunoterapia aplicada a tumores – as 

células “Natural Killer”.  

Uma colaboração inicial entre o Departamento de Genética e a Universidade de 

Duesseldorf, levada a cabo pelo Professor Doutor Mário Sousa, levou a que me fosse 

proposto o desafio de participar nesse alargado estudo de melhor conhecer e 

caraterizar as células Natural Killer. Deste modo poderíamos tirar o máximo partido 

de todas as suas potencialidades para serem aplicadas como terapia em casos de 

tratamento de doenças, nomeadamente leucemias. 

Foi algo que na altura achei irrecusável, uma vez que estaria a contribuir para o 

conhecimento mais aprofundado das células Natural Killer e no seu contributo para 

terapias celulares na luta contra tumores. Ao mesmo tempo foi um desafio, pois saía 

completamente do meu domínio científico.  

No decurso desta colaboração, estagiei no Institute for Transplantation Diagnostics and 

Cell Therapeutics da Universidade Heinrich Heine de Düsseldorf  onde aprendi diversas 

técnicas de seleção e diferenciação de células estaminais. O estudo implicava a 

utilização de células estaminais hematopoiéticas isoladas do Sangue do Cordão 

Umbilical (SCU). As amostras de SCU eram fáceis de obter uma vez que o Instituto se 

localizava a paredes meias com o Jose Carreras-Cord Blood Bank de Duesseldorf. No 

decorrer desta colaboração, imediatamente o Professor Doutor Alberto Barros se 

tornou meu mentor e o Professor Michael Punzel meu co-orientador. 

Após esta “aterragem” dentro de uma área que me era totalmente desconhecida, 

comecei a pensar que todos tínhamos tido a má opção de ter aceite esta proposta. 

Além disso, após o regresso da Alemanha, verifiquei que nada no meu Departamento 

estava adaptado às experiências que necessitava de fazer. E o co-orientador a 1600 

Km de distância… 
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Procuramos e fizemos colaborações com diversas instituições para que pudéssemos 

desenvolver as nossas experiências. Seguiram-se períodos de angústia uma vez que, 

não só, estava eu aqui sozinha a tentar diferenciar células, mas também o meu co-

orientador saíra do Hospital em Duesseldorf para ir trabalhar para uma outra 

instituição. Fiquei sem saber como dominar o leme… Com isto quero dizer que, na 

verdade, muitas vezes foi difícil conciliar o trabalho com o seguimento dos estudos 

mas para mim foi muito atrativo dar continuidade à minha vida académica. Para além 

disso, comecei a afeiçoar-me às minhas células! E aos poderes que elas poderiam 

trazer no benefício do tratamento de doenças! 

 

Porém, os obstáculos foram ultrapassados, quer devido à minha crescente motivação 

quer ao apoio e colaboração de outras pessoas/entidades durante este período. Assim, 

embora uma tese seja, pela sua finalidade académica, um trabalho individual, há 

inúmeros contributos que não posso deixar de realçar e que muito me ajudaram na 

realização deste trabalho. Neste espaço dedico algumas palavras aqueles e aquelas 

que, de uma forma ou de outra, contribuíram para que este ciclo de estudos tenha sido 

gratificante e tenha sido concretizado… Tenho a certeza que a realização deste 

trabalho não seria possível sem a presença destas pessoas na minha vida. 

 

Assim, a minha gratidão vai para: 

 O meu Orientador, Professor Doutor Alberto Barros, professor catedrático e Diretor 
do Departamento de Genética Humana, por me ter aceite no seu grupo de trabalho, 
por me ajudar em muitos aspetos da ciência e pela pertinente motivação perante as 
diversas dificuldades durante este percurso. Obrigada Professor Alberto por confiar 
em mim e tentar sempre direcionar-me para o caminho mais objetivo. Agradeço-lhe 
também o sorriso amigo e as palavras afáveis com que sempre me recebeu no seu 
gabinete.  

 My co-Supervisor, Professor Michael Punzel for leading my way with his vast 
knowledge of science. Thank you for sharing it with me and for your friendship. I 
really felt satisfied when you keep saying that what I’m doing is fantastic. I really miss 
your words! 

 

 

4



 

 
 

PREFÁCIO 

PREFACE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 O meu co-Orientador “não oficial”, Professor Doutor Mário Sousa por ter sido o 
impulsionador deste projeto, por estar permanentemente interessado no meu 
trabalho, pela persistência na busca de resultados e, principalmente, por ter sido o 
motor da minha motivação pela ciência… Obrigada por ter sempre a porta aberta (e a 
qualquer hora) para me receber! Obrigada por tudo, Professor! 

 To Professor Markus Uhrberg for accepting me to his excellent research group in 
Einrich-Heine-Universitäte in Duesseldorf. Thank you very much! 

 To Dr. Ingo Trompeter, a master of cloning, I would like to thank you for teaching 
me so many things... we did unbelievable wonders with restriction enzymes. It was a 
pleasure to meet you! Thank you for all your support and thank you very much for 
sharing with me a little bit of your vast knowledge. 

 A Professora Doutora Filipa Carvalho, coordenadora deste programa doutoral e 
responsável pela área de Investigação do Departamento de Genética Humana, pela 
amizade, constante motivação e apoio nas alturas mais difíceis e solitárias deste 
percurso. Obrigada Filipa! 

 A Doutora Susana Fernandes, responsável pela área de diagnóstico do 
Departamento de Genética Humana que pela sua visão prática e simplista da ciência, 
tudo faz e tudo é possível. O seu empenho pelas coisas que faz e a criação de uma boa 
atmosfera no laboratório, motivou-me efetivamente para as minhas 
responsabilidades. 

 As recém-mães que, com o seu consentimento, disponibilizaram a recolha do 
sangue do cordão umbilical dos seus bebés. Sem o seu contributo este trabalho não 
teria sido efetivamente possível. 

 Os colaboradores da Maternidade Júlio Dinis que prontamente se disponibilizaram 
a recolher os Sangues do Cordão Umbilical. 

 O Instituto Português do Sangue pela imediata disponibilidade para o fornecimento 
de sacos de colheita de sangue de cordão umbilical. 

 O Serviço de Imunologia do Hospital de S. João que se disponibilizou no 
empréstimo do citómetro de fluxo, equipamento indispensável para a fenotipagem 
celular. 

 As técnicas do Serviço de Radioterapia do Hospital de São João que pronta e 
empenhadamente sempre me receberam com um sorriso quando lá chegava para 
irradiar “o ratinho”. 

 A Dra. Salomé, agradeço-lhe todas as palavras meigas que sempre me dirigiu quer 
em momentos de alegria quer em momentos de maior tristeza. Apesar de já não estar 
aqui connosco no Serviço, foi sem dúvida uma pessoa marcante na minha vida. 

 As minha colegas de trabalho da Citogenética, Sofia, Lina, Tiza e Vera. A elas 
agradeço a paciência que tiveram comigo principalmente na última fase deste 
percurso. Não estando eu de “corpo inteiro” na Citogenética, agradeço-vos a ajuda 
prestada na realização do nosso trabalho diário. Obrigada Sofia! Obrigada a todas, 
meninas! 
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 Os meus colegas de laboratório Vânia e Joel pela constante ajuda prestada 
principalmente no último e apertado troço deste trajeto. Às vezes, temos amigos que 
não sabíamos que tínhamos… e vocês foram, sem dúvida, um grande apoio e fontes de 
motivação. Obrigada!  

 A Joana a quem agradeço a permanente disponibilidade. Foste sem dúvida uma 
fonte onde pude encontrar soluções que em muito contribuíram para esta tese. 
Obrigada pela tua incansável motivação e orientação. Obrigada pela tua amizade!  

 A Carolina pelo seu apoio incondicional durante este meu percurso. Fascina-me a 
tua seriedade e determinação e congratulo-me imenso por te ter conhecido. Não tenho 
palavras nem qualquer outra forma para te agradecer… Obrigada, Carolina!  

 As “Moleculinhas”, Locas, Ana Paula, Berta, Su e Ana pelas oportunas manifestações 
de companheirismo e de encorajamento. Obrigada pelos vossos sorrisos! Obrigada a 
todas pela vossa amizade! 

 A Ana Maria, Maria José, D. Filomena por fazerem dos meus dias, dias mais felizes! 
A vossa boa disposição contagiou estes meus momentos de maior tensão, tornando 
estes dias mais descontraídos… Obrigada a todas! 

 Aos melhores pais do mundo - os meus - agradeço a paciência que tiveram em 
muitas situações de mais tensão. Acima de tudo, apesar das dificuldades, agradeço a 
educação que me proporcionaram e os valores que me transmitiram. O inestimável 
apoio familiar que preencheu as diversas falhas que fui tendo por força das 
circunstâncias foi para mim muito encorajador. Obrigada pela compreensão de tanto 
tempo ausente durante esta jornada. Obrigada pelo amor e atenção sem reservas!  

 A ti Raquel, apesar de não estares presente, adoraria partilhar este momento 
contigo…  

  A ti Zé, pela cumplicidade… Obrigada também por me ouvires, por aliviares os 
meus momentos de maior tensão e de celebrares tão entusiasticamente as ocasiões de 
mais sucesso. Adoro partilhar a minha vida contigo…  

 A minha princesinha Mafalda… amo-te incondicionalmente! Obrigada pelo teu 
sorriso! Obrigada pela tua ternura! Obrigada por teres acontecido na minha vida! 
Foste sem dúvida fonte de inspiração! 
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ABSTRACT 

 

Natural Killer (NK) cells are a subset of blood lymphocytes that play an important role in the innate 

immune response against virally infected and transformed cells – independent of the major 

histocompatibility complex (MHC). Autologous NK cells are suppressed by the recognition of inhibitory 

"self"-MHC class-I molecules. Cells that are susceptible to NK-cell mediated killing lack inhibitory ligands 

or have surface molecules that engage activating receptors. Based on these findings, NK cell-based 

adoptive immunotherapy has been introduced in the clinical setting – however due to the limited amounts 

of NK-cells and obstacles in NK-cell activation status – there are currently only few clinical studies 

performed using NK-cells for tumour-immunotherapy. 

 

 

In the course of this work, we attempted to generate, expand and differentiate NK cells under different 

conditions, starting with hematopoietic stem and progenitor cells from human umbilical cord blood (UCB) 

- in order to recapitulate NK cell ontogeny and activation. 

In addition, we investigated molecular mechanisms such as candidate transcription factors involved in the 

expression of NK cell specific genes. 

We found that NK cells can be successfully generated and differentiated from UCB-progenitors and 

identified several known as well as only recently described transcription factors involved in activating 

NK-cells and eliciting certain effector functions. 

 

 

Thus, we characterized the development of human NK cells in vitro. For the first time, we described the 

involvement of certain transcription factors which are implicated in the determination of human NK cell 

fate and certain activation mechanisms. This could add important knowledge to better understand the 

molecular and cellular base of NK-cell development and clinical activation to facilitate future clinical 

applications. 

 

 

 

7



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

RESUMO 

 

As células Natural Killer (NK) pertencem a um subgrupo de linfócitos do sangue periférico que 

apresentam uma função muito importante na resposta imune inata contra células anómalas ou infetadas 

por vírus, independentemente do complexo de histocompatibilidade major (MHC). As células NK 

autólogas são inibidas através do reconhecimento de moléculas inibitórias do MHC. 

As células suscetíveis à destruição mediada pelas células NK não apresentam ligandos inibitórios ou então 

possuem moléculas à superfície que se ligam a recetores activadores das células NK. Foi com base nestes 

pressupostos que a imunoterapia adotiva baseada em células NK foi introduzida na prática clínica. No 

entanto, devido à quantidade limitada de células NK e aos obstáculos em conseguir células NK ativas, 

atualmente existem ainda poucos estudos clínicos com base na aplicação células NK para a imunoterapia 

de tumores. 

 

No decorrer deste trabalho procurou-se gerar, expandir e diferenciar células NK em diferentes condições, 

usando células estaminais e progenitoras hematopoiéticas do sangue do cordão umbilical (SCU), como 

população inicial, de forma a recapitular a ontogenia e ativação das células NK. 

Além disso, foram investigados os mecanismos moleculares, nomeadamente os fatores de transcrição 

envolvidos na expressão de genes específicos das células NK. 

Descobrimos que as células NK podem ser geradas e diferenciadas com sucesso a partir de células 

progenitoras do SCU e identificamos alguns fatores de transcrição (quer já conhecidos quer descritos 

recentemente) envolvidos na ativação das células NK e que permitem determinadas funções efetoras. 

 

Deste modo, caracterizamos o desenvolvimento in vitro das células NK humanas. Pela primeira vez, 

descrevemos o envolvimento de determinados fatores de transcrição que estão implicados quer na 

determinação da identidade das células NK quer em determinados mecanismos de ativação. Isto pode 

acrescentar conhecimentos importantes para melhor conhecer a base celular e molecular do 

desenvolvimento das células NK facilitando futuras aplicações clínicas. 
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ACRONYMS and ABREVIATIONS 

 
 

Acronyms and Abbreviations: 

 

ACT  allogenic cell transfer 

ALL  acute lymphoblastic leukaemia 

AML  acute myelogenous leukaemia 

APC  antigen-presenting cell 

ADCC  antibody dependent cellular cytotoxicity 

A-NK  Il-2 activated NK 

A-NK12  transgenic modified NK cells with IL-12 

BM  bone marrow 

BRM  biological response modifier 

CLP  common lymphoid precursor 

CMV  cytomegalovirus 

CTLD  C-type lectin like domain 

DD  death domain 

DED  death effector domain 

DC  dendritic cell 

DR  death receptor 

DAMP  damage-associated molecular patterns 

DAP  DNAX-activation protein 

EBV  epstein-barr virus  

Ets  E-twenty six 

FDA  Food and Drug Administration 

Flt3  fms-like tyrosine kinase 3 

GM-CSF  granulocyte-macrophage colony-stimulating factor 

GvHD  graft versus host disease 

GvL  graft versus leukaemia 

GvT  graft versus tumour 

GMP  good manufacturing practice 

HCMV  human cytomegalovirus 

HCT  hematopoietic cell transfer 

HIV  human immunodeficiency virus 

HMGB1  high-mobility group protein B1 

HSC  hematopoietic stem cell 

HSCT  hematopoietic stem cell transplantation 

HLA  human leukocyte antigen 

IC  immunocytokines 

Id  inhibitor of DNA binding protein 

iDC  immature dendritic cell 
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Ig  immunoglobulin 

IFN  interferon 

IL  interleukin 

iNK  immature NK cells 

IRF  interferon regulatory factor 

ITAM  immunoreceptor tyrosine-based activating motif 

ITIM  immunoreceptor tyrosine-based inhibitory motif 

KARAP  killer-cell activating receptor-associated protein 

KIR  killer cell Immunoglobulin-like receptor 

LAK  lymphokine-activated killer 

LGL  large granular lymphocyte 

LRC  leukocyte Ig-like receptor complex 

mDC  mature dendritic cell 

MHC  major histocompatibility complex 

MIC  stress-inducible MHC class I-related chain 

mNK  mature NK cell 

MM  multiple myeloma 

NCR  natural cytotoxicity receptor 

NK   natural killer cell 

PB  peripheral blood 

PAMP  pathogen-associated molecular pattern 

PI3  Phosphatidilinositol 3 

PRR  pattern recognition receptors 

pNK  precursor NK cell 

RCC  renal cell carcinoma 

SCT  stem cell transfer 

SHP  protein tyrosine phosphatase 

SLT  second lymphoid tissue 

SCF  stem cell factor 

TCD  T cell depleted 

TGF  transforming growth factor 

TRAIL  TNF-related apoptosis-inducing ligand 

TF  Transcription Factor 

TLR Toll-like receptors  

TNF  tumour necrosis factor 

UCB  umbilical cord blood 

ULBP  UL16-binding protein 

VDUP-1  Vitamin D(3) upregulated protein 1 
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LEGENDS TO FIGURES 

 
 

Legends to figures: 

 

Figure 1 – NK cells are morphologically Large Granular Lymphocytes (LGL) characterized phenotipically 

by diverse receptors on their surface. 

Figure 2 – CD56bright and CD56dim NK cell subsets exhibit differential receptor profiles and innate immune 

functions. 

Figure 3 – NK development progresses through a series of stages starting from a common lymphoid 

progenitor (CLP), which gives rise to the pro-NK, pre-NK, iNK, CD56bright NK and CD56dim NK cell types. 

Specific stages shown by grey arrows may divert away from the NK cell lineage to become B, T or 

Dendritic Cells. 

Figure 4 – Transcription Factors (TFs) that condition NK cell development (Ets-1, Id2, Ikaros, PU.1), 

maturation (Gata-3, IRF-2, T-bet) and functional differentiation of mNK cells (CEPB-γ, MEF, MITF). 

Figure 5 – Inhibitory (outlined in red) and activating (outlined in green) KIR receptors and their ligands. 

Figure 6 – Present view of the inhibition of cytotoxicity by KIRs. Engagement of KIRs by ligands induces 

ITIM phosphorylation and direct binding of SHP-1 or SHP-2 through SH2 domains, thereby transducing an 

inhibitory signal that intersects signals from activating receptors, thus abrogating effector functions. 

Figure 7 – Model of NK activating receptors. Activating NK receptors possess short cytoplasmic tails and 

an ITAM for adaptor protein binding. DAP12 homodimers associate with KIR activating receptors. Upon 

ligand engagement, the tyrosines in the ITAM of DAP12 becomes phosphorylated, and recruit SH2 

domains of SYK/ZAP70 kinase. Upon NK receptor–ligand binding, adaptor proteins then associate with 

the intracellular domain of each receptor through charged interactions to activate PI3K or SYK/Zap70. 

Figure 8 – Natural Cytotoxicity Receptors. 

Figure 9 – C-Type Lectin like Domain (CTLD) superfamily of receptors, such as CD94/NKG2s and NKG2D. 

Activatory receptors are outlined in green and inhibitory in red. 

Figure 10 – FcγRIII (CD16) receptor and its ligand. 

Figure 11 – Ligands recognized by TLR family. Each receptor consists in two identical TLR molecules 

(called homodimers), or two different TLRs (known as heterodimers).  

Figure 12 – IL-1R/TLR signaling pathways. 

Figure 13 – Schematic representation showing the structure of human class I and class II MHC molecules. 

The HLA class I α-chain is non covalently associated with β2-microglobulin (β2m). The class II molecules 

are heterodimers composed of an α and a β-chain. The most distal domains of each of the two chains form 

the peptide binding site. 

Figure 14 – Contemporary modification of the “missing-self” hypothesis showing the possible outcomes 

from encounters between NK cells/potential targets. 

Figure 15 – In the arming model, signaling by an inhibitory receptor leads to NK cell functional 

competence; in the absence of arming, the NK cell remains hyporesponsive. 

Figure 16 – In the disarming model, the NK cell is activated by default; however, in the absence of an 

inhibitory receptor for self-MHC class I molecules, the NK cell becomes anergic or hyporesponsive. The 

presence of an inhibitory receptor, in contrast, allows NK cell to be responsive. 
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Figure 17 – In the rheostat model, NK cell education is dynamic. According to the strength of the 

inhibitory signal during NK cell education, the responding NK cell balances its activation threshold as a 

rheostat, which allows the maturation of NK cells to be optimally tuned by the inhibitory input.  

Figure 18 – Pore-delivery model of granzyme release. 

Figure 19 – NK cell-mediated apoptosis by FasL/Fas interaction. 

Figure 20 – Activation of Natural Killer cells by Dendritic Cells. 

Figure 21 – Editing process. The decision might depend a) on the activation status of Dendritic Cells, b) 

on the relative cell numbers involved, or c) on the activation status of Natural Killer cells. 

Figure 22 – Human Cytomegalovirus recognition by NK cells. 

Figure 23 – Mechanisms of Human Cytomegalovirus (HCMV) evasion from Natural Killer cell 

immunesurveillance. HCMV-infected cells express several UL viral proteins that retain NKG2D ligands in 

the interior of the cell and upregulate the CD94/NKG2A ligand (HLA-E). 

Figure 24 – a) NK cells are tolerant to healthy host cells, as the strength of the activating signals is 

dampened by the engagement of inhibitory receptors;  b) Tumour cells may lose expression of MHC class I 

molecules and NK cells become activated, as they are no longer held in check by the inhibitory signal. c) 

NK cells are selectively activated by 'stressed' cells, which upregulate activating ligands for NK cells and 

thereby overcome the inhibitory signalling delivered by MHC class I molecules.  

Figure 25 – Tumour escape mechanisms. Tumour escape from NK cell control through downregulation or 

shedding of NKG2D ligands. Tumour cells with increased NK cell–activating ligand MIC and/or ULBP 

expression in conjunction with classical HLA class I antigen downregulation are sensitive to NK cell-

killing. On the other hand, tumour cells with MIC/ULBP downregulation or shedding in spite of increased 

expression on the cell surface are resistant to lysis by NK cells.  

Figure 26 – NK cell therapies in autologous settings. 

Figure 27 – NK cells in allogenic stem cell transplantation. Allogenic NK cells from donor can directly kill 

recipient T cells as well as inhibit T cell mediated GVHD through killing of recipient antigen presenting 

cells such as dendritic cells that may initiate GVHD. Furthermore, NK cells can provide anti-tumor effects 

by killing residual cancers in the recipient. 

Figure 28 – Anti-KIR therapy in autologous settings. 

Figure 29 – Example of combinatorial approach of NK cell immunotherapy with mAb therapy (e.g., the 

anti-HER2/neu mAb trastuzumab). NK cells express an activating Fc receptor (CD16) that recognizes the 

constant region of IgG and allows them to kill antibody-coated target cells via ADCC. 

Figure 30 – Monoclonal antibody specific for a tumour-associated antigen allows the enrichment of 

cytokines in the tumour microenvironment. In the case of interleukin-2 (IL-2) it enhances antibody-

dependent cellular cytoxicity mediated by Fc-receptor positive effector cells such as Natural Killer cells.  

Figure 31 – Examples of combinatorial approaches of Natural Killer cell immunotherapy with (A) 

chemotherapy (e.g., bortezomib); and with (B) radiation therapy. 
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INTRODUCTION 

 
 

 

1. NATURAL KILLER CELLS MORPHOLOGY 

 

Natural Killer (NK) cells are Bone Marrow (BM) derived cytolytic lymphocytes, which comprise 

approximately 10% of all Peripheral Blood (PB) lymphocytes. Morphologically, NK cells are large granular 

lymphocytes (LGL) that express CD56 cell surface molecules and, unlike T and B cells, do not express 

receptors that require somatic gene rearrangements to generate receptor diversity and specificity (Ag 

receptors), as well CD3 (Lanier et al., 1986) (Fig. 1). In fact, unlike T-cells, they can kill targets without 

prior sensitization and exhibit spontaneous cytotoxicity activity towards cells that do not express class I 

molecules of the Major Histocompatibility Complex (MHC) (Borrego et al., 2002).  

Although representing one of the first lines of immune defence, 

NK cells exhibit many features normally associated with adaptive 

immunity. While NK cells do not fully conform to the definition of 

adaptive immunity, they also differ from members of the innate 

immune system. For instance, NK cells do not mediate 

phagocytosis and lack bactericidal enzymatic systems. Rather, NK 

cells are characterized by several important effector functions, 

including their capacity to spontaneously lyse susceptible targets. 

 

Natural Killing involves exocytosis of perforin-and granzyme-containing cytoplasmic granules via a 

metabolically active process [reviewed in (Smyth et al., 2005)]. NK cells are also equipped with a variety of 

destructive arms and can also eliminate target cells via FasL- (Oshimi et al., 1996) and tumour necrosis 

factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated pathways, sometimes in a 

developmentally related fashion (Zamai et al., 1998). 

 

An equally important function of NK cells involves their capacity to promptly produce cytokines and 

chemokines (Cooper et al., 2001a; Robertson, 2002) which serve to shape adaptive immune responses. 

Figure 1 – NK cells are morphologically 
Large Granular Lymphocytes (LGL) 
characterized phenotipically by diverse 
receptors on their surface. 
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Together, these functional activities place NK cells in a position to eliminate susceptible targets through 

multiple mechanisms and to recruit and amplify the inflammatory response.  

 

Human NK cells comprise two subsets that are phenotipically and functionally distinct (Cooper et al., 

2001a). These NK subsets are identified based on the cell surface density of the “NK cell marker” CD56 

together with CD16 (Fig. 2). The majority (≈90%) of human NK cells express low levels (dim) of CD56 and 

high levels (bright) of CD16, whereas a minority (≈10%) is CD56bright and CD16dim or CD16- (Cooper et al., 

2001a). The immunoregulatory CD56brightCD16- NK subset lacks perforin and appears prepared for 

cytokine secretion. They are abundant in lymph nodes and tonsils, both of which are areas of immune cell 

production and maturation (Ferlazzo and Munz, 2004). 

The more cytotoxic (i.e. high perforin-

expressing) CD56lowCD16high subset  functions 

as effectors of natural and antibody-dependent 

target cell lysis (Cooper et al., 2001b) and 

exhibits tumouricidal properties. They circulate 

in the blood and spleen and may be recruited 

into inflamed tissues (Penack et al., 2005). 

Although resting CD56dim NK cells are more 

cytotoxic against NK-sensitive targets than 

CD56bright cells, IL-2 or IL-12 activated CD56bright 

NK cells exhibit similar or enhanced 

cytotoxicity against NK targets compared to 

CD56dim cells (Caligiuri et al., 1990). 

In addition, CD56bright and CD56dim NK cell subsets show differences in their NK receptor repertoires. 

Resting CD56bright NK cells are large agranular cells and express high levels of the C-type lectin 

CD94/NKG2 family with only very small fractions expressing killer immunoglobulin-like receptors (KIRs).  

Resting CD56dim NK cells, however, express CD16, KIRs and C-type lectin NK receptors at high surface 

density along with an abundance of cytoplasmic granules (Caligiuri et al., 1990; Jacobs et al., 2001).  

Figure 2 – CD56bright and CD56dim NK cell subsets exhibit 
differential receptor profiles and innate immune functions.  
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2. NATURAL KILLER CELLS DEVELOPMENT  

 

The development of NK cells from hematopoietic stem cells (HSCs) is guided by environmental cues and 

intrinsic responsiveness of precursor cells to external signals. As hematopoietic progenitors progress in 

differentiation towards NK lineage two concomitant processes occur: 

(1) acquisition of NK specific gene expression pattern, and 

(2) gradual loss of the ability to express genes characteristic for other lineages. 

 

NK cells are derived from CD34+ progenitors, and the BM is considered the main site of NK cell generation 

in adults, providing cytokines, growth factors and stromal cells necessary for NK cell development (Colucci 

et al., 2003). 

Interactions of hematopoietic progenitors with the environment provide growth factors and morphogenic 

signals that affect lineage fate and guide functional maturation via the triggering of inhibitory and/or 

activating receptors. The progression from multipotent hematopoietic precursors to mature NK (mNK) 

cells can be described on the basis of stages of NK cell development. 

The most commonly accepted model of NK cell development represents NK cell lineage decision as a 

linear scheme. Once committed to the NK cell lineage, precursor NK (pNK) cells acquire phenotypic and 

functional qualities that characterize peripheral mNK cells. The dominant population of human peripheral 

blood NK cells – the CD56dimCD16+ subset – corresponds to the final stage of maturation, whereas 

CD56bright NK cells are considered to be immature and recently differentiated intermediates (Ferlazzo et 

al., 2004b; Chan et al., 2007). However, an opposing view is that CD56bright and CD56dimCD16+ NK cells 

represent two distinct terminal differentiation states, in support of a branching model of NK cell 

development. The ability of one cell type to transition into another (Loza and Perussia, 2004; Chan et al., 

2007) supports the notion that they correspond to distinct states of activation. 

Human NK cell development can be divided into phases, which differ in cytokine responsiveness of 

progenitor cells. 
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Development of precursor NK cells (pNK) 

NK cells begin their differentiation pathway in the common 

lymphoid progenitor (CLP) (Fig. 3). After that, five stages of 

developing human NK cells can be identified within second 

lymphoid tissue (SLT): pro-NK cells, pre-NK cells, iNK cells, 

CD56bright NK and CD56dim NK cells (Freud et al., 2006). 

Transcription factors (TFs) involved in the initial NK cell 

expansion and development include the E-twenty six (Ets) 

family members PU.1 and Ets-1, Ikaros (a zinc-finger family 

member), Vitamin D3 upregulated protein-1 (VDUP-1) and 

the inhibitors of DNA binding (Id) proteins: Id2 and Id3 

(Vosshenrich et al., 2005b) (Fig. 4). Development of pNK 

also involves interactions between HSC and stromal cells in 

vivo because highly purified HSC generate few NK cells in 

liquid culture (even with high levels of IL-15), whereas NK 

cell development is greatly enhanced when HSC are 

cultured on relevant stromal cell lines (Miller et al., 1994; 

Shibuya et al., 1995; Mrozek et al., 1996; Yu et al., 1998). 

The first step to becoming a NK cell involves making a 

commitment to becoming a Natural Killer. This point of no 

return means that other developmental options within the 

hematopoietic system are no longer available. 

 

The molecular signals delivered by stromal cells that induce NK commitment are unknown but must 

include those that control CD122 (IL-15Rβ) expression. Hematopoietic precursors having this profile are 

defined as pNK and result from a sequential loss of pluripotency as HSC differentiate to more committed 

hematopoietic precursors. Although, early studies of human NK cell differentiation from hematopoietic 

precursors used IL-2 (Miller et al., 1992), this cytokine is not abundant in the BM microenvironment. 

Figure 3 – NK development progresses through a 
series of stages starting from a common lymphoid 
progenitor (CLP), which gives rise to the pro-NK, pre-
NK, iNK, CD56bright NK and CD56dim NK cell types. 
Specific stages shown by grey arrows may divert 
away from the NK cell lineage to become B, T or 
dendritic cells (DCs). 
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As IL-15 is expressed by BM stroma, it was a 

possible candidate for NK progenitor 

development and expansion (Mrozek et al., 

1996; Puzanov et al., 1996). The receptor for IL-

15 shares β and γ subunits with IL-2 receptor, 

explaining the redundancy between IL-2 and IL-

15 in vitro. 

Similarly, the deficiency of the IL-15 receptor β-subunit (CD122, shared with IL-2R) also results in a 

profound decrease in NK cells (Gilmour et al., 2001). 

In line with this, CD122 (IL-15Rβ) has been used to isolate pNKs (Rosmaraki et al., 2001). 

Cytokine signals play a general role in lymphoid commitment, including those delivered via fms-like 

tyrosine kinase receptor-3 (Flt3), CD117 (also known as c-kit), or γc-dependent receptors. These 

cytokines could influence NK commitment because pNK cells express these receptors (Yu et al., 1998; 

Vosshenrich et al., 2005a). Primitive, nonlineage specific growth factors, including stem cell factor (SCF), 

Flt3-ligand (Flt3-L) and IL-3, also influence NK cell development (Williams et al., 1997). These growth 

factors act upon the early hematopoietic precursors, inducing CD122 (IL-15Rβ) expression, thereby 

conferring IL-15 responsiveness (Yu et al., 1998). These findings suggest that at least one function of IL-15 

is to provide survival signals to the developing NK cell (Minagawa et al., 2002).  

Thus, NK cells are derived from CD34+ HSCs and require cytokines present in the BM environment to 

mature. In fact, precursors of distinct lineages can be identified by the presence of specific growth factor 

receptors. The transition from pro-NK to pre-NK is marked by the gain of CD117 and by the ability to 

respond to IL-15 (Freud et al., 2006).  

 

Maturation of  NK cells 

Pro-NK and pre-NK cells have the potential for non-NK lineage differentiation, whereas iNK cells are 

committed to the NK lineage. The latter are CD34-CD117+CD94- being CD34 (expressed on pro-NK and 

pre-NK cells) and CD94 (expressed on CD56bright NK cells) mutually exclusive antigens, implying that an 

intermediate cell type, which no longer expresses CD34 but does not yet express CD94, must exist (Freud 

Figure 4 – Transcription Factors (TFs) that condition NK cell 
development (Ets-1, Id2, Ikaros, PU.1), maturation (Gata-3, IRF-
2, T-bet) and functional differentiation of mNK cells (CEPB-γ, 
MEF, MITF). 
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et al., 2006). NK cell differentiation is also controlled by TFs like Gata-3, T-bet and interferon regulatory 

factor (IRF)-2 (Vosshenrich et al., 2005b) (Fig. 4). 

CD56 expression gradually accumulates at the population level as cells progress from the pre-NK stage to 

the iNK stage of maturation. Moreover CD56 expression is uniformly high within the CD56bright NK cell 

population (Freud et al., 2006). Although CD56 is typically considered a marker of mNK cells, the final 

stage of human NK cell maturation is marked by a decrease in CD56 and CD94 expression and an increase 

in CD16 (FcRγIII receptor) and KIR characterizing the CD56dim NK cell subset (Fig. 3) (Caligiuri, 2008). 

During NK maturation, soluble factors [IL-12, IL-18, Interferon (IFN)-α/β] stimulate cytokine and 

chemokine production by NK cells as well as their lytic capacity.  

 

Acquisition of effector functions  

NK cells are restrained from auto-aggression by inhibitory receptors that are specific for MHC class I. 

During NK cell development, pNK acquire CD94/NKG2A. The linking of inhibitory receptor expression 

with effector mechanisms appears to be a form of tolerance during NK development and so, CD94/NKG2A 

expression is coordinated with attainment of functionality (activating receptor expression, cytotoxicity 

and IFN-γ production) (Grzywacz et al., 2006). The ligand for CD94/NKG2A is human leukocyte antigen 

(HLA)-E (Braud et al., 1998; Lee et al., 1998b) and the conserved sequence of this molecule assures that 

CD94/NKG2A will find its ligand on all healthy cells and tissues (Kaiser et al., 2005). Similarly, CD94 and 

NKG2A both have strikingly conserved sequences in the human population, compared with other NK 

receptors (Shum et al., 2002). 

