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Resumo

Nos últimos anos, o mercado dos dispositivos móveis tem crescido de forma exponencial. Este
crescimento é evidenciado pelo facto de, em 2011, o número de dispositivos vendidos ter ultrapas-
sado o número de PCs. Apesar desta evolução e das contínuas melhorias aos sistemas e arquite-
turas móveis, a depuração das suas aplicações é ainda um processo manual, moroso e suscetível
a erros. Embora a qualidade e fiablidade de uma aplicação possam sofrer grandes melhorias se a
mesma for extensivamente testada e depurada, muitas vezes este processo não é compatível com
as condições impostas pelo mercado. O diagnóstico automático de erros e/ou falhas durante o
teste de software pode trazer grandes melhorias ao processo de depuração, ajudando assim ao
desenvolvimento de aplicações com maior fiabilidade e qualidade.

A localização de falhas tem sido um grande foco de investigação, o que levou à criação de
ferramentas como o Tarantula ou o GZOLTAR. Spectrum-based Fault Localization (SFL), ou
localização de falhas baseada em espectros, a técnica na qual as referidas ferramentas se baseiam.
Esta é uma técnica de depuração estatística que depende da informação de cobertura de código de
execuções de teste. Contudo, os dispositivos móveis apresentam alguns desafios e particularidades
devido à sua índole de sistema embebido e, por isso, poucos avanços têm sido alcançados na área
do desenvolvimento de software no que diz respeito a este tipo de dispositivos.

Nesta tese é proposta uma abordagem que tem como objetivo ultrapassar os problemas cau-
sados pelas particularidades dos dispositivos móveis. Esta abordagem, denominada MZOLTAR,
combina análise estática (através do Lint) e análise dinâmica (através do SFL) de aplicações
móveis, com o objetivo de produzir relatórios de diagnóstico que ajudem a encontrar potenciais
defeitos mais rapidamente. A abordagem inclui também a representação gráfica dos relatórios de
diagnóstico, melhorando a perceção dos mesmos.

Para avaliar a validade e a eficácia da abordagem proposta, foi realizada uma avaliação em-
pírica, injetando falhas em quatro aplicações Android open-source. Os resultados mostram que a
abordagem implica um overhead de execução baixo (5.75% em média), enquanto que, em média,
é apenas necessário inspecionar 5 componentes até que a falha seja localizada. Para além disso,
é demonstrado que a informação fornecida pelo Lint ajuda na localização de falhas que de outra
forma não seriam localizadas pelo SFL. Nesses casos, a integração com o Lint reduziu o número
de componentes a inspecionar em 99.9% em média.
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Abstract

In the past few years, we’ve been assisting to an exponential growth of the mobile devices’ market.
In 2011 the number of devices shipped exceeded the number of PCs. Despite this market growth
and the improvements made to the mobile architectures, debugging mobile apps is still a manual,
error-prone and time consuming task. While the reliability of an application can be greatly im-
proved by extensively testing and debugging it, this process often conflicts with market conditions.
Automated diagnosis of errors and/or failures detected during software testing can greatly improve
the efficiency of the debugging process, thus helping to make applications more reliable.

Fault localization has been an active area of research, leading to the creation of several tools,
such as Tarantula and GZOLTAR. Spectrum-based Fault Localization (SFL), the technique behind
the outlined tools, is a statistical debugging technique that relies on code coverage information.
However, the embedded nature of mobile devices poses some particular challenges, thus very few
has been reported in the area of mobile software.

This thesis proposes an approach to overcome the challenges presented by the mobile devices
architecture. This approach, dubbed MZOLTAR, that combines static (using Lint) and dynamic
analysis (using SFL) of mobile apps to produce a diagnostic report to help identify potential defects
quickly. The approach also offers a graphical representation of the diagnostic report, making it
easier to understand.

To assess the validity and performance of MZOLTAR, an empirical evaluation was performed,
by injecting faults into 4 real open-source Android applications. The results show that the ap-
proach requires low runtime overhead (5.75% on average), while the tester needs to inspect 5
components on average to find the fault. Furthermore, it demonstrates that Lint helps revealing
bugs that otherwise would go undetected by the SFL fault localization technique. In those cases,
the integration with Lint reduced the number of components to inspect by 99.9% on average.
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“Quality is the ally of schedule and cost, not their adversary. If we have to sacrifice quality to
meet schedule, it’s because we are doing the job wrong from the very beginning.”

James A. Ward
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Chapter 1

Introduction

In the past years, the market of mobile devices such as smartphones and tablets has been growing

exponentially. The number of shipped mobile devices even exceeded the PCs in 2011. The two

main operating systems in the market, Apple’s iOS and Google’s Android, have been competing

for about 5 years, and in the first quarter of 2013 Android had 75% of the market share while

Apple had 17%1. This has the potential to represent a big paradigm shift in some technological

areas and implies substantial changes and adjustments in the software development area.

The process used to develop software for mobile devices is the same used to develop any other

software. Generally the process follows four main phases: design, implementation, testing and

release (see Figure 1.1).

Requirements/ 
Design

Implementation

Testing

Release

Debugging

Figure 1.1: Software development process.

However, it is highly probable that not all tests pass at the first try and there may be needed

some adjustments in the implementation. This implies adding a new phase to the process, that

includes changing the implementation (although the focus of this thesis is the implementation,

in some cases the design itself may need adjustments) to assure the application is functioning

1IDC Worldwide Quarterly Mobile Phone Tracker - http://www.idc.com/getdoc.jsp?containerId=
prUS24108913, 2013.

1
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correctly, according to its specification. Therefore a cycle is created, following a debugging phase

whenever a test or multiple tests fail. This phase includes correcting the implementation to mitigate

the problem, and after the adjustments, the application is tested again, until all tests pass and all

the conditions for successful release are met. Debugging is not easily estimated and, besides being

the most error-prone phase in the software development life cycle, it consumes a great amount

of time and other resources. Given those facts it is important to drastically reduce the debugging

costs to achieve better software quality with less resources [Tas02, HS02].

Although several debugging tools are available, not much has been reported in the area of

mobile software, therefore debugging mobile applications is still a manual and time-consuming

task. This thesis’ main goal is to ease the task of debugging mobile applications, increasing

reliability and quality, while reducing the usual time-to-market.

1.1 Concepts and Definitions

Throughout this thesis, the following terminology is used [ALRL04]:

• a failure is an event that occurs when delivered service deviates from correct service

• an error is a system state that may cause a failure

• a fault (defect/bug) is the cause of an error in the system.

In this thesis, this terminology is applied to software programs, where faults are bugs in the pro-

gram code. Failures and errors are symptoms caused by faults in the program. The purpose of

fault localization is to pinpoint the root cause of observed symptoms (failures).

Definition 1 A software program Π (a mobile app in the context of this thesis) is formed by a

sequence M of one or more statements.

Definition 2 A test suite T = {t1, . . . , tN} is a collection of test cases that are intended to test

whether the program follows the specified set of requirements. The cardinality of T is the number

of test cases in the set |T |= N.

Definition 3 A test case t is a (i,o) tuple, where i is a collection of input settings or variables for

determining whether a software system works as expected or not, and o is the expected output. If

Π(i) = o the test case passes, otherwise fails.

1.2 Motivation

Despite recent advances in the mobile software area, the development of applications for mobile

devices - such as Android apps - still poses interesting challenges [EMK13]:

2
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• The large amount of available devices and their large range of specifications (e.g., cpu speed,

screen resolution), makes it difficult to check the consistency and ensure portability between

different devices and platforms;

• Testing apps for each target platform requires the development of several versions. Further-

more, the available testing frameworks have serious limitations for testing mobile specific

features;

• Developers claim that better analysis tools and techniques to help debugging apps are se-

riously needed. In fact in the World Quality Report [CCSH12], 2⁄3 of surveyed developers

mentioned that they do not have the proper tools to test and debug mobile apps, despite the

available tools such as provided by Android Software Development Kit (SDK) and Android

Development Tools (ADT) plugin.

Software reliability can generally be improved through extensive testing and debugging, however

this often conflicts with market conditions. Often, software cannot be tested exhaustively, and of

the bugs that are found, only those with the highest impact on the user-perceived reliability can be

solved before the release. Therefore, applications tend to be released with bugs that are not easily

perceived but can cause problems in the future. Given the low impact of the most software bugs in

this area, the reliability is brought down to a commercial acceptable level. The goal is not to loose

out to the competitors and achieve a acceptable product, with a perceivable value to the costumer,

in spite of its imperfections.

In this typical scenario, testing reveals more bugs than can be solved, and debugging is a bot-

tleneck for improving reliability. Although the mobile applications market has been growing a lot

in the past few years, and even with the fast evolution of the mobile architectures we have been

assisting, debugging mobile applications is still a manual and time-consuming task. Automated

debugging techniques, based on data gathered from program executions [WDLG12, HZZ+09,

AZGvG09, LFY+06, WWQZ08, SSPC13, SF12] or on expected program behaviour [MS03, MS08,

dK09] may be used to reduce this bottleneck.

Locating a fault is an important step in actually fixing it. SFL is a technique, which is amongst

the best performing techniques, that helps identifying the root cause of observed failures, relying

on program execution data and test pass/fail information. GZOLTAR2 [CRPA12], which focuses on

Java programs, and Tarantula [JH05], which focuses on C programs are examples of tools offering

the SFL technique. Since it is lightweight, SFL has been successfully applied in the context of

embedded software [ZAGvG07, ZPA+08]. Despite these tools and the increasingly active research

in the area of fault localization, not much has been reported in the area of mobile software.

Furthermore, given the particularities of mobile apps development, some faults are of a more

static nature (e.g., not declaring an activity in the manifest file3). As this may conceal the fault,

SFL simply misses it. Thus, decreasing considerably the quality of the diagnostic report. Lint4

2GZOLTAR homepage http://gzoltar.com, 2013.
3The manifest presents essential information about the application to the Android operating system; information the

system must have before it can run any of the application’s code.
4Lint homepage http://developer.android.com/tools/help/lint.html, 2013.
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is a static analysis tool that was adapted to Android, being distributed with the Android SDK. It

scans project sources seeking for potential static defects.

Tools like GZOLTAR provide visual representations of the diagnostic report. These visualiza-

tions are a translation of the report into an intuitive representation that ease and speed up the fault

localization process.

Hereupon, the application of SFL in conjunction with the information provided by Lint

checks would ease the debugging of mobile apps. Moreover, combining the two analysis and

reflecting this combination in any provided visualizations would positively affect the fault local-

ization process.

1.3 Main Goals

Given the main limitations of the mobile devices, their embedded nature and the fact that they are

resource constrained devices, some research questions arise:

• Is the MZOLTAR’s instrumentation overhead negligible?

• Does MZOLTAR yield accurate diagnostic reports under Android device’s constrained envi-

ronment?

• Does the integration with Lint contribute to a better diagnostic quality?

To answer to these questions, the purpose of this thesis was to develop a toolset that relies on

SFL and Lint, devising a way to combine both dynamic and static analysis. Furthermore, the

developed toolset provides visual representations of the diagnostic report(visualizations) that ease

the debugging process. These visualizations will present, clearly, the combination between static

and dynamic analysis. Finally, an empirical evaluation to assess MZOLTAR’s performance and

verify its applicability to the context of mobile apps was performed.

This way, the developed toolset mitigates some time and reliability constraints faced by devel-

opers, increasing the quality of the developed and released mobile applications.

1.4 Document Structure

Besides Chapter 1, the Introduction, this document is composed by six more chapters.

Chapter 2 describes the Android platform’s history and architecture.

Chapter 3 aims to present the related work in the mobile applications debugging field. It also

presents some automatic fault localization tools and techniques.

Chapter 4 contains the description of the proposed solutions as well as the tools this solutions

are based on.

Chapter 5 details the developed toolset as well as its underlying technique.

Chapter 6 presents the outcome of the performed empirical study.

Chapter 7 presents the conclusions drawn from this thesis’ work.
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Chapter 2

Android Operating System

Android is an open source Linux-based operating system targeted for mobile or embedded devices.

