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ABSTRACT 

Various assessments of phylogeographic patterns have been extensively performed 

throughout Europe, and general patterns discerned however similar studies remain 

insufficient for other regions such as North Africa. Morocco has multiple geographical 

barriers, such as the Moulouya River basin, the Rif Mountains and the Atlas Mountains. 

The latter divides this country into two bioclimatic regions, which in turn is responsible 

for the high levels of endemism. It has been reported that genetic subdivision in several 

species is coincident with the orogeny of the Atlas Mountains around 9 Mya, for 

example in Natrix maura, Agama impalearis and Myotis nettereri.  

One very old genus of gecko endemic to Morocco is Saurodactylus, comprising three 

species: S. mauritanicus (Duméril and Bibron, 1836); S. fasciatus Werner, 1931 and S. 

brosseti Bons and Pasteur, 1957. A previous study demonstrated high variation within 

S. brosseti, with 11.4% of genetic diversity for ND4, implying complex phylogeographic 

patterns. This raises several questions, such as if this might represent a species 

complex, and how diversity may be divided by the known geological barriers in the 

region. However, sampling was insufficient to address these issues. 

In order to assess if phylogenetic and geographical patterns of S. brosseti are related 

to the orogeny of the Atlas Mountains, additional sampling was needed, and therefore 

two trips to Morocco were carried out in 2013 and 2014. The field surveys resulted in a 

short note of new range expansions for some species, and in particular Bufo spinosus, 

Trapelus boehmei, Tropiocolotes algericus, Acanthodactylus erythrurus, Chalcides 

polylepis and Scutophis moilensis. Accurate species distribution maps are necessary 

for any conservation efforts, and this highlights the need for more prospection in the 

region. 

For the target species, S. brosseti, two different approaches were combined. For a 

phylogeographic assessment within the species two mitochondrial and three nuclear 

genes were sequenced and analyzed. Four main lineages can be differentiated with a 

level of diversity typically observed between species. The orogeny of the Atlas 

Mountains occurred at about the same time as these lineages split, and therefore may 

well have been the barrier that led to the differentiation of these lineages. However, 

species delimitation approaches were not completely effective at identifying each 

lineage as a distinct “species”, possibly due to the limited number of specimens 

included for two of the four lineages. The second approach was to employ a species 

distribution model to try to identify regions of appropriate habitat were the species may 

occur. The model identified a large patch of suitable habitat where future sampling 

effort should be directed. Such studies are crucial for conservation issues; as 
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regardless of whether these “lineages” are recognized as species or not, considerable 

diversity occurs in some small populations to the East of the Atlas that could easily be 

lost to habitat destruction. The study demonstrates the value of combining fieldwork, 

molecular analyses and modelling approaches to gain new insights into the 

evolutionary history of a species. 

 

 

KEYWORDS 

Phylogeography, Saurodactylus brosseti, Species probability of occurrence, 

Vicariance, Atlas Mountains 



FCUP 
Phylogeographic patterns of the Moroccan lizard-fingered gecko Saurodactylus brosseti 

5 

 

RESUMO 

Padrões filogeográficos têm sido extensivamente estudados na Europa. No entanto, 

estudos semelhantes são limitados noutras regiões, tal como o Norte de África. 

Marrocos apresenta várias barreiras geográficas, tais como a bacia do Rio Moulouya, 

as Montanhas Rif e as Montanhas Atlas. Estas últimas dividem o país em duas regiões 

bioclimáticas, o que por sua vez é responsável pelos altos níveis de endemismo do 

país. A subdivisão genética de várias espécies, como por exemplo, Natrix maura, 

Agama impalearis e Myotis nettereri é coincidente com a orogenia do Atlas há cerca 

de 9 milhões de anos. 

Saurodactylus é um género de osga muito antigo endémico de Marrocos, incluindo 

três espécies: S. mauritanicus Duméril and Bibron, 1836; S. fasciatus Werner, 1931 e 

S. brosseti Bons and Pasteur, 1957. Um estudo realizado demonstrou que S. brosseti 

apresenta uma grande variação intraespecífica, com 11.4% de diversidade genética 

para o marcador ND4, o que implica padrões filogeográficos complexos. Este facto 

suscita várias questões, tais como a existência de um complexo de espécies e de que 

forma a diversidade observada pode estar dividida pelas barreiras geológicas da 

região. No entanto, a amostragem mostrou-se insuficiente para responder a estas 

questões. 

De modo a compreender a relação dos padrões filogenéticos e geográficos de S. 

brosseti com a orogénese das Montanhas Atlas, seria necessária amostragem 

adicional. Como tal, duas viagens de campo a Marrocos, em 2013 e 2014, foram 

realizadas. As observações feitas resultaram numa anotação científica com a 

descrição de expansões de distribuição para algumas espécies, em particular Bufo 

spinosus, Trapelus boehmei, Tropiocolotes algericus, Acanthodactylus erythrurus, 

Chalcides polylepis e Scutophis moilensis. Para processos de conservação, mapas de 

distribuição de espécies com maior precisão são necessários realçando a necessidade 

de uma maior prospeção da região. 

Duas diferentes abordagens foram combinadas para a espécie em estudo, S. brosseti. 

Para uma avaliação filogeográfica, dois genes mitocondriais e três nucleares foram 

sequenciados e analizados, podendo ser distinguidas quatro linhagens com um nível 

de diversidade tipicamente observado entre espécies. A orogénese do Atlas ocorreu 

na mesma altura que a separação destas linhagens, indicando a possibilidade de esta 

ter constituído a barreira que levou à sua diferenciação. Contudo, a abordagem de 

delimitação de espécies não foi completamente eficaz na identificação de cada 

linhagem como “espécies” diferentes, possivelmente devido ao número limitado de 

indivíduos em duas das quatro linhagens. 
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A segunda abordagem consistiu na modelação de distribuição de espécies com o 

objectivo de tentar identificar locais onde o habitat seja adequado à ocorrência de 

espécies. O modelo identificou um grande fragmento onde amostragem futura deverá 

ser realizada. Este tipo de estudos é crucial em termos de conservação, 

independentemente destas linhagens serem reconhecidas como espécies ou não. 

Pequenas populações a Este do Atlas possuem uma diversidade considerável, 

podendo estar facilmente sujeitas à destruição de habitat. Esta análise realça o valor 

de combinar trabalho de campo, análises moleculares e modelação, de forma a obter 

melhores perspectivas acerca da história evolutiva de uma espécie. 

 

 

PALAVRAS-CHAVE 

Filogeografia, Saurodactylus brosseti, Probabilidade de ocorrência de espécies, 

Vicariância, Montanhas Atlas 
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GENERAL INTRODUCTION 

Genus Saurodactylus 

The genus Saurodactylus (Family Gekkonidae) is an old taxon dating back almost 100 

million years (Gamble et al., 2011) and is endemic to Maghreb region, North Africa 

(Bons and Geniez, 1996; Schleich et al. 1996). It currently comprises three species; 

Saurodactylus mauritanicus Duméril and Bibron 1836, Saurodactylus fasciatus Werner 

1931 and Saurodactylus brosseti Bons and Pasteur 1957 (Bons and Geniez, 1996; 

Schleich et al. 1996) (Fig. 1). Saurodactylus brosseti was initially considered a 

subspecies of Saurodactylus mauritanicus, however, morphological differences in 

pholidosis, (mainly its sub-tail scales), head shape and coloration (Bons and Geniez, 

1996) along with recent phylogenetic analysis support the full species status of each 

form (Rato and Harris, 2008; Gamble et al., 2011).  

 

 

Fig.1. – A: Saurodactylus brosseti, lateral view; B: Saurodactylus brosseti, dorsal view; C: Saurodactylus 

mauritanicus; D: Saurodactylus fasciatus. Photos of S. brosseti were taken by Daniele Salvi; photos of S. 

mauritanicus and S. fasciatus were downloaded from www.moroccoherps.com (accessed on May 2013). 

 

Although in (Rato and Harris, 2008) the genus Saurodactylus was found to be 

paraphyletic with respect to Teratoscincus przewalskii, in (Gamble et al., 2011) there is 

support for the monophyly of the genus. Diversification of the three lineages within 

Saurodactylus occurred between approximately 93 and 25 million years ago (Mya). 
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According to Bons and Geniez (1996) Saurodactylus brosseti is endemic to Morocco 

with a wide range from Beni Mellal, central Morocco, to the depths of Western Sahara 

in the south (Fig. 2.). The southernmost specimens were reported in Gueltat Zemmour, 

and specimens have been recorded from both sides of the Atlas Mountains (Bons and 

Geniez, 1996). Saurodactylus mauritanicus inhabits northeast Morocco and western 

Algeria (Bons and Geniez, 1996) and is allopatric with Saurodactylus brosseti, whilst 

Saurodactylus fasciatus, also an endemic species to Morocco, is distributed in the 

north and west of the High Atlas and in the southeast of the Rif (Bons and Geniez, 

1996) (Fig. 2.). In some localities the range of S. fasciatus overlaps with the 

Saurodactylus brosseti distributions (Fig. 2.). The three species inhabit arid and 

semiarid bioclimates, with Saurodactylus brosseti also occurring in the Saharan floor 

(Bons and Geniez, 1996).   

 

 

Fig. 2. Distribution of all three species of Saurodactylus. Shapefiles downloaded from IUCN website. 

 

Since Saurodactylus is a very old genus there has been considerable time for diversity 

to accumulate. The only study regarding the phylogeography of the genus was 

conducted by (Rato and Harris, 2008) who analysed variation within Saurodactylus and 

assessed relationships of the genus with respect to the remaining Gekkota members 

using two mitochondrial (12S and ND4) and two nuclear markers (RAG1 and C-mos). 

They concluded that Saurodactylus brosseti differed from Saurodactylus mauritanicus 
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by 21% and that these two had a 25% of divergence from Saurodactylus fasciatus, 

which is higher than levels of divergences typically observed between reptiles of the 

same genus (Harris, 2002).  

 

 

Saurodactylus brosseti 

 

This study aims to unravel the evolutionary history of Saurodactylus brosseti. Being a 

widely distributed gecko species in Morocco, this study gives us insight into interesting 

phylogeographic and speciation events and in an area in which molecular evolutionary 

studies remain sparse. The ecology of Saurodactylus brosseti, similarly to the other two 

species of the genus, includes the occupancy of arid areas with reduced slope in which 

dispersed stones and rocks provide refuge where the animals spend most of their time 

(Bons and Geniez, 1996). Saurodactylus brosseti is considered a Mediterranean 

species that adopts a sit-and-wait predation strategy emerging only during dusk and/or 

at night. (Meek, 2008) reports how S. brosseti occasionally actively forages during the 

day (Meek, 2008). An ecophysiological study (Meek, 2008) reported that 

thermoregulation in Saurodactylus brosseti is associated with microhabitat selection, 

i.e., selecting rocks or barks as a retreat site and subtly moving under them, a 

behaviour also observed in other geckos (reviewed in Meek, 2008). Due to their small 

size, geckos often have a high surface area to volume ratio. By seeking refuge in 

suitable microhabitats, S. brosseti minimises the effects of extreme body temperatures 

and dehydration as well as reducing predation vulnerability (Meek, 2008). No other 

thermoregulation methods, for example basking and above ground activity, have been 

recorded in this species.  

Despite the limited geographical sampling of the study by (Rato and Harris, 2008), 

Saurodactylus brosseti showed variation within forms with maximal divergence for ND4 

of 11.4% which is indicative of a complex phylogeographic pattern (e.g. Pinho et al., 

2008). On the other hand, high levels of intraspecific mitochondrial DNA variation are 

often reported for geckos (e.g. Perera and Harris, 2010), and thus it is not certain 

whether this is only a mitochondrial DNA artefact which may not be representative of 

overall genetic diversity (Jesus et al., 2006). Furthermore, this study (Rato and Harris, 

2008) did not include samples from either the populations from the extreme South of 

the range, or from the East of the Atlas Mountains. Therefore a more thorough study on 

the phylogeographic patterns of this species was needed. 

 



FCUP 
Phylogeographic patterns of the Moroccan lizard-fingered gecko Saurodactylus brosseti 

14 

 

 

Geographic region – Morocco 

 

The Maghreb region (formed by Morocco, Western-Sahara, Algeria and Tunisia) 

exhibits different geology, topography, climate, flora and fauna compared to the rest of 

Africa, making it a unique region in the continent (Bons and Geniez, 1996). 

 

 

Fig. 3. – Main geographic barriers of Morocco. Moutains: Rif Mountains and the Atlas Mountains (Middle Atlas, 

High Atlas and Anti-Atlas). Rivers: Moulouya River. 

 

Morocco is part of the Maghreb region and is the only country in Africa that has a 

maritime front with both the Atlantic and Mediterranean oceans. It has four big 

mountain chains, including the Rif in the North, the Middle Atlas, the High Atlas and the 

Anti-Atlas (Fig. 3.). The latter three form the Atlas Mountains in a NE/SW direction 

(Bons and Geniez, 1996). The most elevated regions in Morocco are situated in the 

Atlas Mountains (Missenard et al., 2006). 

The Atlas Mountain range covers an area of 2500 Km2 located within Morocco, Algeria 

and Tunisia and form an important barrier that partitions Morocco into two different 

climatic and bioclimatic regions (Bons and Geniez, 1996); in the North and West of 

Morocco there is a Mediterranean climate with dry and hot summers and precipitation 

occurring irregularly during mild winters, categorising the region as sub-humid and 
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semiarid global bioclimates (Bons and Geniez, 1996). In the South of the Atlas the 

climate is Saharan and an arid bioclimate occurs in almost every region in the east of 

the Atlas and almost to the shores of the Mediterranean. Here, the summers are 

characterized for being dry and torrid with cooler winter, with the exception of the 

oceanic coast where cloudiness is a factor. Precipitation is extremely rare and occurs 

mostly during the winter; this feature is responsible for the north Sahara climate being 

included in the Mediterranean region (Bons and Geniez, 1996).  

Morocco is also known for being quite windy throughout the year, especially during 

spring. Minimum temperatures at high altitudes can fall below zero degrees in winter, 

except along coastal strips that have milder conditions. Maximum temperatures in the 

summer can reach up to 60º C in Saharan regions and 46º C in the remaining territory 

except in the coast where the climate is more temperate due to the maritime influence. 

Precipitation generates particular humid biotopes and snowfall has never been 

recorded in the Saharan regions; in contrast it does snow in the High Atlas, Middle 

Atlas and highest parts of the Rif Mountains, leaving these areas covered in snow 

during winter and spring, which are subsequently an important reservoir of water (Bons 

and Geniez, 1996). The Moulouya, Sebou, Oum-er-Rbia and Tennsitt are the most 

important rivers originating from these mountains (Schleich et al., 1996). 

The multitude of bioclimatic regions within Morocco has influenced the dispersion of 

several Mediterranean species from the North, and some species from the Sahara. 

This is mainly due to the Atlas Mountains, which also cause the existence of high levels 

of endemic species of reptiles and amphibians in Morocco (Bons and Geniez, 1996). 

