

P2P Strategies for the Safe Distribution of Rich

Media Content

by

Helder Fernandes de Castro

Dissertation submitted to the

Faculty of Engineering of the University of Porto

for the degree of

Doctor of Philosophy

in the

Doctoral Program in Electrical and Computers Engineering

Supervisor
Artur Pimenta Alves (PhD),

Co-Supervisor

Maria Teresa Andrade (PhD)

2012

iii

Abstract
The production, distribution, and consumption of information goods have faced various
challenges over the years. Currently, the status-quo in this field is being shaken by the
emergence of the Internet as the prime ground for information exchange.

This powerful new information distribution medium, is very attractive for consumers, who find
it much more comfortable. It is also appealing for distributors as it enables a near costless
replication and distribution of information commodities. If the on-line medium is combined
with P2P distribution, such costs are decreased even further.

However, this near annulment of the mentioned costs, by the Internet, has enabled an
explosion of free content exchange. Content scarcity has thus been virtually eliminated in the
on-line environment, and is thus challenging age-old intellectual-property regimes

Commercial players have begun adopting all-digital on-line distribution and P2P distribution
technologies, inscribed within operations that are characterized by Business Models (BMs)
which have simply been transposed from the “real world” onto the on-line environment.
These BMs are, typically, very dependent on the scarcity of the delivered content, thus, to
make up for its natural loss, in the on-line medium, said BMs generally require the
employment of access restricting Digital Rights Management (DRM) technology to artificially
recreate the lost scarcity.

In spite of the potential of the Internet medium, attested by the successes of many
information content distributing initiatives (legitimate or not), commercial initiatives have
generally attained unremarkable results. DRM technologies have frequently been resented
and circumvented by users and consequently abandoned by commercial players. P2P
distribution technology has also been retreated from, in favour of more traditional ones.
Finally, the overall obtained economic results have generally, been unimpressive.

In this work, we set of to discover and identify the root causes of the lack of success of
commercial online (specifically, P2P based) content distribution initiatives, and, of the
associated, frequent failure of DRM (security) technologies.
We discovered that such root causes are, fundamentally, not technical but mostly economic
and are related to the enforcement of inadequate, information scarcity dependent BMs in a
scarcity adverse environment. We then identified some BMs which we believe to be
adequate for such an environment.
The existing P2P content distribution tools, both in the commercial and non-commercial
sectors, are either inadequate or suboptimal, to provide the necessary support for the
identified BMs. We thus proceeded to conceive a P2P content distribution architecture, upon
which such BMs can be securely implemented.

v

Resumo
A produção, distribuição e consumo de bens informacionais têm enfrentado vários desafios
ao longo dos tempos. Actualmente, o status-quo neste campo está a ser abalado pelo
surgimento da Internet como o terreno privilegiado para a troca de informação.

Este novo e poderoso meio de distribuição de informação, é muito atraente para os
consumidores, que o consideram muito mais confortável que anteriores soluções. É
atraente também para os distribuidores de conteúdos informacionais, pois permite uma
enorme redução dos custos replicação e distribuição desses bens. Se o meio on-line for
combinado com a distribuição P2P, esses custos são reduzidos ainda mais.

No entanto, a quase anulação de custos permitida pela Internet, abriu caminho a um
crescimento explosivo na troca livre de conteúdos media. A escassez (no sentido
económico do termo), de conteúdo informacional, foi assim praticamente eliminada no
ambiente on-line, o que coloca sérios desafios aos regimes de propriedade intelectual há
muito estabelecidos.

Vários operadores comerciais começaram já a adoptar a distribuição digital e on-line assim
como tecnologias de distribuição P2P. Isto tem sido feito no contexto de operações
comerciais caracterizadas por Modelos de Negócios (MNs), que foram simplesmente
transpostos do "mundo real" para o ambiente on-line. Estes MNs são, normalmente,
estritamente dependentes da escassez do conteúdo distribuído. Por essa razão, para
compensar a perda natural dessa escassez no meio on-line, os referidos BMs requerem,
tipicamente, o emprego de tecnologia de restrição de acesso ao conteúdo, para
artificialmente recriar a escassez perdida. A tecnologia em questão é globalmente chamada
de tecnologia de Digital Rights Management (DRM).

Apesar do potencial do meio Internet, atestado pelos sucessos de variadas iniciativas
(legítimas ou não), na área da distribuição livre de conteúdo informacional, as iniciativas de
cariz comercial têm geralmente obtido resultados nada notáveis. As tecnologias de DRM
têm-se revelado incómodas para os utilizadores e são frequentemente por eles
contornadas. Consequentemente, isto tem resultado no seu abandono pelos operadores
comerciais. O emprego de tecnologias P2P de distribuição tem também recuado, em favor
de outras mais tradicionais. Por fim, os resultados económicos obtidos têm, em geral, sido
inexpressivos.

Neste trabalho, tratamos de investigar e identificar as causas da falta geral de sucesso das
iniciativas comerciais de distribuição de conteúdo on-line, (com um enfoque especial
naquelas que empregam distribuição P2P), assim como da falha frequente das tecnologias
DRM associadas.
Descobrimos que essas causas não são, fundamentalmente, de natureza técnica, mas
principalmente económica e que estão relacionadas com o emprego de MNs desadequados
por dependerem da preservação da escassez dos bens distribuídos num ambiente adverso
a essa escassez. Em face do anterior, procedemos então à identificação de alguns MNs
que acreditamos serem adequados para tal ambiente.

As ferramentas, actualmente existentes, para a distribuição P2P de conteúdo, tanto no
sector comercial como no não-comercial, são inadequadas ou insuficientes, para fornecer o
suporte necessário para os MNs identificados. Para responder a essa necessidade,
concebemos uma arquitectura P2P de distribuição de conteúdo, sobre o qual os MNs
referidos podem ser implementados com segurança.

vii

Acknowledgements
This Ph.D. study was undertaken in six years, starting in November 2006, within the context
of the Ph.D. program in Electrical Engineering at the Faculdade de Engenharia da
Universidade do Porto.
It was supported by the Fundação para a Ciência e a Tecnologia (FCT), during four of those
years, and hosted, for the entirety of that period, at INESC TEC under the supervision of
professors Artur Pimenta Alves and Maria Teresa Andrade.

I would hereby, like to express my appreciation to FCT, for their important financial support,
and to INESC TEC for their welcoming attitude, for providing me with a workplace in a
dynamic and fruitful research environment and for their understanding of the specific work
conditionments under which a Ph.D. student is.

I would especially like to thank professors Artur Pimenta Alves and Maria Teresa Andrade
for their valuable and patient guidance and support throughout the course of these Ph.D.
works.

I sincerely thank, also, all the colleagues with whom I have worked and exchanged ideas,
during this period, in the context of the elaboration of scientific papers and of my involvement
in research projects. Collaborating with them has enabled me to acquire new skills and
concepts and to achieve a better divulging of the work that I have developed throughout the
Ph.D.

Finally I thank my family, and friends, for their unconditional and ever-present support.

ix

Contents

Abstract iii

Resumo... ... v

Acknowledgements vii

Contents ix

List of Figures and Tables xv

Symbols and Acronyms xvii

I Introduction 1
1 Context .. 1
2 Objectives ... 1
3 Major Results .. 1
4 Structure of the Dissertation .. 2

II P2P Content Delivery Survey 5
1 Introduction ... 5
2 P2P Technology Survey .. 5

2.1 Introduction .. 5
2.2 Technical Panorama .. 8

2.2.1 Introduction .. 8
2.2.2 Basic P2P Taxonomy ... 9
2.2.3 Content Discovery and Location .. 12

2.2.3.1 In Unstructured Architectures ... 12
2.2.3.2 In Structured Architectures ... 13

2.2.4 Content Exchange/Retrieval .. 13
2.2.5 Content Availability .. 14
2.2.6 Content Management .. 15
2.2.7 Benevolent Use Enforcement .. 16

2.2.7.1 Trust Based Incentive Mechanisms .. 17
2.2.7.2 Trade Based Incentive Mechanisms ... 19

2.2.7.2.1 Resource Trading Schemes (Barter Based) 19
2.2.7.2.2 Micro-payments Schemes (Bond Based) .. 20

2.2.8 Security .. 20
2.2.8.1 Introduction .. 20
2.2.8.2 Identity Security .. 21
2.2.8.3 Communication Security .. 22

2.2.8.3.1 Communication Confidentiality .. 22
2.2.8.3.2 Communication Integrity and Authenticity 23
2.2.8.3.3 Communication Anonymity ... 23

2.2.8.4 Content Security ... 26
2.2.8.4.1 Content Integrity ... 26
2.2.8.4.2 Content Integrity and Availability ... 27
2.2.8.4.3 Content Authenticity .. 27

2.3 Noteworthy Systems .. 28
2.3.1 Introduction .. 28
2.3.2 Gnutella ... 28
2.3.3 BitTorrent ... 30
2.3.4 eDonkey .. 32
2.3.5 FastTrack ... 33

2.4 Summary ... 35

x

3 DRM Technology Survey ... 38
3.1 Introduction .. 38
3.2 Technological Description .. 38

3.2.1 Main Logical Mechanisms .. 38
3.2.1.1 Content Identification .. 38
3.2.1.2 Content Metadata ... 39
3.2.1.3 Rights Expression Language .. 40
3.2.1.4 User and Device Authentication ... 41
3.2.1.5 Event Reporting ... 42
3.2.1.6 Content Protection ... 43

3.2.2 Basic Topology .. 43
3.3 Specifications and Implementations ... 47

3.3.1 Specification Initiatives ... 47
3.3.1.1 OMA DRM .. 47
3.3.1.2 OpenSDRM .. 48
3.3.1.3 ISMA/DRM ... 50
3.3.1.4 MPEG IPMP ... 51

3.3.1.4.1 MPEG IPMP Extensions ... 51
3.3.1.4.2 MPEG-21 IPMP .. 52

3.3.1.5 DMP DRM .. 52
3.3.2 Implementation Initiatives ... 53

3.3.2.1 Windows Media DRM ... 53
3.3.2.1.1 WMDRM Operational Overview .. 53
3.3.2.1.2 WMDRM Content Protection Scheme ... 54
3.3.2.1.3 WMRM Licenses ... 55

3.3.2.2 Helix DRM .. 55
3.3.2.3 DMDFusion .. 57
3.3.2.4 Secure Digital Container DRM ... 58
3.3.2.5 OpenIPMP ... 60
3.3.2.6 AXMEDIS DRM .. 62

3.4 Summary ... 63
4 Commercial P2P Distribution Survey ... 63

4.1 Introduction .. 63
4.2 Veoh .. 63
4.3 Babelgum .. 63
4.4 JOOST .. 64
4.5 PPLive ... 64
4.6 ReelTime ... 64
4.7 LiveStation ... 65
4.8 Imeem ... 65
4.9 BBC iPLayer .. 65
4.10 Qtrax .. 66
4.11 Sky Anytime ... 66
4.12 iMesh ... 66
4.13 TVUNetworks .. 66
4.14 Zattoo .. 67

5 Considerations .. 67

III Present Scenario Analysis 71
1 Introduction ... 71
2 Overview ... 71
3 Analysis ... 72
4 Conclusion .. 75

IV Adequate BMs for the New Paradigm 77
1 Introduction ... 77

 xi

2 Business Models ... 78
3 Validation .. 79

V A Reliable P2P Architecture for the New Paradigm 81
1 Introduction ... 81
2 Requirements and Implications ... 81

2.1 Requirements .. 81
2.1.1 Introduction .. 81
2.1.2 Overall Requirements .. 81

2.1.2.1 Business Requirements ... 81
2.1.2.2 Rights Protection Requirements ... 82
2.1.2.3 Usage Requirements .. 82

2.1.2.3.1 Usage Roles ... 82
2.1.2.3.2 Content Usage .. 82
2.1.2.3.3 Monetary Resource Usage ... 83

2.1.3 Base Requirements ... 83
2.1.3.1 Operational Requirements.. 83
2.1.3.2 Security Requirements ... 83

2.1.3.2.1 Secure Identification ... 83
2.1.3.2.2 Secure Communication ... 84
2.1.3.2.3 Secure Content ... 84

2.2 Architectural Implications ... 84
2.2.1 Introduction .. 84
2.2.2 Overall Implications .. 84
2.2.3 Implications Upon the Core .. 86
2.2.4 Implications Upon the Peripheral Peers ... 87
2.2.5 Summary ... 87

3 Structure .. 90
3.1 Introduction .. 90
3.2 Structure Overview .. 90

3.2.1 Horizontal (or Peer Based) Perspective ... 90
3.2.2 Vertical (or Layer Based) Perspective .. 91

3.3 Peer Structure ... 92
3.4 Peer Structural Roles ... 93

3.4.1 Introduction .. 93
3.4.2 Central Core Peer Role .. 94
3.4.3 Outer Core Peer Role .. 94
3.4.4 Peripheral Peer Role .. 95
3.4.5 Summary ... 96

4 Data Structure and Model .. 97
4.1 Introduction .. 97
4.2 Rationale ... 98
4.3 Registered Information ... 100
4.4 Data Model .. 102
4.5 Data Structure Distribution Over the System’s Tissue 105

5 Operation .. 107
5.1 Introduction .. 107
5.2 Cross Layer Aspects .. 107

5.2.1 Base Operation Types ... 107
5.2.2 Operation Identification .. 111
5.2.3 Peer Identification .. 114

5.3 IPCL Operation .. 114
5.3.1 Introduction .. 114
5.3.2 Interfacing .. 114

5.4 PLL Operation ... 114

xii

5.4.1 Introduction .. 114
5.4.2 Secure Messaging ... 115

5.4.2.1 Pre-Connection Secure Messaging .. 115
5.4.2.2 Post-Connection Secure Messaging .. 118

5.4.3 Peer Registration ... 122
5.4.3.1 Peripheral Peer Registration .. 122
5.4.3.2 Outer Core Peer Registration ... 124
5.4.3.3 Post Registration Actions ... 124

5.4.4 Peer Registration Update ... 124
5.4.5 Communication Session Establishment ... 125
5.4.6 Peer Login ... 127
5.4.7 PLL Info Discovery ... 128
5.4.8 Management .. 130

5.4.8.1 Introduction .. 130
5.4.8.2 OCP Workload Redistribution ... 130
5.4.8.3 Infringing or Faulty Peer Behaviour Neutralization 131
5.4.8.4 Peer Shunning ... 132

5.4.8.4.1 OCP Shunning .. 132
5.4.8.4.2 PP Shunning ... 132

5.4.8.5 Peer Readmission .. 133
5.4.8.6 OCP Updating .. 133
5.4.8.7 PP Servicing Assignment ... 134

5.4.9 UEL Info Relaying .. 134
5.5 UEL Operation ... 135

5.5.1 Introduction .. 135
5.5.2 Secure Messaging ... 135

5.5.2.1 Introduction .. 135
5.5.2.2 Pre User Login Secure Messaging ... 136
5.5.2.3 Post User Login Secure Messaging ... 139

5.5.3 User Registration ... 139
5.5.4 User Registration Update ... 141
5.5.5 User Login ... 141
5.5.6 User Action Monitoring ... 142
5.5.7 Management .. 143

5.5.7.1 Introduction .. 143
5.5.7.2 MO Diffusion .. 143
5.5.7.3 Infringing or Faulty Peer Behaviour Neutralization 144
5.5.7.4 Infringing User Behaviour Neutralization .. 145
5.5.7.5 User Shunning ... 146
5.5.7.6 User Readmission .. 146
5.5.7.7 OCP Updating .. 147

5.5.8 User Request Attending ... 147
5.5.8.1 Introduction .. 147
5.5.8.2 Simple User Attending Operations ... 147

5.5.8.2.1 Simple Writing User Attending Operations 147
5.5.8.2.2 Simple Reading User Attending Operations 150

5.5.8.3 Composed User Attending Operations ... 153
5.5.8.3.1 User Attention Sale Operation .. 153

5.5.9 DRM Enforcement ... 154
6 Inter-System Cooperation .. 155

6.1 Overview.. 155
6.2 Trust Relationship Establishment ... 156
6.3 Trust Information Diffusion ... 157

7 Data and Metadata Objects ... 158
7.1 Introduction .. 158

 xiii

7.2 IPCL Objects ... 158
7.2.1 IPCL Message ... 158

7.3 PLL Objects ... 159
7.3.1 PLL Message ... 159
7.3.2 Peer Registration Certificate .. 162
7.3.3 Peer Connection Certificate ... 163
7.3.4 Peer Info Object ... 164
7.3.5 Peer Quarantine and Expulsion Lists ... 165
7.3.6 PLL Info Retrieval Permit ... 166
7.3.7 PLL Information Location Describing Object .. 167

7.4 UEL Objects .. 168
7.4.1 UEL Message .. 168
7.4.2 User Registration Certificate .. 169
7.4.3 User Hosting Certificate ... 170
7.4.4 Search Query Response Objects ... 171
7.4.5 UEL Information Location Describing Objects .. 172
7.4.6 UEL Info Retrieval Permit ... 174
7.4.7 Media Objects .. 175
7.4.8 MO Ransom Announcement .. 178
7.4.9 User Monitoring Requests and Responses .. 178
7.4.10 Inquiry and Inquiry Response Objects .. 180

8 Exploitation .. 181
8.1 Introduction .. 181
8.2 Advertisement BM Support .. 181
8.3 Donation BM Support... 181
8.4 Ransom BM Support ... 182
8.5 Traditional BM Support .. 183
8.6 Conclusions ... 184

VI Contributions 187
1 Introduction ... 187
2 Adequate BM Identification .. 187
3 Necessary P2P Architecture Definition .. 189

3.1 Introduction .. 189
3.2 Comparison to Current P2P Technology .. 190
3.3 Comparison to Current DRM Capabilities .. 191
3.4 Comparison to Current Commercial Platforms ... 192
3.5 Conclusions ... 193

4 Complex MO Development .. 193
4.1 Introduction .. 193
4.2 MO Format Definition ... 194
4.3 Inter MO Relationships Expression Development .. 194

5 Publications ... 195
6 Conclusions ... 196

VII Final Remarks 199

Annex A – Data Objects 201
A.1 IPCL Data Objects ... 201

A.1.1 IPCLMHFile ... 201
A.2 PLL Data Objects .. 201

A.2.1 PLL Message ... 201
A.2.1.1 PLLSIHFile ... 201
A.2.1.2 PLLPSIHFile .. 202
A.2.1.3 PLLPSICTopFile .. 203

A.2.2 Peer Registration Certificate .. 205

xiv

A.2.3 PLL Peer Info Object .. 207
A.2.4 Peer Quarantine List .. 209
A.2.5 PLL Info Retrieval Permit ... 210

A.3 UEL Data Objects .. 212
A.3.1 UEL Message .. 212

A.3.1.1 UELSIFile ... 212
A.3.2 User Registration Certificate .. 213
A.3.3 User Hosting Certificate ... 216
A.3.4 Search Query Response Object ... 217
A.3.5 UEL Information Location Describing Object ... 220
A.3.6 UEL Info Retrieval Permit ... 224
A.3.7 Media Objects .. 225
A.3.8 ERRs and ERs ... 229
A.3.9 Inquiry and Inquiry Response IOs .. 235

Annex B – P2P Technologies 243
B.1 Structured P2P Lookup Protocols .. 243

B.1.1 Content Addressable Network.. 243
B.1.2 Chord ... 245
B.1.3 Tapestry ... 246
B.1.4 Kademlia .. 249

Annex C – BM Inquiry Results 251
C.1 Introduction .. 251
C.2 Results .. 251

C.2.1 Query Group 1 ... 251
C.2.2 Query Group 2 ... 252
C.2.3 Query Group 3 ... 252
C.2.4 Query Group 4 ... 253

Annex D – Data Model Info 257
D.1 Registered Information .. 257

D.1.1 Introduction .. 257
D.1.2 Registered Global Information.. 257

D.1.2.1 Registered Global PLL Information .. 257
D.1.2.1.1 Registered Global PLL Relational and Procedural Complex Events . 257
D.1.2.1.2 Registered Global PLL Entitary Complex Events 260

D.1.2.2 Registered Global UEL Information .. 261
D.1.2.2.1 Registered Global UEL Relational and Procedural Complex Events 261

D.1.2.2.1.1 User Originated ... 261
D.1.2.2.1.2 System Originated .. 275

D.1.2.2.2 Registered Global UEL Entitary Complex Events 277
D.1.2.3 Registered Global Cross Layer Information .. 280

D.1.3 Registered Individual Peer Information .. 280
D.1.3.1 Registered Individual PLL Information .. 280

D.1.3.1.1 Registered Individual Relational and Procedural Complex Events ... 280
D.1.3.2 Registered Individual UEL Information ... 282