Typically, Android applications are developed in Java language. However, languages such as C

or/and C++ may also be used to compile into native code. Note, that Android reuses the Java

language syntax and semantics, but it does not provide the full class libraries and APIs bundled

with Java SE. Java development is mainly supported by a comprehensive set of development tools

SDK, while native code is supported by the Native Development Kit (NDK). Android applications

have a specific lifecycle that differs from the Java regular applications’ lifecycle. Instead of a main

function, Android applications’ main components are: Activities; Services; Content providers;

Broadcast receivers. Furthermore, Android applications are not only comprised of source files,

but also include resource files (mainly related to the specification of layouts and translations) and

a manifest file (as mentioned before, responsible to provide the necessary information about the

application to behave correctly to the Android system).

2.1 History

Android’s alpha and beta versions where launched in late 2007. Its first commercial version,

Android 1.0, was released in 2008. The first Android device, HTC Dream, incorporated this

version of the operating system. So far seventeen versions of the API have been released, the most

recent being Android 4.2 also known by the code-name Jelly Bean.

As stated by Google, the company who leads the Android open-source project, “Android is

an open-source software stack for mobile phones and other devices. (...) The goal of the Android

Open Source Project is to create a successful real-world product that improves the mobile expe-

rience for end users.”. It is open-source nature and permissive licensing allows manufacturers to

freely modify and distribute the operating system with their devices, therefore allowing some flex-

ibility in what it touches to compatibility issues. As the years passed, Android also gathered a big

community of developers who willingly modify and even add features to the operating system in
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order to improve the performance of some devices. There is also a big community of Android ap-

plications developers, hence Google Play application market as reached the 25 billion downloaded

applications and currently has around 700 thousand applications available to download.

In the first quarter of 2013 Android had a market share of 75.0% and according to the its

official Engineering team it reached the 500 million devices activated worldwide and about 1.3

million activations per day. On the other hand, Android’s competitors registered smaller shares:

Apple’s iOS had a 17.3% while Blackberry, Linux, Symbian and Windows Phone had about 7.7%

all together.

2.2 Android Manifest

The manifest file (AndroidManifest.xml) must be present in the root directory of every application.

The Android system relies on this file to access file about the application before being able to

successfully run it (i.e., if an activity is not declared the system will not be able to run it, if the

internet permission is not declared the system will not be able to perform http connections). The

manifest is responsible for:

• Declaring an unique identifier for the application (package name);

• Describing application components (see Subsection 2.3);

• Determining which processes will host application components;

• Declaring which permissions the application must have to access protected parts of the API

and interact with other applications;

• Declaring the permissions that others are required to have to interact with the application’s

components;

• Listing the Instrumentation classes that provide profiling and other information as the appli-

cation is running;

• Declaring the minimum level of the Android API that the application requires;

• Listing the libraries that the application must be linked against;

2.3 Components

As stated before, Android applications have a very specific lifecycle. Their main components are:

Activities; Services; Content providers; Broadcast receivers.

An Activity1 is the most common application component that provides a graphical user inter-

face with which users can interact to perform actions. Examples of Android activities are “dial a

1Android Activities homepage http://developer.android.com/guide/components/activities.
html, 2013.
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phone number”, “take a photo”, “send an email”, “view a map”, etc. Activities are implemented

as a subclass of the Android SDK’s Activity class and can be customized to perform any action

requiring user interaction. The lifecycle of an activity (see Figure 2.1) is based on a set of states

and the actions performed when the activity changes its state.

Figure 2.1: Android activity lifecycle diagram

onCreate() - Called when the activity is first created. Most activity initialization should be made

here, such as UI inflation, data binding or recovery of a previously frozen state. It’s always

followed by onStart();

onRestart() - Called after if onStop() was called before the activity starts again. Always followed

by onStart();

onStart() - Called when the activity becomes visible to the user. Followed by onResume() if the

activity comes to the foreground or onStop() if it becomes hidden;

onResume() - Called when the activity will start interacting with the user. Actions such as an-

imations or opening exclusive access-devices (e.g., camera) should be done here. Always

followed by onPause();

onPause() - Called when a new activity is launched in front of the previous activity. Persistent

data should be saved here. The actions made here must be quick and simple, because the
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new activity will only start when onPause() returns. In most cases this activity is followed

by onStop();

onStop() - Called when the activity is no longer visible to the user. This method may only be

called when the system does not have enough memory to keep the activity running. It can be

followed by onRestart() if the activity becomes visible to the user again, or by onDestroy()

if the activity is going to be destroyed by the system;

onDestroy() - Called when the activity is destroyed either by the system or by an explicit call to

the finish method.

The state may change when events are triggered. For instance, when an Activity is first cre-

ated it will be on the Created state, and then its state will be changed to Started. Between any

state transition, an action is executed and it can be customized by overriding each of the callback

methods in the Activity class. When the activity is created and before setting its state to Created,

the onCreate() method will be called and the consequent action will be performed, as well as the

onStart() method will be called during the transition between the Created and Started states.

A Service2 is an application component intended to perform long-running operations, usually

in the background. Examples of services are playing music, perform network operations or to

supply functionality for other applications to use. Unlike activities, services do not provide a user

interface.

Content providers3 are components that manage access to a structured set of data, as they

encapsulate the data and provide mechanisms to define data security. A content provider is the

alternative to an SQLiteDatabase and should be used when multiple applications use the stored

data. The encapsulated data is provided to applications through a ContentResolver4 interface.

Android itself includes content providers that manage data such as audio, video, images, and

personal contact information.

Broadcast Receivers5 respond to system-wide announcements, such as a broadcast announc-

ing that the screen has turned off, the battery is low, or a picture was captured. Commonly, a

broadcast receiver is a gateway to other components and should do a very small amount of work.

For instance, it might initiate or an activity a service to perform some work based on the event.

2Android Services homepage http://developer.android.com/guide/components/services.html,
2013.

3Android Content Providers homepage http://developer.android.com/guide/topics/providers/
content-providers.html, 2013.

4Android Content Resolver homepage http://developer.android.com/reference/android/
content/ContentResolver.html, 2013.

5Android Broadcast Receivers homepage http://developer.android.com/reference/android/
content/BroadcastReceiver.html, 2013.
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2.4 System Architecture

Android is a stack of different layers which includes an operating system, middleware and key

applications. Each layer provides different services to the layers just above it. The architecture

layers are specified in Figure 2.2.

Figure 2.2: Android system architecture

2.4.1 Applications and applications framework

Android base releases have a set of core applications that are indispensable for the systems proper

functioning. Additionally the development framework used to develop the core applications is

provided as an open development platform. It allows the developers to take advantage of the

device’s hardware and features to their applications benefit.

Although Android applications are written mainly in Java, as referred, there are some points

in which Android applications and standard Java applications differ from each other. The differing

points are the following:

• Android applications have a specific lifecycle that differs from the Java regular applications’

lifecycle. Instead of having a main function, Android applications are based on activities

and each activity transitions between different states in its lifecycle (see Figure 2.1). In

order to perform some actions in the state transitions (depending on the needs actions may

be performed in different state transitions) the corresponding functions must be overridden.

• Some libraries of JavaSE and Android may not be compatible as they may not include all

JavaSE elements or are exclusive to Android (see Section 2.4.3).
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• A Java regular application uses Java Virtual Machine (JVM) while Android uses Dalvik

Virtual Machine (DVM) (see Section 2.4.3).

• Android uses XML to declare its User Interface (UI) elements while regular Java applica-

tions use platforms like SWING or JavaFX.

2.4.2 Libraries

Android includes a set of C/C++ libraries used by various components of the Android system.

Developers can access these capabilities through the provided development framework. These

capabilities include system libraries, media libraries, graphic libraries, browser, database engine.

The libraries are hardware specific. There follow some examples of core libraries of the Android

system:

• Surface Manager: composes UI on the screen;

• SGL: the underlying 2D graphics engine;

• OpenGL ES: 3D library implemented based on OpenGL ES 1.0 APIs;

• Media Framework: supports playbacks and recording of various audio, video and picture

formats;

• Free Type: bitmap and vector font rendering;

• WebKit: browser engine which powers both the Android browser and an embeddable web

view;

• libc: implementation of the standard C system library (libc), tuned for embedded Linux-

based devices;

• SQLite: relational database engine available to all applications.

2.4.3 Android Runtime

Android Runtime consists of DVM and Core Java libraries. DVM runs Dalvik Executable (.dex)

files unlike the JVM that runs .class files. But Java source files are not directly compiled into

.dex files. They first are compiled into .class (java bytecode) files and then transformed into .dex

files (dalvik bytecode). Dalvik Executable files are optimized to achieve higher efficiency on

resource constrained environments like mobile devices. Dalvik was written to allow the running

of multiple virtual machines efficiently and, therefore, allow each application to run on its own

virtual machine instance, then providing security, isolation, multi-level memory management and

threading support.

It is also important to highlight the Android permission mechanism, that enforces restrictions

on the specific operations that a particular process can perform or grant access to specific pieces
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of data. Android applications have no permissions associated by default, which prevents the ap-

plication from doing anything that would adversely impact the user experience or any data on the

device. If any feature uses any method that requires a given permission, that permission must

be explicitly specified in the manifest by the developer. Minimizing the required permissions by

declaring just the ones the application really needs is a must.

Some of the Java core libraries may not be exactly equal to the JavaSE libraries as they may

not include all of the elements of their JavaSE equivalents. For instance the method isEmpty() in-

cluded in the java.lang.String class since the 1.5 version of JavaSE launched in 2004 that was only

included in version 9 of Android API. Other example is the System.out and System.err streams,

which do not provide any output when used in Android, being the use of the android.util.Log class

encouraged. Oh the other hand some APIs are exclusive to Android, such as the contacts API.

2.4.4 Linux Kernel

The Linux Kernel it is the lowest layer and acts as an abstraction layer between the hardware and

all the architectural layers. There Kernel never interacts directly with the user. Its importance

stems from the fact that it provides the following functions in the Android system:

• Hardware Abstraction

• Memory Management Programs

• Security Settings

• Power Management Software

• Other Hardware Drivers

• Support for Shared Libraries Network Stack
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Chapter 3

Related Work

When analysing debugging tools, there are two categories that can be taken into account:

• manual debugging tools based on a step-by-step execution

• automatic debugging tools on the history of several executions or on expected program

behaviour

Debugging Android applications is a manual and not trivial task. Moreover it is a rather time-

consuming and error-prone process. Android SDK provides several tools for this purpose, all of

them fitting in the manual debugging tools category.

Statistical debugging is type of automated debugging and has been a very active subject of

research in the past years. Some automatic fault localization tools like GZOLTAR or Tarantula

have been developed, using a SFL approach (see Subsection 3.3.1), and have been proven to be

accurate and efficient. Nevertheless, very few has been reported in the area of mobile software.

Despite the myriad of techniques and approaches, there are still shortcomings when applying

these techniques in the context of mobile, resource-constrained apps. Available automated fault

localization toolsets do not offer easy integration into the mobile apps world. As a consequence,

manual approaches are still prevalent in the mobile apps debugging and testing phases, and the

debugging tools available for mobile apps only offer manual debugging features [EMK13].

In this chapter, the Android testing framework will be presented along with some debugging

tools provided by the Android SDK, as well as some automatic approaches.

3.1 Testing Android Applications

The testing framework provided by Android SDK extends JUnit1 with specific features that pro-

vide access to Android system components and ease the implementation of several testing strate-

gies [Mil11].

1JUnit homepage http://www.junit.org/, 2013.
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Android testing framework also provides an instrumentation framework to control the tested

application. With the instrumentation framework is possible to inject mock Android system ob-

jects to simulate specific situations.

Test projects are similar to the main applications’ projects. This way the user does not need to

learn a new set of tools and can easily design and build tests for the developing application.

Figure 3.1 summarizes the Android testing framework. In this section the instrumentation

framework will be analysed, along with MonkeyRunner, Monkey and Robotium tools.

Figure 3.1: Android test framework diagram.

3.1.1 Instrumentation framework

Android instrumentation is a set of control methods or “hooks” in the Android system. With in-

strumentation is possible to invoke callback methods that are exclusively controlled by the system

and cannot be invoked directly, providing a way to, for example, run through the lifecycle of a

component step by step.

