
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Quad-copter platform for civil
applications

Gustavo Pinho Oliveira

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Professor Rosaldo Rossetti

Co-supervisor: Eng. Lúcio Sanchez Passos

Co-supervisor: Eng. Zafeiris Kokkinogenis

June 16, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143402415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Quad-copter platform for civil applications

Gustavo Pinho Oliveira

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Professor Carlos Manuel Milheiro de Oliveira Pinto Soares
External Examiner: Professor Artur José Carneiro Pereira
Supervisor: Professor Rosaldo Rossetti

June 16, 2014

Abstract

Unmanned aerial vehicles (UAVs) are gaining the attention of researchers around the world, due
to their maneuverability and performace in both indoor and outdoor environments.

This dissertation documents the specification, implementation and test of a modular, extensive
and flexible architecture to autonomous UAVs. It aims to provide a testbed for researchers where
they can rapidly prototype the application of new methods without the effort of reimplementing
all the infrastructure.

The document contains the background in the relevant topics and related works reviews, a
detailed description of the approach taken, tests and the consecutive results and also some conclu-
sions about the final solution.

The proposed architecture consists of a hybrid design with three layers where each layer has
a different level of cognition, different functions and different requisites. The method was imple-
mented and tested in a quadcopter.

The robot was designed with indoor civil applications in mind, however because of resources
constraints only simple maneuvers were considered. Nonetheless with more time the implemen-
tation could be extended to allow for actual applications like surveillance or exploration.

The report finishes concluding that although the project was very changelling important steps
to achive autonomous indoor flight were taken. Also the outcomes of the project resulted in a
software stack that is already being applied within other research groups with no prior connection
to this disseration.

Keywords: Robotics; Agents; Quadcopter; Localization; System Architecture

i

ii

Resumo

Quadcopter para aplicações civis

Veículos Aéreos Não Tripulado (VANT) estão a ganhar a atenção de investigadores à volta do
mundo, devido a sua manobrabilidade e desempenho em ambiente interiores e exteriores. Esta
dissertação documenta a especificação, implementação e teste de uma arquitectura modular, ex-
tensiva e flexível para VANT autónomos. Esta tenta providenciar uma ferramenta de teste para
investigadores onde estes possam rapidamente testar novos métodos sem o esforço de reimple-
mentar toda a estrutura.

O documento contém uma pesquisa de conceitos nos tópicos relevantes e uma revisão dos
trabalhos relacionados, uma detalhada descrição do método utilizado, testes e consecutivos resul-
tados e também algumas conclusões sobre a solução final.

A arquitectura proposta consiste num desenho híbrido com três camadas onde cada uma con-
tem diferentes funções, diferentes requisitos e diferentes níveis de cognição. O método é depois
implementado e testado num Quadcopter.

O robot foi desenhado com aplicações civis de interior em mente, contudo devido a limi-
tações de recursos apenas manobras simples foram consideradas. No entanto com mais tempo
a implementação poderia ser estendida para permitir verdadeiras aplicações como vigilância ou
exploração.

O relatório termina concluindo que apesar do projeto ter sido muito desafiante passos im-
portantes para atingir voo autónomo no interior foram dados. Também os produtos paralelos do
projecto resultaram num conjunto de aplicações em software que estão já a ser utilizadas dentro
de outros grupos de investigação sem qualquer ligação inicial com esta dissertação.

Palavras-chave: Robótica; Agentes; Quadcopter; Localização; Arquitectura de Sistemas

iii

iv

Acknowledgements

First and foremost I would like to thank my co-supervisors, Lúcio Sanchez Passos and Zafeiris
Kokkinogenis and my supervisor Professor Rosaldo Rossetti, who never abandoned me and shed
tears and blood almost as much as myself.

Also, I would like to remark the important companionship provided by Rúben Veloso, other
dissertationist at my laboratory, which never refused to help even when his own schedule was
tight.

There is an enormous list of persons which without who this project would have been impos-
sible, among them:

• Francisca Melo Lopes Barreto

• Professor Armando Luís Sousa Araújo

• Professor Joaquim Gabriel Magalhães Mendes

Finally I would like to thank both my friends and family for all their support. In spite of
spending more time destroying than helping they kept me happy and motivated.

Gustavo Pinho Oliveira

v

vi

“Opportunity is missed by most people because it is dressed in overalls and looks like work”

Thomas Edison

vii

viii

Contents

1 Introduction 1
1.1 Research Scope and Motivation . 1
1.2 Research Problem, Aim and Goals . 2
1.3 Dissertation Structure . 4

2 Literature Review 5
2.1 Background . 5

2.1.1 Autonomous Agents . 5
2.1.2 Mobile Robotics & Autonomous Vehicles 8
2.1.3 Quadcopter Model . 9
2.1.4 Localization and State . 11

2.2 Related Works . 15
2.2.1 Quadcopters research and development 15
2.2.2 Agent design applied to autonomous vehicles 18

2.3 Summary . 19

3 Methodological Approach 21
3.1 Problem Formalization . 21

3.1.1 Assumptions . 22
3.1.2 Functional Requirements . 23

3.2 System Overview . 24
3.2.1 Reactive Layer . 24
3.2.2 Executive Layer . 26
3.2.3 Deliberative Layer . 30

3.3 Summary . 31

4 Test & Results 33
4.1 IR sensors integration . 33
4.2 Localization . 34
4.3 Jason . 35
4.4 Summary . 37

5 Conclusion 39
5.1 Final Remarks . 39
5.2 Further improvements . 41
5.3 Future works . 41
5.4 Lessons Learned . 41

References 43

ix

CONTENTS

A Class Diagrams 49
A.1 UAVTalk Library . 49

I Spreadsheets 51
I.1 GP2Y0A02YK Infrared Sensor . 51
I.2 LV-MaxSonar-EZ0 Sonar Sensor . 55

x

List of Figures

2.1 Minimum spanning for quadcopter classification 9
2.2 Coordinate systems and forces/moments acting on the quadcopter 10
2.3 Correlation between rotor blades speed and quadcopter motion 11
2.4 Kalman filter overview . 13
2.5 Representation of the Sampling Importance Resampling (SIR) algorithm 14

3.1 Proposed Approach Architecture . 25
3.2 UAV stabilization PID . 26
3.3 Infrared voltage divider . 27
3.4 Taulabs GCS input configuration . 28
3.5 Sonar signal inverter . 29
3.6 Jason agent reasoning cycle . 31

4.1 Localization algorithm run with robot stopped in the center of the environment . 34
4.2 Localization algorithm performance comparison 35
4.3 CPU usage running Jason . 36
4.4 Heap memory usage running Jason . 36

A.1 UAVTalk Library class diagram . 50

xi

LIST OF FIGURES

xii

List of Tables

2.1 Quadcopter punctual projects advantages and disadvatages 16
2.2 Quadcopter frameworks comparison . 18

3.1 List of parts and cost used in building the UAV 25
3.2 UAVTalk message composition . 30

4.1 IR sensors test results . 33

5.1 Summary SWOT analysis . 40

xiii

LIST OF TABLES

xiv

Abbreviations

2D 2-Dimensional
3D 3-Dimensional
AI Artificial Intelligence
BB Beaglebone
BDI Belief-Desire-Intention
DAI Distributed Artificial Intelligence
FMA Flying Machine Arena
GCS Ground control Station
HTN Hierarchical Task Network
IMU Inertial Measurement Unit
IR Infrared
IPC Inter-Process Communication
JVM Java Virtual Machine
PID Proportional-Integral-Derivative
MAS Multi-agent systems
MaSE Multi-agent Systems Engineering
ROS Robot Operating System
SAS Single-agent systems
SIR Sequential Importance Resampling
SWOT Strengths, Weaknesses, Opportunities, and Threats
UAV Unmanned Aerial Vehicle

xv

Chapter 1

Introduction

The following chapter introduces general aspects from the developed work aiming to clarify its

context, problem statement, and main goals. Moreover, it presents the contribution and document

structure so it might ease the work of the reader.

1.1 Research Scope and Motivation

In the recent years advances in robotics supported the proliferation of Unmanned Aerial Vehicle

(UAV)-based solutions that span from military to civil application. Some known real-world usage

of such technology are applications such as aerial recognition, search-and-rescue, industrial mon-

itoring missions among others. For instance, the Predator and Reaper, two drone built by General

Atomics, which were used by the United States Air Force to recognition and combat over several

countries1. A more pacific application of UAVs is monitoring agriculture as done by the company

AGX Tecnologias that developed several configuration of aerial vehicle to map different varieties

of plantations 2.

A particular configuration of UAV that became popular during the last years is the one of

vertical land/takeoff, known as multirotor vehicles. There are also real-world applications for

multirotors and, to cite a few of many other, we highlight the first “arrest” made by a multirotor

that happened in the United Kingdom. It was a curious case where the car thief hided in the

brushes and police officers were able to arrest him due to an on-board camera in the device3. Also,

Amazon.com Inc., the world’s largest online retailer, announced their Prime Air service which

is a new shipment system where a multirotor delivers packages to customers4; even though the

1http://www.af.mil/AboutUs/FactSheets/Display/tabid/224/Article/104470/
mq-9-reaper.aspx

2http://www.agx.com.br/n2/pages/index.php
3http://www.dailymail.co.uk/news/article-1250177/Police-make-arrest-using-unmanned-drone.

html
4http://www.amazon.com/b?node=8037720011

1

http://www.af.mil/AboutUs/FactSheets/Display/tabid/224/Article/104470/mq-9-reaper.aspx
http://www.af.mil/AboutUs/FactSheets/Display/tabid/224/Article/104470/mq-9-reaper.aspx
http://www.agx.com.br/n2/pages/index.php
http://www.dailymail.co.uk/news/article-1250177/Police-make-arrest-using-unmanned-drone.html
http://www.dailymail.co.uk/news/article-1250177/Police-make-arrest-using-unmanned-drone.html
http://www.amazon.com/b?node=8037720011

Introduction

company states that the service will be only available in some years, it confirms that the interest in

multirotors has spread through different domains.

Although the proliferation of applications using multirotor vehicles, they are still constrained

by human intervention in activities as piloting the vehicle. Indeed an operator is necessary to

remotely control them. This fact in many cases can result in high maintenance and deployment

costs particularly speaking in the industrial domain applications. Some applications implement

an autonomous flight mode, however the autonomy here is intended as a simple path planning

through several given points.

Thus, one of the great challenges is how to provide and embed into a multirotor vehicle real

autonomous decision-making capabilities. This is true in many application where the environment

is dynamic and short term decisions need to be made to accomplish the designed mission. An-

other kind of situation where decision-making capabilities are desired is when cooperation among

vehicles is necessary to pursue a common goal. To that sense the agent and multi-agent system

paradigms are of a great importance and inspiration.

An envisioned scenario of some years of research from now is to imagine having a robot that

can pick up valuables and perhaps save people when there is a fire in your house. As far as it seems

from our current reality, we believe that it is not far from happening due to the rapidly advance of

microelectronics and artificial intelligence. Thus, this work intends to give the first step towards an

aerial vehicle equipped with autonomous decision-making and reasoning capabilities that controls

and adapts itself to new environmental conditions to be applied in civil scenarios. Examples like

the ones given above drive researchers around the world in enhancing this machines with more

capabilities and skills.

1.2 Research Problem, Aim and Goals

Even though nowadays the design and implementation of an UAV unit imposes less effort to re-

searchers, the necessity to provide vehicles some degree of autonomy and reasoning is challenging

and imposes many issues; such as how much intelligent the UAV needs to be and how to embed

high costly cognitive algorithms in quadcopter while responding in a timely fashion to execute

maneuvers. Developers need to consider that some applications are more demanding than oth-

ers and thus the architectural frameworks behind these systems should adapt themselves to fulfill

these tasks. To address these design issues, flexibility and modularity are inherent requirements

for such architectures. That is, they should effortlessly adapt to changing conditions and each of its

component should be transparent to others easing its usage in different multirotors configurations.

From the previous discussion, the problem statement is the lack of software architectures that

properly supply modularity features when implementing high-level reasoning capabilities to mul-

tirotors vehicles. Although the multirotors with autonomous features is a wide research area, this

work is limited to map information from lower level controllers and sensors to a more deliberative

layer.

2

Introduction

Much research on multirotors platforms has been carried out focusing on stability and flight

control issues rather than on software foundations to ground cognitive reasoning. Albeit deploy-

ments are vast in the literature, this work relies on the belief that the next step to achieve the full

potential of UAVs is to embed intelligence in these devices. Consequently, this dissertation aims to

specify, implement and test a modular, extensive and flexible software architecture for the design

of autonomous UAVs.