D.1.3.2.1 Registered Individual Relational and Procedural Complex Events ... 282

References 285

xv

List of Figures and Tables

Figure 1 – Structure of the Dissertation ... 3
Figure 2 – Pure P2P Interaction Overview .. 6
Figure 3 – Decentralized Peer-to-Peer Architecture .. 10
Figure 4 – Partially Centralized Peer-to-Peer Architecture .. 10
Figure 5 – Hybrid Decentralized Peer-to-Peer Architecture ... 11
Figure 6 – Gnutella Structure and Content Search .. 29
Figure 7 – BitTorrent Protocol Operation ... 31
Figure 8 – FastTrack Architecture ... 34
Figure 9 – Content Identification Schemes and Standards (data obtained from [85]) 39
Figure 10 – Model of ER-R Processing and ER Generation (adapted from [102]) 42
Figure 11 – Basic DRM Architecture (adapted from [89]) .. 45
Figure 12 – Basic Client Structure (adapted from [85]) .. 45
Figure 13 – Typical DRM Functional Architecture (adapted from [85]) 46
Figure 14 – OpenSDRM Solution Architecture (adapted from [85]) 49
Figure 15 – ISMA DRM Architecture (adapted from [110]) .. 51
Figure 16 - Windows Media Rights Manager Architecture (adapted from [89]) 54
Figure 17 - RealSystem Media Commerce Suite Architecture (adapted from [89]) 56
Figure 18 – DMDFusion Architecture (adapted from [89]) ... 57
Figure 19 – SDC DRM Architecture .. 59
Figure 20 – OpenIPMP Components Diagram (adapted from [85]) 61
Figure 21 – P2PTV overlay network serving several video streams 64
Figure 22 – Typical Commercial P2P Content Delivery System Architecture 69
Figure 23 – P2PTube Structural Overview .. 91
Figure 24 – P2PTube Horizontal Layers Traversing Peers .. 91
Figure 25 – Peer Architecture ... 92
Figure 26 – Example Distribution of OCP Servicing Responsibilities over the PP Collective 95
Figure 27 – Example of Data Structure Section ... 101
Figure 28 – Basic Data Model ... 106
Figure 29 – Basic Inter-Peer Interaction Sequences ... 111
Figure 30 – Cooperation Mesh Constituting an Operation ... 113
Figure 31 – Pre-Connection Secure Messaging Procedure ... 115
Figure 32 – Post-Connection Secure Messaging Procedure ... 119
Figure 33 – Peripheral Peer Registration Process ... 123
Figure 34 – Inter-Peer Communication Session Establishment Process 125
Figure 35 – Pre User Login Secure Messaging Procedure .. 136
Figure 36 – User Registration Procedure .. 140
Figure 37 – User Authentication Procedure ... 142
Figure 38 – Client/Server User Attending Procedure ... 148
Figure 39 – Hybrid Operation for MO retrieval ... 151
Figure 40 – Logical DRM Functionalities in P2PTube Peer Structure 154
Figure 41 – Inter System Trust Spheres Example ... 156
Figure 42 – Inter-System Trust Establishment .. 157
Figure 43 – IPCLMHFile Structure .. 158
Figure 44 – PLLSIHFile Structure.. 159
Figure 45 – PLLPSIHFile Structure ... 160
Figure 46 – PLLPSICTopFile Structure ... 161
Figure 47 – Peer Registration Certificate Structure ... 162
Figure 48 – Peer Connection Certificate Structure .. 164
Figure 49 – Peer Info Object Structure .. 165
Figure 50 – Peer Quarantine List Structure ... 165
Figure 51 – Peer Info Retrieval Permit Structure ... 166

xvi

Figure 52 – PLL Information Location Describing Object ... 167
Figure 53 – UELSIFile Structure ... 168
Figure 54 – User Registration Certificate Structure ... 169
Figure 55 – User Hosting Certificate Structure .. 170
Figure 56 – SQRO Structure ... 171
Figure 57 – MOList Schema Depiction .. 172
Figure 58 – UELILDO Structure .. 173
Figure 59 – MO Retrieval Permit Structure .. 175
Figure 60 – MOTHFile Structure ... 176
Figure 61 – MOIHFILE Structure ... 177
Figure 62 – ERR Structure .. 179
Figure 63 – ER Structure .. 179
Figure 64 – Contribution Interrelations and Publications ... 197
Figure 65 – IPCLMHFile Example ... 201
Figure 66 – PLLSIHFile Example .. 202
Figure 67 – PLLPSIHFile Example .. 203
Figure 68 – PLLPSICTopFile Example .. 205
Figure 70 – Peer Registration Certificate Example .. 207
Figure 71 – Peer Info Object Example .. 209
Figure 72 – Peer Quarantine List Example .. 210
Figure 73 – PLL Info Object Retrieval Permit Example .. 212
Figure 74 – UELSIFile Example .. 213
Figure 75 – User Registration Certificate Example .. 216
Figure 76 – User Hosting Certificate Example ... 217
Figure 77 – SQRO Example .. 220
Figure 78 – UELILDO Example ... 224
Figure 79 – UEL Info Retrieval Permit Example .. 225
Figure 80 – MOTHFile Example .. 227
Figure 81 – MOIHFile Example ... 229
Figure 82 – ERR DID Example ... 232
Figure 83 – ER DID Example .. 235
Figure 84 – Inquiry IO Example ... 238
Figure 85 – Inquiry Response IO Example .. 241
Figure 86 – CAN Coordinate Space divided between 5 zones (left side image) and 6 zones
(right side image) (adapted from [2]) ... 243
Figure 87 – Chord identifier circle (m=3) (adapted from [2]) .. 246
Figure 88 – Neighbour Map maintained by a Tapestry Node with ID 67493 (adapted from [2])
 ... 247
Figure 89 – Tapestry/Plaxton Mesh Routing Example using 5 digit long IDs (adapted from
[2]) .. 247

Table 1 – Notation for Figure 22 .. 69
Table 2 – Requirements to Implications Mapping .. 87
Table 3 – Peer Responsibilities ... 96
Table 4 – Notation Definition ... 107
Table 5 – Publications ... 195

xvii

Symbols and Acronyms

CDist – A Content Distributor is a commercially operating entity whose activity consists of
the distribution of media content.

BM – A Business Model is a conceptual construct which describes the rationale of how an
organization creates, delivers, and captures value.

IG – An Information Good is a commodity whose main market value is derived from the
information it contains. If it is not bound to a fixed physical body, the Information Good is just
the information itself.

IO – An Information Object is the same thing as an information good.

DRM – Digital Rights Management is an activity, developed by hardware or software access
control technologies, on behalf of copyright holders and individuals, whose purpose is to
protect the rights of such entities, by controlling or limiting the use of their digital property
and devices after sale.

PKI – A Public Key Infrastructure is a set of hardware, software, people, policies, and
procedures which work together to create, manage, distribute, use, store, and revoke digital
certificates.

TTP – A Trusted Third Party is an entity which facilitates interactions between two parties
who both trust it.

P2P – Peer-to-Peer is a mode of computer networking, where each computer in the network
can directly interact with other network computers either as client or as a server, for the
sharing of various resources such as files, peripherals, sensors, etc.

 1

I Introduction

1 Context
The on-going Internet revolution is changing the way that we interact with informational
content, and exponentiating the amount of such content at our reach.

This new medium, and associated technologies, has greatly lowered the costs associated to
information reproduction, distribution and access, hence, contributing to the democratization
of those activities. It has thus been primarily used for the free exchange of content
(legitimately and illegitimately). In this field, P2P computer interaction has played a key role,
as it optimally exploits Internet’s distribution costs reducing capabilities.

The commercial sector is trying to catch up. It has developed various initiatives aimed at
exploiting online content distribution. In an initial stage the promoters of these activities have
typically tried to do a direct transposition of pre-Internet BMs onto the on-line environment
and employed complex and heavy DRM technology to try to enforce “artificial scarcity” onto
that environment.

Many such experiments (with different BMs and supporting tools) have occurred and, some
of them, are still in operation, employing P2P distribution. However, overall, the field is still
immature. Commercial initiatives are lagging behind, free or pirate ones, in terms of their
overall popularity, acceptance by the public and overall social impact. Economic failure,
altogether, is not uncommon as well.

This problem deserves attention because a purely pirate distribution of content is not
sustainable. If those activities grow incessantly they may undermine the production of the
very goods that such systems deliver. Furthermore, the tackling of that problem must
definitely include, and not refrain from, all-digital on-line delivery (Internet), as this is an
extremely powerful medium, whose capabilities for information manipulation and distribution
must inevitably be exploited to the fullest.

Thus If we wish to maintain a rich and evolving cultural sphere, while employing the most
powerful means at our disposal ever (the Internet), for the distribution of information content,
than we need to find solutions to enable a secure and sustainable exploitation of that
medium that can assure the rewarding of information content producers.

2 Objectives
The purpose of this work is to contribute, with concepts and tools, to the maturing of secure
and sustainable on-line content deliver, specifically, over P2P networks.

Our objectives are to thoroughly identify the causes of the disappointing performance of
commercial on-line delivering initiatives, (specifically those operating over P2P), and to find
adequate solutions to overcome the identified problems.

3 Major Results
In line with what is expressed in the previous sections we have identified the main issues
that have delayed the progress of secure and sustainable on-line content delivery, to be
primordially of an economic nature.

I Introduction 2

We realized that the entities attempting to attain an economically sustainable online
distribution of information content, have frequently failed to securely exploit that medium
because they have not correctly assessed the full depth of the changes brought on by the
Internet, such as the elimination of information scarcity that it has led to, and have thus been
employing inadequate BMs.

We thus performed our own in depth analysis of the present state of things and derived the
necessary conclusions. Building on them we defined a set of possible BMs appropriate for a
sustainable exploitation of on-line content distribution.

As the tools to optimally support such BMs over a P2P operation mode are missing, we then
defined a suitable P2P architecture which offers the necessary tools.

We can thus state that the work conducted during the course of this dissertation has
successfully arrived to the formulated objectives. Notably:

• we identified of the main causes preventing a solid adoption of the on-line medium
for commercial content distribution (specifically P2P);

• we developed and formalized new BMs, specifically conceived for said on-line
operation and, thus, optimally adapted to the new content access paradigm which
that medium entails;

• we conceived and designed, to a certain degree of detail, an appropriate technical
support structure for those BMs, thus demonstrating the feasibility of sustainable and
secure P2P content distribution;

• additionally, we also developed some work on the field media object structuring and
enrichment which resulted in an addition to the MPEG-21 international standard.

Accordingly, based on the outcomes of this thesis, we can claim that it is indeed possible to
implement successful on-line businesses, which employ P2P content distribution, while
taking full advantage of the great potentialities and flexibility offered by the Internet for
information content production, distribution and access.

4 Structure of the Dissertation
Figure 1 presents a graphical depiction of the various parts of this dissertation, of their role in
it and of their interrelations. In Figure 1, white boxes represent a chapter (or a section of it),
grey boxes represent annexes, the gradient filled box represents the problem which is
identified and addressed in this work, and the rounded corner boxes represent the
relationships between the previous “entities”.

Chapter II contains a description of the present state-of-the-art in the field of P2P content
distribution, as well as in the associated fields of DRM technologies and P2P distribution
employment in commercial initiatives. The contents of this chapter are complemented by
those of Annex B.

Chapter III presents our analysis of the above mentioned state-of-the-art. It thus performs
the identification of the precise problem/shortcoming, afflicting the present P2P content
distribution scenario.

Chapter IV and V present the proposed solutions for the identified problem. The business-
oriented component, of such solutions, is presented in chapter IV, whereas the technical
component is presented in chapter V. The content of chapter IV is complemented by
Annex C, and that of chapter V by Annex A and D.

I Introduction 3

Figure 1 – Structure of the Dissertation

In chapter VI we expose the comparative advantages of our solutions and their specific
contributions to the advancement of the state of the art in the field of sustainable and safe
distribution of media content over P2P. This chapter also presents the publications that were
achieved in the scope of such contributions.

Finally, in chapter VII, we present our concluding remarks and expose the main venues for
the future continuation of the developed work.

 5

II P2P Content Delivery Survey

1 Introduction
This PhD work focuses on the development of safe solutions for the P2P distribution of
media content. This safeness should be interpreted in a broad manner. It encompasses both
reliability of content discovery and retrieval/distribution as well as more strictly security
related aspects, such as communicational confidentiality, exchanged data integrity,
authenticity and non-repudiability, as well as privacy and anonymity.

The solutions, that are sought for are meant for legitimate P2P content distribution initiatives.
These are, typically, commercial ones. Such initiatives involve various aspects, other than
just the mere P2P distribution of content, which profoundly impact that distribution. The most
relevant of such aspects are the copyright protecting DRM technologies, which are
employed in parallel to P2P distribution, and the manner in which both these technologies
are combined for the support of specific Business Models. These factors will, thus, guide and
condition the present survey.

The survey is divided into three parts. The first one, section 2, describes the state of the art
in what regards P2P content distribution. The second, section 3, presents an overview of the
current state of development of DRM technology and related initiatives. The third part,
section 4, discusses the intersection of the technologies presented in the previous two
sections, in the context of current commercial, P2P based, media content distribution
initiatives. This last section is not limited to the discussion of technological issues as it
includes a short discussion of some economic aspects

2 P2P Technology Survey

2.1 Introduction

Peer-to-peer (P2P) is a communication model in which each of the intervenient parts has the
same capabilities, and either party can initiate a communication session [1], as opposed to
the Client-Server model, where each party (server or client) has a different and specific role
assigned to it.

A peer-to-peer computer network links its constituting nodes via ad hoc connections and
relies mainly on the computing power and bandwidth of the network’s participants rather
than concentrating it in a reduced number of central nodes (servers). In “pure” peer-to-peer
networks, no clients or servers exist and all nodes present equal behaviour, simultaneously
operating as both "clients" and "servers” (see Figure 2). In other cases, these systems may
have a more hybrid operation, resorting to some centralization for some specific purposes,
within the overall P2P operation.

P2P computer networks are typically designed for the sharing of computer resources such
as, content, storage and CPU cycles (among others), through direct exchange, rather than
requiring the intermediation of a centralized server or entity [2]. The section of these systems
devoted to the distribution/sharing of informational content on the Internet, is that which as,
recently, received most of the growing, research and public attention surrounding P2P. It is
mostly on this subset, of the possible applications of peer-to-peer computer interaction that
this survey focuses on.

II P2P Content Delivery Survey 6

Figure 2 – Pure P2P Interaction Overview

Peer-to-peer is not entirely new. The term P2P in itself is relatively new, but basic P2P
technology has existed for as long as USENET and FidoNet since the late 70s early 80s of
the 20th century [3].

USENET, was originally created in 1979 by two Duke University graduate students, for the
distribution of e-mail-like messages (called "articles") to newsgroups. Files were distributed
in batches over phone lines using a flooding algorithm. Consequently, there was no effective
way to centralize the functioning of USENET. The resulting application was an extremely
decentralized and distributed one [3].

FidoNet, such as USENET, is a decentralized and distributed application for the exchange of
messages between users of different Bulletin Board System (BBSs). After experiencing an
initial exponential growth and a later shrinking in size because of the closure of many BBSs,
it remains in use today [3].

Recently, though, the interest for P2P networking has grown tremendously [4] [5], among
Internet users and professionals, especially in the case of file-sharing applications. This
renewed and globalized interest began growing in 1999 when an 18-year-old college student
developed Napster, which combined the instant-messaging system of IRC, the file-sharing
functions of Microsoft Windows and UNIX, and the advanced searching capabilities of
various search engines for the facilitation of online digital music files swapping [6]. It became
the fastest growing software online, of all time [6].

Such a rapid growth, though, was made possible by three factors which characterized that
time [6]:

• growing Internet access bandwidth;
• growing desktop processor power;
• decreasing prices for data storage units.

Napster's facilitation of the transfer of copyrighted material led to its legal prosecution by
copyright owners, which filed a law suit against it in December 1999 [7]. Napster was
condemned, and after some further attempts for its maintenance online, it was finally
terminated in 2002 [8].

II P2P Content Delivery Survey 7

Nonetheless, the open space left by Napster's demise was swiftly occupied by numerous
other applications/networks, such as FastTrack and Gnutella, and the number of P2P
technology users kept rising exponentially [6]. The post-Napster applications adopted a
decentralised approach, which made them harder to police (and to target judicially), and
have also gained an added range of capabilities.

Distributed lists and searching procedures were developed and are offered by such networks
as FastTrack and Gnutella [9]. Content can now be retrieved in separate blocs from different
hosts simultaneously, minimizing the strain on their bandwidth, and increasing the availability
of the specific content. Even the user’s privacy can now be preserved, (up to a certain point),
by some systems, such as Freenet, which allows anonymous exchange of content [10].

Promising developments were also made in P2P look-up services based on distributed
Dynamic Hash Tables (DHTs), which organize peers into structured overlay networks,
assigning each data item to a specific peer, thus allowing much faster searches.

Many promising applications (cooperative file systems, P2P caching, multicast, mobility
management, denial-of-service protection, and presence detection), can potentially be built
on top of these look-up services.

Furthermore, with the advancement of P2P software and protocols, several of the developed
systems, like Gnutella, Gnutella2, EDonkey Network [11], etc., are either interoperable
and/or can be accessed through a single interface/application, thus maximizing their overall
capacity and attractiveness.

Even though the development of P2P technologies has had to face some legal obstacles, it
was not stopped. Relatively recently, P2P technologies have even begun to be embraced by
large and legitimate companies, either for the optimization of their inner data structures or to
try to tap into its vast potential for the distribution of information rich content such as music or
video.

The embrace and development of P2P content distribution in the commercial and non-
commercial sectors, has, nonetheless, been uneven. The development of P2P technologies
and their employment in non-commercial content distribution initiatives (legitimate or
copyright infringing), has proceeded tremendously fast. These solutions are typically
developed in an open and cooperative manner, and are freely distributed. This contributes to
an accelerated development pace, increased user receptivity and, thus, a reduced
deployment time.

In the commercial sector, that process has been much slower. Such initiatives, generally
employ either proprietary P2P solutions or pre-existing ones. This sector has not invested a
comparable amount of effort on the development of P2P solutions and the efforts that have,
in fact been, made, were not done in an environment of openness and interoperability.

The structure of the survey, of the P2P content delivery field, here presented, is composed
by the following sub-sections:

• section 2.2 presents the current status of the overall technical field of P2P content
delivery;

• section 2.3 presents the most relevant P2P content distribution systems, in
existence, which embody the technical provisions described in section 2.2;

• section 2.4 contains a summarizing analysis of the field in scope.

Throughout the presented survey, a special emphasis is placed on the observation of
security and reliability aspects of the approached P2P solutions and technologies.

II P2P Content Delivery Survey 8

2.2 Technical Panorama

2.2.1 Introduction

In P2P computer systems there are two main operational concepts: the peer (or network
node or servant), and the communication protocol to which the peer is bound and its
associated overall network of nodes.

A peer is a computer application which interacts with other peers through the Internet. A P2P
protocol is a set of rules and procedures, which constitutes the language and communication
methodology, which the peers of a specific network, use in order to intelligibly interact with
each other, thus constituting a P2P network.

Therefore a P2P network is something of a greater ethereality than many other networks.
Such a network exists only as a varying set of multiple peers and their common protocol. If
peers change the employed protocol, than, the constituted network will be a different one
from the original.

P2P computer systems have been employed for a variety of different purposes. The most
relevant of those include [2]:

• Communication and Collaboration – Systems providing the infrastructure for the
facilitation of direct, (frequently real-time), communication and collaboration between
peer computers, such as chat and instant messaging applications;

• Distributed Computation – The purpose of these systems is to take advantage of the

distributed processing power available in the network’s peers, by breaking down a
processing-intensive task into small work units and distributing them by the peers.
Such applications of P2P technology inevitably require central coordination, and are
thus not purely P2P. Seti@home is an example of such a P2P system;

• Database Systems – These P2P systems work as distributed databases. Several

technologies were built within this context such as a scalable distributed query
engine which allows relational queries to be performed through thousands of
computers (PIER Project [12]), or a metadata infrastructure based in W3C’s RDF to
provide P2P systems with coherent querying capability (Edutella Project [13]);

• Content Distribution – The purpose of these P2P systems and infrastructures is to

facilitate the sharing of digital media and other information rich content between
users. Such systems vary from relatively simple direct file sharing applications, to
more sophisticated systems which constitute a distributed storage medium capable
of enforcing relatively secure and efficient publishing, organizing, indexing,
searching, updating, and retrieval of data. Some examples of content distribution
P2P systems are: Gnutella, FastTrack, eDonkey, etc.

Presently the most popular application of the P2P computer communication model, is that
which is related to the facilitation of media content distribution. Both the public usage and
scientific interest for such P2P systems has grown very rapidly in the past years, to the point
where the P2P network generated data traffic represents a large portion of the overall
Internet data exchange.

Such a great interest as led to an accelerated evolution in P2P technology which greatly
advanced and multiplied the number of different available peers, and associated protocols
(and thus the number of networks).

II P2P Content Delivery Survey 9

The initial ones were the simplest. They merely connected to a central server (or “central
peer”) to search for content, and once it was found, it was downloaded from its contributing
peer. This was the case, for instance, of Napster, were the sharing of content was performed
on a P2P basis, but the content registering and searching process was centralized.

Such solutions were advantageous in terms of content searching efficiency, but presented a
single point of failure and “legal attack“, the “central peer” [14].

In a second wave of P2P technology, development a new type of peer and networks
emerged. These networks (such as Gnutella), were completely decentralized both in terms
of content storing and distribution as well as in terms of content registering and searching.
The peers no longer connected to a central peer, but instead established direct
communication with other equal peers. When initiating its activity, a peer would connect to a
certain number of other peers, which, on their own turn, were connected to other peers etc.,
in a vast distributed network [14].

In order to search for a specific resource, the inquiring peer would ask all of its neighbouring
peers if they possessed it. They would then see if they did, and also pass the message on to
all the peers they were connected to, and so forth.

The main advantage of this approach was that it eliminated the central point of failure which
existed in previous P2P solutions. The disadvantages included inefficient content searching
and the formation of islands of sub-networks that weren't connected to each other [14].

The developments in P2P technology have never stopped, and in a third wave of P2P peers
and protocols, many improvements were achieved in terms of increasing the efficiency of
content searching and locating, peer “trustworthiness” assessment, removal of “poisoned” or
otherwise bad content, increasing download speeds and overall networks reliability,
combating free riding, load balancing, etc.

These third wave systems brought some centralization back to P2P architectures. They
introduced new concepts such as super-node (or super-peer) or tracker, and have also
introduced some differentiation between the peers. Instead of a flat topology of homogenous
peers, third wave systems present a somewhat hierarchical structure where some peers
take on a more central role and greater responsibilities in the overall coordination of the
network.

The regular peers connect to central peers (super-peers, trackers, etc), to obtain from these
specific services, such as content location, content retrieval, data forwarding, interaction
coordination, etc. The central peers generally interact with each other in a loose and
decentralized way, similar to the interaction between the second generation peers.

The next sections (of the enclosing section 2.2), present an overall view of the present P2P
technological landscape.

2.2.2 Basic P2P Taxonomy

The existing P2P protocols/networks, and thus, the individual applications that adhere to
them, may be subdivided into different categories, according to different characterization
vectors. The main such vectors are:

• their level of decentralization – pure peer-to-peer networks would be totally
decentralized. Still, in practice these systems have varying degrees of centralization.
The three main categories are [2]:

II P2P Content Delivery Survey 10

o Purely Decentralized – all of the network’s peers operate in exactly the same
way, without any centrally coordinating entity. No specialized roles exist for
any of the constituting nodes and these are connected in a “flat” layer of
peers. Gnutella is an example of such a decentralized P2P system [15],
especially before the introduction of ultra-peers (similar to super-nodes).
Figure 3 presents an example of a purely decentralized P2P architecture.