Instrumentation also controls the way tests run, by shutting down any previous running in-

stances of the main application on the device and controlling the test runner responsible for run-

ning the tests.
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3.1.2 MonkeyRunner

MonkeyRunner is a tool that provides an API to write Python programs that control a device or

emulator from outside the application code. The programs run on the developing system and not

on the device itself, sending specific events to the device.

The results are presented as UI screenshots and can even be compared to a set of screenshots

that are known to be correct.

3.1.3 Monkey

The infinite monkey theorem states that a monkey hitting keys at random on a typewriter keyboard

for an infinite amount of time will almost surely type a given text, such as the complete works of

William Shakespeare. Monkey is a tool that transposes this theorem to the Android applications’

context. In this context an entity that produces random events on the device could crash the

application under test.

Monkey is a command line tool and runs on a device or emulator and generates pseudo-random

streams of user events such as clicks, touches, or gestures, as well as a number of system-level

events. The tool provides the possibility of performing stress-tests to an application, by using

several configurations like event types and frequencies.

3.1.4 Robotium

Robotium2 is a test framework created to make it easy to write automatic black-box test cases for

Android applications. It simulates touching, clicks, typing, and other UI actions relevant for An-

droid applications. The presentation of the results is very similar to the JUnit results presentation

(red/green bar to represent failed/passed tests).

To write and run tests with Robotium, no source code is required. With just the apk and

minimal knowledge of the application under test it is possible to write solid test cases. The tests

are written to follow a given UI flow and assert the properties of some system components.

3.2 Debugging of Android Applications

As stated, Android SDK provides a set of tools that make it possible to debug the developed

applications. In this section each one of these tools will be presented and briefly described.

3.2.1 LogCat

The Android logging system, dubbed LogCat, is a way to output information directly from the

device and track application events (see Figure 3.2). It can be viewed both from command line

through Android Debugging Bridge (ADB) or from Eclipse (or some other external tool that im-

plement an interface to ADB). The use of JavaSE system outputs, System.out and System.err, is

2Robotium homepage http://code.google.com/p/robotium/, 2013.
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discouraged in Android, as they are redirected to LogCat (or simply does not display anything in

some old versions of Android).

LogCat has several fields and can be displayed in some kinds of formats, depending on its

main goal. LogCat fields are the following:

• Time - The time at which the LogCat message was generated in the device

• Priority - Indicates the severity of the message

• PID (Process ID) - ID of the process that generated the message

• TID (Task ID) - ID of the task that generated the message

• Tag - Message tag

• Message - Message content itself

Figure 3.2: LogCat output example

Not only the messages originated in the applications under development are shown, as the

Android system itself often outputs its own LogCat messages, in most cases, related with system

events. Many types of information is output in the LogCat system and the severity of each mes-

sage may differ, thus messages can have different priorities. The possible severities for a LogCat

message are the following:

• V — Verbose (lowest priority)

• D — Debug

• I — Info

• W — Warning

• E — Error

• F — Fatal

• S — Silent (highest priority, on which nothing is ever printed)

Although LogCat is not the most precise debugging tool, as an output system it lets users track

specific behaviours or states of an application, thus providing a versatile way for tracking what the

application is doing in a specific situation.
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3.2.2 Android Debugging Bridge (ADB)

ADB is a command line tool included in the Android SDK that plays a very important role in

the process of debugging Android applications. It represents a direct connection layer between a

device and the developing system.

ADB acts as a intermediary between a device and the developing system, not only providing a

tool for managing the devices connected (install/remove applications, sync files) and run a UNIX

shell in a given device but also serving as a connection between the device and the developing

system itself.

An ADB device daemon runs on the device, while a ADB host daemon runs on the develop-

ing system, providing a debugger that connects to this interface a way to collect information to

successfully debug an application running on a device or emulator.

3.2.3 Dalvik Debug Monitor Server (DDMS)

DDMS is a graphic debugging tool (see Figure 3.3), both accessible through Eclipse or command

line, whose features include:

• Viewing heap usage for a process

• Tracking memory allocation of objects

• Working with an emulator or device’s file system

• Examining thread information

• Starting method profiling

• Using the Network Traffic tool

• Using LogCat

• Emulating phone operations and location

• Changing network state, speed, and latency

• Spoofing calls or SMS text messages

• Setting the location of the phone

When it starts, DDMS connects to ADB, then creating a Virtual Machine (VM) monitoring

system that notifies DDMS whenever a device is connected or disconnected. As in Android every

application runs in its own process, each of which running in its own VM, DDMS opens a connec-

tion to each VM’s debugger through the ADB daemon on the device and then assigns a debugging

port to each VM. When a debugger connects to one of these ports, all traffic from the associated

VM is forward to that port.
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Figure 3.3: DDMS screenshot

3.2.4 Java Debug Wire Protocol (JDWP) debugger

JDWP is a protocol used for communication between a debugger and a JVM. 1The DVM supports

the JDWP protocol to allow debuggers to attach to a VM. Each application runs in a VM and

exposes a unique port to which a debugger can be attached to via DDMS. If the goal is to debug

multiple applications, attaching to each port might become tedious, so DDMS provides a port

forwarding feature that can forward a specific VM’s debugging port to port 8700. It is possible

to switch freely from application to application by highlighting it in the Devices tab of DDMS.

DDMS forwards the appropriate port to port 8700. Most modern Java IDEs include a JDWP

debugger, but a command line debugger, such as jdb, can also be used. Figure 3.4 shows how the

various debugging tools work together in a typical debugging environment.

3.2.5 Traceview

A trace graphical viewer that shows trace file data for method calls and times for the developing

application, giving useful information that helps profiling its performance. A trace log file, used

by traceview, can be generated either by adding tracing code to the application or by DDMS. After

the files are loaded, two panels are then provided:

• Timeline Panel (see Figure 3.5) which describes visually when each thread and method

started and stopped. Each method is shown in another colour (colours are reused in a round-

robin fashion starting with the methods that have the most inclusive time). The thin lines

underneath the first row show the extent (entry to exit) of all the calls to the selected method.
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Figure 3.4: The architecture

• Profile Panel (see Figure 3.6) presents a summary of the time spent in the method. Both

the exclusive time (time spent in the method) and inclusive time (time spent in functions

called by the method) are presented, as well as the percentage of total time. This panel also

presents the number of calls to this method plus the number of recursive calls in the last

column.

Figure 3.5: The timeline panel of the traceview tool

Figure 3.6: The profile panel of the traceview tool
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3.2.6 HierarchyViewer

Graphical programs that makes it possible to debug and profile an application’s UI, by providing a

visual representation of the layout’s View hierarchy (the View Hierarchy window) and a magnified

view of the display (the Pixel Perfect window).

The two panels provided are detailed next:

• View Hierarchy window (see Figure 3.7) displays the View objects that form the UI of

the Activity that is running on the device or emulator. It can be used to look at individual

View objects within the context of the entire View tree. For each View object, the View

Hierarchy window also displays rendering performance data. It is also possible to observe

an individual View from the View tree in detail, obtaining more detailed information about

it, thus easing the debugging of a specific part of the UI.

Figure 3.7: HierarchyViewer - View Hierarchy window

• Pixel Perfect window displays a magnified image of the screen that is currently visible on

the emulator or device. In this window, it is possible to examine the properties of individual

pixels in the screen image. It is also possible to use the Pixel Perfect window to help lay out

the application UI based on a bitmap design.

20



Related Work

3.2.7 Lint

Lint3 is a static analysis tool for Android applications. It was introduced in the version num-

ber 16 of the Android SDK Tools. It is based on an homonym tool developed at Bell Labs4 in

1977 that flags some suspicious and non-portable constructs (likely bugs) in C language source

code. Android’s Lint acts on the Java source code used in Android applications and also aims at

flagging potential bugs and optimization improvements for correctness, security, performance, us-

ability, accessibility, and internationalization. In addition, Android’s Lint also analyses Android

specific resources, like layout files or the Android manifest file, to point out problems specific to

the platform.

When analysing the source code and the resources of an Android project, Lint performs a

series of checks that are associated with specific known issues. Each issue is characterized by

three properties

Category
Indicates the nature of the issue, such as Usability, Correctness or Performance. A subcat-

egory may also be presented, e.g., Usability:Icons;

Severity
Indicates the impact the issue may represent to the application. There are three levels of

severity: Warning (lowest threat), Error and Fatal (highest threat).

Priority
Indicates the priority of the issue. If an issue has a priority of 10 it should be accessed before

another issue with priority 6. The priority assumes values between 1 and 10.

Lint generates a report with all the errors found after analysing the code. Lint’s proprieties can

be customised, to ignore some issues that are not relevant in a project, to change the severity of a

specific problem or to add new/customised checks.

3.2.8 A Graphical On-Phone Debugger (GROPG)

Besides the tools provided by the Android SDK, there is another tool that presents a different ap-

proach. GROPG5 [NCT13] was developed at University of Texas at Arlington and is a on-phone

debugger that enables the debugging of the application in real time on the top of the running ap-

plication itself (see Figure 3.8). Its biggest advantage is that this approach runs on the device and

does not need any interaction with the developing system. GROPG provides traditional debug-

ging actions like breakpoints, step into, step over, step out, in-scope variable analysis and thread

analysis.

3Lint homepage http://developer.android.com/tools/help/lint.html, 2013.
4Bell Labs homepage http://www3.alcatel-lucent.com/wps/portal/belllabs, 2013.
5GROPG homepage http://cseweb.uta.edu/~tuan/GROPG/, 2013.
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Figure 3.8: GROPG interface.

3.3 Automated Debugging and Testing

Statistical debugging is a type of automated debugging where statistical models of a program’s

success/failure are used to track program bugs. These models expose the correlation between

program behaviour and success or failure of an execution. This type of approaches guides the

developers to the root causes of the bugs, by correlating program misbehaviours with the failures

and presenting the suspiciousness of a given component being faulty.

In this section will be presented a statistical debugging approach, SFL, as well as some statis-

tical debugging tools.

3.3.1 Spectrum-based Fault Localization (SFL)

Spectrum-based Fault Localization (SFL) [AZGvG09, AZvG07] is a statistics-based lightweight

fault localization technique and it is considered to be amongst the most effective ones [AZGvG09,

LFY+06, WWQZ08]. This technique uses a dynamic analysis approach, as it relies on program

execution information (program spectrum) from previous runs (passed and failed) to correlate the

software components with the observed failures and determine the likelihood of each component

being faulty. Passed runs are executions of a program that completed correctly, while failed runs

are executions in which an error was detected. A Program spectrum is a collection of data that

indicates which components of the software were hit during a run [AZvG07].

The input of the SFL is constituted by the hit spectra and an error-vector (see Figure 3.9).

The hit spectra of N runs constitutes a binary N ×M matrix A. M represents the instrumented
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components of the program. The error-vector has N-length and represents the information of

which runs passed or failed.

N spectra

M components
a11 a12 · · · a1M

a21 a22 · · · a2M
...

...
. . .

...
aN1 aN2 · · · aNM


error

vector
e1
e2
...

eN


Figure 3.9: SFL input.

After receiving the input, SFL quantifies the resemblance between each column of the matrix

A with the error-vector. The more a column resembles with the error-vector, the greater is the

suspiciousness of the corresponding software component being faulty. To do this, SFL relies

on similarity coefficients like sJ (Jaccard coefficient), sT (the coefficient used in the Tarantula

tool 3.3.2) and sO (Ochiai coeficient, see Equation 3.1). The latter is considered to be one of the

best performing similarity coefficients for fault localization [AZGvG09].

sO( j) =
n11( j)√

(n11( j)+n01( j)) · (n11( j)+n10( j))
(3.1)

where npq(m) is the number of runs in which a component (m) was hit (p = 1) or not hit (p = 0)

during an execution, and where that execution failed (q = 1) or was successful (q = 0). npq(m) is

formally defined as

npq(m) = |{i | ai j = p∧ ei = q}| (3.2)

3.3.2 Tarantula

Tarantula6 [JH05] is a tool used to debug projects written in C, developed at Georgia Tech, that

relies on SFL. The visual interface is one of Tarantula’s key points (see Figure 3.10), as it high-

lights each line of code accordingly to their suspiciousness of being faulty (from red for maximum

suspiciousness to green for minimum suspiciousness).