To better understand our main goal, we introduce the proposed approach that will be deeply

described in following chapters. From a software perspective, the current proposal is an instan-

tiation of a three layer architecture divided into different abstraction level operations: reactive,

executive, and deliberative. In the deliberative level we have the strategic decision-making pro-

cesses where is decided what high-level actions will be taken; the executive layer translates those

aforementioned actions to low-level information for the controllers; lastly, the reactive layer makes

possible to execute the control action and receive new perception from sensors. On the other hand,

from the hardware perspective, we worked with two computing platforms, each dedicated to the

different layers of the proposed architecture (that is Openpilot CC3D to reactive layer and Bea-

gleBone computer to executive and deliberative layers), which will be explained throughout this

document.

In order to achieve this, the project was divided in several goals as follows:

1. review the technical background for this dissertation as well as the relevant works to identify

the gap in the current state of the art;

2. implement the interaction between the reactive and executive layers to decouple the upper

layers from the low-level control implemented by the firmware of the Openpilot CC3D

board;

3. extend the model to support additional sensors. Different set of sensors are necessary to

assure proper operation of the UAV platform in different environments. In the current thesis

we consider a minimal configuration of “external” to integrate the existing ones. Namely the

set of sensors to further consider other than the embedded 3-axis gyroscope and accelerom-

eter, are four infrared and two sonar devices;

4. assess the sensors integration. A correct reception of coherent sensorial data is of imperative

importance for the UAV to estimate and update its current state;

5. adjust and evaluate the low-level control. Based on the different payloads and dimensions

of the quadcopter, different values of the controller parameters are necessary. To ensure that

the quadcopter is stable enough to flight, the PID control loops require tuning;

6. implement an algorithm that based on the available sensor data localizes the drone in an

environment. In order to avoid undesireable drift the robot must be able to tell where he is

and where he is going;

3

Introduction

7. integrate a reasoning engine and link that same engine with the rest of the robot. To easily

develop and test agent behavior method a researcher must be able to run high abstract plans

from within the robot.

This dissertation intends to contribute to the body of knowledge of unmanned aerial vehicles

by prototyping a low-cost quadcopter framework that uses the proposed architecture in order to

modularize the research in this field while decouples each layer from the others. For instance, per-

formance of different decision-making processes may be evaluated regardless the motion control,

though we are aware of their influence of these parts in the whole multirotor performance.

The proposed architecture is divided in three layers. The top layer encapsulates everything

related to high level planning, it answers what the UAV has to do. The middle one contains a

description of the environment and links the planning algorithms with the motion controllers. The

bottom one controls the UAV, answering the question how is it done.

1.3 Dissertation Structure

The rest of the document is organized in the following way. In chapter 2 a review of the literature

on the topic is done, it starts by looking into background questions inevitably necessary to the rest

of the project and follows to related works that have the same or similar goals as this dissertation.

In chapter 3 a detailed description of the proposed approach is given. It focus in better defining

the problem and explaining the proposed method. Chapter 4 presents the results achieved during

the final stage of the project. At last, in chapter 5, it is written an overview of the document, the

final solution is analyzed, future paths are highlighted and a look back is taken.

4

Chapter 2

Literature Review

This chapter contains both the background research and the review of related works. The objective

here is to bestow the reader with the needed information to analyze the rest of the document.

2.1 Background

This section introduces the basic knowledge needed before starting the dissertation. Here the

used concepts throughout this document are explained in detail. This work involves five main

areas which we review in this chapter and they are: autonomous agents, mobile robotics and au-

tonomous vehicles, quadcopter dynamics, localization and state inference, and finally deliberation

and planning.

2.1.1 Autonomous Agents

Multi-agent systems (MAS) is the area of Distributed Artificial Intelligence (DAI) that “is con-

cerned with coordinated intelligent behavior among a collection of (possibly pre-existing) au-

tonomous intelligent ‘agents:’ how they can coordinate their knowledge, goals, skills, and plans

jointly to take action or solve (possibly multiple, independent) problems” [Gas87]. This concept

rises many issues regarding how agents interact and create societies, how the environment affects

the sphere of perceptions and influences of the agent.

However, in some scenarios, issues regarding communication between agents, coordination

and modeling of other agents are not present. This happens because there is only one agent in

the environment, resulting in what is called single-agent systems (SAS). SAS are a special case of

multi-agent systems [SV00] where a single entity receives all perceptions and decides its actions.

This assumption does not constraint the existence of another entity in the environment rather it

means that the agent does not recognize any other and existing ones are modeled as part of the

environment.

Even though there is no unique definition of an agent, the agent-based designs were (and still

are being) successfully deployment in different domains. As Tolk stated [TU09], an agreed-upon

definition is not mandatory for success. Franklin, aiming to answer the question: "Is it an agent,

5

Literature Review

or just a program?" [FG97], concluded that it is possible to identify the essential features of an

agency but there was still room for improvement in the existent definitions; many other authors

try to answer this question [TU09, RNC+95, JSW98]. This dissertation considers the definition

presented by Jennings and Wooldridge [JSW98] that defines an agent to be a computer system

with the three following properties: situateness, autonomy and flexibility.

• Situateness: The agent belongs to an environment, affects and is affected by it. An agent

has to be able to sense some information from the environment and to manipulate parts of

it such as other agents or passive objects. It may also be manipulated by such agents or

external conditions.

• Autonomy: The agent controls its own internal state and decision making process. This

does not mean that an agent is a closed entity, it should consider other agents or human

opinions but, nonetheless, it must be able to act without those.

• Flexibility: The agent can change between responsive states, it can be more or less reac-

tive/deliberative based on its needs. Also, it is able to adapt its objectives and actions to new

environments. When facing a new situation, the agent has to be able to respond to it in the

best way possible; if the previous objectives become irrelevant then the agent should find a

new goal and set of actions to complete such goal.

In this dissertation agents are considered only software agents; this is not an attempt to com-

plement the definition but a way to separate the terms in the rest of the document. The entire

system (software and hardware) will be referred as robot and will be introduced later in 2.1.2

Mobile Robotics.

We shall now look into the agents themselves. There are essentially three kind of agents

architectures: reactive, deliberative and hybrid; and we describe them below.

Reactive
The research in reactive agents started in the middle 80’s. The pioneers rejected symbolic Arti-

ficial Intelligence (AI) approaches that explained intelligence as a group of facts and rules and

supported that intelligence is a result of the interaction between agent and environment [Woo08].

This means that intelligent behavior does not need to be explicit and rather may raise from the

relation between many simpler components. In 1986, Brooks proposed the subsumption architec-

ture [Bro86, JSW98], which nowadays is one of the most known architecture for reactive agents.

Brooks divided a robot in layers as one would expect, but instead of dividing by functionality, the

normal approach till then, he divided according to behavior. In a subsumption architecture there

are multiple reactive controllers that regulate one another in a hierarchical way; each controller

is given a task and it is constantly trying to achieve its goal. The final output of the agent is the

congregation of all controllers outputs. In order to define which controller has priority, the up-

per controllers can modify the internal state of the lower ones enabling or disabling behaviors.

However, subsumption (as well as other reactive architectures) has a grave fault to be of use in

6

Literature Review

deliberative systems [RNC+95]. When trying to create system that answer complex situations the

relations between the controllers becomes too confusing for people to understand, therefore it is

considered to be a reactive agent.

Deliberative
Among the best-known deliberative architectures is the Belief-Desire-Intention (BDI) proposed

by Rao [RG+95] because it is so popular it will discussed here. BDI separates the mental states

of an agent into three “mental attitudes” [RG+95]: beliefs, desires and intentions. Beliefs are the

ideas an agent has about the world. It does not consider them completely correct or static, the

agent knows a belief can change depending on the environment or in the sensors data, that is why

beliefs differs from knowledge. Desires represent the current objectives of the agent; the agent

will actively try to get to desired states. Again, as with beliefs, the desires set is mutable; some

desires may get outdated or impossible and new ones may surface during the lifetime of the agent.

Lastly, there are intentions, which represent multiple course of actions available for the agent at

a given time, it then commits to one of the intention until the desires or beliefs change rendering

that intention not optimal between the options. An usual objection to BDI agents is their inability

to plan their actions [DSSP09], this topic has been receiving more attention by the community and

it now has some possible solutions. In [SdSP06], an approach using Hierarchical Task Network

(HTN) is presented. The problem with this approach is the great dependency on the programmer

in plans creation; it simply provides a look-ahead technique to choose among existing plans.

Hybrid
The problem with both of the architectures presented above is that they do not regulate the entire

agent. Reactive architectures do not support high-level planning and deliberative architectures do

not control the agent by themselves. Addressing this, researchers created a new model of architec-

tures that tried to take the best of both worlds. Hybrid architectures are a composite of subsystems

where each has different functions in the entire agent. These components, more generally referred

to as layers, are dotted with different level of reasoning. Layers closer to the inputs are more

reactive and layers away from inputs are more deliberative.

The Three-layer Architecture [RNC+95, G+98] raised as a manner to solve problems with the

subsumption-like architectures. The idea is simple, there are three layers each taking care of a

part of the system. The reactive layer has the control over the sensors and actuators, it answers

whenever there is a demand for real-time actions or there is no need for deliberation. The executive

layer works as a middle man between the other two, it receives plans resulting of the deliberation

and transcripts them into actions. Also it interprets the data from the reactive layer into meaningful

information offering the higher layer a representation of the world. The deliberative layer reasons

in a higher level, keeps the agent focused on goals, plans for solution and other time consuming

tasks that require higher degrees of intelligence. This architecture, in all of its implementations,

has over the last years given good results and will be used for this dissertation.

7

Literature Review

Nevertheless, nowadays more architectures are being proposed to solve this problem and below

two are presented:

• CLARAty:[NWB+03] CLARAty intends to allow researchers to easily deploy a working

architecture for robot control without the need to remake it. The architecture separates

the system in two layers, a Functional Layer and a Decision Layer, the functional layer

encapsulates everything related to hardware from the Decision Layer while the latter decides

how to proceed. The Decision Layer reason about resource availability, intended goals and

world modeling, while the Functional Layer keeps the system going, it can be seen as an

operative system that abstracts low level controls from the rest of the system.

• SC-Agent:[PPS+08] SC-Agent is an architecture divided into two layers. It aims to make

robot control easily scalable and robust at the same time. The most important part of the

architecture is the communication framework that takes into account specific problems re-

sult of distributed systems (such as latency and synchronization). The whole architecture is

made of agents, when the deliberative level want to provide a new goal to the reactive one, it

simply sends a new agent to it. This approach allows a high level of dynamism in changing

environments.

2.1.2 Mobile Robotics & Autonomous Vehicles

The definition of robot evolved together with the technology to build it. Nowadays, researchers

understand robots as machines capable of carrying out a complex series of actions automatically

and undependable of human interference [Dia93]. This concept is directly connected to the defini-

tion of an agent mentioned in the last section before. The difference between them, as their main

characteristics are mutual to both, is that an agent may or may not be associated with a hardware

device where robot always include software and hardware components.

With this definition a wide range of robot can be identified, this dissertation only considers

robots that can move according to their desire, also known as mobile robots. This definition,

however, is still abstract and applicable to many examples; in order to better define our focus, a

taxonomy was designed and below the different classification aspects are described.

Environment: a robot is designed according to the place where it is going to operate. For

example, an underwater vehicle has to be waterproof, on the other hand an aerial one does not have

this constraint. This means the environment has a big impact on the structure and functionality of

the robot and should therefore be highly considered when trying to classify it.

Locomotion: other important characteristic is how does the robot move in the world. In order

to operate in new places a robot must change to different locations, this demands a locomotion

method. In nature we find examples like legs or wings, in vehicles we find wheel and propellers.

Robots due to their higher degree of control can use all of the above, creating this way a big range

of options in this category.

Configuration: describing the mean of locomotion is not enough, the configuration in which

these actuators appear also influences the abilities of the robot. Propeller-driven airships use the

8

Literature Review

Figure 2.1: Minimum spanning for quadcopter classification

same locomotion mean as a helicopter but with the different configuration different abilities can

be achieved and constraints avoided.

Of course one could argue that this taxonomy does not avoid all the ambiguities, a aircraft is

a conjugation of balloon and propellers and therefore can fit into two different categories. This

problem was understood but discarded as is not important for the research conducted through this

dissertation.

Based on the taxonomy, a concise definition of quadcopters can be done, as in Figure 2.1. It is

important to note that only the important nodes where explored and for simplicity purposes only

some of the nodes are present. A quadcopter is then an UAV which uses four propellers for thrust

and has them configured in either a cross or plus format. The quadcopter robot can take off and

land vertically which in the UAVs world is a big advantage as it lowers the requirements for a

landing platform. Also, it allows the robot to hover in place with considerable stability.