Figure 3 – Decentralized Peer-to-Peer Architecture

o Partially Centralized – some of the network’s nodes have more central roles

than others, acting as semi-central indexes of the resources which are made
available by the local network. These special peers, termed super-nodes, are
dynamically selected and the way in which they are organized may vary
between networks. A typical example of this type of P2P network is FastTrack
[16]. Figure 4 offers a graphical presentation of the architecture of this type of
P2P network.

Figure 4 – Partially Centralized Peer-to-Peer Architecture

o Hybrid Decentralized – the interaction between the network’s peers is
coordinated by a central entity which stores all the resource describing and
locating information. After a desired content is found, the source and
destination peers contact each other directly for the transfer to take place.
The central entity contributes to an optimization of content location and
retrieval but also constitutes a central point of failure and bottlenecking which
renders this type of P2P systems more vulnerable to censorship or some

II P2P Content Delivery Survey 11

forms of malicious attacks. Napster was an example of this type of systems
[2]. This type of architecture is depicted in Figure 5.

Figure 5 – Hybrid Decentralized Peer-to-Peer Architecture

• their distributed resource placement scheme (or structuring) – P2P overlay networks,
may contain a vast number of nodes and a large amount of available resources. The
ways in which the nodes are logically connected to each other and how the
resources are placed in the network may vary. It may be done in a non-deterministic
(ad hoc) way or in a rule adhering way. This difference in the logical topology of the
network, and of its resources, is what separates structured from unstructured
networks [2]:

o Unstructured Networks – they are composed of arbitrarily connected nodes

and the placement of content, within the network’s tissue, is unrelated to the
overlay topology. New nodes are easily added just by copying the links of an
already connected node and then forming its own links over time. These are
resilient to node transience but deal poorly with content discovery and
location. Gnutella and FastTrack are two examples of popular unstructured
P2P systems [17];

o Structured Networks – their overlay topology is tightly controlled. Nodes and

contents (or pointers to them), are placed at precisely specified locations
according to a globally consistent protocol. Such networks perform a mapping
between content and location, through the use of distributed routing tables [2].
The main technological approach employed, by P2P networks of this type for
its structuring, are the distributed hash table (DHT) based, lookup services.
These may be flat or hierarchical [18]. Some notable such protocols are
Chord, Pastry, Tapestry, Content Addressable Network (CAN), Kademlia and
Tulip. Still, some non-DHT based approaches/networks exist such as Freenet
[10], Hypercup [19] and Skipnet [20]. In section B.1 of Annex B some of the
above mentioned protocols are explained.
Structured networks are very efficient at locating content objects whose
identifier is precisely known, but have difficulty in enforcing a globally
consistent protocol [21].

II P2P Content Delivery Survey 12

Structured P2P architectures are typically purely decentralized, with all nodes playing
equivalent roles. Unstructured P2P architectures, may present any type of centralism level.

Finally, some proposals exist for hybrid structured-unstructured systems such as the one
presented in [22], which is built upon the Gnutella architecture.

2.2.3 Content Discovery and Location

Content discovery is the ability, of a P2P system, to discover about the existence of content
objects which satisfy some specific (search) criteria. Content location is the ability of such a
system to locate a specific content object in its tissue (peer collective), typically, so that it
may be retrieved.

The methods and means through which the two activities are performed are, generally,
closely intertwined and, many times, can’t actually be separated from each other, in
operational terms. Furthermore, the nature and details of such methods typically derives
from the type of P2P system where they have their place.

In light of the above, in the following sections we present the fundamental aspects of the
state of the art in the fields of P2P content discovery and location (jointly), as a function of
the structuredness of the P2P system type where such tools are employed.

2.2.3.1 In Unstructured Architectures

In unstructured networks the available content needs to be searched-for, given its random
location. Typically, in such systems, when a specific content object is discovered (i.e. the
existence of a file whose content satisfies some semantic criteria is discovered), it has also
been located, as the peer which can match the query to the file, generally, also possesses
the file.

There are several methods which can be employed in this type of search, most notably [2]:

• Brute Force Methods – such as flooding the network with propagating queries in a
breadth-first or depth-first manner until the desired content is located;

• Sophisticated Methods – such as the use of random walks and routing indexes.

The need for the employment of searching mechanisms for the discovery and location of
content in unstructured networks will inevitably affect its global scalability, persistence and
availability.

Thus, the main disadvantage, of unstructured P2P systems, within the present context, is
that a desired content, even if present, may not always be located, or the process of
discovering it may be very inefficient. Recently distributed, or globally highly desired content,
is likely to be easily discovered given is wider diffusion through the network. However, rare
or old data shared by only a few other peers, is unlikely to be successfully found.

Unstructured systems are thus more appropriate for file-sharing purposes and also for
applications where [21]:

• the standard searching operation is keyword based – resources are not precisely
identified, and thus the advantages of structured networks are diminished;

• the most desired content is generally replicated at a relatively large fraction of
participating peers – content is widely distributed enough to be easily discovered;

• the peer population is highly transient and instable – it is very hard if not impossible
to employ a globally consistent protocol to the layout of the network’s topology and
resource placement and, thus, the use of a structured network becomes impractical.

II P2P Content Delivery Survey 13

Nonetheless, even in the cases were the previous characteristics occur, the problem of
scalability still resides, especially as the size of the network grows. This is, therefore, one of
the subjects still under study in unstructured P2P systems.

Several new search methods and other mechanisms have been proposed to deal with the
scalability problems inherent to these systems, such as [2]:

• an algorithm that resorts to the heterogeneity of unstructured systems (most
specifically Gnutella) to improve their scalability and search efficiency [21];

• a replacement for the flooding mechanism for searches, which is based on the use of
multiple parallel random walks [23];

• the use of proactive replication schemes by copying/distributing content to nodes that
did not request it in order to increase the content’s diffusion through the system thus
facilitating its discovery and retrieval [23].

• a distributed flow control, and topology creation, algorithm which:
o prevents the overloading of nodes by restricting the flow of queries into them;
o performs some load balancing (in terms of search query processing), by

dynamically evolving the overlay topology to ensure a balanced flow of
queries between the nodes.

• the use of more elaborate broadcast policies, which resort to the selection of the
neighbouring nodes, to which to forward search queries to, based on their past
history, associated to the use of local indices where each peer harbours a list of the
data made available by the nodes located within a certain radius from itself [24].

2.2.3.2 In Structured Architectures

Structured P2P systems are efficiently scalable, (in what regards content discovery and
location), in a situation where the exact identifier of the desired content is known. The case
of keyword based searching remains somewhat of an issue, for these systems, even though
some proposals have been put forward to address it. These are generally based on the use
of distributed inverted indexes [25].

The main disadvantage of structured P2P systems is the difficulty of enforcing a globally
consistent protocol for node connections, resource placements and efficient query routing in
the face of an ever changing node population, where nodes join and abandon the network at
any time and not always behave in a benevolent manner [21].

Some of the most relevant lookup protocols, employed by structured P2P systems, for
content placement, discovery and location are presented in section B.1 of Annex B.

2.2.4 Content Exchange/Retrieval

P2P systems may use a number of different mechanisms and protocols for the exchange of
data (coordination and communication data as well as content data). The HTTP protocol is
frequently employed as well as custom develop ones. Several P2P systems and peers also
deliver provisions so that peers may be reachable behind firewalls and NAT schemes.

In terms of the way that content files are exchanges between the peers, P2P protocols may
employ:

• Bulk content exchange – these systems implement the retrieval of content in one
single piece from one single source. After the retrieval is finished the downloaded
file’s validity may them be validated or not;

• Fragmented content exchange – in such systems, peers retrieve, a specific desired
content file, in several fragments from several different other peers. This scheme

II P2P Content Delivery Survey 14

generally leads to a greater content availability and allows for a speedier download of
content than its bulk exchange counterpart.
Furthermore, fragmented multi-sourced content retrieval allows a more efficient
application of bartering schemes, as is the case for the BitTorrent system. In the
cases were the P2P protocol enforces a validation of the downloaded content, to
combat pollution and data corruption, this content retrieval scheme is also more
advantageous as it permits the immediate discarding of corrupted fragments
eliminating the need to download the entire content before being able to assess its
validity.

2.2.5 Content Availability

The content delivered, by content distribution P2P systems, is distributed and stored through
the system’s composing peers, which individually are not reliable. In order to ensure the
persistence of content access, and to ease its diffusion, these systems resort to the
replication of content on a varying number of nodes. This enhances their overall
performance in terms of content accessibility and also in what regards resisting censorship
attempts and sabotage [2]. Such content replication schemes can be divided into the
following types [2]:

• Passive Replication – The content is backed up and thus replicated in every peer
which requests it and retrieves it form another peer. This way the content’s diffusion
occurs in an unenforced way according to natural demand;

• Cache-Based Replication – According to this scheme a specific content is not

replicated only in the nodes which requested it but also in all the nodes which,
somehow, come into contact with it. For instance, in Freenet [10], upon a successful
search and location of a resource, it is transferred back to the requesting node
through all the nodes which were initially traversed by the search request. The
traversed nodes will all save a local copy of the resource thus increasing its overall
availability;

• Active Replication – In this type of scheme, active methods and mechanisms are

employed to coordinate, or make more agile, the diffusion of content throughout the
network so as to improve the resource’s locality and availability;

• Other techniques – Some techniques, such as that used by OceanStore [26] (a

project for a global persistent data store), resort to the observation of traffic and
content demand to determine the content replication needs, and act upon that in
order to satisfy demand.

Data replication creates problems in the fields of data consistency and synchronization
(making sure that all the copies of a resource are all equal and that, upon updating of the
resource, that all the copies are equally updated), especially in P2P content distribution
systems, which are built to permit the deletion and updating of the distributed/stored content.
Many times some type of a trade-off must be accepted by maintaining an acceptable ratio
between data consistency restrictions and data replication and thus availability [2].

Content replication presents greater problems to structured systems because of the stricter
relationship between resource identifiers and locations that takes place in such systems.
Nonetheless, solutions have been devised for this, which generally resort to the use of
aliases, multiple hash functions, successor-lists or leaf-sets [27].

II P2P Content Delivery Survey 15

2.2.6 Content Management

A typical P2P computer system’s operation is based upon the sharing of some type of
resource between its constituting nodes. Such a resource may be information (typically
stored in files), data storage space, data transmission capacity, processing capacity, etc.

As in all systems were resource sharing between multiple independent entities occurs, it
becomes necessary to employ some form of coordination, or management, of the access to
those resources, and their consumption, so that it can occur in a rational and sustainable
way, and so that the system may provide a reliable, efficient and constant service to the
nodes which compose it.

The resource management operations more frequently offered are those which permit
content location and retrieval. Nonetheless, several other additional operations may be
supplied, for instance, for the removal (or usage invalidation) of resources, for the updating
of resources, for the creation and maintenance of different versions of a resource, or for the
imposition of content consumption restrictions.

It should be noted that the distributed nature of these networks, the unreliability of its
composing nodes and the ease with which they can be infiltrated by nefarious peers, makes
any task of global coordination difficult.

Within the realm of content distributing P2P networks, the following resource management
facilities and practical examples stand out:

• Content Deletion and Update – The enforcing of global content deletion and
updating, in a synchronized and coordinated fashion (P2P network wise), is not a
simple goal to achieve. Still, some systems offer these, or similar, functionalities. For
instance PAST [28], does not truly support delete functionality. Instead, the owner of
a file may reclaim the storage space associated to it but it does not guarantee that
the file will, globally, cease to be available. Another example is the Publius system. In
it the files are published in association with password information, assuring that only
the publisher can later delete or change the content. Still this system resorts to a pre-
defined set of servers for content storage [29];

• Content Validity Expiration – Some systems provide mechanisms to allow the

imposition of validity terms to the information which they distribute. The FreeHaven
project enforces document expiration through the use of Rabin’s information
dispersal algorithm, and the signing of the data shares which carry with them validity
time-stamps;

• Content Versioning – This functionality consists of permitting the insertion, and

existence, of several different versions of the same content, simultaneously, in the
system, in a controlled, organized and reliable way. OceanStore [26], for instance,
offers such functionality by employing universal unique data object identifiers, data
encoding and redundant and ring-structured distribution and document id lists
maintenance;

• Directory Structure – Some systems provide an abstraction layer, above content

access, which works as a global directory structure. This way, they provide a mask,
which hides the distributed nature of the network and of content location.
Mnemosyne [30] is one such system.
The WayFinder system also supports a distributed directory structure over a P2P
infrastructure [31], by overlaying the individual peer’s directory structures on top of
one another resorting to name or semantic proximity. Ivy [32], implements a multi-

II P2P Content Delivery Survey 16

user read/write P2P file system. It employs a set of logs, (one log per participant),
stored in a DHash distributed hash table. Data is located and retrieved by consulting
all logs, yet data modification is achieved through the modification of only the log of
the modifying peer;

• Content Searching – Content discovery capabilities may also exist, in varying

performance and efficiently levels. Unstructured P2P topologies (Gnutella, Kazaa),
provide keyword based search functionalities whose use is intuitive but not efficiently
scalable. Structured systems provide very efficient content discovery facilities, but
these are based on rigid file identifiers.
The development of mechanisms for the provision of keyword based search facilities
operation, upon an exact-match query sub-layer is something that is still to be
satisfactorily handled;

• Data Storage and Bandwidth Management – This consists of the managing of data

storage space and bandwidth usage by the peers. The amount of disk space that is
to be contributed with, by each peer, is generally something that each one of them
can specify independently. MojoNation allows users to donate data storage capacity
in exchange for economic or other type or rewarding. The PAST system [28] employs
a secure quota system. The system’s users are either attributed a fixed quota of data
storage capacity, which they can consume, or alternatively they can take advantage
of as much capacity as that which they contribute themselves, on their node. The
PAST system also proposes an optional extension of itself, for the incorporation of
reliable organizations, named brokers. These are able of trading storage capacity
and of issuing smartcards to users, which control the storage capacity usage and
supply, that a user can or must perform respectively.
Besides the quota system, these schemes may employ additional methods to
prevent or dissuade nefarious events, such as denial of service attacks. Publius, for
instance, employs such methods. Its publishers are requested to perform
computational work, solving a mathematical problem, before obtaining permission to
publish content.
The Kosha system, is a proposal for a P2P enhancement of network file systems.
According to its operating scheme, the participating nodes are organized into a
structured P2P overlay. It employs NFS facilities to make files available throughout
the network assuring file location transparency [33];

2.2.7 Benevolent Use Enforcement

P2P systems are especially dependent on the voluntary and benign participation of their
users and constituent nodes, in order to provide a reliable and efficient service. This makes it
necessary to employ mechanisms which promote and stimulate a benign and cooperative
behaviour, from the users and peers, as well as to provide some support for the
accountability of actions performed and for the “punishing” of sabotaging or selfish behaviour
[2].

Uncooperative behaviour, in P2P systems, generally consists of the so-called "free-rider"
attitude, where users/nodes only consume the system’s resources and do not contribute
back with any. Sabotaging behaviour, on the other hand, comprises a vas set of possible
actions, like:

• Poisoning and polluting attacks, where corrupted, or somehow altered content, which
does not correspond to its description, is injected into the system thus rendering the
search for desired assets more inefficient;

• Insertion of viruses or malware into carried data;

II P2P Content Delivery Survey 17

• Denial-of-service attacks where some portion of the network (or possibly all of it), is
deliberately overwhelmed with inflowing information by other network peers which
take advantage of their inside knowledge of the system;

• Spamming, where unsolicited information is sent across the network;
• Collusion attacks, where multiple nodes cooperate in order to, somehow, harm, elude

or manipulate the network for their own selfish or sabotaging purposes.

Such behaviour may be motivated by any number of reasons, such as:

• the desire to manipulate the systems for some kind of inappropriate, individual gain;
• vandalism;
• the attaining of some gain, coming from the damaging of the network’s operability.

P2P solutions lacking the referred mechanisms will most likely experience systemic
problems ranging from significant degradation of performance to unreliable and
untrustworthy availability of resources, or even to complete system inoperability.

Still, it is technically very difficult to promote incentives for fair use and to provide
accountability in peer-to-peer systems. The transient population of users/peers, the difficulty
to perform peer identification and to maintain trustworthy records about peer’s past
behaviour and the level of decentralization of these systems makes it so [2].

Two main types of solutions have been put forward for the enforcing of fair and benevolent
use in P2P systems [2]:

• Trust-based Incentive Mechanisms – These mechanisms use trust as the
determining factor for the establishment of a P2P transaction. Users/peers will be
prompted to maintain a posture which will earn them the confidence of the other
peers and thus contribute to better servicing of their requests. The principal example
of such mechanisms are the Reputation Management mechanisms;

• Trade-based Incentive Mechanisms – When these mechanisms are employed,
whenever a peer is sharing some resource, and thus servicing the system, it is
immediately rewarded by the system, either directly or indirectly, and vice versa. This
category is fundamentally composed by various micro-payment mechanisms and
resource trading schemes such as Bartering Mechanisms.

The next sub-sections focus on the main types of Trust-based Incentive Mechanisms
(Reputation Mechanisms) and Trade-based Incentive Mechanisms.

2.2.7.1 Trust Based Incentive Mechanisms

In trust based incentive mechanisms, a peer accedes to cooperate, or fulfil another peer’s
request, if it trusts the requesting peer (or if its trusted peers trust it). In this way, the serviced
peer is not compelled to explicitly reward the servicing peer. The service is performed
because in that way the servicing node earns the trust of the serviced peer and of the
community/network. That earned trust will later be beneficial to it when it seeks to be
serviced by the community.

Enabling of this type of incentive system requires the systematic evaluation of the
behavioural history of the peers (or their reputation), by each other, and thus implies the
existence of some reputation computation infrastructure or mechanism. These are called
reputation management systems.

Such systems operate as organized, inter-peer, information exchange networks, where the
transacted data describes the perception, by the emitting peers, of the behaviour of the other
such nodes, with which they interact. This is done in a way so as to permit that each node

II P2P Content Delivery Survey 18

may obtain a notion of the reliability and trustworthiness of the surrounding mean (P2P
system).

These mechanisms can be implemented in a relatively easy and reliable way, when a
trusted centralized entity exists, which can be resorted to for the coordination, monitoring
and information delivering, concerning node behaviour. Still, this is not the case for the
typical P2P systems.

In most peer-to-peer networks, given their distributed nature and the difficulty in
unequivocally identifying peers, no single, recognizable entity exits which is in a position to
manage and distribute reputation information. Therefore such information must also be
managed in a distribute way throughout the network.

The main purpose of P2P reputation management systems is to perform or facilitate the
aggregation of reputation information which is obtained by the individual peers, in the regular
interaction with each other, and to it make available, throughout the entire network, in a safe
and scalable way, thus permitting the formation of a global reputation rating for the system’s
constituting peers.

Several such mechanisms have been proposed and/or implemented [2]. A few examples are
presented below:

• The EigenTrust algorithm, which compiles global reputation data about peers based
upon their history of uploads. This data is distributed through the network’s peers
which they use in order to evaluate each other’s credibility before engaging in
exchanges. Such global reputation values are calculated using the local reputation
values which peers assign each other and weighing them by the global reputation of
the assigning peers [34];

• A partially centralized mechanism has been put forward in [35]. This system uses

central reputation computation agents and data encryption, in order to securely
manage and locally store, reputation information. Two different ways were conceived
for the calculation of reputation values, a credit/debit and a credit only scheme;

• PeerTrust is a decentralized reputation mechanism presented in [36]. According to

this scheme, a trust value for a peer is calculated based on: the level of satisfaction
proportioned to other peers, by that peer; the total number of transactions in which
the peer was involved; and a balancing factor to attenuate the effects of malicious
reports. The reputation data is stored in the network in a distributed fashion;

• Approaches based on the peer’s utility to the system, instead of on its

cooperativeness and fairplay, have also been proposed. These mechanisms resort to
the calculation of a peer’s utility, based on the amount and popularity of content
stored and shared by the peer [37];

• Distributed auditing mechanisms have also been considered for the enforcement of

fair and benevolent use. In such schemes, nodes will more or less randomly audit
each other’s logs, comparing them with those of every node with which the audited
node claims to have share a resource. This way, prevaricating nodes will be
detected. This scheme implies some way to unambiguously and universally identify
peers;

• A proposal also exists for combined use of the reputations of peers and resources

[38], which provides a finer grained picture of the credible assets in a P2P system.

II P2P Content Delivery Survey 19

Just like other components of P2P architectures, reputation systems are also the target of
attacks. The purpose of such attacks is not to directly affect the availability of resources, but
mainly to hamper the system’s ability to provide accountability for malicious behaviour on the
part of the participating peers. These attacks may be of multiple types. Some of the most
relevant ones include:

• a peer joins the system and behaves in a correct manner long enough to obtain a
good reputation. It them starts behaving inappropriately;

• groups of peers collude in order to provide each other undeserved positive
reputations;

• isolated peers, or groups of them, cooperate to damage the reputation of other
peer(s), for instance through “ID stealth“ behaviour [38];

• the peer(s) exploit the use of pseudonyms, by P2P systems (given the lack of a

central peer identifying entity), by creating and controlling multiple identities, in order
to be able to discard the bad reputation earned into some of the identities, while
leaving the reputation of the others untouched.

2.2.7.2 Trade Based Incentive Mechanisms

In trade based incentive mechanisms, a peer accedes to cooperate, or fulfil, another peer’s
request if it is explicitly rewarded for that. Such reward consists of a resource/service that the
requesting peer supplies/performs for the cooperating/servicing peer, and in this way, both
the peers obtain a gain from the transaction.

While in trust based systems, confidence is earned throughout time and can be later profited
from, whenever desired. In trade based incentive mechanisms, when a peer wishes to
consume some resource from the system it must contribute with a resource of its own, more
or less, immediately.