3.3.3 EzUnit

EzUnit7 was developed at University of Hagen and is a statistical debugging tool that aims at the

debugging of Java projects, using JUnit test cases. It highlights each line of code accordingly to

their suspiciousness of being fault (see Figure 3.11), using colours from red (higher suspicious-

ness) to green (lower suspiciousness). It also provides a call-graph view that uses the same colour

schema (see Figure 3.12).

6Tarantula - Fault Localization via Visualization homepage http://pleuma.cc.gatech.edu/aristotle/
Tools/tarantula/, 2013.

7EzUnit – Easing the Debugging of Unit Test Failures homepage http://www.fernuni-hagen.de/ps/
prjs/EzUnit4/, 2013.
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Figure 3.10: Tarantula interface

3.3.4 Zoltar and GZOLTAR

Zoltar is a fault localization tool for C/C++ projects (see Figure 3.13) and it has been developed

at Delft University of Technology (TUDelft). It was the base of Rui Abreu’s PhD thesis [Abr09]

and it won the Best Demo Award prize at The 24th IEEE/ACM International Conference on Auto-

mated Software Engineering (ASE’09) with the publication Zoltar: A Toolset for Automatic Fault

Localization [JAG09].

GZOLTAR8 [CRPA12] is Java implementation based on Zoltar. It is a framework aimed at

debugging Java projects and provides powerful hierarchical and interactive visualizations like

sunburst and treemap (see figure 3.14). Like some of the aforesaid tools, GZOLTAR also uses

a colour range from red (most probable cause of failure) to green (least probable cause of failure)

and implements SFL with the Ochiai coefficient (Equation 3.1).

Besides fault localization, GZOLTAR also provides a test suit reduction and prioritization tool

dubbed RZoltar. This tool minimizes the size of the original test suite using constraint-based

approaches.

The GZOLTAR tool was the base of André Riboira’s MSc thesis [Rib11] and it is the base

for the work detailed on this thesis, that aims at adapting this tool to the automatic debugging of

Android applications.

8The GZOLTAR Project – http://www.gzoltar.com/
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Figure 3.11: EzUnit ranking.

Figure 3.12: EzUnit call graph.
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Figure 3.13: Zoltar interface [JAG09].

Figure 3.14: GZOLTAR [CRPA12] overview.
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3.3.5 Mobile approaches

Attempts to automate the process of testing and debugging mobile apps include the following.

Bo Jiang et al. described a statistical fault localization technique for mobile embedded sys-

tems [JLG+11], where not only the code is targeted, but also suspicious context providers. By

incorporating a fault localization logic into the app, so when it crashes, it is capable of choosing

the most reliable context provider. The new context provider is chosen from a list of the same

group of providers, ordered based on their suspiciousness score.

A system to automatically and systematically generate input events to exercise smartphone

apps and its underlying algorithm, based on a concolic testing approach, are described in [ANHY12].

Moreover, GUI testing in mobile devices is an active research subject [HN11, TKH11, AFT+12,

JKK+09].

Pascual et al. used a generic algorithm to automatically generate optimal application config-

urations, based on feature model, at runtime [PPF13]. This optimizes the configuration of the

system at runtime according to the available resources. The approach does not entail excessive

overhead, and helps the app coping with the resource constrained environment and optimizing its

performance.

Embedded systems, category in which mobile devices can be fit, were already targeted to

measure SFL’s performance in such resource-constrained environments [ZAGvG07]. This study

has confirmed that fault diagnosis through analysis of program spectra perform well under harsh

conditions and opened corridors to new applications, such as run-time recovery.
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Chapter 4

Methodologies

To successfully implement the proposed tool, using SFL, several options must be taken into ac-

count in each one of its operating phases (see Figure 4.1). In a simplified manner the process is as

follows. First the System Under Test (SUT) must be instrumented (Section 4.1) and then the tests

must run in order for the tool to be able to retrieve the program spectra (Section 4.2). Finally the

tool must analyse the collected data and present the results to the user. Some other analysis can

also be included in this process (Section 4.3).

Figure 4.1: Tool execution phases.

In this chapter, the options available for each phase will be presented. Each one of them will

be briefly detailed and analysed, trying to find out which one fits best.

4.1 Code Instrumentation

Code instrumentation is a technique used to monitor and analyse runtime information like traces,

performance or even code-coverage. It is usually implemented in the form of code instructions
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that, for example, output the information or send it to a monitoring tool. There are two types of

instrumentation: source instrumentation and binary instrumentation.

Instrumenting is needed to provide the tool with the needed information about the SUT, al-

lowing it to yield useful visual information to the user. Two tools, ASM and ASMDex, both using

binary instrumentation, were considered for this work and will be presented in this section.

4.1.1 ASM

ASM1 is a Java bytecode manipulation and analysis framework [BLC02] and was developed by

OW22, an open-source software community. It was designed and implemented for performance

and be as small and as fast as possible, which makes it a good option for dynamic systems. ASM

can be used to modify classes or generate them dynamically.

ASM was successfully used in GZOLTAR’s implementation, with the same purposes it was

considered in this project. This fact represents an advantage given the knowledge obtained with

previous usages.

Advantages:

• Experience from previous usage;

• JVM is stack-based;

• Well documented api.

Disadvantages:

• Lack of usage examples.

4.1.2 ASMDex

ASMDex3 is also a bytecode manipulation and analysis framework and is also developed by

OW22. But, unlike ASM, it handles Dalvik bytecode (used by the DVM as explained in Chapter 2)

instead of Java bytecode.

There are a few usage differences between ASM and ASMDex, but both are used essentially

the same way. Nevertheless, the virtual machines addressed by both tools have specificities that

make all the difference between the mentioned tools. While JVM is stack-based, DVM is register-

based. This means that, because ASMDex does not provide any automatic register allocation

method, there is a possibility of causing program misbehaviour with the injected instructions dur-

ing the instrumentation phase. This fact discourages the use of ASMDex, in favour ASM.

Consequently, as detailed in Section 2.4.3, the best approach is to instrument the generated

.class files using ASM and let the SDK handle the apk building (and consequent transformation
1ASM - Java bytecode manipulation and analysis framework homepage http://asm.ow2.org/, 2013.
2OW2 Consortium homepage http://www.ow2.org/, 2013.
3ASMDex - Dalvik bytecode manipulation and analysis framework homepage http://asm.ow2.org/

asmdex-index.html, 2013.
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of class files into .dex files). That way, the problems associated with the register allocations are

mitigated.

Advantages:

• Centralized file (all classes are in the same .dex file, compressed into de .apk file);

• Well documented API.

Disadvantages:

• DVM is register-based;

• Lack of usage examples.

4.1.3 JaCoCo Offline Instrumentation

JaCoCo4 Offline Instrumentation5 was developed to cope with situations where on-the-fly instru-

mentation (using an agent) is not suitable, such as:

• Runtime environments that do not support Java agents.

• Deployments where it is not possible to configure JVM options.

• Bytecode needs to be converted for another VM like the Android DVM.

• Conflicts with other agents that do dynamic classfile transformation.

With JaCoCo Offline instrumentation, class files must be pre-instrumented and replace the

original files. Moreover, a jacocoagent.jar must be present in the application’s classpath.

This file contains the agent responsible for dumping code coverage information to a file or by

TCP. The coverage information files created by the agent can be analysed using the JaCoCo API.

This instrumentation can replace the EMMA6 instrumentation used by the Android Testing frame-

work to perform code coverage analysis7. This way, the coverage file is dumped into the device

and can easily be retrieved through ADB (see Subsection 3.2.2).

Advantages:

• Coverage information can be dumped to a file or through TCP;

• Replaces the EMMA instrumentation used by the Android Testing framework;

• Is updated on a regular basis;

4Acronym for Java Code Coverage.
5JaCoCo Offline instrumentation homepage http://www.eclemma.org/jacoco/trunk/doc/offline.

html, 2013.
6EMMA code coverage homepage http://emma.sourceforge.net/, 2013.
7EMMA has not been updated since 2005, while JaCoCo is updated on a regular basis.
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• Provides an easy retrieval of the coverage file;

• Straightforward analysis through the JaCoCo API.

Disadvantages:

• Files must be pre-instrumented;

• .class files are instrumented instead of .dex files.

4.2 Collection of program spectra

As mentioned in Subsection 3.3.1, a program spectrum is code-coverage information of a given

run, used as an input to SFL. Unlike GZOLTAR, where the SUTs are common Java programs,

in this project, the nature of the SUTs and the platform itself represent a considerable amount of

restraints. To obtain the program spectra, some options have been considered and will be detailed

in this section.

4.2.1 LogCat

LogCat is the Android logging system and it can be used to output specific information throughout

the code. It has been detailed in section 3.2.1.

Using the LogCat system as a way to transmit program spectra information to the tool was the

first considered option. LogCat seemed like the best solution for this problem as it is fast, getting

the output information is not too complicated and the instrumentation required in order to use it

is fairly simple. However, after implementing this approach and analysing the results, some dis-

crepancies were noticed. These discrepancies were due to the fact that LogCat as a priority-based

way of deciding which messages should be shown. So, when any message had an higher degree

of priority over the messages originated by the instrumented code, some of the key messages were

lost. This would change the results and affect the tool effectiveness. Thus, LogCat approach was

dumped and other options have been considered since then.

Advantages:

• good for performance when compared with other approaches;

• simple instrumentation;

• simple to get the information.

Disadvantages:

• priority-based approach which can discard key information.
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4.2.2 Sockets

Another one of the weighted approaches was the using of network sockets. The communication

between the device and the development system can be made through ADB using an USB cable.

A tcp port forward is done so the socket opened in the device can communicate with the server

socket opened on the tool and transmit the program spectra information.

Although this is a good approach and it is still at stake, it has a big constraint. For it to be used,

it is necessary to inject a new class to the bytecode, where the sockets would be created and the

communication with the server would be made. However, synchronization problems are a reality.

After Android tests are completed, the system forces the application to shut down, which creates

the need to send all the information before that happens. As the network operations cannot be

done in the UI thread, they have their own thread, which will be killed along with the application’s

process. This set or problems creates serious time and synchronization constraints.

Advantages:

• simple to set up communication between the device and the developing system;

• simple to get the information.

Disadvantages:

• fairly complicated instrumentation;

• time constraints;

• needs the network or internet permissions declared on the application’s manifest;

• synchronization problems.

4.2.3 Files

The creation of files containing the program spectra was another considered approach. It is very

similar to the sockets approach. During each test run, a file would be created containing the spec-

trum information about a run. After each run, the file would be retrieved through ADB and then

analysed. Synchronization would not be a problem, once file operations do not need their own

thread in Android. However, new constraints arise. The information contained in the files can,

depending on the size of the SUT, occupy a big amount of space, which can be a problem given

the known space constraints of mobile devices. On the other hand, the retrieval of the file can

represent a performance setback.

Advantages:

• no synchronization problems;

• simple to get the information.
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Disadvantages:

• performance issues;

• only works on rooted devices;

• space constraints.

4.2.4 JTAG Boundary Scan Test

JTAG, or Joint Test Action Group, is the common name for the IEEE 1149.1 [IEE90]. This

standard defines circuitry that may be built into an integrated circuit to assist in the test, mainte-

nance, and support of assembled printed circuit boards. The circuitry includes a standard interface

through which instructions and test data are communicated.

Although JTAG’s early applications targeted board level testing, it is becoming broadly used

to debug software that runs in embedded systems. As the OCD (On-chip debugger) is accessible

through the JTAG interface, it is possible to retrieve trace information about running applica-

tions [JCCR12]. For this purpose is necessary to use a JTAG controller as an intermediate to

connect to the system under test.

This approach makes it possible to eliminate the instrumentation, thus it can represent a big

performance improvement. Android devices are equipped with JTAG ports that are commonly

used by the community to fix devices with hardware problems.