Indeed, Morocco is included in the Mediterranean Basin, a recognized hotspot of 

biodiversity (Myers et al., 2000). From the western Mediterranean region, Morocco has 

one of the richest and most diverse herpetofauna, along with Algeria, with 104 

described species of reptiles and amphibians, of which 22 are endemic (Bons and 

Geniez, 1996). It is well documented how endemism is especially high among 

amphibians, tortoises and the lizard families Lacertidae and Scincidae (e.g. Cox et al., 

2006). In Morocco, endemism is less seen in amphibians, which is not surprising 

considering the arid and semi-arid habitats predominant in large parts of the region 

(Cox et al., 2006).  

The country itself is isolated by several geographical barriers – in the North by the 

Mediterranean Sea, in the West by the Atlantic Ocean, in the South by the Sahara 

Desert and in the East by the Moulouya River Valley (Bons and Geniez, 1996). Thus, 

Morocco presents an ample diversity of geographic barriers and calibration points can 

be assessed by considering their formation age, in order to try to date phylogeographic 

breaks. Regarding the Moulouya River Valley, it is sometimes proposed to be a barrier 
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preventing dispersal and gene flow of, for example, Testudo graeca (Álvarez et al., 

2000), Natrix maura (Barata et al., 2008) and Gerbillus campestris (Nicolas et al., 

2014). However, sampling is key – in a study with more extensive sampling of Natrix 

maura it has been shown that genetic subdivision is not completely coinciding with the 

Moulouya River Valley (Harris et al., 2003). Evidence of the Atlas Mountain Chain 

acting as a barrier causing genetic subdivision has been shown in many species, such 

as Agama impalearis (Brown et al., 2002; Gonçalves et al., 2012), the Acanthodactylus 

erythrurus group (Fonseca et al., 2009), the freshwater turtle Mauremys leprosa (Fritz 

et al., 2005 and Fritz et al., 2006), scorpions of the genus Buthus (Habel et al., 2012; 

Husemann et al., 2012), the scorpion Androctonus mauritanicus (Coelho et al., 2014) 

and the bat complex Myotis nattereri (Salicini et al., 2013). 

 

Formation of the Atlas Mountains 

 

The formation of the Atlas Mountains derived from three events – tectonic deformation, 

extension of the Earth‟s crust and tectonic convergence (Seber and Barazangi, 1996). 

In the Paleozoic Period, around 300 Mya, occurred the first event where tectonic 

deformations lead to the formation of the Anti-Atlas; Africa was part of the Gondwana 

and North America comprising Euroamerica. The Anti-Atlas is a result of the collision 

between the African and American plates (that formed Pangea), and was initially 

formed as part of the Alleghanian orogeny (Hatcher, 2008). The second event, an 

extension of the Earth‟s crust, took place 65 Mya during the Mesozoic period, which 

separated the African and American continents through rock deposition in the ocean 

that today forms the High-Atlas. The Middle Atlas is trending northeast-southwest while 

the High-Atlas trend is west southwest-east northeast corresponding to inverted 

Mesozoic intracontinental basins; both directions were inherited from initial Triassic 

rifting (Missenard et al., 2006). Around 35 Mya during the Tertiary period, tectonic 

convergence of the African and European landmasses occurred in today‟s Strait of 

Gibraltar area, uplifting the mountain chains that now form the Atlas Mountains.  

The orogeny of the Atlas is estimated to have occurred around 9 Mya in the late 

Miocene (Hsu, 1978). Contrarily, there is some evidence based on scattered direct 

surface suggesting that the uplift of the Middle-Atlas and High-Atlas took place around 

7.1 to 5.3 Mya in the post-Miocene (Ayarza et al., 2005). 
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Phylogeography 

Phylogeography is a discipline that relates phylogenies with geographic distributions of 

species, allowing the assessment of how genes and their history in time affect the 

current distribution of species in space (Avise, 1998). Early studies using mitochondrial 

DNA revealed a link between genealogies and geography, which later was also 

demonstrated for nuclear DNA, becoming the obvious field for microevolution studies 

(Avise, 2009). The first practical phylogeographic study of a species was conducted 

using mtDNA in 1979 (Avise et al., 1979), and phylogeography was subsequently 

recognized as a discipline. The first human study regarding mtDNA variation was 

conducted a year later (Brown, 1980), and some years after that a phylogeographic 

study involving several codistributed species was published (Bermingham and Avise, 

1986).  

Some phylogeographic general patterns have been identified and one simple case is 

species with low dispersal ability. Frequently, populations of these species are highly 

genealogically different, but with only a few mtDNA haplotypes, while most of the 

haplotypes are similar and geographically localized (Avise, 2009). Differentiation of 

these geographically localized haplotypes is usually coincident with historical events 

preventing dispersal; for example, events such as climatic oscillations in the 

Quaternary that forced species to refugia, which is known to have led to a lack of gene 

flow and thus haplotype divergence (e.g. Hewitt, 2004). Even species with high 

dispersal capabilities can display divergence due to historical events such as the 

formation of geological barriers (e.g.Jaramillo-Correa et al., 2010; Mirams et al., 2011; 

Lessios and Robertson, 2013). Dispersal barriers have an impact on the genealogical 

patterns of lineages or species and split events usually coincide or are more recent 

than the emergence of the barrier (Avise, 2009). Species with high dispersal ability can 

also show high genetic differentiation due to philopatry, which is a loyalty behavioral 

predisposition to particular locations (e.g. Wenink et al., 1996; Karl et al., 2011). On the 

other hand, not all species present such a defined phylogeographic structure. For 

instance, recent population expansions are generally defined by a prevalent single 

haplotype and many other rare haplotypes that are probably derived from a common 

haplotype enduring separate mutations in time. The widespread haplotype is 

geographically the source of the expansion (e.g. Watson et al., 1997; de Jong et al., 

2011). Should several species have the same ecological or habitat requirements, they 

tend to show similar genealogical structure. This implies a broader impact of the forces 

shaping genes and several cases have been documented in Europe (Avise, 2009). 

With all of this, sometimes history repeats itself and phylogeographic patterns also 
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show that. The most common history repetition example is when species are forced to 

“southern refugia” during glaciations/deglaciations in the Pleistocene, or to multiple 

refugia (e.g. Hewitt, 2000; Miraldo et al., 2012).  

Although there are no specific natural rules dictating how genetic lineages are spatially 

distributed, phylogeography is currently a growing field of study (e.g. Taberlet et al., 

1998; Hahn et al., 2014). 

 

Coalescent Theory 

Coalescent allows knowledge of historical population processes and was first 

described by Kingman (Kigman, 1982), although it has been discovered individually by 

several authors (reviewed in Rosenberg and Nordborg, 2002; Salemi and Vandamme, 

2003). Coalescent is mathematically calculated and traces back the time to ancestry of 

a genealogy until all lineages coalesce into the most recent common ancestor (MRCA). 

The absence of selection is typically assumed and the rate at which lineages coalesce 

depends on the size of the population (Salemi and Vandamme, 2003). Should only 

genetic drift be a factor, smaller populations will have a faster rate of coalescent 

lineages; while larger populations will present a slower rate of drift and, consequently, 

of coalescent lineages. When comparing similarity between more than one population, 

historical processes can be assessed by the increased or decreased rate of genetic 

diversity (Salemi and Vandamme, 2003). Selection is, however, always present, and 

that means genetic diversity is not as random some genotypes have a higher fitness 

than others (Rosenberg and Nordborg, 2002).  

When studying a species tree, the branch length represents the time that an ancestral 

form took to split into its descendants and is measured by the number of mutations that 

accumulated between that split. The mutations have a rate, which is logically defined 

by the number of mutations that are expected in each generation (Salemi and 

Vandamme, 2003). 

Coalescent methods identify lineages that are evolving independently, testing several 

alternative hypotheses of divergence by using multilocus data, and can help to explain 

species diversity (Fujita et al., 2012).  

 

Phylogenetic data: mitochondrial and nuclear DNA 

Linnaeus (1758) started using morphology (the study of the physical aspects an 

organism) as a way to formulate differences between species which today is still the 

core of taxonomy. However, modern day micro evolutionary studies are often based on 

DNA sequence data that allows additional information to be obtained, and is 
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particularly useful for assessing the relationships between taxa. Biodiversity as we 

observe today exists because of variations that have accumulated through diverse 

mechanisms (mutations, duplications of genes, reorganization of genomes, genetic 

exchanges (e.g. Faria et al., 2011), allowing organisms to evolve. Species that are 

more closely related to each other typically have fewer point mutations (or 

substitutions) between themselves than two species that are not closely related 

(Salemi and Vandamme, 2003). Since some genes are highly conserved, while others 

are much more variable, suitable genes can be chosen that are likely to show a 

suitable level of variation for a variety of different questions (Salemi and Vandamme, 

2003). 

Although there are differences between mitochondrial and nuclear DNA, both provide 

valuable information and are employed to build phylogenies to understand 

phylogeography (e.g. Perera and Harris, 2010). Animal mitochondrial DNA (mtDNA) is 

a circular molecule with typically 37 genes and approximately 17,000 nucleotide base 

pairs with no introns or large non-coding regions. In higher animals it has a high 

mutation rate and is usually transmitted maternally. MtDNA is a major tool in 

phylogeography and it is widely used to study the evolution of species and populations 

(William et al., 2004). The first utilization of mtDNA variation was conducted with 

RFLPs (Avise et al., 1979; Brown and Wright, 1979) and later with sequences (Kocher 

et al., 1989). More recently, it has been concluded by some researchers that studies 

using mtDNA are not sufficient if more compound questions about the history of 

populations are to be studied (Godinho et al., 2008). This is because mtDNA provides 

knowledge of a single locus and it allows researchers to see only a small part of the 

story; consequently there is an underestimation of diversity and an oversimplification of 

the evolutionary history (Zhang and Hewitt, 2003). Nuclear DNA has 3 billion base 

pairs, almost 180,000 more than mtDNA. It also differs in the degree of recombination, 

ploydy and mutation rate, which is usually slower (William et al., 2004). The rate of 

substitution in single copy nuclear polymorphic sequences depends on the genic region 

(Zhang and Hewitt, 2003). However, using nuclear DNA for phylogeography can also 

bring difficulties related to recombination, heterozygosity, rate variation and also 

amplification and sequencing (Zhang and Hewitt, 2003). Many studies now include 

nuclear DNA (Perera and Harris, 2010; Rato et al., 2010), although most available data 

is still mitochondrial. Nuclear DNA is not going to replace mtDNA in phylogeography, 

but it will instead help disentangle different aspects of evolutionary history (Zhang and 

Hewitt, 2003). 
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Phylogenetic Analysis Methods 

Inferring phylogenies is not an easy procedure and several approaches are accessible, 

although there is no perfect method and getting to the “true” phylogeny is never certain. 

The most common analysis methods include UPGMA (Sneath and Sokal, 1973), 

Neighbor-joining (NJ) (Saitou and Nei, 1987), Maximum parsimony (MP) (Fitch, 1971), 

Maximum likelihood (ML) (Felsenstein, 1981) and Bayesian inference (Huelsenbeck 

and Ronquist, 2001). 

The construction of a phylogenetic tree can be separated according to the data they 

use (character state or distance matrix) or according to the underlying strategy (tree-

evaluation or clustering) (Salemi and Vandamme, 2003). There are assumptions in 

each method that need to be carefully taken into consideration, as they may not be 

valid for the data being used. The most widely used methods are Maximum likelihood 

and Bayesian inference. 

Maximum likelihood (ML) uses character state data type and a tree-evaluation method, 

using a tree topology and a model of evolution to estimate the highest probability. The 

likelihood is determined by adding all possible nucleotide states in the internal nodes 

and is optimized with the best combination of evolutionary parameters and branch 

length possible. This is also done by a given number of trees and the algorithm choses 

the tree topology that has the maximum likelihood. This process requires time and is 

computationally challenging. Furthermore, to assess support for actual nodes requires 

additional analyses, the most common of which is to apply a bootstrap approach, or to 

use likelihood ratio testes to compare alternative tree topologies. 

Bayesian methods are in the same group as ML, however they do not search for the 

best tree. Instead, they try to infer several tree topologies that explain the data, which is 

called posterior distribution of trees, and has a confidence estimate. The method 

requires that a prior belief, or prior distribution is given i.e. before the analysis begins, it 

needs to know what the tree topology is, branch lengths and substitutions model 

parameters. A technique called Markov chain Monte Carlo (MCMC) is then used to 

acquire posterior probabilities of the tree. It calculates the likelihood in every “step” and 

it moves forward and if the likelihood is better than before, until it reaches the maximum 

value. However, it can also occasionally move backwards, allowing the methodology to 

overcome local optima. The analysis is typically run multiple times and with a random 

starting point, again so it does not stop at a local optimum. In the end, the worst trees 

are discarded as burn-in and posterior probabilities are the posterior values that will be 

represented in the Bayesian tree (Huelsenbeck and Ronquist, 2001). Bayesian 
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inference methods take phylogenetic uncertainty into account, but are still 

computationally demanding progress. 

These methods can be performed on separate genes, but the data are usually 

combined, employing a concatenated approach. However, increase of available 

molecular data has made it evident that gene trees are not always coincident with 

species trees (Fujita et al., 2012). This was first thought about when studying the 

disagreement of gene trees (e.g. Satta et al., 2000) with the realization that is an 

expected feature, and concatenation approach may lead to an incorrect species tree. 

One other approach is a coalescent species delimitation approach which allow 

discordance of the gene tree under genetic drift (Fujita et al., 2012). This approach can 

also use either ML or Bayesian; each node of the species tree represents a speciation 

event and each branch is an independent evolutionary lineage (Fujita et al., 2012). 

 

Biogeography 

Biogeography is the science that tries to understand and describe spatial patterns of 

biodiversity. It studies the past and present distributions of organisms and their 

associated variation patterns on earth (Brown and Lomolino, 1998). Additionally, it 

attempts to answer questions such as 1) why does a species or family has such a 

range; 2) what are the characteristics that allow a species to live in such areas and not 

others?; 3) what is the role of climate and topography and how do these interact with 

the species?; 4) how do species change as the environment changes in space?; 5) 

where was the ancestor of a species found?; and 6) how do historical events shape 

species distributions? (Brown and Lomolino, 1998). The central question is related to 

how organisms are distributed and their history on earth.  

Biogeography is intimately connected to ecology and phylogenetic history (Brown and 

Lomolino, 1998). It differs from other biological disciplines as it deals with scales of 

space and time at which experimental manipulations is difficult, serving as a 

comparative observational science (Brown and Lomolino, 1998). Historical 

biogeography is important in ecology, and large-scale biogeographical events are also 

the outcome of ecological processes. Historical biogeography helps to explain large-

scale patterns of species richness. The ecology of the species is extremely important to 

better understand patterns of diversity (Wiens and Donoghue, 2004). Also, 

biogeographical processes determine the composition of the regional species pool 

(Ricklefs and Schluter, 1993; McPeek and Brown, 2000; Webb et al., 2002), which has 

a strong effect on the composition of local-scale communities (Morin, 1999). The 

absence of a certain ecological association from a local community might not be 
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described solely by ecology or phylogenetic history of the species, but also by 

biogeographical patterns of the group or groups comprising the absent ecological 

association (Ricklefs and Schluter, 1993; Stephens and Wiens, 2004).  