 

In contrast, different KIR receptors recognize only a selected set of HLA-C, B, or A molecules as their 

ligands (Parham, 2005). Thus, expression of a given KIR does not guarantee an effective inhibitory 

interaction with self-MHC. In this sense, it appears biologically justified that NK cells rely on the 

CD94/NKG2A as the first safety mechanism. In fact, all the CD56bright NK cells express high levels of 

CD94/NKG2A, in contrast to CD56dimCD16+ NK cells, where the majority of cells express at least one self-

specific inhibitory receptor, but frequently it is a KIR and not CD94/NKG2A (Fig. 2). If CD56dim NK cells are 

derived from CD56bright NK cells, then this developmental transition would be associated with acquisition 
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of KIR and the loss of CD94/NKG2A. Alternatively, the existence of such CD94/NKG2A-KIR+ CD56dim NK 

cells might support the existence of another developmental pathway. Since licensing comes about through 

inhibitory interactions with self MHC (Kim et al., 2005), these “not licensed” NK cells have weak, if any, 

cytotoxicity despite expression of perforin and granzyme B. 

 

The regulation of the development of human NK cells in CD56bright or CD56dim subsets has been partially 

clarified with the functional characterization of a novel cytokine, IL-21 (Parrish-Novak et al., 2000). In 

synergy with Flt3-L and IL-15, IL-21 promotes expansion and differentiation of NK cells from BM 

progenitors in vitro. While the combination of the three cytokines supports the development of 

CD56dimCD16bright highly lytic NK cells, in the absence of IL-21, the generation of CD56bright NK cells lacking 

CD16 and KIRs is favoured (Sivori et al., 2003). 
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3. NATURAL KILLER CELL INTERACTION WITH OTHER CELLS 

  

3.1 Natural Killer cell receptors and signalling 

 

NK cell functions are regulated by at least 3 families of receptors, two of which recognize classical MHC 

class I molecules on the surface of target cells. These three families of receptors are structurally 

distinguished either as belonging to the Immunoglobulin (Ig) superfamily, such as the KIRs (Fig. 5) and 

Natural Cytotoxicity-Triggering Receptors (NCRs) (Fig. 8) or as members of the C-Type Lectin like Domain 

(CTLD) superfamily, such as CD94/NKG2s and NKG2D (Fig. 9). The human CTLD family of receptors 

includes NKG2A, -B, -C, -E and –F which form heterodimers with CD94 and recognize HLA-E, whereas KIR 

molecules recognize specific HLA-A, -B and -C allotype subsets as well as HLA-G ligands (Uhrberg et al., 

1997). 

In addition, NK cells also express other receptors such as FcγRIII receptor (CD16) (Fig. 10) and Toll-like 

receptors (TLRs) (Fig. 11). The FcγRIII receptor (CD16) that belongs to the Ig superfamily, known to be 

involved in antibody-dependent cellular cytotoxicity (ADCC), is the best-characterized membrane 

receptor responsible for triggering of lysis by NK cells. TLRs recognize structurally conserved molecules 

derived from pathogen-infected cells, also activating NK cell responses. 

 

Killer cell Immunoglobulin-like Receptors (KIRs) 

This family of receptors belongs to the Ig superfamily within the leukocyte Ig-like receptor complex (LRC) 

on chromosome 19q13.4, that probably has evolved by gene duplication (Lanier, 2005). Among the NK cell 

receptors, the KIRs comprise the most versatile and polymorphic family of receptors. The human KIR gene 

family contains 15 genes and 2 pseudogenes and the number of KIR genes in the genome of any given 

individual varies within the population. A database serving as a central depository for KIR sequences can 

be accessed at http://www.ebi.ac.uk:80/ipd/kir/index.html. 
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The KIRs are type I transmembrane glycoproteins that can be divided into two subfamilies based on the 

number of Ig-like domains in the extracellular portion of the protein (Fig. 5), being indicated by a 2D for 

two domain KIRs (designated KIR2D) or 3D for three domain KIRs (designated KIR3D) (Marsh et al., 

2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These domains are designated D0, D1, and D2, with the D0 domain being the most N-terminal in KIR3D 

proteins, followed by the D1 and D2 domains. A short stalk region separates the Ig-like domains from the 

transmembrane segment, and the cytoplasmic domains are variable in length; some receptors possess 

long (L) cytoplasmic domains with one or two immunoreceptor tyrosine-based inhibitory motif (ITIM) 

sequences, and other receptors have short (S) cytoplasmic domains without ITIM (Marsh et al., 2003) (Fig. 

5). KIRs with short cytoplasmic domains (KIR2DS and KIR3DS) have a Lys residue, centrally located 

within their transmembrane region to allow for association with the DAP12 adapter protein. The 

extracellular Ig-like domains that are involved in classical MHC class I ligand binding, as well as 
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Figure 5 – Inhibitory (outlined in red) and activating (outlined in green) KIR receptors and their ligands. 
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transmembrane and cytoplasmic regions, define the type of signal evoked on the NK cell (Vilches and 

Parham, 2002).  

KIRs control the response of human NK cells by delivering inhibitory or activating signals upon binding to 

their MHC class I ligands expressed by target cells. 

The inhibitory KIRs contain ITIM motives in their cytoplasmic domains, which are responsible for the 

delivery of the inhibitory signal upon receptor ligation (Muta et al., 1994). In fact, ITIMs are found in all 

inhibitory NK receptors, as well as in many other receptors expressed on hematopoietic cells (Ravetch and 

Lanier, 2000). KIRs recognize HLA-A, HLA-B, and HLA-C proteins (Fig. 5). While all inhibitory KIRs interact 

with MHC class I molecules, they manifest various allelic specificity. Two-domain KIRs (KIR2D) recognize 

HLA-C haplotypes while three-domain KIRs (KIR3D) recognize HLA-A/B haplotypes. The KIR3D receptors 

bind HLA-A3 and -A11 and some HLA-B proteins bearing the Bw4 motif (Lanier, 2005) (Fig. 5). The 

canonical ITIM motif [(I/V) xYxx(L/V)] contains a tyrosine residue that is critical for recruitment and 

docking by specific phosphatases (Burshtyn et al., 1997). Upon ligand binding, the tyrosine residue in the 

ITIM is phosphorylated by a Src homology region 2-containing protein tyrosine phosphatase (SHP)-1 and 

SHP-2 (Fig. 6). These phosphatases are recruited (through their SH2-domains) to ITIMS in the cytoplasmic 

domain of the receptors thereby blocking the progression of activation signals and preventing NK cell 

functions, i.e., cytotoxicity and cytokine production (Lanier et al., 1998b) (Fig. 6).  

 

The activating receptors in the human KIR family arose by 

gene duplication and conversion from inhibitory receptors 

(Abi-Rached and Parham, 2005) such that the extracellular 

domains of these activating receptors are highly 

homologous to their inhibitory counterparts. They share 

95–98% sequence identity with the inhibitory forms but 

possess a truncated cytoplasmic domain and lack functional 

ITIMs (Uhrberg et al., 1997). Therefore, several of the 

activating KIR receptors have the ability to bind with low 

affinity to MHC class I ligands. 

 

Figure 6 – Present view of the inhibition of 
cytotoxicity by KIRs. Engagement of KIRs by 
ligands induces ITIM phosphorylation and direct 
binding of SHP-1 or SHP-2 through SH2 
domains, thereby transducing an inhibitory 
signal that intersects signals from activating 
receptors, thus abrogating effector functions. 
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The charged acidic amino acid within the transmembrane regions of the activating KIR recruits adaptors 

with immunoreceptor tyrosine-based activating motifs (ITAMs). ITAMs comprise two copies of the motif 

Yxx(I/L) precisely spaced six or seven residues apart within the cytoplasmic domain of the activating 

receptors (Lanier et al., 1998b; Moretta et al., 2000b). In addition to KIR, an ITAM activation motif is found 

in the FcRγ and several other NK receptors with activating function. Activating KIRs and other NK 

activating receptors associate with a unique 12 kDa ITAM containing adaptor originally designated killer-

cell activating receptor-associated protein (KARAP) or DNAX-activation protein (DAP)12, as shown in Fig. 

7. DAP12 is a type I transmembrane protein expressed in NK cells that when phosphorylated leads to an 

association between DAP12 and ZAP70 and SYK protein tyrosine kinases (McVicar and Burshtyn, 2001). 

Unlike other adaptor molecules that signal through heterodimers, DAP12 signals are mediated by 

homodimerization. Activation of SYK/ZAP70 then ultimately leads to ERK phosphorylation, granule 

exocytosis and target cell lysis (Fig. 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 – Model of NK activating receptors. Activating NK receptors possess short cytoplasmic tails and an ITAM for adaptor 
protein binding. DAP12 homodimers associate with KIR activating receptors. Upon ligand engagement, the tyrosines in the 
ITAM of DAP12 becomes phosphorylated, and recruit SH2 domains of SYK/ZAP70 kinase. Upon NK receptor–ligand binding, 
adaptor proteins then associate with the intracellular domain of each receptor through charged interactions to activate PI3K 
or SYK/ZAP70. 
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Natural Cytotoxicity Receptors (NCRs) 

NCRs, a first denomination given by Pende and colleagues (Pende et al., 1999), consist of two constitutively 

expressed receptors, NKp46 and NKp30, and an inducible receptor NKp44 (Moretta et al., 2001b). (Fig. 8). 

The NCRs include only activating variants and differ from KIRs in that they do not bind MHC ligands and, 

unlike KIRs and NKG2 receptors, are exclusively expressed on NK cells. Despite the important role played 

by the NCRs in recognition and killing of tumour cells (Pessino et al., 1998; Vitale et al., 1998; Pende et al., 

1999), little is known about the nature and distribution of their ligands (Fig. 8). NCRs directly induce 

apoptosis after binding to ligands that indicate infection of a cell. The NCRs belong to the Ig superfamily 

and contain a charged amino acid in their transmembrane domain which associates with ITAM-bearing 

adaptor molecules (Fig. 7). 

 

 

 

 

 

NKp46 was the first NCR to be identified (Sivori et al., 1997; Pessino et al., 1998) and is considered a major 

NK lysis receptor playing a dominant role in the activation of NK cells against various targets (Sivori et al., 

1997). NKp46 is a 46 kDa glycoprotein that contains two C2 Ig-like extracellular domains. Crosslinking of 

NKp46 led to Ca2+ mobilization, cytotoxicity and cytokine release (Sivori et al., 1997). NKp46 binds and 

signals through CD3ζ/FcγR heterodimers that contain the activating ITAM motif (Lanier, 2003) as show in 

Fig. 7. Hemagglutinin molecules of different influenza strains were identified as the first specific NKp46 

and NKp44 ligands (Arnon et al., 2001; Mandelboim et al., 2001).  

 

NKp44 was the second NCR identified on human NK cells. It encodes a 44kDa surface glycoprotein and the 

activating signal of NKp44 is delivered via the association and phosphorylation of the DAP12 adaptor 

molecule (Vitale et al., 1998; Cantoni et al., 1999) (Fig. 7). NKp44 is not expressed on resting NK cells, but 

rather requires activation for its expression (Vitale et al., 1998). Similar to NKp46, very little is known 

Figure 8 – Natural Cytotoxicity Receptors. 

 

NKp30 

NKp44 

NKp46 Unknown (Non-MHC) 

Unknown (Non-MHC) 

Unknown (Non-MHC) 

NK 
membrane 

Target 
membrane 

29



 

 
 

regarding the cellular ligands of NKp44 and the only ligand identified so far for this receptor is the 

influenza hemagglutinin protein (Arnon et al., 2001). 

 

NKp30, the third NCR to be identified, functions in the killing of targets that are relatively resistant to 

NKp46/44-mediated killing, demonstrating that it probably recognizes ligands other than those 

recognized by NKp46/44 (Pende et al., 1999; Moretta et al., 2000a). NKp30 is a 30 kDa glycoprotein that 

contains one V-type Ig-like extracellular domain. NKp30 is selectively expressed on almost all human NK 

cells (Pende et al., 1999; Manaster et al., 2008). The transmembrane portion of NKp30 contains an arginine 

residue, which is probably involved in the association with CD3ζ chains for the transduction of the 

downstream activating signals (Pende et al., 1999) (Fig. 7). 

 

CD94/NKG2 Receptors 

CD94 and NKG2 are type II integral membrane glycoproteins that contain an extracellular C-type 

carbohydrate recognition domain and are encoded by genes clustered together in human chromosome 

12p12.3-p13.2 (Carretero et al., 1998). The CD94 protein expresses on the cell surface and associates as a 

disulfide-linked heterodimer with NKG2A-C or NKG2E-F (Fig. 9) (Lazetic et al., 1996; Brooks et al., 1997). 

 

 

 

 

 

 

 

 
Figure 9 – C-Type Lectin like Domain (CTLD) superfamily of receptors, such as 
CD94/NKG2s and NKG2D. Activatory receptors are outlined in green and 
inhibitory in red. 
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Association of CD94 with the NKG2A (which contains an ITIM in its cytoplasmic tail) constitutes another 

MHC class I-specific inhibitory receptor (Fig. 9) (Carretero et al., 1997; Le Drean et al., 1998; Palmieri et al., 

1999). 

 

Conversely, CD94/NKG2C,E heterodimers serve as activating receptors (Fig. 9) and require association 

with the DAP12 adapter protein for stable expression on the cell surface and for signalling (Braud et al., 

1998; Lanier et al., 1998a) (Fig. 7). The Lys residue in the transmembrane region of NKG2C associates with 

the Asp residue in the transmembrane segment of DAP12 and is required to generate a stable receptor 

complex (Lanier et al., 1998a) (Fig. 7). Expression of CD94/NKG2 receptors appears earlier in NK cell 

ontogeny than KIR in humans (Mingari et al., 1997; Miller and McCullar, 2001). Human CD94/NKG2A and 

CD94/NKG2C bind HLA-E (Lanier, 2005). An intriguing feature of HLA-E is that it assembles at the 

endoplasmic reticulum with peptides derived from the leader peptides of HLA-A, B, C and G (Braud et al., 

1997; Lee et al., 1998a; O'Callaghan et al., 1998). So, expression of HLA-E on the cell surface is dependent 

upon availability of leader peptides provided by HLA-A, -B, -C, -G respectively, reflecting in this way the 

overall biogenesis of MHC class I proteins in the cells. Engagement of HLA-E in the absence of the peptide 

leader sequence fails to provide protection from direct cytotoxicity. NKG2A, B, E and F are inhibitory 

receptors that bind as a heterodimer with CD94 to the nonclassical MHC class Ib molecule HLA-E (Braud 

et al., 1997). Nonclassical HLA-E, like the classical human MHC class 1a molecules, possesses the ability to 

present antigen in conjunction with the heavy chain and β2-microglobulin invariant chain.  

 

NKG2D receptor and ligands 

NKG2D is a type II transmembrane-anchored glycoprotein that is expressed on all NK cells (Lopez-Larrea 

et al., 2008) as a disulfide-linked homodimer and, unlike other members of CTLD superfamily, doesn’t 

form dimers with CD94 (Wu et al., 1999) (Fig. 9). This receptor is a member of the C-type lectin-activating 

receptor family that is evolutionarily conserved, encoded by a single gene located on the human 

chromosome 12p12-p13 demonstrating essentially no polymorphism (Shum et al., 2002). The NKG2D 

receptor recognizes cell surface glycoproteins structurally related to MHC class I, but most of these ligands 

are not encoded by genes in the MHC complex (Raulet, 2003) (Fig. 9). NKG2D ligands belong to two 
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relatively distant families related to MHC class I molecules. One family is composed of MHC class I chain-

related gene (MIC)A/B molecules and the other by UL16-binding proteins (ULBP)1-5 (Leong et al., 1998; 

Cosman et al., 2001; Sutherland et al., 2001; Sutherland et al., 2002). MICA/B genes are encoded in the MHC 

region and they share structural and sequence similarity with MHC class I genes (28–35%). Like MHC 

class I proteins, MICA/B have α1-α2-α3 extracellular domains and transmembrane tails. However, they do 

not associate with β2-microglobulin or peptides. Crystal structures of NKG2D in complex with its ligands 

show that MICA interacts with the NKG2D dimer through the α1-α2 domains (Bauer et al., 1998; Radaev et 

al., 2001). ULBPs are also distant members of the MHC class I family, but they lack the α-3 domain (Fig. 9). 

ULBP1 and ULBP2 were discovered for their capacity to specifically interact with the human 

cytomegalovirus (HCMV) UL16 protein (Cosman et al., 2001).  

 

In general, NKG2D serves as the primary activating receptor in activated NK cells, where NKG2D 

engagement alone triggers cytotoxicity, even in the presence of NK inhibitory receptors and their 

respective MHC class I ligands (Bauer et al., 1999). NKG2D couples to the transmembrane adaptor DAP10 

for intracellular signalling, which can deliver a full cytotoxic response. NKG2D is uniquely dependent on 

the transmembrane adaptor molecule DAP10 (Wu et al., 1999). The human DAP10 gene codes for a 93 

amino acid type I transmembrane protein with a Tyr-X-X-Met (YXXM) motif (Wu et al., 1999), as shown in 

Fig. 7. The YXXM motif is a conical docking site for the SH2 domain of the phosphatidylinositol 3 (PI3)-

kinase p85 subunit, where a synthetic tyrosine-phosphorylated peptide derived from the DAP10 

cytoplasmic domain containing this YXXM motif binds the p85 subunit (Wu et al., 1999). Thus, instead of 

activating the traditional ITAM-associated signalling events such as SYK and ZAP70, DAP10-associated 

recruitment and activation of PI3-kinase bypasses this step and directly activates downstream effector 

proteins during the cytotoxic response (Upshaw et al., 2006) (Fig. 7). PI3-kinase phosphorylation and 

recruitment of Grb2 are essential events in NKG2D signalling (Billadeau et al., 2003; Upshaw et al., 2006). 

 

NKG2D homodimers assemble with two dimers of DAP10 proteins, thereby forming a hexameric structure 

(Garrity et al., 2005) with four potential YXXM binding sites. This serves to reduce the threshold of 

activation and to initiate multiple signalling events simultaneously. 
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FcγRIII (CD16) 

FcγRIII (CD16), the low-affinity Fc receptor for IgG responsible for ADCC, was the first activating NK 

receptor identified (Lanier et al., 1983; Perussia et al., 1983) and it is, indeed, the best characterized 

(Ravetch and Bolland, 2001). In fact, CD16 was recently reported to be the most potent activating receptor 

on freshly isolated human NK cells, able to elicit strong cytotoxicity and cytokine production (Bryceson et 

al., 2006). FcγRIII is a type I transmembrane receptor containing two extracellular Ig-like domains (Fig. 

10). Human CD16 associates with FcεRIγ (Hibbs et al., 1989) and/or CD3ζ (Lanier et al., 1989) that 

contains the ITAM motif for signal transduction (Vivier et al., 1991) (Fig. 7). 

 

 

 

 

 

Thus, in addition to direct lysis of target cells, NK cells also possess the ability to mediate activation-

dependent cell cytotoxicity via expression of FcRγIII (CD16) (Leibson, 1997). Many of the same signalling 

molecules participate in both direct NK lysis and ADCC due most likely to the conserved CD3ζ and FcɛRIγ 

usage.  

An additional role for CD16 on human NK cells was described as a lysis receptor that mediates the direct 

killing of some virus-infected and tumour cells, independent of antibody ligation (Mandelboim et al., 1999). 

This allows NK cells to target cells against which a humoral response has been mobilized and to lyse cells 

through ADCC. 

 

Toll-like receptors (TLRs) 

An alternative mode of NK-cell activation has recently been identified thanks to the discovery that human 

NK cells can express TLRs (Sivori et al., 2004). TLRs are pattern recognition receptors (PRRs), which 
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Figure 10 – FcγRIII (CD16) receptor and its ligand. 
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trigger innate immune responses, providing both immediate protection against various pathogens and 

instructing the adaptive immune system through the induction of DC recruitment and maturation. 

 

 

 

 

 

 

 

 

 

Ten different TLRs have been described in humans, and most of their specific ligands have been identified 

(Takeda and Akira, 2005) (Fig. 11). The best known ligands of TLRs are the pathogen-associated molecular 

patterns (PAMP) molecules. These include lipopolysaccharide (LPS), recognized by TLR4; bacterial 

lipoproteins and lipoteichoic acids, recognized by TLR2; flagellin, recognized by TLR5; unmethylated CpG 

typical of bacterial and viral DNA, recognized by TLR9; double-stranded RNA (dsRNA) recognized by TLR3 

and single-stranded RNA recognized by TLR7. 

 

Recently, some damage-associated molecular pattern (DAMP) molecules have also been found to bind and 

activate TLRs (Rubartelli and Lotze, 2007). 

Human NK cells, independent of their status of activation, express functional TLR2 (Becker et al., 2003), 

TLR3 (Pisegna et al., 2004) and TLR9 (Sivori et al., 2004) that enable their response to both viral and 

bacterial products leading, for example to the release of IFN-γ and TNF-α and to kill targets more 

efficiently (Sivori et al., 2004; Marcenaro et al., 2008) (Fig. 12). 

 

Figure 11 – Ligands recognized by TLR family. Each receptor consists in two identical 
TLR molecules (called homodimers), or two different TLRs (known as heterodimers).  
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Recently, the high-mobility group protein B1 

(HMGB1), a DAMP protein, has been proposed to 

enhance IFN-γ release from macrophage-stimulated 

NK cells. 

Again, this is effective only when coupled with other 

pro-inflammatory cytokines, particularly with IL-2 in 

combination with IL-1 or IL-12 (DeMarco et al., 

2005).  

 

 

 

3.2 Natural Killer cell education  

 

NK cells are educated by self-MHC class I at an immature stage of development in the BM. In this line, 

peripheral NK cells, which lack MHC class I molecules, are not educated as they respond poorly to receptor 

stimulation. However, upon cytokine stimulation, some human NK cells can acquire MHC class I receptors 

in vitro gaining responsiveness when the expressed KIR is specific for self-HLA (Juelke et al., 2009). Thus 

NK cells can functionally mature in an MHC class I dependent fashion but independent of their 

development in the BM. KIRs help NK cells discriminate between normal self and target cells by 

recognition of MHC class I molecules (Colonna and Samaridis, 1995; Wagtmann et al., 1995). 

Binding of MHC class I molecules to KIR inhibits NK cell activation, and so, in the presence of a human 

MHC class I deficiency, NK cells are inactive (Zimmer et al., 1998; Furukawa et al., 1999; Vitale et al., 2002). 

Therefore, MHC class I is important, not only for inactivation of mNK cells, but also in the progression 

towards functional maturity. NK cells apparently specialize in immune surveillance focused on monitoring 

cells for aberrant expression of MHC class I molecules. Genes of MHC, known as HLA in humans, are 

clustered on the short arm of chromosome 6. 

Figure 12 – IL-1R/TLR signaling pathways. 
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The HLA system encodes structurally homologous cell surface glycoproteins characterized by a high 

degree of allelic polymorphism within human populations. The homologous HLA class I (HLA-A, -B, -C) 

and class II (HLA-DR, -DQ, -DP) antigens are codominantly expressed and differ in their structure (Fig. 13),  

tissue distribution and characteristics in peptide presentation to T cells. An intact HLA class I trimer, 

composed of heavy chain, β2-microglobulin, and peptide, is required for KIR recognition. KIR can 

discriminate between different peptides presented by HLA-A, -B, or -C. 

 

 

 

 

 

Although KIR recognition is clearly both peptide dependent and peptide selective, these receptors do not 

distinguish self from nonself peptides; thus, the biological relevance is not obvious. Binding of inhibitory 

KIR to their HLA class I ligands on potential target cells results in suppression of cytotoxicity and cytokine 

secretion by NK cells. Several classes of receptors are employed in the regulation of NK cell effector 

functions. Initial observations that NK cells could lyse MHC-negative targets (Karre et al., 1986) led to the 

formulation of the “missing-self” hypothesis (Ljunggren and Karre, 1990) that predicted the existence of 

NK cell negative regulatory receptors that would interact with MHC ligands and thereby spare target cell 

destruction by NK cells. According to the “missing-self” hypothesis, NK cells were proposed to provide 

immune surveillance for cells that had downregulated MHC class I, an event that frequently accompanies 

cellular transformation or infection with certain viruses. Until recently, a common misconception has been 

that NK cells attack any cell lacking MHC molecules. This notion is counterintuitive given documentation 

of the events involving cell-cell binding, Ca2+ mobilization, and synapse formation when NK cells 

encounter susceptible target cells that lack MHC class I. 

 

A contemporary modification of the missing-self hypothesis might state, “NK cells patrol for abnormal 

cells that lack MHC class I or overexpress ligands for activating NK cell receptors”. A corollary of the 

missing-self hypothesis is that failure of NK cells to respond to a potential target can be due either to 
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Figure 13 – Schematic representation showing the structure of human 
class I and class II MHC molecules. The HLA class I α-chain is non 
covalently associated with β2-microglobulin (β2m). The class II molecules 
are heterodimers composed of an α and a β-chain. The most distal domains 
of each of the two chains form the peptide binding site. 
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active inhibition mediated by the inhibitory receptors or alternatively, to the absence of sufficient 

activation signals to initiate a response (Fig. 14). An example of the latter situation may be represented by 

encounters between human erythrocytes and peripheral blood NK cells. 

Although human red blood cells do not express MHC class I, NK cells do not attack them; therefore, 

erythrocytes may lack ligands capable of engaging the activating NK cell receptors. An alternative 

explanation for the inability of NK cells to harm normal tissues with low (e.g., neural tissues) or no (e.g., 

erythrocytes) MHC class I is the possibility that this target cell protection is mediated by inhibitory 

receptors recognizing non-MHC ligands. 

NK cell education requires signalling via the inhibitory 

receptors because mutations within the ITIM of 

inhibitory receptors render NK cells hyporesponsive 

even in the presence of the cognate MHC class I ligand 

of the mutant receptor (Kim et al., 2005). 

Several distinct models have been proposed to explain 

how MHC class I recognition by inhibitory receptors 

improves the function of activating NK cell receptors 

and to explain the tolerance of NK cells lacking self-

MHC class I (Joncker and Raulet, 2008; Hoglund and 

Brodin, 2010; Orr and Lanier, 2010; Yokoyama et al., 

2010a). 

 

 

Two main theories have been proposed for the role of KIR in the education of the NK cell. 

 

The “licensing” (Kim et al., 2005) or “arming” (Raulet and Vance, 2006) models imply that activation 

receptors on iNK cells are by default nonresponsive (Fig. 15). Signals delivered by self-MHC-I receptors 

render activation pathways competent to respond to stimulation. Activation receptors remain functionally 

incompetent when NK cells cannot recognize MHC class I. 
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Figure 14 – Contemporary modification of the “missing-
self” hypothesis showing the possible outcomes from 
encounters between NK cells/potential targets. 
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This hypothesis postulates that NK cells are initially unresponsive or “unlicensed” and that MHC class I 

engagement of inhibitory receptors during development licenses or “arms” these cells to become 

competent effector cells (Kim et al., 2005). 

Thus, the arming/licensing model imply that MHC class I 

receptors transmit signals and/or perform other functions 

that render NK cell activation pathways responsive. This 

model attributes licensing directly to engagement of KIR 

(Anfossi et al., 2006). However, arguments against this 

theory note that licensing a NK cell requires an activation 

signal, whereas most KIR are inhibitory, so these receptors 

would have to switch from activator to inhibitor during NK 

cell development. Considering the complexity of signalling 

pathways and the likely alternative intracellular 

environment of a developing versus a mNK cell, this 

activator-inhibitor cell-signalling switch is plausible. 

 

On the other hand, the “disarming” model (Raulet and Vance, 2006) implies that activation receptors on 

iNK cells become responsive by default (Fig. 16). If such NK cells acquire an inhibitory self-MHC class I 

receptor, NK cell activation signals are counter-balanced and this maintains the functionality of activation 

pathways. If NK cells fail to acquire an inhibitory receptor for self-MHC-I, persistent and unopposed 

activation by normal host cells induces NK cell hyporesponsiveness, render them anergic (Gasser and 

Raulet, 2006). 

 

This model describes an additional unknown activating signal that, if left unopposed, would over stimulate 

the unlicensed NK cell leading to anergy, thus necessitating a balance of a second, inhibitory signal from 

KIR-MHC class I engagement (Fernandez et al., 2005; Yokoyama and Kim, 2006). According to this 

hypothesis, persistent stimulation of NK cells via one (or a few) activation receptor should be sufficient to 

induce hyporesponsiveness of most activation receptors and the inhibitory function of MHC class I 

receptors (which prevents persistent NK cell activation) is sufficient to ensure NK cell responsiveness. 

Figure 15 – In the arming model, signaling by an 
inhibitory receptor leads to NK cell functional 
competence; in the absence of arming, the NK cell 
remains hyporesponsive. 
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Hyporesponsiveness could be induced in mNK cells and persistent stimulation by stress or viral ligands 

reversed the positive effect of NK cell education (Coudert et al., 2008; Tripathy et al., 2008). 

 

The expected functional properties were restored when 

these NK cells were cultured in the absence of the 

stimulating cells. These data show that mNK cells can 

adapt to excessive stimulation by reducing the 

functionality of activation receptors. Several studies 

demonstrated that NK cell education requires the 

educating MHC class I to be expressed on all cells or 

alternatively hyporesponsiveness is dominantly induced 

by lack of MHC class I, as would be predicted by the 

disarming hypothesis (Johansson et al., 1997; Wu and 

Raulet, 1997). 

 

The SHP-1 and SHIP-1 phosphatases associated with inhibitory receptor signalling are dispensable for NK 

education, suggesting that inhibitory signals are not needed for NK cell education, supporting the licensing 

model (Kim et al., 2005; Orr et al., 2010a). 

However, these findings are not incompatible with the disarming model because many inhibitory 

receptors also associate with SHP-2, so there might be signalling redundancy between the different 

phosphatases recruited by the inhibitory receptors. 

Collectively, there is evidence that the establishment of functional competence of NK cell activation 

receptors and effector inhibition are two separable functions of MHC class I receptors (Chalifour et al., 

2009), suggesting a model in which both functions of MHC class I receptors are essential to generate and 

maintain responsive NK cells.  

Finally, recent data show that the response of NK cells to stimulation is graded rather than all-or-none. 

The response is related to how many inhibitory self-MHC class I receptors NK cells express, combined 

Figure 16 – In the disarming model, the NK cell is 
activated by default; however, in the absence of an 
inhibitory receptor for self-MHC class I molecules, 
the NK cell becomes anergic or hyporesponsive. The 
presence of an inhibitory receptor, in contrast, 
allows NK cell to be responsive. 
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with the affinity of these receptors for MHC class I (Yawata et al., 2008; Brodin et al., 2009b; Joncker et al., 

2009; Jonsson et al., 2010). 

This influences both the frequency of responding NK cells 

as well as the magnitude of the response of individual NK 

cells (Brodin et al., 2009b). This third “rheostat” model 

proposes that NK cell reactivity is tuned by the number of 

self-MHC class I inhibitory receptors that NK cell expresses 

and by the affinity of each receptor for self-MHC class I 

(Raulet and Vance, 2006; Brodin et al., 2009a) (Fig. 17). 

NK cells that express two or more inhibitory receptors for 

self-MHC class I respond more frequently and possess 

stronger effector functions than NK cells with only one 

inhibitory receptor for self-MHC class I (Brodin et al., 

2009a; Joncker et al., 2009). 

 

The affinity of the interaction between the inhibitory receptor and its MHC class I ligand also influences 

the NK cell education process (Jonsson et al., 2010). 

Thus, NK cell education is likely to be a quantitative process whereby NK cell responsive capacity is 

determined by the frequency and strength of engagement of inhibitory receptors with self MHC class I, 

either opposing chronic activating receptor stimulation (disarming) or by transmitting undefined 

activating signals themselves (licensing or arming).  

 

3.3 Natural killer cell activity  

 

NK cells were named plainly in 1975 for their “innate” and “cytotoxic” character (Herberman et al., 1975; 

Kiessling et al., 1975). Now, NK cells are heralded as the first wave of defence against a variety of 

pathogens in which they employ potent weaponry to kill infected and malignant cells. In addition, NK are 

Figure 17 – In the rheostat model, NK cell 
education is dynamic. According to the strength 
of the inhibitory signal during NK cell education, 
the responding NK cell balances its activation 
threshold as a rheostat, which allows the 
maturation of NK cells to be optimally tuned by 
the inhibitory input.  
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implicated in the elimination of autologous activated immune cells (T cells and macrophages) following an 

inflammatory response (Spielman et al., 1998; Rabinovich et al., 2003; van Dommelen et al., 2006).  

NK cell mediate their activity through: 

1) secreting proinflammatory cytokines (IFN-γ, TNF-α, etc.), 

2) releasing cytoplasmic cytotoxic granules (granzyme and perforin) by exocytosis, and 

 3) the engagement of death receptors on target cells by their cognate ligands (e.g., FasL and TRAIL) on NK 

cells (Janeway and Medzhitov, 2002).  

 

Cytokine production 

NK cells represent an important source of immunoregulatory cytokines and chemokines. They bind other 

immune cells during the early phases of inflammatory responses and the resulting functional interactions 

shape both the innate immune response within inflamed peripheral tissues and the adaptive immune 

response found in SLT (Biron et al., 1999; Vivier et al., 2008). The effector or immunoregulatory functions 

of NK cells correlate with the levels of expression of the surface markers CD56 and CD16. In fact, 

CD56brightCD16dim/neg NK cell subset, that represent the minor NK subset in blood (≈10%), is more 

dedicated to display immunomodulatory functions through secretion of cytokines (Cooper et al., 2001b; 

Jacobs et al., 2001). Upon target-cell binding, these NK cells produce cytokines such as IFN-γ,  TNF-α, and 

granulocyte-macrophage colony-stimulating factor (GM-CSF) (Yokoyama et al., 2004), defining a non-

cytotoxic role for NK cells in host defence influencing the activity of other cells including macrophages, 

dendritic cells (DCs) and T cells (Vivier et al., 2008). 