Although this may seem to be a good approach to obtain program spectra, the entailed dis-

advantages rushed its disposal. First of all, although Android devices provide a JTAG port it is

internal and located in the motherboard and the only possibility of accessing it is by opening the

device. That being said, is not possible to use this approach with emulators. Furthermore, the

need to use an extra device (JTAG controller) to retrieve the program spectra, would make the tool

difficult to access by the common developer, as the said devices are considerably expensive.

Advantages:

• Android devices have JTAG ports;

• does not require instrumentation, thus eliminating instrumentation overhead.

Disadvantages:

• cannot be used in emulators;

• JTAG port is located on the device’s motherboard, so to access it is necessary to open the

device;

• requires an expensive JTAG controller.

34



Methodologies

4.2.5 Android Testing Framework

Android Testing Framework makes use of EMMA to perform code coverage analysis. However,

JaCoCo instrumentation (described in Section 4.1.3) can be used instead. Code must be pre-

instrumented and, when the test runs ends, the coverage file is dumped into the device. Then, the

file is retrieved through ADB (see Subsection 3.2.2) and analysed using the JaCoCo API.

Advantages:

• EMMA instrumentation can be replaced with JaCoCo instrumentation;

• Easy retrieval of the coverage file through ADB;

• Straightforward analysis through the JaCoCo API.

Disadvantages:

• None.

4.3 Other analysis

Besides the main flow of the process, some other analysis can be included to improve the quality

of the diagnostic provided.

4.3.1 Lint Analysis

Lint, thoroughly described in Section 3.2.7, is a static analysis tool included in Android SDK,

which indicates potential bugs in the source of an application. The information provided by lint

may be used as an addition to the SFL dynamic analysis, this way including Android specific

problems in the diagnostic report.

Advantages:

• Can provide the user additional and useful information;

• Can be customised with new/customized checks.

Disadvantages:

• Static analysis can represent a scalability issue.

4.3.2 Permission Analysis

Android permissions are a security enforcement mechanism, as briefly described at Section 2.4.3.

Sometimes, when the developer forgets to declare a given permission, the application behaviour

may not be the expected, as an example, if the developer forgets to declare the internet permission
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and then the application tries to use that resource, the device will act like if there was no connec-

tivity. The permissions themselves (or their lack) can cause failures or misbehaviours, therefore,

permission analysis must also be addressed. To that purpose, the tool should be able to understand

what permissions would the application need to behave correctly.

However the enforcement mechanism, where the declaration of required permissions is ver-

ified, cannot be accessed by the tool, so there is no way to dynamically know what permissions

the application needs. Therefore a static code analysis must be performed and, with the aid of a

permission map [FCH+11], it is possible to map the used API methods with the required permis-

sions. That way the tool can provide the user useful information about the required permissions.

Advantages:

• Can provide the user additional and useful information.

Disadvantages:

• Static analysis can represent a scalability issue;

• Poor permission documentation;

• The available map is based on Android 2.2.
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Tooling

There are a few toolsets offering spectrum-based fault localization, such as GZOLTAR [CRPA12],

Tarantula [JH05], or EzUnit [BKMS07]. GZOLTAR and Tarantula show the diagnostic reports

visually in an attempt to facilitate the quest for the defects. EzUnit provides a textual ranking of

the lines that are most likely to be faulty and assigns a background color to each line matching its

failure score.

In this section, the novel aspects of MZOLTAR, which make it suitable to the mobile apps

testing and debugging phase, are detailed. Since MZOLTAR is based on GZOLTAR, MZOLTAR

provides the same set of visualizations as GZOLTAR, but enhanced with the distinctive aspects of

the Android apps development. Figure 5.1, as an example, shows one of the three GZOLTAR’s

visualizations1, the Sunburst visualization. Sunburst shows the information as an hierarchical

structure, taking advantage of the fact that software is inherently hierarchical, in particular the

Java-based object-oriented software used in the development of Android applications. Both in

GZOLTAR and MZOLTAR, the visualizations also allow users to navigate through the code and

interact with the source code, trying to ease the task of finding bugs.

5.1 Motivational Example

To illustrate the problem addressed in this paper, consider the simple Android application in Fig-

ure 5.2 (based on the example used in [GSPGvG10]). To improve the legibility, the coverage

matrix and the error detection vector were transposed.

This running example uses a function count() that receives a string as an argument and prints

the number of times each type of char (letter, number or other) occurs in that string. A bug has

been injected in line 3 (see Figure 5.2), where the let counter should be incremented by just one

when the string includes a capital letter, but instead it is being incremented by two. The figure

also shows the code coverage information of the 8 executed tests. For each row, a appears in the

columns that correspond to the tests where that line was executed. The error vector, e is presented

at the bottom of the table, showing the passed/failed information of the executed tests. Resorting

1Other visualization can be seen at http://www.gzoltar.com
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Figure 5.1: Sunburst visualization (and how to interpret it).

to this information, the Ochiai coefficient, sO, is used to calculate the suspiciousness of a given

line containing a fault. In this case, SFL has successfully performed the fault localization as the

ranking created encourages the developer to inspect the faulty line first.

In Figure 5.3 the graphical user interface of the implemented Android application is presented.

The application receives a string through a text box and shows the result of the counting algorithm.

Also, the result is affected by the bug injected in the previous example. There are 4 letters in the

string, but the letter counter indicates the value 5, as the capital letter ‘A’ increments 2 units in

the letter counter while it should increment just one. The application was also tested using the

Android testing framework2 to assess its functioning.

As explained in Chapter 2, Android applications are not only composed by the source files

containing the underlying application logic, but also include layout files, translation files and a

manifest file that presents the application information to the Android system. Moreover, the em-

bedded nature of Android devices hinders the retrieval of runtime information, used as input to

SFL.

In this application, there are two source files: CharacterCount.java and CharacterCountActiv-

ity.java. CharacterCount.java has the Java implementation of the mentioned example, and Char-

acterCountActivity.java is an Android Activity responsible for the interaction with the user, that

is, receiving the string and presenting the result of each counter. For the Android system to be able

to start CharacterCountActivity, it must be declared in the applications’ manifest. If the activity

is not declared, the application will not be able to start, and the tests cases fail without reporting

any code coverage information. This scenario, a common mistake in Android development, is also

2Android Testing Fundamentals http://developer.android.com/tools/testing/testing_
android.html, 2013.
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Subject: CharCount
T

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 sO

class CharCount {. . .

static void count(String s) {

1: int let, dig, other;           0.63
2: for(int i = 0; i < s.length(); i++) {           0.63
3: char c = s.charAt(i);          0.67
4: if (’A’<=c && ’Z’>=c)          0.67
5: let += 2; /* FAULT */     1.00
6: else if (’a’<=c && ’z’>=c)          0.67
7: let += 1;      0.22
8: else if (’0’<=c && ’9’>=c)         0.53
9: dig += 1;        0.57
10: else if (isprint(c))   0.00
11: other += 1; }   0.00
12: System.out.println(let + " " + dig + " " + other); }           0.63

. . .}

Test case outcome (pass=X, fail=7) 7 X 7 7 X X 7 X X X

Figure 5.2: Example of SFL technique with Ochiai coefficient (adapted from [GSPGvG10]).

shown in Listing 5.1 where the activity element is commented. This way, it is also important to,

somehow, assess these problems directly related to the Android system functioning. Not declaring

an Activity in the manifest file is only an example, among many other issues related with Android

particularities that can cause failures in the execution of an application. These particularities pose

interesting challenges, such as:

• Given it is a resource-constrained environment, is SFL, and collecting the coverage infor-

mation, well suited to perform automatic fault localization in mobile apps software?

• SFL only considers components of the software that has been executed, and therefore it is

important to reason with the non-executable files (such as the manifest and resource files).

Hence, can we include non-executable components in the analysis?

Figure 5.3: Android example application with bug in result.
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1 <?xml version="1.0" encoding="utf-8"?>

2 <manifest xmlns:android="http://schemas.android.com/apk/res/android"

3 package="example.charactercount"

4 android:versionCode="1"

5 android:versionName="1.0" >

6 <uses-sdk

7 android:minSdkVersion="8"

8 android:targetSdkVersion="17" />

9 <application

10 android:allowBackup="true"

11 android:icon="@drawable/ic_launcher"

12 android:label="@string/app_name"

13 android:theme="@style/AppTheme" >

14 <!-- Without this activity the program will fail

15 <activity

16 android:name="example.charactercount.CharacterCountActivity"

17 android:label="@string/app_name" >

18 <intent-filter>

19 <action android:name="android.intent.action.MAIN" />

20 <category android:name="android.intent.category.LAUNCHER" />

21 </intent-filter>

22 </activity> -->

23 </application>

24 </manifest>

Listing 5.1: Android Manifest sample code.

5.2 Combining Static and Dynamic Analysis

Given Android idiosyncrasies and to be able to find as many defects as possible, it is important

to combine static analysis (report produced by Lint) with the dynamic analysis (report produced

by SFL). As outlined in Subsection 3.3.1, the SFL technique used in the context of this thesis,

computes a suspiciousness value between 0 and 1 for each component. As the outcome of these

two analysis is to be combined into a single suspiciousness value per component, we devised a

function, so-called Lint coefficient, that maps the priority and severity reported by Lint into a

value between 0 and 1.

To support the definition of the Lint coefficient, let I(m) be the sequence of all issues found

for component m, IS(m) be a sequence of severities for component m, and IP(m) be a sequence of

priorities for component m. I(i)S (m) and I(i)P (m) refer to the ith issue. Severities are mapped into a

numerical value according to: Warning maps to 1.0, Error to 1.1, and Fatal to 1.2. The rationale

is that Errors contribute more (we considered 10% more) than Warning for the suspisciousness

of the component being faulty (i.e., the weight factor should be higher), and Fatal contribute an

extra 10%. Note, however, that this mapping can be parameterized by the developers. Using these
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priorities and severities, the weighted arithmetic mean of the number of issues found per severity

is calculated. Formally,

ĪP(m) =
1

WT (m)
·
|I(m)|

∑
i=0

I(i)P (m) · I(i)S (m) (5.1)

where WT (m) is the sum of all severities for component m, and is defined as

WT (m) =
|I(m)|

∑
i=0

I(i)S (m)

and |IS(m)| is the number of issues reported by Lint for component m. The Lint coefficient

is the normalized (to assume values between 0 and 1) weighted arithmetic mean measure of the

priorities per severity, amplified by the severity. Normalization is achieved by dividing ĪP(m) with

maximum value for priority (maxPr = 10, as explained in Subsection 3.2.7). Suppose there are

two components, for which the weighted arithmetic mean of the priorities is 0.6, one of them

containing only warnings, and the other one containing only fatals. As they do not represent the

same threat, the yielded priority value must be amplified by the corresponding severity to reflect

the real threat. Formally,

Lc(m) = min
(

ĪP(m)

maxPr
· ĪS(m), 1

)
(5.2)

where ĪS(m) is the arithmetic mean of all severities for component m, defined as

ĪS(m) =
WT (m)

|I(m)|

As there are two coefficients quantifying the suspiciousness of a given component being faulty,

the challenge is now to successfully make them co-exist within the same visualization without

hindering its intuitiveness and added value. We have decided to use a new color scheme (viz. blue)

to representing the static analysis outcome. Figure 5.4 illustrates how the combination works in

practice.

(a) Static defects only. (b) Static and dynamic defects.

