
IMPLEMENTATION OF AN
EVENT-TRIGGERED SMART SENSOR

NETWORK ARCHITECTURE BASED ON THE
IEEE 802.15.4 STANDARD

Erico Meneses Leão ∗ Luiz Affonso Guedes ∗

Francisco Vasques ∗∗

∗Department of Computer Engineering and Automation -
UFRN - Natal - Brazil

∗∗Department of Mechanical Engineering - University of
Porto - Porto - Portugal

Abstract: A smart transducer is the integration of a sensor/actuator element, a
processing unit, and a network interface. Smart sensor networks are composed of
smart transducer nodes interconnected through a communication network. This
paper proposed an event driven a smart sensor network architecture (asynchronous
data) and its respective implementation based in the IEEE 802.15.4 standard. The
events are derived from a data compression algorithm embedded into the smart
sensor, which compresses data from the sensor. The architecture also supports
configuration and monitoring activities of all distributed system.

Keywords: smart sensor, network, architecture, events, IEEE 802.15.4,
compression algorithm.

1. INTRODUCTION

Automation activities are essential for the com-
petitiveness increase in all industrial sectors. From
a systemic approach, industrial automation can be
characterized as a set of techniques that enable
the construction of active subsystems with the
capability to interact with the industrial processes
for control, monitoring, and supervision proposes.

In the last few decades, the automation technolo-
gies have been evolving from a strongly central-
ized technology to an essentially distributed tech-
nology. Within this new approach, components
are interconnected by digital communication net-
works. Thus, the traditional sensors based in the
4-20mA standard are being replaced by digital
devices. These devices may have sensors, actua-
tors, and control functionalities and are endowed
of digital processors and communication systems.

Within this context, a smart sensor is defined as
the integration of an analog or digital sensor or an
actuator element, a processing unit, and a network
interface (Elmenreich, 2006).

In this way, the architectures of the lowest level of
industrial automation are characterized for using
a set of the smart transducers, usually connected
through a communication network with real time
properties. The distributed approach provides a
significant improvement in the flexibility and scal-
ability aspects of the industrial processes; how-
ever, it also brought new scientific and technolog-
ical challenges, such as the need for new models
and algorithms for real time and safe communi-
cations, considering financial and environmental
restrictions.

The smart sensor design must deal with inter-
changes among devices, and also with interop-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143402464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


erability and availability of information in real
time. The networked operation of a smart sensor
that uses standardized interfaces allows sharing
information and resources. Thus, it allows the in-
tegration of all control and supervision processes,
for example.

The objective of this paper is to propose an event-
triggered smart sensor network architecture and
its implementation based IEEE 802.15.4 stan-
dard (IEEE 802.15.4 Standard, 2006). This Ar-
chitecture is similar to the OMG (Object Manage-
ment Group) standard (Kopetz and Wien, 2003).
However, differently to the original time-triggered
OMG proposal, the proposed approach uses an
asynchronous event-triggered mechanism to trans-
mit the data from the smart sensors. This asyn-
chronous behavior is a consequence of the imple-
mentation of a data compression algorithm into
the smart sensors, which sends only the relevant
data from the raw data mass. Thus, the pro-
posed event-triggered approach saves an impor-
tant amount of communication bandwidth.

The rest of the paper is organized as follows:
Section 2 describes the proposed event-triggered
smart sensor network architecture and its char-
acteristics. In order to validate the proposed ar-
chitecture, the Section 3 presents a prototype im-
plementation using the IEEE 802.15.4 standard
and some experimental results that were obtained
from the prototype. The paper is concluded in
Section 4.

2. EVENT-TRIGGERED SMART SENSOR
NETWORK ARCHITECTURE

The proposed event-triggered smart sensor ar-
chitecture was briefly introduced in (Leão et
al., 2007). In this paper, a more detailed presen-
tation is made. It is based on the OMG’s (Object
Management Group) standard. The choice for this
standard was motivated by its simple and well
defined data access interface. However, differently
to the time-triggered OMG standard (Kopetz and
Wien, 2003), the proposed architecture follows an
event-triggered approach. That is, the smart sen-
sors send through the network only the relevant
information about the process. The transfer of this
information is triggered by asynchronous events.