Other topic that was studied about mobile robotics was the proportional-integral-derivative

controller (PID controller)[Ast95]. A PID controller is a control algorithm that calculates the

inputs based on the feedback from the previous action in addiction to the desired output. The

algorithm needs a different quoficient (gain) for each of the three representations of the error. P

denotes the proporctional gain which relates to the present error, I relates to the past erros and is

called integral gain and lastly D which is the derivative gain and previews future error considering

the current evolution of the system.

2.1.3 Quadcopter Model

The general model of a quadcopter has been fully detailed in other works, for example [CDL04,

TM06], and will not be discussed in detail here. In Figure 2.2, the coordinate system for the

9

Literature Review

quadcopter can be seen. The world frame W is a 3-Dimensional (3D) space composed of xW ,

yW and zW , with the zW axis pointing away from the center of the planet. The body frame B is

composed of xB, yB and zB with zB pointing in the same direction of zW in perfect hover state, xB

and yB going in the direction of motor 1 to 3 and 2 to 4, respectively. This dissertation uses φ , θ

and ψ for the roll, pitch and yaw angles which give a rotation matrix R:

R =

cosψcosθ − sinφsinψsinθ −cosφsinψ cosψsinθ + cosθsinφsinψ

cosθsinψ + cosψsinφsinθ cosφcosψ sinψsinθ − cosψcosθsinφ

−cosφsinθ sinφ cosφcosθ

 . (2.1)

The position of the quadcopter in the W frame is given by the function r, as can been seen in

Figure 2.2, and the forces acting on it are the gravity in the −zW direction and F , the cumulative

force of the rotors. The acceleration of the quadcopter in reference to the world can be expressed

as

r′′ =

 0

0

−g

+R

0

0

F

m−1. (2.2)

And the angular velocity

w =

cosθ 0 −cosφsinθ

0 1 sinφ

sinθ 0 cosφcosθ

φ ′

θ ′

ψ ′

 (2.3)

Besides forces we also have moments produced by the blade rotation on the rotors but these

can be ignored as they cancel out each other. M1 and M3 produce a counterclockwise moment

and M2 and M4 a clockwise one, at hover state or vertical translations they cancel out leaving the

Figure 2.2: Coordinate systems and forces/moments acting on the quadcopter
[MMK12]

10

Literature Review

Figure 2.3: Correlation between rotor blades speed and quadcopter motion
[Bou07]

quadcopter with no angular velocity change. However, a quadcopter might need to rotate and for

this purpose the angular accelerations can be calculated with

I

p′

q′

r′

=

 l(f2− f4)

l(f1− f3)

k(f1− f2 + f3− f4)

−
p

q

r

× I

p

q

r

 (2.4)

where all the rotor are equal and at the same l distance from the quadcopter center of mass, I

is the inertia matrix of the vehicle and k is a constant determined from the rotors.

Using this model, controllers may designed to make the quadcopter change its position and

attitude. As can be seen on Figure 2.3 by increasing or decreasing the rotation of the blades the

quadcopter can yaw and and translate freely in 3D space, bestowing it with six degrees of freedom,

a so much appreciated feature in UAVs.

2.1.4 Localization and State

In order to perform autonomous intelligent navigation, a robot needs to know its global localiza-

tion, i.e. a robot must know its position according to a system wide reference [TFBD01, Thr03].

This information is needed so that the robot can define its state. The robot’s state contains all the

information about itself and its relation with the environment, for example, its localization, battery

level, goals and so forth.

Most of this information, specially localization, is dependent on how the robot models the

world. As can be seen see below there are many types of possible descriptions [Jen01]:

11

Literature Review

• Topological maps: a topological map describes the environment based on its utility to the

robot, i.e. what in the scope of the robot operations can be performed there. The maps is

seen as a graph where: nodes represent places, such as rooms; edges represent links between

places like hallways or doors. Moreover, each node contains a description of the place or

its abilities. A room may, for example, contain a printer; this would augment the respective

node with the ability to give access to a printer. This kind of maps are clearly very useful

for high level deliberation. It is easy to plan for a goal on this description. However when

computing the trajectory from A to B (where A and B refer to spacial coordinates) these

maps are not enough, as they do not contain geometric information about the environment.

• Feature maps: a feature map is a list of features extracted from the environment and with

known positions. This mapping technique offers a good geometric description of the en-

vironment as, by observing a feature and computing its relative position, it is possible to

calculate the global position of the robot. The shortcoming here are three: the number of

unique features may be too small, i.e. the environment may be too simplistic; the difference

from one feature to another may not be enough for the sensors to understand; the feature

by themselves do not give any more information about the environment like the topological

maps might give.

• Grid maps: a grid map divides the map into subspaces, each position is either occupied or

free and the robot calculates his position by evaluating the grid around. This approach has

the advantage of reducing the path-planning problem to a search and trajectory smoothing

algorithm, however the updating process to the entire grid is very computational intense and

the grid usually fill a lot of memory.

Moreover, two or more techniques might be coupled together to represent the environment

and indeed that is the strategy for the most autonomous vehicles using topological maps for high

level reasoning and a different approach for geometric localization [LCK03]. Having a map of the

environment there is still the need for localization in it,. In order to solve this issue two algorithms

were studied. The methods below are the most common approaches to localization and both can

identify the robot localization from an unknown starting position.

Kalman filter [AM12, K+60] is an algorithm that uses a stream of discrete measurements to

statistically produce optimal estimates of the real state. Although the algorithm always finds the

optimal solution, it has some assumptions that limit its utility. First, the algorithm considers that

the sensors have only white noise, i.e. the error can be modeled as a Gaussian distribution. Second,

it considers that world is linear which for most application is not true.

The Kalman filter considers that the current state evolves from the previous one according to

12

Literature Review

Figure 2.4: Kalman filter overview
[WB95]

xk = Fkxk−1 +Bkuk +wk (2.5)

zk = Hkxk + vk (2.6)

wk ∼ N(0,Qk) (2.7)

vk ∼ N(0,Rk) (2.8)

where k means a time instant, x the state at time k, F a matrix that relates the previous state

to the current one, B the matrix that maps the inputs to the state of the system, H a matrix that

correlates the present state with the current measurements, w and v represent the process and

measurement noise respectively and Q and R their covariance matrices.

The algorithm is divided in two phases as can be seen in Figure 2.4. The first, called prediction,

previews the a priori next state estimate x̄k based on the current a posteriori estimate x̂k−1. The

second, called update, happens at time k and fuses the new measurement with the estimate x̄k to

obtain an a posteriori estimate x̂k.

x̄k = Fkx̂k−1 +Bkuk (2.9)

P̄k = FPk−1FT +Q (2.10)

Equations 2.9 and 2.10 describe the prediction process.

13

Literature Review

Figure 2.5: Representation of the Sampling Importance Resampling (SIR) algorithm
[ODC08]

Kk = P̄kHT
k (HkP̄kHT

k +Rk)
−1 (2.11)

x̂k = x̄k +Kk(zk−Hkx̄k) (2.12)

Pk = (I−KkHk)P̄k (2.13)

Equations 2.11, 2.12 and 2.13 describe the update process. P is the error covariance matrix, P̂

its a priori estimation and K is a matrix called Kalman’s gain.

The Kalman filter is only applicable when the system is linear, but there are many scenarios

when this assumption cannot be done. To overcome this limitation other approaches have been

proposed [AM12, Thr03]. One of which is the particle filter [Jen01, ODC08].

A particle filter is an estimation technique that uses weighted particles to approach a posteriori

distribution. A particle is a sample from the a priori distribution that can be weight according to its

importance in the a posteriori distribution. Using this method non-linear update functions can be

modeled. Particle filter virtually model any possible distribution, the problem is that it no longer

guarantees optimal solutions and may even fail to give one if the number of particles is too small

or badly sampled.

There are many algorithms for particle filters, below the Sequential Importance Resampling

(SIR) is explained. This algorithm first proposed by [GSS93] uses samples from an importance

distribution instead of the actual distribution. The idea is that as the number of particles increases

the importance distribution π(xk|xi
k−1) approaches the empirical distribution.

The algorithm can be seen in Figure 2.5 and it is summarized in the following steps:

1. Draw N particles from π(xk|xi
k−1) and calculate the weight for each wi

k = π(zk|xi
k)

2. Calculate the total weight Tw =
N

∑
i=1

wi
k and then normalize the weight of each particle ∀x ∈

[1,N],wi
k =

wi
k

Tw

3. Resample by drawing particles from the current set favoring the particles with higher weights:

14

Literature Review

3.1. Calculate the cumulative sum of weights ∀i ∈ [1,N],ci = ci−1 +wi
k, with c0 = 0

3.2. Set i = 1 and draw u1 from a uniform distribution U [0,N−1]

3.3. ∀ j ∈ [1,N] make:

3.3.1. u j = u1 +N−1(j−1)

3.3.2. While u j > ci do i = i+1, x j
k = xi

k and w j
k = N−1

In step one, N particles are drawn from an uniform distribution of all the particles in the space.

Each particle represents a possible state or, when talking about localization, a pose. Each particle

is then weighted according to the sensors inputs. The weight of a particle is proportional to the

probability of getting said sensor input on the state represented by that particle. This generates

a list of weighted particles. However the weight of a particle is not as important as the relation

between weights; therefore, step number two is to normalize the particles. The list contains now

a set of particles and their relative weight. The particle with the biggest relative weight represents

the pose where it is most probable to find the robot.

Step three is the preparation of the next population of particles; if the algorithm drew again

from the uniform distribution, it would loose the information about the past and each iteration

would never return better results. To counter this it is important to draw the particles considering

the current weighted set. By calculating the cumulative sum of weights the algorithm creates

something like a wheel of fortune, where the size of each cell is as big as the weight of each

particle leading to a bigger probability of selecting particles that better represent the current state.

With a representation of the map and its position relative to that map, a robot is able to compute

the trajectories between itself and an objective point in space as well as is able to understand its

movement state. This allows the robot to freely manoeuvre in its environment without crashing

into obstacles.

2.2 Related Works

This section describes important research projects that intend to achieve similar goals then this

dissertation’s. It does not intent to be an exhaustive survey on the matter, but tries to highlight the

main trends and storyline of autonomous vehicles and quadcopters research. The first subsection

describes projects linked with quadcopters research. The second describes projects that gather

agents and mobile vehicles together in one system.

2.2.1 Quadcopters research and development

This section shows quadcopters projects that can be related to the one discussed in this dissertation,

research approaches that have been taken and lastly a small insight into use of quadcopters by

individuals. Table 2.1 presents a list of the related quadcopter projects as well as an analysis of

their advantages and disadvantages.

15

Literature Review

Table 2.1: Quadcopter punctual projects advantages and disadvatages

Name/Author Entity Advantages Disadvantages

OS4
[Bou07]

EPFL • Many controller options;
• highly detailed dynamics

model.

• No autonomous flight;
• expensive.

[Bur10] DTIC • Low cost;
• testbed for research.

• No operating system on-
board;
• no autonomous flight.

[GSGA09] MIT • Virtual simulation;
• stabilization recovery.

• No autonomous flight;
• does not support six de-

grees of freedom.

Microraptor
[RYAS09]

Oakland
University

• 5th place on SUAS1;
• video-based localization;
• some degree of autonomy.

• Uses redudant sensors;
• autonomy dependent on

GPS signal.

RAVE
[BBP06]

ESTIA
LIPSI

• Tracking algorithm. • Gas-powered;
• no real autonomy.

[HHWT09] Stanford
University

• Ability to perform aggres-
sive maneuvers.

• No autonomous flight.

In the following paragraphs there is a description of the history and methodology used in

two long running projects. Both of them already had many researchers achievements and have

contributed enormously to the development of these UAVs.

Flying Machine Arena (FMA) [LSHD11] is part of Swiss Federal Institute of Technology in

Zürich. Although some project that are now the base for the FMA date from the 1990 [Are13],

the real start was in 2004 with a PhD Thesis from Eryk Nice [Nic04]. The author states that

there were no previous good solutions for a machine that could hover in place autonomously and

his success was the first notorious result of the yet to be FMA. Concurrently, there was another

project going on, which intended to allow the robot to localize themselves indoor by fusing the

information from the robot on-board sensors and a vision system installed on the room; this project

was never implemented but was the idea that led to the FMA. Many years passed and the FMA

16

Literature Review

was still researching but at a slower rate, until 2007 when D’Andrea returned to the academic

world and pushed FMA forward. Starting from 2009, we can identify many important research

results in quadcopters control and autonomy. In [PD09], authors describe an Iterative Learning

Control (ILC) that allow a quadcopter to perform aggressive manoeuvres without the need to

precisely model the entire environment as such would be too costly. This algorithm was light

enough to run online on the robot and was tested in the FMA quadcopters. At the time, during

tests, researchers found that the vision-based localization system used in the FMA gave some

misalignments [DD09] due to impacts or hand manipulating of the quadcopters. With this in

mind they developed a system that could recalibrate the system automatically even when there

were multiple robots. Their research path led to problems like synchronization of quadcopters, in

[SALD10] a method to synchronize robots to music is explained. The assumption there was that

if it is possible to coordinate a quadcopter to an external signal it is possible to coordinate multiple

machines and achieve a harmonious multi quadcopter system.