 

Geographic distribution 

The geographical distribution of species is influenced by different factors according to 

the scale. At a macro-scale, the weather plays a predominant role in influencing 

geographical distributions of species. Topography, hydrology, geology and weather 

have an influence at a regional scale; type of soil and hydrology influence at a local 

scale; and herbivory, micro-disturbances and intraspecific competition have the largest 

influence at a micro-scale (Brown and Lomolino, 1998). The individual distribution 

pattern of species depends of the temporal scale of the analysis because the limits of 

occurrence vary with extinction or recolonization and distribution and abundance 

expand and contract with environmental variations and anthropogenic activities (Brown 

and Lomolino, 1998). 

A fundamental key for biogeography is that each species has a unique geographic 

range and the ecological processes coupled with historical events provide essential 

contributions for shaping these ranges. Firstly, how can we measure and define 

geographic ranges? The easiest and most direct way is with range maps; they are easy 

to organize and can be later used by other researchers (Brown and Lomolino, 1998). 

There are three kinds of maps: outline maps, dot maps and contour maps, each 

reflecting a different aspect. Outline maps depict the supposed limit of the known 

species distribution as an irregular area (Brown and Lomolino, 1998). It is very prone to 

inaccuracies, especially if the distribution is not very well understood and if the author 

has made assumptions based on his/her knowledge. Dot maps are often part of a 

taxonomic study and plot points on a map correspond to localities where a species has 

been recorded (Brown and Lomolino, 1998). They can also depict places where 

verified museum species have been collected and they are, usually, more accurate. 

However, they can also represent an infinitesimal fraction of the actual distribution, for 

instance, in the case of sightings of birds, and they do not extrapolate beyond the 

relatively few sampled locations (Brown and Lomolino, 1998). Contour maps use 

contour lines to show variation in density, being more informative than the previous 

types of maps (Brown and Lomolino, 1998). The disadvantage of this method is the 

lack of available information relating to abundance; despite this, there is a statistical 

procedure, termed kriging, which interpolates between data points and produces three-

dimensional landscape depicting variation in abundance within the range (Brown and 
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Lomolino, 1998). Databases are also a powerful tool for mapping geographical 

distributions, although they may contain errors on the spatial location of a species or in 

species identification (e.g. Lozier et al., 2009). 

The distribution of species and/or populations is a spatial reflection of their niche. A 

species will occur when the environmental conditions are most fitting and will be absent 

in areas where one or more essential resources are missing. Also carrying capacities 

for a species – maximum population size given the environmental conditions - 

frequently changes with environmental variation. 

 

Ecological Niche 

There are many definitions of a „niche‟, but all similarly point towards an environment 

which allows a population or species to survive differing only on the emphasis they put 

on the key points (Soberón and Nakamura, 2009).The fundamental ecological niche of 

a species is defined by its biological critical characteristics, including feeding ecology, 

physiology and reproductive behaviour (Hutchinson, 1957) and describes the abiotic 

conditions in which it can persist and maintain viable populations (Hutchinson, 1957). 

However, species are commonly forced to occupy a niche that is a contraction of the 

fundamental niche, as an effect of pressure from, and interactions with other organisms 

(Hutchinson, 1957). Also, environmental conditions are not always appropriate for a 

species in its entire occurrence (Brown and Lomolino, 1998). The fundamental niche is 

the species‟ niche in the absence of any disturbance, such as interspecific competition, 

and is determined by the physiological capabilities of the species. The realized niche is 

where the species is competitively superior as well as more physiologically adapted 

than competing species (Roughgarden, 1974). Together, organisms occupy a 

widespread range of environmental conditions but almost every species or lineage 

inhabit only a limited subset of such conditions, which is determined by intrinsic traits of 

each organism that are preserved over long evolutionary timescales. Some groups of 

animals have a wide range across specific regions, for example in the tropics, but fail to 

colonize other biomes, even if the opportunity to do so has persisted for hundreds of 

millions of years.  

Natural populations are exposed to different biotic and abiotic factors including 

competition, predation, climate and food resources variations (Rundle and Nosil, 2005; 

Schluter, 2009). This can lead to divergent evolutionary responses and patterns of 

climatic tolerances (reviewed in Parmesan, 2006), and subsequently evolution of 

organisms to fulfil new habitats; a process termed niche divergence (e.g. Kozak and 

Wiens, 2007; Cadena et al., 2012). In contrast, the preservation of ecological similarity 
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among populations over time is niche conservatism (Wiens and Graham, 2005; 

Peterson, 2011), and it can limit adaptation to ecological conditions and promote 

isolation (e.g. Wiens, 2004; Kozak and Wiens, 2007; Cadena et al., 2012). Although it 

has been attempted to test conservative evolution before (Bartlein et al., 1989; Ricklefs 

and Latham, 1992; Peterson and Vargas-Barajas, 1993), ecological niche models have 

only been tested quantitatively and (Peterson et al. 1999). It was predicted that 

fundamental niches of species could slowly change under natural selection. Using 

genetic models it was predicted that niche conservatism rates of adaptation in 

environments outside the fundamental niche should be frequently slower than 

extinction process (Houston and McNamara, 1992; Kawecki and Stearns, 1993). The 

results of a previous study to (Peterson et al., 1999) indicated that ecological niches 

evolve little at or around the time of a speciation event and that the differences in the 

ecological niche seem to develop and accumulate later, over the time scale of familial 

relationships (Peterson, 2011). The types of speciation involved can also be inferred by 

the conservatism of ecological niches across moderate periods of evolutionary time; for 

example geographic isolation leads to vicariance. Until recently, evidence for niche 

conservatism was mixed but a study has shown some structure after setting all 

evidence in a time-scale (Peterson, 2011). According to this, recent and short-term 

events, such as distributional shifts at the end of the Pleistocene period, or species 

invasions present some trend towards conservatism. However, long-term events 

including differentiation across phylogenies show increasing conservatism breakdown. 

This means that niche conservatism breaks down over time but at a rate that is still 

questionable. On timescales in which speciation events are involved, almost all 

lineages show overall niche conservatism, although no ecological signal associated 

with speciation is obvious (Peterson, 2011). Some studies have reported niche shifts 

associated with invasion events in the European plant Centaurea maculosa 

(Broennimann et al., 2007), the South American fire ant Solenopsis invicta (Fitzpatrick 

et al., 2007) and the mosquito Aedes albopictus (Medley, 2010), but they may be all a 

consequence of methodological artefact and not a biological reality (Warren et al., 

2008). This difference of opinion also reflects the immature nature of this field and one 

of the ways forward is a more detailed analysis of niche characteristics and their 

change through time (Peterson, 2011). Frequent and marked niche change is only 

seen in phylogenetic history of older groups, and thus estimates of phylogeny give the 

opportunity to understand the rate of niche change, its speed and how these change 

events are correlated (Peterson, 2011). During speciation events niche differentiation is 

expected to be rare, and demonstrations of ecological innovation during this time have 

to be cautiously studied in order to avoid incorrect conclusion. Moreover, clear 
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consideration of temporal dimensions and interpretations of niche characteristics and 

their similarity among lineages should be contemplated to prevent vulnerability of 

conclusions and biases, especially when dealing with models. Niche conservatism 

implications should be fully incorporated into evolutionary biology and biogeography 

(Knowles et al., 2007; Waltari and Guralnick, 2009) to allow many features of the 

potential geography of species to be recreated with more confidence (Peterson, 2009). 

It is essential to assess whether the ecological niche of natural populations has evolved 

in a conservative (Peterson et al., 1999; Wiens, 2004; Wiens and Graham, 2005; 

Peterson, 2011) or divergent way (Rundle and Nosil, 2005; Schluter, 2009; Schluter 

and Conte, 2009), enabling the evaluation of the possibility that an ecological 

speciation event has occurred.   

 

Ecological niche models (ENMs) 

Ecological niche modelling (ENM) has recently received greater consideration with 

more researchers using, developing and improving methods for use. ENM use a 

population‟s environmental necessities and its observed presences and/or absences to 

recognize which places are fit for the species survival (Elith et al., 2006). Furthermore, 

models estimate areas of potential distribution or sets of favourable habitats. 

Essentially, species distribution models try to deliver detailed predictions of 

distributions by linking presence or abundance of a species with environmental 

predictions (Elith et al., 2006). There is little agreement in terminology and concepts 

related to ENMs and also methodological issues that need to be thoroughly 

considered.  

 

 

Species distribution 

Many applications in evolution, ecology and/or conservation are starting to use 

predictions of species‟ distribution as a fundamental component. In the light of 

conservation planning and forecasting, to understand which ecological and 

evolutionary traits best define biodiversity spatial patterns, it has been seen that 

meticulous knowledge of species‟ geographic and ecological distributions is crucial 

(Brown and Lomolino, 1998; Ferrier, 2002; Funk and Richardson, 2002; Elith et al., 

2006). There are several processes that maintain species distributions that have 

ecological characters at small scales, such as physical factor limitations, 

metapopulation dynamics, ecological interactions and barriers; other processes change 

species distributions and are not only of ecological but also historical importance at 
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small and big scales, such as dispersion/expansion/corridors, paleo-geographic 

change and climatic change (Brown and Lomolino, 1998).  

Speciation is the evolutionary process by which new biological species arise (Cook, 

1908). There are two processes of evolution: anagenesis that is the phyletic 

modification in time, and cladogenesis or speciation, i.e., origin of new species through 

splitting of pre-existing ones (Singh, 2012). Darwin (1859) first proposed natural 

selection to explain evolutionary changes, which was later defined as transformation of 

species in time (Romanes, 1897) and phyletic evolution (Simpson, 1944). It is possible 

to have evolutionary change without species multiplication, and also through true 

speciation or what was once called „multiplication of species in space‟ (Romanes, 

1897). Mayr (1966) defined speciation as the splitting of an originally uniform species 

into several daughter species, which is also seen as one of the key ways by which 

organisms adapt in order to exploit the diverse environments available to them (White, 

1978). Some evolutionary biologists have proposed different possible modes of 

speciation. Huxley (1942) suggested geographical, ecological and genetic types of 

speciation. Mayr (1942) classified speciation into geographic, semi-geographic and 

non-geographic (or sympatric). Six modes of speciation were stated by Mayr and 

Ashlock (1991): polyploidy, sympatric, parapatric, two types of allopatry – dichopatric 

and peripatric – and speciation in time. White (1978) divided speciation processes in 

three sets of variables: genetic mechanisms generating genetic variability; genetic 

isolating mechanisms leading to the origin of the reproductive isolation; and geographic 

component ranging from complete (allopatry) to absent (sympatry) that are the origin 

for 7 models of speciation. The models are: strict allopatry without a narrow population 

bottleneck; strict allopatry with a narrow population bottleneck (founder effect); 

extinction of intermediate populations in a chain of races; clinal speciation; area-effect 

speciation (primarily genic); stasipatric speciation (primarily chromosomal); and 

sympatric speciation (White, 1978; Singh, 2012). Speciation is mainly originated by 

natural selection (Schluter and Conte, 2009) through two mechanisms: mutation-order 

and ecological speciation (Mani and Clarke, 1990; Schluter, 2009; Schluter and Conte, 

2009). A mutation-order speciation occurs when two distinct beneficial or neutral 

mutations are fixed between different entities, even though they are exposed to the 

same selective pressures and ecological conditions (Mani and Clarke, 1990; Schluter, 

2009). The fitness of the hybrids decreases over evolutionary time scales with the 

fixation of these mutations when they are a result of vicariance or drift (Coyne and Orr, 

2004). The other type of speciation is natural selection, termed ecological speciation, 

which takes place with the evolution of reproductive isolation mechanisms between 

entities through differential adaptation to dissimilar ecological or environmental 
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conditions (Schluter, 2001; Rundle and Nosil, 2005; Funk, 2009). Here, natural 

selection is a divergence mechanism that leads to the fixation of distinct advantageous 

mutations in each of the different environments (Schluter, 2009; Schluter and Conte, 

2009). It is difficult to understand in practice by observing the ecological traits of 

lineages in a given phylogeny if ecological divergence is the crucial force leading to 

speciation or if it acts secondarily during interruption of gene flow due to other causes 

occurs (Schluter, 2009). If the ecological divergence is assessed, then it can work as a 

proxy to support species delimitation and understand which factors were ecologically 

associated to speciation (e.g. Raxworthy et al., 2007; Ahmadzadeh et al., 2013). 

 

Models of Species Distribution 

Different types of methods use different data input, which in turn varies how they model 

response distributions, select pertinent environmental features, define variable 

functions, weight each variable influence and allow or not for interactions and forecast 

geographic patterns of occurrence, producing different outputs (Guisan and 

Zimmerman, 2000; Wintle and Bardos, 2006). There are two types of models that 

predict the distribution of a species – correlative models and mechanistic models 

(Peterson, 2011, but see Sillero, 2011). Mechanistic models use the biophysical 

properties of the entities to link functional traits with environmental conditions and 

determine areas where species may exist (Kearney and Porter, 2009; Dormann et al., 

2012). They have limited use due to the detailed information and sampling coordinates 

they require (Alvarado-Serrano and Knowles, 2014). Correlative methods identify 

statistical associations between a species or population distribution and environmental 

conditions, using distribution data and environmental layers (Alvarado-Serrano and 

Knowles, 2014). 

Since distribution modelling is now a common tool for ecological studies, and given the 

data accessibility and numerous methods available for the purpose, a synthetic 

analysis with accurate results is needed in order to correctly predict species‟ 

distribution with presence-only data. The first efforts to analyse this kind of data used 

calculation of envelopes or distance-based measures and were developed specifically 

for that purpose (Rapoport, 1982; Silverman, 1986). Subsequently, the attempt was to 

adjust presence-absence methods for presence-only data, by using random points of 

the background environment designated as “non-use” or “pseudo-absence” areas (e.g. 

Stockwell and Peters, 1999; Boyce et al., 2002). In recent years, new methods use 

information based on the presence of other similar species of a community, which 

perform better with noisy data, something that is particularly important in the case of 
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rare species, helped in distribution modelling (Elith et al., 2006). In general, new 

modelling methods of species distribution outperform established methods, especially 

because they are originated in other disciplines and deal with much wider ranges of 

ecological applications thus delivering new future research prospects (Elith et al., 

2006). Specifically, methods that characterize the background environment and weight 

variables in a differential manner are better than methods that use presence-only data, 

such as BIOCLIM, LIVES or DOMAIN (Elith et al., 2006). Most of the studies 

comparing methods use the same data set that was used to develop them and/or are 

focused on one single geographic region and/or small number of species (e.g. Ferrier 

and Watson, 1997; Moisen and Frescino, 2002; Segurando and Araújo, 2004; Phillips 

et al., 2006). Because of this, these studies do not allow the correct generalization of 

the results or the ability to discern if models are accurate or are simply overfitting. One 

shared characteristic of the best performing models is a great level of flexibility in fitting 

complex responses, i.e. they are effective tools for modelling relations among 

variables, even though each model achieves it in different ways (Elith et al., 2006). 