Figure 1 shows the basic components of the pro-
posed architecture. This architecture is composed
by clusters. In turn, each cluster can have one
master node and up to 255 slave nodes, which
are interconnected by a field network. The master
node is a most powerful processing device and
it is designed to manage the cluster. It can also
communicate with other master nodes through
a supervision network. There may be redundant

shadow masters to support fault tolerance. Thus,
it is the responsible for management, control, and
configuration activities throughout the system.

...

Master
DM

Client
CP

RTDB
and
DB

...

Master
DM

RTDB
and
DB

Supervision Network

Cluster A Cluster B

Client
RS

Field Network

Slave Slave Slave SlaveSlaveSlaveSlaveSlave

Client
RS

Client
CP

Fig. 1. Event-Triggered Smart Sensor Architec-
ture.

2.1 Proposed Master Node Structure

The master node has two database types: a real
time database (RTDB) and a traditional database
(DB). The RTDB has to guarantee the tem-
poral deadlines of its transactions. Thus, some
data will be valid just for a specific time inter-
val (Ramamritham, 1993). The master node logs
in its databases the most relevant information
from the smart sensors. These databases are ac-
cessed through the diagnostic and maintenance in-
terface (DM) using the supervision network. The
master node accesses information from the slave
nodes using the RT client (real time client) and
the CP client (configuration and planning client).

2.2 Proposed Slave Node Structure

A slave node requires two types of interfaces for
accessing its data, a compression algorithm and a
buffer to store temporary data. Such temporary
data will be applied to the data compression al-
gorithm, as shown in Figure 2. The compression
algorithm is responsible for selecting the relevant
data information, and thus it generates an asyn-
chronous flow of data. This behavior leads to un-
predictable timing intervals between consecutive
data transfers from the sensor. However, the time
of sending a datum is not totally unpredictable,
due to the minimum and maximum time provided
the compression algorithm to the transmission,
as will be shown ahead. So, an event-triggered
approach would be efficient for the communication
of these control-related data.

The smart sensor will have a larger autonomy, as it
will send only the relevant data. Therefore, there
is a significant reduction of the transferred data,



compression
Algorithm

Buffer

RS Interface CP Interface

Fig. 2. Smart Transducer with a Embedded Com-
pression Algorithm.

resulting in a smaller bandwidth utilization. This
way, it is possible to connect a larger amount of
smart sensors to the network. However, the smart
sensors become more complex and therefore de-
mand a larger processing capability. Nevertheless,
with the growing technological progress it is pos-
sible to design low-cost smart sensors with high
processing capabilities. Being so, the embedded
compression algorithm is one of the research tar-
gets that must be addressed for the architectural
network of event-triggered smart sensors.

Sensors require two types of interfaces to access
the data (RS and CP), where the communication
is supported by two different communication mod-
els (publisher-subscriber and client-server):

• RS interface - real-time service interface.
It is used to transfer real-time data to the
cluster. The data generated by the smart
sensors will be published in the net and
consumed by the functions of the system.

• CP interface - configuration and planning
interface. Through this interface it is possible
to identify new nodes connected to the net-
work, to transfer new configuration parame-
ters to the sensor, as values of compression
deviation, maximum and minimum time for
the compression algorithm, besides informa-
tion as the identification of the sensor in the
distributed system.

2.2.1. Publisher-Subscriber Model The commu-
nication model used by the RS interface is the
real-time publisher-subscriber model (RTPS). This
model of exchanging data favors the message ex-
change with time parameters amid devices be-
tween two entities: the publisher, responsible by
sending the messages, and the subscribers, respon-
sible for consuming these messages, in case they
interest them (Dolejs et al., 2004; Ocera, 2002).
The messages sent by a slave node through the
RS interface will be consumed by the various func-
tions of the system concerned by such data. These
messages can be send as commands to the actu-
ators or stored in databases in accordance with
their requisites; they can be real-time databases
(RTDB) or traditional databases (DB), as shown
in Figure 3.