Two years later FMA published an article [RMHD12] where they report the successful coordi-

nation of a group of quadcopter in catching and throwing a ball. Although references that relate the

project to a multi-agent system can not be found in the paper, the level of coordination is advanced.

In the same year two other papers related to this dissertation were published [MD12, ASD12], the

first describes a controller to safeguard mechanical failures in the quadcopters or the vision system.

As this technology is getting more public such measures are needed to prevent disastrous events.

The second reports a method to generated trajectories for quadcopters fleets. Although some as-

sumption were taken which released the need for negotiation between the robots, the results are

still important as such technique is needed in order to allow for fleet manoeuvres.

Another related work that has been getting much attention in the last years is the GRASP

Lab at the University of Pennsylvania [MMLK10]. They also have a broad range of subjects but

focus their applications to quadcopters. In 2010, they published a paper [MSK10] describing a

method to control quadcopters landing on difficult situation, like upside down platforms. During

their research they found that this method also allows the quadcopters to pick up objects with

the use of a claw. But what is more important is that although the global localization is given

by a vision system, the quadcopters have to identify the landing surfaces on their own and thus

starting a path to autonomy. Not one year after Lindsey et al. showed in [LMK11] a high degree

of autonomy and coordination as quadcopter had to cooperate in order to build a 3D structure.

This is an important work because it touches many problems on multi-agent systems, such as the

robots had to plan not only their actions but also those of their peers, otherwise one could preclude

the others work. By 2012 in [Mel12, MK11], Daniel Mellinger reported methods to both single

and multiple quadcopter systems, that allowed the quadcopters to generate and follow aggressive

trajectories. Lastly in [KMK12] a fleet of small quadcopters flies in formation with less than a

body length of separation. They overcome obstacles without ever crashing into each other or the

environment.

Yet not only in research have these robots been used, there are multiple low-cost open-source

platforms that can be purchased by individuals [LPLK12]. Such projects include some like: Open-

17

Literature Review

Table 2.2: Quadcopter frameworks comparison

OpenPilot AeroQuad ArduCopter Pixhawk

GPS-based waypoint navigation ∼ ×
√

×

Altitude hold ∼
√ √ √

Hardware in the loop simulation
√

×
√

×

Support of other multirotor air-
frames

√ √ √ √

Support of computer vision × × ×
√

GCS provided
√ √ √ √

Camera stabilization
√ √ √

×

Used by
[LLK+12,
LSCU12]

[MTH+12,
MTFP11]√

- Supported ∼ - Needs addon × - Not supported

Pilot2, AeroQuad3, ArduCopter4, Pixhawk5 and some even created their own Raspberry Pi Quad-

copter6. The table 2.2 provides a comparison between the projects mentioned above. It can be

seen that the diversity of choice when picking a quadcopter framework is vast and each of the

frameworks has its own focus of action, some are general like the OpenPilot and some directed

to a specific goal like the AeroQuad. It should also be noted that some of the projects are already

being used in scientific research. Actually the Pixhawk was developed with that objective in mind.

2.2.2 Agent design applied to autonomous vehicles

The concept of agent and robot have fundamental similarities, both have sensors and actuators,

both have environments, both have goals, both have some sort of plans, and so forth. This makes

the application of agent designs methods in robots an interesting approach. This dissertation fol-

lows this perspective and here it reviews some other project that did the same.

In [HDL92] two method to drive a car on a dynamic environment are explored. The first

is based on potential fields and is not closely related to this dissertation; the second however is

based on a multi-agent approach. In this multi-agent approach, authors try to solve the problem

of planning the car motion by designing the car and other controlled vehicles as agents and non-

controlled vehicles as environment entities. The car knows the other agents internal state and

assumes that they cannot lie with these assumptions it can preview their decisions. As for the

non-controlled vehicles, the method previews their motion by extrapolating the current motion to

the future with a basic model of motion.
2http://www.openpilot.org/
3http://aeroquad.com/
4https://code.google.com/p/arducopter/
5https://pixhawk.ethz.ch/
6http://www.botched.co.uk/picopters-maiden-flight/

18

Literature Review

In 1998, Mizoguchi et Al. [MNOH99] described the application of MAS in an office to create a

smart office; their goal was to create a group of agents that could perform delivery of a printing job

on demand. They identified six types of agents: delivery task agents, responsible for accepting the

print job from the user; sensor monitoring agents, responsible for processing sensor data; mobile

robot, responsible for carrying the paper from the printer to the final user; handling robot agent,

responsible for picking up papers from the printer and placing them on the mobile robot tray;

camera robot agent, responsible for the navigation of the mobile robot; and lastly the printer agent

that control the printer. This problem touched some of the more important challenges in MAS

like fault tolerance, negotiation and coordination. This paper is related to the present dissertation

because it can be seen that the application of agent methodologies increased the overall quality of

the system on a measurable way.

The work performed in [DML02] assumes that there are satisfactory solution for the low-

level control of robotics therefore they center the research in high-level deliberation. The authors

also test the usage of Multi-agent Systems Engineering (MaSE) methodology for the project from

which they conclude being a good approach to design a system in a top-down manner. The design

is applied to a heterogeneous rescue team of agents where some agents could only perform some

tasks and they had to organize themselves.

Agentfly [ŠPV+08] is a MAS simulator for UAVs supporting the free flight concept. Each

UAV has an agent and at start each agent has a planned path for the flight. When designing the

paths, collision avoidance is not considered and the problem is solved online. The agents are

able to communicate effortlessly in this work but in the future works section a hint about possible

research on restricted communication collision avoidance is given. The papers clearly shows good

results in terms of performance and convergence of the methods used, however by the time it was

written there was still no work in implementing those algorithms in real life UAVs.

In [TKH09], the development of a method for search and localization of a team of UAVs is

presented. Although a reference to agents cannot be found, one could argue that the proposed

architecture goes in the same direction as agent technology. The article highlights problems like

cooperation and planning with uncertainties, which are two problems discussed in agents envi-

ronment. The method was implemented on fixed-wing airplanes with a bottom facing camera

that communicate over wifi. Also, each is equipped with GPS, a pilot-static system and cameras;

filtering algorithms are used to join the multiple sensors readings.

The IntellWheels [BPRM11] is a wheelchair with a higher level of cognition that offers the

end-user, people with disabilities, a more independent life. The project was developed using multi-

agents design methods, the functionalities are divided by different agents taking advantage of MAS

features like modularity. The control module is similar to the one proposed in this dissertation. It is

divided in three layers, the bottom one related to control of the actuators and the higher responsible

for the high-level objective planning.

From this set of related works one can identify that some are using the agents perspective

in the robot world and some, although not calling it agent, are using the same approach as well.

Furthermore projects that use agent system design techniques as an architecture for the internals

19

Literature Review

of the robot and not only for the robots themselves can be identified. Many works take this way

advantages of the feature of multi-agents systems like modularity and task distribution.

2.3 Summary

In this chapter a review of the background concepts needed for the dissertation was done. There

was a needed to collect a big number of techniques because the project is by definition big. The

research presented here ranged from agents to dynamic models to localization algorithms.

The research answered some of the fundamental questions raised when forecasting the project

and created a set of tools for the development stage. All the solutions found have been tested and

validated on real world applications which better supports the options taken in the next chapter.

Additionally, this chapter looks into the related works on the area, there is an ever growing

number of researchers turning to UAVs in general and quadcopters in specific. Some worry them-

selves with the low level control of the robots others with applications of these machines, not so

many are going for autonomous vehicles and the ones that do, are still in early stages of develop-

ment. Clearly, there is a desire to place these machines at work in groups of more than one and

also a strong desire to make them see and understand the world.

The main conclusion is that the most part of the research is in the last few years and it started

by designing the UAVs themselves. Now that this problem has stable solutions, researches are

starting to look into the possibilities these machines create in the civil world.

20

Chapter 3

Methodological Approach

This chapter formalizes the problem statement and describes the method proposed to solve it.

After presenting the methodological approach, we draw some conclusions about the developed

work.

3.1 Problem Formalization

This work is an answer to the problem of designing a modular and flexible architecture for an

autonomous Unmanned Aerial Vehicles. Not only the relations between controllers has to be

taken into account, but the entire synchronization of the system from the most deliberative parts

to the reactive ones. In order to achieve these features, the following questions have to be made:

1. How does the robot know its location according to the internal representation of the
environment?
As an intelligent agent, the robot must keep an internal representation of the environment.

This raises the problem of relating that representation to the actual robot position in the real

world. An intelligent being keeps information from the past, but this information should not

get distorted throughout the time.

2. How to divide the architecture in a way that is understandable, flexible, and modular?
The level of partitioning has to be well thought when designing an architecture. If the

system is too much divided, it might have overhead problems, on the other hand, if it has

small number of divisions, it might not be flexible enough.

3. How to successfully give an UAV reasoning capabilities?
The problem of designing an intelligent entity has been a problem in the AI field for many

years and it had been proposed various method to such purpose. Our concern here is to

apply one of these methods that can be used in low-cost UAVs context. These machines do

21

Methodological Approach

not support the same computational potential as a normal standalone applications; then, we

pursue a different approach to address this issue.

3.1.1 Assumptions

Although the main goal of the research intends to be used in different scenarios, this project

was grounded upon some assumptions to better bound the project. This imposes well defined

constraints and clarify the chosen paths followed by our methodology. The list of assumptions can

be separated in different areas:

• Environment: these assumptions refer to the place where the quadcopter must fly without

losing balance and control. Although the proposed approach can be used in environments

that breach these statements, for now we will only consider a minimal set of examples.

• Robot: in this topic, the constraints are stated for the quadcopter regarding both maneuver-

ability and reasoning capabilities.

• Communication: the communication performance between the quadcopter and the ground

station is not within the research scope of this dissertation and therefore we assume several

constraints in this subject;

It must be highlighted that, when choosing our assumptions, we acknowledge the need to

guarantee the relevance of the proposed solution. With this in mind, we choose the following

assumptions:

Environment
The environment is the place on space that envelopes the robot. Humans live in very dynamic

environments where they interact with other humans and with the environment itself; however,

in special environments and within limited time frames an environment can be considered static.

Static environments are those where nothing changes without the interaction of an agent. This

does not mean that these environments are simple; imagine yourself lost in a maze alone, the

environment will not change for some time but you will be faced with a hard task nonetheless.

This is the kind of environment considered when designing the architecture for this dissertation.

It does not consider changes in the environment besides those introduced by the robot itself.

Another important consideration about the environment is that the robot has a detailed descrip-

tion of it; using the same example above, it would be like having a map of the maze. Although

this simplifies the problem it is still a hard task to leave a maze in these conditions if you have no

idea where you started or where you currently are.

As this dissertation tries to improve the cognitive side of the robot rather than the control

algorithms, it is assumed an indoor environment; which means the UAV is safe from most of the

atmospheric interferences.

22

Methodological Approach

Robot
We assume that the robot is on-line at all times during a mission and that the energy level during

the flight does not influence the controllability. Also, we consider that the robot has no faulty

components, although there is always noise in the sensors; a possible failure is when some sensor

stops working in the middle of a flight. These assumptions are important because we will not

prepare the system to support fault-tolerance features.

Some considerations about the work of others must also be made. In the next section we

will better introduce the Openpilot CC3D and the TauLabs firmware but they must be mentioned

here; the referenced technologies compose the reactive layer of our system and should enable the

quadcopter to be controllable and stable.

Communication
As it will be seen in the following section 3.2, the overall project has high dependence on the

communication between all layers; however, as it is not the focus of the this dissertation to study

communication issues, some assumptions were taken into account. It is considered that the com-

munication is constant and faultless, which means that all parts of system are connected at all time.

Also, it is considered that no load of data exceeds the network limit. The biggest threat concerning

this matter is the relay of motion trajectories to the reactive layer, but this are punctual transactions

and as consistency is guaranteed by the above assumption; it can parted in smaller pieces and sent

this way.

3.1.2 Functional Requirements

Now that we defined constraints of our system, it is time to describe what requirements we expect

to fulfill. First and foremost, the system should be autonomous, the UAV should function without

human interaction besides the initial “start” command. This means that after connecting the battery

all the parts of the system should initialize themselves and become responsive. This also means

that the system must be able to run reasoning algorithms at real-time. Although the aforementioned

requirements specify that the UAV must be stable, we also have to consider the reasoning time so

the robot does not stop its functioning due to possible delays. Another important requirement is

the modular integration of all parts of the system. When a user wants to change something on the

system it should be simple and to ensure this the architecture should be decomposed in atomic and

self-contained components.