Nevertheless, this ability needs to be balanced with the condition of the model to be 

ecologically realistic (Austin, 2002). So far, there is no single model able to replace 

detailed field collection including abundance, interactions, demography and accurate 

species distribution data (Guisan and Thuiller, 2005). However, there are some 

methods that try to incorporate this kind of information, such as Bayesian approaches 

(Gelfand et al., 2006), investigations of competitors (Leathwick and Austin, 2001; 

Anderson et al., 2002), and studies of connectivity (Moilanen et al., 2005). 

The ideal way of modelling is by iterative cycles that incorporate the uses desired for 

the model, considering the ecological rationality of the modelled responses and 

accurately exploring errors made in predictions (Burgman et al., 2005; Barry and Elith, 

2006). 

 

Input Occurrence data 

Information about species occurrence is vast and electronically available for almost 

every known species; mainly records from museums and herbariums (Graham et al., 

2004, Huettmann, 2005). Distribution data can be gathered from primary surveys, 

natural history collections, published species ranges (e.g. Barnes and Wagner, 2004) 

or public databases (e.g. Natureserve, GBIF). However, for the majority of species, 

information is scarce and consists mostly in presence-only records, so that it is hard to 

adequately compile data for usage as input on the numerous approaches for modelling 

distributions (Elith et al., 2006), especially when so many errors can be made in 
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sampling and/or uploading records to databases. Collection information is often 

unknown, making presences and particularly absence records uncertain, and 

furthermore these may include bias and errors associated with sampling. There is an 

accumulation of information available that is frequently incorrect or inconsistent 

(Hijmans et al., 2000, Reese et al., 2005). Accuracy and precision of distributional data 

is strongly associated to their source, and format and should be scrutinized (Alvarado-

Serrano and Knowles, 2014). Elith et al. (2006) states that having absence data is 

important and is a good alternative to random background samples when modelling 

single species. This is not so easy to put into practice when studying small species 

because they often require very specific ecological requirements or vary in seasonal 

activity. Assuming that a species does not exist in a particular geographic region at a 

specific time because it was not seen at that time and space can be erroneous, and 

may mislead the model. This implies an intensive and extensive sampling effort, which 

is not always logistically and/or humanly possible especially in remote areas. All the 

data must be carefully studied before being used and each species is a different case 

requiring different considerations according to its ecology and the questions we want to 

answer. It is also important to remove redundant data (points that fall within the same 

grid cell of environmental data) to avoid artificial bias in model predictions. The 

distribution data is normally mapped into a predefined map coordinate system that 

matches the one from the environmental data.  

 

Input Environmental Variables 

Environmental data is presented in the form of digital grid cells and can be derived from 

field data, interpolated surfaces (e.g. climatic data from WorldClim) or remote sensing 

(e.g. landcover from MODIS). When variables relevant to the test in question are 

selected it is necessary to process it, i.e., transform the environmental data into raster 

grids with the same coordinate system and, preferably, with the same software 

(Bolstad, 2008). The variables must not be correlated with each other and some 

techniques such as orthogonal transformation or elimination of the variables according 

to the goal of the study are used. Environmental data can also be used to understand 

what their relative contributions to the model are.  

 

Accuracy of the output  

When evaluating the output accuracy, one of the major problems faced is that the exact 

species distribution is not known and the best way for evaluation is by predictive 

performance (Elith et al., 2006). Predictive performance uses some sample points of 
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the species occurrence that are withdrawn from the input dataset, and in the end 

accuracy is evaluated based on how well the model has predicted those occurrences 

(Boyce et al., 2002). The withdrawal of the sample points can be performed in different 

ways, such as splitting the data set, k-fold partitioning, or bootstrapping (Fielding and 

Bell, 1997; Araújo et al., 2005). Predictive performance is not the most accurate, as we 

know that occurrence records have biases in environmental and geographic space 

(Bojorquez-Tapia, 1995; Hijmans et al., 2000; Soberón et al., 2000; Kadmon et al., 

2004) and that those biases will continue no matter the resampling design.  
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OBJECTIVES 

The main aim of this thesis was to determine phylogeographic patterns of variation 

within S. brosseti. In particular we hoped to determine a) if mtDNA lineages previously 

identified were also recovered with nuclear markers b) to try to date the origin of these 

lineages and associate them with known geological events, especially the orogenesis 

of the Atlas Mountains c) to use species delimitation approaches to assess if S. 

brosseti may actually correspond to a species complex and d) to extend sampling 

across the range to assess if additional but previously unsampled lineages might occur. 

The second aim was to asses which environmental variables might limit the 

occurrences of S. brosseti in the region, and then use this to predict possible areas 

where the species might occur but not be recorded. These potential distribution maps 

should also help to identify possible geographical barriers that shape the distribution of 

the species. 

Since these primary aims involved considerable fieldwork, a side aim was to record all 

the herpetofauna idenfied during the fieldwork, including a DNA barcoding approach 

when necessary, and to use this to determine possible range extensions to poduce 

better distribution maps of the herpetofauna of this region. 
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MATERIAL AND METHODS 

In this chapter, a more detailed description of the materials and methods used is 

offered. 

 

Phylogenetic Analysis 

Sampling 

Over the years, several fieldtrips have been carried out, where specimens where 

sampled. Two fieldtrips (May 2013 and May 2014) were conducted and I had the 

opportunity to be included in both of them, resulting in a sampling of 53 species from 

138 localities (see Manuscript II), from which 36 were Saurodactylus brosseti 

specimens (see Appendix 1 and Fig. 4.).  

 

 

Fig. 4. – Samples used for phylogenetic analyses. 

 

The sampling localities included the southernmost known locations in Western Sahara, 

near Boujdour. Samples were collected by hand and data recorded at the site with 

GPS and annotations of the basic information about the specimen – DB number (to be 

included in the reptile database), species, subspecies, date, locality, latitude, longitude, 
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altitude, sex, age, snout-vent length (SVL) and, when applicable, pellet, slide, blood, 

parasites, photo information and observations (e.g. pregnant female). All sample 

information is available in the reptile database of CIBIO. Additionally, a small piece of 

each specimen‟s tail tip was collected from live animals and kept in 96% ethanol and 

photos taken before releasing the animal. Saurodactylus mauritanicus and 

Saurodactylus fasciatus were used as outgroups, for which samples were already 

available in the CIBIO database.  

 

DNA extraction, amplification and sequencing 

In the CIBIO laboratory, DNA was extracted from tail tips tissue using a High Salt 

method (Sambrook et al., 1989). DNA amplification was performed through PCR for 

two mitochondrial fragments – 12S and ND4 – two nuclear fragments – ACM4 and 

MC1R – and one intron – BZW1. Mitochondrial genes were chosen so that data 

produced could be directly compared to an earlier study (Rato and Harris, 2008). 

ACM4 and MC1R markers were chosen due to its wide use in phylogeographic studies 

in reptiles (e.g. Rato et al., 2010) and the intron was chosen because they normally 

present higher mutation rate and consequently higher variation and BZW1 have been 

used in other members of the Gekkota family (e.g. Fujita et al., 2010).  PCR conditions 

and primers are described on Table 1. 

 

 

Table 1. – Primers names and amplification conditions. 

 

 

 

Gene 12S ND4 ACM4 BZW1 MC1R 

Step T 

(ºC) 

Time X T 

(ºC) 

Time X T (ºC) Time X T 

(ºC) 

Time X T 

(ºC) 

Time X 

Initial 

Denaturation 

95º 1' 1 94º 3' 1 94º 5' 1 94º 3' 1 92º 2' 1 

Denaturation 95º 

48º 

72º 

15'' 

15'' 

10'' 

35 94º 

94º 

48º 

3' 

30'' 

30'' 

35 94º 

94º 

55º 

5' 

30'' 

45'' 

1 

32 

94º 

94º 

62º 

3' 

30'' 

45'' 

37 92º 

92º 

55º 

2' 

1' 

45'' 

35 

Annealing 

Extension 

Final Extension 72º 10' 1 72º 40'' 1 72º 1' 1 72º 1'  72º 1' 1 

 Primer Forward 12S L ND4 Tg-F Tar1 MC1R F 

Primer Reverse 12S H LEU Tg-R Tar2 MC1R R 

Citation Kocher et al. 1989  Arévalo et al. 1994  Gamble et al. 2008  Fujita et al. 2010 Pinho et al. 2010  
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Polymerase Chain Reaction (PCR) amplification was performed with a final 25 µL 

volume for each sample, according to MyTaq™ protocol (UK) – 15.8 µL of purified 

water, 5 µL of MyTaq buffer, 1 µL of Forward Primer, 1µL of Reverse Primer, 0.2 µL of 

Taq, and 2 µL of DNA extraction product. MyTaq™ buffer contains dNTPs, MgCl2, 

stabilizers and enhancers. PCR were run in a Biometra TProfessional thermal cycler. 

For each run, two controls were added – a positive control, which is a sample that 

previously amplified for the gene in question to certify that PCR reaction was effective; 

and a negative control, which has all reagents except DNA to check for contaminations. 

To check the success of amplification, 2 µL of PCR product from each sample ran in 

2% agarose gel with GelRed Nucleic Acid stain, visualized in an ultraviolet 

transilluminator. Pictures of the each gel run were taken and saved. Amplification 

products were sent to Beckman Coulter Genomics (UK) for purification and Sanger 

sequencing with same primers used in amplification.  

 

Phylogenetic analysis 

Sequences were blasted to the NCBI database on GenBank to confirm the species. 

Chromatographs were checked and sequences were aligned for posterior phylogenetic 

analysis using Geneious v 5.6 (Drummond et al., 2012). Alignment was performed 

using default settings of MAFFT. Nuclear genes were sequenced in both directions to 

ensure identification of heterozygotes. 12S and ND4 sequences of Saurodactylus 

brosseti from a previous study (Rato and Harris, 2008) available on GenBank 

(accession numbers in Appendix 1) were also included in the alignment. jModelTest 

v2.1.4 (Darriba et al. 2012 – 201) was used to infer which model best fit each data 

under the Akaike Information Criterion (Cavanaugh 2007 – 205) for separate and 

concatenated genes in order to decrease the error (Brandley et al. 2005 - 227). Nuclear 

genes were phased using Seqphase (Flot 2010 - 231) and PHASE (Stephens et al. 

2005 – 230) with a threshold of 0.6 and default for all the other parameters. 

Phylogenetic accuracy can be higher when data sets from different genes are 

combined into a single phylogenetic analysis (Rokas et al. 2013 - 226). Maximum 

Likelihood analysis was performed using RAxML v3.0 (Stamatakis, A. 2014 - 229) with 

1000 bootstrap replicates for concatenated genes. Bayesian analyses were performed 

with best fitting models applied to each gene with MrBayes v3.2.2 (Huelsenbeck and 

Ronquist 2001 – 192) for a concatenated approach (one partition) and *BEAST v1.8.0 

(Drummond et al. 2012 – 204) for a coalescent approach (five partitions, all parameters 

unlinked across partitions, except for 12S and ND4, for which trees were linked into 

“mitochondrial DNA”). MrBayes analysis began with random starting tree, ran for 10 
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million generations and was sampled every 100 generations. 25.000 (25%) of burn-in 

trees were discarded and the remaining were used to assess posterior probability 

values. *BEAST ran three times for 150 million generations with an uncorrelated 

lognormal relaxed clock with a rate of 0.00701 for 12S (Metallinou et al. 2012 - 225) as 

calibration point to estimate divergence times. In order to have a species tree, 

sequences were grouped into four groups, according to the four major clades assessed 

by MrBayes and RAxML. All runs were combined with LogCombiner v1.8.0 (package of 

*BEAST) with a burn-in of 10% for each run. Mean genetic distances between the four 

major clades (given the results from MrBayes and RAxML) were calculated with 

MEGA6 (Tamura et al. 2013 – 203) for ND4. Consensus trees were visualized in 

Figtree (v. 1.3.1) and posterior modifications, such as insertion of posterior values and 

colouring of branches, were performed with Inkscape (v. 0.48).  

 

Modelling 

Occurrence Data and Environmental Variables 

The input occurrence data for modelling was obtained from geographic coordinates of 

known occurrence localities (Bons and Geniez, 1996) and the reptile database of 

CIBIO, in which GPS coordinates were recorded during fieldwork expeditions. In total, 

246 points were depicted using ArcMap v 9.3 under the WGS 1984 Datum geographic 

coordinate system. Twenty current environmental variables were downloaded from 

WorldClim – Global Climate Data database (Hijmans et al., 2005) (Table 2.). All 

variables were in 30-arc seconds (approximately 1 Km) resolution tiles: tile 15 and tile 

25 in order to comprise all of Morocco and Western Sahara area. Since correlation of 

environmental variables vary according to its extension, all five variables had to be cut 

giving Saurodactylus brosseti known distribution range, using ArcMap v9.3. Covariance 

and correlation matrix were computed using ArcMap with a threshold of 75% - all 

variables with correlation higher than 0.75 were considered correlated and one of each 

two correlated variables was withdrawn. Choice of environmental variables was not 

entirely random, as variables were chosen according to the known limiting factors of 

the species (Meek, 2008). In the end, five environmental variables were chosen: 

Annual mean temperature (BIO1), Minimum temperature of coldest month (BIO6), 

Temperature annual range (BIO7), Precipitation of driest month (BIO14), and Annual 

precipitation (BIO12).  These five variables were also cut according to the distribution 

of Saurodactylus mauritanicus and Saurodactylus fasciatus. As the distribution of S. 

brosseti can overlap the distribution of the other two species of the genus, this was 
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done to ensure that localities with high probability of occurrence for S. brosseti were 

not coincident of the localities from either of the other two species. 

 

 

 

 

 

Table 2. – Environmental variables downloaded from WordClim. 

 

Code Variable 

ALT Altitude 

BIO1 Annual mean temperature 

BIO2 Mean diurnal range 

BIO3 Isothermality 

BIO4 Temperature seasonality 

BIO5 Maximum temperature of warmest month 

BIO6 Minimum temperature of coldest month 

BIO7 Temperature annual range 

BIO8 Mean temperature of wettest quarter 

BIO9 Mean temperature of driest quarter 

BIO10 Mean temperature of warmest quarter 

BIO11 Mean temperature of coldest quarter 

BIO12 Annual precipitation 

BIO13 Precipitation of wettest month 

BIO14 Precipitation of driest month 

BIO15 Precipitation seasonality 

BIO16 Precipitation of wettest quarter 

BIO17 Precipitation of driest quarter 

BIO18 Precipitation of warmest quarter 

BIO19 Precipitation of coldest quarter 

 

 

 

Species Probability of Occurrence 

To estimate the presence probability of the three species of Saurodactylus the software 

Maxent (Phillips and Dudik, 2008) was used. All duplicate presence records from the 

known occurrence data were removed before the software run to prevent data 
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overfitting. All runs were performed with 25 random test percentage, 20 bootstrap 

replicates and in order to create response curves with jacknife to measure variable 

importance. The area under the curve (AUC) was used to assess model accuracy. 