Trade based incentive mechanisms can be classified as either providing immediate reward
(barter trade based), or deferred reward (bond based).

Generally the barter trade based mechanisms involve the immediate mutual exchange of
resources (files), and thus, can be called resource trading schemes. The bond based
schemes involve the exchange, between peers, of “bonds” in which the requesting peer
promises an action in return to the servicing peer [31]. These can be considered micro-
payments schemes.

2.2.7.2.1 Resource Trading Schemes (Barter Based)

This type of trading schemes, which, as previously explained, imply a direct mutual
exchange of resources between the peers, are arguably the most appropriate for insuring
the sustainability of peer-to-peer economies and communities/systems in their initial stages
of existence [39]. Several such schemes have been proposed or implemented.

One of the most notable, of such mechanisms, is that which is implemented in BitTorrent
[40]. In the BitTorrent system the resources (files) are broken into several smaller pieces.
Each peer, who desires to obtain the entire resource, must retrieve all the pieces from other
peers, which already have them. In the process, the peers reciprocate by uploading the
fractions of the resource, which they have, to peers which don’t have it, and which are
uploading to them. In this way, the peers form bidirectional content delivering connections
implementing the bartering system.

II P2P Content Delivery Survey 20

In [41] a bartering system is presented, which proposes an extension to simple one-to-one
exchanges, in order to permit transitive chains of peer exchanges, where n-way transactions
take place between rings of peers. It also proposes an algorithm for the detection of the
content exchange rings

Another resource trading mechanism is proposed in [42], where peers acquire resources,
from other peers in the network, by trading with their own resources. The main resource, in
which the work is focused, is storage space/data. However, it also theorizes the extension of
the tradable goods to processing cycles or even to abstract resources, as well as the trade
of one type of resource for another.

2.2.7.2.2 Micro-payments Schemes (Bond Based)

Several centralized and decentralized micro-payment (or bond), based incentive systems
have been developed or proposed for P2P networks. Some possible examples are:

• A decentralized bond based incentive mechanism is that which is employed by
FreeHaven. The nodes which constitute this network establish contracts, to store
each other's data, for a certain period of time. By honouring the established
contracts, a node increases its reputation, and thus the chances of the other peers
honouring its commitments to it [43];

• In [44] a bond based incentive system is presented, whose operation is based on the

maintenance of a distributed list of the resource consumption and contribution of
each participating peer. The accumulated credits of a node increase as it contributes
with resources, and decrease as the node consumes resources;

• A proposal for a peer-to-peer system where each peer is a software agent and where

all the agents cooperate for mutual benefit is laid forth in [45]. Two pricing
mechanisms are presented to motivate each agent to maintain a rational and self-
advantageous behaviour while at the same time safeguarding systemic efficiency;

• In [46] a micropayment system, PPay, is presented, which takes advantage of the

specific characteristics of P2P networks, to optimize its operation and assure
security, guaranteeing that all fraud is detectable, traceable and unprofitable through
the employment of the concepts of floating and self-managed currency.

Micro-payment schemes fall under two main categories [47]:

• Fungible – in these payment types, peers are paid with something redeemable, that
may later be used in exchange with other peers;

• Non-fungible - in these payment types, peers are paid with something that cannot be
traded with other peers.

2.2.8 Security

2.2.8.1 Introduction

P2P content distribution systems are voluntarily formed and have a distributed, open and
autonomous nature. These networks are constituted by inherently selfish and unreliable
nodes (or even non-benevolent nodes), whose behaviour is erratic and unpredictable. In
such conditions it is hard, for such systems, to provide a secure peer interaction and content
exchange environment. Some mechanisms must, thus, be put in place, so that P2P
networks may achieve some operational security and reliability.

The main concerns generally addressed by such mechanisms are [2]:

II P2P Content Delivery Survey 21

• Identity security – these mechanisms are meant to enable the maintenance of
identity verifiability for peers and users;

• Communication security – these mechanisms are meant to enable the maintenance
of communicational confidentiality, integrity, authenticity and anonymity;

• Content security – these mechanisms are meant to enable the maintenance of
content integrity, authenticity, availability, and access control;

The security related mechanisms, of P2P systems, frequently involve cryptographic means
[2]. These are based on either symmetric/secret key or asymmetric/public key schemes, or
combinations of the two:

• secret key schemes operate based on a common knowledge of a secret key by the
sender and receiver/storer. The key is used for encryption and decryption of data and
message authentication. These mechanisms require that the keys are separately and
a priori distributed in an out of bound procedure [6];

• public key based mechanisms use asymmetric key pairs. One of the keys is publicly
distributed, while the other is kept private. In these schemes no need for an out-of-
band key distribution structure exists, nonetheless it is still necessary to assure the
safe distribution of public keys [6].

2.2.8.2 Identity Security

Distributed systems, such as P2P networks, which have a very transient population, allow for
a single physical entity, (peer or user), to participate in it, under several different identities.
This fact poses a set of security challenges, related to access control, authentication (or
verifiable identification), and reliability of identity management.

These security issues may have an especially negative impact on P2P systems which
employ content replication or fragmentation schemes, for the distribution of content, across
multiple nodes, for security and availability.

The use of multiple identities by a single physical entity for nefarious purposes or to engage
in selfish behaviour is known as a “Sybil Attack". Given its relevance, this problem has
received a fair deal of attention, and some solutions have been proposed.

Some solutions are based on the consumption of identification challenges, for the deterrence
of identity forging. These however are considered unrealistic and impractical [48], seen as
they presuppose that:

• all peers operate under nearly identical resource constraints;
• all identities presented by peers are validated simultaneously by all the participating

peers;
• when accepting identities that are not directly validated, the required number of

vouching peers exceeds the number of system wide failure.

Other proposals exist, for enabling P2P systems to support peer registration (and
subsequently, some anonymity provision, content authenticity verifiability and content
availability), which are generally based on distributed algorithms, more or less independent
from any fixed central entity. The most robust of such proposals employ some form of
collective/mutual authentication between peers. Some of these are:

• threshold cryptography [49], (which is not purely distributed as it requires a trusted
third party);

• PGP [50] (which requires human evaluation of trustworthiness);
• “trusted peer group” based authentication [51].

Further solutions, yet, are proposed:

II P2P Content Delivery Survey 22

• in [52] a proposal is made for a self-registration based mechanism, where nodes
calculate their identifier based on their IP address and port, and register it in the P2P
network itself, at already successfully registered nodes;

• in [53] a method is proposed to deal with flooding and DoS attacks, and thus deter
inappropriate access, which is based in the issuing of a resource consuming
cryptographic puzzle to the requesting peer, when the contacted peer suspects that it
is under attack, so that the attacker spends more resources than the victim. This
technique can be used to defend against “Sybil Attacks” by overburdening an
attacker;

• in [54] a system is presented which provides access control enforcing such
capabilities as reading and writing restricting to only authorized users, through the
employment of data encryption and the provision of updated keys to authorized
recipients.

Systems or proposals such as those presented in [55] and [56] employ one form or another
of a central authority for the assignment of identities.

In private P2P networks, given their smaller dimensions and the fact that the involved users
typically know each other, it is possible for users to safely exchange cryptographic keys and
identifiers out-of-band. These parameters may then be employed to perform the mutual
authentication of peers and users.

Most of the above presented solutions (those which do not employ any trusted central
authority for identity provision), however robust, still present considerable weaknesses in the
face of sufficiently vast and sophisticated attacks, and (in the case of the collective/mutual
authentication based ones) lead to a considerable operational overhead. In truth, it can be
conclusively stated that an implicit, or explicit central certification or identification authority is
inevitably necessary to assure that P2P systems are impervious to a “Sybil Attack", and thus
provide access control, authentication and identity management [48].

2.2.8.3 Communication Security

Communicational security provisions mean to assure the confidentiality, integrity,
authenticity and anonymity of information packages exchanged between peers.

2.2.8.3.1 Communication Confidentiality

The confidentiality of inter-peer communications naturally implies some form of encoding of
the exchanged messages, and this means that the communicating parties need to share
some form of secret, so that the messages may be encoded and decoded.

Different schemes exist to provide P2P systems with varying levels communicational
confidentiality. Some of the most illustrative examples, of the current technical panorama in
this area, are the following:

• in [57] a “Trusted Computing” based solution is proposed, which employs tamper
resistant security hardware. It presupposes the assistance of centralized provisions,
be it the hardware provider or some other centralized trust providing entity;

• in [58] a solution is proposed which employs a quorum based decentralized PKI,
which is integrated in the P2P structure;

• in private P2P networks, as users know one another, it is feasible for them to
securely exchange cryptographic keys out-of-band. These keys may then be
employed to cipher the exchanged messages.

II P2P Content Delivery Survey 23

2.2.8.3.2 Communication Integrity and Authenticity

The provision of communication integrity and authenticity, in P2P systems, is a similar
question to assurance of content integrity (see section 2.2.8.4.1). As such the developed
solutions are very much the same.

Furthermore, such provision also involves secure routing techniques, and protocols. The
purpose of the latter is to prevent malicious peers from corrupting, deleting, or denying
access to the data stored by, or exchanged through P2P systems.

According to [59], for the provision of secure routing, in a P2P system, the fundamental
issues that must be addressed are:

• Secure assignment of IDs to nodes – which can be robustly achieved through the
use of a trusted central authority. It may also be performed through distributed
algorithms, which employ collective/mutual authentication between peers (see
section 2.2.8.2). This alternative, however is less robust;

• Secure maintenance of routing tables – this can be achieved, with relative
robustness, by imposing strong constraints, and demands, on the set of nodes which
can be allowed into the routing table [59];

• Secure forwarding of messages – this can be achieved, with relative robustness by
verifying the proper delivery of messages and resorting to the use of diverse and
redundant routing.

2.2.8.3.3 Communication Anonymity

Public interest in P2P anonymity has grown rapidly in the recent past. The main concern of
P2P users/peers who wish to remain anonymous is not to be identifiable as a sender or
receiver, of information.
There are a variety of reasons for this, such as:

• Preservation of privacy – The user does not wish for his activity to be tracked or for it
to be known that he/she possesses or is looking for a specific informational content;

• Censorship circumvention – The user wishes to evade local, organizational, or
governmental censorship to the distribution or access to some information;

• Avoiding social condemnation – The content that the user is distributing or searching
for, is legal but it is socially condemned, embarrassing or unaccepted in the user’s
social mean, workplace, religion, etc.;

• Fear of reprisals – The user may which to distribute or consume content, which due
to its nature, (activist, denunciatory, etc.), may lead to reprisals on the user if his
identity is known.

Anonymity, in P2P computing, is the network’s capability to hide the connection between an
observable action (for instance, a query message traversing the network), and the identity of
the entities involved in this action [60].

In such content distribution systems, anonymity can be of different types [60]:

• Sender anonymity to any node or a global attacker;
• Responder anonymity to any node or a global attacker;
• Sender-responder anonymity to any node or a global attacker.

Anonymity can also involve the identity of content storing nodes, details about content’s
nature, and the specifics of queries.

Furthermore the level of anonymity provided by a system can also vary between the
following categories [60] [61]:

II P2P Content Delivery Survey 24

• Beyond suspicion (BS) – From the perspective of an observing node, the detected
peer presents no greater probability of having being the source of an action than any
other node;

• Probable innocence (ProbI) – From the perspective of an observing node, the
detected peer presents no greater probability of having being the source of an action
than of not having being;

• Possible innocence (PossI) – From the perspective of an observing node, there is a
non-negligible probability that the detected peer did not originate a specific action.

In anonymous P2P networks, the peers are identified by pseudonymous by default, and the
fundamental difference between them and non-anonymous networks, lies in the way in
which information is routed and transmitted through them.

In such anonymity assuring networks, the information (queries, content, etc.), is not
transmitted directly between the interested nodes, but through a series of intermediary
peers, thus abstracting the connection between sender and receiver, at the expense of
overall efficiency.

2.2.8.3.3.1 Relevant Proposed Schemes

Some of the most noteworthy anonymity assuring protocols proposed, are presented next.
The strategies employed by such protocols, to provide for peer anonymity generally belong
to one off the following types [2]:

• Disassociation of Content Source and Requestor – This strategy is based in the
relaying of information by intermediary nodes, between content source and
requestor, so that they can remain unknown to each other and other nodes. Some
practical examples are:

o Freenet [10] – Freenet defines (and implements), its specific anonymity

providing protocol, which is based on this approach.
Its main objective is to protect the anonymity of requestors and inserters of
content, and also to preserve the privacy of content storing nodes [10], and
users, by rendering impracticable the discovery of the initial origin or
destination of any piece of information, found traversing the network.
Freenet’s protocol is based on a mechanism which determines that a
successfully discovered resource is transmitted to the requesting node not
directly but instead through every node that forwarded the original search
request. Also, any peer along the content retrieval path can present itself, or
another randomly selected node, as the data source. Thus, no association
exists between the content requestor and the content sending peer.
Furthermore, the hops-to-live counter value, initially set for search messages,
is arbitrarily chosen, so as to impede the determining of the distance of the
message from the originator peer [2].
With the execution of more and more searches, each peer will “perfect” its
routing table which will render the search more efficient;

o Return Address Spoofing – This is a practice which can also be used to hide

the identity of data sending peer (query or content). It is based on the
tampering the headers of IP messages. Every IP packet carries in itself the IP
address of the source computer. Given that this information is not needed by
the routers, it may be altered without harming the message’s routing through
the network. That information is only necessary in the case of TCP for control
reasons, but UDP can dispense it entirely. Therefore if the UDP protocol is
used, and a random return address is inserted, a sender can thus distribute

II P2P Content Delivery Survey 25

data and hide its identity from other nodes. Still, given that this practice is
associated with unlawful or illegitimate activities, it is frequently prohibited by
ISPs;

o The broadcasting of information can also be used for the provision of receiver

anonymity, by multiplying the number of recipients and, thus, “diluting” the
real receiver in a population of false ones.

• Anonymous Connection Layers – Such schemes employ sub-infrastructures, within

the overall network, in order to establish a specialized layer(s) of nodes for the
provision of anonymity [2]. Examples of such protocols are:

o Onion Routing [62] – This is a general purpose protocol for the provisioning of

anonymous connectivity over public networks. The main requirement of this
system is that all sender nodes know the public keys of all the other peers. All
the messages exchanged in the network are randomly relayed through a
layer of peers called “Core Onion Routers” (CORs). Whenever a connection
is to be established, the initiating peer chooses an arbitrary path through the
CORs, and creates a recursively layered and encrypted data structure
carrying the necessary routing information called “onion”. Each of the layers
of the onion is ciphered with the public key of the corresponding COR node.
When such a node is to forward some information and, thus, is given the
routing onion, it unwraps a layer (its corresponding layer), decrypting it with its
private key. This way the COR node obtains the identity of the next COR
node in the path and a new onion (with one less layer), to forward to that
router. Given that the inner layers are ciphered with other node’s keys, no
COR node has a full knowledge the path. Each router knows only the identity
of the next and previous ones;

o Mix networks [60] [63] – This scheme provides anonymity by forwarding
messages from node to node. The specific characteristic of it, is that it does
not relay each message as it arrives. The nodes first gather a number of
messages and only then do they forward them, mixed up. Such a procedure
can effectively hide the sender and the receiver of a transacted portion of
information, from an attacker with full network surveillance capabilities. The
main disadvantage, of this scheme, is that the message accumulation phase
is difficult to implement, or at least introduces inefficiency in content
distribution P2P systems, due to their heterogeneousness and inconstancy;

o In [64], a system providing user, server and active-server document

anonymity for a P2P infrastructure, is presented. The system presupposes
the existence of a public key infrastructure, so any node can know any other
peer's public key. In this mechanism the peers can fulfil four different roles:
publisher, forwarder, storer and client. When a publisher wishes to distribute a
document, it splits it into encrypted shares and uses an anonymizing layer of
nodes (the forwarders), to determine the nodes which will store the shares
(storers). The way in which the content is transported, and delivered, is
similar to the onion routing protocol;

o Crowds [61] – This protocol adopts the strategy of “blending into a crowd" for

the provision of anonymity in web transactions. It groups peers into a large,
and geographically distributed, set (crowd), which collectively performs
requests on behalf of its constituting nodes. Each message that is to be sent
to some server, or peers, is randomly routed through the crowd until one of
the crowd’s peers decides to forward it to its destiny. In this way neither the

II P2P Content Delivery Survey 26

receiver, nor the forwarding peers in the crowd, know who the message’s
originating peer was;

o Tarzan [65] – This is a decentralized anonymizing protocol based on a

network layer infrastructure, which provides anonymous IP tunnels between
peers. Its operation is based on the routing of packets through tunnels of
arbitrarily chosen Tarzan nodes, using mix-style layered encryption [2].

• Censorship Resistant Lookup – Such schemes provide anonymity as a means to

assure censorship resistance. They do so by pursuing some specific goals [66]:

o Data may be inserted into the system, without revealing the identity of the
inserter. This way, attacking those who insert information will not be an
effective means of censoring it;

o Data may be retrieved from the system without revealing the identity of
the recipient. This way, targeting those who request information will not be
an effective means of censoring it;

o It must be improbable or unfeasible to make a node responsible for a
specific document, so that assuming responsibility for a resource and then
destroying it will not be an effective means of censoring it;

o The association between content, and the nodes which store it, must be
difficult. This way identifying and attacking individual container nodes will
not be an effective deterrent of the diffusion of those contents.

In [66] a censorship proof mechanism, based on the Chord lookup service, is presented. It
provides publisher, storer and retriever anonymity, and it makes it harder for a peer to
deliberately take responsibility for any specific resource, under distribution in the system.

2.2.8.4 Content Security

The purpose of content security provisions is to enable the peers, in a P2P system, to be
able to validate the integrity and authenticity of exchanged content. Furthermore, such
provisions frequently also include tools to enable the assurance of content availability.

2.2.8.4.1 Content Integrity

In P2P systems, data integrity validation is typically assured though the employment of
signatures or checksums. In such schemes (and in the context of content data integrity), at
content insertion time, a checksum or signature of the content is calculated. Upon content
retrieval, every node needs to recalculate that value, over the retrieved information object,
and check it against the original one. Content integrity validation enabling schemes vary
predominantly in the manner through which the content file and its checksum/signature are
associated to each other. Some relevant such schemes are the following:

• Data detached certification – in these schemes the content is distributed
independently from its security signature. Upon (or prior to), content retrieval, the
retrieving node obtains the value of the checksum from the content indexing node
(structured networks), the content storing node (typically, in unstructured networks),
or from some other provision involved in the process of content discovery and/or
location (e.g. from the .torrent file in BitTorrent). It then proceeds to validate it against
the one it calculates over the retrieved content. These schemes, though, generally

II P2P Content Delivery Survey 27

depend on the reliability of the inter-peer communication channels and on the
honesty of peers, or on some external identification providing infrastructure (i.e. PKI);

• Data Self-certification – in this mechanism (employed in structured networks),

whenever a peer wishes to make a specific content available for distribution in the
network, it computes a cryptographic hash of that content, using a universally known
(throughout the network), hashing algorithm, and thus produces the content’s specific
location key. When the content is retrieved, from the network, resorting to its specific
location key, the retrieving node performs the same hashing algorithm, on the
content, to check if the resulting value is the same as the location key, and, thus, to
validate the data’s integrity. A general proposal for such a mechanism can be found
at [67];

2.2.8.4.2 Content Integrity and Availability

Several proposals exist for schemes which mean to assure both content integrity as well as
availability. Some of the most relevant are:

• Shamir's Secret Sharing Scheme based – the algorithm described in [70] is
frequently employed in provisions meant to assure the availability and integrity of
distributed content. It is based on the encryption of content with a key, which is split
into several portions that are distributed between several servers or peers. The key
can be recreated from any (sufficiently big), subset of portions of the original key. The
content is distributed together with a portion of the key. For the content to become
unavailable a large number of the servers/peers must fail;

• Anonymous Cryptographic Relays – this scheme [64] is based on the abstraction of

the connection between the final user and the content storing nodes, through the
anonymity of his location, in order to make the system the least subjectable possible
to censorship. According to this scheme’s operation mode (which depends on the
assistance of a PKI), a publisher first chooses several forwarding nodes to which he
sends (via anonymous connections), fractions of the encrypted resource. These
nodes, in their turn, will select other peers, to play the role of content storers, and
hand them (anonymously), the data to be stored. After this phase, the publisher
announces the content and the associated forwarders. For a client to have access to
content, it will have to access the forwarders and retrieve, through their efforts, the
content saved at the storers;

• Erasure coding – this mechanism is similar to the information dispersal algorithm.

The difference is that the distributed portions of information are named using a
secure hash over the object contents, providing these portions of data with unique
identifiers, which contributes to a better assurance of data integrity.

2.2.8.4.3 Content Authenticity

The existing distributed schemes to assure content authenticity may be divided into the
following categories [69]:

• Oldest document based – In this type of scheme, the first object to be submitted with
a specific identification is considered to be an authentic match for a query looking for
that specific identification. Time-stamping systems as the one present in [68] can be
employed in the implementation of such schemes;

• Expert based – In this approach, an object is deemed authentic by an “expert” or

authoritative node N, which keeps track of signatures for all objects/files ever

II P2P Content Delivery Survey 28

authored by any user of N. If at any time it is necessary to verify the authenticity of a
file, supposedly, authored by any of N’s users, node N can be consulted. If and when
node N is unavailable the scheme fails to function;

• Voting based – To deal with the possible failure of N, another possible authenticity

assuring scheme, takes into account the “votes” of many experts. The expert nodes
may be operated by human experts or regular users which simply vote on the
authenticity of a file by deciding to store a copy of it or not. This scheme may be
augmented through the weighing of experts’ opinions by their reputations (as
maintained by such reputation systems as those presented in [34] [35]). The key
issues with this scheme are how to prevent spoofing of votes, of nodes, and of files.

2.3 Noteworthy Systems

2.3.1 Introduction

Since the rise of Napster, (the first notorious P2P network), P2P technology has endured a
prolific evolution (mostly in a non-commercial context), which has resulted in the technical
panorama described in section 2.2. As such, numerous P2P protocols and systems coexist
in today’s Internet.