Sensor RS

subscribers

pub lisher

diagnostic()

control_function()

sensor_historic()

operation_time()

Controller

DB

RTDB

RTDB

Fig. 3. Publisher-Subscriber Model for Proposed
Architecture.

The data packets sent by smart sensors through
the RS interface contain various fields with impor-
tant information from the smart sensors, which
will be consumed by the system functions to dif-
ferent finalities. For example, the operation time()
function will access the TIME field and will store
this datum in the real-time database. Such func-
tion informs the supervision network about the
functioning time of a determined smart sensor.
The sensor historic() function will access the in-
formation in the DATA field, in order to make
available the historic file of flags for a smart sen-
sor. The packet’s TAG field is responsible for iden-
tifying the sensor; the TYPE field by the identifi-
cation of the type of the packet to be transferred,
while the QUALITY field will contain informa-
tion about the quality flag of the datum (good,
regular, bad, not determined). The CRC field is
responsible for controlling the packet’s error.

2.2.2. Client-Server Model The CP interface is
accessed directly by the master node, which can
perform configuration activities, can exchange pa-
rameters and can reconfigure of new nodes (Fig-
ure 4). As an example of the configuration of a
new node, a master node through its function
new device() stays monitoring the system in order
to search new nodes connected to the network.
Thus, a new smart sensor will ask its inclusion in
the system and will be given by the master node,
through the function configure(), the necessary
parameters to start functioning in the network.
From this point onwards, after confirming the re-
ceived parameter (confirm()) and having received
the authorization to transfer its data (start()), the
sensor will start sending its data packets through
the RS interface.

Figure 5 shows the reconfiguration procedure
of a smart sensor. The master node using the
request reconfigure(ID) function reconfigures the
parameter of a particular slave node. Then, the
slave node is authorized to send its packages.

Some important system functions are presented as
follows:

• request_inclusion(): slave node requisites
to master node its inclusion in the network.



CP

configure()

..
.

(Parameters)

(Id)

Master

Slave

request_inclusion()

reconfigure()

Fig. 4. Client-Server Model for Proposed Archi-
tecture.

MASTER SLAVE

request_reconfigure()

reconfigure(parameters)

confirm()

start()

transmit(packet)

transmit(packet)

Fig. 5. Reconfiguration Proceeding of a Slave
Sensor.

• configure(): master node sends configura-
tion parameters of a new slave node.

• reconfigure(): master node sends reconfig-
uration to a slave node.

• transmit(): slave node sends a determined
packet to the network.

• operation_time(): responsible for the time
functioning o f a smart sensor.

3. CASE STUDY

This section presents a case study implementa-
tion of the proposed event-triggered smart sen-
sor network architecture. The implementation
uses the IEEE 802.15.4 (IEEE 802.15.4 Stan-
dard, 2006) standard as communication infras-
tructure. The prototype has been implemented
upon the Freescale Semiconduction development
kit.

3.1 Implementation based on IEEE 802.15.4

The IEEE 802.15.4 standard defines the physical
and MAC layers for low cost, low power, and low
rate devices (Baronti et al., 2007). The embedded
software was developed in accordance to SMAC
(Simple MAC ) premisses.

3.2 Definition of the Test Environment

Figure 6 shows the environment defined to ex-
perimentally assess this architecture, where it is
defined two slave smart nodes and one master

smart node connected through a field network.
The supervision system can manage the smart
sensor network through the master node.

RS-232

RS-232

RS-232

MASTER

SLAVERS

DB

Sensor

Values

Sensor

Values

Fig. 6. Structure of a Smart Sensor.

For our application, a real sensor has been em-
ulated using a PC equipped with a serial port
and the network interface has been a wireless
communication board of Freescale.