Even though it is not as reliable as it would be expected (Lobo et al. 2007 - 217) this is 

still the best method. Since Maxent presents its results in a gradient “probability of 

occurrence” ranging from 0 to 1, a threshold was defined in order to build maps of 

“suitable or unsuitable” habitat. This was done using the average of the 10 percentile 

training presence logistic threshold of the 20 replicates for each species. Values above 

the threshold were considered as “suitable habitat” and values below threshold were 

considered as “unsuitable habitat”. 
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The Kingdom of Morocco contains some of the richest diversity of herpetofauna in the 

Maghreb and Western Europe. This fact is clearly related with the considerable 

topological variation of the region, with the Rif and Atlas Mountains dividing the country 

into climatically different zones. The first step towards any ecological, conservation or 

modeling approaches concerning this rich diversity is to develop accurate distribution 

datasets. Bons & Geniez (1996) presented a detailed assessment of the known 

diversity at that time. However, various researchers have since then presented data 

indicating range extension for many species (e.g. Guzman et al., 2007, Harris et al., 

2008, Harris et al. 2010, Barnestein et al., 2010; Barata et al., 2011, Beukema et al., 

2013, Damas-Moreira et al., 2014), and it is clear that current records are still limited, 

especially in the Eastern region (Barata et al., 2011, Beukema et al., 2013). At the 

same time modeling approaches have been employed, which may help to highlight 

regions in need of further prospection (de Pous et al., 2010). In particular, in an 

extensive review of the distribution and biogeography of Moroccan amphibians 

(Beukema et al., 2013), models indicating regions of high probability of occurrence 

were presented for all species along with greatly improved distribution maps. New 

records for amphibians can therefore both be compared to these models and can be 

informative in determining whether distribution maps are stabilizing for such well-

studied groups. Additionally, they can also be used to draw a parallel scenario in 

groups known to be much harder to locate, such as fossorial species or snakes. 
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The accuracy of distribution maps relies on species being correctly identified. This is 

not always simple – many forms of Moroccan herpetofauna have recently been 

identified as species complexes (e.g. Rato et al., 2012), and several of these are 

“cryptic” implying that identification is made using molecular markers. This includes 

forms of the Podarcis vaucheri complex (Pinho et al., 2007), or lineages within various 

geckos including Quedenfeldtia (Barata et al., 2012), Ptyodactylus (Perera & Harris, 

2010) and Stenodactylus (Metallinou et al., 2012). Other species can be difficult to 

identify when only juveniles or tadpoles are collected. Additionally many groups such 

as snakes are often widely sampled as road-killed animals, and in some cases 

identifying remains to the species level is again difficult. In these cases the use of a 

DNA “barcoding” approach (Hebert & Gregory, 2005) can be extremely useful. 

In the present study the authors compile records of two expeditions to Morocco over a 

combined 5 week period in Spring 2013 and 2014. Sampling covers a wide range of 

Southern and Eastern Morocco, and was chosen to be complementary to a recent 

survey of Northern and Central regions (Damas-Moreira et al., 2014). In total 138 

localities were sampled and 53 species recorded. GPS coordinates and a detailed list 

of species per locality are given in Table 1. Photos of most animals are available on 

request from the authors. Distribution data was compared to published records, and 

interesting new localities are discussed in the text that follows. In cases where a 

species diagnosis based on morphological characters could not be made with certainty, 

a DNA barcoding approach was used. DNA was extracted using standard high-salt 

methods (Sambrook et al., 1989). PCR was used to amplify a region of the 12S rRNA, 

using published protocols (Harris et al., 1998). This gene was chosen rather than the 

classic barcoding COI region since comparative published data for 12S was already 

available for most of the presumed species. For example 12S rRNA sequences are 

available for most toad species from Morocco (e.g. Harris & Perera, 2009; de Pous et 

al., 2013), so this gene could be used to confirm the species diagnosis of tadpoles of 

this group. All species for which this approach was used are highlighted in Table 1, and 

are discussed in the text when relevant. New sequences are published in GenBank 

(accession numbers xxxxx to xxxxx). 

Overall our findings indicate that even for better-known groups the current distribution 

maps are imprecise. Several new distribution points and range extensions were found 

in the Eastern region, where models predicated that more species would be expected 

(Beukema et al., 2013), or coincided with high probability areas proposed for specific 

species. This further demonstrates the value of these models, which can be used to 

guide future prospection in Morocco and other regions. 
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Figure 1 – Sampling points of both expeditions to Morocco.  

 

 

 

 

Bufonidae – Bufo spinosus (Localities 13, 60, 67). Despite the considerable recent 

advances in distribution records for amphibians in Morocco (Beukema et al., 2013), 

one of our new records (locality 13, Fig. 2A) represents a considerable range extension 

in North Eastern Morocco. Also for Barbarophryne brongersmai (Localities 90 and 

107), locality 90 represents a new locality in a region where distribution models 

predicted the occurrence of the species with high probability (Beukema et al., 2013). 

These samples were tadpoles, and their identity was confirmed by DNA sequencing.  

Testudinidae - Testudo graeca (Localities 35, 87, 88, 101). Locality 35 is a new record 

in the high plateau region of northeastern Morocco, where only a few isolated records 

of this species are known. 

Agamidae - Trapelus boehmei (Localities 21, 27, 29, 34, 37, 40, 49, 50, 51, 52, 79, 

113, 127, 133).  Many new records were identified in the northeastern high plateau 

region (Localities 21, 27, 29, 34, 37 and 40). This is a region where models suggest 

that more surveys are needed to complete distribution maps (Beukema et al., 2013), 
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and this large number of new records for a fairly common and conspicuous species 

confirms it. Probably T. boehmei actually occurs throughout this whole region. One 

other locality, at a point North of Jebel Sirwah (Locality 79), is extremely interesting as 

it is both a new altitude record for the species (2273 a.s.l.; 1500 previously known 

maximum altitude following Bons & Geniez, 1996), and also extends the species 

distribution considerably into this region between the High and Anti Atlas Mountains. 

This sample was collected from a roadkill (Fig. 2B), and species identity was confirmed 

using DNA sequencing. 

 

 

Figure 2 – Maps of species occurrence for the most significant species range expansions. Blue dots represent 

published data records and white dots represent new distribution points detected in this study. All 

photographs were taken by Daniele Salvi. Scutophis moilensis and Trapelus boehmei pictures include a part of 

the 12S chromatograms used to confirm genetically the species. 
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Phyllodactylidae - Tarentola deserti (Localities 15, 17, 24, 26, 32, 38). This species has 

a distribution restricted to the south of the Oriental and Meknes-Tafilalet provinces. 

Combined with other recent new records in the region (e.g. Damas-Moreira et al., 

2014), these additional localities show a fairly continuous distribution near the Algerian 

border for T. deserti.  

Gekkonidae - Tropiocolotes algericus (Localities 16, 19, 22, 38, 47, 108, 110, 132, 134, 

135). Again, several new records for this underexplored Northeastern region were 

found (Fig. 2C), in particular locality 38 represents a new northern record for the 

species in Morocco, and is quite isolated from currently known localities. 

Lacertidae - Acanthodactylus erythrurus (Localities 6, 45 and 89). Locality 45 is a 

considerable range extension for this species towards the eastern side of the Atlas 

Mountains (Fig. 2D). Interestingly other more “Mediterranean” species are also known 

from this region, including P. vaucheri and Scelarcis perspicillata perspicillata (Bons & 

Geniez, 1996). The new localities are quite isolated from the other populations of the 

species and may thus be interesting from a phylogeographic viewpoint. Further 

prospection in the region for other typical Mediterranean species is clearly warranted. 

Atlantolacerta andreanskyi (Localities 55, 56, 68, 80) may actually represent a species 

complex (Barata et al., 2012), with highly genetically distinct lineages occurring in 

populations separated by less than 50 Km. Therefore these localities, although not far 

from other known localities in the Middle and High Atlas, are extremely important as 

further assessment may help to delimit taxonomic units within the complex. Scelarcis 

perspicillata (localities 44, 60, 67, 78). Locality 44 confirms the isolated population in 

this Eastern region. Locality 60 had the S. perspicillata perspicillata morphotype, but 

was in an area where other morphotypes are distributed. Mesalina olivieri (Localities 13 

and 45). Locality 45 is also a considerable range extension for this species, further 

highlighting the lack of records for this area. 

Scincidae - Chalcides montanus – (Localities 57, 76). With the recognition of C. lanzai 

as a full species (Carranza et al., 2008), there are very few records of C. montanus in 

the Middle and High Atlas. Locality 57 is a new locality along with only other 5 or 6 

known from the Middle Atlas. Chalcides polylepis (locality 106, Fig. 2E). Previously the 

known distribution of this species had a considerable gap of over 100 km between the 

northern populations and those South of the Anti-Atlas. Locality 106, a sandy coastal 

area, lies almost in the middle of this gap and may therefore indicate that the 

distribution is actually continuous. 

Colubridae/Psammophiidae - Coronella girondica and Malpolon insignitus (locality 45). 

Another small range extension for both these species, and again an example of 

“Mediterranean” species found in the area along with A. erythrurus. Psammophis 
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schokari (localities 26, 31, 37, 39, 44, 97, 114, 120). New records from the 

Northeastern region (localities 31, 37, 39 44) confirm that this species is widespread in 

the region. Spalerosophis dolichospilus (Locality 22). (Damas-Moreira et al., 2014) 

reported new localities in the Northeastern region, where it had not previously been 

known (Bons & Geniez, 1996). The additional locality here (22) further increases the 

range to close to the Algerian border in this region. Scutophis moilensis (localities 20, 

30 and 138). Previously considered as Malpolon moilensis, Bons & Geniez (1996) 

suggested this species was “represented in all regions with a Saharan climate except 

for a zone between Boudenib and Figuig”. Locality 20 is exactly in this region (Fig. 2F), 

while locality 30 also extends the range in the region and is the most northern record 

for the species in Morocco. Roadkilled samples were confirmed through DNA 

sequencing. 

 

Table 3 – Details of the sampled localities, including latitude, longitude and species found. 

Specimens that were identified using DNA barcoding approach are indicated with *. 

Point Latitude Longitude Species sampled 

1 35.771 -5.787 Discoglossus scovazzi 

2 34.853 -6.224 Tarentola mauritanica 

3 34.046 -6.548 Psammodromus algirus 

4 33.544 -5.318 Psammodromus algirus, Tarentola mauritanica 

5 33.434 -5.180 Bufotes boulengeri, Tarentola mauritanica 

6 33.112 -5.028 Acanthodactylus erythrurus, Podarcis vaucheri, Timon tangitanus 

7 33.142 -5.051 Podarcis vaucheri 

8 35.111 -2.300 Acanthodactylus boskianus 

9 34.726 -2.078 Chalcides ocellatus 

10 34.732 -2.075 Agama impalearis, Tarentola mauritanica 

11 34.520 -2.058 Agama impalearis, Chalcides ocellatus 

12 34.286 -2.057 Acanthodactylus boskianus, Agama impalearis, Psammodromus algirus, Trogonophis wiegmanni 

13 34.080 -2.047 Bufo spinosus, Mesalina olivieri 

14 33.654 -1.963 Stenodactylus mauritanicus 

15 32.552 -1.358 Agama impalearis, Ptyodactylus oudrii, Tarentola deserti, Uromastyx nigriventris 

16 32.135 -1.223 Acanthodactylus scutellatus, Tropiocolotes algericus 

17 32.107 -1.226 Tarentola deserti* 

18 32.159 -1.357 Uromastyx nigriventris 

19 32.165 -1.438 Cerastes cerastes, Tropiocolotes algericus 

20 32.158 -1.572 Scutophis moilensis* 

21 32.248 -1.714 Trapelus boehmei 

22 32.241 -1.717 Agama impalearis, Spalerosophis dolichospilus, Stenodactylus mauritanicus, Tropiocolotes 
algericus 

23 32.436 -1.679 Uromastyx nigriventris 

24 32.479 -1.748 Tarentola deserti 

25 32.510 -1.913 Uromastyx nigriventris 
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26 32.566 -1.924 Agama impalearis, Psammophis schokari, Tarentola deserti 

27 32.597 -1.943 Trapelus boehmei 

28 32.607 -1.955 Acanthodactylus boskianus 

29 32.685 -2.031 Trapelus boehmei 

30 32.759 -2.071 Scutophis moilensis* 

31 32.760 -2.070 Psammophis schokari 

32 32.763 -2.070 Bufotes boulengeri, Chalcides ocellatus, Tarentola deserti* 

33 32.838 -2.066 Acanthodactylus boskianus, Chalcides ocellatus, Stenodactylus mauritanicus 

34 33.110 -2.328 Acanthodactylus boskianus, Trapelus boehmei 

35 33.038 -2.392 Acanthodactylus boskianus, Testudo graeca 

36 32.795 -2.594 Acanthodactylus boskianus, Mesalina guttulata* 

37 32.665 -2.761 Psammophis schokari, Trapelus boehmei 

38 32.615 -2.846 Tarentola deserti, Tropiocolotes algericus, Uromastyx nigriventris 

39 32.653 -3.008 Psammophis schokari 

40 32.656 -3.211 Ptyodactylus oudrii, Trapelus boehmei 

41 32.645 -3.227 Ptyodactylus oudrii, Uromastyx nigriventris 

42 32.602 -3.551 Amietophrynus mauritanicus 

43 32.602 -3.553 Pelophylax saharicus, Ptyodactylus oudrii 

44 32.636 -3.641 Agama impalearis, Psammophis schokari, Ptyodactylus oudrii, Scelarcis perspicillata, Timon 
tangitanus 

45 32.569 -3.719 Acanthodactylus erythrurus, Coronella girondica, Malpolon insignitus, Mesalina olivieri 

46 32.133 -3.801 Amietophrynus mauritanicus, Mauremys leprosa 

47 32.005 -3.765 Acanthodactylus boskianus, Mesalina guttulata, Stenodactylus mauritanicus, Tropiocolotes 
algericus 

48 31.997 -3.801 Psammophis schokari* 

49 31.982 -3.900 Trapelus boehmei 

50 31.869 -4.251 Trapelus boehmei 

51 31.774 -4.781 Trapelus boehmei 

52 31.863 -4.546 Trapelus boehmei 

53 32.267 -4.777 Acanthodactylus boskianus, Agama impalearis 

54 32.210 -5.092 Timon tangitanus 

55 32.036 -5.466 Atlantolacerta andreanskyi, Discoglossus scovazzi, Podarcis vaucheri 

56 31.912 -5.663 Atlantolacerta andreanskyi 

57 31.621 -5.560 Chalcides montanus, Mesalina guttulata, Ptyodactylus oudrii, Quedenfeldtia moerens, 
Saurodactylus brosseti, Tarentola mauritanica 

58 31.595 -5.593 Tarentola mauritanica 

59 31.365 -6.172 Agama impalearis, Amietophrynus mauritanicus, Pelophylax saharicus 

60 31.421 -6.304 Bufo spinosus, Pelophylax saharicus, Scelarcis perspicillata 

61 31.075 -6.505 Acanthodactylus boskianus, Uromastyx nigriventris 

62 30.978 -6.779 Uromastyx nigriventris 

63 30.969 -7.071 Uromastyx nigriventris 

64 30.944 -7.210 Acanthodactylus pardalis, Amietophrynus mauritanicus, Mauremys leprosa, Mesalina guttulata, 
Pelophylax saharicus 