An exhaustive description of all such systems would be both unnecessary and practically
unfeasible for a presentation of the present scenario in the field of P2P content delivery.
The exposition that follows, will focus on some the most noteworthy, (either due to their
popularity or to their technical relevance), P2P networks in existence. These will be Gnutella,
BitTorrent, eDonkey and FastTrack [71].

It should be noted that, for many of these systems and applications, no exhaustive formal
source of information exists, and, as such, information, must, on many occasions, be
collected from multiple secondary sources, such as, scientific articles, Web sites, message
boards, forums, etc. In the following sections the presented information, was in many
instances obtained through this process.

2.3.2 Gnutella

Gnutella began as a fully decentralized protocol for distributed search on a flat topology of
peers [15]. This leads to a lack of scalability in the search mechanisms which undermined
the overall performance of the network. Gnutella has thus evolved into becoming a partially
centralized system, which employs an overlay network. This system’s nodes are either leaf
nodes or higher level nodes, called ultra-peers. Ultra-peers are high capacity nodes which
behave as proxies for the network’s leaf nodes.

When a node initially connects to the system it must discover the location, and connect to, at
least one other node, of the ultra-peer type. Different procedures have been developed for
this purpose, such as, shipping a list of addresses of working nodes with the software,
employing updated web caches of known nodes (called GWebCaches), etc. [15].

Once connected to an ultra-peer, a Gnutella node requests an updated list of addresses of
working peers with which it will interact. If it is a leaf node it then proceeds to publish its
contents list to a number of known ultra-peers.

Peers interact through the exchange of messages over TCP/IP. Each issued message
possesses a 128 bit [47] unique and randomly generated identifier and all peers maintain a
short term memory of the recently routed messages. This memory is used to prevent the re-
transmission and to implement back-propagation of messages. All messages have a

II P2P Content Delivery Survey 29

“TimeToLive” (TTL) and a ”HopsPassed” fields, which determine their lifespan within the
system.

The Gnutella protocol does not provide the system with any control over its topology or over
content placement [15]. It is therefore an unstructured network. Thus, in order to locate a
specific data item, a peer queries its neighbours.

The initial data discovery method in Gnutella was flooding. The query was forwarded to all
neighbours of the inquiring peer within a certain radius. If a peer, receiving a query, knew the
location of the desired content, it would send back a response to the originating peer via the
query’s incoming path. If it did not know the location of the content it would forward the query
to its neighbourhood [17]. The described content location mechanism is highly resilient to
peer population transience. Still it is not scalable and contributes to an overburdening of the
network, especially in an architecture without ultra-peers.

Later versions of the protocol and its peer implementations have attempted to deal with the
system’s lack of scalability. Some changes were introduced such as:

• search results are returned over UDP directly to the node which initiated a search.
This diminishes the amount of traffic routed through the Gnutella network, increasing
its scalability;

• a number of techniques were adopted in order to reduce traffic overhead and make
searches more efficient. The most relevant of these were QRP (Query Routing
Protocol) and DQ (Dynamic Querying). When QRP is employed, a search arrives
only at those peers who are likely to possess the desired content, this way the
searches for rare data items grow in a more efficient way. When DQ is employed the
search stops as soon as enough search results have been acquired. This greatly
diminishes the amount of traffic caused by searches for popular content [72].

Figure 6 – Gnutella Structure and Content Search

The, already mentioned, introduction of a layer of ultra-peers also contributed greatly for the
increasing of the system’s scalability. In the new architecture, content discovery may be
performed as an optimized “flooding” that occurs only in the Ultra-peer sub-structure as
depicted in Figure 6.

In the Gnutella network, content transfer is performed over HTTP, in a direct connection
between the content supplier and content requester. The retrieving node establishes a
connection to the serving host and makes a standard HTTP request for the desired content.

II P2P Content Delivery Survey 30

If the serving peer is behind a firewall the procedure is altered. The serving peer is instructed
to push the content to the content requiring peer. The protocol also supports simultaneous
downloading from multiple sources [73].

The strategy employed by Gnutella for content replication throughout the system is that of
passive replication. Only the peers who download a specific content become its distributors.

The Gnutella system has no provisions or incentive mechanisms for the enforcement of fair
use, on the part of the constituting peers. Requests are to be served in order of arrival, for as
long as there are upload slots available at the serving peer. If a specific implementation
(peer) is to behave in a systemically damaging selfish way, the system is not able to prevent
such behaviour [73].

Gnutella allows for the checking of the validity of retrieved content, but only after download
completion. This means that a corrupted chunk of the retrieved file will imply the
downloading of the entire content again [73].

2.3.3 BitTorrent

BitTorrent [74] is a centralized P2P system. It employs central nodes called “trackers” for the
managing of users' downloads. A tracker is contacted whenever a network node wishes to
download a file. Trackers maintain and update an index of torrents. That is, they keep track
of all the nodes which at a specific moment are participating in the downloading of each
specific file (both partially and completely). They thus handle the facilitation of the connection
between peers for the downloading and uploading of content.

The main BitTorrent architecture is an unstructured one. Still with the evolution of its
implementations (peers), trackerless torrents are now also supported through means which
render the resulting system a structured one. Trackerless operation is supported through the
employment of a Distributed Hash Table (DHT). This is a layer which is added on the top of
the BitTorrent network. The strict BitTorrent network and its DHT enabled portion operate
independently. Each DHT enabled node is responsible for indexing a certain percentage of
hash files on the network thus building a distributed indexing system [73], where each peer
behaves as a tracker.

Azureus [75] [76], and the official BitTorrent client have been the first to add a DHT layer.
Both employ the Kademlia [77] structured overlay, but the two resulting networks are not
compatible [73].

For content retrieval, BitTorrent supports the simultaneous downloading from multiple
sources of fractions of the same content, and also the sharing of partially downloaded files.
BitTorrent peers can thus upload a file while still downloading it.

The BitTorrent system divides files into fragments of fixed size (256 Kbytes), and the content
of each peer is tracked on a block basis [17].

A peer distributing a data file, handles the file as a number of identically-sized blocks. The
peer calculates a checksum for each of the blocks, using the SHA1 hashing algorithm. The
calculated hashes are stored in a .torrent file. When another node, later retrieves a particular
fragment, its checksum is computed and compared to the recorded one to test the
fragment’s validity. A peer which provides an entire file is called a seeder, and that which
delivers the initial copy is the initial seeder [74].

Torrent files are composed by:

II P2P Content Delivery Survey 31

• "announce" section, specifying the URL of the tracker which is responsible for the
tracking of the specific content’s diffusion throughout the system, that is, the Torrent;

• "info" section, containing the file’s names, its length, the fragment size used, and a

SHA-1 hash code for each of the fragments

Torrent files are generally made available online (via websites for instance), and registered
with a tracker (the tracker specified inside). The selected tracker maintains updated lists of
the peers currently involved in the torrent.

For content retrieval to take place users must somehow (browsing the web) obtain the
torrent information for the desired content (the .torrent file). After it is downloaded and
supplied to a BitTorrent client, it connects to the tracker(s) indicated in the torrent file. The
tracker(s) delivers to the BitTorrent client a list of peers which are at that time transferring
fractions of the file(s) specified in the torrent. The peer then proceeds to connect to those
nodes to retrieve the various pieces. This content retrieval procedure is depicted in Figure 7.
The group of peers participating in a torrent is called a swarm. If only the initial seeder is
included in the swarm, further peers will directly connect to it and request pieces of the
fragment from it. As the swarm increases, the new peers begin trading fragments with one
another, instead of downloading them from the seeder.

This digital content distribution system employs a strict reciprocity strategy for content
diffusion. That way, a peer responds with the same action that its other collaborating peer
performed previously. They upload to those peers who have uploaded to them and they
download from those which have downloaded from them. This bartering scheme is a trade-
based incentive mechanism designed to discourage free-riding, by making peers select
other peers from which data has been previously received. Nodes with high upload capacity
will most likely also be able to download content with a high speed and the average
download capacity for a peer will be reduced if its upload speed is limited [17].

Figure 7 – BitTorrent Protocol Operation

The bartering procedure also contributes to a better spreading of content among the peers
thus improving reliability [17]. Given the implications of the reciprocity strategy employed by
BitTorrent, its content replication scheme is quite efficient as it forces peers to participate in it
for their own interests. Nonetheless it may be considered to be a form of passive content
replication.

II P2P Content Delivery Survey 32

A strict bartering policy may nonetheless have negative effects on the system (for instance
newly joined peers would in many cases be unable to receive data because they do not
possess any fragments yet to trade themselves). To compensate for such negative effects
the protocol employs an “optimistic unchoking” mechanism. According to it, peers reserve a
portion of their available bandwidth for sending content fragments to random peers (not only
preferential partners, but also others). This allows for the discovery of more advantageous
partners but also ensures that new nodes on the network have the opportunity to join in [74].

Choking is a temporary refusal from a peer to upload content. At that time content
downloading may still occur and the connection does not need to be renegotiated when the
choking terminates. A peer may perform choking for several reasons, such as to get a better
congestion control or performing a more advantageous bartering scheme for content trading
[17].
For optimal efficiency the choking algorithm should [17]:

• reduce the number of simultaneous uploads for good TCP performance;
• avoid fibrillation, which is a rapid choking and unchoking;
• supply the download service to peers who supply (are supplying) it back;
• periodically experiment unused connections to determine their possible usefulness.

The BitTorrent protocol (through the official peer implementation) avoids fibrillation by only
changing the chocked peer every ten seconds. It performs reciprocation and limits the
number of uploads by unchoking the four peers with the best download rates.
If a downloading peer possesses a complete file, it uses its upload rate rather than its
download rate to decide which peer to unchoke. Peers which are optimistically unchoked
change every 30 seconds [17].

BitTorrent employs “Info hashes” for the identification of files or portions of data. The .torrent
files carry a list of such block hashes in order for the peers to be able to verify that the
individual downloaded blocks of a file are not corrupted. Corrupted blocks must be re-
downloaded [73].

2.3.4 eDonkey

MetaMachine Inc. was the original developer of the eDonkey protocol and peer, the eDonkey
2000 (or ED2K). Still, their software was reverse engineered and several other clients were
developed. In 2005, due to legal pressure from RIAA, MetaMachine discontinued the
distribution of their software [78] [79].

This change, however, has had little impact on the overall network’s operationally.
Alternative peers, such as the open source eMule, long before the distribution of the eD2K
client was ceased, had already become common place in the network, and have continued
operating and thus implementing, the eDonkey network.

The network relies on highly capable central servers which are loosely connected and are
run by users and the “community”. The servers perform the role of communication hubs and
content indexes, allowing users to locate files within the network. Given the fact that the
network is composed by two functionally different types of peers, (client and server), it is
thus a hybrid decentralized P2P system.

The central servers can be subject to heavy traffic and, thus are more vulnerable to attacks
and constitute a potential bottleneck. To deal with this issue, the Overnet protocol was
developed as an evolution of eDonkey. It employed a Kademlia [77] resource placement
scheme. This Kademlia enabled part of the network is thus a structured decentralized P2P
system.

II P2P Content Delivery Survey 33

To initially connect to the network, a peer (client) must have a priori knowledge of the IP
address, and port, of at least one other peer (of the server type) in the network. After
connecting, a peer must register the content files, that it possesses, and that it is able of
sharing, by providing the meta-data describing the files, to the server peer [17].

Content files, within the eDonkey system, are divided into blocks. A checksum is computed
for each of the blocks and they are propagated between clients on demand. A checksum of
all the checksums is employed by the system as the file identifier [80]. During content
retrieval time, if a corrupted block is detected it is discharged and retransmitted [73].

Content may be located either by querying the servers with values that will be matched to
the descriptive meta-data that the servers host, or by requesting a particular file through its
unique network identifier. Servers deliver, to clients, the locations where the desired files
may be obtained. The files are directly exchanged between client peers [17]. EDonkey
queries support fields such as name, size, extension and bitrate [80]. Clients peers may also
browse the listings of contents of other client peers [80].

The eDonkey network (the set of eD2K peers, more specifically), uses Multisource File
Transmission Protocol (MFTP), to enable the simultaneous downloading from multiple
sources, and the sharing of partially downloaded files. An eDonkey peer can thus upload a
file while still downloading it [73]. This fact agilizes the overall distribution of large files.

In what regards the enforcement of fair use, in the eDonkey system, the employed measures
vary with the implementation of the protocol (peer). The official peer (ED2K) uses a basic
queue system to attend to requests and employs the proprietary Horde system. Shareaza
permits the users to specify their own criteria. The eMule’s peers employ a credit system
where the more a peer uploads to another peer, the faster the first peer advances in the
second’s waiting queue [73].

2.3.5 FastTrack

FastTrack [81] is a proprietary protocol. It appeared at the end of the first generation of P2P
networks in 2001. In time it has forked into a number of different and mutually incompatible
networks.

The FastTrack protocol defines a semi-centralized P2P network. Its constituting peers fall
under the category of ordinary nodes (ONs) or supernodes (SNs). The SNs occupy a more
central position in the network, and handle a greater and more relevant set of tasks. They
perform the role of temporary index servers. Any of the FastTrack’s nodes, with sufficient
CPU capability and network connectivity, can become an SN. These central nodes are
elected by the system through a decentralized process [73]. The fulfilment of the role is
voluntary.

When a FastTrack ON application is initiated it selects a parent SN, with which it establishes
a semi-permanent TCP connection. The procedures employed, for the ON to know where to
connect, are somewhat similar to those used by Gnutella.

The FastTrack system is unstructured. Content discovery is performed through the
employment of query diffusion. The SNs (also called super-peers) store the metadata about
the contents, shared by the ONs under their responsibility, in an index. When a node wishes
to obtain a specific content, a query is issued to its respective SN, containing the user
defined keywords. After that, a, Gnutella like, broadcast based search is performed in a
highly pruned overlay network of SNs. For each match at an SN database, the respective
SN returns the IP address, server port number, and metadata corresponding to the match.

II P2P Content Delivery Survey 34

Figure 8 presents a view of FastTracks’s architecture.

Figure 8 – FastTrack Architecture

FastTrack can still operate without the presence of SNs but its performance is degraded.
The maintaining of the SNs’ indexes, and the broadcasting of queries between them, are,
nonetheless bandwidth consuming [17] strategies.

The indexes stored at the SNs are built from information received from the ONs. The
information about the content files, that an ON is harbouring, which it shares with the SN
includes [82]:

• the file name;
• the file size;
• the ContentHash – a hash is calculated for every file, and it is used as its signature.

The ContentHash is the only identifier used to identify a file in an HTTP download
request. If a download, from a specific peer fails, the Content-Hash allows a
FastTrack peer to automatically search for the specific file, without having to emit a
new keyword query;

• file descriptors (such as artist name, album name, and text entered by users). These
are used for keyword matches during querying.

The TCP traffic that FastTrack peers exchange, serves four main functional purposes [82]:

• Signaling traffic – includes handshaking traffic for the establishment of connections
between nodes, metadata uploaded from ONs to SNs, supernode lists and queries
and replies. Signaling traffic is encrypted;

• File transfer traffic (e.g., MP3s, videos, etc.) – takes place directly between the end
peers without passing through intermediate SNs. File transfers are not encrypted and
are sent within HTTP messages;

• Commercial advertisements – sent over HTTP;
• Instant messaging traffic – encoded as Base64.

This protocol supports multi-source downloading, but not partial sharing of files [73].
The specific implementation of this protocol, done by the KaZaA client, employs unencrypted
HTTP transfers for content retrieval. And all transfers, when using this peer technology,
include KaZaA-specific HTTP headers [17].

II P2P Content Delivery Survey 35

The strategy employed by FastTrack for content replication throughout the system is similar
to that employed by the Gnutella protocol.

The Kazaa variant, of the FastTrack system, implements an incentives mechanism to reward
fair use of the network’s resources. The mechanism involves the evaluation of the
”Participation Level” of peers, which relies only on a locally computed value. The formula
used for its calculation, is proportional to the ratio of uploaded megabytes of data to the
network, by a peer, over the downloaded megabytes from the network, by a peer. A
maximum value for such level is also defined. The participation level value is sent to each
peer that a given node wants to download from, where it determines its position in the
remote node’s download queue.

As the value of the participation level is calculated, and stored, locally, the incentives system
defined by FastTrack is, obviously, of little robustness. It was eventually cracked and some
clients were developed which present a modified participation level, which is constantly set
at the maximum value [73].

The FastTrack protocol is not very resilient to polluting. This is so because the employed
hashing algorithm performs only incomplete file hashes [73], and no other system wide
provision exist to assure content validity. The hashing protocol has, nonetheless, been
subjected to some recent improvements.

2.4 Summary

As exposed in the previous sections, the technical landscape of P2P content distribution is a
very diverse one. It encompasses a vast group of tools and proposals for a varied set of
different purposes.

The first notorious P2P system, of relatively recent times, was Napster. This system had a
hybrid decentralized architecture (as explained in section 2.2.2 of the present chapter), and
thus, a central coordinating entity. This entity granted it a good operational performance, but
it was also a legally targetable point. Napster was, thus, targeted with lawsuits and,
eventually, shut down.

P2P systems then progressed in the direction of increasing decentralization. This was
triggered by the desire to make P2P systems more independent and resilient to node failure
and attack, but also, to eliminate provisions, of such systems, that where legally targetable
(the central or coordinating ones). This evolution, however, brought scalability and islanding
problems. Thus, in time, a return as occurred to more centrally coordinated modes of
operation, (BitTorrent, FastTrack), in order to increase operational efficiency.

Globally, the available technologies, for P2P content distribution, provide more or less robust
means for:

• In the context of operational reliability:

o relatively robust content location – structured systems generally provide the
means for a relatively efficient location, once a content object’s specific ID is
known;

o efficient content exchange – as peers, typically, exchange content directly,

they eliminate the need for any central repository, and distribute the content
delivery workload though the peer tissue. Protocols which enable a
fragmented content exchange are more efficient as they enable the
immediate discarding of corrupted fragments. Furthermore, protocols (e.g.

II P2P Content Delivery Survey 36

BitTorrent), which have some form of coordination of the content exchange
process are more efficient that those which do not;

o relatively high resilience to the topological transience which characterizes

P2P networks in the context of content availability – unstructured networks
have the best performance, in this regard, as in such systems there is no
mapping of content objects to peer. If some peer goes offline, its content may,
generally, be obtained from other peers;

o some effective fair use enforcement, through bartering – this is achieved by

BitTorrent [40];

• In the context of security:
o some content integrity validation – most of the predominant P2P systems

enable the validation of the exchanged content objects’ integrity. These
provisions are however of relative robustness as they generally depend on
the safety of the communication channel, between peers, through which the
content checksum is exchanged;

However, the defined technologies, protocols and platforms, typical lack, or presuppose the
absence, of any centrally coordinating or absolutely trusted provision. There is thus no point
of ”high ground”, in such systems, which can: maintain a coherent global vision of the
system; enforce some form of globally aware coordination or resource management; or be
the source of ultimately and absolutely trustable information.

Given the transience, and the inherent unreliability, of the tissue that composes P2P
networks, the above mentioned characteristic, of the currently predominant P2P
technologies, is at the root of most of said technology’s shortcomings. These are;

• In the context of operational reliability:

o content discovery and location – as, typically, no entity exists with a global
and coherent view of the entire content object repository, the discovery and
location of such content requires the execution of distributed algorithms. In
unstructured networks said discovery is performed either by query diffusion
though the network’s peers or by inquiring a super peer. The earlier
alternative is inefficient, unscalable and prone to flooding the network. The
latter is more scalable but still does not enable a search over the content in its
entirety. In structured networks, content location is fairly robust if the exact
identifier of the target content is known. This however means that said
identifier must first be, somehow discovered. This is a pending problem of
these networks as their supporting of keyword based searches is, at best,
very fragile. Furthermore the coherence of the mapping of resources to peers,
and consequently, content availability, is difficult to maintain, given the
transience of the peer collective and the existence of malicious peers;

o content exchange/retrieval – the way that content is distributed/diffused

across P2P systems is generally efficient, in the sense that its exchange
depends on no central server and the content distribution workload is diluted
across the entire peer collective. However, there is still room for improvement
in terms of the coordination of the exchanges, that is, in terms of determining
which peers retrieve which object from which other peer and making sure that
they all contribute. In this regard the BitTorrent protocol presents a higher
efficiency. Nonetheless, if, in a P2P system, a global overseeing entity exists,
it may enforce global content diffusion patterns, throughout said system, with
optimal efficiency;

II P2P Content Delivery Survey 37

o connectivity of the system’s tissue and content availability – given the

decentralized and transient nature of P2P networks, the occurrence of
islanding is frequent, especially in completely decentralized (with no super
nodes) systems. This consists of sections of a same system (e.g. Gnutella),
loosing contact with each other. This leads to the systemic behavioural
variability and inconstant content availability;

o content management - most P2P systems present little content management

capabilities (e.g. deletion, update, validity expiration, versioning, etc) or none
at all. When such capabilities are present they are generally not very reliable
given the lack of overseeing provisions to guarantee their adequate
enforcement;

• In the context of security – all shortcomings in this field, ultimately, result from the

typical lack of a central trusted entity. These basically consist of:

o insecure identification of peers and users – the predominant proposals for the
identification of peers and users, in P2P systems, avoid resorting to any
central trust providing authority and, instead, employ distributed, frequently
quorum based, algorithms [49] [50] [51]. These are vulnerable to vast and
sophisticated attacks and imply a considerable operational overhead. These
mechanisms are therefore not really reliable;

o insecure communication – in line with the reality exposed in the above bullet,

the predominant mechanisms for assuring communicational integrity
authenticity and un-deniability are fragile at best. In terms of anonymity
assurance, however, some of the developed schemes present some
satisfactory robustness;

o fragile media object integrity and authenticity assurance – the few integrity

assuring measures enforced by the predominant P2P systems in operation,
are very fragile as they depend on the security of the communication channel,
(frequently inexistent) and on the honesty of peers. Authenticity assuring
mechanisms are even more fragile and subjective;

o generally inefficient enforcement of fair use – fair use is enforced either

through the employment of peer reputation maintenance mechanisms, or
through trade based mechanisms. The latter can further be divided into those
which are resource trading based and those which are micro payment based.
Resource trading based (or barter based) mechanisms are the most efficient
and less prone to fraud. These, nonetheless, present some issues as they
can have a negative impact on the efficiency and flexibility of content
exchange, given their frequently rigid demands for reciprocity;

o virtually absent rights management provisions.