Figure 5.4: Lint integration in visualizations.
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Finally, the visualization still needs to account for the fact that the Lint and SFL coefficients

may both be different than 0 (i.e., the component has both static-related concerns and dynamically

it was also observed, to some extent, correlation with the failures). As mentioned by the Infor-

mation Foraging theory [Pir07, LBB+13, FSP+13], the theory we relied upon when building the

debugging visualizations, to maximize the information gain per interaction’s cost, it is necessary

to provide the user with the cues that best indicate the existence of a defect. To give the user a bet-

ter perception of the component’s state, we used a combination of the two coefficients to generate

the component’s color in the visualization. Instead of just using the Ochiai coefficient sO(m), the

suspiciousness for the component is amplified with the Lint Coefficient as follows

C(m) = min
(

sO(m) · (1+Lc(m)), 1
)

(5.3)

5.3 Workflow

As mentioned in Section 5.1, Android devices present a series of challenges in what it concerns

the application of SFL. To surpass those challenges, MZOLTAR relies on the Android testing

framework and JaCoCo3 to run the applications’ tests and acquire coverage information. As

MZOLTAR is a plugin for the Eclipse Integrated Development Environment (IDE), it also relies

on the abstractions provided by the ADT plugin to perform some of the tasks. MZOLTAR’s flow

is the following:

1. Instrument bytecode;

2. Generate application’s apk and flush into the device;

3. Run tests;

4. Collect code coverage;

5. Run diagnostic report.

To instrument the application, phase (1), there were three options available, as stated in Chapter 4:

instrument the Dalvik Bytecode directly in the apk file or instrument the original Java Bytecode

generated by Eclipse (afterwards compiled into the referred Dalvik Bytecode when the apk is

built). As Dalvik VM is register based and the available frameworks (such as ASMDex4) do not

provide a way to automatically reallocate the registers after instrumenting the code, we opted for

the Java Bytecode instrumentation. In particular, we used a feature of JaCoCo, the Offline instru-

mentation (see Subsection 4.1.3) that also relies on the ASM framework. Android test framework

has an EMMA code coverage5 analysis feature that can be used in conjunction with JaCoCo

offline instrumentation to retrieve the code coverage information of a test execution.

3JaCoCo homepage http://www.eclemma.org/jacoco/, 2013.
4ASMDex homepage http://asm.ow2.org/asmdex-index.html, 2013.
5EMMA homepage http://emma.sourceforge.net/, 2013.
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After the Bytecode was instrumented, ADT API was used to build the apk file, in phase (2),

as well as to run the tests in phase (3). In this last step the code coverage information is generated

in the device. In phase (4), the IDevice interface provided by ADT is used to pull the coverage

data file from the device to be further processed, offline, by MZOLTAR. Using the JaCoCo API,

the coverage information is mapped into the input expected by SFL and the diagnostic report is

computed (phase 5).

5.4 Eclipse integration

MZOLTAR is offered as a plugin for the well-known Eclipse IDE. As the visualizations are inte-

grated in the environment and MZOLTAR takes advantage of some of the features provided by the

Eclipse IDE (such as code navigation and editor markers), the debugging effort is reduced. Also,

the provided cues try to be as explicit and well-aimed as possible, to help the user debug accu-

rately. The existence of an official ADT plugin to Eclipse was taken into consideration, as it aided

in the implementation of some of the features (see Subsection 5.3). There follows a description of

MZOLTAR’s main features.

Visualizations such Sunburst (see Figure 5.1) provides useful information to the user, as they

translate the diagnostic reports into a much more intuitive graphical representation. The similarity

coefficient value of each component is used to create a color gradient, that goes from red, for the

components that are more likely to be faulty, and ends with green to the less likely ones. The

structured visual representation also makes it easier to understand the program structure, hence

reducing the effort of locating a given component in the code. The available visualizations and

their features are thoroughly described in [GCA13].

Besides the intuitive representation, some interactions were also implemented to ease the de-

bugging process. to get to a component’s location in the code, the user only needs to click on

that component in the visualization. Then, the editor opens the file and highlights the previously

clicked component. It is also possible to change the visualization, by performing a root change or

zooming, so the user can focus on a desired set of components.

Before being able to execute the diagnostic algorithm, the user has to (i) select the project

that is going to be tested, (ii) select the Test Runner to use, and (iii) select whether or not the

application should be removed from the device after it is tested (see Figure 5.5). Furthermore,

we decided to use the ADT device chooser dialog to make the experience of using MZOLTAR

as similar as possible with the usual experience of developing an Android application with the

Eclipse IDE (see Figure 5.6).
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Figure 5.5: MZOLTAR parameters’ interface.

Figure 5.6: MZOLTAR device chooser.
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Chapter 6

Empirical Evaluation

In this section, the empirical evaluation carried out to assess MZOLTAR’s performance is de-

scribed, in particular to verify its applicability to the context of mobile apps. We start by describing

the experimental setup, followed by a discussion on the observed results. The empirical evaluation

aims at answering the following research questions:

RQ1 Is the MZOLTAR’s instrumentation overhead negligible?

RQ2 Does MZOLTAR yield accurate diagnostic reports under Android device’s constrained envi-

ronment?

RQ3 Does the integration with Lint contribute to a better diagnostic quality?

6.1 Experimental Setup

Table 6.1: Experimental Subjects.

Subject Version Line Of Code (LOC) Test Cases Test Cases LOC Coverage Resources LOC

CharCount 1.0 148 10 133 92.2% 115

ConnectBot 1.7.1 32911 14 484 0.7% 7673

Google Authenticator 2.21 3659 170 2825 76.6% 5275

StarDroid 1.6.5 13783 187 3029 29.7% 2694

Four mobile apps, of different sizes and complexities, were considered to empirically evaluate

MZOLTAR. Table 6.1 presents further information about the following subjects:

• CharCount is the subject used as a motivational example in Section 5.1;

• ConnectBot1 is an Android Secure Shell (SSH) client;

1ConnectBot homepage http://code.google.com/p/connectbot, 2013.
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• Google Authenticator2 is a two-step authentication application;

• StarDroid3 is sky map open source project.

To foster reproducibility and comparability, we report the version number of the subjects used

in the evaluation. Line Of Code (LOC) count information was obtained using Code Analyzer4.

The tests provided with the applications were used to conduct the experiments and no new tests

were implemented. Android testing framework was used to run the tests and code coverage in-

formation was obtained using JaCoCo5, enabling the coverage flag of the Android tests frame-

work. Then, we used the EclEmma6 Eclipse plugin to analyse the generated coverage files.

As the subjects are bug-free (with regard to the test suites), eight common mistakes [HGP09]

were injected in each subject. To facilitate the activation of the faults, thus automating the

testing process, we built a fault injection framework. This framework allows to enable/disable

the faults automatically and use a custom InstrumentationTestRunner7, named MZoltarTestRun-

ner, that parses an argument (injectedFaults) which indicates which faults should be ac-

tive per run. Then, each application was executed 30 times for each of the following scenarios

{( f ,g) | f ∈ {1,2,3,5}∧ g ∈ {1,2,3,5,10}}, where f is the number of injected faults and g is

the number of tests considered in a transaction. A transaction is composed by all the tests that

are executed when the VM is initiated until its tear down. The reason for this notion of transac-

tion (and not one per test case) is that to obtain the individual code coverage information for each

test, only one test can be executed per run (technological limitation). Instead of considering each

SFL matrix line as just one test, each line represents all the tests in a transaction. Concerning the

pass/fail information, a transaction fails when one of its tests fail and passes when all its tests pass.

Hence, creating a new VM per test case may impose a considerably high overhead, as a delay is

observed between each test execution since the system reboots the VM where the tests are run.

This delay was measured to be approximately one second per execution.

These scenarios make it possible to assess the performance of MZOLTAR in different sit-

uations, being also important to evaluate the tradeoff effectiveness vs time. Running each test

separately may entail a considerable time overhead (since, per test execution, Android terminates

and starts a new VM). Our goal is to evaluate the consequences of executing several tests simul-

taneously, assessing the potential time reduction vs. the potential information and effectiveness

losses.

The experiments target device was an emulator running Android 2.2 (API Level 8) with a

4" (480x800 hdpi) screen, an ARM processor, 343MB of RAM and 32MB of VM Heap. The

emulator was used on a 3.16GHz Intel® Core™ 2 Duo PC with 2GB of RAM, running Debian 7.0

(wheezy).

2Google Authenticator homepage http://code.google.com/p/google-authenticator, 2013.
3StarDroid homepage http://code.google.com/p/stardroid, 2013.
4Code Analyzer homepage http://www.codeanalyzer.teel.ws, 2013.
5JaCoCo homepage http://www.eclemma.org/jacoco, 2013.
6EclEmma homepage http://www.eclemma.org/, 2013.
7Android Instrumentation Test Runner homepage http://developer.android.com/reference/

android/test/InstrumentationTestRunner.html, 2013.
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6.2 Evaluation Metric

To measure the success of a diagnosis technique we use the diagnostic quality Cd , which estimates

the number of components the tester needs to inspect to find the fault [SFA13]. Note that Cd cannot

be computed prior to computing the ranking: one does not know the actual position of true-fault

candidates in the ranking beforehand. Because multiple explanations can be assigned with the

same similarity value sO, the value of Cd for the real fault d∗ is the average of the ranks that have

the same similarity value:

θ = |{ j|sO(m)> sO(d∗)}|, 1≤ j ≤M

φ = |{ j|sO(m)≥ sO(d∗)}|, 1≤ j ≤M

Cd = θ + φ − 1
2

(6.1)

In the multiple fault cases we use the one-at-a-time mode, discussed in [SFA13]: one fault is

identified and fixed, and then the fault localization process is repeated (including a re-run of the

test suite and a re-computation of the input for the fault localization technique). We report Cd for

the first fault found, as one can estimate the impact of reducing the number of faults on Cd in the

experiments of lower number of injected faults.

We further use a metric ρ̄ , the density of the coverage matrix [GSPGvG10], that has been used

in the past to build confidence on the Cd obtained, and understand whether one can still improve the

diagnostic report by adding more tests. The density of a coverage matrix is the average percentage

of components covered by test cases. It is defined as follows

ρ̄ =

N
∑

i=1

M
∑
j=1

ai j

N · M

where N and M denote the number of test cases and the number of components, respectively. ai j

represents the coverage of the component m when the test ti is executed. Values of ρ̄ close to

0 means that test suite touch a small parts of the program, whereas values close to 1 means that

test suite tend to cover most components of the program. In [GSPGvG10] it has been shown that

ρ̄ = 0.5 is the best for fault localization, provided that there is a diversity in the test cases of the

suite.

6.3 Experimental Results

In this section the experimental results and their relation to the research questions are further

discussed.
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RQ1: Is the MZOLTAR’s instrumentation overhead negligible?

Table 6.2 shows the execution times for the test subjects. The average execution times of

the mobile apps’ instrumented versions are, as expected, slightly higher then the original versions.

The collected results show that the used instrumentation entails an average time overhead of 5.75%

(with standard deviation σ=2.49). We cannot claim that we have not altered the timing behaviour

of the system, but the applications, although slightly slower, still function properly. Therefore, we

conclude that the instrumentation overhead is not prohibitive.

Table 6.2: Execution times.

Subject Original Instrumented Overhead
CharCount 1.82s 1.86s 2%

ConnectBot 1.25s 1.35s 8%

Google Authenticator 80.49s 87.26s 8%

StarDroid 14.70s 15.46s 5%

RQ2: Does MZOLTAR yield accurate diagnostic reports under Android device’s constrained

environment?

Figure 6.1 plots the diagnostic accuracy Cd for the following number of injected faults: 1, 2, 3,

and 5. The injected faults are 8 faults that are considered to be common [HGP09]. For the single

fault scenario, the reported results are on average for the 8 faults, whereas for the multiple fault

scenarios we have randomly repeated the experiments 30 times (randomly injecting the faults).

For all the test subjects the average diagnostic accuracy obtained is constant and maintains a low

value, even for the multiple fault scenarios. One has to inspect an average of 5 components before

finding a bug. This facts show that SFL performs well in terms of diagnostic accuracy despite the

resource constraints imposed by the Android architecture. We can also conclude that the existence

of multiple faults does not affect the diagnostic accuracy.

As mentioned before, SFL takes as input the coverage of a transaction (concept described in

Section 6.1). To address this potential bottleneck, we considered to execute multiple test cases per

virtual machine. On the one hand, there is a potential reduction in the runtime overhead, but, on the

other hand, the noise implied by considered multiple tests as one execution may entail information

loss. Consequently, worsening the diagnostic quality Cd . By grouping test cases, i.e., increasing

the number of test cases per transaction, the number rows in spectra matrix, N, is decreased,

consequently increasing the matrix density, ρ , which is an explanation for the degradation of the

diagnostic quality. Figures 6.2 and 6.3a plots the impact of grouping test cases in ρ and Cd . For

ρ ≥ 0.5, there is a significant worsening of the diagnostic quality (cf. [GSPGvG10]).