65 30.972 -7.111 Uromastyx nigriventris 

66 30.779 -7.371 Acanthodactylus boskianus, Agama impalearis*, Lytorhynchus diadema, Ptyodactylus oudrii 
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67 30.744 -7.610 Acanthodactylus boskianus, Amietophrynus mauritanicus, Bufo spinosus, Hyla meridionalis, 
Natrix maura, Podarcis vaucheri, Psammodromus algirus, Quedenfeldtia trachyblepharus, 
Scelarcis perspicillata, Timon tangitanus 

68 30.885 -7.748 Atlantolacerta andreanskyi, Quedenfeldtia trachyblepharus* 

69 30.802 -7.767 Agama impalearis, Pelophylax saharicus, Psammodromus algirus, Timon tangitanus, 

70 30.877 -7.802 Acanthodactylus boskianus 

71 30.891 -7.802 Acanthodactylus boskianus, Agama impalearis, Ptyodactylus oudrii, Quedenfeldtia moerens, 
Timon tangitanus 

72 30.960 -7.728 Timon tangitanus 

73 30.956 -7.817 Hemorrhois hippocrepis 

74 31.017 -7.837 Chamaeleo chamaeleon 

75 31.200 -7.870 Quedenfeldtia moerens 

76 31.208 -7.851 Chalcides montanus, Natrix maura, Quedenfeldtia moerens 

77 31.190 -7.854 Podarcis vaucheri 

78 31.035 -7.709 Acanthodactylus boskianus, Podarcis vaucheri, Quedenfeldtia trachyblepharus, Scelarcis 
perspicillata, Timon tangitanus 

79 30.886 -7.746 Trapelus boehmei* 

80 30.886 -7.746 Atlantolacerta andreanskyi 

81 30.944 -7.741 Quedenfeldtia trachyblepharus, Timon tangitanus 

82 31.919 -8.025 Tarentola mauritanica 

83 32.441 -8.049 Amietophrynus mauritanicus, Natrix maura 

84 31.345 -9.594 Tarentola mauritanica 

85 31.520 -9.634 Eumeces algeriensis, Tarentola mauritanica 

86 31.502 -9.697 Chalcides mionecton 

87 31.481 -9.760 Saurodactylus brosseti, Testudo graeca 

88 31.466 -9.759 Chalcides mionecton, Testudo graeca 

89 31.442 -9.718 Acanthodactylus erythrurus, Chalcides mionecton, Trogonophis wiegmanni 

90 31.122 -9.430 Barbarophryne  brongersmai*, Saurodactylus brosseti 

91 30.998 -9.583 Saurodactylus brosseti 

92 30.746 -9.824 Agama impalearis 

93 30.633 -9.768 Tarentola mauritanica 

94 30.544 -9.706 Saurodactylus brosseti 

95 30.646 -9.671 Agama impalearis, Tarentola mauritanica 

96 30.625 -9.565 Timon tangitanus 

97 30.299 -9.521 Psammophis schokari, Saurodactylus brosseti 

98 30.057 -9.687 Acanthodactylus aureus 

99 30.031 -9.645 Amietophrynus mauritanicus*, Mauremys leprosa 

100 30.038 -9.639 Eumeces algeriensis, Saurodactylus brosseti 

101 29.865 -9.499 Testudo graeca 

102 29.865 -9.500 Saurodactylus brosseti 

103 29.651 -9.990 Saurodactylus brosseti 

104 29.514 -10.058 Agama impalearis 

105 29.454 -10.104 Tarentola mauritanica 

106 29.387 -10.172 Chalcides mionecton, Chalcides polylepis, Saurodactylus brosseti 

107 29.137 -10.098 Barbarophryne  brongersmai*, Natrix maura, Pelophylax saharicus 

108 29.064 -9.933 Saurodactylus brosseti, Tropiocolotes algericus 

109 28.968 -9.952 Acanthodactylus boskianus 
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110 28.863 -9.755 Tarentola mauritanica, Tropiocolotes algericus 

111 28.839 -9.712 Uromastyx nigriventris 

112 28.838 -9.721 Uromastyx nigriventris 

113 28.809 -9.464 Trapelus boehmei 

114 28.688 -9.318 Psammophis schokari, Uromastyx nigriventris 

115 28.718 -9.466 Uromastyx nigriventris 

116 28.677 -9.472 Uromastyx nigriventris 

117 28.719 -10.302 Saurodactylus brosseti, Tarentola mauritanica 

118 28.829 -10.412 Tarentola mauritanica 

119 28.628 -10.791 Saurodactylus brosseti 

120 28.455 -11.038 Psammophis schokari* 

121 28.416 -11.398 Saurodactylus brosseti 

122 28.221 -11.750 Saurodactylus brosseti 

123 28.607 -10.519 Saurodactylus brosseti 

124 28.498 -10.478 Ptyodactylus oudrii, Saurodactylus brosseti, Tarentola mauritanica 

125 28.499 -10.428 Saurodactylus brosseti 

126 27.835 -12.884 Hemorrhois algirus 

127 27.820 -11.522 Trapelus boehmei 

128 27.004 -13.428 Tarentola chazaliae 

129 26.652 -13.652 Tarentola chazaliae 

130 26.400 -14.075 Acanthodactylus aureus*, Tarentola chazaliae 

131 26.155 -14.418 Acanthodactylus busacki, Saurodactylus brosseti 

132 
26.075 -14.457 Acanthodactylus busacki, Saurodactylus brosseti, Tropiocolotes algericus 

133 26.541 -12.506 Trapelus boehmei 

134 26.529 -12.307 Sphenops sphenopsiformis, Tropiocolotes algericus 

135 27.051 -11.322 Stenodactylus mauritanicus, Tropiocolotes algericus 

136 27.199 -10.694 Acanthodactylus boskianus 

137 26.955 -11.664 Tarentola annularis 

138 27.067 -13.118 Scutophis moilensis* 
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Abstract  

Phylogeographic assessments in regions such as North Africa are sparse when compared to 

Europe. However, various geographical barriers of Morocco, especially the Atlas Mountains 

have been associated with genetic subdivision in several species. Saurodactylus brosseti is a 

widely distributed species endemic to Morocco and a previous study demonstrated divergence 

within forms of up to 11.4% for a region of the mitochondrial ND4 gene. This was suggested to 

be indicative of a possible species complex, although sampling was limited and only mtDNA 

was employed, which may have unusually high rates of variation in geckos. In order to address 

these shortcomings, phylogeographic patterns within the species were assessed using two 

mitochondrial (12S and ND4) and three nuclear markers (ACM4, MC1R and BZW1), and with a 

greater coverage including apparently isolated southern and eastern populations. Results show 

four main lineages with high genetic diversity and which split at approximately the same time as 

the orogenesis of the Atlas Mountains. Species distribution modeling was also employed, 

identifying a large patch of suitable habitat where future sampling could be directed. The 

species delimitation approach employed was not completely concordant with the hypothesis 

that each of the four lineages could correspond to a distinct species. However this may have 

been due to limited sampling within two lineages. Further assessment, possibly including 

morphological data, would be valuable prior to any revision of the taxonomy, but the highly 

distinct lineage in the East clearly is of conservation concern. 

 

 

Keywords: Phylogeography, Saurodactylus brosseti, mitochondrial DNA, nuclear DNA, Species 

probability of occurrence, Vicariance, Atlas Mountains 
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Introduction 

Assessment of genetic diversity within various species in Europe has led to a strong consensus 

regarding typical phylogeographic patterns and in particular the role of “southern refugia” during 

Pleistocene glaciations (Hewitt, 1999). However, similar assessments within North Africa are 

much scarcer (Barrientos et al., 2014), and have often focused on relationships between North 

Africa and Europe (reviewed in Husemann et al., 2014). Yet various climatic and geological 

forces are likely to play a role in structuring diversity in North Africa, and particularly in the 

Northeastern region that is present day Morocco. For example, how successive expansions and 

contractions of the Sahara may have affected species is still poorly understood (reviewed in 

Brito et al., 2013) Further back in time, the genesis of the mountain chains in the region, the Rif 

and the Atlas Mountains, are expected to play a role as important geological barriers. In 

particular the orogeny of the Atlas Mountains is estimated to have occurred around 9 million 

years ago (Mya) in the late Miocene (Hsu, 1978), and separates the region climatically with 

more Mediterranean conditions to the West and more arid environments to the East. Various 

studies have indicated a vicariant role for these mountains, causing genetic subdivision in 

Agama impalearis (Brown et al., 2002; Gonçalves et al., 2012), the Acanthodactylus erythrurus 

group (Fonseca et al., 2009), the freshwater turtle Mauremys leprosa (Fritz et al., 2005; Fritz et 

al., 2006), scorpions of the genus Buthus (Habel et al., 2012; Husemann et al., 2012), the 

scorpion Androctonus mauritanicus (Coelho et al., 2014), and the bat complex Myotis natteri 

(Salicini et al., 2013). However, although in these cases the Atlas mountains played a role in 

separating populations, at a smaller scale quite different patterns were observed, with some 

groups such as scorpions showing many microrefugia (Husemann et al., 2012), and others such 

as the agamas showing much simpler subdivisions into just two major lineages (Brown et al., 

2002). There is therefore a clear need to assess diversity within additional species from the 

region to try to develop an overall phylogeographic scenario for the region. 

Saurodactylus is a genus of geckos endemic to the Maghreb region (Bons and Geniez, 1996). It 

is an extremely old taxon that is estimated to have separated from its sister group almost 100 

million years ago (Gamble et al., 2011). It currently comprises three species: Saurodactylus 

mauritanicus Duméril and Bibron 1836, Saurodactylus fasciatus Werner 1931 and 

Saurodactylus brosseti Bons and Pasteur 1957. Saurodactylus brosseti is endemic to Morocco, 

known to occur from Beni Mellal, central Morocco, to the depths of Western Sahara in the south 

(Figure 1). An assessment of phylogenetic relationships between the three species indicated 

that each was monophyletic, but that S. brosseti harbored a very high level of mitochondrial 

diversity, up to 11.4% for the ND4 gene region analyzed (Rato and Harris, 2008). Such a level 

of diversity is much higher than between many recently described lizard species (e.g. 

Ahmadzadeh et al., 2013), and was considered to be indicative of a possible species complex. 

However, sampling in this earlier study was limited, and in particular samples from the known 

localities of S. brosseti in the very arid regions in Western Sahara and to the East of the Atlas 

Mountains were not included. 

Just as molecular data, and particularly mitochondrial DNA sequencing, revolutionized the 

assessment of shifting distributions with Pleistocene climatic fluctuations, so the current 

tendency to combine molecular data with ecological niche modelling is transforming our 

predictions of current and future distributions. With improving data for various climatic variables 

it is possible to predict species distributions, both under current conditions and for expected 

future ones. This is particularly valuable in regions like North Africa and for groups such as 

reptiles were distribution data is still being refined (e.g. Damas-Moreira et al., 2014). 

Furthermore, this tool has been demonstrated to be effective in the Wall lizards Podarcis, with 

targeted fieldwork recording specimens in the expected but previously unreported localities 

(Kaliontzopoulou et al., 2008). 
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In this study a phylogeographic assessment of variation within S. brosseti was augmented with 

an ecological niche modelling approach and a relaxed molecular clock to determine both 

patterns and timing of subdivisions within the species. This was then used to assess the 

influence of the different geological events on the evolutionary history of S. brosseti. In 

particular the aim was to a) determine if the Atlas mountains had caused separation between 

lineages, b) to assess colonization pathways across the different occupied habitats, c) to 

determine if the isolated populations were genetically distinct, or were the result of recent 

fragmentation, possibly associated with climatic changes, and d) to identify other possible 

regions with high probability of the species occurring. Finally, a species delimitation approach 

was used to infer if taxonomic changes might be needed, that is if S. brosseti is actually a 

species complex. 

 

 

Material and methods  

Phylogenetic Analysis 

 Sampling 

Two fieldtrips (May 2013 and June 2014) were carried out, from which 36 samples of 

Saurodactylus brosseti were collected. Samples were collected by hand and data recorded with 

GPS and annotations of relevant information. In addition, a small piece of the animal tail tip was 

collected and stored in 96% ethanol and photos were taken before the release of the animal. 

Available data from previous fieldwork was also used from Saurodactylus brosseti but also S. 

mauritanicus and S. fasciatus to be used as outgroups. 

 

 DNA extraction, amplification and sequencing 

DNA was extracted from tail tips tissue using High Salt method (Sambrook et al., 1989). DNA 

amplification was performed through PCR for mitochondrial genes (12S and ND4), nuclear 

genes (ACM4 and MC1R) and one intron (BZW1). PCR conditions and primers were according 

to the references (Table 1). PCR products were checked with electrophoresis and positive 

amplification products were sent to Beckman Coulter Genomics (UK) for purification and Sanger 

sequencing. 

Table 1 – Primers names and amplification conditions. 

Gene 12S ND4 ACM4 BZW1 MC1R 

Step T 
(ºC) 

Time X T 
(ºC) 

Time X T (ºC) Time X T 
(ºC) 

Time X T 
(ºC) 

Time X 

Initial 
Denaturation 

95º 1' 1 94º 3' 1 94º 5' 1 94º 3' 1 92º 2' 1 

Denaturation 95º 
48º 
72º 

15'' 
15'' 
10'' 

35 94º 
94º 
48º 

3' 
30'' 
30'' 

35 94º 
94º 
55º 

5' 
30'' 
45'' 

1 
32 

94º 
94º 
62º 

3' 
30'' 
45'' 

37 92º 
92º 
55º 

2' 
1' 

45'' 

35 
Annealing 
Extension 

Final Extension 72º 10' 1 72º 40'' 1 72º 1' 1 72º 1'  72º 1' 1 

 Primer Forward 12S L ND4 Tg-F Tar1 MC1R F 

Primer Reverse 12S H LEU Tg-R Tar2 MC1R R 

Citation Kocher et al. 1989  Arévalo et al. 1994  Gamble et al. 2008  Fuijta et al. 2010 Pinho et al. 2010  
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 Phylogenetic analysis 

Confirmation of species was done blasting sequences to the NCBI database on GenBank. 

Chromatographs were checked and sequences aligned with Geneious v5.6 for posterior 

phylogenetic analysis. 12S and ND4 sequences of Saurodactylus brosseti from a previously 

published study (Rato and Harris, 2008) available on GenBank were also included in the 

alignment. jModelTest v2.1.4 (Darriba et al., 2012 – 201) was used to infer which model best fit 

each data under the Akaike Information Criterion (Cavanaugh, 2007 – 205) for separate and 

concatenated genes in order to decrease the error (Brandley et al., 2005 - 227). Nuclear genes 

were phased using Seqphase (Flot, 2010 - 231) and PHASE (Stephens et al., 2005 – 230) with 

a threshold of 0.6 and default for all the other parameters. Phylogenetic accuracy can be higher 

when data sets from different genes are combined into a single phylogenetic analysis (Rokas et 

al., 2013 - 226). Maximum Likelihood analysis was performed using RAxML v3.0 (Stamatakis, 

2014 - 229) with 1000 replicates for concatenated genes. Bayesian analyses were performed 

with best fitting models applied to each gene with MrBayes v3.2.2 (Huelsenbeck and Ronquist, 

2001 – 192) for a concatenated approach (one partition) and *BEAST v1.8.0 (Drummond et al., 

2012 – 204) for a coalescent approach (five partitions, all parameters unlinked across partitions, 

except for 12S and ND4, for which trees were linked into “mitochondrial DNA”). MrBayes 

analysis began with random starting tree, ran for 10 million generations and was sampled every 

100 generations. 25.000 (25%) of burn-in trees were discarded and the remaining were used to 

assess posterior probability values. *BEAST ran three times for 150 million generations with an 

uncorrelated lognormal relaxed clock with a rate of 0.00701 for 12S (Metallinou et al., 2012 - 

225) as calibration point to estimate divergence times. In order to have a species tree, 

sequences were grouped into four groups, according to the four major clades assessed by 

MrBayes and RAxML. All runs were combined with LogCombiner v1.8.0 (package of *BEAST) 

with a burn-in of 10% for each run. Mean genetic distances between the four major clades 

(given the results from MrBayes and RAxML) were calculated with MEGA6 (Tamura et al., 2013 

– 203) for ND4. 