In light of the content above exposed, it can be concluded that the weak spot of P2P
technologies are its security related aspects.

II P2P Content Delivery Survey 38

3 DRM Technology Survey

3.1 Introduction

The purpose of Digital Rights Management (DRM) solutions is to provide content
producers/distributors with the capability to govern and administrate the usage of their
information goods, throughout the entire on-line digital value chain. DRM is composed by all
the activities and procedures involved in the electronic and informatics related management
and marketing of usage rights over digital content.

DRM tools may be embedded in physical support backed media as well as in digital goods
which are distributed online, such as music files, e-books, games, videos, etc. The
development of DRM solutions has been underway for some time and some solutions and
practical implementations have been put forward. Still, this technological field has been
characterized by some relatively difficult progress for technical reasons as well as for social,
legal and economical ones. Thus, as a whole the field is yet in a state of maturing, and the
existing systems are mostly proprietary and are generally unable to inter-operate, what many
times renders their usage uncomfortable to consumers.

The possibilities of DRM application, the scope of DRM concepts and their global
implications, (technical, legal, etc), are very vast, rendering the elaboration of an all-
encompassing study unpractical. This overview will focus on the technological aspects of
DRM, that is, on the management of usage rights over digital goods by control systems and
on the most relevant of such systems.

3.2 Technological Description

DRM systems consist of a set of information technology components and services,
supported upon copyright related law, whose aim is to provide the necessary tools for the
creation of a controlled environment for digital goods distribution and consumption.

The core operation of on-line DRM technology consists of protecting and facilitating the
selling of usage licenses for digital content. Such licenses are portions of digital data that
express specific usage rules and rights over digital content. These rules can be crafted so as
to implement various business models, such as rental, subscription, pay-per-use, etc [83].

DRM technology is generally divided into the two following operational areas [84]:

• rights expression – includes the identification and expression of the rights pertaining
to works and to the parties involved in their creation, distribution and consumption;

• rights enforcement – includes the technical enforcement of usage restrictions due to
the rights in context.

The first operational area is generally dealt with through the employment of metadata tools.
The second one is handled through the usage of encryption schemes and software or
hardware provisions.

3.2.1 Main Logical Mechanisms

3.2.1.1 Content Identification

Identification is the process by which a unique universal identifier is linked to a specific
media object, allowing its unambiguous distinction from all its peers. If identifiers are not
universal, their uniqueness and meaningfulness will only be assured within the context of
their corresponding namespace (its naming authority and all entities which can interpret the

II P2P Content Delivery Survey 39

naming protocol) [84]. For instance, the uniqueness of id “ISBN-13: 978-1587052576”, is
assured by the entity managing the International Standard Book Number namespace.
Some of the most relevant content identification standards are presented below in Figure 9
[85].

Figure 9 – Content Identification Schemes and Standards (data obtained from [85])

3.2.1.2 Content Metadata

Content metadata, in the present context, is information pertaining to digital content. It is,
generally, not directly connected to the security provisions of DRM systems. It usually serves
auxiliary, or user experience augmenting, purposes.
Such content metadata may carry information about a variety of subjects such as:

II P2P Content Delivery Survey 40

• semantic description of media content;
• the product’s origin;
• business or commercial exchange related data;
• etc.

Metadata formats are generally intimately connected to the type of content which they were
crafted to describe, and thus, are frequently not suited for other types of content.

3.2.1.3 Rights Expression Language

Rights Expression Languages (RELs) are tools that allow the expression of rights and
restraints on the usage of digital goods, in a language that is commonly understandable in
some digital context.

RELs are generally required to be:

• Fully expressive – They must enable rights holders (or their proxies) to express their
rights and interests in content, as well as to specify contractual agreements related to
it, pertaining to a variety of usage and business models;

• Unambiguous – They must be precise in a way that they are interpreted in the exact
way that the rights owner intended;

• Machine readable – REL metadata must be interpretable by automated devices;
• Secure – Instances of REL data (licenses) must be of a nature which assures that

any tampering can be detected.

XML is employed as a base syntax by most of these languages.

RELs require extremely semantically precise terms so as to provide unambiguous
expressions. Natural language is far from precise, and thus, unsuitable. REL languages
therefore require the development of specific sets of highly precise terms so that they may
express rights and permissions, without ambiguity and in a common understandable way.
Rights data dictionaries are the instances which group these necessary terms [84].

Some of the most relevant examples of REL initiatives or standards are the following:

• Open Digital Rights Language [86] (ODRL) REL – this standard is meant for open
use and is under cooperative development. Version 1.0 of ODRL merges Nokia's
Mobile Rights Voucher (MRV) and Real Networks' Extensible Media Commerce
Language (XMCL) [87]. Current version is 2.0. ODRL is subjected to no license
requirements and is available in the same model of "open source" software. It is part
of the W3C standards [85];

• The Extensible Rights Markup Language [88] (XRML) – an XML-based usage
grammar for specifying rights and conditions governing the access to digital content
and services (e.g. digital works, Internet-based services, fragments of information
such as an email address, etc [89]), which is owned by ContentGuard;

• MPEG-21 Rights Expression Language (REL) (and the corresponding Rights Data
Dictionary) – at its basis is XrML. REL contracts bind together one or several
principals (entities), a set of rights that are possessed over a digital resource, and the
conditions to which those rights are subjected. Furthermore the object of the contract,
(the resource), may be a rights expression itself. Thus MPEG-21’s REL may be
employed to perform the transfer of rights along the chain of digital goods production
and consumption [90];

• Creative Commons (CC) [91] – this standard provides a legal structure and
expression language which allows the development of a "some rights reserved"
context for digital resource sharing on the Internet. The goal of the CC initiative is to

II P2P Content Delivery Survey 41

foster creativity by building a vast base of material that can be re-used for the
production of new digital goods;

• The Extensible Access Control Markup Language(XACML) – it was developed by
OASIS [92]. It is an XML based declarative rights expression language and a
processing model which describes how to interpret the policies. It defines a core
schema, and corresponding namespace, for the specification of authorization policies
over data objects [93].

3.2.1.4 User and Device Authentication

An important functionality in any DRM architecture is User or Device Authentication. User
authentication is needed to allow the creation of a connection between the user, the content
and the rights the user has over the content.

Device authentication performs the assignment of unique identifiers to content consuming
devices. Such identifiers are employed to assert the device’s permission to perform the
consumption of the digital asset.

Several technical alternatives for device identification exist:

• employment of the MAC or IP address, on Internet connected devices;
• employment of the CPU ID for Intel machines;
• employment of the IMEI number on mobile devices. In these cases the SIM card can

in parallel, be used for User identification.

Some relevant initiatives in this area are:

• Palladium (now known as Next-Generation Secure Computing Base) [94], which is a
Microsoft developed system, that employs both software and hardware controls to
build a "trusted" computing environment;

• Trusted Computing Platform Alliance (TCPA). This is an open alliance, which was
constituted for the goal of creating of a new computing platform capable of providing
trust in the PC platform. TPCA is currently designated by TCG - Trusted Computing
Group [95].

Some of the most relevant alternatives and initiatives for on-line user identification are the
following:

• Microsoft Account [96] (formerly Windows Live ID) – this is a, broadly deployed,
online authentication system developed by Microsoft. Its single sign-in service
permits a user to develop a single set of credentials and use it throughout all sites
that support said service;

• OpenID [97] – this is a decentralized, free and open standard managed by the not-
for-profit OpenID Foundation [98]. It enables Internet users to authenticate
themselves with many different web sites using a single digital identity;

• Security Assertion Markup Language (SAML) [100] – this is an XML based
framework, which was developed by the Security Services Technical Committee of
OASIS, for the exchange of authentication and authorization information between
security domains (between Identity Providers, which produce assertions, and Service
Providers which consume assertions);

• Shibboleth [99] – this is an Internet2 Middleware Initiative which has developed a
standards based architecture, and an open source implementation (Apache Software
License), for a federated identity-based authentication and authorization
infrastructure based on OASIS' SAML.

II P2P Content Delivery Survey 42

3.2.1.5 Event Reporting

All the steps of a typical eCommerce transaction, and the usages to which the delivered
content is subjected, constitute an event. For instance, the online purchase of a musical
content and its consumption implies events such as ordering, transfering, listening and
paying for content.

Therefore, the notification of these events to some central system entity(s) is useful for such
purposes as:

• the monitoring of the usage of copyrighted material;
• the monitoring of technical grandeurs which characterize the system and determine

its performance, such as the connectivity between devices of different system actors;
• the collecting of revenues;
• the collecting of statistics.

Typically, on-line content distribution systems can generate two types of notifications (or
Event Reports) [101]:

• Object Action Notification (OAN) – carries information pertaining to the actions that
an actor of the digital value chain has performed over a digital object;

• System Action Notification (SAN) – carries information pertaining to the actions
performed over any system module but not over an object.

A relevant example of a technical platform for Event Reporting is the MPEG-21 Event
Reporting (MPEG-21 ER) standard. It delivers the necessary provisions for, amongst other
things, Digital Item producers and distributors to be able to estimate or monitor the usage of
their products. It provides a standardized structure for “reportable events” to be specified,
detected and acted upon. The comprised reportable events may be connected either with
the usage of a Digital Item by a Peer, or with the occurrence of Events connected to the
Peer itself [102].

The key concepts at the base MPEG-21 ER are the Event Report Request (ER-R) and the
Event Report (ER).

Figure 10 – Model of ER-R Processing and ER Generation (adapted from [102])

The purpose of an ER-R is to define [102]:

• the conditions that must be verified so that the reportable Event is considered to
occur;

• the syntax/format of the information which is be supplied, within the payload of the
ER, when the reportable Event occurs;

II P2P Content Delivery Survey 43

• the intended recipient(s) of the Event Report, (the entities that need to be notified
when the reportable Event occurs);

• parameters specific to ER delivery aspects, (such as the transport mechanism and
protocol, delivery timing constraints, priority, etc.).

Figure 10 presents a general (non-normative) model which depicts the functional
characteristics of ER-R handling and the related generation of ER’s.

Within the defined model, the operation begins with the delivery of an ER-R to an MPEG-21
Peer. The ER-R is processed and the Peer waits for Events to “occur”. When such an event
occurs, it is detected by the Event Watchdog module, which determines if the Event should
be reported on, or not, according to the ER-R defined parameters. If all of the Event
conditions defined in an ER-R are verified, the Peer builds an ER carrying the data fields
specified in the corresponding ER-R. Finally the generated ER is sent, by the Peer, to the
ER-R’s defined recipient Peer(s) [102].

3.2.1.6 Content Protection

Content protection is a key element of a DRM system, as it provides the technical support
basis for content accessing denial and for the enforcing of content usage restrictions.

Content protection standards directly handle the physical protection/encoding of content.
Such standards may be of a low-level type, such as cryptographic algorithms and
watermarking standards, of an intermediate level, such as the smart media protection
standards, and of a high-level type such as MPEG-4 IPMP (which in turn employ low level
features of the low level type).

Some relevant examples of content protection technologies are;

• the Content Scramble System (“CSS”), which is employed to protect the media
content DVD video disks;

• the High-bandwidth Digital Content Protection (HDCP) whose goal is to protect high
definition content during transmission from a source device to a display device;

• the Digital Transmission Content Protection, (DTCP) whose objective is to restrict the
capabilities of “home based” digital technologies, such as DVD players and
televisions, through the encryption of interconnections between devices.

3.2.2 Basic Topology

DRM systems may present multiple technical variations between them. Their structures may
differ, the base technologies they use may vary, the employed content encoding schemes
may differ and these systems may have overall different aims. Still there are a number of
basic characteristics which are generally common to all DRM systems, and thus these
comprise a relatively standard set of necessary logical components.

DRM systems may be analysed according to two different perspectives [85]:

• an architectural and entity bound perspective;
• a functional and procedural perspective;

From the architectural and entity bound perspective, a generic DRM system will comprise
the following entities and components [89] (as presented in Figure 11):

• Content Owner – The content owner is the entity which inserts the consumable
content into the system. It provides the digital goods to the packaging entity, and the
contracts and rights related information to the License Server. This latter data will
determine the type of content usages which are allowed;

II P2P Content Delivery Survey 44

• Packager – The packager handles the packaging and encrypting of the original
content. It takes care of the following tasks:

o Data compression – certain types of digital goods dispense with compression,
and thus this task is optional;

o Content protection – this includes encryption, watermarking, etc.
o Key Supplying – supplies the content decryption keys to the Key Distribution

Server;
o Protected Content Supplying – supplies the protected goods to the Content

Distribution Server/System;

• Key Distribution Server – The Key Distribution Server distributes the content
decryption keys, (received from the Packager), to authorized users/clients.
User/client authorization for key reception is obtained from the License Server;

• Content Distribution Server/Systems – The Content Distribution System/Server

makes available the actual consumable digital goods as well as information about
those goods (products or services). These systems may employ many different
means to perform the distribution of goods;

• License Server – The License Server:

o manages licensing information. It produces and delivers licenses expressing
rights, and permissions, over digital goods for users/clients based on:

• Information received from the AAA (Authorization, Authentication and
Access control) Server and/or Payment;

• Contracts and rights related data received from the Content Owner.
o supplies user/client authorization information to the Key Distribution Server;

• AAA (Authorization, Authentication and Access Control) Server and/or Payment –

The AAA Server handles authorization, authentication and access control aspects.
Upon user purchase of rights it informs the License Server to provide the user/client
with the respective license;

• Usage Tracking Server – This server gathers content usage information received

from the License Server, and possibly the client side, and supplies it to the Usage
Clearinghouse;

• Usage Clearinghouse – The Usage Clearinghouse surveys content usage and

handles the processing and distribution of that data to all involved parties e.g.
Content Owner, Financial Clearing House;

• Financial Clearinghouse – The Financial Clearinghouse enables financial

transactions to be performed. It collects the revenues and performs the distribution to
all involved parties, e.g. Content Owner, etc.;

• Users, Devices and Clients – Content usage rights are more appropriately associated

with users, than with devices. This is so because more than one device may be
associated with a given user, and also because devices may be connected in either a
permanent or intermittent way.

II P2P Content Delivery Survey 45

Figure 11 – Basic DRM Architecture (adapted from [89])

Figure 12 – Basic Client Structure (adapted from [85])

The client side of the system should supply the following functionalities [85].

• DRM controller – assures the enforcement of both user and Content Owner rights
over content;

• Content, metadata, cryptographic;
• Content rendering;
• User authentication.

II P2P Content Delivery Survey 46

Figure 12 presents a graphical overview of the generic client architecture.

The steps involved in the accessing of content typically include [89]:

• The reception of the content in a protected form by the user/client, resorting to any of
the methods of delivery supported by the content distribution system;

• The accessing of the AAA server, by the user, to obtain authorization, authentication
and access permission and/or to proceed to fee payment. The subsequent signalling,
by the AAA server, of the License Server, so that the latter delivers the license to the
user, and also authorizes the Key Distribution Server to deliver keys;

• The delivery of keys by the Key Distribution Server so that the user (client side) may
begin content consumption;

• The decryption of content, its consumption and the related usage control at the client
application.

Figure 13 – Typical DRM Functional Architecture (adapted from [85])

From a functional perspective, the key functions of any DRM architecture are (as presented
in Figure 13) [85]:

• Content Creation and Capture: Managing the creation of content to optimize trading.
This function of DRM systems includes provisions for:

o Rights validation – to ensure that content developed from existing content
includes is being generated in accordance with the appropriate rights to do so
and that such rights are consistent;

o Rights creation – to assign rights to new content;
o Rights workflow – to process content for review and/or approval of rights.

• Content Management – Managing and enabling the trade of content. This functional

aspect of DRM systems should include provisions for:

II P2P Content Delivery Survey 47

o Repository functions – to assure the access to content and its descriptive and
rights related “metadata”;

o Trading functions – assigning licenses to actors who fulfil the necessary
conditions to have assigned onto them specific rights over content.

• Content Usage – Managing the usage of content after access to it has been granted.

This function of DRM systems includes provisions for:
o Permissions management – enforcement of rights associated with the

content;
o Tracking management – content usage monitoring where such tracking is a

requirement of the user’s agreement.

3.3 Specifications and Implementations

3.3.1 Specification Initiatives

3.3.1.1 OMA DRM

The OMA DRM specification was created by the Open Mobile Alliance [103]. This DRM
scheme, meant for use with mobile-centric content types, was developed to allow mobile
content providers to add DRM to their products.

OMA DRM 1.0 consisted of a basic DRM standard without strong protection measures. It
manly defined three key methods:

• Forward Lock – focuses on the delivery of digital goods that must not be forwarded. It
frequently applies to subscription-based services, were the involved devices are
allowed to play, display or execute, but cannot forward the media object [104];

• Combined Delivery (combined rights/media objects in the DRM message) – enables

the setting of specific usage rights over the digital good. This method extends the
Forward-lock method by allowing a more refined definition of rights, which can be
restricted by using both time and count constraints [104];

• Separate Delivery (separated Rights Object (RO) + encrypted media object in the

DRM message) – provides the necessary provision to protect higher value media and
enable the superdistribution of digital goods, by permitting the client devices to
forward the media, but not the associated rights. According to this method the media
and rights are distributed via separate channels. The media is encrypted employing a
symmetric cipher, while the rights hold the encryption/decryption key [104].

OMA DRM 2.0 is an extension of the 1.0 separate delivery mechanism. Each device taking
part in an OMA DRM 2.0 system possesses an individual DRM PKI certificate with a public
key, and the corresponding private key. Rights Objects, which carry the content decryption
keys, are individually protected for a specific receiving device by encrypting them with the
device’s public key.

For a device to be eligible to receive a RO, it must first register with a Rights Issuer entity so
that its certificate is validated. Devices known to be hacked can be impeded from accessing
content.

The overall operation of an OMA DRM compliant system is as follows [105]:

II P2P Content Delivery Survey 48

• The content is packaged and protected from unauthorised access, by the Content
Issuer, and the corresponding RO is produced by the Rights Issuer. Content and
rights data is then inserted into the system;

• The content is delivered to the terminal side under any means, but the rights data is
distributed by the rights issuer in a safe and controlled fashion;

• At the consumption device a trusted DRM Agent is installed which enforces the rights
objects, which cryptographically are bound to it.

The basic steps undertaken by the OMA DRM architecture to assure the secure distribution
of content preventing unauthorized access are [105]:

• Content packaging – content is packaged in a secure content container, and
encrypted with a symmetric content encryption key (CEK);

• DRM Agent authentication – DRM Agents have a unique private/public key pair and a
certificate which allow their secure identification;

• Rights Object generation – Rights Object are XML documents which express the
permissions and constraints associated with the content’s usage. They carry the
CEKs;

• Rights Object protection – sensitive parts of the Rights Objects are encrypted before
delivery (the CEK for instance), and the object itself is cryptographically linked to the
target DRM Agent. Furthermore the Rights Issuer digitally signs the RO;

• Delivery – the RO and protected content package, being inherently secure, can be
delivered using any transport mechanism, either together or separately.

OMA DRM employs its own rights expression language (OMA REL) for rights expression.

This DRM specification has been implemented on numerous cell phones. Furthermore,
multiple mobile operators (such as Vodafone [106], Vivo [107], etc) use OMA DRM for their
content delivery services. Commercial suppliers of OMA DRM solutions include, for instance,
Beep Science, CoreMedia DRM, Discretix, Mutable OMA DRM, SafeNet and Viaccess.

3.3.1.2 OpenSDRM

OpenSDRM specification defines an adaptable DRM system which may be employed for
various different business models and for the protection of different types of content. The
adopted security architecture is based on the OPIMA [108] international specifications, on
MPEG-4 IPMP Extensions, on MPEG-21 IPMP architecture and on some of the proposals
for JPEG2000 standard Part 8 [85].

OpenSDRM was initially developed within the scope of the FP5 EC project MOSES. This
project focused explicitly on the MPEG-4 file format for the protected content. Still this
system was conceived so that it can handle all types of content and various business models
(both for download, streaming or even broadcasting).

Figure 14 presents a graphical overview of the OpenSDRM platform architecture.

The components and actors that interact externally with the Open SDRM architecture are
[85]:

• User – human individual who wishes to consume some content. The user will interact
with Open SDRM in order to, identify himself, acquire licenses and play multimedia;

• IPMP Tools Provider – organization that creates tools for encryption, scrambling,

watermarking, etc, for content protection and makes them available to the Open
SDRM system. This supplying of tools implies the existence of business relationships
between Content Provider and specific IPMP Tools Providers, since that producers

II P2P Content Delivery Survey 49

and/or distributors of content will specify which type of protection the content will
have and which tools can be applied to the content and from which supplier;

• Content Provider – multimedia assets supplier that feeds Open SDRM with content

and/or metadata;

• Payment Infrastructure – structure which facilitates Open SDRM e-commerce
features through the provision of services for handling electronic payments;

• Certification Authority – entity which is responsible for the reception of requests for

and issuing credentials to, other entities in the system. These credentials will be
utilized by system entities to authenticate themselves before each other, enabling the
establishment of secure and authenticated communication channels between them.
The components in the Open SDRM architecture communicate with each other
through the channel security provided by the SSL/TLS protocol. This Certification
Authority can also be internal to Open SDRM, and thus entirely managed by some
entity, or it may be an external commercial Certification.