Regarding the UAV, it must be stable allowing the reasoning layer or an user to lock it in a given

position; this raises several requirements. As the quadcopter is by definition unstable even with a

good stabilization algorithm and inertial measurement unit (IMU), it is impossible to completely

eliminate all drifts. It is also impossible to measure the drift using only the sensor contained in the

IMU (gyroscopes and accelerometer). This feature needs sensors that can calculate the position

of the UAV in relation to some outside reference. The data from these sensors needs then to be

compared to some internal representation of the environment. This task is commonly known as

23

Methodological Approach

localization; therefore, there is need to integrate environment sensing sensors, design maps for the

runtime environments and perform localization on those maps.

3.2 System Overview

In this section we detail the proposed architecture and its implementation. For a better understand-

ing, it should be noted that conceptual architecture refers to the overall description of the system

and the physical architecture the actual implementation.

As stated in the introduction, we need a conceptual architecture that renders our system both

modular and flexible. The architecture should allow researchers to change only certain parts of

the system and still get a working deployment. This has a dual advantage because not only allows

rapid testing of new techniques but also allows us to incorporate other contributions in our work.

We designed the architecture present in Figure 3.1 following the three-layers architecture de-

sign paradigm [RNC+95], in order to ensure a modular architecture by default. A layer is defined

as repository of software and hardware that serves a very well defined function; here we have:

• Reactive: this layer holds every component that needs fast-computing cycles, most of sen-

sors, and all actuators; for example, the designer should place rotors, IMUs, stabilization

algorithms, and control algorithms in this layer.

• Executive: this layer encompass fundamental components to cross-map control commands

and agent’s actions. Localization algorithms, navigation algorithms, additional sensors not

used in the low-level controllers.

• Deliberative: this layer contains the cognitive engine; it receives processed information from

the other two layers and output decisions and commands for the next steps.

In our approach each layer is designed as if it was a black box for the other layers. This way

if we change the algorithm for localization in the Executive layer, for example, both the Reactive

and Deliberative would still function exactly the same. Below we explain each layer and their

physical implementation.

3.2.1 Reactive Layer

The bottom layer of the system contains all parts needed to control of the UAV and it has to

be adapted based on the UAV configuration. Here we use a quadcopter design with the motors

configured as an X.

Instead of implementing the layer from scratch, we opted to use the OpenPilot CC3D platform

running TauLabs firmware. The OpenPilot CC3D is a low-cost all-in-one stabilization board,

which means that the circuit board already contains all the needed sensors for stable flight; keeping

in mind that the sensors needed for stable flight are not enough for autonomous flight. For the

second, we need to be able to perceive the outside world, not only the quadcopter position.

24

Methodological Approach

Figure 3.1: Proposed Approach Architecture

Although the OpenPilot Organization develops a matching firmware for their board, we choose

to switch to the TauLabs firmware. TauLabs is a open-source software development community

that forked from the OpenPilot project in late 2012. We decided to go with their firmware because

it targeted teaching and research rather than hobbyist and commercial uses; also it is an active

community of developers that gave full support to this project.

Besides the control board and firmware, this layer also contains the sensors and actuators of

the UAV as well as other structural components. The table 3.1 documents the used parts and their

approximate cost.

The last relevant aspect of this layer is the stabilization algorithm. Although it was not de-

veloped by us, there is a need to refine the parameters to match our quadcopter and operation

environment. The stabilization algorithm is made of a PID controller inside another PID con-

troller. The output from the first is then the input for the second, as can be seen in figure 3.2. The

outer loop assert the attitude of the quadcopter and the inner loop its rate. A quadcopter attitude is

its momentary rotation in the α , θ and ω directions, check figure 2.2. Rate is the constant rotation

on the same angular directions. The difference between the two is that while attitude is used for

holding the quadcopter in position and just moving it from time to time, whereas the rate is used

to directly control the position of the quadcopter. Attitude loop is irrelevant when on autonomous

flight and if the computational burden is small enough, because the values will be updated very

Table 3.1: List of parts and cost used in building the UAV

Quantity Part Name Cost
1 Frame Butterfly X250 330mm Shaft Mini QuadCopter Frame 38.00
4 Rotors Turnigy 1811 Brushless Motor 2000kv 7.51
4 ESCs Turnigy Plush 6A /.8bec/6g Speed Controller 6.18
4 Propellers GWS 5x3 1.29
1 Battery Turnigy 800mAh 3S 20C Lipo Pack 6.09
1 IMU and microcontroller OpenPilot CC3D 59.90

Total: 118.97

25

Methodological Approach

Figure 3.2: UAV stabilization PID

fast an UAV will never be free to return to a levelled position. The reason we decide not to ignore

the outer loop is, as was stated above, each layer must be independent of each other, so the UAV

might possibly be piloted by humans or computers.

The algorithm has actually three of these chains, one for each direction and each can receive

different inputs and gains. However, if the UAV is, like in our implementation, symmetrical it

makes sense that the pitch and roll gains are the same. The bounds for the inputs and the neutral

value can be changed as fit, but again, if we consider autonomous flight, this make small difference.

3.2.2 Executive Layer

The middle layer holds all software and hardware that works as support for other tasks. In order

to get a robot to do what you want, most of the time, it needs to have some information about the

environment or maybe it needs to perform computational tasks that are not directly understood as

cognitive tasks; everything that qualifies as this goes into the Executive Layer.

The core of the layer is the Robot Operating System also known as ROS; this software system

will run on a BeagleBone1 (BB), which is a credit-card size computer with high performance and

a lot of connectivity. ROS is a collection of tools, libraries and conventions that helps researchers

and developers develop robotic systems. Although the framework already support most of the

tasks relevant to a mobile robot, the algorithms are not particularly indicated to UAVs where the

computational resources are so limited, the sensing so minimal, and the response has to be quick.

These extremes are continuously pushing forward the development of new tools and tech-

niques. In our implementation, we go for a minimal sensing approach which aims to reduce the

final cost of the UAV, however it also increases the difficulty of success in most tasks. One good

example, and a problem we had, is the localization. We started by trying the localization package

from [HWB10] but it was not straightforward to apply and the result seemed questionable. Then,

we choose to use a sequential importance resampling (SIR) particle filter. The filter is fed the

readings from four GP2Y0A02YK infrared (IR) proximity sensor placed in each of the horizon-

tal directions of the quadcopter between the propellers arms; and the control module calculates

1http://beagleboard.org/bone

26

Methodological Approach

Figure 3.3: Infrared voltage divider

the values of the movements actions. The SIR outputs the most plausible position and that same

position is then taken into account when computing the next action for the UAV.

D =
A+Bx

1+Cx+Ex2 (3.1)

The GP2Y0A02YK IR sensors cost around 10.92 Euros each and can measure distances be-

tween 20cm and 140cm. The sensors are very simple and have no embedded ADC so they need

to be connected to the analogue pins on the BB. A ROS module developed by us then converts

the read voltage in distance with the equation 3.1. The values were computed by performing a

regression to a rational function with values taken from the curve in figure 3 in the spreadsheet of

the IRs I.1. The output ranges from 0.4V and 2.6V but the BB analogue pins can only take 1.8V

at maximum so we need to pass the signal by a voltage divider. With this in mind, the circuit in

figure 3.3 was designed. The formula used to calculate the output voltage of a voltage divider is

as follows:

Vout =
R1 +R2 +R3

R1 +R2 +R3 +R4
.Vin (3.2)

This means that to maximize the output range of 0V to 1.8V we should bring the maximum of

2.6V to about 1.8V, therefore:

1.8 =
R1 +R2 +R3

R1 +R2 +R3 +R4
.2.6 (3.3)

We now arbitrate that R1 +R2 +R3 = 3kΩ based on the available resources and came to the

conclusion that R4 ≈ 1.2kΩ. This only makes the max voltage ≤ 1.85714V but that is almost no

lost in performance and still protects the BB.

The values taken from the IR sensors then go into our localization module. This module

also receives as parameter a map of the environment. The map as well as the localization are in

2-dimensions. As we stated in the assumptions section 3.1.1, the UAV only operates in known

environment for which a map is designed. The algorithm starts by selecting random particles from

27

Methodological Approach

Figure 3.4: Taulabs GCS input configuration

a uniform distribution on the map space and then starts a cycle in which it continuously reads data

on the topics “/IR_Readings” and “/MovementCommands”. When data enter the “/IR_Readings”

topic, the algorithm knows that there is fresh information on the sensors. It weighs all the particles,

making the ones where received sensors data is most probable to happen heavier; the particles are

then resampled. In this step heavier particles will more likely be selected to continue into the

next generation. The resampling process consists in computing the cumulative weight for each

particle on the set and repeatedly select numbers from a uniform distribution U(0,1). A particle

is resampled if the cumulative weight is bigger than threashold value and only one particle is

resampled for each number. When data enters the “/MovementCommands” topic the algorithm

understands that a movement command was issued and applies it to the particle set. The movement

data is an array of four numbers, in this order: throttle, roll, pitch and yaw. The bounds of each

command are configurable in the TauLabs ground control station 3.4. When new data arrives, the

localization algorithm passes it through the UAV dynamics model in order to obtain the expected

movement, applies some disturbances and updates all the particles. Particles close to an obstacle

are truncated to that obstacle border, we chose to do this because in spite of being impossible to

stand too close to an obstacle, the number of particles has some influence in the next generation

so this decision aims to conserve diversity without accepting the impossible.

Although the method above explains how the robot localizes himself on a 2D map, an UAV

operates in a 3D space. We opted to separate the altitude control as this focus do not focus in

the implementation of a 6-dimensional localization algorithm and, in further works, the method

can be updated to localize the UAV in 3 or 6 dimensions. The altitude is measured by a LV-

MaxSonar-EZ0 sonar sensor pointing downwards, connected to the UART2 Rx pin in the BB. The

LV-MaxSonar-EZ0 has a serial connection that outputs data on a RS232 format but with inverted

28

Methodological Approach

Figure 3.5: Sonar signal inverter

signals; this means that the data had to be inverted before feed the BB. In order to achieve this we

designed the following circuit 3.5.

We implemented a PI controller to command the altitude of the UAV; the PI is a PID with

null contribution from the derivative component. The controller increases the throttle based on the

difference between the set altitude and the measured by the sonar.

Another challenge faced in the development of this layer was the communication protocols.

The firmware uses a protocol called UAVTalk, however there was no module in ROS that could

interpret UAVTalk and publish the information on other formats for the remaining ROS modules.

“UAVTalk is a highly efficient, extremely flexible and completely open binary protocol designed

specifically for communication with UAVs.”2 The protocol works by sending binary object be-

tween two ends; in each side of the connection link, there is an object manager that contains a

set of objects. These objects are used to store data inside the applications. When a layer needs to

communicate with the other, an object is compressed and sent to the other side of the link where

it rewrites the other end object. This guarantees that the protocol can be used for many different

kind of objects and is data independent as the packing and unpacking of the data is done by the

manager and not by the protocol itself. UAVTalk messages are composed as seen in table 3.2.

The only restriction imposed is that the Object ID has to be previously agreed upon by both side

of the link and currently it does not support multiple senders and receivers, only connection with

two entities. As state above, ROS did not support UAVTalk or UAVObjects out-of-the-box, so we

had to create a library that could not only use the protocol, but also keep a live set of UAVObjects.

We wanted to make it generic enough that it could be used in other projects, therefore not ROS

dependent, and, this way, contribute to the OpenPilot/TauLabs community. This library is based on

the Taulabs ground control station; it is divided into two main modules, the UAVObject manager

and the UAVTalk link. The manager is a system that keeps the objects alive and hold a reference

2http://wiki.openpilot.org/display/Doc/UAVTalk

29

Methodological Approach

Table 3.2: UAVTalk message composition

Field Length (bytes) Value
Sync Val 1 0x3C

Message type 1

Object (OBJ): 0x20, Object request (OBJ_REQ):
0x21, Object with acknowledge request

(OBJ_ACK): 0x22, Acknowledge (ACK): 0x23,
Negative-Acknowledge (NACK) : 0x24. Note: The
most significant 4 bits indicate the protocol version

(v2 currently)

Length 2
Not needed since object ID predicts this but useful
for blind parsing. Length of header and data, not

checksum.

Object ID 4
Unique object ID (generated by parser, also used

for framing and version control)

Instance ID (optional) 2
Unique object instance ID. Only present in

UAVObjects that are NOT of type single instance

Data 0-255
Serialized (packed) object. The length of data is
inherent knowledge about that particular object’s

size as identified by ObjectID.
Checksum 1 CRC-8 checksum

to their positions in memory; the UAVTalk link parses the messages and send new data packets. A

class diagram description of the library can be found in A.1.