 

Species probability of occurrence 

Input occurrence data was obtained from geographic coordinates of known occurrence localities 

(Bons and Geniez, 1996) and CIBIO’s reptile database. In total, 246 points were depicted using 

ArcMap v9.3 under the WGS 1984 Datum geographic coordinate system. Five environmental 

variables (Table 2) were chosen according to the species known limiting factors and 

downloaded from WorldClim – Global Climate Data database (Hijmans et al., 2005 – 147) in 30-

arc seconds resolution tiles. Since correlation of environmental variables varies according to its 

extension, all five variables were cut giving Saurodactylus brosseti known distribution range, 

using ArcMap v9.3. Distribution of S. brosseti can overlap distribution of the other two species of 

the genus (Bons and Geniez, 1996), and so variables were also cut according to their 

distribution ranges, ensuring that localities with high probability of occurrence for one species 

are not coincident of the localities from neither the two other species. To estimate the presence 

probability of the three species of Saurodactylus the software Maxent (Phillips and Dudik, 2008 

– 206) was used. All duplicate presence records from the known occurrence data were removed 

before the software run to prevent data overfitting. All runs were performed with 25 random test 

percentage, 20 bootstrap replicates and in order to create response curves with jacknife to 

measure variable importance. Area under the curve (AUC) was used to assess model accuracy. 

Even though it is not as reliable as it would be expected (Lobo et al., 2007 - 217) it still the best 

method. Since Maxent presents its results in a gradient “probability of occurrence” ranging from 

0 to 1, a threshold was defined in order to build maps of “suitable or unsuitable” habitat. This 
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was done using the average of the 10 percentile training presence logistic threshold of the 20 

replicates for each species. Values above the threshold were considered as “suitable habitat” 

and values below threshold were considered as “unsuitable habitat”.  

 

Table 2 – Environmental variables used in the assessment of species distribution probability. 

Code Variable 

BIO1 Annual mean temperature 
BIO6 Minimum temperature of coldest month 
BIO7 Temperature annual range 
BIO12 Annual precipitation 
BIO14 Precipitation of driest month 

 

 

Results 

From the Bayesian and Maximum Likelihood, four major groups can be distinguished: North, 

South, Northeast and Anti-Atlas. Northeast and South form a polytomy (Fig. 3), meaning that 

evolutionary relationships between themselves are not fully resolved. Some of the branches do 

not have high support. For example, South lineage has little support (posterior value = 0.65) and 

also in the split into Anti-Atlas and North lineages (posterior value = 0.85). On the other hand, 

Northeast, Anti-Atlas and North lineages are highly supported (posterior values = 0.99, 1 and 

0.98 respectively; bootstrap values = 100 Northeast and 92 for Anti-Atlas lineages).  

After different groups within the main lineages are considered and spatially plot into the map 

(Fig. 3, different colors within the main clades), a more or less clear geographical distribution 

can be seen. South lineage has a geographical distribution partitioned from center of Morocco 

to the south most geographic known location (color gradient within South lineage); North 

lineage does not present such perfect division but it is also clear that some geographical 

structure is present (color gradient within North lineage). Either looking to the phylogeny or to 

the map into more detail, the region of the Draa Valey between North and South lineages 

presents lot of variation (Fig. 3); even the Anti-Atlas lineage is covered by that zone. 

Considering the species tree (Fig. 4), the four lineages are more clearly split, even though most 

branches do not present high support. Even though, it is evident that divergence occurred at the 

same time to the North and South of Morocco. Part of the population expanded to the South 

and has an obvious separation within the lineage that goes further into the south (Fig. 3); the 

specimens in southernmost locations of Morocco and the ones in Western Sahara are closely 

related, despite the gap between them. Divergence of the species into its lineages started at 

roughly the same time, which was in the Miocene around 10 Mya. Atlas Mountains are thought 

to have started their orogeny around 9 Mya (Hsu 1978, – 22), which then would have had 

influence on the split of the species. North and Anti-Atlas lineages are estimated to have split 

around 6 Mya and these two from the Northeast lineage at around 8 Mya. Genetic distances for 

ND4 show 6.9% of variation between North and Anti-Atlas lineages, 8% of variation between 

Anti-Atlas and Northeast lineages, and 8.1% divergence between North and Northeast lineages. 

Higher genetic variation is seen between South and Northeast (11%), North and South (11.3%) 

and Anti-Atlas and South lineages (11.5%). 
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A 

B C 

Fig. 1 – Modeling results of species probability of occurrence and habitat suitability for (A) Saurodactylus brosseti, (B) Saurodactylus 
mauritanicus, and (C) Saurodactylus fasciatus.  
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Modeling has predicted new patches of probability of occurrence for Saurodactylus brosseti 

(Fig. 1). The largest part is in the north of the country, but since it corresponds to the distribution 

range of Saurodactylus mauritanicus it is not very likely that S. brosseti will occur in that area. In 

the model prediction for S. mauritanicus there is also areas of suitable habitat for this species in 

which S. brosseti occur. Other interesting patch of high occurrence probability for S. brosseti is 

the south most border area of oriental region, which is not of high probability of occurrence for 

S. mauritanicus, especially by looking at suitable/unsuitable map (Fig. 1). Western Saharan 

areas present very low probability of occurrence and do not appear as suitable for S. brosseti. 

Regarding S. fasciatus results, there are no major changes to the actual known distribution 

range (Fig. 1). AUC showed good fit of the model for the three analyses: 0.955 for S. brosseti, 

0.935 for S. mauritanicus and 0.925 for S. fasciatus 

  

Fig. 2 – Response curves of Saurodactylus brosseti 
to the five different environmental variables. The 
unit used for temperature data are in ºC * 10 and 
unit used for precipitation data are in mm. 
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Fig. 3 – Left: tree derived from Bayesian analysis with MrBayes (5 concatenated genes). Posterior values higher 
than 0.95 (95%) and bootstrap values higher than 75% (RAxML analysis) are given in the branches. Right: 
corresponding distribution map with color correspondence to each of the major groups within lineages.  

 

 

Fig. 4 – Tree derived from Bayesian analysis (species delimitation approach) with *BEAST. Posterior values higher 
than 0.95 (95%) are given in the branches. Map shows the distribution with color correspondence to colored 
branches.  

 

  



FCUP 
Phylogeographic patterns of the Moroccan lizard-fingered gecko Saurodactylus brosseti 

58 

 

All environmental features decrease, at some point, the probability of occurrence of S. brosseti 

(Fig. 2), except for Annual mean temperature that presents a high peak of probability of 

occurrence between 18ºC and 22ºC but with a weaker variation. Precipitation of the driest 

month causes an abrupt decrease in the species probability of occurrence between 0 and 5 

mm. Minimum temperature of the coldest months also presents a decrease, but not so rapid. 

Higher values of temperature annual range cause a decrease in the species probability of 

occurrence until 35ºC. Lastly, annual precipitation causes a peak in the probability of 

occurrence at around 200 mm.  

 

Discussion 

From both the Bayesian and Maximum Likelihood analysis it is clear that there is lot of 

geographically structured variation within Saurodactylus brosseti (Fig. 3). Four lineages were 

identified, with two widespread ones (North and South) and two from small areas (Northeast 

and Anti-Atlas). The polytomy between these can be a “hard” polytomy which means that the 

ancestor split actually forming the different lineages at the same time; or it might be a “soft” 

polytomy, that is a consequence of lack of phylogenetic information. Only two mitochondrial and 

three nuclear genes were sequenced and more genes should be added in order to resolve the 

phylogenetic relationships seen in the phylogeny, especially between Northeast and South 

clades.  

The low support for the South lineage (posterior value = 0.65) is most likely due to a high level 

of divergence between specimens. Northeast lineage high support (posterior value = 0.99; 

bootstrap value = 100) is due to the fact that it is comprised only by two sequences that are so 

similar. There is a more or less clear geographical distribution pattern within South and North 

lineages (Fig. 3). It is even possible that South lineage could be considered as two 

geographically separated lineages. There is one specimen (DB800) in one of the clades that 

occupies the same geographic space as specimens belonging to the other main clade within the 

South lineage. This strengthens the conclusion that South clade is so divergent. The specimens 

from the isolated population in Western Sahara were not genetically very different from other 

specimens in the South lineage. The geographical gap between southernmost specimens can 

be because species does not occur there or simple because it was never seen in any of the 

fieldtrips. In fact, by looking at Fig. 1 it is possible to see that modeling did not predict that area 

as suitable and it has a very low species probability of occurrence. This lack of differentiation 

and currently suitable habitat means that the separation between the populations is recent, and 

related to habitat changes.  Most likely, increasing aridity during the Pleistocene has had a 

strong recent impact on the distribution of the species, with many areas to the south and east of 

the current range becoming unsuitable so that only a few isolated populations remain. 

It is clear that there is particularly high variation in the region of the Draa Valley (Fig. 3) both in 

terms of lineages (3 of the 4 occur here), and for variation within the South lineage. This is 

therefore the ideal region for further studies of potential gene flow between major lineages, as a 

transect across the Anti-Atlas could be performed, in which all three lineages would be included. 

Regardless, the 95% confidence interval of the divergence dating estimations is somewhat 

wide, enough to be affirmative about the influence of the Atlas Mountains on the split of 

Saurodactylus brosseti lineages. Furthermore, climatic oscillations in the Miocene, Pliocene and 

Pleistocene coupled with the prolongation of the rising of the Atlas Mountains continued to have 

an effect on the species distribution. The limited variation in much of the range of the Northern 

lineage could be associated with a recent range expansion, while the southern lineage has 

simultaneous reduced. The model predicts patches of habitats that are not suitable for the 

species (Fig. 1), but where it is known to occur or has been recorded. In such cases, 
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conservation priorities should be thought, especially if the species is considered cryptic. 

Northeast lineage is particularly in danger and more sampling in the area is needed to fully 

understand the situation. For example, Saurodactylus brosseti has been recorded (Bons and 

Geniez, 1996) around the area of Zagora, but the authors have more recently done fieldwork in 

the area without detecting any specimen. The old localities for the species are now in highly 

disturbed habitats along rivers surrounded by completely unsuitable desert habitat This means 

that habitat destruction is likely to have an impact on the species distribution, particularly in such 

area where conditions are not the most suitable, and fortifies the idea of conservation priorities 

in such areas, especially given how genetically distinct the only sampled population to the East 

of the Atlas mountains is.  

The low branch support of the species tree (Fig. 4) can be again a result of only few genes have 

been used or not enough sampling, especially in the Northeast and Anti-Atlas lineages. There is 

a lot of disagreement in species delineation and specific rules by which one can consider a 

lineage or population to be a different species are not certain (Fujita et al., 2012 - 186). In such 

case as the one of Saurodactylus brosseti, given the phylogenetic analysis (Fig. 3 and Fig. 4), it 

is easy to lean towards speciation between lineages. Furthermore, such high level of 

divergence of ND4 between lineages is an indication of cryptic speciation – many currently 

described species of reptiles have lower levels of variation than this between species (eg 

Ahmadzhadeh et al. 2013). Species delimitation is thought to be easier when several 

methodologies are implemented such as morphology and phylogeography based on different 

approaches (Fujita et al,. 2012 - 186). However, morphological differences assessment of S. 

brosseti is an arduous task given the small size of the species. Therefore, will it seems that the 

Atlas mountains are fuelling the diversity within S. brosseti, there is still currently not enough 

evidence to be sure whether it is fuelling speciation or just intraspecific diversity.  

Modeling results show overlap of suitable habitats between S. brosseti and S.mauritanicus, 

which is most likely due to the fact that both species are so similar; they were even previously 

considered only one species (Bons and Geniez, 1996). They have been both elevated to their 

current species status but they still present very similar ecological requirements, which is why 

model present such results, almost joining both species ranges together as suitable habitat. The 

patch of suitable habitat in the south most border area of oriental region for S. brosseti is of high 

interest and sampling should be focused on that area, especially because S. mauritanicus does 

not present that area as suitable (Fig. 1). Indeed, models seem to predict that the distribution 

range and habitat suitability of all three species has a tendency to decrease.  

Various other phylogeographic studies within Morocco and North Africa have showed high 

levels of divergence within species (Barata et al., 2012), but one very well known problem of the 

region is sampling effort, especially northeast of Morocco (Beukema et al., 2013 - 241). Further 

sampling is thus needed for this and other species with unresolved phylogenies; also 

conservation efforts need to be considered in such cases as the one of S. brosseti that clearly 

presents geographically structured high divergence between and within lineages.  
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GENERAL DISCUSSION 

There are not as many phylogeographic studies of organisms from North Africa 

compared to Europe, but there are reports of species phylogenies being influenced by 

geographical barriers, such as the Moulouya River (e.g. Álvarez et al., 2000) or the 

Atlas Mountains (e.g. Fonseca et al., 2009). Also, climatic fluctuations, especially in the 

Pleistocene have had an impact in species distribution ranges (Hewitt, 2000). Around 9 

Mya the formation of the Atlas Mountains began (Hsu, 1978) and it has had an impact, 

mainly of a vicariant nature, on several species. In Agama impalearis a simple 

subdivision into two lineages clearly formed at around 8.5 to 9.4 Mya was reported 

(Brown et al., 2002). It is suggested that the Atlas Mountains and also the reopening of 

the Strait of Gibraltar split the Acanthodactylus erythrurs group (Fonseca et al., 2012). 

Mauremys leprosa (Fritz et al., 2005; Fritz et al., 2006), Myotis natteri (Salicini et al., 

2013), Androctonus mauritanicus (Coelho et al., 2014) and various Buthus species 

(Habel et al., 2012; Husemann et al., 2012) were also biogeographically substructured 

by the Atlas Mountains, although the latter displays many microrefugia (Husemann et 

al., 2012). Thus the Atlas Mountains are known to act as both a simple barrier, and a 

complex region in which multiple endemic forms have evolved, particularly those 

specialising as high-montane species such as Quedenfeldtia species (Barata et al., 

2011) or Atlantolacerta andreanskyi (Barata et al., 2012). The Atlas Mountains have 

also had an impact and divide the climate of Morocco, which thus presents a much 

diversified topology, characteristics that together make the kingdom one of the richest 

in herptofauna diversity. For the reasons presented above, there is a need to assess 

phylogeographic patterns of the many other species of Morocco. Hewitt extensively 

studied the effects of the climatic oscillations during the Pleistocene and showed that 

diversity across many taxa was heavily influenced by those oscillations (Hewitt, 2000). 