To implement the emulation process of the real
sensors, we used two databases content records ex-
tracted from a real-time gas distribution monitor-
ing system; specifically, we choose an outlet vari-
able, with 10000 records. For testing effects, a pro-
gram written in ANSI C was developed, it is capa-
ble to read each record from the database and to
send it through RS-232 port (serial input/output)
for the wireless communication board of Freescale.

The master node, on the other hand, is composed
of a Freescale wireless communication board con-
nected in a PC equipped with a software able to
store the received values by master board in the
database and generates the curve of the relevant
values for each slave sensor connected upon the
field network.

3.3 Definition of the Prototype Functions

The slave nodes support the plug-and-play paradigm.
This paradigm is easily implemented because each
slave node has an only MAC address as its identifi-
cation on the network. Thus, the master node can
detect the slave nodes in automatic way. When a
slave node is connected to the network it requires
to the master node its configuration. Then the
master node reply with the following parameters:
sensor ID, minimum and maximum time and com-
pression deviate for the compression algorithm.

All the slave nodes have an implementation of the
compression algorithm Swinging Door (Bristol,
1990). Thus, when a new data is generated, the
compression algorithm decides if it is relevant or
not, then this data can be send or not to the
master board. To send a data to master node, the
slave node must build a packet with the following
fields: sensor identification (ID), current time and
value. Then, when the master node receives any



data from the slave node, it must store that data
in its database for the activities of supervision
network.

Another important function implemented in the
prototype is the reconfiguration of a slave sensor.
For example, through the master node, it is pos-
sible to reconfigure the compression algorithm of
any smart sensor connected to field network.

3.4 Test Scenarios

To validate the prototype, we defined two test
scenarios. Theses scenarios are described as follow.

3.4.1. Scenario 1 The scenario 1 is defined as
having only one smart sensor connected to the
network with parameters reconfiguration. In that
way, the slave sensor requests to the master node
its initial configuration. The following parameters
are passed to the slave node:

• ID: 1;
• Minimum time: 3 s;
• Maximum time: 10 s;
• Compression deviate: 5 m3/day.

The slave sensor is reconfigured after 3150 sec-
onds. The new configuration of the slave sensor is
visualized as follow:

• Minimum time: 5 s;
• Maximum time: 20 s;
• Compression deviate: 9 m3/day.

3.4.2. Scenario 2 The scenario 2 defines the
execution of two slave sensor, in which the second
slave sensor is connected 2000 seconds later than
first slave sensor. Slave sensor 1 is configured with
the parameters as follow:

• ID: 1;
• Minimum time: 3 s;
• Maximum time: 10 s;
• Compression deviate: 5 m3/day.

Slave sensor 2 is configured with the parameters
as follow:

• ID: 2;
• Minimum time: 5 s;
• Maximum time: 20 s;
• Compression deviate: 5 m3/day.

The master node is responsible by storing the
graph generation sensor data with the relevant
data from each smart sensor. The smart sensor
1 uses the data stored in database 1 while smart
sensor 2 uses the data stored in database 2.

3.5 Results

This section presents the obtained results from
all test scenarios described above. Figures 7 and 8
show the raw data from the sensor 1 and sensor
2, respectively.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

460

480

500

520

540

560

580

600

620

640

660

680

Original Data

instant (seconds)

v
a

lu
e

s
 (

c
u

b
ic

 m
e

te
rs

 /
 d

a
y
)

Original Values

Fig. 7. Original Data from the Slave Sensor 1.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

540

560

580

600

620

640

660

680

Original Data

instant (seconds)

v
a

lu
e

s
 (

c
u

b
ic

 m
e

te
rs

 /
 d

a
y
)

Original Values

Fig. 8. Original Data from the Slave Sensor 2.

3.5.1. Scenario 1 In this scenario was defined
the operation of only one slave with reconfigura-
tion during its activity. The supervision system
requests the reconfiguration of the slave node com-
pression parameters 3150 seconds after its initia-
tion. For this scenario, it is calculated the com-
pression rates and the mean square errors for all
sensor activity and before sensor reconfiguration
and after sensor reconfiguration activities.