 

The most notably is the pro-inflammatory IFN-γ, which has pleiotropic effects on cells that modulate the 

adaptive immune response (Schoenborn and Wilson, 2007). IFN-γ is the major cytokine produced by 

CD56bright NK cells upon their detection of infected or cancerous cells (Chawla-Sarkar et al., 2003). It 

presents immune regulatory activity (Maggi et al., 1992; Parronchi et al., 1992; Bradley et al., 1996) as well 

as direct antiviral activity (Cheney et al., 2002; Frese et al., 2002). IFN-γ is a cytokine of much importance to 

proper innate and adaptive immune function. IFN-γ directly inhibits viral replication and activates the 

41



 

 
 

innate and adaptive immune responses via multiple mechanisms. IFN-γ upregulates both MHC-I and MHC-

II antigen presentation pathways, induces naïve CD4+ T cells to differentiate into Th1 CD4+ T cells and 

activates macrophages to increase phagocytosis, cytokine secretion and production of antimicrobials such 

as superoxide, nitric oxide (which inhibits viral replication) and hydrogen peroxide. IFN-γ also inhibits 

human immunodeficiency virus (HIV) replication during early infection (Boehm et al., 1997; Shapshak et 

al., 2004). The importance of IFN-γ to control infection is plainly demonstrated when pathogens considers 

a large amount of mechanisms to counteract the effects of IFN-γ. Inhibition of IFN-γ production via 

neutralization of IFN-γ stimulators is one such strategy.  

 

Granule exocytosis 

The regulation of perforin-dependent cytotoxicity implies the controlled release of effector granules 

containing perforin and granzymes stored in the NK cells cytoplasm (Blott and Griffiths, 2002). This 

release from NK cells is dependent on polarization of both microtubules and actin filaments in the 

cytoskeleton. Calcium signalling triggered by activating receptors initiates this cytoskeletal polarization, 

which positions the lytic granules so that they can be released at the effector cell-target cell interface (Katz 

et al., 1982; Wulfing et al., 2003). 

The original granule exocytosis model describes the major pathway utilized by NK cells to carry out 

cytotoxic function being perforin the principle effector molecule able to kill cells via pore formation 

(Henkart, 1985). A second model called pore delivery model is consistent with a requirement for perforin 

in efficient granule-mediated killing (Fig. 18). It is characterized by the diffusion of granzymes through 

poly-perforin pores into the cytoplasm from within de novo vesicles created by the repair endocytosis 

process. 

When the NK cells are sufficiently activated, they initiate an irreversible and unidirectional cytolitic 

response in which lytic granules are mobilized toward the NK Immune Synapse. Upon fusion of the 

granular vesicles with the plasma membrane, the lytic contents, perforin (Dennert and Podack, 1983; 

Podack and Dennert, 1983) and granzymes (Jenne and Tschopp, 1988), are released into the intercellular 

space. 
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Perforin monomers are exposed to extracellular 

levels of Ca2+ in the synaptic space, which elicits 

polymerization and insertion of the proteins into 

apposing target cell plasma membranes (Young et 

al., 1986). The resulting poly-perforin pores lead 

to a transient Ca2+ influx, triggering a membrane 

repair response in the target cell (Podack, 1999; 

Keefe et al., 2005). The repair process 

inadvertently leads to endocytosis of granzymes 

and other lytic granule components present 

within the synaptic space. 

 

Granzymes are then delivered into the cytoplasm where they activate the apoptotic machinery by cleaving 

cellular substrates and leading to apoptosis. The death pathway initiated by these proteins was recently 

established (Martinvalet et al., 2008). 

 

Death ligand interactions  

Previous observations of rapid target cell death in the absence of extracellular Ca2+, RNA or protein 

synthesis, granule exocytosis or perforin (Trauth et al., 1989) suggested the existence of alternative 

pathways of NK cell-mediated cytotoxicity. The extrinsic signalling pathways that initiate apoptosis 

involve transmembrane receptor-mediated interactions leading to characteristic cytoplasmic and nuclear 

condensation and DNA fragmentation (Itoh et al., 1991; Tartaglia et al., 1993). 

 

Several receptors, called Death Receptors (DR) of the TNF Receptors (TNFR) family are the most 

prominent players in the field of the extracellular signals leading to cell death (Locksley et al., 2001). These 

DRs have been identified as a subgroup with a predominant function in the induction of apoptosis. NK 

cells can express at least three death ligands: FasL, TNF-α and TRAIL (Bhardwaj and Aggarwal, 2003), all 
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Figure 18 – Pore-delivery model of granzyme release. 
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of which induce apoptosis in their targets (Montel et al., 1995; Osborne, 1996; Ashkenazi and Dixit, 1998; 

Kashii et al., 1999).  

Besides the diversity within members of TNFR superfamily, all of them contain cysteine-rich extracellular 

subdomains (Naismith and Sprang, 1998) and also contain a homologous cysteine-rich cytoplasmic 

domain, called death domain (DD) (Ashkenazi and Dixit, 1998) which plays a crucial role in transmitting 

the signal from the cell surface to intracellular signalling pathways (Fulda and Debatin, 2004). 

 

The cross-linking between the receptor and the ligand induces receptor 

oligomerization followed by the recruitment of an adaptor protein to the 

DD through homophilic interaction. The signalling pathways through 

Fas/FasL is the best model to describe DRs signalling (Fig. 19) (Wajant, 

2002). 

The binding of Fas/FasL results in the 

recruitment of the adapter protein 

FADD (Fas-associated death domain) 

that interacts with DRs through a 

corresponding DD. These receptors 

can lead to a serial activations of a 

family of protease referred to 

caspases (Singh et al., 1998). FADD 

then associates with procaspase-8 via 

dimerization of the death effector 

domain (DED). 

 

At this point, a death-inducing signalling complex (DISC) is formed, resulting in the autocatalytic 

activation of procaspase-8 (Kischkel et al., 1995). This is then released into the cytosol to propagate the 

apoptotic signal. Once caspase-8 is activated, the execution phase of apoptosis is triggered. 

Figure 19 – NK cell-mediated apoptosis by FasL/Fas interaction. 
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DR-mediated apoptosis can be inhibited by family of proteins known as FLICE-inhibitor proteins (FLIPs), 

that competes with procaspase-8 recruitment to the DISC (Guicciardi and Gores, 2009), rendering FADD 

and caspase-8 ineffective (Kataoka et al., 1998; Scaffidi et al., 1999).  

Upon initiator caspases activation, two distinct mechanisms can occur. In type I cells, large amounts of 

active initiator caspases are released from the DISC into the cytoplasm and cleave effector caspases 

triggering the proteolytic cascade. In type II, there are lower levels of DISC formation and thus lower level 

of active caspase-8 (Scaffidi et al., 1998). In this case, caspase-8 cleaves the proapoptotic Bcl-2 family 

protein Bid to generate truncated (t)Bid that will induce the t-Bid-mediated release of cytochrome C (Cyt 

C) from mitochondria. This leads to the formation of apoptosome, followed by activation of procaspase-9, 

which in turn cleaves downstream effector caspases. The type-II CD95 signalling induced apoptosis might 

be blocked by Bcl-2 family members (Willis et al., 2003), which inhibit mitochondrial alteration in type II, 

but not in type I cells (Scaffidi et al., 1998; Fulda and Debatin, 2004). Fas mediated apoptotic pathway in 

type I cells can also induce mitochondrial damage but only to amplify the signal, whereas in type II cells 

mitochondrial apoptotic signalling is essential to the execution of apoptosis (Guicciardi and Gores, 2009). 

After effector caspases activation (caspases-3, -6 and -7), also called execution caspases, specific cellular 

substrates are cleaved causing morphologic and biochemical changes characteristic of apoptosis, leading 

to the final cell disassembly (Slee et al., 2001). Caspase-3 is considered to be the most important of the 

executioner caspases and specifically activates the endonuclease CAD. In normal cells, CAD is coupled with 

its inhibitor, ICAD. In apoptotic cells, activated caspase-3 cleaves ICAD releasing and activating CAD that 

cleaves DNA into oligonucleosomal fragments (Sakahira et al., 1998). Caspase-3 also cleaves cytoskeletal 

proteins inducing cytoskeleton disruption with disintegration into apoptotic bodies that are phagocytised 

avoiding an inflammatory response (Slee et al., 2001). 

 

3.4 Interactions between Natural Killer cells and Dendritic Cells 

 

DCs represent the most powerful antigen-presenting cells (APC) and are found in various tissues where 

they play a major role in antigen capture. Subsequent stimuli will induce further differentiation into 
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mature DCs (mDCs) and their migration into SLT. The potent APC activity of mDCs is due to the expression 

of costimulatory molecules and to the high levels of surface HLA molecules (Banchereau et al., 2000).  

The first evidence of a crosstalk between NK cells and DCs demonstrated NK cell-dependent anti-tumour 

responses in mice bearing MHC class-I negative tumors in presence of DCs (Fernandez et al., 1999). In fact, 

the interaction between NK cells and DCs functions as an important regulator of the intensity of an innate 

immune responses. These two types of cells act during the initial phases of the innate response and 

influence the maturation of each other. NK cells also enhance ability of DCs to produce pro-inflamatory 

cytokines (Degli-Esposti and Smyth, 2005; Walzer et al., 2005; Moretta et al., 2006b).  

 

Activation of NK cells by DCs 

Interactions between NK cells and DCs are also important for the activation, expansion and maintenance 

of NK cells during microbial infections (Andrews et al., 2003; Hochweller et al., 2008) and they can occur 

through mechanisms involving direct contact or by way of soluble factors released by DCs. 

SLT are important sites of NK cell activation, since a large amount of NK cells is located in uninflammed 

lymph nodes (Ferlazzo et al., 2004b). After an encounter with bacteria, DCs mature and migrate to SLT 

where they encounter CD56brightCD16- NK cells. In course of DC-NK interplay, myeloid DCs by secreting 

NK-cells activating cytokines, promote the secretion of pro-inflammatory cytokines and cytotoxicity of NK 

cells (Trinchieri, 2003; Alli and Khar, 2004; Walzer et al., 2005). 

 

 Activation of NK cells by soluble factors – DCs produce IL-12 and IL-18 in response to a wide variety of 

pathogen-related agents (Akira, 2000; Gerosa et al., 2002; Kikuchi et al., 2004) and to endogenous signals 

from other cell types (Hilkens et al., 1997; Snijders et al., 1998). IL-18 acts as a costimulator with IL-12 

enhancing the NK cell cytotoxic function (Yu et al., 2001) and, thus, the induction of IFN-γ by NK cells 

(Trinchieri, 1998). A membrane-bound form of DC-derived IL-15 also appears to be necessary to induce 

activation or at least proliferation of NK cells (Ferlazzo et al., 2004a) assuring also NK cell survival and 

apoptosis escape following interaction with mDCs (Fig. 20) (Brilot et al., 2007).  
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Activation of NK cells by cell contact - In addition to soluble factors, many studies indicate a role for cell-

cell contact during DC-mediated NK cell activation  showing that DCs can activate NK cells through the 

activating receptors NKp30, NKp46 and NKG2D (Fig. 20) (Ferlazzo et al., 2002; Jinushi et al., 2003; Draghi 

et al., 2007) 

Enhanced IFN-γ production is also 

obtained when NK cells are stimulated 

by triggering of their surface receptors, 

supporting the hypothesis that surface 

receptor-ligand interactions are 

directly necessary for optimal NK cell 

activation (Ortaldo et al., 2006). 

 

DC maturation by NK cells 

Once activated, NK cells acquire the capability of killing myeloid immature DCs (iDCs) (DC “editing”). This 

effect is based on the capability of NK cells of discriminating between iDCs (that typically underexpress 

HLA-class I molecules) and mDCs that, after Ag uptake, up-regulate MHC-class I expression and are 

protected from NK cell killing (Fig. 21-a) (Ferlazzo et al., 2001; Ferlazzo et al., 2003). The editing process 

initiates with the engagement of the NKp30-activating receptor by its ligand expressed on DCs (Ferlazzo et 

al., 2002). 

 

The activation status of both cell types seems to be critical. iDC are more susceptible to cytotoxicity than 

mDCs (Della Chiesa et al., 2003) and the decision also depends on the relative cell numbers involved: low 

NK cell to DC ratios result in DC activation, and high NK cell to DC ratios lead to DC killing (Fig. 21-b) 

(Carbone et al., 1999; Piccioli et al., 2002). 

Moreover, resting NK cells are less likely to kill DCs and more likely to activate them, while IL-2 activated 

NK cells are more likely to induce DCs lysis (Fig. 21-c) (Piccioli et al., 2002; Mailliard et al., 2003). It seems 

that there is a check of the quality of DCs undergoing maturation (“editing” process) (Moretta, 2002; 

Figure 20 – Activation of Natural Killer cells by Dendrític Cells. 
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Moretta et al., 2005), as only DCs undergoing this NK-mediated quality control would become fully mature 

and capable of inducing priming of protective and cytotoxic Th1 responses. 

 

 

 

 

 

 

 

 

 

NK cells can also induce progression of DC maturation via cytokines released upon direct NK-DC contact 

(Moretta et al., 2005). Similar to the iDC killing process, the ability to induce DC maturation is also 

dependent on NKp30 (Vitale et al., 2005). After NK-DC interaction and NKp30 engagement, NK cells 

produce TNF-α (and INF-γ) a cytokine that induces DC maturation. Also in this case, the ability to promote 

maturation is confined to NK cells expressing the KIR-NKG2Adull phenotype (Della Chiesa et al., 2003). This 

process could complement the NK-mediated editing of DCs leading to selection of mDCs. This DC 

maturation may be relevant in adaptive immune response against cancer cells, since the absence of 

pathogen-related molecules and of inflammation does not lead to DC maturation and, as result, to an 

effective tumour antigen presentation. Similarly, NK cell-mediated DC maturation should be crucial in 

infections caused by viruses unable to trigger DC maturation. 
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Figure 21 – Editing process. The decision might depend a) on the activation status of Dendritic Cells, b) on the relative cell numbers 
involved, or c) on the activation status of Natural Killer cells. 
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4 NK CELLS IN HEALTH AND DISEASE 

 

4.1 Natural Killer cells in infections 

 

Virus infections 

NK cells function as important mediators of innate immune defence against viruses especially during the 

early phases of infection (Trinchieri, 1989). 

Activating receptors, such as NCRs (NKp46, NKp30, NKp44) or NKG2D, provide “on signals” for triggering 

NK cell activation and killing in their interaction with nonself target cells (Moretta et al., 2001b; Long, 

2002). For instance, NKG2D recognizes MICA/B (Lanier, 2005) which are poorly expressed on normal cells 

but markedly upregulated on infected cells and tumour cells (Fig. 22) (Lodoen et al., 2003; Yokoyama and 

Plougastel, 2003). 

 

NK cells through inhibitory receptors also recognize self MHC class I molecules which became 

downregulated upon stress following infection or transformation, allowing cytotoxicity by NK cells (Fig. 

22) (Parham, 2005; Akira et al., 2006). When surface expression of MHC class I is either absent or too low 

to effectively engage inhibitory receptors, NK cell activation signals proceed unopposed and trigger NK 

cell functions (“missing self recognition”) (Karre et al., 1986). HCMV encodes several genes that target the 

expression of MHC class I molecules (Hengel et al., 1999) such as US2, US3, US6 and US11 affecting MHC 

class I expression at the cell surface (Fig. 22). Modulation of MHC class I expression makes infected cells 

more susceptible to recognition by NK cells (Huard and Fruh, 2000). 

 

NKG2D is also involved in the control of infection by other members of the herpes virus family, such as 

Epstein–Barr Virus (EBV), up-regulating the expression of ULBP1, rendering the infected B cells 

susceptible to NK cell-mediated lysis (Pappworth et al., 2007). The replication of viral DNA has the 
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potential to activate the DNA damage response. Viruses may also up-regulate NKG2D ligands (Routes et al., 

2005) through, at least in part, to chromatin remodelling (Azimi et al., 2006).  

 

NK cells also mediate noncytolytic suppression of viral replication by secreting several chemokines, such 

as CCL3, CCL4 and CCL5, and cytokines such as IFN-γ, TNF-α and GM-CSF (Fig. 22) (Cerwenka and Lanier, 

2001). 

NK cells can control 

Cytomegalovirus (CMV) 

infections by the secretion of 

antiviral cytokines (Orange et 

al., 1995) or by direct lysis of 

virus-infected cells by using 

perforin (Fig. 22) (Shellam et 

al., 1981; Tay and Welsh, 

1997) depending on organ-

dependent mechanisms used 

by NK cells to control virus 

infection. 

The antiviral cytokines (IFN-γ and TNF-α) may limit virus replication and viral antigen presentation in 

hepatocytes without killing them, thereby minimizing potential killer cell damage by direct lysis. IFN-γ, 

followed by TNF-α, are probably the most important cytokines produced by NK cells with anti-infection 

activity (Orange et al., 1995; Taylor et al., 2000). 

 

Exogenous microbes such as viruses, bacteria and yeasts have conserved motifs termed PAMPs, lipids, 

lipoproteins, proteins and nucleic acids (Lee and Kim, 2007). Generally, various PRRs (including TLRs) 

have an essential role in the recognition of PAMPs by immune cells (Iwasaki and Medzhitov, 2004). 

Detection of PAMPs by PRRs induces production of several inflammatory cytokines and chemokines, 

Figure 22 – Human Citomegalovírus recognition by Natural Killer cells. 
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upregulation of costimulatory molecules and initiates adaptive immune responses (Akira and Takeda, 

2004). 

However, CMV uses immune evasion 

mechanisms to ensure that viral 

replication proceeds successfully (Fig. 23). 

HCMV UL16 glycoprotein binds and 

retains MICB, ULBP1 and ULBP2 

intracellularly, interfering with the NKG2D 

mediated response (Dunn et al., 2003; 

Vales-Gomez et al., 2003; Welte et al., 2003). 

Likewise, the HCMV protein UL142 is also 

able to target full length MICA by 

downregulating its cell surface expression 

and leading to protection from NK 

cytotoxicity (Chalupny et al., 2006). 

 

Since direct recognition of CMV-encoded components by NK cells is one mechanism ensuring that an 

antiviral response is generated, CMV is capable to encode a number of proteins that interfere with the 

surface expression of stress ligands, protecting them from NK cell recognition. 

 

NK cells are also supposed to play a significant role in preventing and controlling HIV-1 infection. In 

theory, NK cells should eliminate HIV-1 infected target cells by direct lysis or by ADCC. However, several 

NK cell functions in individuals infected with HIV-1 are highly impaired: high levels of viral replication 

induce a depletion of the cytolytic CD56dimCD16+ NK cell subset and an expansion of the CD56negCD16+ NK 

cell subset (with high levels of inhibitory NK receptors and low levels of activating NCRs). 

The virus is able to disrupt the NK cell-mediated cytolytic activity through the binding of its gp120 

envelope with the α4β7 integrin (Kottilil et al., 2006; Arthos et al., 2008). This selective HIV-1 mediated 

down-regulation of MHC-I surface levels on infected cells should, in theory, inhibit the interaction 
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between inhibitory NK cell receptors and specific HLA alleles and allow NK cell-mediated lysis. However, 

HIV-1 is also able to modulate the expression of ligands for activating NK cell receptors (Ward et al., 2007). 

 

The presence of a highly dysfunctional CD56neg NK cell subset expressing almost undetectable levels of 

NKp46 and NKp30, contributes to the reduction of NK cell-mediated killing of endogenously HIV-1 

infected CD4+ T cell blasts (Fogli et al., 2008). By other side, although ULBPs are detected in HIV-infected 

CD4+ T cells (Ward et al., 2007), HIV-1 has evolved to escape from this NKG2D-mediated cytotoxic 

response, since HIV-1 Nef protein down-modulates cell-surface expression of MICA, ULBP1 and ULBP2 

(Cerboni et al., 2007). Nevertheless, the residual NK cell-mediated killing occurs mainly through the 

NKG2D activation pathway (Ward et al., 2007). 

 

NK cells can suppress endogenous HIV replication by cell-to-cell contact as well as by soluble factors. The 

chemokines CCL3, CCL4 and CCL5, which are ligands for CCR5, can block entry of R5 viruses into target 

cells by competitive inhibition of receptor binding (Alkhatib et al., 1996; Choe et al., 1996; Dragic et al., 

1996). In fact, chemokines are the main soluble factors for NK cell-mediated HIV suppression. However, it 

is also suggested that HIV-induced inhibition of NK cell function involves mechanisms that lead to 

diminished secretion of chemokines (Kottilil et al., 2003). 

 

Bacterial and other infections 

The most likely way that NK cells control bacterial infections in vivo is by producing cytokines that 

activate macrophages to degrade the bacteria (Kaufmann, 1993; Tripp et al., 1993). Little information 

exists concerning the importance of NK cell cytotoxicity with respect to bacterial infection. Significantly, 

IFN-γ production by NK cells is critical in the prevention of overwhelming infection by obligate 

intracellular microbial pathogens in several experimental animal models, and monocyte-derived IL-15 is 

critical for optimal NK cell production of IFN-γ (Carson et al., 1995). Where bacteria-infected cells are 

lysed directly by NK cells it is likely that perforin is relevant. Nevertheless, Lipopolysaccharides (LPS) and 

bacterial carbohydrates induce NK cell cytotoxicity by increasing FasL expression on NK cells (Halaas et 

al., 1998), and therefore some bacterial infections may be controlled by Fas-mediated cytotoxicity. 
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NK cells are also recognized as major effectors of innate resistance to Toxoplasma gondii, Leishmania 

major and Schistosoma mansoni. The principal mechanism by which NK cells control the growth of these 

pathogens is indirect, involving cytokine production (IFN-γ) rather than cytolytic activity (Scharton-

Kersten and Sher, 1997). Cytokine production limits parasite replication and promotes the development of 

adaptive cell-mediated immunity. In the case of Eimeria papillata, resistance to reinfection does not 

require IFN-γ and appears to be mediated at least in part by a perforin-dependent mechanism (Schito and 

Barta, 1997). 

 

A role for NK cells has also been found in other infections. Murine adenovirus infection results in 

significant lymphocyte infiltration (both NK and T cells), liver injury, and increased hepatocellular 

enzymes (Liu et al., 2000). Elimination of NK cells by antibody depletion or use of nude mice (NK cell 

deficient) suppresses hepatocellular enzyme elevations and reduces apoptosis of hepatocytes. CD8+ T 

lymphocyte responses induced by viral infection were severely depressed after NK cell depletion or in 

IFN-γ-deficient mice. Therefore, NK cells play a role in the induction of the virus-specific T cell responses 

in adenovirus infection. NK cells are also implicated in control of Cryptococcus neoformans infections. 

Infection of mice with targeted deletion of IL-12 resulted in a higher number of Cryptococcus neoformans 

organisms in both brain and lung compared to wild-type controls (Kawakami et al., 2000). Neutralization 

of IFN-γ or infection in IFN-γ-deficient mice resulted in more severe infections, suggesting a role for IL-

12–induced.  

 

4.2 Natural Killer cells in tumour biology  

 

Another important function of NK cells is the elimination of tumour cells (Smyth et al., 2002). NK cells 

control several types of tumours by limiting their growth and dissemination (Vivier et al., 2008). The lack 

of even a single MHC class-I allele, a frequent event in cancer cells, sensitizes them to NK cell cytotoxicity 

(Bottino et al., 2004; Moretta et al., 2004) and, thus, tumour cells are recognized as NK cell targets (Fig. 24) 

(Trinchieri, 1989). In the absence of inhibitory signals, NK cell cytotoxicity must be activated by a set of 

triggering receptors as NKG2D, DNAM-1 and NCRs, whereas CD16 mediates ADCC (Trinchieri, 1989; 
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Bottino et al., 2004; Moretta et al., 2004). NKG2D and DNAM-1 have been suggested to have a role in 

tumour immunity (Costello et al., 2004; Chang and Ferrone, 2006; Moretta et al., 2006a). 

 

NKG2D ligands are frequently over-expressed on tumour cells from several origins (Cerwenka et al., 2001; 

Diefenbach et al., 2001) and their expression renders tumour cells susceptible to NK cell-killing even if the 

transformed cells have normal MHC class I expression. In humans, MICA/B proteins are frequently 

expressed in epithelial tumours of multiple origins, but less frequently found in hematopoietic 

malignancies. In contrast, ULBPs are not usually expressed in epithelial tumours, but are expressed in 

leukaemias. It is thought that the main mechanism involved in the upregulation of NKG2D ligands 

(MICA/B and ULBPs) on cancer cells is cellular stress, as heat shock (Groh et al., 1998), oxidative stress 

(Yamamoto et al., 2001), genotoxic stress and stalled DNA replication (Gasser et al., 2005). Additionally, 

DNA damage also activates the expression of NKG2D ligands and some oncogenes may also up-regulate 

the expression of NKG2D ligands (Boissel et al., 2006; Cebo et al., 2006).  

 

The NCRs also play a role in NK cell-mediated lysis of various human tumour cell lines, including 

melanomas, carcinomas, neuroblastomas, myeloid or lymphoblastic leukaemias and EBV-transformed B 

cells (Bottino et al., 2005). Moreover, NK cells can be activated by various stimuli such as contact with DCs, 

MHC class I-negative cells, binding of IgG immunocomplexes, direct engagement of NK receptors by stress-

induced tumour-associated molecules or pathogen-derived products, and several cytokines (Fig. 24). 

Anti-tumour responses can be triggered by NK cells through different effector mechanisms (Wallace and 

Smyth, 2005) as granule exocytosis (van den Broek et al., 1995; Smyth et al., 1999; Trapani and Smyth, 

2002) and death receptor stimulation (Medvedev et al., 1997; Zamai et al., 1998; Johnsen et al., 1999; 

Mirandola et al., 2004; Screpanti et al., 2005). 

 

NK cells can also produce many different cytokines and chemokines, at least some of which having a direct 

effect on tumours. Among activatory cytokines, IL-15 has a role in the differentiation, proliferation, 

survival, and activation of NK cells and synergizes with Flt3-L and SCF inducing the human CD56bright NK 

cell subset (Mrozek et al., 1996; Waldmann et al., 2001; Farag and Caligiuri, 2006). IL-7 is an early-acting 
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cytokine responsible for the generation of a pool of CD56bright NK cells that respond to the activating action 

of IL-15 (Di Santo, 2006). 

IL-2 induces the production of NK 

effector molecules, enhancing NK 

lytic activity (Rosenberg et al., 1993) 

and IL-12 and IL-18 enhance 

cytotoxicity against tumour targets 

and IFN-γ production by NK cells 

(Bennett et al., 1996; Golab, 2000; 

Lauwerys et al., 2000). IFN-γ 

decreases proliferation, enhances 

autophagy, limits metabolic activity 

of tumour cells and inhibits 

angiogenesis (Hayakawa et al., 

2002). IFN-γ also plays a role in the 

regulation of killing by DRs, either 

by downregulating anti-apoptotic 

proteins, or by upregulating 

caspases. Finally, IL-21 favours the 

most cytotoxic CD56dimCD16+ NK 

cell subset and enhances its 

cytotoxicity (Parrish-Novak et al., 

2000; Brady et al., 2004).  

 

NK cells are not found in large numbers in advanced human neoplasms, indicating that they do not 

normally home efficiently to malignant tissues (Albertsson et al., 2003; Esendagli et al., 2008) and so, the 

immune infiltration of NK cells on tumours represents a positive prognostic marker in different 

carcinomas (Coca et al., 1997; Ishigami et al., 2000; Villegas et al., 2002). 

Figure 24 – a) NK cells are tolerant to healthy host cells, as the strength of the 
activating signals is dampened by the engagement of inhibitory receptors;  b) 
Tumour cells may lose expression of MHC class I molecules and NK cells become 
activated, as they are no longer held in check by the inhibitory signal. c) NK cells 
are selectively activated by 'stressed' cells, which upregulate activating ligands for 
NK cells and thereby overcome the inhibitory signalling delivered by MHC class I 
molecules.  
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It was observed a specific phenotype of tumour-associated NK cells, suggesting that tumour induces 

alterations of activating NK cell receptor expression, promoting tumour progression. NK cells that 

infiltrate tumors show, in some cases, downregulation of activating receptors and in others, 

overexpression of inhibitory ones. Tumour-associated NK cells were refractory to CD16 receptor 

stimulation, resulting in diminished ADCC against autologous tumour cells (Carlsten et al., 2009). The 

cytolytic potential of NK cells isolated from cancer tissues was lower than that of NK cells from PB or 

normal lung tissue, with no difference observed in their capability to produce cytokines (Carrega et al., 

2008). It was also observed a significantly lower percentage of NK cells expressing CD16, NKp30, and 

NKp46 activating receptors with no substantial differences in NKG2D expression (Konjevic et al., 2009). 

These alterations reduce the NK cells ability to recognize and eliminate tumour cells in Multiple Myeloma 

(MM) patients (Markel et al., 2009). Likewise, the frequency of NK cells expressing the activating receptors 

NKp30, NKp44, NKp46, NKG2D, and NKG2C was significantly decreased in Acute Myelogenous Leukemia 

(AML) patients compared to the NK cells of normal controls (Szczepanski et al., 2010).  

 

Tumour evasion 

Although NK cells play an important role in host anti-tumour responses (Fig. 25-a) (Kim et al., 2000; Wu 

and Lanier, 2003; Hayakawa and Smyth, 2006), advanced tumours may evade NK-mediated surveillance by 

downregulating their expression of NKG2D ligands (Eisele et al., 2006) (Fig. 25-b,c). 

 

Thus, although the expression of MICA/B may result in the elimination of the tumour, the detaching of 

MICA, from the surface of the cells to the plasma, is a common characteristic of many tumours expressing 

this protein (Groh et al., 2002; Salih et al., 2002; Doubrovina et al., 2003), serving as decoy to subvert NK 

cell immune responses. The presence of soluble MICA on multiple primary tumours leads to a reduced 

amount of NKG2D ligand at the membrane of the tumour cells. This situation causes endocytosis and 

degradation of the NKG2D receptor (Groh et al., 2006) with consequent diminished expression of NKG2D 

on circulating NK cells (Groh et al., 1999) (Fig. 25-d). 

The chronic exposure to tumour cells expressing NKG2D ligands alters NKG2D signalling and may 

facilitate the evasion of cancer cells from NK cell responses (Oppenheim et al., 2005).  
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Moreover, it was also observed bilateral transfer of NKG2D and ligands (MICB) between NK cells to target 

cells (Roda-Navarro et al., 2006), leading to a marked reduction in the capacity of the NK cells to mediate 

NKG2D-dependent cytotoxicity.  

 

The repression of the NKG2D ligand transcription (MICA/B or ULBPs) by epigenetic mechanisms (Stern-

Ginossar et al., 2007; Lopez-Soto et al., 2009) or of the NKG2D ligand expression by Transforming Growth 

Factor (TGF)-β1 (Friese et al., 2004; Eisele et al., 2006) are other relevant immune evasion mechanisms, 

promoting cancer progression and immune evasion. 

 

 

 

 

 

 

 

Figure 25 – Tumour escape mechanisms. 
Tumour escape from NK cell control through 
downregulation or shedding of NKG2D 
ligands. Tumour cells with increased NK 
cell–activating ligand MIC and/or ULBP 
expression in conjunction with classical HLA 
class I antigen downregulation are sensitive 
to NK cell-killing. On the other hand, tumour 
cells with MIC/ULBP downregulation or 
shedding in spite of increased expression on 
the cell surface are resistant to lysis by NK 
cells.  
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5 RELEVANCE OF NK CELLS IN TREATMENT OF HUMAN MALIGNANCIES 

 

NK cells play a significant role in the surveillance and elimination of malignant transformed cells. These 

cells regulate HLA class I expression making them susceptible to NK cell-mediated lysis (Khong and 

Restifo, 2002). Evidence for the involvement of NK cells in destroying human tumour cells in vivo derives 

from allogeneic BM transplantation. 

Anti cancer effects of NK cells include, among others, the ability of NK cells to lyse tumour cells. The lack of 

even a single MHC class I allele, a frequent event in cancer cells, leads to tumour cells be recognized as NK 

cell targets (Trinchieri, 1989) sensitizing them to NK cell cytotoxicity (Bottino et al., 2004; Moretta et al., 

2004). Moreover, NKG2D ligands are frequently over-expressed on tumour cells from several origins 

(Cerwenka et al., 2001; Diefenbach et al., 2001) and their expression renders tumour cells susceptible to 

NK cell-killing even if the transformed cells have normal MHC class I expression. 

The presence of NK cells within the tumours also represent an anti-cancer effect observed by NK cells. 

Typically, NK cells are not found in large numbers in advanced human neoplasms, indicating that they do 

not normally home efficiently to malignant tissues. However, the immune infiltration of NK cells on 

tumours represents a positive prognostic marker in several carcinomas (Coca et al., 1997; Ishigami et al., 

2000; Villegas et al., 2002). By other side, this migratory process of NK cells can be further enhanced by 

immunotherapeutic regimens that enhance NK recruitment to the tumour microenvironment (Choi et al., 

2007). 

Another evidence showing that NK cells participate in tumour defence is their increased function and anti-

tumour response in individuals treated with IL-2. In fact, endogenous or ex vivo activated NK cells with IL-

2, increases the density of surface expression of activation molecules and consequently NK cell 

cytotoxicity (Fujisaki et al., 2009). This will enhance the immunotherapeutic action of NK cells in the 

elimination of tumours (Fehniger et al., 2002). 

The correlation of decreased NK cell function with tumour progression (Albertsson et al., 2003) represents 

another predictive factor involving NK cells in immunological response to tumours. Suppressive factors, 

such as MIC, which are downmodulating receptors on NK-cells, have been hypothesized to be responsible 

for this impairment of NK-cell function in malignant disease (Brittenden et al., 1996; Doubrovina et al., 
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2003). Furthermore, stress and surgical interventions as well as chemotherapy may account for 

disturbances of NK-cells in cancer (Ben-Eliyahu et al., 1999; Koda et al., 2003).  

 

Two principle strategies for therapeutic use of NK cells exist: the activation of endogenous NK cells and 

the adoptive transfer of NK cells (Albertsson et al., 2003; Costello et al., 2004). A third strategy could be the 

Graft versus Tumour (GvT) effect mediated by developing donor NK cells following Hematopoietic Stem 

Cell Transplantation (HSCT) (Velardi et al., 2002).  