Africa, and specifically the Sahara desert, was not an exception in experiencing 

climatic variations in the Quaternary Period, suffering from humid and drier periods 

(Brito et al., 2014); this also had an impact in the flora and fauna of the region. 

There is an additional need to accurately complete range distribution datasets, mainly 

in the Eastern region of the country (Beukema et al., 2013). This is the first step 

towards a complete phylogeographic study and only with a good knowledge of a 

species distribution range is it possible to truly understand evolutionary history and 

patterns of diversity within a species. 

After two fieldtrips to Morocco, a total of 53 different species in 138 localities were 

sampled. After DNA barcoding techniques were used for species for which 

identification was not possible in the field, various new range expansions were unveiled 
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(Manuscript I). These range extensions, especially for Bufo spinosus, Trapelus 

boehmei, Tropiocolotes algericus, Acanthodactylus erythrurus, Chalcides polylepis and 

Scutophis moilensis show that even species that are thought to be well known in terms 

of their distribution, sometimes are not.  

Specifically regarding Saurodactylus brosseti, the main focus of this thesis, a previous 

phylogenetic study, despite its limited sampling, had shown that Saurodactylus brosseti 

presents high levels of intraspecific variation, up to 11.4% for ND4 (Rato and Harris, 

2008). Some recently described species do not present such high variation (e.g. 

Ahmadzadeh et al., 2013) and so, it represented a possible species complex. The 

results presented in the previous section again emphasize such diversity, given that 

results show that S. brosseti presents lot of variation  (from 6.9% to 11.5%) between 

four distinct lineages, which are also geographically structured (Manuscript II). This 

also demonstrates that by increasing sampling effort it is possible to see more clearly 

the history of a species. In Rato and Harris (2008), two lineages were shown and that 

raised questions about the phylogeny of Saurodactylus brosseti; however only after a 

greater effort to analyse more specimens and with more genes was it possible to 

understand a new level of structuring in the species. This is very important, meaning 

that the higher and more accurate the effort is, the better researches can understand 

biogeographic patterns of species.  

A plausible explanation for such high differences between lineages is the rise of the 

Atlas Mountains. Estimated time of divergences showed that the time of the split of the 

four lineages coincides with the time for the orogeny of the Atlas Mountains. It seems 

like species expanded North and South at roughly the same time and started to diverge 

separately. However, the weak support of the tree branches turns makes it difficult to 

exactly interpret the history of the split. The Northeast lineage could have been an 

expansion from the South lineages through the east side of the Anti-Atlas or it was 

originally more related to the North lineage and was after split by the High-Atlas. 

Furthermore, there is still considerable variation within Northern and Southern lineages 

(Manuscript II) that is probably due to climatic oscillations during the Pleistocene 

coupled with the continuity of the Atlas Mountains rising since 9 Mya and onwards. Low 

support of some branches can be related to high diversity in some lineages, such as 

the Southern lineage, coupled with low sampling number in other lineages – Northeast 

and Anti-Atlas.  

Considering modelling of species distribution, it has been shown to be a useful tool to 

understand ecological requirements of species and also for directing specific sampling 

effort. For example, in the Podarcis lizards, modelling was demonstrated to be highly 

effective, highlighting patches were the species had not been but was later recorded 
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(Kaliontzopoulou et al., 2008). In this previous study, the area predicted was small and 

thus easier to do targeted fieldwork on; the area predicted for Saurodactylus brosseti is 

much bigger and thus more difficult to prospect extensively. Environmental modelling is 

a growing and powerful area in which past, present and future historical events can be 

predicted, making correspondence between environmental conditions and species 

distribution. Once again, accurate sampling is of great importance in order to get better 

predictions and model predictions help direct sampling efforts. 

Hence, the study of niche evolution has gained a major importance in the last few 

years, focusing on techniques to estimate niche overlap in realized niches between 

taxa in an explicit spatial context (Broennimann et al., 2012), either based on ordination 

methods (Hof et al. 2010; Thuiller et al. 2005) or on the output of species distribution 

models (SDMs) (Guisan and Thuiller, 2005; Warren et al. 2008). More recently, based 

on the methodology proposed by Evans et al. (2009), SDMs are being combined with 

calibrated phylogenies in order to study the evolution of climatic niches by 

reconstructing the ancestral environmental tolerances among lineages (e.g. 

Ahmadzadeh et al. 2013; Jakob et al. 2010; Smith and Donoghue, 2010). This would 

also be an interesting future work that could help understand differences in the 

ecological requirements of the different lineages.  

Speciation and species delimitation is extremely difficult and it is clear that in order for 

a lineage or population to be considered a species, integrative frameworks should be 

used including not only different phylogeny approaches but also morphology (Fujita et 

al., 2012). Saurodactylus brosseti is a small gecko and morphological assessment is 

challenging but it could be done in order to support phylogenetic findings. This thesis 

comprises a phylogeographic analysis from which is clear that the levels of genetic 

variation within the species is very high. Since only two mitochondrial and three nuclear 

genes were used and due to small sampling of Northeast and Anti-Atlas lineages, the 

relations between all four lineages are still not fully understood. A higher number of 

genes could be sequenced in the future, in order to better estimate the 

phylogeographic patterns of the species, combined with morphological characters 

assessment, comprising a full species analysis. This is of extreme importance, since it 

is also clear that at least Northeast lineage appears to be effectively small and spatially 

separated from the other lineages, possibly needing conservation assessment. 
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APPENDIX  

 

Origin of sample Species Lat Long Accession numbers 
(12S/ND4/ACM4/BZW1/MC1R) 

Fieldtrip 2013 Saurodactylus 
brosseti 

30.30 -9.52  

Fieldtrip 2013 Saurodactylus 
brosseti 

29.86 -9.50  

Fieldtrip 2013 Saurodactylus 
brosseti 

29.86 -9.50  

Fieldtrip 2013 Saurodactylus 
brosseti 

29.86 -9.50  

Fieldtrip 2013 Saurodactylus 
brosseti 

29.06 -9.93  

Fieldtrip 2013 Saurodactylus 
brosseti 

28.63 -10.79  

Fieldtrip 2013 Saurodactylus 
brosseti 

28.63 -10.79  

Fieldtrip 2013 Saurodactylus 
brosseti 

28.42 -11.40  

Fieldtrip 2013 Saurodactylus 
brosseti 

28.22 -11.75  

Fieldtrip 2013 Saurodactylus 
brosseti 

28.22 -11.75  

Fieldtrip 2013 Saurodactylus 
brosseti 

26.16 -14.42  

Fieldtrip 2013 Saurodactylus 
brosseti 

26.07 -14.46  

Fieldtrip 2013 Saurodactylus 
brosseti 

28.61 -10.52  

Fieldtrip 2013 Saurodactylus 
brosseti 

28.50 -10.48  

Fieldtrip 2013 Saurodactylus 
brosseti 

28.50 -10.48  

Fieldtrip 2013 Saurodactylus 
brosseti 

28.50 -10.48  

Fieldtrip 2013 Saurodactylus 
brosseti 

28.50 -10.43  

Fieldtrip 2013 Saurodactylus 
brosseti 

28.50 -10.43  

Fieldtrip 2013 Saurodactylus 
brosseti 

28.72 -10.30  

Fieldtrip 2013 Saurodactylus 
brosseti 

29.39 -10.17  

Fieldtrip 2013 Saurodactylus 
brosseti 

29.65 -9.99  

Fieldtrip 2013 Saurodactylus 
brosseti 

30.04 -9.64  
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Fieldtrip 2013 Saurodactylus 
brosseti 

30.04 -9.64  

Fieldtrip 2013 Saurodactylus 
brosseti 

30.54 -9.71  

Fieldtrip 2013 Saurodactylus 
brosseti 

30.54 -9.71  

Fieldtrip 2013 Saurodactylus 
brosseti 

30.54 -9.71  

Fieldtrip 2013 Saurodactylus 
brosseti 

31.00 -9.58  

Fieldtrip 2013 Saurodactylus 
brosseti 

31.00 -9.58  

Fieldtrip 2013 Saurodactylus 
brosseti 

31.12 -9.43  

Fieldtrip 2013 Saurodactylus 
brosseti 

31.12 -9.43  

Fieldtrip 2013 Saurodactylus 
brosseti 

31.48 -9.76  

Fieldtrip 2013 Saurodactylus 
brosseti 

31.48 -9.76  

Fieldtrip 2013 Saurodactylus 
brosseti 

31.48 -9.76  

Fieldtrip 2013 Saurodactylus 
brosseti 

31.48 -9.76  

Fieldtrip 2013 Saurodactylus 
brosseti 

31.48 -9.76  

Fieldtrip 2014 Saurodactylus 
brosseti 

31.62 -5.56  

Published in Rato and Harris 
2008 

Saurodactylus 
brosseti 

33.25 -8.50 EU014300/EU014325/-/-/- 

Published in Rato and Harris 
2008 

Saurodactylus 
brosseti 

31.62 -8.00 EU014301/EU014326/-/-/- 

Published in Rato and Harris 
2008 

Saurodactylus 
brosseti 

31.50 -9.77 EU014311/EU014336/-/-/- 

Published in Rato and Harris 
2008 

Saurodactylus 
brosseti 

31.68 -8.85 EU014302/EU014327/-/-/- 

Published in Rato and Harris 
2008 

Saurodactylus 
brosseti 

31.68 -8.85 EU014312/EU014337/-/-/- 

Published in Rato and Harris 
2008 

Saurodactylus 
brosseti 

31.68 -8.85 EU014304/EU014329/-/-/- 

Published in Rato and Harris 
2008 

Saurodactylus 
brosseti 

31.68 -8.85 EU014303/EU014328/-/-/- 

Published in Rato and Harris 
2008 

Saurodactylus 
brosseti 

31.07 -8.68 EU014305/EU014330/-/-/- 

Published in Rato and Harris 
2008 

Saurodactylus 
brosseti 

30.10 -9.55 EU014306/EU014331/-/-/- 

Published in Rato and Harris 
2008 

Saurodactylus 
brosseti 

29.88 -9.60 EU014307/EU014332/-/-/- 

Published in Rato and Harris 
2008 

Saurodactylus 
brosseti 
 

29.88 -9.60 EU014313/EU014338/-/-/- 
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Published in Rato and Harris 
2008 

Saurodactylus 
brosseti 

33.25 -8.50 EU014314/EU014339/-/-/- 

Published in Rato and Harris 
2008 

Saurodactylus 
brosseti 

31.89 -6.91 EU014308/EU014333/-/-/- 

Published in Rato and Harris 
2008 

Saurodactylus 
brosseti 

31.89 -6.91 EU014309/EU014334/-/-/- 

Published in Rato and Harris 
2008 

Saurodactylus 
brosseti 

31.49 -7.98 EU014310/EU014335/-/-/- 

Reptile DB Saurodactylus 
brosseti 

30.95 -8.25  

Reptile DB Saurodactylus 
brosseti 

30.99 -9.04  

Reptile DB Saurodactylus 
brosseti 

30.06 -9.09  

Reptile DB Saurodactylus 
brosseti 

30.06 -9.09  

Reptile DB Saurodactylus 
brosseti 

30.06 -9.09  

Reptile DB Saurodactylus 
brosseti 

30.06 -9.09  

Reptile DB Saurodactylus 
brosseti 

29.95 -9.01  

Reptile DB Saurodactylus 
brosseti 

30.03 -9.05  

Reptile DB Saurodactylus 
brosseti 

29.58 -9.40  

Reptile DB Saurodactylus 
brosseti 

29.58 -9.40  

Reptile DB Saurodactylus 
brosseti 

29.51 -9.06  

Reptile DB Saurodactylus 
brosseti 

29.74 -8.96  

Reptile DB Saurodactylus 
brosseti 

29.58 -9.40  

Reptile DB Saurodactylus 
brosseti 

29.58 -9.40  

Reptile DB Saurodactylus 
brosseti 

29.60 -10.03  

Reptile DB Saurodactylus 
brosseti 

29.60 -10.03  

Reptile DB Saurodactylus 
brosseti 

29.60 -10.03  

Reptile DB Saurodactylus 
brosseti 

29.60 -10.03  

Reptile DB Saurodactylus 
brosseti 

29.60 -10.03  

Reptile DB Saurodactylus 
brosseti 

29.60 -10.03  

Reptile DB Saurodactylus 
brosseti 
 

28.03 -11.36  
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Reptile DB Saurodactylus 
brosseti 

29.48 -10.09  

Reptile DB Saurodactylus 
brosseti 

28.54 -10.96  

Reptile DB Saurodactylus 
brosseti 

32.53 -7.86  

Reptile DB Saurodactylus 
brosseti 

32.53 -7.86  

Reptile DB Saurodactylus 
brosseti 

32.53 -7.86  

Reptile DB Saurodactylus 
brosseti 

32.53 -7.86  

Reptile DB Saurodactylus 
brosseti 

32.53 -7.86  

Reptile DB Saurodactylus 
brosseti 

32.66 -7.79  

Reptile DB Saurodactylus 
brosseti 

32.66 -7.79  

Reptile DB Saurodactylus 
brosseti 

32.66 -7.79  

Reptile DB Saurodactylus 
brosseti 

31.62 -5.56  

Reptile DB Saurodactylus 
brosseti 

32.14 -6.40  

Reptile DB Saurodactylus 
brosseti 

31.75 -8.74  

Reptile DB Saurodactylus 
brosseti 

29.09 -9.89  

Reptile DB Saurodactylus 
brosseti 

29.09 -9.89  

Reptile DB Saurodactylus 
brosseti 

30.42 -9.58  

Reptile DB Saurodactylus 
brosseti 

31.68 -8.85  

Reptile DB Saurodactylus 
brosseti 

32.13 -6.32  

Reptile DB Saurodactylus 
brosseti 

31.10 -8.94  

Reptile DB Saurodactylus 
brosseti 

31.10 -8.94  

Reptile DB Saurodactylus 
brosseti 

31.89 -7.94  

Reptile DB Saurodactylus 
brosseti 

30.81 -7.58  

Reptile DB Saurodactylus 
brosseti 

30.81 -7.58  

Reptile DB Saurodactylus 
brosseti 

31.33 -9.38  

Reptile DB Saurodactylus 
brosseti 
 

31.28 -9.79  
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Reptile DB Saurodactylus 
brosseti 

31.26 -9.16  

Reptile DB Saurodactylus 
brosseti 

31.26 -9.16  

Reptile DB Saurodactylus 
brosseti 

31.51 -8.16  

Published in Rato and Harris 
2008 

Saurodactylus 
fasciatus 

34.77 -5.52 EU014299/EU014343/-/-/- 

Published in Rato and Harris 
2008 

Saurodactylus 
fasciatus 

32.60 -7.81 EU014296/EU014340/-/-/- 

Reptile DB Saurodactylus 
fasciatus 

34.15 -4.83  

Reptile DB Saurodactylus 
mauritanicus 

34.90 -3.59  

Appendix 1. – Information of the samples used for phylogenetic analyses. 