Figure 14 – OpenSDRM Solution Architecture (adapted from [85])

The internal components of the Open SDRM system include [85]:

• Content Preparation server – this server side component handles content
preparation. It receives raw content from a specified source or sources and encodes
it on a specified format, adds metadata and protects it;

II P2P Content Delivery Survey 50

• Commerce server – this component handles the trading of the content with the users;

• Media Delivery server – this module handles the delivery of digital assets to the

client. This Media Delivery server will implement a specific protocol (download (FTP,
HTTP, or other), streaming (RTSP, other), broadcast) to exchange protected content
with the client application;

• Registration server – the role of this component within the system is to assign unique

identifiers to content and to register metadata information for that specific content.
The content identification scheme employed follows the MPEG-21 directives about
Digital Item Identification (DII), using a reduced version of the MPEG-21 DII Digital
Object Identifiers (DOI);

• Authentication server – this module handles the authentication of all internal and

external entities to the DRM system. It’s role is to validate the access rights of all the
entities and components in the system working as a SSO point, registering and
managing components and users on the system. It employs cryptographic XML
credentials for the authentication of both components and users in order to
authenticate the transactions exchanged between them (XML Encryption and XML
Signatures);

• License server – this component is responsible for house-keeping the rules

associating a user, the content and his/her corresponding access rights. It accepts
connections from authenticated client Media Players for downloading of licenses,
which will be applied to the protected content through an appropriate IPMP tool. The
licenses are XML formatted and employ Open Digital Rights Language, (and, in the
future, possibly the Rights Expression Language by MPEG-21;

• IPMP tools server – this server component handles the registration of new IPMP

tools and the reception of the authenticated client Media Player requests for the
downloading of specific IPMP tools. It is also a part of its role to make IPMP tools
available to the Content Preparation Server to allow the protection of content;

• Media Application – this represents the applications that will be utilized to consume

the digital assets. This generic component is able to display/playback the appropriate
content. It may work with one or several IPMP tools in order to control how the
content is accessed by a particular user.

3.3.1.3 ISMA/DRM

The Internet Streaming Media Alliance [109] is composed by companies from multiple areas.
Its founding members are Apple Computer, Cisco, IBM, Kasenna, Philips and Sun
Microsystems Inc [89].
ISMA's protocols are based on open specifications for media formats and transport of media
content to the receiver over IP networks. This specification conforms to the ISO/IEC 14496
(MPEG-4) standards over Real Time Transport Protocol (RTP) [89].

ISMA has undertaken work to add DRM support to its provisions. ISMA/DRM preserves
ISMA’s interoperability goals, employing standard encryption, authentication and integrity
validation for ISMA conforming media and protocols.

Figure 15 presents a succinct view of the interactions flow within the ISMA DRM
architecture.

II P2P Content Delivery Survey 51

Figure 15 – ISMA DRM Architecture (adapted from [110])

ISMA DRM’s components and their roles are [110]:

• The Mastering entity handles content preparation and publication;
• The Key/License Management entity manages and delivers the licensing and

decryption data;
• The Sender entity handles the delivery of the content to the ISMA Receiver via an

open-standard protocol called ISMACryp;
• The ISMA Receiver processes the ISMACryp encrypted streams, authenticated

messages, and signalling.

More recently ISMA has merged with MPEG Industry Forum (MPEGIF), under the name
MPEGIF. Its assets (and thus ISMA DRM), passed to the control of MPEGIF [111].

3.3.1.4 MPEG IPMP

3.3.1.4.1 MPEG IPMP Extensions

Intellectual Property Management and Protection Extension (IPMP-X) is a DRM architecture
developed by the MPEG working group. This architecture provides a normative framework to
support requirements such as: renewability, secure communications, verification of trust,
granular and flexible governance at well-defined points in the processing chain, etc.

Two types of IPMP Extensions exist [85]:

• MPEG-2 IPMP-X which is meant to be applied to MPEG-2 based systems;
• MPEG-4 IPMP-X which is intended to be applied to MPEG-4 based systems.

MPEG-4 IPMP Extension specifies five key elements [112]:

• IPMP Tools – modules which handle (one or more) IPMP tasks such as
authentication, decryption, watermarking, etc. A specific IPMP Tool may coordinate
other IPMP Tools. Each such tool possesses a unique IPMP Tool ID that identifies it
an unambiguous way, either at a presentation level or at a universal level;

• IPMP Descriptors – subsection of the MPEG-4 object descriptors (OD) which

describe how to access and decode an object. These Descriptors are used to
describe the IPMP Tool that is used to protect the object. An independent registration
authority (RA) is utilised so that any party may register its own IPMP Tool and identify
this without conflicts;

• IPMP Elementary Stream (ES) – transports IPMP specific data such as key and

rights data. All MPEG objects are represented by elementary streams, which can

II P2P Content Delivery Survey 52

reference each other. These special elementary streams may be employed to deliver
IPMP specific data;

• IPMP Tool List – this list carries information pertaining to the tools required by the

terminal so that it can consume the content. It is conveyed in the Initial Object
Descriptor (IOD) of the MPEG-4 system stream. Using this mechanism the terminal
is able to select and manage the tools, or to retrieve them when they are missing;

• Secure Messaging Framework – this framework does not specify functional

interfaces. It is instead based on secure message communication and mutual
authentication. Interaction between the terminal side and the IPMP Tools is
performed through messages via a conceptual entity called “Message Router”.

3.3.1.4.2 MPEG-21 IPMP

A key goal of the MPEG-21, multimedia framework is to enable transparent and augmented
use of multimedia resources across a wide range of networks and devices. MPEG-21 Part-4
defines an interoperable framework for Intellectual Property Management and Protection
(IPMP).
This framework includes standardized provisions for:

• retrieving IPMP tools from remote locations;
• exchanging messages between IPMP tools and between these tools and the

terminal;
• authentication of IPMP tools;
• integrating Rights Expressions according to the Rights Data Dictionary and the

Rights Expression Language [113].

It does not, however, define protection measures, keys, key management, trust
management, encryption algorithms, certification infrastructures or other components.
This part of MPEG-21 defines how to include IPMP information and protected parts of Digital
Items into a DIDL (MPEG-21 Digital Item Declaration) document. The IPMP DIDL
encapsulates and protects a portion of the hierarchy of a Digital Item, and associates
appropriate identification and protection information with it.

MPEG-21 IPMP consists of two parts:

• The IPMP Digital Item Declaration Language – provides the tools for a protected
Representation of the DID model. It permits the expressing of an encrypted DID
hierarchy which is digitally signed or otherwise governed to be included in a DID
document in a schematically correct manner;

• IPMP Information schemas – defines structures for the specification of information
pertaining to the protection of content, including tools, mechanisms and licenses.

3.3.1.5 DMP DRM

The Digital Media Project (DMP) was established with the purpose of promoting the
deployment and use of Digital Media in ways that respect the rights of creators and rights
holders to exploit their works [114]. In that regard it has performed the specification of a
standard for “Interoperable DRM”.

DMP DRM attends to the issue of DRM Interoperability through the specification of individual
technologies (called Tools within DMP context) necessary for the implementation of, DMP
termed, “Primitive Functions”. Such tools are to be “smaller” functions obtained by breaking
down into atomic procedures the actions performed by value-chain users when they do
interact between themselves. While more general functions may undergo substantial

II P2P Content Delivery Survey 53

changes as a consequence of the evolution of the media business in the value-chain, these
more “Primitive Functions” will remain more stable and be more easily augmented.

Therefore, the DMP DRM is not meant as a universal “DRM standard”. This project specifies
tools for enabling Primitive Functions [115]. Its development is a progressive process which
is opened to exterior contribution. In that regard, calls for proposals for additional necessary
tools to support new primitive functions or additional functionalities of existing tools are
periodically issued.

3.3.2 Implementation Initiatives

3.3.2.1 Windows Media DRM

Microsoft’s Windows Media DRM (WMDRM), is a Digital Rights Management service for
the Windows Media platform. It is based on a Microsoft proprietary specification which was
designed to provide safe delivery of audio and/or video content over an IP network to PCs or
other devices, enabling distributors to control content usage.

3.3.2.1.1 WMDRM Operational Overview

Figure 16 presents an overview of the architecture of the Windows Media DRM system
(more specifically the Windows Media Rights Manager part of WMDRM). It also highlights
the main differences of that architecture when compared to the typical one presented in
chapter 3.2.2.

Digital goods protected by the WMRM system, are distributed, over the Internet, in a
protected and encrypted file format.

The characteristic WMDRM action flow is as follows [116]:

• Packaging – The media content files are encrypted with a key. That key is stored in
an encrypted license, which is distributed separately. The media file also carries
other information such as the location (URL), where its respective license can be
purchased;

• Content Distribution – The packaged files may be distributed by whatever means

available, because their protection scheme assures that (in principle) no illegitimate
access take place;

• Establishing a License Server – A License Clearing House (LCH) is selected by the

content provider (or content owner). The LCH will store the specific rights or rules
associated with the licenses and implement the WMDRM license services. The LCH
is responsible for the authentication of consumer's requests for licenses. In Figure 16
the LCH is represented as the association between License Server and Key
Distribution Server;

• License Acquisition – For the consumption of a WMRM protected digital good to take

place, the consumer must first obtain the appropriate license key to unlock the file
and access its media content. For the license acquisition process to take place the
WMDRM system sends the consumer to a registration page (AAA Server) where
information is requested or payment is required, or "silently" retrieves a license from
a clearing house;

• Playing the Media File – WMDRM protected files must be rendered by a WMDRM

supporting media player. Employing such tools, the consumer can access the media

II P2P Content Delivery Survey 54

content according to the specific rules or rights that are included in the respective
license. Licenses are not transferable. They are valid for a single PC, or device.

Figure 16 - Windows Media Rights Manager Architecture (adapted from [89])

Content usage rights are associated with devices instead of users. Still, moving content to a
mobile device is possible, but there is no general support for multiple devices.

3.3.2.1.2 WMDRM Content Protection Scheme

The content producer (and packager) packages the media content into a key protected
(encrypted) file. The encoding is performed using Windows Media Encoder [85]. In order to
be able to use Windows Media Encoder, a content owner must possess a DRM profile
obtained at a LCH. That profile allows a content owner to generate keys for content
encryption as well as to define the terms for the protected content’s usage.

During the content protection process, a key is generated. That key is employed in the
content ciphering operations. The key is produced using a specific algorithm which employs
a license key seed (which is conveyed to the content owner and packager by the mentioned
DRM profile) and a key ID. This way, the license key seed is shared between the content
owner and the LCH. The key ID is generated by the content owner and it is included in the
header of the protected file/stream.

Furthermore the content header also carries other information such as [85]:

• The URL of the LCH;
• A unique content ID which identifies the content, and content related information (for

instance artist name, date of recording, etc.);
• The version of the individualized DRM component;
• Attributes of type “name-value” defined by the content owner to carry other

necessary information.

II P2P Content Delivery Survey 55

Additionally, the header, of the protected content, is digitally signed, using a public/private
key par, in order to ensure the legitimacy of the header and its information.

To issue licenses for specific contents, the LCH, regenerates the appropriate key by
retrieving the key ID from the packaged file and the key seed and performing the previously
mentioned algorithm. The key is then included in the license file sent to the consumer's
computer.

Using the key enclosed in the license, the WMDRM compliant player on the consumer's PC
may then access the protected digital goods.
When protected content consumption is attempted, via Windows Media Player for instance,
this application will search the local PC for a valid license. If the latter isn’t available, the
player analyses the content header in order to retrieve the URL of the responsible LCH and
the key ID. Using these two values the client application obtains a valid license containing
the decryption key.
Still, if the content is to be paid, the end-user will first be directed to a virtual location where
he must proceed to purchase the license [85].

Once a valid license is available, the terminal device rendering software can them render the
content, but in accordance to the rights and permissions defined in the license.

3.3.2.1.3 WMRM Licenses

Licenses contain the keys to unlock the Windows Media files. Furthermore the licenses are
the vehicles which convey the rights, or rules information related the governing of content
usage, from the content owner side to the consumer side. The WMDRM system can support
licenses describing a wide variety of different usage rules, such as:

• the number of times a digital good can be consumed;
• the devices which can render or process a content;
• the time at which the user can start accessing the file and it expiration date;
• if the file can be transferred to a CD recorder;
• if the user can back up and restore the license;
• the security level required to have on the client to access the Windows Media file;
• etc.

3.3.2.2 Helix DRM

Helix DRM (formerly RealSystem Media Commerce Suite) is a DRM system developed by
RealNetworks. This system adds DRM functionality to a number of other RealNetworks
media components, such as Real player and Real streamer.

Figure 17 presents an overview of this system’s architecture. It also highlights the main
differences of that architecture when compared to the typical architecture of a DRM system
as presented in chapter 3.2.2.

This DRM system consists of the following main components [89]:

• Packager – handles the content packaging and encryption measures. It receives as
input data the unprotected media files, the public key of the License Server at stake
and the URL for the Retail Server. It produces the encryption keys, unique content
IDs and delivers the packaged and secured media files. The secured files include,
besides the encrypted media, the relevant media related metadata such as the
retailer URL and content ID generated by the packager [89]. No usage rules are
included into the protected media file by the packager. The public key of the License
Server is used for the secure transmission of the content encryption key [89];

II P2P Content Delivery Survey 56

• Client application – is composed by the Real player with a DRM plug-in. It handles

the usage tracking and usage clearing procedures. When the consumption of a
protected media asset is desired, the Real player searches for a local license for the
content at stake. If it is not available, the player invokes a web browser and calls the
retailer URL (which is included in the protected file as metadata) [89]. If all license
acquisition procedures go well, the retailer provides a valid license to the client side.
Such a license contains usage rules, which will be interpreted and enforced by the
plug-in;

• License Server – offers an http interface and a set of procedures for the creation of

licenses. It receives as input the content ID, the content encryption key, the usage
rules, and the client's public key (which enforces the personalization of the client).
Employing those parameters, the License Server generates a license containing the
usage rules and the encryption key, encrypted by the client's public key [89]. The
License Server does not interact directly with the consumer. The Retail Server will be
the intermediary between the two.

Figure 17 - RealSystem Media Commerce Suite Architecture (adapted from [89])

The full functionality of the Helix DRM system requires the existence of a Retail Server. Such
a component functions as the gateway to the payment system and to the license server,
completing the business workflow. Still it is not included in the system. Nonetheless, it is to
link with the interfaces of the packager and the license server [89].

The Retail server should operate in close association to a database which stores content IDs
and their respective content encryption keys[89].

II P2P Content Delivery Survey 57

A typical behaviour for the Retail Server is for it to call a payment system (under the request
of the user side), and, after a successful financial transaction, to proceed to license creation.
For license creation to take place, the Retail Server is responsible for the definition of the
usage rules, and for forwarding them, together with the content ID, the content encryption
key, and the client's public key (delivered at content purchase time by the client side DRM
plug-in) to the license server [89].
After a valid and client specific license is created it is forwarded to the client plug-in so that
content consumption can take place.

3.3.2.3 DMDFusion

DMDFusion is an open, flexible and scalable DRM solution for carrier grade servers. It is a
complete DRM solution as it includes rights creation, management, delivery and
enforcement of usage rules [85]. It also integrates multiple proprietary DRM solutions such
as those from Microsoft, Adobe and Real Networks [89], which can interact with it through a
language-independent API.

The DMDFusion system is entirely server based, and thus, vastly different types of clients,
such as set-top boxes, mobile devices, etc., can consume DMDFusion compatible content
without the need for any 3rd party DRM solutions.

Figure 18 – DMDFusion Architecture (adapted from [89])

The DMDFusion architecture is composed by three main components as presented in Figure
18 [89]:

• The protection component (fulfils the role of a Packager) – protects content,
employing specified technology and delivers the protected assets to a client specified
location. It permits both push and pull protection models [89], that is, the request for

II P2P Content Delivery Survey 58

content protection may originate from the content owner or from the requester of the
content, (for instance the end-user);

• The license component (fulfils the role of a License Server) – handles the creation

and issuing of licenses, for a specified technology. For instance, a request from a
Windows Media player will provoke the issuing of a Windows Media license;

• The business intelligence component (or rights management component) – stores

and manages the business information that the protection and license components
need for their operations. It is responsible for handling all the aspects related to rights
management, and it provides a web based GUI, that enables content owners to
define usage rights, server side conditions and contracts.

Keys for content owners are DRM-specific. They are generated by the protection component
employing the appropriate DRM technology. These keys are then stored in the business
intelligence component.
The key pairs (public and private) for the Content Distributors, on the other hand, are
generated by the Content Distributors themselves. The public keys are stored in the
business intelligence component.
Given that the business intelligence component handles the storing and management of
keys, it thus fulfils also the role of a Key Distribution Server [89].

The requirements for terminal devices depend on the type of DRM technology being
employed for content protection. Generally, PCs, PDAs, etc., equipped with the appropriate
player/reader software running the appropriate DRM components may be used. The set of
players (and respective DRM schemes) for which this system has support includes Adobe
Reader, Windows Media Player and Real Networks Player [89].

In what concerns Authorization, Authentication and Access Control (AAA), besides enforcing
rights using licenses, the DMDfusion system also possesses the capacity to restrict the
issuing of licenses. For instance, license issuing may be restricted based on the
geographical location of the license requester which is determined by checking its IP
address. License issuing can also be restricted to a maximum number per product and/or to
various time intervals. The verifications involved in the imposing of the previous restrictions
are performed by the license component, which queries the business intelligence component
for details about the required good, at the time of a license request [89].

Within the DMDfusion system, the only usage tracking that takes place is the recording of
the delivery of licenses for particular contents. Reports can be provided on the issuing of
licenses for specific contents, time intervals, geographical territories, etc. The usage that a
content is subjected to once the user has acquired a license is not tracked by DMDfusion
[89].

DMDfusion does not include a payment system of its own (something like a Financial
Clearing House). Nonetheless a content distributor may request information from the
business intelligence component on orders (licenses requested and issued) and use
this data to produce invoices or request payments [89].

3.3.2.4 Secure Digital Container DRM

Secure Digital Container (SDC) DRM is provided by SDC AG [117]. This technology is
approved by all key Recording Labels as Mobile DRM Technology for full length music
tracks [85]. The SDC architecture [118] is composed by a server (packager) software and a
client software.

II P2P Content Delivery Survey 59

This solution employs Java DRM technology and is based on a mobile code architecture.
Because of this, the system is capable of packaging content together with code in a
"container". This object works as a transport unit for content, software and code. The client
application is carried within the container and is interpreted by the Java Virtual Machine at
the terminal side [85].

Some of the most relevant aspects of this system are the following [85]:

• No client installation is necessary – the system packages content together with code
inside a single object. This way the container object can contain the client application
required to decrypt and render the content, thus no client installation is required. The
client device needs only a Java Virtual Machine;

• Fractioned content – the content is spliced into two separate containers (the specific

characteristics of this fractioning make it advantageous for superdistribution):
o Container A – Holds 95% of the content payload. The content can still be

somewhat accessed, but the remaining space is filled with advertisement or
promotion information. This container can be freely shared;

o Container B – Container B holds the remaining portion of the content,
(missing in container A), in an encrypted and watermarked form.

Figure 19 presents an overview of SDC DRM’s architecture.

Figure 19 – SDC DRM Architecture

II P2P Content Delivery Survey 60

The SDC packager, (implemented at the server software application), handles the splicing of
content into Container A and Container B. The content usage related rights information is
inserted in Container B. The content splicing method may be configured for a given
application [89].

In what regards the roles of a License Server and of a Key Distribution Server, this system’s
server side handles the distribution of Container B as well as keys and licenses to terminal
side. The distribution of this data is secure, and a unique key is associated for each device
[89].

On the terminal side, the usage rights are associated with devices instead of users. Within
the operation mode of this system the client software is downloaded with the content. It
performs the content decryption based on PKI, and it also handles the merging of Containers
A and B using its interpretation module. During the interpretation process the content’s
fingerprint is matched against the device ID. This permits the tracking of unauthorized
content copying [89].

More recently this DRM scheme has evolved and some changes where performed to it. An
independent client now exists, the Secure Download Manager, which must be installed at
the client machine and which mediates the interaction with the system’s server provisions.

3.3.2.5 OpenIPMP

The OpenIPMP system [119] is an open source implementation of the OMA DRM
specification. It employs only open standards, one of the most the relevant of which is the
MPEG-4 format. OpenIPMP encompasses user management and identification, content
encryption algorithms and distribution channel protection.

The main concepts of the OpenIPMP system are [119]:

• User Management – The cornerstone of the system's security structure are the User
Management mechanisms. OpenIPMP issues each user a Digital Certificate (or
Digital Id) at registering time. The Digital Id, is issued and signed by the OpenIPMP
Certificate Authority. It is a standards-based electronic file that uniquely identifies the
user within the system, specifying the group(s) to which the user belongs. The
employment of this ID also permits the establishment of secure and confidential
communications with the OpenIPMP server components;

• Rights Management – OpenIPMP enforces a robust usages permission and

constraint model that permits content owners to specify a wide variety of rights and
respective constraints. For the expression of such rights and restraints OpenIPMP
supports Open Digital Rights Language and MPEG REL;

• Content Identification and Management – The OpenIPMP system provides measures

for the unique identification of content. The system implements one of the
identification schemes proposed by the MPEG-21 standard. The unique identification
of content allows the system to provide protection and tracking mechanisms during
the entire lifetime of a digital good;

• Content Protection – For content protection and overall security, this system employs

several open cryptography standards such as [85]:
o Public Key Infrastructure (PKI) – used to ensure encryption and digital

signature for securing digital contents over networked environments. The
security and extensibleness of the PKI framework allows for OpenIPMP
installations to seamlessly cooperate;

II P2P Content Delivery Survey 61

o X.509 Certificates – used to implement licenses. Each digital certificate is
signed by the OpenIPMP Certificate Authority service for authenticity, and
thus ensures that each OpenIPMP transaction is cryptographically certified;

o Asymmetric Encryption (e.g. RSA) – employed to protect licences and other
key sensitive data. In the case of RSA it supports configurable RSA key sizes;

o Symmetric encryption – employed to secure the digital assets. The two main
algorithms used are AES and BlowFish;

o Secure Sockets Layer (SSL) – employed for critical transactions such as
License Acquisition and Content Registration, thus ensuring that information
remains authentic during transit;

o Secure Storage (RSA Security's PKCS #12) – employed to assure that all
user-specific information (Private Key, User Certificate or Certificate Authority
list) is safely stored.