Figure 6.2 plots Cd when grouping, randomly, several tests per execution (namely, 1,2,3,5,

and 10), and the execution overhead is plotted in Figure 6.3b. For CharCount and ConnectBot,
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the Cd increases with the number of tests executed per transaction, while for GoogleAuth and

StarDroid Cd remains practically constant. These differences are explained by the number of tests

each application provides. This way, the percentage reduction of the number of lines (caused by

clustering of several tests in each run) of the spectra matrix is higher in the subjects with less tests

implemented, thus worsening Cd . Regarding the execution overhead, an exponential reduction

was observed with the increase of the number of tests. This overhead reduction is explained by

the fact that there is no need to restart the VM.

As an example, when executing 10 test cases per transaction, we observed that grouping test

cases reduced the execution overhead in 79% on average (σ=8.36), at the cost of a loss in the

diagnostic quality of 74% (σ=12.14). This is mainly due to the density growth that comes along

with the increase of the number of tests in a group.

RQ3: Does the integration with Lint contribute to a better diagnostic quality?

As said before, there are Android-specific bugs that cannot be explained by the SFL’s dynamic

analysis. We have injected two static related defects into each subject to investigate the added value

of adding the static analysis yielded by Lint. The injected faults are: lack of activity registry in

the manifest, incorrect cast of a view, or using methods not available in the API version in usage.

Table 6.3 shows that none of the injected defects were pinpointed by SFL, therefore entailing

a high Cd (as in the worst case the entire program would have to be inspected before deciding to

look into the Android specific problems). Compared against SFL only, combining both static and

dynamic analysis led to an averaged reduction of 99.9% (σ = 0.21).

Table 6.3: Cd comparison with and without Lint.

SFL SFL + Lint
Subject

Bug 1 Bug 2 Bug 1 Bug 2

CharCount 148 148 0 1

ConnectBot 32911 32911 30 19

Google Authenticator 3659 3659 3 1

StarDroid 13783 13783 18 12
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Figure 6.1: Diagnostic accuracy Cd .
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Chapter 7

Conclusions

7.1 Related Work

After analysing briefly the state of the art of Debugging Tools, it is possible to conclude that

the tools available to debug Android applications imply a manual, time consuming and somehow

complex task. Although they are nowadays used in the development of Android applications, it is

obvious that an automatic debugging approach would ease the debugging process and increase the

quality and reliability of such applications.

Despite the myriad of techniques and approaches, there are still shortcomings when apply-

ing these techniques in the context of mobile, resource-constrained apps. Available automated

fault localization toolsets do not offer easy integration into the mobile apps world. As a conse-

quence, and although Graphical User Interface (GUI) testing automation for mobile systems is

an active research topic, manual approaches are still prevalent in the mobile apps debugging and

testing phases, and the debugging tools available for mobile apps only offer manual debugging

features [EMK13]. Hence, MZOLTAR addresses that issue by providing an automated fault local-

ization approach, offering the dynamic analysis provided by SFL combined with the information

yielded by Lint static analysis.

7.2 Methodologies

To adapt SFL to Android applications, a set of options have been analysed and compared, to

understand which ones fit best in each phase of the process. There’s no perfect solution in any of

the options analysed, thus these analysis help minimize the implementation risks. The analysis also

helped in the elimination of some of the options considered like ASMDex in the instrumentation

phase as well as LogCat and JTAG at the spectrum acquisition phase.

Variables like scalability, efficiency and effectiveness must be the top priorities. So, perfor-

mance setbacks, instrumentation overheads and information loss are some of the points that should

have a big weight when deciding which approaches should be used.
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Taking this criteria into account and the fact that it can be used with the Android Testing

Framework, JaCoCo offline instrumentation was selected in the instrumentation phase. There-

fore, we used the Android Testing Framework feature that allows the generation of coverage

information files, then retrieving it through ADB and analysing the coverage information using

the JaCoCo API. Using JaCoCo and the Android Testing Framework presented as the best and

strongest solution, as it relied on the well documented and easily usable JaCoCo API and on the

official Testing Framework of our target System.

Finally, Lint static analysis was included to improve the diagnostic provided, by addressing

the more particular issues presented by Android. The permission analysis was not used because

its permission basis is outdated and could not present the same results throughout the different

versions of Android.

7.3 Lessons Learned

During the implementation of the toolset described in this thesis, some interesting facts were

uncovered and are worth mentioning. Most of the following points are related with technological

limitations of the Android system:

• Although ASMDex was the first and expected choice to instrument Android applications,

it was the first to be ruled out. This happened because the DVM is register based and

ASMDex does not provide any way to automatically re-allocate the registers. This way, it is

not a trivial task to instrument all the lines without changing the correct functioning of the

application.

• Before building the .dex file included in the application package, Eclipse compiles the Java

code into common .class files, which enables the usage of several bytecode instrumentation

frameworks.

• It is possible to communicate between an Android device and its host machine through USB.

The communication is made through TCP sockets and the server must be located on the

device. The reason behind this is that ADB forwards the requests from the host computer to

the device and not the other way around, thus it is not possible to initiate the communication

from the device. Once established, the communication is bi-directional.

• The code coverage analysis performed by the Android Testing framework can be used with

JaCoCo instrumentation instead of EMMA instrumentation. JaCoCo is updated with bug

fixes and new features on a regular basis, while EMMA’s last stable version goes back to

2005.

• ADB commands have a limit of 1024 characters. If the command is too large, an error will

occur and the command will not be run.
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7.4 Empirical Evaluation Results

An empirical study using 4 real open-source Android applications (with single and multiple in-

jected faults), confirms that spectrum-based fault localization is well suited for the mobile apps

development context. The infrastructure to collect the information needed is lightweight (over-

head of 5.75%±2.49% on average), while the diagnostic accuracy is similar to the one observed

on general-purpose applications [Abr09]. It was shown that the developer only has to inspect

an average of 5 components before finding the bug. Additionally, we investigated the possibil-

ity of grouping test cases to further reduce the execution time, achieving an average reduction of

79%±8.36%), at the cost of a loss in the diagnostic quality of 74%±12%.

Also, the added value of integrating Lint’s static analysis into MZoltar was demonstrated, as

there are Android-specific defects which SFL cannot blame. Concerning these Android-specific

defects, the concerned approach was able to reduce the number of components the tester needs to

inspect to find the fault by 99.9%±0.21% on average.

7.5 Main Contributions

The main contributions of this thesis are:

• The discussion of the challenges faced by developers when doing fault localization, high-

lighting the real-world relevance of the problem;

• A fully automated approach for localizing defects in Android applications. Our approach is

based on a well-known spectrum-based fault localization technique, plus with Lint static

analyser provided with Android SDK, and produces a visual report to aid in locating the

defects;

• A coefficient (Lint coefficient Lc) , mapping the report yielded by Lint to a 0− 1 scale,

to (i) quantify the suspiciousness of a component being faulty and (ii) be able to integrate it

the the dynamic fault localization results;

• A toolset, dubbed MZOLTAR,embedded into the Eclipse IDE providing the proposed fault

localization technique. The toolset will be available at http://gzoltar.com/mzoltar;

• An empirical study to demonstrate the efficiency of MZOLTAR and and verify its applica-

bility to the context of mobile apps.

To the best of our knowledge, the combination of using static and dynamic analysis, as done

in MZOLTAR, in the context of mobile apps has not been described before.

7.6 Publications

With the work done in this thesis, we were able to submit to the following conferences:
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• Pedro Machado, José Campos and Rui Abreu. Automatic Debugging of Android Appli-
cations – Accepted for publication at The 6th Meeting of Young Researchers of University

of Porto (IJUP’13), 2013. This paper outlines the idea of developing an automated fault

localization tool that provides valuable diagnosis to the developer when debugging mobile

applications using SFL.

• Pedro Machado, José Campos and Rui Abreu. MZoltar: Automatic Debugging of An-
droid Applications – Accepted for publication at First International Workshop on Software

Development Lifecycle for Mobile, 2013. This paper describes the MZOLTAR tool and its

underlying architecture.

• Pedro Machado, José Campos and Rui Abreu. Combining Static and Dynamic Analysis
in Mobile Apps Fault Localization – Submitted to The 24th IEEE International Symposium

on Software Reliability Engineering, 2013. This paper describes both the MZOLTAR tool,

as well as the integration of SFL dynamic analysis integration with information from static

analysis provided by Lint.

7.7 Future work

Future work includes the following. First, we intend to provide MZOLTAR in the recently an-

nounced Android Studio IDE. Finally, we plan to port MZOLTAR to other mobile technologies,

notably to iOS and Windows Phone. However, while the original research questions have been

successfully addressed and solved, some other questions have emerged and are worthy of refer-

ence. Although the results achieved in the context of this thesis are promising, there is still a lot to

understand and improve.

Lint yields the issues, found in a given project, that may potentially result in bugs. However,

not all of the flagged issues may be considered in the context of runtime failures, as they will never

cause the application to fail. Moreover, some issues may only cause failures when very specific

criteria are met, thus reducing their potential to result in bugs. Hereupon, understanding which

issues may cause runtime failures and what should be their real weight in the diagnosis is one of

the points we intend to address. Additionally, it would be interesting to understand what are the

most common mistakes in the development of Android applications, as reported in [HGP09] for

general-purpose applications. To the best of our knowledge, such work has not been reported yet.

Furthermore, the colour scheme added to the visual reports, described in Section 5.2 may still

have room to improve. Although the diagnostic results were good, the empirical evaluation did not

cover the visualizations. Hence, the best way to assess the usefulness of the new colour scheme is

to conduct a user study and ascertain, from a set of different colour schemes and patterns, which

one would be the most beneficial to the developers.

After, we intend to investigate the addition of a bug prediction approach to MZOLTAR, such

as the one described in [KZWJZ07]. By flagging spots that recurrently require bug fixes, bug

prediction tries to guess whether a piece of code is potentially buggy or not. Google reported
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an interesting approach1 where additionally to bug prediction scores, the weight of a bug-fixing

commit is reduced based on how old it is.

1Bug prediction at Google http://google-engtools.blogspot.co.at/2011/12/
bug-prediction-at-google.html, 2013.

57

http://google-engtools.blogspot.co.at/2011/12/bug-prediction-at-google.html
http://google-engtools.blogspot.co.at/2011/12/bug-prediction-at-google.html


Conclusions

58



References

[Abr09] Rui Abreu. Spectrum-based Fault Localization in Embedded Software. PhD thesis,
Delft University of Technology, November 2009.

[AFT+12] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore
De Carmine, and Atif M. Memon. Using GUI ripping for automated testing of
Android applications. In Proceedings of the 27th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE ’12, pages 258–261, New York,
NY, USA, 2012. ACM.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Ba-
sic Concepts and Taxonomy of Dependable and Secure Computing. IEEE Trans.
Dependable Secur. Comput., 1(1):11–33, January 2004.

[ANHY12] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. Automated
concolic testing of smartphone apps. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, FSE ’12,
pages 59:1–59:11, New York, NY, USA, 2012. ACM.

[AZGvG09] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van Gemund. A prac-
tical evaluation of spectrum-based fault localization. J. Syst. Softw., 82(11):1780–
1792, November 2009.

[AZvG07] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. On the Accuracy
of Spectrum-based Fault Localization. In Proceedings of the Testing: Aca-
demic and Industrial Conference Practice and Research Techniques - MUTATION,
TAICPART-MUTATION ’07, pages 89–98, Washington, DC, USA, 2007. IEEE
Computer Society.

[BKMS07] Philipp Bouillon, Jens Krinke, Nils Meyer, and Friedrich Steimann. EZUNIT: a
framework for associating failed unit tests with potential programming errors. In
Proceedings of the 8th international conference on Agile processes in software en-
gineering and extreme programming, XP’07, pages 101–104, Berlin, Heidelberg,
2007. Springer-Verlag.