 

5.1 Principles of autologous NK cell immunotherapy 

 

The use of autologous activated NK cells in cancer therapy dates back to the 1980s, when the first 

therapeutic trials using adoptive immunotherapy were performed by several groups testing autologous 

lymphokine-activated killer (LAK) cells to treat a variety of malignancies (Rosenberg et al., 1987). Since 

then, the clinical benefit appeared to be marginal for most tumours. However, subcutaneously 

administration of IL-2 was demonstrated to be safety and feasibility to stimulate endogenous NK cell 

activity in patients with cancer (Miller et al., 1997; Robinson et al., 1997; Meropol et al., 1998; deMagalhaes-

Silverman et al., 2000). 

 

Two main strategies for the therapeutic use of NK cells have been considered, although they have the 

same biological significance. NK cells can be endogenously cytokine-activated or used in terms of adoptive 

transfer in which NK cells from the patient are collected, ex vivo activated and placed back into the 

patient. In both settings, patient and donor are the same person and NK cells are cytokine activated  

 

Activation of endogenous Natural Killer cells 

The therapeutic efficacy of endogenous NK cells depends on the effectiveness of NK-activating agents to 

mobilize sufficient numbers of these cells to metastatic sites. Various clinical protocols for endogenous 
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NK-cell stimulation have been initiated based on cytokine-therapy regimens. Because IL-2 is still 

considered to be among the most highly potent immunostimulatory compounds, most clinical trials use 

this agent (usually at high-dose) as monotherapy or together with other biological-response modifiers 

(BRMs).  

 

Importantly, in the metastatic tissues of untreated patients, tumour infiltrating NK cells are either not 

detectable or present only in very small numbers (Vujanovic et al., 1996). The ability of NK cells to migrate 

to tumour sites appears to be tightly linked to their stage of activation (Hagenaars et al., 1998; Hokland et 

al., 1999). Although the number of NK cells in malignant tissues is usually small, systemic treatment with 

BRMs, such as IL-2 (Hagenaars et al., 1998; Hokland et al., 1999) or Poly I:C (Polyinosinic:polycytidylic 

acid) (Wei and Heppner, 1987), increases accumulation of these cells around and even inside tumour 

nodules. Although the general NK-cell:tumour cell ratio inside a tumour nodule is promising, it is far 

below that necessary to induce NK-cell elimination of tumour cells in vitro. However, it is possible that 

fewer NK cells activated by IL-2 might be needed in vivo to exert significant anti-tumour effects, especially 

against smaller tumours. In this respect, it is important to bear in mind that almost all of the clinical 

studies accomplished to-date have been performed in patients with disseminated disease and large 

tumour burdens. Under such conditions, treatment-induced upregulation of endogenous NK-cell activity 

and frequency might not be sufficient to induce tumour regression. 

 

The use of IL-2 allowed the in vitro expansion and enhanced the cytotoxic activity of NK cells and 

broadened the spectrum of NK-susceptible tumour cells to include solid tumors as well as hematologic 

malignancies. This led to a plethora of clinical trials using IL-2 in order to improve the anti-tumor effect of 

NK cells by either endogenous activation of the patient’s own NK cells by IL-2 or of ex vivo expanded 

autologous NK cells (Rosenberg et al., 1987). Although these clinical trials demonstrated the safety of 

activated NK cells, only infrequent clinical responses were reported, with some durable long term 

complete responses largely in patients with metastatic melanoma or renal cancer. This led the Food and 

Drug Administration (FDA) to approve the use of high dose IL-2 for patients with metastatic renal cancer 

in 1992 and for patients with metastatic melanoma in 1998 (Fig. 26-a).  
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The very recent availability of GMP grade IL-15, now in phase I clinical trials by the National Institutes of 

Health (NIH) (Geller et al., 2011) may circumvent the use of IL-2, providing a better activation signal for 

NK cells. The recent excitement surrounding IL-15 concerns its ability to stimulate NK and CD8+ T cells 

without inducing capillary leak syndrome, decreasing the risk for organ failure in some patients. Also, 

unlike IL-2, IL-15 doesn’t trigger regulatory T (Treg) cells that might otherwise put the brakes on its 

therapeutic benefits. Thus, if the in vivo administration of IL-15 proves to be less toxic compared to IL-2, 

this may allow the use of IL-15 in combination with lower dose IL-2 in future clinical trials to enhance the 

NK anti-tumor effects in cancer patients. 

 

 

 

 

 

 

 

Adoptive transfer of in vitro IL-2-activated NK cells 

Adoptive immunotherapy with in vitro IL-2-activated NK (A-NK) cells is based on the inoculation of 

autologous effector cells, which are thus ready to migrate to and infiltrate metastases (Fig. 26-b). From a 

clinical perspective, cancer treatment using adoptive immunotherapy with NK cells started with LAK-cell 

therapy. This course of therapy rapidly advanced into the clinic because promising results were obtained 

in preclinical experiments.  

IL-2 was used to expand the number of circulating NK cells in vivo in patients who recovered after 

autologous transplant, resulting in NK cell expansion, increase of NK differentiation from BM progenitors 

and IL-2 dependent delay in NK cell death (Fehniger et al., 2000). 

However, IL-2 treatment is associated with life-threatening toxicity, essentially represented by capillary 

leak syndrome (Fehniger et al., 2002). Moreover, IL-2 activated NK cells increase their sensitivity to 

apoptosis when in contact with vascular endothelium (Rodella et al., 2001), likely causing a decrease in NK 

Figure 26 – Natural Killer cell therapies in autologous settings. 
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cell migration toward the cancer area. Thus, toxicity of systemic cytokine administration and cytokine-

activated NK cell apoptosis are two important limitations of cytokine-mediated (and NK adoptive) 

immunotherapies for cancer treatment. Thus, the prospective candidate must be in fairly good health to 

qualify for this drug and the IL-2 administration must be given in a hospital setting where the patient can 

be closely monitored by physicians and staff who have significant experience in its use. Although 

protocols using IL-2 treatment resulted in activation of NK cell cytotoxicity (Phillips et al., 1987), this effect 

is dependent on the dose and schedule of IL-2 administration (Gratama et al., 1993). The significant 

toxicity of the capillary leak syndrome induced by high-dose IL-2 led to trials using low-dose 

subcutaneous IL-2, either alone or in combination with activated NK cells. The NK cell-based autologous 

immunotherapy has the advantage to prevent relapse, however these strategies failed to show efficacy in 

patients with lymphoma and breast cancer (Burns et al., 2003). 

IL-2 injection may increase NK-cell lifespan and activity, but also can generate outgrowth of Treg cells that 

may hamper the overall response to the tumour as shown in pilot clinical trials (Barkholt et al., 2009; 

Geller et al., 2011). 

 

These initial results have prompted several groups to embark on the large-scale expansion of highly 

purified, “good manufacturing practice” (GMP) grade NK cells after longer-term in vitro expansion. Some 

of the protocols have reached small-scale phase I clinical trials and have demonstrated that high numbers 

of infused NK cells are safe in humans (Barkholt et al., 2009; Fujisaki et al., 2009). Moreover, large-scale 

expansion method was already been possible for human NK cells (Spanholtz et al., 2010; Sutlu et al., 2010).  

 

By other side, in the clinical setting, the purity of NK cells to be used, is also a the key factor to consider. 

Simple purification of NK cells by a single-step or two-step procedure may be enough for some 

applications. Various groups have evaluated the adoptive transfer of autologous NK cells for cancer 

immunotherapy in the clinical setting. Escudier et al. have demonstrated that the infusion of autologous 

NK cells that have been expanded and activated ex vivo for 13–21 days, greatly improves clinical 

responses in patients with metastatic Renal Cell Carcinoma (RCC) who have previously achieved partial 

remission through IL-2 infusions (Escudier et al., 1994). Moreover, the high level of IL-2Rα expression in 

long-term expanded NK cells (Luhm et al., 2002; Clausen et al., 2003), as compared with endogenous 
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CD56dim or CD56bright NK cells and short-term activated NK cells, may provide a higher benefit from 

subsequent IL-2 administration to the patients. 

 

5.2 Natural Killer cells in allogeneic transplantation 

 

NK cells play a prominent role in determining the outcome of allogeneic HSCT. This is based on the 

concept of “missing self”, whereby NK cells recognize and eliminate foreign target cells due to their lack of 

expression of self MHC class I. In this line, autologous NK cell therapy failed in some clinical settings due to 

inhibitory receptors that recognize MHC on tumour cells (Moretta et al., 1993; Karre, 1995; Raulet and 

Held, 1995) thus making allogeneic cell transfer (ACT) more attractive. 

 

Allogeneic HSCT (from a nonidentical donor) is a complex clinical procedure, with considerable 

differences in the nature and origin of the graft, as well as in pregraft treatments (conducted to remove 

recipient hematopoietic cells and thereby allow the graft to implant) and postgraft treatments [to prevent 

Graft versus Host Disease (GvHD) caused by donor T cells]. Initial results with the use of mismatched 

allografts led to limited enthusiasm due to GvHD and infectious complications resulting in unacceptable 

treatment-related morbidity and mortality. 

 

The use of allogeneic NK cells is tentatively alluring, given the current comprehensions of NK cell 

regulation. A provisional prerequisite for NK cell alloreactivity is that the recipient lacks one or more KIR 

ligands present in the donor. The donor may in such situations have NK cells that express inhibitory KIR 

for which there is no ligand on recipient cells. Therefore, a KIR ligand-mismatched donor is likely to give 

the best chances for clinical response. 

 

Among the well-characterized KIR ligands are the HLA-C group 1 (Asn80) and group 2 (Lys80) alleles, 

HLA-Bw4 epitope and HLA-A3/A11 Ag. Although NK cells are self-tolerant, they can recognize allogeneic 

cells because of the lack of relevant HLA inhibitory ligand (“missing self”). The two HLA-C groups of alleles 
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defined by the epitopes Asn80 and Lys80, respectively, are ligands for activating and inhibitory receptors. 

The inhibition consequences of KIR epitopes mismatches have been exploited in haploidentical (half-

matched) HSCT: when the patient/donor are KIR epitope-mismatched, say the patient is homozygous for 

HLA-C S77/N80 group 1 ligand and donor is heterozygous for group 1 and group 2 ligands, the donor NK 

clones with KIRs recognizing group 2 HLA-C alleles will fail to exert an inhibitory action because of the 

lack of HLA-C group 2 epitope on patient’s cells. In this case, such NK clones exert a beneficial 

alloreactivity against host leukemic cells (Weisdorf et al., 2002).  

 

Haploidentical HSCT provides an opportunity for nearly all patients to benefit from HSCT when a HLA 

genotypically matched sibling is not available. In this context, Velardi and co-workers announced a new 

era in the exploitation of NK cells for cancer immunotherapy. In 2002, they published that KIR-ligand 

mismatch between patients and their donors was associated with improved outcomes in AML after T-cell 

deplete (TCD) haploidentical hematopoietic cell transfer (HCT) (Ruggeri et al., 2002). They tested the 

effect of the intentional KIR-ligand mismatch to treat haematological malignancies, demonstrating a 

benefit of NK cells alloreactivity with improved rated of BM engraftment, less relapse (better overall 

survival) and suppression of T-cell mediated GvHD. 

 

The Graft versus Leukaemia (GvL) effect correlates with the generation of alloreactive NK cells 

characterized by potent anti-leukaemia activity. The reduced rate of GvHD is also likely to be the result of 

the NK cell-mediated killing of recipient APCs. Alloreactive NK cells cannot mediate a DC editing process 

because they kill all DCs of the host, independent on their stage of maturation. This, in turn, would be 

essential to prevent donor T cell priming and subsequent generation of GvHD. Unlike allogeneic T cells 

that can cause GvHD disease in the recipient, allogeneic NK cells may have a better capacity to 

discriminate tumour cells from normal healthy tissues (Fig. 27).  

 

Later studies have shown that NK cells from healthy donors and cancer patients show higher cytotoxic 

activity against various KIR-ligand mismatched tumour cell lines when compared with KIR-ligand 

matched targets (Igarashi et al., 2004).  After the ground-breaking retrospective analysis of haplotype 
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mismatched HSCT, within the setting of NK cell-based immunotherapy, the KIR-ligand mismatch 

phenomenon has attracted great attention (Ruggeri et al., 2006). Thus, in certain donor-recipient 

combinations, chances for missing-self may prevail, providing better possibilities for anti-tumour 

reactivity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In fact, in TCD, HLA-matched, but KIR-mismatched BM transplants (in which not all donor-derived NK 

cells are inhibited by the recipient HLA or educated by donor or recipient HLA), the number of inhibitory 

KIR-HLA mismatches (that is, missing inhibitory ligands in the recipient) correlates with positive 

outcomes, including fewer leukemic relapses and improved graft acceptance (Symons et al.; Hsu et al., 

2005; Clausen et al., 2007; Sobecks et al., 2007).  

Reciprocally, in TCD BM grafts, HLA-mismatched, positive outcomes correlate with lack of HLA ligands in 

the recipient for inhibitory KIRs on donor-derived NK cells (Ruggeri et al., 2002; Miller et al., 2007). Thus, 

in the case of NK cell-mediated GvL, expression of inhibitory KIRs on donor-derived NK cells that are 

Figure 27 – NK cells in allogenic stem cell transplantation. Allogenic NK cells from donor can directly kill recipient T cells as well 
as inhibit T cell mediated GVHD through killing of recipient antigen presenting cells such as dendritic cells that may initiate GVHD. 
Furthermore, NK cells can provide anti-tumor effects by killing residual cancers in the recipient. 
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reactive with recipient HLA limited the effectiveness of donor NK cells in clearing leukaemias and 

promoting graft acceptance (Yokoyama et al., 2010b). 

Since the initial data from haploidentical HSCT, a number of retrospective studies in allostransplantation 

have been published, sometimes leading to different clinical outcomes (Witt, 2009). These conflicting 

results may be explained primarily by three factors: the degree of T cell alloreactivity, the definition of 

“KIR mismatch” and misclassification. Initially, alloreactive NK cells were simply defined by having KIRs 

that were only incompatible with the host MHC, and several studies have identified such alloreactive NK 

cells that are effective against AML blasts. NK cell alloreactivity occurs when a subset of NK cells express 

KIR specific for an allelic epitope that is absent on (recipient) allogeneic cells, leading NK cells to kill these 

allogeneic cells. An HLA class I mismatch between NK cells and target cells does not lead necessarily to 

NK-mediated target cell killing. KIRs recognize allotypic determinants that are shared by groups of HLA 

class I alleles. KIR mismatch is necessary to induce activity against MHC-positive cells (we will refer to 

these cells as potentially alloreactive) but not entirely sufficient, as they must have undergone an 

education process. Thus “alloreactive” NK cells must not only express KIR that are not engaged by any of 

the HLA class I alleles present on allogeneic target cells (Vitale et al., 1995) but also should not express 

CD94/NKG2A, as HLA-E is present on all HLA class I+ cells (Pende et al., 2006). 

 

The licensing model predicts that developing NK cells that fail to receive a signal through an inhibitory 

receptor are hyporesponsive to activating stimuli. However, licensing can be bypassed in a 

proinflammatory environment (Kim et al., 2005), as is seen following myeloablative conditioning. Leung 

and colleagues argue that alloreactivity may be predicted by considering only the expression of donor-

inhibitory KIR and recipient ligand (Leung et al., 2004). In the setting of allo-HCT, higher numbers of 

activating KIR genes have been correlated with increased frequency of acute and chronic GvHD. In 448 

unrelated transplants for AML, it was found that the presence of a donor, KIR-B haplotype, which contains 

a higher number of activating KIR genes than the A haplotype, predicted improved relapse free and overall 

survival in which there was no KIR ligand mismatch (Cooley et al., 2009). This benefit was not observed in 

patients with KIR ligand mismatched transplants. An interesting recent study showed that in the setting of 

T-cell depleted (TCD) haploidentical transplantation with KIR-L mismatch, NK cells co-expressing the 

activating KIR2DS1 with inhibitory KIR2DL2/3 or NKG2A were able to kill recipient leukaemia blasts, 
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highlighting that recognition by activating KIR might be able to overcome inhibitory signals (Pende et al., 

2009). NK cell effector capacity is also influenced by class and quantity of inhibitory receptors for self-

HLA-B and HLA-C ligands (Pfeiffer et al., 2007; Yu et al., 2007).  

 

Generally, there are two main scenarios: 

(1) In haploidentical HSCT, the harsh conditioning regimen and high CD34-positive cell content allow the 

donor NK cells to mature with a recognition of the “self” MHC type on the donor hematopoietic cells, and 

therefore become truly alloreactive against residual recipient blast cells, whereas normal host tissues are 

spared because of lack of NK-stimulatory ligand expression (Pende et al., 2009; Haas et al., 2010). 

(2) In nonhaploidentical situations, education of NK cells on donor HLA may be lacking in some graft 

preparation and pregraft regimens, which might account for the neutral effects seen (cells remain 

potentially alloreactive). Conflicting results in nonhaploidentical situations (Davies et al., 2002; Giebel et 

al., 2003) may be also explained by different treatments resulting in different T-cell levels in grafts and 

consequently different levels of GvHD (Cooley et al., 2009). This hypothesis is further supported by 

protocols where the graft origin is umbilical cord blood (UCB), a situation with few mature T cells in the 

graft, which results in a beneficial outcome (Willemze et al., 2009). 

 

UCB is a promising source of NK cells because these cells have enhanced sensitivity to stimulation, 

decreased potential to cause GvHD and are available from cord banks throughout the world. 

GvHD is a common side effect of patients receiving stem cell transplants, which results when the T cells in 

the transplanted blood react against the patient's own cells. This disease can become fatal if it's unable to 

be controlled. NK cells operate differently from T cells, leaving normal cells alone while targeting and 

killing the cancerous cells. Historical transplants used a matched donor's PB or BM to transplant to a 

patient. However, in 1988, researchers found UCB to be another source for stem cell transplantation 

(Gluckman et al., 1989). These immature stem cells were easier to match to patients, especially those from 

non-Caucasian ethnicities, and could be stored for use as needed. These NK cells demonstrate significant 

cytotoxic activity against human AML and Acute Lymphoblastic Leukaemia (ALL) cell lines and patient 
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leukaemia blasts, supporting the evaluation of UCB-derived NK cells as a potential immuno-therapeutic 

approach in acute leukaemias. 

 

Overall, NK cell products for adoptive transfer can be prepared from adult donor lymphapheresis 

products, from UCB units or from cell lines, and can be expanded either in vivo or ex vivo. 

 

5.3 Monoclonal antibodies approaches 

 

Retrospective studies of KIR/HLA mismatched stem cell transfer (SCT) in AML patients showed that the 

lack of KIR engagement on donor NK cells by patient MHC class I molecules was associated with a 

significant reduced risk for leukaemia relapse (Ruggeri et al., 2002). NK cell activity can be augmented 

with cytokines and immunomodulatory drugs such as thalidomide, TLR-agonists or vaccines. However, 

the manipulation of NK cell reactivity in these settings implies haploidentical HSCT, which are associated 

with considerable adverse effects, including GvHD mediated by allogenic T cells. A safer strategy is to 

block NK cell inhibitory receptors in an autologous setting, and is currently tested in phase II clinical trials 

with a fully human anti-KIR monoclonal antibodies (mAbs) (Romagne et al., 2009; Sola et al., 2009) (Fig. 

28). Accordingly, autologous NK cells can be directed against tumours by blocking inhibitory receptors, 

increasing the expression of activating receptor ligands on tumours and by targeting NK ADCC against 

those receptors with specific antibodies. 

In fact, modulation of NK cell recognition of tumours may 

be achieved by blockade of inhibitory KIR as it was recently 

demonstrated using a humanized antibody (1-7F9) to 

KIR2DL1, KIR2DL2, and KIR2DL3 as well as the activating 

receptors KIR2DS1 and KIR2DS2 (Romagne et al., 2009). 

While the monoclonal 1-7F9 should be valuable to block 

the inhibition of NK cells (and mediating lysis of leukemic 

cells), other products are now available that can enhance 

the activation of NK cells. Figure 28 – Anti-KIR therapy in autologous settings. 
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However, there are always a risk of generating a strong reactivity against normal self-tissues and/or to 

interfere with NK cell education. The development of anti-KIR-therapeutic mAbs that block NK inhibition 

may allow the use of autologous cells as an easier source of cell material, by inducing alloreactivity of NK 

cells that would otherwise be MHC-tolerant. 

 

Administration of mAbs to tumour-associated Ags can also promote NK cell-mediated ADCC response 

against tumour targets (Clynes et al., 2000; Caligiuri et al., 2004). 

Despite the lack of true specificity and the limited efficacy, this approach has a unique mechanism of 

action that does not produce cross-resistance or overlapping toxicities with conventional agents (Caligiuri 

et al., 2004) and that can therefore be combined with cytokine-based immunotherapies. NK cells are 

important effectors in the mAb-driven immune response to tumours, and data continue to accumulate on 

their importance (Beano et al., 2008). 

 

Multiple clinically successful mAbs utilize NK-mediated ADCC as a mechanism of action (Fig. 29). 

Rituximab (anti-CD20), Herceptin (anti-HER2/neu), Cetuximab [anti-Epidermal Growth Factor Receptor 

(EGFR)], and the anti-disalganglioside (GD2)-mAbs 3F8 and ch14.18 are examples of tumour-specific 

mAbs whose clinical activity can be attributed, at least in part, to NK cells. 

 

 

 

 

 

 

 

Herceptin, a humanized antibody against HER2/neu, to normal resting NK cells without IL-2 activation 

significantly enhanced killing of breast cancer targets. GD2 is overexpressed on tumors of 

neuroectodermal origin, such as neuroblastoma and melanoma, and minimally expressed in normal 

Figure 29 – Example of combinatorial approach of NK cell immunotherapy with mAb therapy (e.g., the anti-HER2/neu mAb 
trastuzumab). NK cells express an activating Fc receptor (CD16) that recognizes the constant region of IgG and allows them 
to kill antibody-coated target cells via ADCC. 
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tissues making it a good target for tumour-specific mAb. Anti-GD2 mAbs work through NK cell-mediated 

ADCC and have demonstrated clinical benefit for children with neuroblastoma (Yang and Sondel, 2010). 

These examples use mAbs targeting tumour antigens antibody-facilitated NK cell-mediated cancer 

immunotherapy strategies. 

 

Antibodies with high affinity Fc regions for FcγRIIIa are better at activating NK cells and can be used at 

lower concentrations than traditional antibodies and maintain anti-tumour activity (Bowles et al., 2006). 

These mAbs maybe beneficial in a clinical setting by reducing the amount of antibody necessary to 

produce an antitumor response and therefore reduce mAb-related toxicities (Weiner et al., 2010).  

 

The combination of mAb therapy with cytokines is another strategy used to increase their activity. 

Combination of Herceptin with IL-12, an important cytokine to NK cell responsiveness and IFN-γ 

production, increases the response of NK cells to HER2-expressing breast tumour cells in a mouse model 

of breast cancer (Parihar et al., 2002). IL-2-activated LAK cells have increased ADCC activity against mAb-

coated tumour cells (Hank et al., 1990; Schultz et al., 1990) by diminishing the required amount of 

antibody necessary for NK cells to effectively lyse antibody-coated tumour targets (Watanabe et al., 1993). 

 

Additional approaches to augment NK cell activity include the utilization of Immunocytokines (ICs). ICs 

are antibodies with linked cytokines at the Fc terminal end. The anti-GD2 IC hu14.18-IL-2 is a humanized 

mAb developed via fusion of two molecules of IL-2 to the mAb, 14.18, that recognizes GD2, expressed on 

high risk melanoma and neuroblastoma (Fig. 30) (Gillies et al., 1993; Hank et al., 1996). ICs may have 

certain advantages over traditional mAbs (Yamane et al., 2009). 

 

 

 

 

 

 Cytokine                
(for exemple IL-2) 

Fc            
receptor 

Cytokine               
receptor 

Surface antigen            
(for exemple GD2) Tumour cell 

NK cell 

Figure 30 – Monoclonal antibody specific for a tumour-

associated antigen allows the enrichment of cytokines in the 

tumour microenvironment. In the case of interleukin-2 (IL-2) 

it enhances antibody-dependent cellular cytoxicity mediated 

by Fc-receptor positive effector cells such as Natural Killer 

cells.  
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ICS are fusion proteins that genetically fuse immunologically reactive mAbs to cytokines. The goal is to 

retain the functions of both the cytokine and the antibody components in a single bifunctional molecule, 

and to ultimately expand the biologic activities of one component (the antibody) with the biologic function 

of the other component of the IC (the cytokine). 

In several preclinical models, using 3 different ICs, the IC provided far greater antitumor effects than the 

same amount of the naked mAb infused with the same amount of IL-2 (but infused simultaneously as 

separate molecules rather than as the IC fusion protein). ICs transport cytokine to the site of tumour and 

can support an ongoing local anti-tumour immune response (Lode et al., 1997; Johnson et al., 2008). Direct 

delivery of IC into the tumour itself elicits a more potent local effect (Johnson et al., 2008). The potential 

benefit of IL-2 containing ICs in activating and assisting NK cells in tumour cell destruction is a relatively 

new research area for clinical NK-mediated tumour immunotherapy. 

 

More recent findings show that polymorphisms in genes encoding FcγRs are associated with clinical 

responses to other Abs (Musolino et al., 2008; Bibeau et al., 2009). ADCC enhancement through Fc domain 

modification has shown promise in the development of next generation mAbs. NK cells containing a valine 

at position 158 have a higher affinity for IgG than those containing a phenylalanine in the same position 

(Koene et al., 1997). NK cells with FcγRIIIa158v receptors may have a twofold advantage in the setting of 

mAb-mediated cancer immunotherapy: enhanced ability to recognize and bind to tumour cells coated 

with mAb molecules and the release of more granules for each tumour cell they encounter. Patients with 

an FcγRIIIa158v genotype respond better to therapy that utilizes an ADCC-mediating mAb. The treatment 

with Herceptin (Trastuzumab), Rituximab, and Cetuximab has correlated an FcγRIIIa158v receptor 

genotype with better response to therapy (Cartron et al., 2002; Zhang et al., 2007; Musolino et al., 2008).  

 

5.4 Pharmacological agents used to modulate Natural Killer activity 

 

In addition to some already mentioned compounds, there are also some therapeutic agents that are being 

developed and tested in order to stimulate NK cell activity. 
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In fact, it has been shown by several groups that certain drugs, already available in the therapeutic 

arsenal, can increase the expression of NK-activating ligands on the tumour, and therefore increase NK 

tumour lysis in vivo. Initially, it was shown that some chemotherapy (5-FU, Ara-C, cisplatin) and radiation 

or ultraviolet therapy targeting the DNA damage pathway can increase expression of the NK-stimulating 

ligand NKG2D on tumour cells, and lead to enhanced NK lysis of tumours (Romagne et al., 2009) (Fig. 31-

a).  

 

 

 

 

 

 

 

 

 

 

 

More recently, new drugs targeting proteasome inhibitors, such as bortezomib, which is now registered 

for the treatment of MM, have also been shown to induce NK-stimulatory ligands (Gasser et al., 2005; Ames 

et al., 2009) (Fig. 31-b). 

Finally, lenalidomide (Revlimid), a drug which has been shown to be active in MM and to have promising 

preliminary results in other hematological malignancies, has been shown, in addition to having a direct 

antitumor effect, to upregulate NK-cell function through induction of cytokines (Butler et al., 2009) and to 

induce NK-stimulatory ligands on tumour cells. 

 

Figure 31 – Examples of combinatorial approaches of Natural Killer cell immunotherapy with (A) chemotherapy 

(e.g., bortezomib); and with (B) radiation therapy. 
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Some of these drugs, such as bortezomib or chemotherapies (Davies et al., 2001; Markasz et al., 2007), can 

also have inhibitory effects on NK cells so their use must be carefully evaluated, but their clinical 

availability opens the door to multiple combination possibilities, either sequentially or concomitantly, 

with cell therapy and anti-KIR antibodies. Such combinations are beginning to be tested in the clinic 

(phase I/II for anti-KIR in combination with lenalidomide, and cell therapies in combination with 

bortezomib) (Berg et al., 2009). 

 

5.5 Genetic engineering of Natural Killer cells  

 

Although the risk of adverse events may be low at the cytokine dosages required to sustain NK cell 

survival, genetic modifications generating autocrine cytokine signals may be a mechanism to avoid the 

consequences of systemic administration. 

Gene transfer into NK cells may open new possibilities for the immunotherapy of cancer in both 

autologous and allogeneic settings. Such investigations have began with the optimization of NK cell 

genetic modification via various methods including electroporation (Grund and Muise-Helmericks, 2005; 

Schoenberg et al., 2008), nucleofection (Trompeter et al., 2003; Maasho et al., 2004) and transduction by 

chimeric adenoviral (Schroers et al., 2004), chimeric EBV/retroviral (Becknell et al., 2005), retroviral 

(Guven et al., 2005; Alici et al., 2009) and lentiviral (Tran and Kung, 2007) vectors. 

 

Despite A-NK cells (activated NK cells) leads to a significant reduction in tumour burden and to prolonged 

survival of the host, it is necessary to genetically alter them so that they acquire better target recognition 

or target-killing capabilities, or so that they can secrete cytokines that either stimulate the NK cells or 

other antitumour effector arms of the immune system. For example, direct infusions of NK-92 cell line 

(which does not express any KIR but still has a broad spectrum of activating receptors) in patients, may be 

safe and potentially beneficial (Gong et al., 1994; Maki et al., 2001; Tonn et al., 2001). 
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IL-2 has been successfully transduced into NK cell lines, resulting in increased cytotoxicity as well as 

proliferation independent of supplementation (Nagashima et al., 1998). IL-15 has also been introduced 

into NK-92 and NKL cell lines (Zhang et al., 2004; Jiang et al., 2008) resulting in increased proliferation and 

cytotoxicity. IL-15 transduction also increases natural cytotoxicity and survival (Zhang et al., 2004). Thus 

far, there is limited described experience with cytokine transduction into primary or expanded NK cells 

(Alici et al., 2009), but such modifications could allow increased NK cell survival or proliferation without 

the restrictions associated with using transformed cell lines. 

Transgenic production of IL-12 by NK cells (A-NK12 cells) would also be beneficial as it enhances IFN-γ 

production, upregulates CD25 (IL-2Rα) expression by NK cells (Rabinowich et al., 1993) and reduces 

requirement for IL-2. Also, IL-12 produced by the tumour-infiltrating A-NK12 cells (Basse et al., 1991) is 

able to maintain survival of not only the transduced cells themselves, but of neighbouring nontransduced 

A-NK cells as well (Goding et al., 2007). It is important however that IL-12 being produced at the tumour 

site on the survival of nontransduced A-NK cells (Yang et al., 2003). 

 

The co-presence of IL-12 and IFN-γ leads to therapeutic effect, but, if IL-12 is present while IFN-γ is absent 

from both host and adoptively transferred cells, a fatal but yet poorly understood toxicity is induced. 

Although IL-12 has been successful in enhancing A-NK cell therapy without generating toxicity, this does 

not seem to be sufficient to improve long-term, adaptive host immunity. 

 

TNF-α is a very early initiator of inflammation, which activates DCs and promotes CTL generation (Gorelik 

et al., 1995; Gorelik et al., 1996). Thus, in addition to other beneficial effects, like enhancing LAK activity, 

increasing vascular permeability, and direct tumour killing, TNF-α is an attractive choice to add to the A-

NK12 therapy to further augment its antitumour effect. The addition of TNF-α gene transduction does not 

improve the A-NK cell treatment to an extent that can be measured with survivability as endpoint. 

Additionally, the number of A-NK cells present within the lung tumours does not always correlate with the 

therapeutic outcome, that is, the survival of recipients. Although the mechanisms involved in the double-

transduced A-NK cells persistence to such a high degree without mediating greater therapy have not been 

elucidated, in any case, the increased survival of A-NK cells, provides a great deal of promise for future use 

of transduced A-NK cells. 
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One possibility to make autologous NK cells lyse the patient’s own cancer cell is by engineering them to 

express ligands that recognize specific antigens on the tumour, thereby overriding any inhibitory KIR 

activation by the “self “ MHC. This strategy has been employed with NK cells that express chimeric antigen 

receptors (CARs) against HER2/neu (Uherek et al., 2002; Demirtzoglou et al., 2006; Meier et al., 2008) or 

the lymphoid antigens CD19 (Boissel et al., 2009), CD20 (Muller et al., 2008) and CD33 (Schirrmann and 

Pecher, 2005). The transfer of cells expressing a chimeric receptor against HER2/neu in primary NK cells 

(Kruschinski et al., 2008) resulted in high level of cytotoxic activity and also could inhibit tumour 

progression. Thus, these data indicate that the adoptive transfer of chimeric antigen-specific bearing NK 

cells might be an efficient approach in cancer immunotherapy. 

 

As discussed herein, gene transduction of A-NK cells can be a powerful antitumour tool, which can be used 

to improve/change target recognition by the NK cells (Pegram et al., 2008) or to deliver combinations of 

cytokines, and possibly in the future, chemokines and/or danger signals also, to the microenvironment. 

Moreover, strategies to manipulate the balance between inhibitory and activating receptor signalling in 

favour of activation are now emerging from the vast research into the molecular basis of target-cell 

recognition [reviewed in (Farag et al., 2003)]. However, manipulation of NK cells to make them more 

efficient killers is only part of the task. To be highly efficient in vivo, NK cells must also be capable of 

bringing themselves into close contact with malignant cells. Therefore, a better understanding of how NK 

cells find and infiltrate tumours is crucial, particularly with regard to tumour microenvironment, 

migration of NK cells in this environment, and NK cell interaction with the extracellular matrix 

components of the tumour. 

 

Future work will focus on NK cell engineering to generate cells with improved activity or survival. One 

limitation to current approaches to genetic modification is the reliance on gene transfer primarily by 

retroviral transduction. However, electroporation offers a mechanism of transient expression without the 

time, expense or risks of clinical-grade viral transduction (Li et al., 2010a). 
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5.6 Perspectives 

 

Due to several recent findings that give more insight in the biology of NK cells in health and disease, this 

type of cells moved in the focus of cellular therapy, i.e. in human malignancies over the past two decades. 