3.2.3 Deliberative Layer

The top layer of the system is where all the cognitive tasks are performed. We choose to use the

Jason framework because it allows a fast prototyping using a logic language. Next, we describe

the difficulties in connecting mentioned system with the ROS running in the executive layer.

Jason is an interpreter of AgentSpeak [RHB07], an agent-oriented programming language.

Agentspeak is based on logic programming and implements the BDI architecture. This makes

Jason a very interesting engine for implementing cognition on the UAV, but the Jason environment

offers few connectivity. First, it is written in Java and therefore needs a Java Virtual Machine

(JVM) to run which makes it not compatible with ROS. Second, the state inference cycle runs in

a discrete time fashion and the perception/actions can only be given at certain times.

The reasoning cycle for a Jason agent can be found in either [RHB07] or in a simplified version

in Figure 3.6. In the Figure 3.6 we tried to highlight the parts of the cycle that are most important

in this dissertation. Perceive and act are the two methods that needed to be overwritten in order to

allow communication between the Deliberative and Executive layers.

In order to allow the Java environment (where the Jason is running) and the ROS environ-

ment (where the perceptions are being collected and the actions executed), we used Inter-Process

Communication (IPC) methods. IPC allows processes to share information with the help of the

30

Methodological Approach

Figure 3.6: Jason agent reasoning cycle

operation system. After studding several options between the IPC family we choose to use named

pipes.

The logic solution is to encompass the IPC under the Executive layer. There are two modules

that communicate with the Deliberative Layer, “allmaPerceive” and “allmaAct”. “allmaPerceive”

collects information about the environment and stores the most recent data. When the perceive

method is called in the Jason agent, it relays the collected information making sure to pass only

the most recent values. The “allmaAct”, on the other hand, publishes the decisions taken by the

reasoning engine to the rest of the ROS when the algorithm decides on a certain action. It keeps

sharing the same decision until a new one arrives, this way if the above layer crashes the system

still retains some robustness. This module could be extended to also function as a fail-safe system,

that would drive the UAV to a safe position where it could wait for rescue.

3.3 Summary

The proposed architecture is adapted from both the robotics and the MAS world concerning with

the two main requirements of our project that are the modularity and flexibility of the architecture.

The result was a system divided in layers where each has its own function and responsibility. These

layers separate the system by degrees of deliberation and computational power resulting in a top

to bottom chain of command. By combining the layers, it is possible to make an UAV autonomous

allowing researches and developers to create robots capable of helping people, surveillance areas,

or answer disasters. We ended up with a autonomous quadcopter that runs both ROS and Jason

on-board, can localize itself in an environment and is a great tools for research.

31

Methodological Approach

32

Chapter 4

Test & Results

The current chapter presents our tests and the consequent results. As we had a hardware failure

in the beginning of the test phase we had to divide the scenarios into components and test each

separately. Therefore this chapter is divided by components.

4.1 IR sensors integration

To test the accuracy of the ROS module that reads the IR sensors as well as confirming that those

values were approximate enough for the localization algorithm we mounted a rig that allowed us

to configure the distances with approximation of less than a centimeter of error and record the

values for latter analysis.

The rig has 4 IR sensors mounted simultaneously but we present the results separately for each

axis. The table below was created from a sample set of 10000 readings.

From this we can determine that if the distances are small, i. e. below 48cm, the error is irrel-

evant as it is smaller than the accuracy we have from the rig. The problem found is that at bigger

distances the error increases which might reduce the accuracy of the localization algorithm. Fortu-

nately the farther away the robot is from an obstacle the less important accuracy is for localization,

as it is simpler to accommodate higher levels of uncertainty.

Table 4.1: IR sensors test results

Measurement 1 Measurement 2 Measurement 3 Measurement 4
Actual Distance 43 48 71 96
Measured distance 43.44 48.22 73.78 106.51
Variance 0.25 0.22 1.12 3.60
Error 0.44 0.22 2.78 10.51

33

Test & Results

(a) (b) (c) (d) (e)

Figure 4.1: Localization algorithm run with robot stopped in the center of the environment

4.2 Localization

In order to test the localization algorithm we devised a test environment from which we made

some sensor readings and fed those readings to the localization algorithm. To verify the state of

the algorithm at each time step we also developed a visualization program that shows the multiple

particles inside the environment.

The chosen environment was a square box with 149 centimeters on the side. This environment

is simple, easily replaceable and follows all the assumptions stated in the previous chapter. Also in

the previous chapter we described the localization algorithm in use, it required the user to input a

number of particles and a ratio to valorize some particles over others. The chosen values for those

were 5000 and 2 for number of particles and differentiation power respectively.

The output of the visualizer can be seen in figure 4.1. It took only 5 iterations to get a area of

about 20cm, the quadcopter width, and an error of 3cm, however each iteration took about 1.16

seconds which is not viable for real world applications. Although no rigorous test was performed

we can clearly state that a quadcopter needs to update the command inputs with a frequency of

less than 1 second.

To determine if the algorithm was real time capable we tested different number of particles,

retaining the 5 iterations rule constant. The results can be seen in figure 4.2. The graph shows the

time taken per iteration and the difference between the calculated and actual position after the 5

iterations. The time taken is, as expected, the line that increases with the number of particles. The

difference is the line than decreases and in our test got to around 3cm. We decide to not test more

than 5000 particles because as was already said more than a second per iteration is too much.

The optimal number of particles in this environment and within 5 iteration time is around 3250

which takes us to a 5cm error. However that would take half a second per iteration which in turn

would take longer to achieve good results. As this seemed a bit to high for airborne robots we

concluded that a lower number of particles is more advantageous. In spite of losing 10% of the

quadcopter width in accuracy it should not hurt the overall reasoning of the Deliberative layer.

34

Test & Results

Figure 4.2: Localization algorithm performance comparison

4.3 Jason

In this section we will illustrate some performance pointers of Jason interpreter running on the

Beaglebone-based platform. As none of the agents developed by us represented the complexity

of a working one we decide to stress test our platform using a gold miners1 sample. We can

consider that the agent controlling the quadcopter is one of the miners and the rest are virtual

agents spawned to support certain parallel tasks. Also some of the challenges in the sample can

be correlated to real life situations. We are interested in guaranteeing that our system would run

in real time.

The computational weight of the entire process was then probed with jvisualvm2 to retrieve

the figures 4.3 and 4.4.

As can be seen the processor usage never overcomes the 70% which leaves some freedom for

more agents or more demanding tasks. Also the processing power is constant between 40% and

50% reinforcing the previous statement. The only situation when the processing power overcomes

these values is when there was a lot of communication between the agents. The second figure

shows the heap usage and size for the duration of the test. The values is very uncertain between

four and six megabytes but the important aspect is that it never overtakes the 8MB limit. This

is important because other parts of the system, e.g. localization’s map, required large pools of

memory to run.

1http://jason.sourceforge.net/Jason/Examples/Entries/2007/6/21_Gold_Miners_(Jomi_Hubner_and_Rafael_Bordini).html
2http://docs.oracle.com/javase/6/docs/technotes/tools/share/jvisualvm.html

35

Test & Results

Figure 4.3: CPU usage running Jason

Figure 4.4: Heap memory usage running Jason

36

Test & Results

These results show that the Jason interpreter even when running aboard the quadcopter is able

to maintain enough responsiveness to work as a deliberative engine.

4.4 Summary

The tests showed that each individual part works and is able to perform its assigned tasks. In spite

of not being able to experiment the system as a whole we can assume that it would properly work

with some tinkering.

The overall adjust of the system might require some effort as there are many values to change.

But it is certain that the chosen path was correct.

The robot is able to measure distances to nearest obstacles, use those measurements to localize

himself and pass the conclusions into the reasoning engine. This allows the quadcopter to iden-

tify possible drifts and correct them, the biggest challenge when flying autonomously with these

machines.

The next test we intended to make was to assemble the system and let the quadcopter perform

tasks like take-off and hold a position or follow a predetermined path.

37

Test & Results

38

Chapter 5

Conclusion

In this chapter we will take some conclusions about the developed project, the chosen path, and

the problems faced throughout this dissertation.

5.1 Final Remarks

After studying both the robotics and the agents fields, it was concluded that both offer similar

problems and solutions; this allows for a combination of methods that result in a simpler, yet

stronger, system. In the state of the art, we identified clear ways this topic is trying to evolve.

Some are going into the field of assistance robots that do some tasks on place of the humans.

Others are trying to improve upon the current sensoring techniques to allow quadcopters to better

understand their environment.

Here, the chosen path was one that lead to a modular architecture where research in new

fields causes minor implementation overhead. By simplifying the deployment process, the bridge

between development and test can be shortened and the research accelerated. Although this project

still possesses many assumptions that cannot be considered true in the real world, this is a first step

towards a complete autonomous and intelligent quadcopter.

We implemented an architecture that tried to conjugate the robots and MAS worlds together.

The final product is an autonomous quadcopter with localization abilities that would be able to fly

on its own. Unfortunately we run into some hardware failures and resource limitations which were

not solved in time to finish our testing phase. Nevertheless, all tested parts already show relevant

results. In table 5.1 the reader can consult a SWOT analysis of the project, which clearly states the

crucial points of the research performed.

Some of the outcomes of this dissertation are already being used in other research groups. We

received notice that an aerospace research group at Georgia Institute of Technology is using our

uavtalk library to interface with an Openpilot CC3D.

Also, a paper introducing the work done here was accepted at SIMUTools2014.

39

Conclusion

Table 5.1: Summary SWOT analysis

Helpful
(to achieve the objective)

Harmful
(to achieve the objective)

In
te

rn
al

or
ig

in
(p

ro
je

ct
at

tr
ib

ut
es

)

• Modular architecture;

• easy to replicate;

• low-cost platform;

• well defined and relevant con-
tributions.

• Not thoroughly tested;

• hardware choices do not fill
their purpose completely.

E
xt

er
na

l
or

ig
in

(e
nv

ir
on

m
en

t
at

tr
ib

ut
es

)

• Different path from major
researchers;

• high interest from society.

• Law policies might stop further
advancements (on US already
are).

40

Conclusion

5.2 Further improvements

The current state of the project is above everything untested. The main improvement to do right

way would be to test all the parts together and in stressed environments. This should make some

bugs surface, which would in place raise some more improvements.

Regarding improvement that we are already aware off, we have the full implementation of the

UAVTalk protocol. Currently, the Taulabs firmware does not use the full potential of UAVTalk,

multiple instance objects, for example, are not yet needed in the UAV. As we had only a short time

frame for our implementation, we also do not implement this feature in the UAVTalk library; one

possible improvement would be to extend the library so that it could be used in the future.

Another possible improvement would be a set of tool to easily configure the system. There

are many variables that need tinkering which can only be done by trial and error. As examples

of this, we have the PID coefficients, the number of particles, and so forth. One last thing that

is worthy mentioning is the quadcopter parts, the frame and rotors used are not very indicated to

stable flight. A bigger and more powerful quadcopter would be more stable and allow us to run on

other environments.

5.3 Future works

The main purpose of this project was to launch new research project within the faculty so this

section is very broad in ideas. Currently the UAV uses 4 IR sensors to localize itself and a possible

work that can be seen from here is to change the main perception technique to something more

applicable to different UAVs; a laser range finder, for instance, would be applicable to multiple

UAV configuration and still function similarly. Other possibility would be to move into vision-

based sensing and use stereoscopic vision to retrieve the depth data.

Other area where multiple research project could blossom is the control theory one. The

quadcopter has serious stability challenges that could be counter with better control algorithms

and techniques. Also, there are other kind of UAV where this dissertation architecture can be

applied for which the controllers are difficult to design.

Still the most important area where future research could be performed is MAS. As was stated

in the introduction, UAVs are starting to attract many research teams around the world and the

application of MAS techniques to these systems is something which will be done in a near future.

The methods of cooperation and coordination present in the MAS research could bring the idea of

UAVs swarms driving the world forward from paper to real life.

5.4 Lessons Learned

Every project as some chaos involved and it is impossible to plan for everything ahead; this disser-

tation was no exception. From hardware faults to crashes, we had everything. The most important

lesson we learned was always buy two; redundancy is key to project planning, one chance is never

41

Conclusion

enough and a project that involves hardware will have failures from that same hardware. Other

important thing that we can take home is that the order in which the tasks are scheduled is impor-

tant to diminish risks; if we had performed the most uncertain tasks first, we would have found

some problems sooner and had more time to deal with them.

42

References

[AM12] Brian DO Anderson and John Barratt Moore. Optimal filtering. DoverPublications.
com, 2012.

[Are13] Flying Machine Arena. History - flying machine arena. "http://www.
flyingmachinearena.org/history/", 2013. 2013-06-25.

[ASD12] Federico Augugliaro, Angela P Schoellig, and Raffaello D’Andrea. Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex programming
approach. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on, pages 1917–1922. IEEE, 2012.