Figure 9 shows the slave sensor relevant data. For
this scenario the compression of all sensor activity
was 90.76% with a mean square error of 44.25. The
compression rate before the reconfiguration was of
85.52% with a mean square error of 86.76. After
the slave sensor reconfiguration, the compression
rate was of 93.16% with a mean square error of
24.71.

3.5.2. Scenario 2 In this scenario was defined
the operation of two slave smart sensor. The slave



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

460

480

500

520

540

560

580

600

620

640

660

680

Compressed Values

Compression Rate of 90.76%

instant (seconds)

v
a

lu
e

s
 (

c
u

b
ic

 m
e

te
re

s
/d

a
y
)

Fig. 9. Relevant Data of Slave Sensor 1 with
reconfiguration.

sensor 2 was connected 2000 seconds after the
slave sensor 1. For this scenario, it is calculated the
compression rate and the mean square error for
each slave sensor. The compression rate for slave
sensor 1 was 85.80% with the mean square error
of 41.13. The compression rate for slave sensor 2
was 90.16% with the mean square error of 32.58.
Figure 10 and 11 shows the relevant data of the 1
and 2 slave sensor, respectively.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

460

480

500

520

540

560

580

600

620

640

660

680

Compressed Values

Compression Rate of 85.80%

instant (seconds)

v
a

lu
e

s
 (

c
u

b
ic

 m
e

te
re

s
/d

a
y
)

Fig. 10. Relevant Data of Slave Sensor 1.

4. CONCLUSION

The paper presented an event-triggered smart sen-
sor network architecture and its implementation
based IEEE 802.15.4 standard. The main feature
of this architecture is the integration of a data
compression algorithm with simple implementa-
tion into the smart sensors. This approach saves
network bandwidth, because the sensors only send
relevant data.

With the achieved results through the realized
experiments, it is possible to conclude that the
local compression process in each smart sensor can

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

540

560

580

600

620

640

660

680

Compressed Values

Compression Rate of 90.16%

instant (seconds)

v
a

lu
e

s
 (

c
u

b
ic

 m
e

te
re

s
/d

a
y
)

Fig. 11. Relevant Data of Slave Sensor 2.

decrease considerably the data exchanges in the
communication network.

REFERENCES

Baronti, Paolo, Prashant Pillai, Vince Chook, Ste-
fano Chessa, Alberto Gotta and Y. Fun Hu
(2007). Wireless Sensor Networks: A Sur-
vey on the state of the art and the 802.15.4
and ZigBee Standards. Computer Communi-
cations 30, 1655–1695.

Bristol, E. H. (1990). Swinging Door Trending:
adaptive trend recording?. In: ISA National
Conf. Proc.. pp. 749–753.

Dolejs, Ondrej, Petr Smolik and Zdenek Hanza-
lek (2004). On the Ethernet Use for Real-
Time Publish-Subscribe Based Applications.
In: Proceedings of IEEE International Work-
shop on Factory Communication Systems.
pp. 39–44.

Elmenreich, Wilfried (2006). Time-Triggered
Smart Transducer Networks. IEEE Transac-
tions on Industrial Informatics 2, 192–199.

IEEE 802.15.4 Standard (2006). Part 15.4: Wire-
less Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for
Low-Rate Wireless Personal Area Networks
(WPANs). Specification.

Kopetz, H. and TU Wien (2003). OMG Smart
Transducer Specification II. Specification.

Leão, Erico Meneses, Luiz Affonso Guedes
and Francisco Vasques (2007). An Event-
Triggered Smart Sensor Network Architec-
ture. In: Proceedings of 5th IEEE Interna-
tional Conference on Industrial Informatics,
INDIN 2007, Vienna, Austria.

Ocera (2002). Wp2 - architecture specification.
deliverable d2.1 - architecture and compo-
nents integration.

Ramamritham, Krithi (1993).
Real-Time Databases. International Journal
of Distributed and Parallel Databases 1, 199–
226.