Therefore, it is of outmost importance to understand the biological principals of interaction of NK cells 

with tumour cells and/or regulatory cells.  

In addition, for therapeutic approaches large numbers of functionally competent NK cells are necessary 

and need to be generated, expanded and activated in vitro. Thus, it is important to understand 

differentiation processes and mechanisms involved in the NK cell differentiation pathway. The possibility 

to recapitulate in vitro the ontogeneic steps from early progenitors to mature effector cells provides a tool 

to investigate mechanism which lead to NK cell functionality.  

Umbilical cord blood (UCB) has been shown to be a valuable source of stem and progenitor cells with the 

potential to be differentiated in vitro in fully maturated NK cells, becoming a reservoir for possible use in 

adoptive cellular immunotherapy. These in vitro differentiated NK cells might induce an antileukemic 

effect in the state of minimal residual disease after hematopoietic stem cell transplantation. Accordingly, 

functional NK cells obtained by differentiation of CD34+ progenitor cells from UCB may provide a 

promising source for immunotherapy. 

We proposed an in vitro model that mimics the ontogeny of human NK-cell development, defining the 

differentiation stages of mature and functional NK cells. With these experiments, we will be able to 

successfully generate and differentiate NK cells starting from CD34+ hematopoietic stem cells.  Knowledge 

of certain transcription factors and differentiation/activation pathways in process of in vitro NK-cell 

development may lead to additional therapeutic tools of NK-application allogeneic cellular 

immunotherapy settings. 
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AIMS 
 

 
 

AIMS: 

 

Our first aim was the recapitulation of Natural Killer (NK) cell ontogeny by in vitro differentiation of NK 

cells from CD34+ human Umbilical Cord Blood Hematopoietic Stem cells. For this purpose, we induced 

CD34+ human Umbilical Cord Blood Hematopoietic Stem cells to differentiate in mature NK cells. During 

the differentiation period we analysed NK cell phenotype with NK specific molecules and receptor 

markers to get inside the differentiation steps. We have also analysed the functionality of these in vitro 

differentiated NK cells by means of cytotoxicity tests against the K-562 cell line. 

 

MARIA JOÃO PINHO, MICHAEL PUNZEL, MÁRIO SOUSA and ALBERTO BARROS.  Ex vivo 

differentiation of natural killer cells from human umbilical cord blood CD34+ 

progenitor cells (2011). Cell Communication & Adhesion 18(3):45-55. 

 

 

 

The second objective was to investigate the expression of several Transcription Factors involved in NK 

cell commitment, differentiation and maturation. For this proposal, we did a quantitatively analysis of a 

number of Transcription Factors that were referred in literature as important or determinant either in 

lineage commitment or in differentiation steps of NK cell maturation. 

 

MARIA JOÃO PINHO, CRISTINA JOANA MARQUES, FILIPA CARVALHO, MICHAEL PUNZEL, 

MÁRIO SOUSA and ALBERTO BARROS. Genetic regulation on ex-vivo differentiated 

natural killer cells from human umbilical cord blood CD34+ cells (2012). Journal of 

Receptors and Signal Transduction 32(5):238-49 
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  PAPER I   

“Ex vivo differentiation of natural killer cells from 

human umbilical cord blood CD34+ progenitor cells” 
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 Abstract 

 Natural Killer (NK)-cells are peripheral blood lymphocytes that represent an important arm of the innate immune system. 

NK-cells play a critical role in the immune surveillance against tumors and virally infected cells in a major histocompatibiliy 

complex (MHC)-unrestricted fashion. We have explored such capacities of NK-cells after differentiation from hematopoietic 

stem and progenitor cells derived from human umbilical cord blood. Several culture conditions have been established 

supporting proliferation and subsequent differentiation of these cells in terms of receptor expression and specifi c lysis 

depending on the growth conditions in the presence and absence of supportive stromal feeders. We show that acquisition 

of Killer Immunoglobulin Receptor (KIR) as well as NK Cytotoxicity Receptor expressions is independent of culture 

condition whereas absence of stromal feeders did not support acquisition of CD94/NKG2A expression. Such KIR-positive/

NKG2A-negative cells generated under different culture conditions showed strong and specifi c cytolytic activity which 

could have impact on further immunotherapeutic strategies.  

  Keywords:   natural Killer cells  ,   NK receptors  ,   ex vivo culture  ,   immunotherapy   
  Introduction 

 Natural Killer (NK)-cells, originally described as non-T, 
non-B cells, are large granular lymphocytes that were 
identifi ed in mice by the innate capacity to rapidly 
lyse some tumor cells. Unlike T-cells, they can kill tar-
gets without prior sensitization and exhibit spontaneous 
cytotoxicity activity towards cells that do not express 
class I molecules of the major histocompatibility com-
plex (MHC) (Borrego et al., 2002; Orange  &  Ballas, 
2006). NK cells express a large variety of activating 
receptors on their surface capable of recognizing target 
cells (Moretta et al., 2002). They also express inhibitory 
receptors whose signals are able to override basal acti-
vation signals (Hallett  &  Murphy, 2006; Lanier, 2008). 
The ligands for the predominant inhibitory receptors 
are major histocompatibility complex (MHC) class I 
molecules that are expressed by most normal cells. As 
originally proposed by the  “ missing self ”  hypothesis, down-
regulation by tumor transformation or infection can make 
cells susceptible to NK lysis due to partial or complete 
loss of class-I MHC expression (Garcia-Lora, Algarra 
 &  Garrido, 2003; Orange, Fassett, Koopma, Boyson, 
1
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 &  Strominger, 2002). These cell modifi cations are 
perceived by NK-cells and, in that event, the normal 
balance between activating and inhibitory signals pro-
vided by diverse receptors is compromised and can make 
cells susceptible to a NK-cells-response. In humans, the 
predominant NK inhibitory receptors interacting with 
MHC class I molecules are the heterodimeric CD94/NK-
G2A, the killer immunoglobulin-like receptors (KIRs) 
and the leukocyte immunoglobulin-like receptors (LIRs 
or ILTs). While the ligands for the type I transmembrane 
glycoproteins KIR and LIRs are mainly the classical hu-
man leukocyte antigen (HLA) class I molecules (HLA-A, 
B and C), the ligand for NKG2A is the nonclassical class 
I molecule HLA-E (Borrego, Ulbrecht, Weiss, Colugan, 
and brooks, 1998; Brooks, Posch, Scorzelli, Borrego,  &  
Coligan, 1997). 

 NK cells are characterized by the absence of con-
ventional antigen receptors, and are phenotypically 
identifi ed by the presence of CD56 and absence of CD3 
surface antigens (Robertson and Ritz, 1990). The majority 
of human NK cells ( ≈ 90%) have low density expression of 
CD56 (CD56 dim ) whereas  ≈ 10% of NK cells are CD56 bright  
(Cooper, Fehniger,  &  Caligiuri, 2001). While CD56 bright  NK 
cells appear to have an important immunoregulatory role, 
they are less effective mediators of antibody-dependent 
cellular cytotoxicity (ADCC) and natural cytotoxicity. 
CD56 dim  NK cells are more naturally cytotoxic against NK-
sensitive targets (Farag and Caligiuri, 2006). In spite of 
that, CD56 bright  and CD56 dim  NK cells show similar levels 
85
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of cytotoxicity when treated with IL-2 both  in vitro  and 
 in vivo  (Caligiuri et al., 1990; Nagler, Lanier,  &  Phillips, 
1990; Robertson et al., 1992). Although there is no direct 
functional signifi cance of high- or low-level expression of 
CD56 (Lanier, Testi, Bindl,  &  Phillips , 1989), Cooper and 
colleagues reviewed a number of other cell-surface markers 
that confer unique phenotypic and functional properties to 
CD56 bright  and CD56 dim  subsets (Cooper et al., 2001). 

 Several studies have been engineered to enhance NK-
cell activity, however the molecular mechanisms and 
regulation of the NK cell alloreactivity in humans is yet 
largely unknown and the repertoire of the receptors that 
are involved in alloreactivity (KIRs) is quite variable. 
In fact,  in vitro  differentiation of NK cells from CD34 �   

 hUCB progenitors has been already studied  in vitro  un-
der different conditions (Carayol et al., 1998; Grzywacz 
et al., 2006; Kao et al., 2007; Lewis  &  Verfaillie, 2000; 
Miller  &  McCullar, 2001). However, these experiments 
have generated confl icting results. Feeder layers were 
either shown to have no benefi cial effects simultaneously 
on the NK cell differentiation, expansion and maturation 
(Lewis  &  Verfaillie, 2000), to increase CD56�   expansion 
but not maturation (Carayol et al., 1998), or to promote 
CD56�   expansion and maturation (Grzywacz et al., 2006, 
Miller and McCullar, 2001). Overall, the possibility to 
generate/differentiate NK-cells from CD34�  , with and 
without stroma was already demonstrated (Papamichail, 
Perez, Gritzapis,  &  Baxevanis, 2004). However, the pos-
sibility to generate NK-cells from UCB without stroma/
adhesive microenvironmental factors for a possible clini-
cal application in terms of adoptive cellular therapy, was 
never been demonstrated so far. 

 We attempted to recapitulate the development of func-
tional NK-cells from multipotent hematopoietic UCB-
stem cells  in vitro  reconstituting the complete process 
of NK-cell development and maturation from HSPC to 
functionally competent effector cells. We also investigate 
the possibility to generate a specifi c NK cell population 
(CD56�   KIR�   NKG2A-) from UCB without stroma/
adhesive microenvironmental factors. 

 In summary, multipotent hematopoietic stem and pro-
genitor cells were retrieved from human umbilical cord 
blood (hUCB) samples and induced to proliferate and ma-
ture  in vitro  into NK cells, with determination of the tempo-
ral expression of the specifi c surface receptors and analysis 
of the functional effector characteristics of NK cells. To 
analyze the role of the niche created by support cells in the 
transition of primitive stem cells to less primitive cells, the 
established AFT024 cell line was used in the  in vitro  culture 
system (Moore, Emma,  &  Lemischka, 1997) and compared 
to conditioned medium and standard medium enriched with 
specifi c growth factors and interleukins.   

 Methods  

 Cell samples 
 In accordance to guidelines of the local Ethic Commit-
tee, human umbilical cord blood (hUCB) was harvested 
86
by umbilical vein puncture after normal full-term deliv-
eries under previous informed consent from pregnant 
woman before delivery. Samples were collected in 
150 cc sterile bags, containing 21 ml of citrate-phosphate-
dextrose (CPD) (MacoPharma, Tourcoing, France), and 
kept at room temperature for less than 12 h. In total, 18 
hUCB were included, with at least 5 hUCBs being used 
in each experiment.   

 Isolation of mononuclear cells 

 Mononuclear cells (MNCs) from a total of 18 hUCBs 
were isolated using 1.077 g/ml Ficoll-Histopaque 
(Sigma, St. Louis, MO, USA) by gradient centrifugation 
(400 g, 30 min, 20 ° C). Low density MNCs were collected, 
washed twice (1600 rpm, 6 min, 4 ° C) and resuspended 
in Dulbecco ’ s phosphate buffered saline (DPBS; Sigma), 
supplemented with 0.5% of fetal bovine serum (FBS; 
HyClone Laboratories, Logan, Utah, USA) and 2 mM of 
ethylene diamine tetraacetic acid (EDTA; Sigma). When 
necessary, lysis of residual red cells was performed with 
ice-cold lysis buffer consisting of 8.29 g NH 

4
 Cl, 1 g KHCO 

3
  

(Merck, Darmstadt, Germany; Sigma) and 0.2 ml of 0.5 M 
EDTA in 1 L H 

2
 O. After 15 min, cells were washed twice 

and resuspended in DPBS supplemented with 0.5% of 
FBS and 2 mM of EDTA.   

 Selection of CD34 �    cells 

 The CD34 �    cell fraction from MNCs was immuno-
magnetically selected using a Magnetic Activated Cell 
Selection (MACS) system (Miltenyi Biotec, Auburn, 
CA, USA). The Progenitor Cell Isolation Kit uses an-
tibodies recognizing the CD34 epitope QBEND/10 and 
was performed according to manufacturer ’ s instructions 
with minor alterations. Briefl y, MNCs were incubated with 
75  μ l MACS microbeads CD34 �    /10 8  total cells. Cell clumps 
were removed by passing the cells through a pre-separation 
Filter and labeled cells were separated using a high gradi-
ent magnetic separation column in a strong magnetic fi eld. 
Magnetically retained cells were released by fl ushing down 
the column with a plunger and thereafter eluted into a 15 ml 
Falcon tube. Cell aliquots were taken for cell viability using 
Trypan blue exclusion method (Sigma) and an Improved 
Neubauer Haemocytometer for count. The purity of the 
CD34 �    fraction was determined by fl ow cytometry, being 
consistently above 90%.   

 AFT024 feeder layers 

 AFT024 cells, a stromal cell line derived from murine 
fetal liver (Heinrich Heine University, Duesseldorf, 
Germany), were used as feeder layers. Cells were cultured 
in 75 cc fl asks with Dulbecco ’ s modifi ed Eagles medium 
(DMEM) containing 1000 mg glucose/L (Gibco, Paisley, 
Scotland, UK), and supplemented with 20 % FBS, 100 U/
ml Penicilin and 100  μ l/ml Streptomicin (Pen/Strep; Gibco), 
2 mM L-Glutamin (Gibco) and 24  μ M  β -mercaptoethanol 
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(Gibco). Cells were cultured for one week at 33 ° C with 
5 % CO 

2
  in humidifi ed air. When a confl uent layer formed, 

cells were recovered by digestion (5 min, 37 ° C) with 
10 ml of a trypsin/EDTA solution (trypsin/EDTA; Gibco). 
To increase cell number, cells were cultured again in 2, 
3 or 4 new 75 cc-culture fl asks until confl uency. AFT024 
cells were then plated in 24-well plates (10 5  cells/1 ml/
well). When confl uent, cells were uniformly irradiated 
(2000 rad) using a cobalt irradiator (Theratron 780C; 
Atomic Energy of Canada Ltd., Chalk River, Ontario, 
Canada). After irradiation, plates were incubated at 37 ° C 
and the culture medium changed the day after.   

 Cell culture 

 CD34 �    cells were used in a two-step protocol, consist-
ing of 1 week of proliferation and 3 weeks of differ-
entiation. Cells were plated at different concentrations 
(4 � 10 3  cells/well, 2 � 10 3  cells/well, 1 � 10 3  cells/
well and 0.1 � 10 3  cells/well) and incubated in three 
different conditions: 12 samples with supplemented 
medium�   AFT024 feeder layers (AFT), 5 samples with 
supplemented medium (C), and 5 samples with supple-
mented medium conditioned from AFT024 (CM). Cells 
were cultured (5% CO 

2
  in air at 37 ° C) with the medium 

being changed once a week. In the fi rst week, the me-
dium consisted of a 2:1 proportion of DMEM containing 
4500 mg glucose/L (Sigma) and HAMs F12 (Biochrom 
AG, Berlin, Germany), supplemented with 20 % of heat 
inactivated human AB serum (BioWittaker, Walkers-
ville, USA). This was then supplemented with Pen/Strep 
(100 IU/100  μ l/ml),  β -mercaptoethanol (24  μ M), ascorbic 
acid (20 mg/L), selenium selenate (50  μ /L), ethanolamine 
(50  μ M) (Sigma), L-Glutamine (2 mM) (Gibco) and a 
cocktail of recombinant human cytokines, 1000 IU/ml IL-2, 
5 mg/ml IL-3, 20 mg/ml IL-7, 20 mg/ml stem cell factor 
(SCF) and 10 mg/ml Flt3-L (PeproTech, London, UK). At 
the end of the fi rst week, the medium was changed and 
the cells were cultured with a 2:1 proportion of DMEM 
containing 4500 mg glucose/L and HAMs F12, supple-
mented with 10 % of heat inactivated human AB serum, 
and the cocktail of cytokines described above, with the 
exception of IL-3 that was replaced by IL-15 (10 mg/ml) 
and the addition of IL-21 (10 mg/ml) (PeproTech).   

 Cell phenotyping 

 Fluorescein isothiocyanate (FITC)-conjugated, phyco-
erythrin (PE)-conjugated and phycoerythrin-Cy5 (PE-
Cy5)-conjugated monoclonal antibodies (MoAbs) were 
used for the analysis of controls and specifi c cell surface 
markers. MoAbs anti-mouse IgG1 (clone 679.1Mc7)
-FITC, anti-mouse IgG2a (clone 7T4-1F5)-PE, anti-CD34 
(clone 581)-FITC, anti-CD56 (clone N901)-PECy5, 
anti-CD158a (clone EB6B)-PE, anti-p50.3 (clone 
FES172)-PE, anti-NKp30 (clone Z25)-PE, anti-NKp44 
(clone Z231)-PE, anti-NKp46 (clone BAB281)-PE and 
anti-NKG2a (clone Z199)-PE were purchased from 
Beckman Coulter (Immunotech, Marseille, France). 
MoAbs anti-mouse IgG1 (clone MOPC-21)-FITC/
PE/PECy5, anti-CD45 (clone HI30)-FITC/PE/PECy5, 
anti-CD94 (clone HP-3D9)-FITC, anti-CD3 (clone 
UCHT1)-FITC, anti-NKB1 (clone DX9)-PE and anti-
KIR-NKAT2 (clone DX27)-PE were acquired from 
Beckton  &  Dickinson (BD PharMingen, San Diego, CA). 
Once a week, a sample of the cultured cells was harvested 
for immunophenotyping. Briefl y, cells were resuspended 
and collected in a 15 cc Falcon tube, washed in DPBS 
supplemented with 0.5 % FBS and 2 mM EDTA, and 
divided into aliquots to evaluate defi ned surface markers 
and stain cells with isotype-matched antibodies ensuring 
the sample control. All aliquots were incubated with 5 l 
of MoAbs per 5x10 5  cells for 30 min in dark conditions 
at 4 ° C, and washed twice in DPBS supplemented with 
0.5 % FBS and 2 mM EDTA, according to the manu-
facturer ’ s instructions. Flow cytometry was performed in 
a FACScalibur apparatus equipped with Cell Quest Pro 
software, and data were analyzed with the Paint-a-Gate 
software (Becton Dickinson, Oxford, UK). Each sample 
was analyzed at least for 20000 events. Results are pre-
sented as the percentage of cells in a selected lymphocyte 
region.   

 Cytotoxicity tests 

 After 4 weeks, CD56 �    cells were purifi ed from cultures 
(C, AFT) (n  �  5) by MACS and used as effector cells. 
K562 cells, a human erythroleukemia cell line (ICLC 
HTL94001; Interlab Cell Line Collection, Genova, 
Italy), were used as target cells. Cytotoxic activity was 
assessed using a non-radioactive cytotoxicity assay (Cy-
toTox 96; Promega, Madison, WI, USA) according to 
the manufacturer ’ s instructions. Briefl y, effector cells 
were incubated with 1 � 10 4  K562 cells and 4 replicates 
were performed for each experiment in 96-well round 
bottom plates at different effector:target rates, 10:1, 5:1, 
2.5:1, 1.25:1, 0.63:1, 0.31:1 and 0.16:1. Plates were main-
tained for 4 h in a humidifi ed chamber at 37 ° C, 5 % CO 

2
 , 

and cytotoxicity was determined by lactacte dehydroge-
nase (LDH) release from target cells. Culture medium 
or 0.8 % Triton X-100 (CytoTox 96) was added to target 
cells for calculation of spontaneous (S) and maximum 
release, respectively. Supernatants were collected and 
LDH was assayed using an ELISA plate reader (Stat Fax 
2100 Microplate Reader; Awareness Technology, Inc., 
Palm City, FL, USA). Cytotoxicity was calculated using 
the following formula: 

 % Cytotoxicity  �  [Experimental  –  (Effector Spontaneous�   
Target Spontaneous)/Target maximum - Target Sponta-
neous] � 100.   

 Statistics 

 Results of experimental points from different experi-
ments were reported as the mean  �  standard deviation 
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(SD). Signifi cance levels for cytometry results were de-
terminate by two-sided Pearson Chi-Square analysis and 
statistical signifi cance for cytotoxicity values was tested 
by two-sided Student ’ s t-test analysis.    

 Results  

 Proliferation 
 Positively selected CD34 �    cells (Figure 1a) were cul-
tured in a defi ned medium containing IL-2, IL-3, IL-7, 
SCF and Flt3-L (C) (n  �  5), C�   AFT024 feeder layers 
(AFT024) (n  �  12) (Figures 1b  &  1c) and C�   AFT024 
conditioned medium (CM) (n  �  5). Cobblestone-like 
areas became visible at the end of the fi rst week of cul-
ture in all three culture conditions, suggesting an effective 
proliferation of the original CD34 �    cells (Figure 1d). 
Quantitatively, the percentage of CD34 �    cells was sig-
nifi cantly higher (p  �  0.001) in AFT (26.89  �  12.46%) 
than in CM (11.76  �  5.96%) or C (13.16%  �  6.79%), 
and in C in relation to CM, which suggests a positive 
effect of direct cell contacts but not of a factor released 
by the feeder layers. As expected, in the subsequent three 
weeks of culture using a modifi ed mixture directed to 
NK cell differentiation (IL-2, IL-7, IL-15, IL-21, SCF 
and Flt3-L), the pool of CD34 �    cells progressively de-
creased (0.01  �  0.02% in AFT, 0.15  �  0.30 % in CM 
and 0.00  �  0.00 in C) (Figure 1e; Table 1). In this period, 
the same type of signifi cance was observed between the 
three culture conditions (p  �  0.001), with exception of 
day 28, where no differences were found between AFT 
and C (p  �  0.374).   

 Differentiation 

 During the same differentiation period, the relative 
numbers of NK cells (CD56 �    CD3 - ) progressively in-
creased as CD34 �    cells decreased (Figures 2a-c, 3a &3b). 
  
Figure 1.     Establishment of hUCB CD34� cell co-cultures with AFT024 (a-c), proliferation of progenitor cells (d) and phenotypic behavior 
along the 4 week period (e). a) CD34� cells from hUCB after MACS enrichment; b) monolayer of stroma cells after irradiation (day 0); 
c) CD34� enriched cells over stroma AFT024 (day 0); d) Cobblestone-like areas over feeder layer (day 7); e) percentage of CD34� cells 
obtained by fl ow cytometry after each week of culture; p � 0.001.  
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  Table 1. Percentage of CD56 �    CD3  –   and proportion of CD56 �    CD3  –  KIR �    , CD56 �    CD3  –  NCR �    and CD56 �    CD3  –  NKG2A/CD94  –   cells 
generated by CD34 �    cells grown in the described three conditions. Kinetics of expression along the time can be better visualized in fi g.2.  

Culture days  Culture  d7  d14  d21 d28

 CD34 �  a)   AFT 26.89  �  12.46 10.31  �  9.69 1.79  �  2.66 0.01  �  0.02
CM 11.76  �  5.96 6.14  �  4.87 0.28  �  0.26 0.15  �  0.30
C 13.16  �  6.79 7.88  �  4.70 0.48  �  0.87 0.00  �  0.00

 CD56 �    CD3�a) AFT 3.59  �  2.41 20.37  �  13.13 53.56  �  21.23 81.38  �  13.43
CM 4.03  �  1.77 23.42  �  5.45 42.11  �  23.19 83.89  �  10.58
C 4.15  �  1.74 32.28  �  5.41 54.57  �  28.25 68.69  �  19.52

 CD56 �    KIR �  b)  AFT 49.51  �  17.02 80.65  �  12.91 95.15  �  6.46 97.15  �  2.32
CM 72.97  �  23.42 95.19  �  2.09 97.59  �  2.90 95.98  �  2.54
C 81.97  �  12.36 96.12  �  2.27 92.43  �  10.32 96.90  �  4.15

 CD56 �    NCR �  b)  AFT 71.01  �  21.58 84.02  �  15.13 95.72  �  6.69 98.89  �  1.11
CM 82.37  �  24.91 99.44  �  0.32 98.51  �  1.71 99.45  �  0.47
C 89.03  �  13.10 82.53  �  37.80 98.78  �  1.32 99.01  �  1.65

 CD56 �    NKG2A �c) AFT 67.60  �  22.89 65.01  �  17.75 57.57  �  22.57 43.35  �  14.49
CM 58.80  �  20.64 49.39  �  10.03 54.55  �  22.66 66.38  �  15.90
C 57.58  �  23.92 42.10  �  17.78 40.12  �  17.03 78.49  �  13.90

   Results are expressed as mean  �  SD   
  a) Percentages were calculated in the lymphoid gate (see fi g.1)   
  b) Percentages were calculated in the CD56 �    CD3  –   gated region (see fi g.1b)   
  c) Percentages were calculated in the CD56 �    CD3  –   gated region (data not showed).       
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Generally, this increase was signifi cantly higher (p  �  0.001) 
in controls up to day 21, whereas on day 28, it was signifi -
cantly higher (p  �  0.001) in AFT (81.38  �  13.43%) and 
CM (83.89  �  10.58%) in relation to C (68.69  �  19.52%). 
Specifi cally, the signifi cant differences were found between 
all culture conditions in all weeks of the experiment period 
(p  �  0.001). Two exceptions with no signifi cant differences 
were found between C and CM at day 7 (p  �  0.466) and 
between AFT024 and CM at day 28 (Figure 4a; Table 1). 
This data thus suggest that NK cell differentiation is fi rst 
delayed by contact with feeder layers, but then stimulated 
after 14 days of culture by some factor(s) released from the 
stroma.   

 KIR acquisition 

 Analysis of surface receptors during NK cell matura-
tion revealed the expression of the most important KIRs 
(NKAT2, NKB1, CD158a, p50.3) and the known Natural 
Killer Cytotoxicity Receptors, NCRs (NKp30, NKp40, 
NKp46). Acquisition of at least one KIR was found in 
almost all CD56 �    CD3 -  cells ( � 95%) at the end of the 
culture period, with data suggesting that KIRs expres-
sion is initially delayed due to direct cell contacts with 
feeder layers, followed by a stronger stimulation under 
these conditions. Generally, the presence of KIRs was 
detected very early during cultures, being signifi cantly 
higher (p  �  0.001) in C than in CM or AFT, both at day 
7 (81.97  �  12.36% in C, 72.97  �  23.42% in CM and 
49.51  �  17.02% in AFT) and day 14 (96.12  �  2.27% 
in C, 95.19  �  2.09% in CM and 80.65  �  12.91% 
in AFT), thereafter becoming signifi cantly higher 
(p  �  0.001) in AFT (95.15  �  6.46% at day 21 and 
97.15  �  2.32% at day 28) and CM (97.59  �  2.90% at 
day 21 and 95.98  �  2.54% at day 28) in relation to C 
92.43  �  10.32% at day 21 and 96.90  �  4.15% at day 
28). Specifi cally, Table 1 shows detailed data of expres-
sion of this receptors with signifi cant differences between 
all culture conditions in all weeks of the experimental 
period (p  �  0.001) with exception for day 21 and day 
28 where no signifi cant differences were found between 
AFT024 and CM (p  �  0.568) and between AFT024 and 
C, respectively (Figures. 3c &  4b).   

 NCR acquisition 

 The majority of the cells ( � 50%) also expressed at 
least one NCR very early during cultures (day 7) 
  
Figure 2.     Phenotype of in vitro cultured hUCB CD34� cells. Flow cytometry analysis after 7 (a) and 28 (b) days of culture. Note that 
the CD34� cells almost become extinct between day 7 (d7) and day 28 (d28) with the simultaneous appearance of CD56� phenotype. 
Differentiation areas can be seen in c) at day 14 (d14) of culture. Detailed data is shown in table 1.  
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(89.03  �  13.10% in C, 82.37  �  24.91% in CM and 
71.01  �  21.58% in AFT), and most of the CD56 �    CD3 -  
cells had these receptors at the end of the 4 week matura-
tion period ( � 98%) (99.01  �  1.65% in C, 99.45  �  0.47% 
90
in CM and 98.89  �  1.11% in AFT), with data suggesting 
that NK cell differentiation is fi rst delayed by contact 
with feeder layers and then stimulated by some factor(s) 
released from the stroma. The mean percentage of NCR 
Figure 3.     Flow cytometry analysis of differentiated hUCB CD34� cells at the end of the experimental period. Cells were analysed by fl ow 
cytometry and positivity for the different mAbs was defi ned in the morphological gate represented in a). NK cells population is shown in b) 
and the expression several receptors are shown in c) for the KIRmix, in d) for the NCRmix and in e) for NKG2A.  
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is specifi ed in Table 1 where all cultures present sig-
nifi cant differences (p  �  0.001) with exception for day 
21 and day 28 where no differences were seen between 
C and CM and between AFT024 and C (p  �  0.389), 
respectively (Figures 3d  &  4c).   

 CD94/NKG2A acquisition 

 CD94/NKG2A was the less acquired surface receptor: 
its expression decreased along all period of culture 
in presence of AFT024 (67.60  �  22.89% at day 7 to 
43.35  �  14.49% at day 28). In the absence of stroma, 
its expression decreased until 2 nd  week with conditioned 
medium (58.80  �  20.64% at day 7 to 49.39  �  10.03% 
at day 14) and until 3 rd  week with control medium 
(57.58  �  23.92% at day 7 to 40.12  �  17.03% at day 
21), starting to increase from there. Minimal expres-
sion was achieved at the end of 3 rd  week in absence of 
any factors released from the stroma. Specifi cally, the 
mean percentage of CD94/NKG2A expression is shown 
in Table 1 where all cultures have signifi cant differences 
between them (p  �  0.001).   