[Ast95] Karl J Astrom. Pid controllers: theory, design and tuning. Instrument Society of
America, 1995.

[BBP06] B Bluteau, R Briand, and O Patrouix. Design and control of an outdoor autonomous
quadrotor powered by a four strokes rc engine. In IEEE Industrial Electronics,
IECON 2006-32nd Annual Conference on, pages 4136–4240. IEEE, 2006.

[Bou07] Samir Bouabdallah. Design and control of quadrotors with application to au-
tonomous flying. PhD thesis, 2007.

[BPRM11] RA Braga, Marcelo Petry, Luís Paulo Reis, and Antonio Paulo Moreira. Intellwheels:
modular development platform for intelligent wheelchairs. Journal of rehabilitation
research and development, 48(9):1061, 2011.

[Bro86] Rodney Brooks. A robust layered control system for a mobile robot. Robotics and
Automation, IEEE Journal of, 2(1):14–23, 1986.

[Bur10] Leon K Burkamshaw. Towards a low-cost quadrotor research platform. Master’s
thesis, 2010.

[CDL04] Pedro Castillo, Alejandro Dzul, and Rogelio Lozano. Real-time stabilization and
tracking of a four-rotor mini rotorcraft. Control Systems Technology, IEEE Transac-
tions on, 12(4):510–516, 2004.

[DD09] Guillaume Ducard and Raffaello D’Andrea. Autonomous quadrotor flight using a
vision system and accommodating frames misalignment. In Industrial embedded
systems, 2009. SIES’09. IEEE international symposium on, pages 261–264. IEEE,
2009.

[Dia93] Esmeralda M. L. Dias. Robótica: conceitos gerais e sistemas Rhino e Rob 3i. Fun-
dação para a Divulgação das Tecnologias de Informação, 1993.

43

"http://www.flyingmachinearena.org/history/"
"http://www.flyingmachinearena.org/history/"

REFERENCES

[DML02] Scott A DeLoach, Eric T Matson, and Yonghua Li. Applying agent oriented software
engineering to cooperative robotics. In FLAIRS Conference, pages 391–396, 2002.

[DSSP09] Lavindra De Silva, Sebastian Sardina, and Lin Padgham. First principles planning
in bdi systems. In Proceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems-Volume 2, pages 1105–1112. International Founda-
tion for Autonomous Agents and Multiagent Systems, 2009.

[FG97] Stan Franklin and Art Graesser. Is it an agent, or just a program?: A taxonomy
for autonomous agents. In Intelligent agents III agent theories, architectures, and
languages, pages 21–35. Springer, 1997.

[G+98] Erann Gat et al. On three-layer architectures. Artificial intelligence and mobile robots,
pages 195–210, 1998.

[Gas87] Les Gasser. Distribution and coordination of tasks among intelligent agents. In First
Scandinavian Conference on Artificial Intelligence, Tromsø, Normay, March 1987.

[GSGA09] Rahul Goel, Sapan M Shah, Nitin K Gupta, and N Ananthkrishnan. Modeling, sim-
ulation and flight testing of an autonomous quadrotor. In IISc Centenary Interna-
tional Conference and Exhibition on Aerospace Engineering, ICEAE, Bangalore, In-
dia, pages 18–22, 2009.

[GSS93] Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to
nonlinear/non-gaussian bayesian state estimation. In IEE Proceedings F (Radar and
Signal Processing), volume 140, pages 107–113. IET, 1993.

[HDL92] M Hassoun, Y Demazeau, and C Laugier. Motion control for a car-like robot: po-
tential eld and multi-agent approaches. In Proc. of the Int. Workshop on Intelligent
Robots and Systems. IEEE. Raleigh, NC (USA). Citeseer, 1992.

[HHWT09] Haomiao Huang, Gabriel M Hoffmann, Steven L Waslander, and Claire J Tomlin.
Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneu-
vering. In Robotics and Automation, 2009. ICRA’09. IEEE International Conference
on, pages 3277–3282. IEEE, 2009.

[HWB10] Armin Hornung, Kai M. Wurm, and Maren Bennewitz. Humanoid robot localization
in complex indoor environments. In Proc. of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Taipei, Taiwan, October 2010.

[Jen01] Patric Jensfelt. Approaches to mobile robot localization in indoor environments. PhD
thesis, 2001.

[JSW98] Nicholas R Jennings, Katia Sycara, and Michael Wooldridge. A roadmap of agent
research and development. Autonomous agents and multi-agent systems, 1(1):7–38,
1998.

[K+60] Rudolph Emil Kalman et al. A new approach to linear filtering and prediction prob-
lems. Journal of basic Engineering, 82(1):35–45, 1960.

[KMK12] Alex Kushleyev, Daniel Mellinger, and Vijay Kumar. Towards a swarm of agile micro
quadrotors. Robotics: Science and Systems, July 2012.

44

REFERENCES

[LCK03] Dongheui Lee, Woojin Chung, and Munsang Kim. A reliable position estimation
method of the service robot by map matching. In Robotics and Automation, 2003.
Proceedings. ICRA’03. IEEE International Conference on, volume 2, pages 2830–
2835. IEEE, 2003.

[LLK+12] Daewon Lee, Hyon Lim, H Jin Kim, Youdan Kim, and Kie Jeong Seong. Adap-
tive image-based visual servoing for an underactuated quadrotor system. Journal of
Guidance, Control, and Dynamics, 35(4):1335–1353, 2012.

[LMK11] Quentin J. Lindsey, Daniel Mellinger, and Vijay Kumar. Construction of cubic struc-
tures with quadrotor teams. Robotics: Science and Systems, June 2011.

[LPLK12] Hyon Lim, Jaemann Park, Daewon Lee, and HJ Kim. Build your own quadrotor:
Open-source projects on unmanned aerial vehicles. Robotics & Automation Maga-
zine, IEEE, 19(3):33–45, 2012.

[LSCU12] Hyon Lim, Sudipta N Sinha, Michael F Cohen, and Matthew Uyttendaele. Real-time
image-based 6-dof localization in large-scale environments. In Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 1043–1050. IEEE,
2012.

[LSHD11] Sergei Lupashin, Angela Schollig, Markus Hehn, and Raffaello D’Andrea. The flying
machine arena as of 2010. In Robotics and Automation (ICRA), 2011 IEEE Interna-
tional Conference on, pages 2970–2971. IEEE, 2011.

[MD12] M. Muller and R. D’Andrea. Critical subsystem failure mitigation in an indoor uav
testbed. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 780–785. IEEE, 2012.

[Mel12] Daniel Mellinger. Trajectory generation and control for quadrotors. PhD thesis,
University of Pennsylvania, 2012.

[MK11] D. Mellinger and V. Kumar. Minimum snap trajectory generation and control for
quadrotors. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), May 2011.

[MMK12] Daniel Mellinger, Nathan Michael, and Vijay Kumar. Trajectory generation and con-
trol for precise aggressive maneuvers with quadrotors. The International Journal of
Robotics Research, 31(5):664–674, 2012.

[MMLK10] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar. The grasp multiple micro-uav
testbed. Robotics Automation Magazine, IEEE, 17(3):56 –65, 2010.

[MNOH99] Fumio Mizoguchi, Hiroyuki Nishiyama, Hayato Ohwada, and Hironori Hiraishi.
Smart office robot collaboration based on multi-agent programming. Artificial In-
telligence, 114(1):57–94, 1999.

[MSK10] D. Mellinger, M. Shomin, and V. Kumar. Control of quadrotors for robust perching
and landing. In Proceedings of the International Powered Lift Conference, Oct 2010.

[MTFP11] Lorenz Meier, Petri Tanskanen, Friedrich Fraundorfer, and Marc Pollefeys. Pixhawk:
A system for autonomous flight using onboard computer vision. In Robotics and
automation (ICRA), 2011 IEEE international conference on, pages 2992–2997. IEEE,
2011.

45

REFERENCES

[MTH+12] Lorenz Meier, Petri Tanskanen, Lionel Heng, Gim Hee Lee, Friedrich Fraundorfer,
and Marc Pollefeys. Pixhawk: A micro aerial vehicle design for autonomous flight
using onboard computer vision. Autonomous Robots, 33(1-2):21–39, 2012.

[Nic04] Eryk Brian Nice. Design of a four rotor hovering vehicle. PhD thesis, Cornell Uni-
versity, 2004.

[NWB+03] Issa A Nesnas, Anne Wright, Max Bajracharya, Reid Simmons, Tara Estlin, and
Won Soo Kim. Claraty: An architecture for reusable robotic software. In AeroSense
2003, pages 253–264. International Society for Optics and Photonics, 2003.

[ODC08] Helcio RB Orlande, George S Dulikravich, and Marcelo J Colaço. Application of
bayesian filters to heat conduction problem. EngOpt, pages 1–5, 2008.

[PD09] Oliver Purwin and Raffaello D’Andrea. Performing aggressive maneuvers using it-
erative learning control. In Robotics and Automation, 2009. ICRA’09. IEEE Interna-
tional Conference on, pages 1731–1736. IEEE, 2009.

[PPS+08] JL Posadas, JL Poza, JE Simó, G Benet, and F Blanes. Agent-based distributed archi-
tecture for mobile robot control. Engineering Applications of Artificial Intelligence,
21(6):805–823, 2008.

[RG+95] Anand S Rao, Michael P Georgeff, et al. Bdi agents: From theory to practice. In
Proceedings of the first international conference on multi-agent systems (ICMAS-95),
pages 312–319. San Francisco, 1995.

[RHB07] Michael Wooldridge Rafael H. Bordini, Jomi Fred Hübner. Programming Multi-
Agent Systems in AgentSpeak using Jason. John Wiley & Sons, Ltd, 2007.

[RMHD12] Robin Ritz, Mark W Müller, Markus Hehn, and Raffaello D’Andrea. Cooperative
quadrocopter ball throwing and catching. In Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference on, pages 4972–4978. IEEE, 2012.

[RNC+95] Stuart Jonathan Russell, Peter Norvig, John F Canny, Jitendra M Malik, and Dou-
glas D Edwards. Artificial intelligence: a modern approach, volume 74. Prentice hall
Englewood Cliffs, 1995.

[RYAS09] Osamah A Rawashdeh, Hong Chul Yang, Rami D AbouSleiman, and Belal H
Sababha. Microraptor: A low-cost autonomous quadrotor system. In Proceedings
of the ASME 2009 International Design Engineering Technical Conferences & Com-
puters and Information in Engineering Conference, California, USA, 2009.

[SALD10] A Schollig, Federico Augugliaro, Sergei Lupashin, and Raffaello D’Andrea. Syn-
chronizing the motion of a quadrocopter to music. In Robotics and Automation
(ICRA), 2010 IEEE International Conference on, pages 3355–3360. IEEE, 2010.

[SdSP06] Sebastian Sardina, Lavindra de Silva, and Lin Padgham. Hierarchical planning in
bdi agent programming languages: A formal approach. In Proceedings of the fifth
international joint conference on Autonomous agents and multiagent systems, pages
1001–1008. ACM, 2006.

[ŠPV+08] David Šišlák, Michal Pěchouček, Přemysl Volf, Dušan Pavlíček, Jiří Samek, Vladimír
Mařík, and Paul Losiewicz. Agentfly: Towards multi-agent technology in free flight

46

REFERENCES

air traffic control. In Defence Industry Applications of Autonomous Agents and Multi-
Agent Systems, pages 73–96. Springer, 2008.

[SV00] Peter Stone and Manuela Veloso. Multiagent systems: A survey from a machine
learning perspective. Autonomous Robots, 8(3):345–383, 2000.

[TFBD01] Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank Dellaert. Robust monte
carlo localization for mobile robots. Artificial intelligence, 128(1):99–141, 2001.

[Thr03] Sebastian Thrun. Robotic mapping: A survey. Exploring artificial intelligence in the
new millennium, 1:1–35, 2003.

[TKH09] John Tisdale, Zuwhan Kim, and J Hedrick. Autonomous uav path planning and esti-
mation. Robotics & Automation Magazine, IEEE, 16(2):35–42, 2009.

[TM06] Abdelhamid Tayebi and Stephen McGilvray. Attitude stabilization of a vtol quadrotor
aircraft. Control Systems Technology, IEEE Transactions on, 14(3):562–571, 2006.

[TU09] Andreas Tolk and Adelinde M Uhrmacher. Agents: Agenthood, agent architectures,
and agent taxonomies. Agent-Directed Simulation and Systems Engineering, 78,
2009.

[WB95] Greg Welch and Gary Bishop. An introduction to the kalman filter, 1995.

[Woo08] Michael Wooldridge. An introduction to multiagent systems. Wiley. com, 2008.

47

REFERENCES

48

Appendix A

Class Diagrams

A.1 UAVTalk Library

This appendix shows a class diagram for the developed UAVTalk library. This library was a major

contribute for the community and is already being used by other research groups.