[BLC02] E. Bruneton, R. Lenglet, and T. Coupaye. Asm: a code manipulation tool to imple-
ment adaptable systems. Adaptable and extensible component systems, 30, 2002.

[CCSH12] Outsourcing Capgemini: Consulting, Technology, Sogeti, and Hewlett-Packard
(HP). World Quality Report 2012. Technical report, Capgemini, September 2012.

[CRPA12] José Campos, André Riboira, Alexandre Perez, and Rui Abreu. GZoltar: An
Eclipse Plug-in for Testing and Debugging. In Proceedings of the 27th IEEE/ACM

59



REFERENCES

International Conference on Automated Software Engineering, ASE 2012, pages
378–381, New York, NY, USA, 2012. ACM.

[dK09] J. de Kleer. Diagnosing multiple persistent and intermittent faults. In Proceedings
of International Joint Conference on Artificial Intelligence (IJCAI’09), pages 733–
738, 2009.

[EMK13] Mona Erfani, Ali Mesbah, and Philippe Kruchten. Real Challenges in Mobile App
Development. In Proceedings of the ACM-IEEE international symposium on Em-
pirical software engineering and measurement, ESEM ’13, New York, NY, USA,
2013. ACM.

[FCH+11] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
Android permissions demystified. In Proceedings of the 18th ACM conference on
Computer and communications security, CCS ’11, pages 627–638, New York, NY,
USA, 2011. ACM.

[FSP+13] Scott D. Fleming, Christopher Scaffidi, David Piorkowski, Margaret M. Burnett,
Rachel K. E. Bellamy, Joseph Lawrance, and Irwin Kwan. An Information For-
aging Theory Perspective on Tools for Debugging, Refactoring, and Reuse Tasks.
ACM Transactions on Software Engineering and Methodology, 22(2):14, 2013.

[GCA13] Carlos Gouveia, José Campos, and Rui Abreu. Using HTML5 Visualizations in
Software Fault Localization. In Proceedings of the 1st IEEE Working Confer-
ence on Software Visualization, VISSOFT ’13, Washington, DC, USA, 2013. IEEE
Computer Society.

[GSPGvG10] Alberto Gonzalez-Sanchez, Eric Piel, Hans-Gerhard Gross, and Arjan J. C. van
Gemund. Prioritizing Tests for Software Fault Localization. In Proceedings of the
2010 10th International Conference on Quality Software, QSIC ’10, pages 42–51,
Washington, DC, USA, 2010. IEEE Computer Society.

[HGP09] M. Hamill and K. Goseva-Popstojanova. Common trends in software fault and
failure data. Software Engineering, IEEE Transactions on, 35(4):484–496, 2009.

[HN11] Cuixiong Hu and Iulian Neamtiu. Automating GUI testing for Android applica-
tions. In Proceedings of the 6th International Workshop on Automation of Software
Test, AST ’11, pages 77–83, New York, NY, USA, 2011. ACM.

[HS02] B Hailpern and P Santhanam. Software debugging, testing, and verification. IBM
Systems Journal, 41(1):4–12, 2002.

[HZZ+09] Dan Hao, Lingming Zhang, Lu Zhang, Jiasu Sun, and Hong Mei. VIDA: Visual
interactive debugging. In Proceedings of the 31st International Conference on Soft-
ware Engineering, ICSE ’09, pages 583–586, Washington, DC, USA, 2009. IEEE
Computer Society.

[IEE90] IEEE. IEEE Standard Test Access Port and Boundary-Scan Architecture. IEEE
Std. 1149.1-1990, 1990.

[JAG09] T. Janssen, R. Abreu, and A.J.C. Gemund. Zoltar: A toolset for automatic fault
localization. In Proceedings of the 2009 IEEE/ACM International Conference on
Automated Software Engineering, pages 662–664. IEEE Computer Society, 2009.

60



REFERENCES

[JCCR12] Ricardo Barbosa Joao Carlos Cunha and Gilberto Rodrigues. On the use of bound-
ary scan for code coverage of critical embedded software. In Proceedings of the
23th International Symposium on Software Reliability Engineering, ISSRE 2012,
2012.

[JH05] James A. Jones and Mary Jean Harrold. Empirical evaluation of the tarantula auto-
matic fault-localization technique. In Proceedings of the 20th IEEE/ACM interna-
tional Conference on Automated software engineering, ASE ’05, pages 273–282,
New York, NY, USA, 2005. ACM.

[JKK+09] A. Jaaskelainen, M. Katara, A. Kervinen, M. Maunumaa, T. Paakkonen, T. Takala,
and H. Virtanen. Automatic GUI test generation for smartphone applications -
an evaluation. In Proceedings of the 31st International Conference on Software
Engineering, ICSE ’09, pages 112–122, 2009.

[JLG+11] Bo Jiang, Xiang Long, Xiaopeng Gao, Zhifang Liu, and W.K. Chan. FLOMA:
Statistical fault localization for mobile embedded system. In Advanced Computer
Control (ICACC), 2011 3rd International Conference on, pages 396–400, 2011.

[KZWJZ07] Sunghun Kim, Thomas Zimmermann, E James Whitehead Jr, and Andreas Zeller.
Predicting faults from cached history. In Proceedings of the 29th international con-
ference on Software Engineering, pages 489–498. IEEE Computer Society, 2007.

[LBB+13] Joseph Lawrance, Christopher Bogart, Margaret M. Burnett, Rachel K. E. Bellamy,
Kyle Rector, and Scott D. Fleming. How Programmers Debug, Revisited: An Infor-
mation Foraging Theory Perspective. IEEE Transactions on Software Engineering,
39(2):197–215, 2013.

[LFY+06] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and Samuel P. Midkiff. Statisti-
cal Debugging: A Hypothesis Testing-Based Approach. IEEE Trans. Softw. Eng.,
32(10):831–848, October 2006.

[Mil11] D.T. Milano. Android Application Testing Guide. Community experience distilled.
PACKT PUB, 2011.

[MS03] W. Mayer and M. Stumptner. Model-based debugging using multiple abstract mod-
els. In Proceedings of International Workshop on Automated and Analysis-Driven
Debugging (AADEBUG’03), pages 55–70, 2003.

[MS08] W. Mayer and M. Stumptner. Evaluating Models for Model-Based Debugging.
In Proceedings of International Conference on Automated Software Engineering
(ASE’08), pages 128–137, 2008.

[NCT13] Tuan A. Nguyen, Christoph Csallner, and Nikolai Tillmann. GROPG: A graphical
on-phone debugger. In Proceedings 35th ACM/IEEE International Conference on
Software Engineering (ICSE), New Ideas and Emerging Results (NIER) track, May
2013.

[Pir07] P.L.T. Pirolli. Information Foraging Theory: Adaptive Interaction with Informa-
tion. Human Technology Interaction Series. Oxford University Press, USA, 1 edi-
tion, 2007.

61



REFERENCES

[PPF13] Gustavo G. Pascual, Mónica Pinto, and Lidia Fuentes. Run-time adaptation of
mobile applications using genetic algorithms. In Proceedings of the 8th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems, SEAMS ’13, pages 73–82, Piscataway, NJ, USA, 2013. IEEE Press.

[Rib11] A. Riboira. GZoltar: A Graphical Debugging Interface. MSc Thesis, University
of Porto, 2011.

[SF12] F. Steimann and M. Frenkel. Improving coverage-based localization of multiple
faults using algorithms from integer linear programming. In Software Reliability
Engineering (ISSRE), 2012 IEEE 23rd International Symposium on, pages 121–
130, 2012.

[SFA13] Friedrich Steimann, Marcus Frenkel, and Rui Abreu. Threats to the Validity and
Value of Empirical Assessments of the Accuracy of Coverage-Based Fault Loca-
tors. In Procedings of the International Symposium in Software Testing and Analy-
sis, ISSTA 2013, New York, NY, USA, 2013. ACM.

[SSPC13] Gang Shu, Boya Sun, Andy Podgurski, and Feng Cao. MFL: Method-Level Fault
Localization with Causal Inference. In Proceedings of the IEEE Sixth International
Conference on Software Testing, Verification and Validation, ICST ’13, 2013.

[Tas02] G Tassey. The Economic Impacts of Inadequate Infrastructure for Software Testing,
2002.

[TKH11] T. Takala, M. Katara, and J. Harty. Experiences of system-level model-based gui
testing of an android application. In Proceedings of the IEEE Fourth International
Conference on Software Testing, Verification and Validation, ICST ’11, pages 377–
386, 2011.

[WDLG12] W.E. Wong, V. Debroy, Yihao Li, and Ruizhi Gao. Software fault localization
using dstar (d*). In Software Security and Reliability (SERE), 2012 IEEE Sixth
International Conference on, pages 21–30, 2012.

[WWQZ08] Eric Wong, Tingting Wei, Yu Qi, and Lei Zhao. A Crosstab-based Statistical
Method for Effective Fault Localization. In Rob Hierons and Aditya Mathur, ed-
itors, Proceedings of the 1st International Conference on Software Testing, Verifi-
cation, and Validation (ICST’08), pages 42–51, Lillehammer, Norway, 2008. IEEE
Computer Society.

[ZAGvG07] Peter Zoeteweij, Rui Abreu, Rob Golsteijn, and Arjan J. C. van Gemund. Diagnosis
of Embedded Software Using Program Spectra. In Proceedings of the 14th Annual
IEEE International Conference and Workshops on the Engineering of Computer-
Based Systems, ECBS ’07, pages 213–220, Washington, DC, USA, 2007. IEEE
Computer Society.

[ZPA+08] Peter Zoeteweij, Jurryt Pietersma, Rui Abreu, Alexander Feldman, and Arjan JC
Van Gemund. Automated fault diagnosis in embedded systems. In Secure Sys-
tem Integration and Reliability Improvement, 2008. SSIRI’08. Second International
Conference on, pages 103–110. IEEE, 2008.

62


	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Concepts and Definitions
	1.2 Motivation
	1.3 Main Goals
	1.4 Document Structure

	2 Android Operating System
	2.1 History
	2.2 Android Manifest
	2.3 Components
	2.4 System Architecture
	2.4.1 Applications and applications framework
	2.4.2 Libraries
	2.4.3 Android Runtime
	2.4.4 Linux Kernel


	3 Related Work
	3.1 Testing Android Applications
	3.1.1 Instrumentation framework
	3.1.2 MonkeyRunner
	3.1.3 Monkey
	3.1.4 Robotium

	3.2 Debugging of Android Applications
	3.2.1 LogCat
	3.2.2 Android Debugging Bridge (ADB)
	3.2.3 Dalvik Debug Monitor Server (DDMS)
	3.2.4 Java Debug Wire Protocol (JDWP) debugger
	3.2.5 Traceview
	3.2.6 HierarchyViewer
	3.2.7 Lint
	3.2.8 A Graphical On-Phone Debugger (GROPG)

	3.3 Automated Debugging and Testing
	3.3.1 Spectrum-based Fault Localization (SFL)
	3.3.2 Tarantula
	3.3.3 EzUnit
	3.3.4 Zoltar and GZoltar
	3.3.5 Mobile approaches


	4 Methodologies
	4.1 Code Instrumentation
	4.1.1 ASM
	4.1.2 ASMDex
	4.1.3 JaCoCo Offline Instrumentation

	4.2 Collection of program spectra
	4.2.1 LogCat
	4.2.2 Sockets
	4.2.3 Files
	4.2.4 JTAG Boundary Scan Test
	4.2.5 Android Testing Framework

	4.3 Other analysis
	4.3.1 Lint Analysis
	4.3.2 Permission Analysis


	5 Tooling
	5.1 Motivational Example
	5.2 Combining Static and Dynamic Analysis
	5.3 Workflow
	5.4 Eclipse integration

	6 Empirical Evaluation
	6.1 Experimental Setup
	6.2 Evaluation Metric
	6.3 Experimental Results

	7 Conclusions
	7.1 Related Work
	7.2 Methodologies
	7.3 Lessons Learned
	7.4 Empirical Evaluation Results
	7.5 Main Contributions
	7.6 Publications
	7.7 Future work

	References