 Cytotoxicity 

 To evaluate the functionality of the  in vitro  derived 
mature NK cells, cytotoxicity assays were performed 
against K562 target cells with CD56 �    CD3 -  effector cells 
derived from AFT and C day 28 cultures (Figure 5). Sig-
nifi cant higher cytotoxicity levels were found for cells 
from AFT at the different E:T ratios tested, 70.7% (C) 
and 90.6% (AFT) at 10:1, 59.6% vs. 70.2% at 5:1, 32.7% 
vs. 50.4% at 2.5:1, 18.5% vs. 27.4% at 1.25:1, 9.8% vs. 
16.8% at 0.62:1 (p  �  0.001), 8.2% vs. 11.4% at 0.31:
1 (p  �  0.004), 3.4% vs. 5.7% at 0.16:1 (p  �  0.013), 
3.9% vs. 5.5% at 0.08:1 (p  �  0.025), with no signifi cant 
differences at 0.04:1 (1.7% vs. 2.5%) and at 0.02:1 (2.0% 
vs. 2.9%).    
Figure 4.     hUCB CD34� cells differentiation into NK cells along the 4-week period. Cells were analysed by fl ow cytometry and 
positivity for the different mAbs was defi ned in the morphological lymphoid gate defi ned in Fig.1a. Results from a) and b) were 
additionally defi ned in the CD56� CD3� gated region (see fi g.1b) and results from d) were also defi ned in the CD56� CD94� gated 
region (data not showed). The graphics show the CD56� CD3� cells generated in vitro from CD34� progenitors (a) and the kinetics 
of expression of KIRs (b), NKps (c) and CD94/NKG2A- (d) (p � 0.001). See table 1 for detailed data.  
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 Discussion 

 Since it was previously thought that the addition of 
stromal cells was important for the expansion of NK 
cells, we investigated if the presence of supporting 
stroma or alternatively, stroma-conditioned medium, 
could improve the generation and subsequent function-
ally maturation of NK cells from undifferentiated HSPC. 
The murine stromal cell line AFT024 was selected for 
its described capacity to support and amplify the dif-
ferentiation of CD34�   cells (Moore et al., 1997). NK 
cell maturation is a dynamic and continuous process 
as NK cells respond differently to external signals to 
secrete cytokines and to destroy target cells. To defi ne 
the phenotype profi le and functional activity of NK cells 
differentiated  in vitro , different cultures were performed 
combining cytokines with or without stroma cells or us-
ing conditioned medium released from the stroma. All 
culture conditions showed proliferative capacity but in 
spite of the cytokines included in the medium and the 
factors released from the stroma, it seems that the direct 
contact with stroma have benefi cial effects on CD34�   ex-
pansion and on the capacity to avoid cell commitment. 
This indicates that stroma is a more potent inducer on 
proliferation and preservation of hUCB progenitor 
cells than the two other conditions. During the 4-week 
period, the cytometry results showed an exponential de-
crease of CD34�   cells with a simultaneous increase of 
CD56�   CD3- in all culture conditions. However, in the 
fi rst weeks of culture in contact with stroma, cells yield-
ed a lower proportion of CD56�   CD3- cells compared 
with the other conditions. In contact with stroma, cells 
maintained for longer period the immature status. This 
can explain the initial delay in the commitment of NK 
phenotype. On the other hand, our results did not reveal 
any major differences in the capacity of CD34�   cells 
collected from hUCB to generate high numbers of NK 
cells after 4 weeks in the presence of stroma cells or in 

92
conditioned medium from the stroma. However, in ab-
sence of stroma, there is a reduced production of the rela-
tive number of CD56�   cells meaning that in spite of IL-
15 in combination with Flt3-L, SCF, IL-2, IL-7 and IL-21 
be suffi cient to induce human CD34�   cells to differenti-
ate into NK cells, it seems that the addition of AFT024 
cells did not qualitatively infl uence NK differentiation 
from CD34�   cells. In spite of that, Miller and colleagues 
verifi ed that cytokines alone are ineffi cient to support 
NK cell differentiation and the conditioned medium only 
supports differentiation partially (Miller  &  McCullar, 
2001). However, we observed that the factors produced 
by stroma cells may improve the initial development of 
NK cell phenotype. Our results are supported by oth-
ers that concluded that cytokines together with stromal 
cells clearly increase the number of generated NK 
cells but didn ’ t qualitatively alter NK cell differentiation 
(Carayol et al., 1998) and that stromal cells do not bring 
any benefi cial effect compared to conditioned medium, 
once released factors and/or cytokines are suffi cient to 
induce NK cell differentiation (Lewis  &  Verfaillie, 2000). 
Additionally, during the process of maturation, NK cells 
establish a characteristic cell-surface phenotype and the 
capacity to elicit effector functions. Several markers of 
mature NK cells were used including a number of KIRs 
such NKAT2, NKB1, CD158a and p50.3, NCRs such 
NKp30, NKp40 and NKp46 and the inhibitory receptor 
CD95/NKG2A. The maturity of NK cells, detected by the 
presence of receptors, was checked and, in independent 
conditions, we found that the vast majority of differenti-
ated CD56�   CD3- cells co-expressed at least one of the KIRs 
and NCRs. Since CD56�   phenotype was delayed in presence 
of stroma, the same occurred for the appearance of such re-
ceptors when in contact with stroma. Nevertheless, having 
in mind the results of the end of culture period, it seems 
that the appearance of these receptors is independent of 
the culture condition. The high levels of KIRs and NCRs 
might be consistent with a mature NK phenotype. 
Figure 5.     Cytotoxicities mediated by in vitro differentiated NK cells derived from hUCB-HSCs (effector cells) against K-562 target cells. 
These activities were measured using a Non-Radioactive Cytotoxicity test at the effector:target (E:T) cell ratios indicated. Each data bar 
represents a mean SD percentage value of fi ve separate experiments, each performed in quadruplicate (p � 0.05).  
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 We know that the activation of immune responses 
depends on a tight balance between activating and in-
hibitory signals. For cell therapeutic purposes, it would 
be desirable to downregulate NKG2A expression in or-
der to decrease the activation threshold of effector cells 
and to allow for more effi cient lysis of target cells. In 
all our tested conditions, the complex NKG2A/CD94 
is present in NK cells in spite of its expression being 
markedly lower than the other receptors. There are some 
reports of  in vitro  differentiated CD56�   cells that express 
CD94�   on its majority independently of the presence or 
not of stroma (Carayol et al., 1998). Simultaneously, less 
than 5% of CD56�   cells present KIRs expressed after the 
CD94/NKG2A. With our system, the presence of stroma 
induced a continuous increase of surface expression of 
this complex along the time. Curiously, NKG2A/CD94 
positive cells in conditions CM and C got its maximums 
earlier than condition AFT024. However, we also saw a 
strong decline since then suggesting that the lack of cells 
to establish contact with NK cells may diminish the stim-
uli to express this receptor. We thought that the lower ex-
pression of the complex CD94/NKG2A compared with 
that of the other receptors could be explained by the fact 
that maturation of NKG2A is dependent on the associa-
tion with CD94 by glycosylation requiring much more 
metabolic complexity. Thus, it appears that there are 
some factors released by stroma that could be important 
for the fi rst steps of induction towards NK cells lineage 
but acquisition of receptors seems to be independent 
of stroma signals. Some published data refers that NK 
cells receptors are acquired in an orderly and nonran-
dom manner during  in vitro  human NK cell differentiation 
(Miller  &  McCullar, 2001; Mrozek, Anderson,  &  Caligiuri, 
1996; Grzywacz et al., 2006) and, differing from our 
results, indicated that the fi rst inhibitory receptor to be 
surface-expressed is CD94/NKG2A while KIRs appear 
only later and in low percentages (Briard, Brouty-Boye, 
Azzarone,  &  Jasmin, 2002; Iizuka et al., 1999; Grzywacz 
et al., 2006; Miller  &  McCullar, 2001). Cytotoxicity 
results were consistent with the phenotypic behavior 
implying that these NK cells can demonstrate specifi c-
ity in the recognition process. In fact, our cytotoxicity 
results of  in vitro  differentiated NK cells against clas-
sical NK cell target, K562, was especially higher than 
published NK cell activities from fresh isolated NK 
cells of cord blood or peripheral blood. Condiotti et al. 
demonstrated that cytotoxic CD56�   cells could be pro-
duced from human UCB (Condiotti, Zakai, Barak, and 
Nagler, 2001). Nevertheless the intent of their experiments 
was to prove the cytotoxic capabilities of NK cells in UCB, 
we went farther starting with CD34�   cells. Our studies 
showed that NK cell activity can be signifi cantly enhanced 
during CD34�   differentiation in controlled conditions. 
Although K562 cells do not carry HLA-E, it was proposed 
by Figueiredo. et al. that this increased cytolytic activity 
is partially mediated by the natural cytotoxicity recep-
tor NKp30 (Figueiredo, Settsam,  &  Blasczyk, 2009) 
since it was recently shown that the ligand of NKp30 
is expressed in K562 cells (Byrd, Hoffmann, Jarahian, 
Momburg, & Watzl, 2007). In general, the stroma was a 
more potent inducer for cord blood differentiation into 
functional NK cells than the other experimental condi-
tions. However, in the presence of suitable cytokines and 
factors released from the stroma, CD34�   cells rapidly 
acquired large quantities of NCRs and KIR receptors, 
becoming cytotoxic at this level. In spite of some re-
ports referring that stromal cells play an important role 
in NK cell maturation (Colucci, Caligiur,  &  Di Santo, 
2003; Miller  &  McCullar, 2001) and others reporting 
that CD34�   HSC cannot give rise to mature NK cells 
in absence of stroma (Lewis  &  Verfaillie, 2000), with 
our well-defi ned and highly reproducible culture condi-
tions we were able to generate fully competent NK cells 
 in vitro  with or without stroma cells, demonstrating that 
NK cells functionality can be increased under appropri-
ate conditions. The use of cytokines reveals itself as a 
remarkable tool for the production of functional mature 
cells. From the present fi ndings we can argue that IL-15 
in combination with Flt3-L, SCF, IL-2 and IL-21 were 
suffi cient to induce human CD34�   cells to differentiate 
into mature cytotoxic NK cells  in vitro . However, we 
cannot exclude the possibility that other factors produced 
by the stroma may have infl uenced the development of 
NK cells. Additionally, based on the work of others (Kato 
et al., 2007) and using specifi c drugs, downregulation of the 
NKG2A ligands expression can be attempted on targets. 
This could also be an attractive therapeutic strategy to in-
duce susceptibility of leukemic cells to the cytotoxicity of 
NKG2A-lacking cells.   

 Conclusions 

 These results represent strong indications that we are 
in presence of mature NK cells generated  in vitro  and 
it seems that these receptors are indispensable for NK 
cell maturity. In fact, the capacity of hUCB CD34�   cells 
to acquire CD56 may therefore provide a cytotoxic cell 
population that may be of therapeutic potential in the 
treatment of hematopoietic malignancy. These data to-
gether with the possibility to achieve NK cells negative 
for CD94/NKG2A receptor will allow us to generate 
alloreactive NK-cells for clinical applications in adop-
tive cellular therapies. This study also extended our 
knowledge of the effects of different cytokines on the 
proliferation of NK cells from human cord blood pro-
genitor cells. One of the reasons for the lower incidence 
of GVHD following UCB transplant may be the reduced 
cytotoxic potential of CB-derived NK cells. However, 
we can increase NK cells functionality under appropri-
ate conditions. The reactivity of NK cells results from 
an integration of activating and inhibitory stimuli which 
are transmitted through their receptors. The capacity to 
manipulate this balance on NK cells may open new per-
spectives in immunotherapy. Thus, this balance can be al-
tered in favor of activation by the induction of activating 
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receptor expression on NK cells through the use of the 
correct cocktail of cytokines. This matter is not yet well 
understood and there are only a few preliminary studies 
in this fi eld with no conclusive results. In fact, there are 
many reports with mixed conclusions diffi cult to recon-
cile. An improved understanding of these processes will 
continue to drive the clinical applications for NK cells as 
a tool against infection and tumors as well as the estab-
lishment of NK cell lines with  “ specifi c ”  characteristics 
will provide favorable tools for culture models.   
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Introduction

NK cells are large, granular lymphocytes that mediate 
critical functions in innate immunity by directly elimi-
nating infected or transformed cells. Additionally, they 
are also involved in indirect elimination via recruitment 
of other elements of the immune system, by releasing 
cytokines upon stimulation (1,2). In humans, this specific 
elimination is dependent on the inhibitory CD94-NKG2A 
complex and the killer cell immunoglobulin-like recep-
tors (KIRs). Upon stimulation, NK cells release perforin, 
granzymes and several tumor necrosis factor (TNF) fam-
ily ligands leading to the apoptosis of the transformed 
or virus-infected cells (3). NK cell activating receptors 

(NKp30, NKp44 and NKp46) are also essential for the 
activation of NK cell functions, which results in either 
cytotoxicity and/or cytokine production (4,5). Activating 
signals are also triggered by the association of NKG2D 
homodimer with DAP10 or DAP12 adaptor molecules 
(6). Binding of NK cell inhibitory receptors with their 
ligands renders the target cells to be protected from NK 
cell-mediated cytotoxicity. When target cells lack self-
MHC class I molecule, NK cells no longer receive inhibi-
tory signal via MHC class I molecules and kill the target 
cells, in a process known as missing self recognition (7).

NK cells are broadly defined as CD56+CD3− 
lymphocytes derived from CD34+ hematopoietic stem 
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and virally infected cells. The development of human hematopoietic stem cells (hHSC) into fully differentiated NK-cells 
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cells (HSCs) in the human bone marrow (BM) (1). HSCs 
differentiate into common lymphoid progenitors (CLPs) 
which are generally thought to give rise to all lymphocytes 
(8) which in turn can develop ultimately into mature NK 
(mNK) cells (1,9), passing through three main stages: 
lineage commitment, NK receptor repertoire selection 
and functional maturation (10–16). In fact, it is known 
that during this process NK cells acquire characteristic 
cell surface markers and the capacity to elicit effector 
functions (1,9). NK cell development, differentiation 
and maturation are also dictated by a variety of factors 
such as cytokines, membrane factors, and transcription 
factors (TFs) in addition to BM microenvironment. 
Concerning TFs, mouse knockout models have been 
a very useful tool for studying which ones control 
murine NK cell development and, therefore, our current 
understanding of NK cell development stems primarily 
from findings in mice.

The first group of TFs includes E-twenty six (Ets) fam-
ily members such as PU.1 and Ets-1, and Ikaros family 
(17,18). These TFs have been reported to be essential for 
the generation of mouse NK cells in vivo by specification 
or maintenance of pNKs via regulation of key cytokine 
receptors required for NK cells (19–22).

The second group of TFs including Gata-3, IRF-2 and 
T-bet is involved in the process of final maturation of NK 
cells; thus, their absence leads to incomplete develop-
ment of functional NK cells or immature phenotypes of 
NK cells (23–26). Mice deficient in these TFs exhibit simi-
lar phenotypes despite the TF involved (23–25,27–30).

The third group of TFs includes MEF, MITF, and 
CEBP-γ which are known to regulate the cytolitic effector 
functions of fully-matured NK cells. Mice lacking these 
TFs exhibit normal development of NK cells, but with 
reduced cytotoxic capacity and cytokine production (31).

Additional TFs were also reported to have a role in 
the developmental process of NK cell differentiation. For 
example, the E-proteins are basic helix-loop-helix tran-
scriptional regulators that are important for coordinating 
cell proliferation and differentiation (32) since a decreased 
number of NK cells has been observed in Id knockout 
model (33,34). TOX has also been recently implicated in 
regulation of human NK cells differentiation since it was 
found to be highly up-regulated in immature NK cells with 
loss of mature NK cells in absence of TOX (35). The basic 
leucine zipper transcription factor E4BP4 was implicated 
either in NK cell specification and commitment or in NK 
cell development (36,37). However, although pNK cell 
numbers in E4BP4−/− mice are unchanged, they present 
no detectable iNK or mNK cells and no NK cell-mediated 
cytotoxicity. Concerning early growth response factors 1 
(EGR-1) and 2 (EGR-2), a recent series of studies showed 
that Egr-2 plays an important role in iNKT development, 
while EGR-1 is apparently dispensable (38). The tran-
scriptional repressor B-lymphocyte-induced maturation 
protein 1 (Blimp1) is suggested to play a crucial role in 
the post-activation phenotype of NK cells by nega-
tively regulating cytokine transcription in a coordinate 

manner, without compromising perforin-mediated 
cytotoxicity. Its increasing expression during functional 
maturation of NK cells identify this TF as an important 
player in the transcriptional network governing NK-cell 
differentiation and homeostasis. Such a mechanism 
may have important implications in innate immunity 
and tumor surveillance (39). In contrast, it was recently 
demonstrated that NK cells express Blimp1 constitutively 
from a very early point in their development (40). Both 
experiments indicate that IL-15 signals are also required 
for the induction of Blimp1 in early NK-cell development. 
Recent works attributes BCL11B an important role for the 
cancer treatment research since it was proposed to be 
possible to reprogram T cells into induced T-to-natural 
killer (ITNK) cells, by BCL11B deletion, with promising 
applications in cancer immunotherapy and other cell-
based therapies (41).

As the collaborative interactions of these factors have 
been identified in many processes and referred to con-
tribute to the conventional NK cells development.

NK cell development is far less understood compared 
with that of T and B cells. However, the critical impor-
tance of NK cells in innate immunity lead us to reca-
pitulate the development of functional NK-cells from 
multipotent hematopoietic UCB-stem cells, reconstitut-
ing the complete process of NK-cell development and 
maturation from the naive stem cell to the functional 
effector cells. Because of rapid cytolitic function without 
previous priming against broad range of targets, NK cells 
may be candidates for cancer therapy emerging to apply 
as therapeutic agents against a broad range of malignan-
cies (42,43).

As lineage decisions always involve changes in gene 
expression programs and being these decisions ultimately 
controlled by TFs, here we characterize human develop-
ing NK cells at molecular level based on mRNA expres-
sion of several TFs that have been already described to 
have important roles, at least on mouse NK cell lineage. 
To our knowledge, this is the first work that follows-up 
the in vitro human NK cell development evaluating a 
set of TFs during lineage commitment and maturation. 
Simultaneously, we established a relation between gene 
expression and the detection of the functional receptor 
on the surface of the NK cells.

Methods

Cell samples
Human umbilical cord blood (hUCB) was harvested by 
umbilical vein puncture after normal full-term deliver-
ies under previous informed consent from pregnant 
woman before delivery, in accordance to the guidelines 
of the local Ethic Committee. Samples were collected 
in 150 cc sterile bags, containing 21 ml of citrate-
phosphate-dextrose (CPD) (MacoPharma, Tourcoing, 
France), and kept at room temperature for less than 
12 h. In total, three hUCB (biological replicates) were 
included in this study.
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Isolation of mononuclear cells
Mononuclear cells (MNCs) from a total of three hUCB were 
isolated using 1.077 g/ml Ficoll-Histopaque (Sigma, St. 
Louis, MO, USA) by gradient centrifugation (400 g, 30 min, 
20ºC). Low density MNCs were collected, washed twice 
(1600 rpm, 6 min, 4ºC) and resuspended in Dulbecco’s 
phosphate buffered saline (DPBS; Sigma), supplemented 
with 0.5% of fetal bovine serum (FBS; HyClone Laboratories, 
Logan, Utah, USA) and 2 mM of ethylene diamine tetraace-
tic acid (EDTA; Sigma). When necessary, lysis of residual 
red cells was performed with ice-cold lysis buffer [8.29 g of 
53,49M NH

4
Cl, 1 g of 100,1M KHCO

3
 (Merck, Darmstadt, 

Germany) and 0.2 ml of 0.5 M EDTA in 1 L H
2
O]. After 

15 min, cells were washed twice and resuspended in DPBS 
supplemented with 0.5% of FBS and 2 mM of EDTA.

Selection of CD34+ cells
The CD34+ cell fraction from MNCs was immunomagnet-
ically selected using a magnetic activated cell selection 
(MACS) system (Miltenyi Biotec, Auburn, CA, USA). The 
Progenitor Cell Isolation Kit uses antibodies recognizing 
the CD34 epitope QBEND/10 and was used according 
to manufacturer’s instructions with minor alterations. 
Briefly, MNCs were incubated with 75 μl MACS micro-
beads CD34+/108 total cells. Cell clumps were removed 
by passing the cells through a Pre-Separation Filter 
and labeled cells were separated using a high gradient 
magnetic separation column in a strong magnetic field. 
Magnetically retained cells were released by flushing 
down the column with a plunger. Cell aliquots were taken 
for cell viability using Trypan blue exclusion method 
(Sigma) and an Improved Neubauer Haemocytometer 
for count. The purity of the CD34+ fraction was deter-
mined by flow cytometry, being consistently above 90%.

AFT024 feeder layers
AFT024 cells, a stromal cell line derived from murine fetal 
liver (Heinrich Heine University, Duesseldorf, Germany), 
were used as feeder layers. Cells were cultured in 75 cc 
flasks with Dulbecco’s modified Eagles medium (DMEM) 
containing 1000 mg glucose/L (Gibco, Paisley, Scotland, 
UK), and supplemented with 20% FBS, 100 U/ml Penicilin 
and 100 µl/ml Streptomicin (Pen/Strep; Gibco), 2 mM 
l-Glutamin (Gibco) and 24 µM β-mercaptoethanol 
(Gibco). Cells were cultured for one week at 33ºC with 
5% CO

2
 in humidified air. When a confluent layer formed, 

cells were recovered by digestion (5 min, 37ºC) with 10 ml 
of trypsin/EDTA solution (1×) (trypsin/EDTA; Gibco). 
AFT024 cells were then plated in 24-well plates (105 cells/
ml/well). When confluent, cells were uniformly irradi-
ated (2000 rad) using a cobalt irradiator (Theratron 780C; 
Atomic Energy of Canada Ltd., Chalk River, Ontario, 
Canada). After irradiation, cells were incubated at 37ºC 
and the culture medium changed on the day after.

Cell culture
CD34+ cells were used in a two-step protocol, consisting 
of 1 week proliferation and 3 weeks differentiation, as 

previously described (44). Cells were plated at different 
concentrations (4 × 103 cells/well, 2 × 103 cells/well, 1 × 103 
cells/well and 0.1 × 103 cells/well) in 24-well plates with 
supplemented medium, in direct contact with irradiated 
AFT024 stromal cells. Cells were cultured (5% CO

2
 in air 

at 37ºC) with the medium being changed once a week. In 
the first week, the medium consisted of a 2:1 proportion of 
DMEM containing 4500 mg glucose/L (Sigma) and HAMs 
F12 (Biochrom AG, Berlin, Germany), supplemented with 
20% of heat inactivated human AB serum (BioWittaker, 
Walkersville, USA). This was then supplemented with 
Pen/Strep (100 IU/100 µl/ml), β-mercaptoethanol (24 
µM), ascorbic acid (20 mg/L), selenium selenate (50 µ/L), 
ethanolamine (50 µM) (Sigma), l-Glutamine (2 mM) 
(Gibco) and a cocktail of recombinant human cytokines, 
1000 IU/ml IL-2, 5 mg/ml IL-3, 20 mg/ml IL-7, 20 mg/ml 
stem cell factor (SCF) and 10 mg/ml Flt3-L (PeproTech, 
London, UK). At the end of the first week, the medium was 
changed and the cells were cultured with a 2:1 proportion 
of DMEM containing 4500 mg glucose/L and HAMs F12, 
supplemented with 10% of heat inactivated human AB 
serum, and the cocktail of cytokines described above, with 
the exception of IL-3 that was replaced by IL-15 (10 mg/
ml) and the addition of IL-21 (10 mg/ml) (PeproTech).

Once a week, a sample of the cultured cells was har-
vested: the initial 4 × 103 well harvested in the first week, 
the 2 × 103 well in the second week, the 1 × 103 well in the 
third week and the 0.1 × 103 well in the fourth week. Cell 
pellets were frozen at −80ºC until processed.

RNA isolation and reverse transcription (RT) reaction
After thawing the frozen pellets, cells were lysed on ice with 
1000 µl of TriPure Isolation Reagent (Roche Diagnostics, 
Indianapolis, IN, USA) and passed several times through 
a syringe and needle. The total mRNA was then extracted 
according to the associated protocol. At the end, RNA 
pellet was ressuspended in 40 µl of diethylpyrocarbonate 
(DEPC)-treated RNase-free water (Promega, Wisconsin, 
USA) and incubated for 1 h on ice. RNA was then quanti-
fied in NanoDrop 2000c (Wilmington, DE, USA). 100 ng 
of RNA was reverse transcribed to complementary DNA 
(cDNA) using SuperScript III First-Strand Synthesis 
System for RT-PCR Kit (Invitrogen, Carlsbad, CA, USA), 
with random hexamers as the priming method.

Gene expression analysis by quantitative  
real-time PCR (q-RT-PCR)
After initial screening with Ubiquitin B (UBB), β-actin 
(ACTB), 60S Acidic Ribosomal Protein P0 (RPLP0) and 
β-2-microglobulin (β2M), the results obtained sug-
gested β2M as the best housekeeping gene for q-RT-PCR 
analysis.

All primers (both for the housekeeping gene and for 
experimental transcripts) were designed to be CDNA 
specific (at least one of the primers is exon-spanning or 
the primer pair is separated by at least one intron on the 
corresponding genomic DNA) and are listed on Table 1. 
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Table 1.  Primer sequences used for quantitative Real-Time PCR technique. Information about the gene name, accession number and 
product length is also given. Reference Sequences (RefSeq) are accordingly to accession numbers of GenBank.

Primer sequences used for quantitative Real-Time PCR
Gene Accession Number Primer sequence (5′- 3′) Product length (bp)

B2M NM_004048.2 TGC CTG CCG TGT GAA CCA TGT 97
TGC GGC ATC TTC AAA CCT CCA TGA

CD34 NM_001025109.1 ACC GCG CTT TGC TTG CTG AGT 85
GGG TAG GTA ACT CTG GGG TAG CAG T

CD56 NM_001242607.1 TCA AGC AGA CAC CCC CTC TTC ACC 141
TCA CCA ACT GCT CTC CAC TCA GC

CD94 NM_002262.3 ACG AAA GTC GGC ATC TCT GTG C 135
AGG CGG TGT GCT CCT CAC TGT A

CD117 NM_000222.2 TGC ATT CAA GCA CAA TGG CAC GG 117
GTG TGG GGA TGG ATT TGC TCT TTG T

CD122 NM_000878.2 GAG GGT GCT GTG CCG TGA GG 88
GGG GGC CAT CAG GCG AAG GTT

PRF1 NM_005041.4 TTG CAG CCC AGA AGA CCC ACC A 82
ACC ACA TGG AAA CTG TAG AAG CGG C

GZMB NM_004131.4 GAG AGC AAG GAG GAA ACA ACA GCA 136
TTG GCC TCA TGT CCC CCG ATG A

NKG2A NM_002259.4 ACC TGG CCT CTC CAC TAA AGG 143
TCG TTG CTG CCT CTT TGG GTT

NKG2D NM_007360.3 AAA TGG ATC TTG GCA GTG GGA A 84
GCA CAG TCT CCC TTC TGC AT

NCR1 NM_004829.5 CAG AAA GAC CAT GCC CTC TGG GA 145
AAG CTC TGC TGG CTC GCT CT

NCR2 NM_004828.3 AGC GCA CAG GAA AAG GAC CA 80
TGA GAG CCT GGG AAC AGC A

NCR3 NM_147130.2 GCT GGT GGT GGA GAA AGA ACA T 117
TGG TAA TAG ACG GTG CTG CCC A

E4BP4 NM_005384.2 GGC CCG AGA GCA GGA ACA CGA TAA 80
TAC CGT CTG GGA TAA ATC CGT CAG G

MEF NM_001421.3 GGA AGA CCA AGG GCA ACC GAA GT 90
TGG TGC TGC CTT TGC CAT CCT

TOX NM_014729.2 TAT GTG CCA GCC AGC CAG TCC TA 92
TGG TCT GGG AGG GAA GGA GGA GTA A

IKAROS NM_006060.4 AGC TCG GCT TTG TCG GGA GTT 130
GCC GTT CTC CAG TGT GGC TTC T

GATA-3 NM_001002295.1 AGC ACA GAA GGC AGG GAG TGT 148
TTC GCT TGG GCT TAA TGA GGG GC

IRF-2 NM_002199.3 CCT ATG CAG AAA GCG AAA CGA CTG A 122
TCG AGT CCC CAT GTT GCT GAG GT

EGR-1 NM_001964.2 GCA CCT GAC CGC AGA GTC TTT TCC 147
TTG CCA CTG TTG GGT GCA GG

EGR-2 NM_000399.3 AGG CCC CTT TGA CCA GAT GAA CG 122
TAG GTG CAG AGA CGG GAG CAA A

ID2 NM_002166.4 AGC CTG CAT CAC CAG AGA CC 98
TCA GAA GCC TGC AAG GAC AGG A

PU.1 NM_001080547.1 CCC TCA GCC ATC AGA AGA CCT 112
GTA ATG GTC GCT ATG GCT CTC C

BLIMP1 NM_001198.3 TGT GGG TAC GAC CTT GGC TG 109
ATC CGC ATC CTC CAT GTC CA

T-BET NM_013351.1 GGA TGC GCC AGG AAG TTT CA 149
CTC TGG CTC TCC GTC GTT CA

BCL11B NM_138576.2 CTC TCA CCC ACG AAA GGC AT 137
GCA CGC AGA GGT GAA GTG AT
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Primer sequences were designed and optimized using a 
specific software (http://www.ncbi.nlm.nih.gov/tools/
primer-blast/).

RNA expression levels were analyzed by quantitative 
Real-Time PCR (q-RT-PCR) on a StepOnePlus™ Real-
Time PCR System (Applied Biosystems, Foster City, CA, 
USA). q-RT-PCR were performed in a volume of 20 µl, 
using cDNA corresponding to a 5 ng transcribed RNA, 20 
pM of each primer and 10 µl of PerfeCta® SYBR® Green 
FastMix®, ROX™ (Quanta Biosciences, Gaithersburg, MD, 
USA), with a Fast Protocol according to manufacturer 
instructions. Briefly, after initial enzyme activation for 
30 sec at 95°C, 40 cycles were performed, each one con-
sisting of 1 sec at 95°C and 30 sec at 60°C. Melting curves 
were also performed to verify PCR specificity. Standard 
curves were performed with five points in duplicates and 
each PCR for relative quantification was run in triplicate 
(technical replicates). Three hUCB (biological replicates) 
were analyzed for each time of culture.

Data analysis and statistics
Data was firstly analyzed with StepOne Software version 
2.2.2 (Applied Biosystems) to establish the threshold and 
baseline for each sample. Then, relative expression of 
mRNA was calculated for each gene using the β2M gene as 
endogenous reference and normalized to day 0 of culture 
using the 2–ΔΔCT method (45). Results of experimental 
points from different experiments were reported as the 
mean +/− standard deviation (SD). Significance levels 
for mRNA expression between different time points were 
determined by the Relative Expression Software Tool 
(REST 2009) (46) that estimates up and downregulation 
for gene expression (http:// www.qiagen.com/rest).

Results

CD34+ cells isolated from hUCB were co-cultured with 
AFT024 feeder layer in the presence of IL-2, IL-3, IL-7, 
SCF and Flt3-L. At the end of the first week, IL-3 that was 
replaced by IL-15 and IL-21 was also added. With this 

system we have previously demonstrated, by flow cyt-
mometry, that in vitro derived human NK cells express 
NK cell markers together with NK cell specific receptors. 
In the same study and using cytotoxicity tests, we have 
also shown that derived NK cells are also capable of 
killing K562 cell line, therefore showing high cytotoxic 
capacity (44). In fact, in our culture system, hHSCs rap-
idly commit, differentiate and acquire NK cell features. 
To test whether these cells express mRNA corresponding 
to previous observed extracellular markers and recep-
tors associated with NK cells, we performed q-RT-PCR 
analysis of cells at time zero (d0) and of the resultant 
cells after each week of culture (d7, d14, d21 and d28). 
HSCs and differentiating NK cells were also tested for 
mRNA expression of several genes encoding important 
proteins associated with NK cell maturation and cytotox-
icity (NKG2A, NKG2D, PRF1, GZMB, NCR1, NCR2 and 
NCR3). To further characterize differentiating steps of 
human NK cell development at transcriptional level, we 
analyzed the expression of a wide range of TFs suggested 
to be important or crucial, at least in mice, for the healthy 
NK cell development, including PU.1, T-BET, MEF, TOX, 
IKAROS, IRF-2, EGR-1, EGR-2, ID-2, BLIMP1, GATA-3, 
BCL11B and E4BP4.

All PCR products exhibited dissociation plots indicat-
ing the amplification of a single product (data not shown). 
Standard curves of all genes examined showed high effi-
ciency. Some transcripts have virtually no expression in 
some stages, resulting in offscalle measurements. Data 
presented here was obtained from one single experiment 
(Figures 1 and 2) and is representative of three indepen-
dent biological replicates with the same tendency (see 
supplemental files).

NK cell differentiation
Confirming our previous observations using flow cytom-
etry, we found increased expression of CD56 along the all 
culture period with mRNA levels being expressed since 
the first week of culture (d7). The marker of excellence 
of NK cells (CD56) started to be expressed immediately 

Figure 1.  hUCB CD34+ cells differentiation into NK cells along the 4-week period. Natural killer cell specific markers and receptors expression 
was analyzed by q-RT-PCT expression during NK cell differentiation. Relative transcript levels were determined by comparing expression 
values obtained from cells at different point times of culture (d7, d14, d21 and d28) to those obtained for hHSC and corresponding to the 
starting population (d0), after internal normalization to β2M transcript levels. Results are the mean ± SD of data representative of three 
biological replicates, each measured in triplicate. Some transcripts are marked with asterisks corresponding to, virtually, no expression in 
those stages.
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after one week of culture together with CD122 (IL2/15Rβ). 
These two markers gradually manifested along the 
remaining three weeks of culture (Figure 1). Expression 
of CD94 only appeared at the second week of culture with 
a continuous increment of expression (65- to 86-fold) 
until the end of culture period. Simultaneously, we found 
a decreased expression of CD34 with no detectable levels 
of mRNA above d14–21 of culture. CD117 marker (also 
known as c-KIT) showed a subtle expression in these cul-
tures. In fact, its variations during the culture period had 
no statistical significance. Other mature-NK cell markers 
became expressed at d7 of culture such as PRF1, NKG2A 
and NKG2D. These markers had a significantly increase 
of mRNA expression until the end of culture (d28). Thus, 
between d0 and d28, PRF1 increased its levels in 27- to 
83-fold, NKG2A in 142- to 211-fold and NKG2D in 49- to 
110-fold. No detectable levels of GZMB were seen at d7. 
Concerning natural cytotoxicity receptors (NCRs), only 
NCR2 (NKp44) expressed mRNA at d7-14, also with a 
constant increase of its expression until d28 (34- to 174-
fold). At the second week of culture (d14), the expres-
sion of GZMB was observed, demonstrating constant 
increasing expression since there. In fact, GZMB had an 
increment of 88- to 228-fold from d7 to d28. The cyto-
toxic receptor NCR3 (NKp30) also became visible after 
the second week of culture (d14) with increments of its 
mRNA levels of 62- to 240-fold since it appeared and 
until the end of culture period. The generated NK cells 

only expressed mRNA for NCR1 (NKp46) after the third 
week of culture (2- to 21-fold) with no further increased 
in expression at the fourth week.

Transcription factors
Concerning expression of TFs, PU.1 showed, at the first 
week, an increment of its expression of around the 4-fold, 
followed by a sharp decline of 10- to 19-fold until the end 
of culture period (day 28) where it reached its minimum 
(Figure 2a). Ikaros had a increase of 1- to 2-fold in its 
expression at day 7 followed by a strong decline in 3- to 
4-fold since there, until the end of culture period. IRF-2 
increased its expression at day 7 in 1- to 2-fold with 
further downregulation in 2- to 3-fold until the end of 
culture. MEF doubled its expression on day 7 showing 
upregulation but rapidly fell down in 3- to 5-fold through 
the remaining culture period. Similarily, EGR-1 showed 
a minor increase of its mRNA levels at day 7 followed by 
a high downregulation of 4- to 17-fold at day 14 which 
lasted with minor oscillations until the end of culture 
period. BCL11B, follows the same pattern of the afore-
mentioned TFs and demonstrated upregulation in 2- to 
3-fold in the first week of culture with further significant 
downregulation until the end of culture (13- to 21-fold).

On the other hand, a number of TFs followed a some-
what different pattern of expression (Figure 2b). For 
example, T-bet (TBX21) had an evident and strong incre-
ment of its mRNA levels in the first week of culture. That 

Figure 2.  Transcription factors (TFs) expression during NK cell differentiation along the 4-week period using hUCB CD34+ cells as a starting 
population. TFs expression was analyzed by q-RT-PCT using the ddCt method. Relative transcript levels were determined by comparing 
expression values obtained from cells at different point times of culture (d7, d14, d21 and d28) to those obtained for hHSC and corresponding 
to the starting population (d0), after internal normalization to β2M transcript levels. Resulting data was grouped according to a given pattern 
and thus the graphics show the mRNA relative levels for a) PU.1, MEF, EGR-1, BCL11B, IRF-2 and Ikaros, for b) BLIMP1, ID2, EGR-2 and T-BET, 
for c) E4BP4 and TOX and for d) GATA-3. Results are the mean ± SD of data representative of three biological replicates, each measured in 
triplicate. Some transcripts are marked with asterisks corresponding to, virtually, no expression in those stages.
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represented 10- to 14-times more expression regarding 
d0. Despite its decline at d14, its expression never came 
above the initial values. On the contrary, mRNA levels of 
T-bet rapidly increased again at d21, with a strong and 
evident increment, with no further significant variations 
until the end of culture. EGR-2 had also a significant 
increase of 4- to 33-fold just after one week of culture 
(d7). In the following weeks, although there are some 
oscillations, it was always upregulated until the end of 
culture. Likewise, there was a significant increment of 
ID2 expression in the first week of culture in 4- to 7-fold. 
Notwithstanding some oscillations during the remain-
ing culture period, its expression levels were maintained 
always upregulated. Despite BLIMP1 not being expressed 
at detectable levels of mRNA in the first two weeks of cul-
ture, this TF showed high upregulation at d14 of culture 
in 5- to 13-fold, showing a slight decrease of its expression 
until d28. However, BLIMP1 showed high upregulation 
since d14 until the end of culture. In short, the latter four 
TFs showed a similar upregulated pattern of expression.