49

Class Diagrams

Figure A.1: UAVTalk Library class diagram

50

Annex I

Spreadsheets

I.1 GP2Y0A02YK Infrared Sensor

This section contains the datasheet for our infrared sensors.

51

GP2Y0A02YK

GP2Y0A02YK

� Absolute Maximum Ratings

� Recommended Operating Conditions

� Outline Dimensions (Unit : mm)

Long Distance Measuring
Sensor

� Features
1. Less influence on the colors of reflected objects and their

reflectivity, due to optical triangle measuring method

2. Distance output type

(Detection range:20 to 150cm)

3. An external control circuit is not necessary

Output can be connected directly to a microcomputer

*1 Open collector output

Parameter Symbol Rating Unit
Supply voltage VCC V

Operating temperature Topr −10 to +60 °C
−0.3 to VCC +0.3 V

−0.3 to +7
Output terminal voltage VO

*1

Storage temperature Tstg −40 to +70 °C

(Ta=25°C)

Notice In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP
devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.

Internet Internet address for Electronic Components Group http://sharp-world.com/ecg/

Parameter Symbol Rating Unit
VCC 4.5 to 5.5 VOperating Supply voltage

1. For detection of human body and various types of objects in

home appliances, OA equipment, etc

� Applications

37
4-R1.75

R3.75

Light emitter
side

29.5

�4.475

φ3.2

�19.8±0.1

φ3.2

R3.75

Light detector
side

4-R1.75

10.1

13 11
.9

Lens case

Connector

PWB 3.3

1.2

14
.4

14
.4

21
.6

2-
1.

5

4.
58.95 10.45

18
.9

+0
.5

−0
.3

1

2

3

VO

GND
VCC

❈ The dimensions marked � are
described the dimensions of
lens center position.

❈ Unspecified tolerance : ±0.3mm

Terminal connection

1 3

GP2Y0A02YK

� Electro-optical Characteristics
Parameter Conditions

*2 *3

*2 L=150cm
*2 Output change at L=150cm to 20cm

−

(Ta=25°C, VCC=5V)

MIN.

20

0.25
1.8

−

TYP.

−
0.4

2.05

33

MAX.

0.55

150

2.3

50

Unit

cm

V

V

mA

Distance measuring range

Output terminal voltage

Difference of output voltage

Symbol

∆L

VO

∆VO

ICCAverage dissipation current
Note) L:Distance to reflective object
*2 Using reflective object:White paper (Made by Kodak Co. Ltd. gray cards R-27 ⋅ white face, reflective ratio;90%)
*3 Distance measuring range of the optical sensor system

Fig.1 Internal Block Diagram

Signal
processing

circuit

LED drive
circuit

VCC 5V

VO

GND

PSD

LED

Voltage
regulator

Output
circuit

Oscillation
circuit

Distance measuring IC

Fig.2 Timing Chart

MAX. 5.0ms

38.3ms±9.6ms

VO (Output)

Distance
measuring
operation

First measurement Second
measurement

nth
measurement

Unstable output First output Second output nth output

VCC

(Power supply)

GP2Y0A02YK

Fig.3 Analog Output Voltage vs. Distance to
Reflective Object

A
na

lo
g

ou
tp

ut
 v

ol
ta

ge
 (

V
)

0

1

2

0.5

1.5

3

2.5

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Distance to reflective object L (cm)

White Reflectivity:90%
Gray Reflectivity:18%

Spreadsheets

I.2 LV-MaxSonar-EZ0 Sonar Sensor

This section contains the datasheet for our sonar sensor.

55

Beam Characteristics
The LV-MaxSonar-EZ0 has the most
sensitivity of the LV-MaxSonar®-EZ™ product
line, yielding a controlled wide beam with high
sensitivity. Sample results for measured beam
patterns are shown below on a 12-inch grid. The
detection pattern is shown for;
(A) 0.25-inch diameter dowel,
 note the narrow beam for close small objects,
(B) 1-inch diameter dowel, note the long narrow
 detection pattern,
(C) 3.25-inch diameter rod,
 note the long controlled detection pattern,
(D) 11-inch wide board moved left to right with

the board parallel to the front sensor face
 and the sensor stationary. This shows the

sensor’s range capability.

Note: The displayed beam width of (D) is a
function of the specular nature of sonar and
the shape of the board (i.e. flat mirror like)
and should never be confused with actual
sensor beam width.

LV-MaxSonar ®-EZ0™
High Performance
Sonar Range Finder
With 2.5V - 5.5V power the LV-MaxSonar®-
EZ0™ provides very short to long-range
detection and ranging, in an incredibly
small package. The LV-MaxSonar®-EZ0™
detects objects from 0-inches to 254-inches
(6.45-meters) and provides sonar range
information from 6-inches out to 254-inches
with 1-inch resolution. Objects from 0-
inches to 6-inches typically range as 6-
inches. The interface output formats
included are pulse width output, analog
voltage output, and serial digital output.

Features
• Continuously variable gain

for beam control and side
lobe suppression

• Object detection includes
zero range objects

• 2.5V to 5.5V supply with
2mA typical current draw

• Readings can occur up to
every 50mS, (20-Hz rate)

• Free run operation can
continually measure and
output range information

• Triggered operation provides
the range reading as desired

• All interfaces are active
simultaneously

• Serial, 0 to Vcc, 9600Baud,
81N

• Analog, (Vcc/512) / inch
• Pulse width, (147uS/inch)
• Learns ringdown pattern

when commanded to start
ranging

• Designed for protected
indoor environments

• Sensor operates at 42KHz
• High output square wave

sensor drive (double Vcc)

Benefits
• Very low cost sonar

ranger
• Reliable and stable range

data
• Sensor dead zone

virtually gone
• Lowest power ranger
• Quality beam

characteristics
• Mounting holes provided

on the circuit board
• Very low power ranger,

excellent for multiple
sensor or battery based
systems

• Can be triggered
externally or internally

• Sensor reports the range
reading directly, frees up
user processor

• Fast measurement cycle
• User can choose any of

the three sensor outputs

 beam characteristics are approximate

MaxBotix ®
 Inc.

MaxBotix, MaxSonar & EZ0 are trademarks of MaxBotix Inc.
Email: info@maxbotix.com
Web: www.maxbotix.com

LV-EZ0™ • patent 7,679,996 • Copyright 2005 – 2012

approximately
actual size

K

J

A

B

C

D

E

F

GND

+5

TX

RX

AN

PW

G

H

L
M

N

 black
 dot

Page 1

values are nominal

A 0.785" 19.9 mm H 0.100" 2.54 mm
B 0.870" 22.1 mm J 0.610" 15.5 mm
C 0.100" 2.54 mm K 0.645" 16.4 mm
D 0.100" 2.54 mm L 0.735" 18.7 mm
E 0.670" 17.0 mm M 0.065" 1.7 mm
F 0.510" 12.6 mm N 0.038" dia. 1.0 mm dia.

G 0.124" dia. 3.1 mm dia. weight, 4.3 grams

PD10001d

- 5 ft.

- 10 ft.

- 15 ft.

- 20 ft.
D

A
B

C
5V
3.3V

MB1000

LV-MaxSonar
®
-EZ0™ Pin Out

GND – Return for the DC power supply. GND (& Vcc) must be
ripple and noise free for best operation.

+5V – Vcc – Operates on 2.5V - 5.5V. Recommended current
capability of 3mA for 5V, and 2mA for 3V.

TX –

RX – This pin is internally pulled high. The EZ0
™

 will continually
measure range and output if RX data is left unconnected or held high.
If held low, the EZ0

™
 will stop ranging. Bring high for 20uS or more

to command a range reading.

AN – Outputs analog voltage with a scaling factor of (Vcc/512) per
inch. A supply of 5V yields ~9.8mV/in. and 3.3V yields ~6.4mV/in.
The output is buffered and corresponds to the most recent range data.

PW – This pin outputs a pulse width representation of range. The
distance can be calculated using the scale factor of 147uS per inch.

BW –

LV-MaxSonar
®
-EZ0™ Timing Description

 250mS after power-up, the LV-MaxSonar®-EZ0™ is ready to accept the RX command. If the RX pin is left open or held
high, the sensor will first run a calibration cycle (49mS), and then it will take a range reading (49mS). After the power up
delay, the first reading will take an additional ~100mS. Subsequent readings will take 49mS. The LV-MaxSonar®-EZ0™

checks the RX pin at the end of every cycle. Range data can be acquired once every 49mS.
 Each 49mS period starts by the RX being high or open, after which the LV-MaxSonar®-EZ0™ sends thirteen 42KHz
waves, after which the pulse width pin (PW) is set high. When a target is detected the PW pin is pulled low. The PW pin is
high for up to 37.5mS if no target is detected. The remainder of the 49mS time (less 4.7mS) is spent adjusting the analog
voltage to the correct level. When a long distance is measured immediately after a short distance reading, the analog
voltage may not reach the exact level within one read cycle. During the last 4.7mS, the serial data is sent. The LV-
MaxSonar®-EZ0™ timing is factory calibrated to one percent at five volts, and in use is better than two percent. In addition,
operation at 3.3V typically causes the objects range, to be reported, one to two percent further than actual.

LV-MaxSonar
®
-EZ0™ General Power-Up Instruction

 Each time after the LV-MaxSonar®-EZ0™ is powered up, it will calibrate during its first read cycle. The sensor uses this
stored information to range a close object. It is important that objects not be close to the sensor during this calibration
cycle. The best sensitivity is obtained when it is clear for fourteen inches, but good results are common when clear for at
least seven inches. If an object is too close during the calibration cycle, the sensor may then ignore objects at that distance.
 The LV-MaxSonar®-EZ0™ does not use the calibration data to temperature compensate for range, but instead to
compensate for the sensor ringdown pattern. If the temperature, humidity, or applied voltage changes during operation, the
sensor may require recalibration to reacquire the ringdown pattern. Unless recalibrated, if the temperature increases, the
sensor is more likely to have false close readings. If the temperature decreases, the sensor is more likely to have reduced up
close sensitivity. To recalibrate the LV-MaxSonar®-EZ0™, cycle power, then command a read cycle.

Product / specifications subject to change without notice. For more info visit www.maxbotix.com

MaxBotix ®
 Inc.

LV-EZ0™ • patent 7,679,996 • Copyright 2005 – 2012
MaxBotix, MaxSonar & EZ0 are trademarks of MaxBotix Inc.

LV-MaxSonar
®
-EZ0

™
 Circuit

The LV-MaxSonar®-EZ0™ sensor functions
using active components consisting of an LM324,
a diode array, a PIC16F676, together with a
variety of passive components. When the *BW is open or held low, the TX output delivers

asynchronous serial with an RS232 format, except voltages are 0-Vcc.
The output is an ASCII capital “R”, followed by three ASCII character
digits representing the range in inches up to a maximum of 255,
followed by a carriage return (ASCII 13). The baud rate is 9600, 8
bits, no parity, with one stop bit. Although the voltage of 0-Vcc is
outside the RS232 standard, most RS232 devices have sufficient
margin to read 0-Vcc serial data. If standard voltage level RS232 is
desired, invert, and connect an RS232 converter such as a MAX232.
When BW pin is held high the TX output sends a single pulse, suitable
for low noise chaining. (no serial data).

 *Leave open or hold low for serial output on the TX output.
When BW pin is held high, the TX output sends a pulse (instead of
serial data), suitable for low noise chaining.

Email: info@maxbotix.com
Web: www.maxbotix.com

Page 2

PD10001

MB1000

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Scope and Motivation
	1.2 Research Problem, Aim and Goals
	1.3 Dissertation Structure

	2 Literature Review
	2.1 Background
	2.1.1 Autonomous Agents
	2.1.2 Mobile Robotics & Autonomous Vehicles
	2.1.3 Quadcopter Model
	2.1.4 Localization and State

	2.2 Related Works
	2.2.1 Quadcopters research and development
	2.2.2 Agent design applied to autonomous vehicles

	2.3 Summary

	3 Methodological Approach
	3.1 Problem Formalization
	3.1.1 Assumptions
	3.1.2 Functional Requirements

	3.2 System Overview
	3.2.1 Reactive Layer
	3.2.2 Executive Layer
	3.2.3 Deliberative Layer

	3.3 Summary

	4 Test & Results
	4.1 IR sensors integration
	4.2 Localization
	4.3 Jason
	4.4 Summary

	5 Conclusion
	5.1 Final Remarks
	5.2 Further improvements
	5.3 Future works
	5.4 Lessons Learned

	References
	A Class Diagrams
	A.1 UAVTalk Library
	I Spreadsheets
	I.1 GP2Y0A02YK Infrared Sensor
	I.2 LV-MaxSonar-EZ0 Sonar Sensor