A different profile was identified for E4BP4 and TOX 
(Figure 2c). E4BP4 showed a strong downregulation dur-
ing all culture period with small oscillations during that 
period. TOX had no significant variations of mRNA levels 
at the first week of culture. Since there, it showed down-
regulation until the end of culture period.

Regarding GATA-3, it was the only analyzed TF with 
evident oscillations with up and downregulations during 
the process of in vitro differentiation of NK cells (Figure 
2d). GATA-3 showed a decline in its expression in the 
first week of culture, showing 0.3- to 0.5-fold times less 
mRNA expression compared to the beginning of culture. 
In the following weeks, GATA-3 increased its expression 
which was accentuated from d21 to d28. Despite its short 
decline between d0 and d 7, GATA-3 was high upregu-
lated since there in 10- to 26-fold.

Discussion

After previous results demonstrating that human NK 
cells with cytotoxic capacity leading to effective effec-
tor functions can be successfully differentiated (44), we 
started a new approach, characterizing the resulting cells 
of the NK cell cultures at molecular level, based on mRNA 
expression of several molecules present in mature and 
functional NK cells: CD56, CD94, NKG2A, NKG2D, PRF1, 
GZMB and NCRs (NCR1, NCR2 and NCR3). Expression 
levels for CD34, CD122 and CD117 were also analyzed.

Within this culture system, CD122 (IL-2/15Rβ) and 
CD56 mRNA expression started to express at d7. CD122 
acquisition is, in fact, an essential step in the commit-
ment of HSCs to the NK cell lineage. As precursor NK 
cells (pNK) express IL-2/15Rβ, its ligand IL-15 has a vital 
role in the maturation of NK cells. In the first week, it was 
also visible the expression of PRF1, NKG2A and NKG2D 
but not CD94 or GZMB showing that these molecules are 
much more responsive in the final steps of NK cell matu-
ration. Also, in the first week of culture, despite NKG2A 

showing some upregulation of its mRNA levels, suppos-
edly it does not have yet any function as effective recep-
tor once it acts as heterodimer associated with CD94, 
and this receptor does not have any expression yet at this 
time. NKG2D is also upregulated at the first week of cul-
ture indicating that this activating receptor may be in the 
forefront of importance of NK cell development. Despite 
NKG2D having a role in activation or inhibition of killing 
activity in mature NK cells, it is known that this receptor is 
expressed in pNK cells but its function on these precursor 
cells is not known yet (47). NCR2 was the only cytotoxic 
receptor that showed some expression in the first week 
of culture. It is known that this molecule (NKp44) is pro-
gressively expressed by all NK cells in vitro after culture 
with IL-2 (48). As this culture system includes IL-2 since 
the beginning of experiments, this early expression is 
not surprising. In spite NK differentiating cells having no 
function at this stage, this initial differentiation of NCR2 
and PRF1 may be a initial preparation of these cells, that 
once committed, start to prepare for rapidly responding 
to adversities.

At the second week of culture, at the same time that 
CD56 and CD122 increase their expression, other mark-
ers start to appear namely CD94 and GZMB as well as 
the cytotoxic receptor NCR3. These new expressions 
may have been potentiated by the replacement of IL-3 
by IL-15 at the beginning of first week. It should also be 
noted that while NKG2D did not increase its mRNA lev-
els, NKG2A had a significantly increase of its expression. 
Thus, at same time that CD94 molecules are produced, 
they recruit NKG2A molecules to form heterodimers 
and so more NKG2A molecules are needed, justifying 
the increment of NKG2A expression. The appearance of 
CD94 expression also marks the beginning of functional 
maturation of NK cells since this stage is marked by the 
expression of the NK receptor CD94-NKG2A. NKG2D 
mRNA expression was maintained once they had already 
a much higher expression in the first week compared to 
NKG2A, allowing them to produce protein in sufficient 
amount to form NKG2D homodimers. At this time point, 
NCR3 also became expressed its mRNA. Once NK form-
ing cells became more and more differentiated, their 
cytotoxic potential started to appear. NKp30 together 
with NKG2D and NKp46 represents a major triggering 
receptor involved in the induction of NK cells cytotoxic-
ity. It should be also noted that simultaneously to this 
new expression, the mRNA levels for NCR2 had have an 
increase too. The expression of CD34 marker was gradu-
ally decreased along the culture period with no longer 
expression since day 14 of culture. This fact is in agree-
ment with the loss of stem status of hHSCs.

At third week of culture, the natural cytotoxicity recep-
tor NCR1 finally starts to be expressed, with no visible 
variation until the end of culture period. The increase of 
activity of NK cells is associated with enhanced expres-
sion of NKp46 and/or NKG2D. Thus, in the final steps 
of NK cell maturation, the acquisition of its functions is 
associated to the increment of these markers that will 
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make the difference in NK cell capacities. At the same 
time, in spite NCR3 having an increment at this time 
point of culture, no further increment was seen until the 
end of experiment period. On the contrary, the mainte-
nance of NCR2 high expression levels at third week of 
culture may reveal that, at this point, NK cells are fully 
competent given that this NCR is specific for activated 
human NK cells.

At d21 of culture, CD94, CD56, CD122, PRF1, GZMB, 
NKG2A and NKG2D had a significantly increase in their 
mRNA expression promoting an increment of NK cell 
maturity and function capacities. The upregulation of 
these markers were more pronounced at d28 of culture 
where NK cells are probably full of its functional capaci-
ties, expressing cytotoxic granules containing perforin 
and granzyme B.

These results confirmed that with our culture system, 
well differentiated and mature NK cells can be obtained. 
Additionally, by analysis of these markers we could 
predict in which differentiation step NK cells are. They 
become to commit, at least, immediately after one week 
of culture and, after the replacement of IL-3 by IL-15 
(at d7), cells rapidly start to acquire irreversible NK cell 
features.

The mRNA expression of a wide range of TFs known 
to have a role in the development of NK cells, was also 
tested. Mostly are known to have a function on NK cells 
by experiments on mice. Thus, we investigated first the 
expression of PU.1, T-BET, MEF, TOX, IKAROS, IRF-2, 
EGR-1, EGR-2, ID-2, BLIMP1, GATA-3, BCL11B and 
E4BP4 in hHSCs (d0) and further at different time points 
during the NK cell differentiation period (d7, d14, d21 
and d28).

Our results confirmed Ikaros and PU.1 as important 
TFs for precursor NK specification and maintenance 
since their values of expression rich their maximums at 
the first week of culture with a decrease of their expres-
sion since there, demonstrating a minimal significance 
of these factors along the remainder culture period of 
differentiation and maturation of NK cells. An increased 
expression of MEF also at the first week of culture was 
accompanied by the expression of PRF1 gene. In fact, 
this Ets protein is thought to have a critical role in PRF1 
gene expression during the development of NK cells 
(31). However, the increment of PRF1 gene expression 
along the time culture period was not accompanied with 
an increment of MEF. In fact, MEF was downregulated 
since the d7 of culture, and so it seems that this TF might 
have been replaced by another TF also implicated on 
PRF gene activation. The role of EGR-1 is compared with 
that published in the literature in mice (38). It revealed 
an increment of its mRNA levels at first week of culture 
but despite this upregulation, EGR-1 showed a signifi-
cant decrease of its expression in the remaining culture 
period. Our observations are in agreement with the role 
of this TF in the initial steps of NK cell lineage with no 
further visible significance for the maturation process of 
NK cells. As IRF-2 deficiency is associated with apoptosis, 

this TF may not be implied directly on the NK differentia-
tion but in the maintenance of NK cell pool. In fact, our 
results suggest a discrete function of this factor during all 
NK cell development. After an initial discrete increment 
of mRNA expression, its values were maintained low dur-
ing the culture period. BCL11B follows the same pattern 
as the previous described TFs. Despite the upregulation 
in the first week of culture, the continuous decreasing 
levels of BCL11B along the culture period are in agree-
ment with the fact that deletion of BCL11B gene induces 
production of NK cells (41). T-BET is an example of a TF 
with a constant upregulation in all culture period. This is 
in accordance to its attributed role in the differentiation 
and effector functions on NK cells (24). Although it has 
been suggested that this TF is not sufficient to complete 
late stages of NK cell differentiation, there is no doubt that 
this factor has an indispensable role in all NK cell differ-
entiation steps including the final functional maturation, 
as it is implicated in regulation of perforin and granzyme 
B expression (49). There are strong evidences that TFs as 
EGR-2 and ID2 are of enormous importance during all 
differentiation steps of NK cell development and matu-
ration, once they were highly upregulated during all the 
culture period. Although the literature gives more impor-
tance to EGR-2 for generation of immature NK (iNK) cells 
(38), our results strongly emphasis the EGR-2 role during 
all the NK cell differentiating steps. ID2 overexpression is 
also in accordance of data reported on mice that showed 
that ID2 stimulates NK cell development at different 
levels (34,50). In fact, ID2 expression was always upregu-
lated throughout the culture period showing importance 
during NK development.

Notwithstanding, no expression levels were detected 
for BLIMP1 at d0 and d7 in cultured NK cells, at d14 this 
TF showed high significant upregulation. Despite its 
small decrease after d14, BLIMP1 was always upregu-
lated during the final steps of NK cell differentiation and 
maturation. This fact is in agreement to the important 
role of this TF in the transcriptional network govern-
ing NK-cell differentiation and homeostasis of NK cells 
(39,40). T-BET, ID2, EGR-2 and BLIMP1 seemed to be 
important regulators of all processes of NK cell differen-
tiation once they are highly upregulated during all stages 
of NK cell development.

The low expression levels of E4BP4 until third week of 
culture may indicate that this TF is important in the very 
beginning of NK cell commitment. At the same time, the 
increment at the end of culture period may reflect some 
importance of this TF in NK-cell mediated cytotoxicity. 
Despite results published on mice (37), our dta strongly 
suggest that E4BP4 has a role in the commitment of HSCs 
to the NK cell lineage. This regulator does not seem, to 
be IL-15 dependent or indispensable to transition of 
pNK cells to mNK cells, since it did not reveal any expres-
sion increment after addition of IL-15 to the cultures. 
However, the expression increment in the last week of 
culture may be explained by its necessity in developing 
cytotoxicity.
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According to literature, TOX is highly upregulated in 
immature NK cells and no mNK cells are seen in mice 
in the absence of this TF. Here we show strong evidence 
that we got mature NK cells in spite of downregulation 
since the d7 of culture. Probably TOX is important to act 
in the very beginning of culture where the commitment 
or the first immature NK cells begins. However, TOX did 
not show any additional visible importance in NK cell 
maturation. These TFs, E4BP4 and TOX, showed a similar 
pattern of expression in developing NK cells. Both were 
downregulated through the culture period, suggesting 
that these two factors are important in the very beginning 
of NK cell commitment.

In spite GATA-3 expression having a decrease at d7, 
the increment of its levels in the following weeks are in 
accordance with the literature observations (23,30). In 
fact, the increment of GATA-3 values were accompanied 
by NKG2A gene expression that is thought to be regu-
lated by this TF. Our results are consistent with published 
results on mice as we got high levels of GATA-3 expres-
sion even at the end of culture confirming its essential 
role in NK cell maturation and in specifying the distinct 
effector phenotypes.

Assessment of the transcripts present in these hHSCs 
induced to differentiate in mature NK cells, showed a 
pattern of preserved and differential gene expression 
remarkably similar to that seen in mice, except for E4BP4 
that is downregulated since the beginning of culture 
period being less expressed as time progressed.

Quantitative real-time PCR (q-RT-PCR) measurements 
of the relative levels of transcripts for several genes revealed 
that some (ID2, EGR-2 and T-BET) were highly upregu-
lated during all the culture period, with a final increment 
of T-bet expression in the final 2 weeks of culture. These 
findings suggests that these TFs may have a marked role 
in all process of NK cell commitment, differentiation and 
maturation. BLIMP1 is also expressed at high levels after 
the second week of culture suggesting its importance 
in differentiation and maturation of NK cells but not in 
NK cell commitment. BCL11B also shows a somewhat 
constant high expression during all culture period but in 
a more softened way. On the other hand, transcripts like 
E4BP4 and TOX showed downregulation since d7 and 
d14 of culture, respectively, representative of their relation 
with the initial stages of NK cell commitment or pNK cells 
production. IRF-2 did not show any relevant significance 
in all NK cell differentiation process since its expression 
hardly varied. Many of the transcripts revealed a differen-
tial pattern of expression (PU.1, MEF, Ikaros, EGR-1 and 
ID3) with an increase at d7 and a following decrease from 
there suggesting that these transcripts are less related with 
maturation and final acquisition of functional capacities 
of NK cells and more associated with NK cell commitment 
and pNK cell production. It is interesting to note the role of 
GATA-3 in these cultures: this TF showed a downregula-
tion of mRNA levels at d7 and then a upregulation until the 
end of culture. This suggests a distinct differential role of 
GATA-3 during the ontogeny of NK cells.

Continuous research concerning NK cell fate and 
ontogeny is still needed, at least at molecular level. In 
fact NK cells have been demonstrating a enormous 
potential for its use on cancer immunotherapy. It is 
well known that IL-2 infusions used to augment cyto-
toxicity of endogenous NK cells is associated with life-
threatening toxicity, essentially represented by capillary 
leak syndrome (51). Moreover, additional NK cell-based 
immunotherapy trials show to be ineffective, thus, lead-
ing scientists to try other positive approaches using NK 
cells for adoptive cell transfer. Indeed, strategies that use 
NK cell donors mismatched for inhibitory NK receptors 
and MHC-I ligands, present in some allogeneic settings, 
have been more successful (42,52). In fact, an important 
antitumor role for alloreactive NK cells has been shown 
in patients with acute myeloid leukemia either after stem 
cell transplantation or adoptive transfer of haploidenti-
cal NK cells (4). Based on these evidences, monoclonal 
Antibodies (mAbs) have been used to block NK inhibi-
tory interactions with MHC-I on tumor cells. Also, mul-
tiple clinically successful mAbs utilize NK-mediated 
ADCC as a mechanism of action. Rituximab (anti-CD20), 
Herceptin (anti-Her-2/neu), Cetuximab (anti-EGFR), 
and the anti-GD2-mAbs 3F8 and ch14.18 are examples of 
tumor-specific mAbs whose clinical activity can be attrib-
uted, at least in part, to NK cells (53). Moreover, genetic 
modifications of NK cells for cancer immunotherapy also 
open new possibilities in the use of these cells.

Conclusion

We used a established culture system to characterize NK 
cell progenitors at different steps in development and 
examined the relation between time of culture and the 
expression of several TFs. Here, we examined the role of 
Transcription Factors on in vitro NK cell differentiation 
and found that E4BP4 and TOX have a role in the very 
beginning of hHSC commitment; PU.1, MEF, EGR-1, 
BCL11B, IRF-2 and Ikaros are more specific to lineage 
specification; GATA-3 is implicated in maturation steps 
and effector functions and, finally, BLIMP1, ID-2, EGR-2 
and TBX21 are undoubtedly the more important TFs dur-
ing all culture period, playing an essential role in NK cell 
differentiation. Although the identification of developing 
intermediates have helped enormously to provide insight 
into the mechanisms controlling NK development, the 
molecular events that govern NK lineage commitment 
still remain unclear. However, altogether, these findings 
are of great interest to determine whether the switch in 
the biological properties is accompanied by a change in 
their gene expression profile leading to modifications 
during ontogeny of human NK cell differentiation.

The results presented here allow either to facilitate the 
identification of a variety of components needed for NK 
cell development or to provide clues on determination 
of NK cell lineage commitment. However, we are aware 
that it has been difficult to establish a perfect model to 
study the NK cell ontogeny. Although we know that 
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knock-out models are a useful tool to study the effect of 
several factors they have the limitation of being tested 
in mice, letting us to wonder whether the effect is the 
same in humans. In fact, although our model to study NK 
cell differentiation was based on in vitro culture system 
in which the differentiation could be manipulated by 
the addition or subtraction of exogenous cytokines and 
growth factors, we were able to follow and characterize 
human NK cells along the time. It should be referred that 
we observed some differences in our results compared to 
what was published in mice.

This is the first approach that follows-up the expres-
sion of several TFs during human NK cell induced dif-
ferentiation, in parallel with NK cell markers enabling 
the identification of the differentiation step of NK cell 
development, including early stages of human NK cell 
ontogeny. This pathway is characterized by different 
surface markers and, as observed, it involves specific 
gene expression profiles. However, the specific develop-
mental stage at which these factors have a role, will need 
to be addressed in the future. A new in vitro differentia-
tion model should be drawn using for example human 
embryonic stem cells deficient in specific receptor genes 
providing insight on these mechanisms in humans.

The ultimate proof for the instructive capacity of a TF 
is the demonstration that it can reprogram a committed 
cell into another lineage by perturbing its TF network, 
deconstructing the old one and reconstructing it into a 
new one. A well-described example of this was already 
shown, for example, with BCL11B (41). It is crucial a thor-
ough understanding of NK cell developmental mecha-
nisms as it may enable future NK cell manipulation for 
adoptive cell-based cancer immuntherapy.
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DISCUSSION and CONCLUSIONS 

 
 

The use of unrelated umbilical cord blood (UCB) as a graft source in allogeneic hematopoietic stem cell 

(HSC) transplantations is a safe and successful treatment preferably in children (Rocha and Broxmeyer, 

2010). UCB has several advantages over bone marrow (BM) or peripheral blood (PB) stem cell grafts such 

as rapid availability, lower risk of viral disease transmission as well as lower risk of severe Graft versus 

Host Disease (GvHD) despite Human Leukocyte Antigen (HLA) mismatches (Laughlin, 2001; Gluckman, 

2009).  

However, the clinical use of UCB is limited due to the low number of cells as well as due to its primitive 

biological features. Therefore, the parameter that has emerged to be most crucial for the clinical outcome 

is the cell dose (Gluckman and Rocha, 2006; Brunstein et al., 2007). In addition, another obstacle for the 

clinical success of UCB-transplantation is the reduced Natural Killer (NK) cell activity of UCB compared to 

adult stem cell sources (Webb et al., 1994; El Marsafy et al., 2001; Nomura et al., 2001). This may contribute 

to the lower incidence of GvHD but could also be one reason for the increased morbidity and mortality 

after UCB transplantation. The importance of the NK cells in the allogeneic transplant setting is further 

underlined by studies that have demonstrated, that donor alloreactive NK cells eliminate not only residual 

leukemic cells but also T cells and antigen presenting cells (APCs) from the host due to the interactions of 

host major histocompatibility complex (MHC) class I molecules with the Killer Cell Immunoglobulin-like 

Receptors (KIRs) of the donor NK cells (Ruggeri et al., 2002; Miller et al., 2007; Ruggeri et al., 2008; Vago et 

al., 2008).  

 

Graft versus Leukaemia (GvL) effect, that relates to decreased relapse risk, has been associated with a 

survival advantage as a result of NK cell activity (Ruggeri et al., 2007). In fact, the therapeutic potential of 

targeted NK cell therapies has been addressed not only in hematopoietic malignancies but also in some 

selective solid tumors (Caligiuri, 2008; Terme et al., 2008). 

 

NK cells are Large Granular Lymphocytes (LGL) that were identified in mice by the innate capacity to 

rapidly lyse some tumour cells. Unlike T-cells, they can kill targets without prior sensibilisation and 

exhibit spontaneous cytotoxic activity towards cells that do not express class I molecules of the MHC 

(Borrego et al., 2002; Orange and Ballas, 2006) and express a large variety of activating receptors on their 

surface capable of recognizing target cells (Moretta et al., 2002). They also express inhibitory receptors 
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whose signals are able to override basal activation signals (Hallett and Murphy, 2006; Lanier, 2008). The 

ligands for the predominant inhibitory receptors are MHC class I molecules that are expressed by most 

normal cells. As originally proposed by the “missing self” hypothesis, downregulation by tumour 

transformation or infection may turn cells susceptible to NK lysis due to partial or complete loss of class I 

MHC expression (Orange et al., 2002; Garcia-Lora et al., 2003). These cell modifications are perceived by 

NK cells and, in that event, the normal balance between activating and inhibitory signals provided by 

diverse receptors is compromised taking NK cells to a response.  

 

In order to recapitulate the development of human NK cells, primitive progenitor candidates from hUCB 

were isolated by immunomagnetic selection of CD34+ cells from the mononuclear cell fraction. Using a 

two-step protocol of proliferation and differentiation, cells were plated at different conditions and at 

different concentrations. 

 

The supplemented medium included a selected cocktail of cytokines chosen based on basic requirements 

for NK cell differentiation and/or activation. Some factors were included as activator factors (Miller et al., 

1999) and others in favour of further requirements of NK cells phenotype concerning to cell survival, 

proliferation, maturation and cytotoxicity (Silva et al., 1994; Carson et al., 1997; Miller et al., 1999; Wang et 

al., 1999; Briard et al., 2002; Sivori et al., 2003; Leonard et al., 2008). Moreover, it was already established 

that the combination of IL-21 with IL-7, IL-15, SCF and Flt3L augments the generation of NK cells in vitro 

(Sivori et al., 2003) and IL-7 and/or IL-15 might abolish the absolute requirement of stroma to induce NK 

cell differentiation (Silva et al., 1994; Mrozek et al., 1996; Yu et al., 1998). IL-21 seems, as well, to augment 

the maturation state of NK cells (Sivori et al., 2003; Leonard et al., 2008). 

 

Also, as it was previously thought that the addition of stromal cells was important for the expansion of NK 

cells, we asked if the presence of these supporting cells or the conditioned medium from them, could 

improve the growth properties of NK cells under our culture conditions. Feeder layers were either shown 

without beneficial effects on the NK cell expansion, differentiation and maturation (Lewis and Verfaillie, 

2000), but also with increased CD56+ expansion but not maturation (Carayol et al., 1998), or alternatively, 

to promote CD56+ expansion as well as maturation (Miller and McCullar, 2001; Grzywacz et al., 2006). 
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Therefore, in order to analyze the role of the niche created by supportive cells in the transition of 

primitive stem cells to less primitive cells, the established AFT024 cell line was used in this in vitro culture 

system (Moore et al., 1997) and compared to conditioned medium from the stroma and also to 

supplemented medium.  

 

At the end of the first week of culture, areas of primitive progenitor proliferation (so called “cobblestone-

like-areas”) became visible in all three culture conditions, suggesting an effective proliferation of the 

original CD34+ cells (Fig. 1d) (paper I) (Pinho et al., 2011). The ratio of CD34+ cells was significantly 

higher (P<0.001) when cells were cultured directly over AFT024 feeder layers (26.89 ± 12.46%) than with 

conditioned medium (11.76 ± 5.96%) or with supplemented medium (13.16% ± 6.79%). These results 

suggested that there is a positive effect of direct cell contact without influence of factors released by 

feeder layers. The murine stromal cell line AFT024 was selected for its described capacity to support and 

amplify the differentiation of CD34+ cells (Moore et al., 1997). In fact, this capacity of AFT024 was also 

observed in our culture system but, interestingly, direct contact with stroma has beneficial effects on 

expansion of primitive cells without differentiation and lineage commitment, indicating that stroma-

contact alone is a potent inducer on proliferation and preservation of hUCB progenitors at primitive stage 

compared to other conditions (Pinho et al., 2011).  

 

Spanholtz et al, successfully expanded CD34+ stem and progenitor cells without feeder cell layers or 

animal serum, just with the use of cytokines (Spanholtz et al., 2010). Here we found, in agreement to 

previously reported studies, that cells still grow better in presence of a feeder layer (Miller et al., 1992; 

Lotzova et al., 1993; Mrozek et al., 1996; Carayol et al., 1998; Lewis and Verfaillie, 2000; Miller and McCullar, 

2001; Yu et al., 2001; Perez et al., 2003; Grzywacz et al., 2006; Kao et al., 2007; Vitale et al., 2008). However, 

most of these culture systems are unsuitable for clinical applications because of the use of animal sera, 

animal-derived proteins and supportive feeder cell lines. Nevertheless, the possibility to generate NK cells 

from UCB without stroma/adhesive microenvironmental factors for a possible clinical application in 

terms of adoptive cellular therapy, was never been demonstrated so far. To our knowledge, the most 

promising work was the work recently published by Spanholtz and colleagues revealing itself the best 

approximation of the requirements concerning cell therapies proposes (Spanholtz et al., 2010). 
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In addition, it will be important for cellular therapy that the generated NK cells express KIRs and do not 

express NKG2A molecules on its surface as it was shown in conditions without animal sera. 

 

To surmount these shortcomings, we have established a two-step protocol in which we developed a 

cytokine-based method for differentiation of mature and functional CD56+ NK cells from hematopoietic 

stem and progenitor cells. As expected, with our culture conditions, in the subsequent three weeks of 

culture using a modified mixture directed to NK cell differentiation (IL-2, IL-7, IL-15, IL-21, SCF and Flt3-

L), the pool of CD34+ cells progressively decreased (Fig. 1e, Figs. 2a,b, Table 1) (paper I) (Pinho et al., 

2011). In this period, the same type of significance was observed between the three culture conditions 

(P<0.001). Interesting, all cocultures established with AFT024 maintained its viability until the end of 

culture period, contrarily to the other conditions that have supported only 80% of cultures until the end of 

4th week, suggesting a more supportive capacity of cultures when in contact with AFT024.  

 

In order to evaluate the phenotype of the differentiating NK cells, a sample of the cultured cells was 

harvested for once a week, stained with the defined surface markers-matched antibodies and read by flow 

cytometry. The results obtained were presented as the percentage of cells in a selected lymphocyte region 

(Fig. 3a) (paper I) (Pinho et al., 2011). We observed that NK cell-phenotype (CD56+CD3-) progressively 

increased as CD34+ cells decreased (Figs. 2a-c, Fig. 3b) (paper I) (Pinho et al., 2011). Generally, this 

increase was significantly higher (P<0.001) in controls (supplemented medium) up to day 21, whereas at 

day 28 it was significantly higher (P<0.001) in contact with stroma and with conditioned medium. 

Specifically, the significant differences were found between all culture conditions in all weeks of the 

experiment period (P<0.001). Two exceptions with no significant differences were found between the 

supplemented medium and conditioned medium at day 7 and between the contact with stroma and 

conditioned medium (P=0.011) at day 28 (Fig. 4a, Table 1) (paper I) (Pinho et al., 2011). These data 

suggest that NK cell differentiation is first delayed by contact with feeder layers, but then stimulated after 

14 days of culture by some factor released from the stroma. 

 

During the first weeks of culture in contact with stroma, cells yielded a lower proportion of CD56+CD3- 

cells compared with the other conditions. In fact, in contact with stroma, as cells maintained for longer 

period the “stem status”, this can explain the initial delay in the commitment of NK phenotype. On the 
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other hand, our results did not reveal any major differences in the capacity of CD34+ cells collected from 

hUCB to generate high numbers of NK cells after 4 weeks in the presence of stroma cells or in conditioned 

medium from the stroma. However, in absence of stroma, there is a reduced production of CD56+ cells 

meaning that in spite of IL-15 in combination with Flt3-L, SCF, IL-2, IL-7 and IL-21 be sufficient to induce 

human CD34+ cells to differentiate into NK cells, it seems that the addition of AFT024 cells did not 

qualitatively alter NK differentiation from CD34+ cells (paper I) (Pinho et al., 2011). In spite of that, Miller 

and colleagues verified that cytokines alone are inefficient to support NK cell differentiation and that 

conditioned medium only supports differentiation partially. However, we saw that the factors produced 

by stroma cells may improve the initial development of NK cell phenotype. Our results are supported by 

others that concluded that cytokines together with stromal cells clearly increase the number of generated 

NK cells but did not qualitatively alter NK cell differentiation (Carayol et al., 1998) and that stromal cells 

do not bring any beneficial effect compared to conditioned medium, once released factors and/or 

cytokines are sufficient to induce NK cell differentiation (Lewis and Verfaillie, 2000). 

 

Additionally, during the process of maturation, NK cells establish a characteristic cell-surface phenotype 

and the capacity to elicit effector functions. Analysis of surface receptors during NK cell maturation 

revealed the expression of the most important KIRs (NKAT2, NKB1, CD158a, p50.3) and of the known 

NCRs (NKp30, NKp40, NKp46) (Figs. 3c-d, 4b-c, Table 1) (paper I) (Pinho et al., 2011). Although it was 

reported that expression of KIRs occurs at later stages and are hardly observed in vitro (Freud and 

Caligiuri, 2006), with our culture conditions, acquisition of at least one KIR was found in almost all 

CD56+CD3- cells (>95%) at the end of the culture period. Generally, the presence of KIRs was detected 

very early during cultures (day 7), being significantly higher (P<0.001) in supplemented medium than in 

conditioned medium or in cococulture with AFT024 up to day 14, thereafter becoming significantly higher 

(P<0.001) in contact with AFT024 and in conditioned medium in relation to control medium. With 

exception for day 21 and day 28 no differences were found between the direct contact with stroma and 

the conditioned medium and between the direct contact with stroma and the supplemented medium 

(P=0.024), respectively (Fig. 3c, Fig. 4b, Table I) (paper I) (Pinho et al., 2011). The majority of the cells 

(>50%) also expressed at least one Natural Cytotoxicity Receptor (NCR) very early during cultures (day 

7), and most of the CD56+CD3- cells had these receptors at the end of the 4 week maturation period 

(>98%).  This suggested again that NK cell differentiation is first delayed by contact with feeder layers and 
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then stimulated by factors released from the stroma (Fig. 3d, Fig. 4c, Table I) (paper I) (Pinho et al., 

2011).  

 

We found that the vast majority of differentiated CD56+CD3- cells co-expressed at least one of the KIRs and 

NCRs. Since CD56+ phenotype was delayed in presence of stroma, the same occurred for the appearance of 

such receptors when in contact with stroma. Nevertheless, having in mind the results of the end of culture 

period, it seems that the appearance of these receptors is independent of the culture condition. The high 

levels of KIRs and NCRs might be consistent with a mature NK phenotype. 

 

Our conditions downregulated NKG2A/CD94 and its expression decreased along all period of culture in 

presence of AFT024 (Fig. 3e, Fig. 4d, Table I) (paper I) (Pinho et al., 2011). It is known that activation of 

immune responses depends on a tight balance between activating and inhibitory signals, thus 

downregulation of NKG2A expression decreases activation threshold of effector cells and could allow for 

more efficient lysis of target cells. There are some reports of in vitro differentiated CD56+ cells that 

express CD94+ on its majority independently of the presence or not of stroma (Carayol et al., 1998). 

Simultaneously, less than 5% of CD56+ cells present KIRs expressed after the CD94/NKG2A. With our 

system, the presence of stroma induced a continuous increasing of surface expression of this complex 

along the time. Curiously, NKG2A/CD94 positive cells in supplemented and conditioned medium 

conditions got its maximums earlier than with direct contact with AFT024. However, we also saw a strong 

decline since then suggesting that the lack of cells to establish contact with NK cells may diminish the 

stimuli to express this receptor. We thought that the lower expression of the complex CD94/NKG2A 

compared with that of the other receptors could be explained by the fact that maturation of NKG2A is 

dependent on the association with CD94 by glycosilation requiring much more metabolic complexity. 

Thus, it appears that there are some factors released by stroma that could be important for the first steps 

of induction towards NK cells lineage but acquisition of receptors seems to be independent of stroma 

signals. However, the fact that only AFT024 had capacity to maintain viability in all cultures until the end 

of the experience indicates that this feeder layer may have some importance on the maintenance of long 

term cultures and on the viability of NK cells for longer periods. Some published data refers that NK cells 

receptors are acquired in an orderly and nonrandom manner during in vitro human NK cell differentiation 

(Mrozek et al., 1996; Miller and McCullar, 2001; Grzywacz et al., 2006) and, differing for our results, 
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indicated that first inhibitory receptor to be surface-expressed is CD94/NKG2A while KIRs appear only 

later and in low percentages (Iizuka et al., 1999; Miller and McCullar, 2001; Briard et al., 2002; Grzywacz et 

al., 2006). 

 

Taken together, we can state that we have generated a developmentally mature NK cell population 

expressing NKG2A, KIR and activating receptors. This was achieved with all culture conditions. AFT024 

stroma feeder has the highest capacity to maintain the stem cell status with the ability to promote 

proliferation of stem and progenitor cells. This knowledge could be used to improve the capacity to yield  

large amounts of mature and functional NK cells without supportive cells. As we have shown to generate 

mature and functional NK cells in absence of supportive cells, we are on track to obtain suitable effector 

NK cells for immunotherapy. Spanholtz et al have demonstrated similar results for generating clinically 

relevant NK cells for the use in NK cell-based immunotherapy (Spanholtz et al., 2010) 

 

Additionally, in order to evaluate the functionality of the in vitro derived mature NK cells we assessed the 

cytotoxic activity using K562 cells, a human erythroleukaemia cell line as target cells. We observed a 

significant higher cytotoxicity levels for NK cells derived from cocultures with AFT024. These cytotoxicity 

results were consistent with the phenotypic behavior implying that these NK cells can demonstrate 

specificity in the recognition process (Fig. 5) (paper I) (Pinho et al., 2011). In fact, our cytotoxicity results 

of in vitro differentiated NK cells against classical NK cell target, K562, was especially higher than 

published NK cell activities from fresh isolated NK cells of cord blood or peripheral blood. Condiotti et al 

demonstrated that cytotoxic CD56+ cells could be produced from human UCB (Condiotti et al., 2001). 

Nevertheless the proposal of their experiments was, like us, to prove the cytotoxic capabilities of NK cells 

in UCB to allay the potential consensus of low GvL effects of UCB, we went farther starting with CD34+ 

cells.  

 

Our studies showed that NK cell activity can be significantly enhanced during CD34+ differentiation in 

controlled conditions. Although K562 cells do not carry HLA-E, it was proposed by Figueiredo, C. et al that 

this increased cytolytic activity is partially mediated by the natural cytotoxicity receptor NKp30 

(Figueiredo et al., 2009) since it was recently shown that the ligand of NKp30 is expressed in K562 cells 
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(Byrd et al., 2007). In general, the stroma was a more potent inducer for cord blood differentiation into 

functional NK cells than the other experimental conditions. 

 

The strong cytotoxic activity of our UCB-derived NK cells against the tumour cell line K562 was displayed 

by specific lysis and these results indicate that UCB-derived NK cells generated by our culture method 

have the ability to kill (at least) myeloid leukaemia cells. 

 

In the course of our experiments we demonstrated that in the presence of suitable cytokines and factors 

released from the stroma, CD34+ cells rapidly acquired large quantities of NCRs and KIR receptors, 

becoming cytotoxic at this level (paper I) (Pinho et al., 2011). In spite of some reports referring that 

stromal cells play an important role in NK cell maturation (Miller and McCullar, 2001; Colucci et al., 2003) 

and others reporting that CD34+ HSC cannot give rise to mature NK cells in absence of stroma (Lewis and 

Verfaillie, 2000), with our well-defined and highly reproducible culture conditions we were been able to 

generate fully competent NK cells in vitro with or without stroma cells, demonstrating that NK cells 

functionality can be increased under appropriate conditions (paper I) (Pinho et al., 2011). The use of 

cytokines reveals itself a remarkable tool for the production of functional mature cells. From the present 

findings we can be argued that IL-15 in combination with Flt3-L, SCF, IL-2 and IL-21 were sufficient to 

induce human CD34+ cells to differentiate into mature cytotoxic NK cells in vitro. Otherwise, we cannot 

exclude the possibility that other factors produced by the stroma may have influenced the development of 

NK cells. Additionally, based on someone work (Kato et al., 2007) and using specific drugs, downregulation 

of the NKG2A ligands expression can be attempted on targets. This could also be an attractive therapeutic 

strategy to induce susceptibility of leukemic cells to the cytotoxicity of NKG2A-lacking cells. 

 

Overall, these findings exemplify that this culture system could hold great promise for the ex vivo 

generation of clinical grade NK cell products for cellular immunotherapy against cancer. 

 

In BM, human CD34+ HSCs differentiate into common lymphoid progenitors (CLPs) giving rise to all 

lymphocytes (Kondo et al., 1997). These CLPs in turn can develop ultimately into mature NK (mNK) cells 

(Galy et al., 1995; Di Santo, 2006), passing through three main stages: lineage commitment, NK receptor 

repertoire selection and functional maturation (Kim et al., 2002; Colucci et al., 2003; Freud et al., 2005; 
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Vosshenrich et al., 2005b; Freud and Caligiuri, 2006; Freud et al., 2006; Mujaj, 2011). During this process NK 

cells acquire characteristic cell surface markers and the capacity to elicit effector functions (Galy et al., 

1995; Di Santo, 2006). 

 

In humans, NK cell function is dependent on the inhibitory CD94-NKG2A complex and on the KIRs. Upon 

stimulation, NK cells release perforin, granzymes and several Tumour Necrosis Factor (TNF) family 

ligands leading to the apoptosis of the transformed or virus-infected cells (Maki et al., 2001). NK cell 

activating receptors (NKp30, NKp44 and NKp46) are also essential for the activation of NK cell functions, 

which results in either cytotoxicity and/or cytokine production (Moretta et al., 2001a; Farag et al., 2002). 

Activating signals are also triggered by the association of NKG2D homodimer with DAP10 adaptor 

molecule (Cosman et al., 2001). Binding of NK cell inhibitory receptors with their ligands renders the 

target cells to be protected from NK cell-mediated cytotoxicity. When target cells lack self-MHC class I 

molecule, NK cells no longer receive inhibitory signal via MHC class I molecules and kill the target cells, in 

a process known as missing self recognition (Ljunggren and Karre, 1990). 

 

Therefore, after our previous results demonstrating that human NK cells with cytotoxic capacity leading to 

effective effector functions can be successfully differentiated (paper I) (Pinho et al., 2011), we started a 

new approach, characterizing the resulting cells of the NK cell cultures at molecular level, based on mRNA 

expression of several molecules present in mature and functional NK cells. To confirm whether these cells 

express mRNA corresponding to known markers and receptors associated with NK cells (CD34, CD56, 

CD94), we performed q-RT-PCR analysis of cells at time zero (d0) and of the resultant cells after each 

week of culture (d7, d14, d21 and d28). HSCs and differentiating NK cells were also tested for mRNA 

expression of several genes encoding important proteins associated with NK cell maturation and 

cytotoxicity (NKG2A, NKG2D, PRF1, GZMB, NCR1, NCR2 and NCR3).  

 

Confirming our previous observations using flow cytometry (paper I) (Pinho et al., 2011), we found 

increased expression of CD56 along the all culture period with mRNA levels being expressed since the first 

week of culture (d7). The key marker of NK cells (CD56) started to be expressed immediately after one 

week of culture together with CD122 (IL2/15Rβ). These two markers gradually manifested along the 

remaining three weeks of culture (Fig. 1) (paper II) (Pinho et al., 2012). This observed expression is in 
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agreement with the literature since it is already known that all NK cells express CD122, which is required 

for IL-15 responsiveness and it is essential for NK cell generation and peripheral survival (Di Santo, 2006). 

CD122 acquisition is, in fact, an essential step in the commitment of HSCs to the NK cell lineage. As 

precursor NK cells (pNK) express IL-2/15Rβ, its ligand IL-15 has a vital role in the maturation of NK cells.  

 

Human CD94 is a subunit of the disulfide-linked, heterodimeric NK cell surface receptor CD94/NKG2. This 

receptor participates in regulating NK cell directed lysis through interaction with the major 

histocompatibility antigen HLA-E. However, the expression of CD94 and its association with NKG2A, 

NKG2C, and NKG2E subunits is dispensable for NK cell development, education, and many NK cell 

functions (Orr et al., 2010b). In our differentiating NK cells, we found CD94 expression only at the second 

week of culture with a continuous increment of expression (65- to 86-fold) until the end of culture period 

(Fig. 1) (paper II) (Pinho et al., 2012). Simultaneously, as expected, we found a decreased expression of 

CD34 with no detectable levels of mRNA above d14-21 of culture (Fig. 1) (paper II) (Pinho et al., 2012).  

 

CD117 marker (also known as c-kit) showed a subtle expression in these cultures. In fact, its variations 

during the culture period had no statistical significance. 

 

Other mature-NK cell markers became expressed at d7 of culture such as PRF1, NKG2A and NKG2D (Fig. 

1) (paper II) (Pinho et al., 2012). These markers had a significantly increase of mRNA expression until the 

end of culture (d28). Thus, between d0 and d28, PRF1 increased its levels in 27- to 83-fold, NKG2A in 142- 

to 211-fold and NKG2D in 49- to 110-fold. No detectable levels of GZMB were seen at d7. The expression of 

PRF1, NKG2A and NKG2D immediately after the first week of culture contrarily to CD94 or GZMB, may 

suggest that the latter are much more responsive in the final steps of NK cell maturation than the formers. 

However, despite some mRNA upregulation showed by NKG2A in the first week of culture, supposedly it 

does not have yet any function as effective receptor once it acts as heterodimer associated with CD94, and 

this receptor does not have any expression yet at this time. The upregulation of NKG2D, at the first week 

of culture, might indicate that this activating receptor may be in the forefront of importance of NK cell 

development. Despite NKG2D having a role in activation or inhibition of killing activity in mature NK cells, 

it is known that this receptor is expressed in pNK cells but its function on these precursor cells is not 

known yet. (Huntington et al., 2007). 
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Concerning NCRs, only NCR2 (NKp44) expressed mRNA at d7-14, also with a constant increase of its 

expression until d28 (34- to 174-fold) (Fig. 1) (paper II) (Pinho et al., 2012). This early expression 

immediately after the first week of culture may be related to the fact that this molecule (NKp44) is 

progressively expressed by all NK cells in vitro after culture with IL-2 (Vitale et al., 1998). As this culture 

system includes IL-2 since the beginning of experiments, this early expression is not surprising. In spite 

NK differentiating cells having no function at this stage, this initial differentiation of NCR2 and PRF1 may 

be a initial preparation of these cells, that once committed, start to prepare for rapidly responding to 

adversities. 

 

At the second week of culture (d14), the expression of GZMB was observed, demonstrating constant 

increasing expression since there. In fact, GZMB had an increment of 88- to 228-fold from d7 to d28. At 

this point, at the same time that CD56 and CD122 increase their expression, other markers start to appear 

namely CD94 and GZMB as well as the cytotoxic receptor NCR3. These new expressions may have been 

potentiated by the replacement of IL-3 by IL-15 at the beginning of first week. It should also be noted that 

while NKG2D did not increase its mRNA levels, NKG2A had a significantly increase of its expression. Thus, 

at same time that CD94 molecules are produced, they recruit NKG2A molecules to form heterodimers and 

so more NKG2A molecules are needed, justifying the increment of NKG2A expression. The appearance of 

CD94 expression also marks the beginning of functional maturation of NK cells since this stage is marked 

by the expression of the NK receptor CD94-NKG2A. NKG2D mRNA expression was maintained once they 

had already a much higher expression in the first week compared to NKG2A, allowing them to produce 

protein in sufficient amount to form NKG2D homodimers. 

 

Concerning NCR3 (NKp30), it showed with increments of its mRNA levels of 62- to 240-fold since it 

appeared (d14) and until the end of culture period. In fact, since NK forming cells became more and more 

differentiated, their cytotoxic potential started to appear. NKp30 together with NKG2D and NKp46 

represents the major triggering receptors involved in the induction of NK cells cytotoxicity. It should be 

also noted that simultaneously to this new expression, the mRNA levels for NCR2 had have an increase 

too. The expression of CD34 marker was gradually decreased along the culture period with no longer 

expression since day 14 of culture. This fact is in agreement with the loss of stem status of hHSCs. 
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The generated NK cells only expressed mRNA for NCR1 (NKp46) after the third week of culture (2- to 21-

fold) with no further increased in expression at the fourth week. The increase of activity of NK cells is 

associated with enhanced expression of NKp46 and/or NKG2D. Thus, in the final steps of NK cell 

maturation, the acquisition of its functions is associated to the increment of these markers that will make 

the difference in NK cell capacities. At the same time, in spite NCR3 having an increment at this time point 

of culture, no further increment was seen until the end of experiment period. On the contrary, the 

maintenance of NCR2 high expression levels at third week of culture may reveal that, at this point, NK cells 

are fully competent given that this NCR is specific for activated human NK cells. At d21 of culture, CD94, 

CD56, CD122, PRF1, GZMB, NKG2A and NKG2D had a significantly increase in their mRNA expression 

promoting an increment of NK cell maturity and function capacities. The upregulation of these markers 

were more pronounced at d28 of culture where NK cells are probably full of its functional capacities, 

expressing cytotoxic granules containing perforin and granzyme B. 

 

These results confirmed that with our culture system, well differentiated and mature NK cells can be 

obtained. Additionally, by analysis of these markers we could predict in which differentiation step NK cells 

are. They become to commit, at least, immediately after one week of culture and, after the replacement of 

IL-3 by IL-15 (at d7), cells rapidly start to acquire irreversible NK cell features. 

 

It is already known that during this process NK cells acquire characteristic cell surface markers and the 

capacity to elicit effector functions (Galy et al., 1995; Di Santo, 2006; Pinho et al., 2011). NK cell 

development, differentiation and maturation are also dictated by a variety of factors such as cytokines, 

membrane factors, and Transcription Factors (TFs) in addition to BM microenvironment. Little is known 

about the role of TFs on human NK cell development, and so, although mouse knockout models have been 

a very useful tool for studying which TFs control NK cell development, our current understanding of NK 

cell development stems primarily from findings in mice. As we have described, in the course of our 

experiments we were able to generate mature and functional NK cells. Now it was important to analyze 

the TFs involved in each commitment step of NK cell differentiation. 

 

To get inside the molecular mechanisms that intervene in each differentiation step of NK cell ontogeny, we 

have analyzed some TFs that could be related with NK cell commitment, differentiation and acquisition of 
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effector functions. As the collaborative interactions of these factors have been identified in many 

processes, this indicates that a functional network encompassing these transcriptional regulators could be 

crucial for the development and functioning of NK cells. Among many individual TFs that were already 

referred to contribute to the conventional NK cells development, we studied the expression of PU.1, 

Ikaros, Gata-3, IRF-2, T-bet, MEF, Id2, TOX, E4BP4, EGR-1, EGR-2, BLIMP1 and BCL11B. 

 

The transcription factors that control engagement to the NK cell lineage have only recently started to be 

identified. For example, it is known that PU.1 (purine rich box-1) is expressed on NK cells but its role in 

NK cell development is not known. In an attempt to search for a contribution of PU.1 on NK cell ontogeny, 

it was found that, in PU.1 knockout (KO) mice, NK cells displayed reduced expression of the receptors for 

SCF and IL-7 suggesting a nonredundant role for PU.1 in regulating the expression of these cytokine 

receptor genes during NK cell development (Colucci and Di Santo, 2000; DeKoter et al., 2002).  

 

During our differentiation protocol, PU.1 showed a overexpression of its mRNA in the first week (d7) and 

a further gradual decline since there, maintaining these low levels of expression until the end of culture 

period (Fig. 2a) (paper II) (Pinho et al., 2012). Our results suggest that PU.1 might have a role in 

commitment and establishment of NK cells since this transcription factor showed an increment of 

expression in the beginning of culture period and a downregulation along the remainder culture period of 

differentiation and maturation of NK cells. In agreement with Colucci and co-workers, we demonstrate 

that NK cells express PU.1, even if this transcription factor is referred not to be required  for the 

generation of functional NK cells in vivo (Colucci et al., 2001). However, diverging from our results and 

although these studies have been reported on mice, these authors also showed that NK cells maintain 

expression of PU.1 throughout differentiation. Taken together, this transcription factor appears to be 

essential for the generation of NK cells in vivo by specification or maintenance of pNKs via regulation of 

key cytokine receptors required for NK cells. It appears obvious that PU.1 regulates NK cell differentiation 

and homeostasis. However, it was also suggested that PU.1 is less required in NK cell development 

compared to B and T cells. More studies should be addressed in the future concerning this TF due to the 

lack of an established function for PU.1 together with the disparity of conclusions between mouse and 

human. 
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Ikaros (a member of the Ikaros zinc-finger family) expression followed the same pattern of expression as 

PU.1. It also reached its maximum at the first week, followed by a sharp decline until the end of culture 

period (day 28) where they got their minimums of expression (Fig. 2a) (paper II) (Pinho et al., 2012). So 

far, there are no data concerning the role of Ikaros on human NK cell development. However, our results 

are consistent with the suggestions retrieved from studies on mice (Boggs et al., 1998). Consistent to our 

data, it was suggested that a deficiency in Ikaros appears to have a negative effect on NK cell development 

which may be related to a diminished expression of Flt3 and CD122. Whether Ikaros is required for the 

generation of NKP or at later stages of NK cell differentiation has not been reported. However, in the same 

work authors also suggested that the deficiency of mature NK cells in Ikaros mutant mice is related to lack 

of functional precursors. 

 

Our differentiating NK cells doubled MEF (myeloid elf-like factor) expression on day 7 but rapidly fell 

down in 3- to 5-fold through the remaining culture period, thus, showing a similar pattern of expression as 

PU.1 and Ikaros (Fig.2a) (paper II) (Pinho et al., 2012). This may suggest that MEF may also have a role in 

the specification and or commitment of NK cells. Nevertheless, these results are not in accordance with 

literature that attributes MEF to be responsible for regulate cytolitic effector functions of fully-matured 

NK cells (Lacorazza et al., 2002) since its absence, at least in mice, causes reduced cytotoxic capacity and 

cytokine production in spite of the normal development of NK cells. In the same work, authors reported 

that, in MEF-deficient NK cells, Perforin protein expression is severely impaired and that MEF directly 

regulates transcription of the perforin (PRF1) gene in NK cells (Lacorazza et al., 2002). This hypothesis is 

also not consistent with our results. Although we observed an increased expression of MEF at the first 

week of culture accompanied by the expression of PRF1 gene (Fig. 1) (paper II) (Pinho et al., 2012), the 

increment observed for PRF1 gene expression along the remaining culture period was not accompanied 

with an increment of MEF. In fact, MEF was downregulated since the d7 of culture, and so it seems that 

this TF might have been replaced by another TF also implicated on PRF gene activation.  

 

To our knowledge, EGRs (early growth response factors) was never studied in terms of NK cells ontogeny. 

Quantitative measure of mRNA expression showed that EGR-2 had a strong upregulation of its mRNA 

levels just after one week of culture (d7) with a continuous high expression until the end of culture 

(Fig.2b) (paper II) (Pinho et al., 2012). Although EGR-2 has been strongly implicated in certain 
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lymphocyte development other than NK cells (Lazarevic et al., 2009; Hu et al., 2011; Seiler et al., 2012), our 

results strongly suggest that, due to persistent  higher expression of EGR2 during all the culture period, it 

is also implicated in the early and late stages of NK lineage differentiation. This is not surprising, as EGR-2 

also bound the promoter of IL-2Rβ, which encodes the interleukin 2 (IL-2) receptor β-chain, and 

controlled the responsiveness to IL-15. 

 

Although EGR-1 also play a role in NKT cell specification, the contribution of this transcription factor 

seems to be more subtle than the attributed to EGR-2 (Hu et al., 2011). In fact, EGR-1 (early growth 

response factor 1) showed a minor increase of its mRNA levels at day 7 followed by a high downregulation 

at day 14 which lasted with minor oscillations until the end of culture period (Fig.2a) (paper II) (Pinho et 

al., 2012). Although experiments from Hu and co-workers have been done in NKT cells in mice, our 

results seem to show a quite similar pattern leading to a similar conclusions. However, since there is a lack 

of knowledge in the human NK cells, the different contribution of these two closely related transcription 

factors to NK cell development remains an area of interest for future studies. 

 

It is known that IRF-2 deficiency on mice causes NK cell deficiency (Lohoff et al., 2000; Taki et al., 2005). 

Our experiments showed an initial increment of IRF-2 mRNA expression with further downregulation 

until the end of culture (Fig. 2a) (paper II) (Pinho et al., 2012) reflecting the same pattern of expression 

of the aforementioned transcription factors. Lohoff and colleagues initially reported that IRF-2 is required 

for NK cell development in vivo since it was observed decreased numbers of NK cells in IRF-2-/- mice and 

the NK cells that were present were immature in phenotype (Lohoff et al., 2000). These observations were 

confirmed later when other group showed that, in IRF-2 deficient mice, NK cells in the periphery were 

reduced due to selective loss of mNK cells contrarily to BM NK cells that proliferated almost normally but 

undergoing accelerated apoptosis (Taki et al., 2005). Excepting the first beginning, our results suggest a 

discrete function of this factor during all NK cell development (Fig. 2a) (paper II) (Pinho et al., 2012) and, 

thus, contrarily to reported findings on mice, this TF does not seems to be implicated in the process of 

final maturation of human NK cells (at least in our in vitro derived NK cells). As suggested, if IRF-2 

deficiency is associated with apoptosis, this TF may not be implied directly on the NK differentiation but in 

the maintenance of NK cell pool, thus, giving support to our results. Definitively, further studies on human 

NK cells are needed to explain this subtle role of IRF-2 on NK cell ontogeny. 
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BCL11B was also selected for mRNA expression analysis in developing NK cells due to recent exciting 

discovery concerning reprogramming T-cells into other cell kind similar to NK cells [called induced T-to-

natural killer (ITNK)] by simply deleting BCL11B gene from the cells. ITNK cells seem to be 

morphologically and genetically similar to conventional NK cells, killed tumour cells in vitro, and 

effectively prevented tumour metastasis in vivo. In our work, BCL11B was used as a negative control for 

NK cells since it is expressed in all developmental stages of T cells, but not in NK cells. Nonetheless, ITNKs 

may represent a new cell source for cell-based therapies (Li et al., 2010b). As expected, we found 

downregulation of this transcription factor immediately after the first week of culture which lasted until 

the end of culture (Fig. 2a) (paper II) (Pinho et al., 2012). This is in agreement with the fact that BCL11B 

suppress NK cell genes (Li et al., 2010b) and hence its absence in NK cells. The work published by Li and 

co-workers was of particular interest since, although the experiments were performed on mice, the fact 

that we could modify the developmental fate of immune system cells could be of enormous value in cancer 

treatments. 

 

Our observations suggest that transcription factors like PU.1, Ikaros, MEF, EGR-1, IRF-2 and BCL11B might 

be implicated in initial phases of NK cell lineage specification. For sure, more studies are needed even 

because the present knowledge concerning this issue is based essentially on studies on mice.  

 

ID2 (inhibitor of DNA binding protein) has been shown to have an essential role in the generation of NK 

cells (Yokota et al., 1999; Ikawa et al., 2001; Boos et al., 2007). In fact, we found a significant increment of 

ID2 expression in the first week of culture and, notwithstanding some oscillations during the remaining 

culture period, its expression levels were maintained always upregulated, showing importance during NK 

development (Fig. 2b) (paper II) (Pinho et al., 2012). The high expression levels that we detected for ID2 

mRNA over the entire differentiation period are in agreement with the data reported on mice showing 

that ID2 stimulates NK cell development at different levels. The overexpression of mRNA levels all over 

the entire culture period fits with literature reports. Initial reports suggested that, in absence of ID2, the 

reduced population of NK cells is caused by an intrinsic defect in NK-cell precursors (Yokota et al., 1999) 

and on the other hand attribute ID2 a role in the restriction of bipotent T/NK progenitors to the NK cell 

lineage (Ikawa et al., 2001). More recently, Boos and colleagues demonstrated that ID2 is not essential for 

NK cell lineage specification but rather is required for development of mNK cells (Boos et al., 2007). 
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Despite the high expression of ID2 observed by us and the cumulative evidences that ID2 acts at different 

levels, more human studies are needed to corroborate these conclusions. 

 

T-BET was identified as a key factor in the terminal maturation and peripheral homeostasis of NK cells 

(Townsend et al., 2004). We found that mRNA expression of this TF is high upregulated during all culture 

period of NK cell development (Fig.2b) (paper II) (Pinho et al., 2012). This is in accordance to its 

attributed role in the differentiation and effector functions on NK cells (Townsend et al., 2004). Our results 

can be perfectly explained based in literature report conclusions since it was proposed that T-bet has an 

indispensable role in all NK cell differentiation steps including the final functional maturation. Moreover, 

T-bet was also recently implicated in regulation of perforin and granzyme B expression (Cruz-Guilloty et 

al., 2009) corroborating ours and others results. We cannot disregard, however, that the published results 

are based on mice and so, future human approaches should be performed.  

 

BLIMP1 (transcriptional repressor B-lymphocyte-induced maturation protein 1) is a critical negative 

regulator of NK function (Smith et al., 2010; Kallies et al., 2011). Nevertheless, it was also shown that 

BLIMP1, is expressed by NK cells throughout their development (Kallies et al., 2011). These statements are 

in agreement with our observations. Despite no expression was detected for BLIMP1 at the beginning of 

our cultures (d0 and d7), at d14 and d21 this TF showed high upregulation (Fig. 2b) (paper II) (Pinho et 

al., 2012). The requirement of IL-15 for the early induction of BLIMP1 in NK cells (Kallies et al., 2011) 

might explain the absence of expression in the beginning of the culture period. Additionally, data referring 

that BLIMP1 expression increases in the most mature human NK cell subsets also are consistent with our 

observations since we found high upregulation of BLIMP1 at 2nd and 3rd weeks. Our results together with 

evidences showing BLIMP1 is required for NK-cell maturation and homeostasis and for regulating their 

proliferative potential, makes BLIMP1 a notably important factor involved in NK cell development. Blimp-

1 has also a role in suppressing the release of IFN-γ, TNF-α, and TNF-β and, thus, ablation of Blimp-1 

expression leads to enhanced production of IFN-γ and TNF-α whereas overexpression blocks cytokine 

production (Smith et al., 2010). These findings are in agreement with our results as, in the last week of 

culture, NK cells showed a significant decrease in BLIMP1 expression (Fig. 2b) (paper II) (Pinho et al., 

2012) suggesting a necessity for downregulation of BLIMP1 for cytokine expression by NK cells. Likewise, 

Smith and colleagues’’ conclusions are in agreement with our results since ablation of BLIMP1 does not 
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alter cytotoxicity of terminal differentiated NK cells (Smith et al., 2010) (Fig. 5) (paper I) (Pinho et al., 

2011) . 

 

There are strong evidences that T-BET, ID2, EGR-2 and BLIMP1 are important regulators of all processes 

of NK cell differentiation and maturation since, apart from the literature, we observed highly upregulation 

of these factors during all stages of NK cell development. 

 

E4BP4 (E4-binding protein 4) is a basic region leucine zipper transcription factor showed to be essential 

for generation of the NK cell lineage (Gascoyne et al., 2009; Kamizono et al., 2009). This is in agreement 

with our observations since in vitro differentiated NK cells showed high downregulation of E4BP4 since a 

very early point of culture (Fig. 2c) (paper II) (Pinho et al., 2012). This might indicate that, in fact, this 

transcription factor is involved in the NK cell lineage commitment.  

 

TOX is a DNA-binding factor recently implicated in the development of NK cells (Aliahmad et al., 2010; Yun 

et al., 2011). We found some mRNA expression for TOX in the beginning of the cultures with further 

decrease of its levels since d21 (Fig. 2c) (paper II) (Pinho et al., 2012). This is consistent with literature 

since it was reported a considerably upregulation of TOX in iNK cells and a loss of mNK cells in absence of 

this transcription factor (Aliahmad et al., 2010). Our results suggest that this TF also acts early in the 

developmental process of NK cells. However, we found in the literature some contradictory results giving 

TOX a role not only in differentiation of NK cells but also suggesting that effector functions of NK cells are 

dependent of TOX (Yun et al., 2011). Our results are clearly in disagreement with these conclusions since 

we observed a downregulation of TOX since the 3rd week of culture and, thus, showing no additional 

significance in acquisition of effector functions. 

 

E4BP4 and TOX, showed a similar pattern of expression in developing NK cells. Both were downregulated 

through the culture period, suggesting that these two factors are important in the commitment and/or 

differentiation of NK cells with no further major significance in NK cell maturation and/or acquisition of 

effector functions. 
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It is known that GATA-3 (GATA binding protein 3) is expressed both in murine pNK cells and mNK cells 

(Samson et al., 2003). This announcement per se is in favour of the results that we have found in human 

NK cells. We found a decrease of GATA-3 expression in the first week of culture with further continuous 

high upregulation throughout all the culture period (Fig. 2d) (paper II) (Pinho et al., 2012). Since it was 

reported that NK cells can be generated in the absence of GATA-3 (Samson et al., 2003), it is not surprising 

the initial downregulation of GATA-3 that we observed. In addition, the upregulation and high 

overexpression of GATA-3 in the remaining culture period (Fig. 2d) (paper II) (Pinho et al., 2012) is 

consistent with Samson et al work suggesting that GATA-3 promotes NK cell maturation and acts in this 

lineage to specify distinct effector phenotypes (Samson et al., 2003). In the same research, the authors 

verified that in absence of GATA-3, NK cells produced less IFN-γ compared to control NK cells. Moreover, 

in an attempt to study the transcriptional regulation of the human NKG2A gene, GATA-3 was also 

implicated in regulating NKG2A expression (Marusina et al., 2005). This is also in agreement with our 

observations, since the increment of GATA-3 values were accompanied by NKG2A gene expression (Fig. 1) 

(paper II) (Pinho et al., 2012). However, since we observed an upregulation of NKG2A expression at d7 

simultaneously with a downregulation of GATA-3 in the first week of culture, other(s) transcription 

factors other than GATA-3 must exist and be involved in the NKG2A expression. 

 

However, more studies are needed with focus on human NK cells concerning transcription factors 

network that commands NK cell fate. Indeed, for the first time we did an approach to several transcription 

factors involved in NK cell specification. 

 

Assessment of the transcripts present in these hHSCs induced to differentiate in mNK cells, showed a 

pattern of preserved and differential gene expression remarkably similar to that seen in mice, with few 

exceptions. Our observations based on the relative levels of transcripts for several genes suggest that 

some (ID2, EGR-2, and T-BET) may have a marked role in all process of NK cell commitment, 

differentiation and maturation. BLIMP1 is suggested to participate in events during differentiation and 

maturation of NK cells but not in NK cell commitment. Other transcript factors (PU.1, Ikaros, MEF, EGR-1, 

IRF-2 and BCL11B) shown to be discrete throughout the process of differentiation except in the beginning 

which, by its overexpression and upregulation are suggested to play an important role in the NK cell 

lineage specification, NK cell commitment and pNK cell production being less related with maturation and 
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final acquisition of functional capacities of NK cells. Transcripts like E4BP4 and TOX showed 

downregulation since d7 and d14 of culture, respectively, representative of their relation with the initial 

stages of NK cell commitment or pNK cells production. It is interesting to note the role of GATA-3 in these 

cultures: this TF showed a downregulation of mRNA levels at d7 and then a upregulation until the end of 

culture attributing Gata-3 a role in the process of maturation and acquisition of effector capacities of NK 

cells.  

 

Although many of these transcription factors are shared with other hematopoietic cell lineages, they 

control unexpected and unique aspects of NK cell biology. 

 

Because of rapid cytolitic function without previous priming against broad range of targets, NK cells may 

be candidates for cancer therapy emerging to apply as therapeutic agents against a broad range of 

malignancies (Shlomchik et al., 1999; Ruggeri et al., 2002). 

 

The critical importance of NK cells in innate immunity lead us to recapitulate the development of 

functional NK-cells from multipotent hematopoietic UCB-stem cells in vitro reconstituting the complete 

process of NK-cell development and maturation from the naive stem cell to the functional effector cells. 

We also investigate the possibility to generate a specific NK cell population (CD56+KIR+NKG2A-) from 

UCB without stroma/adhesive microenvironmental factors.  

 

As lineage decisions always involve changes in gene expression programs and being these decisions 

ultimately controlled by Transcription Factors, we’ve also characterize human developing NK cells at 

molecular level based on mRNA expression of several TFs that have been already described to have 

important roles, at least on mouse NK cell lineage. 

The results presented here indicate that NK cells can be generated in vitro and it seems that these 

receptors are indispensable for NK cell maturity. In fact, the capacity of hUCB CD34+ cells to acquire CD56 

may therefore provide a cytotoxic cell population that may be of therapeutic potential in the treatment of 

hematopoietic malignancy. These data together with the possibility to achieve NK cells negative for 

CD94/NKG2A receptor will allow us to generate alloreactive NK-cells for clinical applications in adoptive 

cellular therapies. 
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This study also extended our knowledge of the effects of different cytokines on the proliferation of NK 

cells from human cord blood progenitor cells. One of the reasons for the lower incidence of GVHD 

following UCB transplant may be the reduced cytotoxic potential of CB-derived NK cells. However, we can 

increase NK cells functionality under appropriate conditions, opening new perspectives in 

immunotherapy.  

This matter is not yet well understood and there are only a few preliminary studies in this field with no 

conclusive results. In fact, there are many reports with mixed conclusions difficult to reconcile. An 

improved understanding of these processes will continue to drive the clinical applications for NK cells as a 

tool against infection and tumors as well as the establishment of NK cell lines with “specific” 

characteristics will provide favourable tools for culture models. 

 

Moreover, to our knowledge, this was the first work that follows-up the in vitro human NK cell 

development evaluating a set of TFs during lineage commitment and maturation. Simultaneously, we 

established a relation between gene expression and the detection of the functional receptor on the surface 

of the NK cells. Although the identification of developing intermediates have helped enormously to 

provide insight into the mechanisms controlling NK development, the molecular events that govern NK 

lineage commitment still remain unclear. However, altogether, these findings are of great interest to 

determine whether the switch in the biological properties is accompanied by a change in their gene 

expression profile leading to modifications during ontogeny of human NK cell differentiation. 

 

We are aware that it has been difficult to establish a perfect model to study the NK cell ontogeny. Although 

we know that knock-out models are a useful tool to study the effect of several factors they have the 

limitation of being tested in mice, letting us to wonder whether the effect is the same in humans. In fact, 

although our model to study NK cell differentiation was based on in vitro culture system in which the 

differentiation could be manipulated by the addition or subtraction of exogenous cytokines and growth 

factors, we were able to follow and characterize human NK cells along the time. It should be referred that 

we observed some differences in our results compared to what was published on mice. We present the 

first approach that follows-up the expression of several TFs during human NK cell induced differentiation, 

in parallel with NK cell markers enabling the identification of the differentiation step of NK cell 
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development, including early stages of human NK cell ontogeny. This pathway is characterized by 

different surface markers and, as observed, it involves specific gene expression profiles. However, the 

specific developmental stage at which these factors have a role, will need to be addressed in the future.  

 

NK cells have been demonstrating a enormous potential for its use on cancer immunotherapy. It is well 

known that IL-2 infusions used to augment cytotoxicity of endogenous NK cells is associated with life-

threatening toxicity, essentially represented by capillary leak syndrome (Fehniger et al., 2002). Moreover, 

additional NK cell-based immunotherapy trials show to be ineffective, thus, leading scientists to try other 

positive approaches using NK cells for adoptive cell transfer. Indeed, strategies that use NK cell donors 

mismatched for inhibitory NK receptors and MHC-I ligands, present in some allogeneic settings, have been 

more successful (Ruggeri et al., 2002; Miller et al., 2005). In fact, an important antitumor role for 

alloreactive NK cells has been shown in patients with acute myeloid leukaemia either after stem cell 

transplantation or adoptive transfer of haploidentical NK cells (Farag et al., 2002). Based on these 

evidences, monoclonal Antibodies (mAbs) have been used to block NK inhibitory interactions with MHC-I 

on tumour cells. Also, multiple clinically successful mAbs utilize NK-mediated ADCC as a mechanism of 

action (Alderson and Sondel, 2011). Moreover, genetic modifications of NK cells for cancer immunotherapy 

also open new possibilities in the use of these cells, for example, using strategies for expression of 

interfering RNAs (siRNA) (Figueiredo et al., 2009).  

 

In summary, the NK cell is a complex lymphocyte that deserves increased recognition for its contribution 

to overall host immunity (O'Connor et al., 2006).  
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