Figure 20 – OpenIPMP Components Diagram (adapted from [85])

The main components of the OpenIPMP platform are depicted in Figure 20. In operational
terms, different sets of OpenIPMP’s components combine or interact to constitute the
following main tools or services [85]:

• Media Encoding tool – Employed for content protection. It handles all the necessary
client side cryptographic algorithms to provide persistent protection of the digital
goods;

II P2P Content Delivery Survey 62

• Media Player tool – This tool is used to playback OpenIPMP protected content. It
deals with all the communication aspects with the server side components for license
acquisition and also enforces usage rights;

• User Registration service – It is through this service that new users are registered in
the system. When the registration process is successfully finished, the user is given
its credentials which uniquely identify him and grant access to system resources;

• Content Management service – This service supplies registered users with the
necessary tools to manage their contents. Upon completion of the content
registration processes, a digital good is under the protection of the system. All
communications between the OpenIPMP client side components and the Content
Management Service take place through a safe communication channel;

• Rights Authorization service – Registered users resort to this service to define all the
permissions for their registered contents;

• License Management service – This service handles all license requests from
registered clients and deliver the respective authorizations;

• Administration tool – This tool allows an administrator to configure the system
according to an organization’s specific needs.

3.3.2.6 AXMEDIS DRM

The "Automating Production of Cross Media Content for Multi-channel Distribution"
(AXMEDIS) [120] initiative is a research project, partially supported by the European
Commission.

Besides other tools, AXMEDIS also delivers a multifaceted and interoperable DRM solution
for employment with both B2B and B2C scenarios through traditional and P2P distribution
structures.

This DRM solution focuses on the protection and management of rights for a vast set of
different types of content, such as single files or complex cross media and multimedia,
distributed on different channels to different kinds of terminal devices [121].

AXMEDIS DRM employs and extends the MPEG-21 framework in order to enable [121]:

• the protection of content of various formats and types;
• the controlling of the exploitation of rights of the above contents, using formal

metadata licenses expressed in the MPEG-21 REL standard;
• the collecting and reporting of information about consumption of rights for accounting,

billing and/or statistical analysis;

The DRM system delivers [121]:

• tools for content packaging and protection (simple manual tools, GRID technology
based automated tools, AXMEDIS Content Processing);

• DRM servers for:
o controlling the exploitation of rights of protected content;
o data gathering on the exploitation of rights;
o interacting with an intellectual property ontology to ease the production and

verification of licenses.
• players for protected content rendering on PC, PDA, STB/PVR, and AXMEDIS Java

based Mobile. AXMEDIS players can be customized and hosted in WEB pages;
• tools for manual and automated production of licenses.

For integration of AXMEDIS DRM premises into a system, that system’s content usage
licenses are required to be supplied to the AXMEDIS DRM Servers via a Web Service call.
Alternatively the system may delegate the license production activities to the AXCP GRID.

II P2P Content Delivery Survey 63

AXMEDIS content packages (also called AXMEDIS Objects), contain a variety of simple and
complex media objects (or references to them) containing various forms of metadata and
dynamic scripts. These may be produced with the employment of AXMEDIS Editor tools for
MPEG-21 and AXMEDIS authoring (SMIL, HTML, MPEG-4, or any other kinds of digital
resources), DRM, licensing, protection, packaging, workflow, playing, etc [121].

3.4 Summary

The technical landscape in the field of DRM technology is a very diverse one. Several
standards have been developed and various implementations have been completed. These
solutions generally provide robust levels of security and their operation focuses on a
restrictive governance of content usage.

In spite of their security capabilities, these systems have, nonetheless, been frequently
broken and circumvented by users [122], and subsequently patched in an iterative cat-and-
mouse game.

Developments, in this technological area, have begun some time ago, still, their reception,
on the part of consumers, has been very negative, and, consequently, their employment by
on-line content delivery initiatives has been problematic.

4 Commercial P2P Distribution Survey

4.1 Introduction

In spite of considerable initial hesitation, several initiatives have begun to appear in the field
of commercial, on-line content distribution, which employ (or have employed) a P2P
operation mode. In the following sub-sections we expose some of the most relevant such
initiatives.

4.2 Veoh

Veoh [123] was an Internet Television service run by a California based company. This
service employed P2P technology (among other means), for the diffusion of commercial and
user generated content.

The Veoh system offered its users two possible options for the consumption of the available
video content. Viewers could obtain the content directly from the Veoh.com site via
streaming, or they could use the VeohTV application. This was a P2P based software
application that enabled the downloading and viewing of content of potentially much bigger
sizes. Content publishers could use their PC to upload videos for distribution.

In regards to security provision, Veoh distributed both DRM protected and unprotected
content. That is, it employed a parallel DRM structure, to enable user and peer
authentication, content integrity and authenticity validation, and access control on some of its
content.

It searched for years for a successful BM, but ultimately, and under legal pressure from
Universal Music Group [124], declared bankruptcy in 2010.

4.3 Babelgum

Babelgum [125] is a free Internet TV service. Originally it employed a proprietary P2P
streaming technology, but has eventually dropped it in favour of a client-server operation.

II P2P Content Delivery Survey 64

The platform employs DRM protective measures which include the encryption of the
exchanged content data streams, time-limited licenses and PPV [126].

Babelgum is a privately backed project which focuses on professionally produced content. It
enforces some content access restrictions based on user geographical location. Its BM is
advertisement based, employing advertising revenue-sharing. Content owners receive a
portion of advertising revenues. If no advertisement is associated to the content this system
guarantees producers a minimum of $5 for each 1000 unique views [127] .

4.4 JOOST

Joost is an Internet based system for the distribution of TV content (and other forms of
video), developed by the founders of Skype and Kazaa.

Figure 21 – P2PTV overlay network serving several video streams

It employs a P2P strategy (or did so initially), for the delivery of content, under proprietary
DRM protection. The P2P technical layer was provided by the Joltid company, which also
supplied the P2P infrastructure of Skype. Figure 21 presents a simplified image of Joost’s
P2P content diffusion network.

Content is distributed with the help of the nodes participating in the system, by taking
advantage of their uplink capability, in a way similar to that of BitTorrent, and over a
proprietary DRM connection, using a Joost specific encryption scheme.

Joost’s employs an ad-supported BM, in a similar manner to that of regular TV, exposing
users to both injected video-advertisements as well as additional interactive advertisements
via overlays and short clickable pop-ups [128]. It was eventually faced with economic
difficulties and remade itself as a “cost-effective” white-label video provider [129].

4.5 PPLive

PPLive [130] is a P2P network for the streaming of video content. It was develop in
Huazhong University of Science and Technology in People's Republic of China.

The contents delivered by PPLive are generally targeted to Chinese mainland audiences.
This service enforces no DRM measures and employs an add-supported business model.

4.6 ReelTime

ReelTime.com [131] was a video on demand provider that delivered movies and television
shows over the Internet.

II P2P Content Delivery Survey 65

Content was delivered through a proprietary software system called Intelligent Rapid
Delivery System. This employed some P2P networking to reduce the bandwidth demands on
its servers. To this end, while the most part of the content files are delivered to the users by
the system’s servers, a fraction of such files are transferred between the system’s terminal
machines (i.e., peers). The delivered content was DRM protected.

ReelTime employed a subscription and pay-per-view BM. It has subsequently ceased to
operate.

4.7 LiveStation

Livestation [132] is a platform for distributing live television and radio broadcasts, as well as
on demand video, over the Internet.
It originally used P2P technology for said distribution, employing Microsoft Research
technology [133]. The system divided a video stream into multiple stripes, each of which was
shared independently among peers [134].
Livestation’s business model is based on both advertising and fees [135].

4.8 Imeem

The original Imeem system begun as a distributed and peer-to-peer social network [136] for
the sharing of files, photos and blogging data.

A client application was distributed as the primary platform, and the website was basically
the means for users to obtain the client. Every client had its own database for the indexing of
references to media content shared on the network. This contributed to facilitating the
location of content. Users who wished to consume a specific content would access it through
a direct exchange with the publishing peer.

Access to content was done on a permission base, and communication in the Imeem
network was secured by the AES advanced encryption standard [136].
Its business model was predominantly ad-supported [137].

With time the service underwent many changes. Further features were added to the website
and the client software ceased to be functional. The distributed database model was
centralized, and all of Imeem's features became available without requiring a client
download. The P2P architecture was annulled.

Finally, in 2009, after having been bought out by MySpace Music, it was shut down [138].

4.9 BBC iPLayer

iPlayer [139] is a service made available by BBC via Internet access (terminal application
supported on Windows, Macs and Linux), cable television, iPhone, Nintendo Wii and iPod
Touch [141], for the delivery of video and audio content.

The system originally employed P2P technology for the distribution of rich media content
[142], but has since move away from it. When P2P technology was still employed, the
network’s peers where the iPlayer applications and the actual P2P infrastructure used was
Kontiki [140].

For the protection of intellectual property rights, the system originally used Microsoft's
Windows Media DRM [143] but has since moved to Adobe’s DRM system. This technology

II P2P Content Delivery Survey 66

allows BBC to have a relatively fine control over the use of distributed content even after it
has been transferred to the terminal iPlayer applications.

4.10 Qtrax

Qtrax [146] supplies a legal P2P music delivery service, built upon the Gnutella network
[144]. It employs Microsoft’s Janus DRM technology for content protection and access
control and to enforce advertisement consumption.

It, originally, offered a two tiered service [145]:

• the first was a free, advertisement-supported tier designed to work with, and filter
copyrighted content, from existing peer-to-peer networks;

• the second tier was a premium subscription based service which would require a
monthly fee.

In time Qtrax has, however, moved to a strictly advertisement based BM.

Large music industry companies, such as EMI [145], have announced deals with Qtrax
regarding music rights and publishing.

It has also faced legal and financial problems that have forced it to restart its operation, after
a pause period [147].

4.11 Sky Anytime

Sky Anytime [148] is a package of services made available by BSkyB [149] for the delivery
of video content.

One of the services, in that package, is a PC version of Sky Anytime which employs a
broadband, Internet based, peer-to-peer structure (the Kontiki infrastructure), for content
diffusion.

Content may be viewed for a certain number of days, and it is protected by digital rights
management software provided by Microsoft [151].

The service is available at no extra cost to Sky subscribers and under a subscription fee for
non-clients [150].

4.12 iMesh

iMesh [152] is a media content delivery system and an online social network. It employs a,
Gnutella based, centralized P2P strategy for content distribution. For content protection the
system uses Microsoft Digital Rights Management technology [154].

The system allows users to access large amounts of "non-copyrighted" content (video or
audio) for free and makes copyrighted content available for a monthly fee in the form of
either an iMesh Premium subscription or an iMesh ToGo (portable music) subscription.
Users may also permanently purchase tracks [153].

4.13 TVUNetworks

The TVU Networks Corporation [155] operates an Internet based television broadcasting
network which uses P2P technology.

II P2P Content Delivery Survey 67

Users download a freeware software application, called TVUPlayer, and may then join the
P2P community and watch a varied number of channels.

TVU’s solution includes monetization capabilities for content owners such as geo-filtering,
subscription services and personalized in-stream ad insertion tools [156].

4.14 Zattoo

Zattoo [157] is an Internet based P2PIPTV content distributing system. It employs a
proprietary peer-to-peer protocol. The terminal application (peer) runs on Mac OS X, Linux
and Windows [158].

Zattoo current focuses on European channels. It delivers licensed content [157] under Digital
Rights Management protection [158]. Zattoo ensures that [159]:

• Streams are protected by encryption;
• Streams cannot be copied as no copy of the stream is stored on the network;
• Streams cannot be retransmitted as sources would not be authenticated.

Zattoo employs an advertising based business model (through the use of banner ads,
targeted text ads and inserted video clips) [158] as well as paid subscriptions [160].

5 Considerations
This P2P technology survey reveals that the field of P2P content delivery (typically in the
non-commercial sector), is a very diverse one.

The general evolutive trend, initially, was towards growingly decentralized solutions. In time
a return as occurred to more centrally coordinated modes of operation, (BitTorrent,
FastTrack), in order to regain some operational efficiency in terms of content discovery and
location and overall network connectivity.

In what concerns security, the majority of P2P solutions is very poor. Those including such
provisions are not really robust. Provisions expressively designed and intended for the
enforcement of content usage rights and the protection of copyright, are practically
universally absent.

Commercial, P2P based, media delivering initiatives, generally employ either proprietary
P2P solutions or pre-existing ones. The technical details of the earlier solutions are typically
not disclosed. Still, from the few that have been disclosed, it may be concluded that such
solutions employ some form of partially centralized operation.

The latter solutions are predominantly based on Gnutella. This is a purely distributed P2P
protocol which is very robust, in terms of fault tolerance, but also considerably inefficient in
terms of content discovery and distribution.

In the studied initiatives, the P2P delivery mode frequently performs a parallel, or even just,
auxiliary role to client/server delivery mode.

These initiatives, have generally sought to maintain their business and legal (copyright
related), operational legacy. This means that they have strived to maintain control over their
content’s usage throughout its lifecycle, that is, after it has been distributed. To attain such a
control, (and given the lack of adequate security and copyright protection facilities,
predominant in P2P content distribution platforms), they have typically teamed the P2P
distribution systems with content protective DRM technologies.

II P2P Content Delivery Survey 68

Thus, most commercial P2P content delivery initiatives employ (or, at least, did so originally),
classical DRM technology. Given the tasks it has had to perform, this technology focuses
mostly, if not exclusively, in a restrictive governance of content usages.

The internal characteristics, operation and capabilities of the solutions specified by the
initiatives presented in section 3.3.1 or implemented by the platforms described in section
3.3.2, may vary somewhat. However, overall, they are very similar in terms of their global
operational logic and of their impact in content usage and usability, as their design was
guided by the same requirement: content manipulation restriction throughout its lifecycle.

In P2P terminology, this DRM assistance, in security matters, (to the P2P delivery structure),
may be described as a form of Trusted Third Party (TTP) solution. There is thus a visible
decoupling of the content delivery structure from the security structure, where the latter
performs the mentioned TTP role, and the potential synergies between the TTP structure
and the P2P content delivery structure are left unexploited.

The typical resulting P2P+DRM structure may be depicted, albeit in a simplified manner, by
Figure 22, (taking into consideration the notation defined in Table 1).

Its operation is as follows: At an initial moment (not displayed in the diagram), clients will
authenticate with the TTP components agreeing on a common secret key (session

SK), which

will be used for a client/TTP interaction session.

From that point on, all communication between a client and any TTP component will be
encrypted with the agreed upon secret key (as represented by)(secmsg xsession

SK
). When the

session terminates, the key is discarded.

Before a user (e.g. Au) can be attended/hosted by a specific client/peer (e.g. Ac), he must
first be authenticated. To do so, the user supplies his username and password,
and Ac packages it into

AuahsdAuthDat , by performing some hash function on that information

(the case of employment of digest access authentication). The latter information package is
sent (arrow 1) to the User Authentication Server (UAuthS). After validating the user’s
credentials, UAuthS sends Ac (arrow 2), a user hosting certificate (uhcS), signed with

UAuthS private key (1−
UASK). uhcS proves that Ac is hosting Au . If a user (e.g. Au) wishes to

consume some media object (e.g. Ao), Ac may retrieve it from the Content Server

(client/server operation, arrow 3), or from another client/peer, such as Bc (P2P operation,

arrow 3a). The content is obtained in its protected form, (
AoP), which is encrypted with a

secret symmetric key Ao

SK .

The client than contacts the License Server (LS), to inquire it about au ’s usage rights over Ao ,

by sending it (arrow 5), uhcS , (proving that Ac is indeed hosting Au), and the identification of

the media object in question. The LS then responds (arrow 6), with the signed license (Ao

AuSL)

that specifies Au ’s rights over Ao (assuming Au previously purchased such a license). Ao

AuSL is

signed by the LS so that its validity may be checked. Ac then sends Ao

AuSL (arrow 7) to the

Key Server (KS). KS assesses the validity of Ao

AuSL and the rights that it grants to Au . If all is

II P2P Content Delivery Survey 69

ok, it returns (arrow 8), Ao ’s decryption key (Ao

SK). Ac is then ready to access and render Ao for

Au ’s consumption.

Table 1 – Notation for Figure 22

user system specific a=iu key encryptionsession comm a=session
SK

i
i

u
u

psswd of password= keyn /decryptioencryption s' a A
Ao

S oK =

i
i

u
u

usname of username the= Server License theofkey private the1 =−
LSK

client system specific a=ic
Server tion Authentica

 User theofkey private the1 =−
UASK

iic cK ofkey public the =
x

x

 toapplied

functionhash hiccryptograp)h(=

iic cK ofkey private the1 =− ix

ix
K

Kxx with of encryption the)(enc =

object media specific a=io
Kxxxh

x

K

K

key with signed))((enc

)(signed

=
=

ii
io

iu uoL by of use thegoverning license the=)(enc)(secmsg xx KK =

key encryption symmetricsecret a=SK

Figure 22 – Typical Commercial P2P Content Delivery System Architecture

In spite of their complexity and sophistication, the security services provided by the TTPs,
have frequently been broken and circumvented by users [122], as this is incentivized by the
uncomfortable content usage conditions that result from the operation of such security
measures.

II P2P Content Delivery Survey 70

A currently observable trend, in the context of Commercial, P2P based, media delivering
initiatives, is the abandonment of the DRM aspects of the platform, in favour of unprotected
content. Also, the very P2P mode of distribution is also frequently being dropped in favour of
a more traditional, (and less efficient), client/server mode.

In economic terms, the initiatives in scope have been trying a variety of BMs, such as
subscription, purchase or advertisement based ones. They have frequently jumped between
several BMs in their search for a suitable one and also frequently failed altogether. There is
thus no globally predominant BM in this area and the attained economical results are also
unremarkable.

For all of the above it is apparent that commercial employment of P2P content distribution,
has been, and continues to be, considerably less successful that its non-commercial
counterpart, at least in terms of its widespread employment.

The development of the earlier sector has been slow and hesitant. User captivation has
been unremarkable, DRM provisions have frequently failed and P2P content delivery, in
spite of its promises, has not yet been made to deliver on them.

 71

III Present Scenario Analysis

1 Introduction
In this chapter we examine the employment of the Internet for commercial content
distribution, focusing on its present situation. That situation is examined so that its key
problems and shortcomings are identified and a path to deal with such issues is delineated.
Section 2 thus carries a broad depiction of the present state of commercial on-line content
delivery. Section 3 deepens the earlier description, analyses the described situation and
identifies its subjacent causes. Section 4 further explores the causes of the problems
currently facing commercial on-line content distribution, and defines the means by which
they may be overcome.

2 Overview
The P2P content distribution technologies that have been developed have achieved
significant success in the field of free content sharing. They include sufficient tools to enable
a “good enough” content discovery and distribution capability. We describe them as “good
enough” because it is satisfactory within a free content sharing context. However for
commercial purposes, they can still benefit from performance improvements. This is so
because, (as explained in section 2.4 of chapter II), the current typical P2P solutions are
more or less distributed and typically have no provisions with anything close to a global
systemic view. Lacking that oversight capability, the currently predominant P2P systems can
provide for content discovery, locating and retrieval only through more or less distributed
algorithms which are only of relative efficiency and consistency of results.

Furthermore, even if P2P content delivery systems/technologies include provisions to enable
a minimally robust validation of content integrity (through checksum or signature calculation),
they nonetheless present considerable shortcomings in the field of security and trust
assurance, for even basic aspects, such as robust content integrity and authenticity
assurance and data and communication confidentiality, integrity and non-repudiability.

On the other hand, the security-wise insufficiencies of the predominant P2P technologies
can be effectively counterbalanced by the security-wise capabilities of existing DRM
systems, if they are directed to that task.

The existing DRM technologies include robust tools to enable the, earlier mentioned, basic
security measures. However, what has typically been demanded, from these systems, goes
well beyond such requirements. They are asked to deliver, to content owners, almost
complete control, over their content’s usage, throughout its lifecycle, regardless of said
content’s location. Even so, DRM systems have managed to partially provide that, at the
cost of imposing stifling content usage restrictions on consumers.

That provision was only partial, because, fuelled by consumer dissatisfaction, DRM schemes
have been frequently broken or circumvented. After such events, they are then patched but
only to be circumvented and re-patched at a later time, and so on [161], [162], [163].

Some shortcomings are thus visible, both in the current P2P content delivery and DRM
technologies. Nonetheless, they are really not fundamentally hindering ones, especially
considering the joint employment of the two technologies.

III Present Scenario Analysis 72

However, in spite of the proven results of the technologies in scope, and the success of non-
commercial P2P content distribution platforms, the results of, commercial on-line content
distribution initiatives (specifically P2P), have been dismal. This is demonstrated by the
frequent cases of economical failure (e.g. Veoh or ReelTime), of change of activity area (e.g.
Joost), and of the abandonment of P2P content exchange for a more traditional client/server
one (e.g. BBC iPlayer).

3 Analysis
The current panorama in the field of P2P on-line content distribution from a business
viewpoint (see section 5 of chapter II), is one of failure and of technological retreat (e.g. from
P2P). However, this state of things does not fundamentally result from the technical
insufficiencies of the involved technologies. It is the fruit of an historical process of technical
evolution, which is changing the way we deal with information goods, as well as of the
reaction to that evolution (on the part of the established CDists). In the next paragraphs we
explain the mentioned process and associated reaction.

In the “Brick-and-Mortar” era, CDists controlled the content distribution structure (stores,
CDs and DVDs production, etc). This structure was both socially useful and inescapable for
consumer access to Information Goods (IGs). It was the scarcity and controllability, inherent
to the materiality of the distribution structure that secured a useful and profitable role for
CDists.

The Internet, given the automaticity and immateriality associated to it, is by far a more cost
effective alternative, which eliminated the need for such a material structure. In this context,
P2P content distribution technologies have played a crucial role, as they further reduce the
costs of on-line content replication and distribution. Their employment and massive
popularization, which started in the non-commercial sector, have thus experienced an
explosive growth.

The main concern driving the development of (non-commercial) Internet-based content
distribution initiatives was to take maximum advantage of the costs reduction possibilities
offered by this medium. They thus focused on building distributed structures (typically P2P),
capable of enabling a “good-enough” content discovery and an efficient content exchange
between peripheral equipment. Guarantying content authenticity, copyright protection, or
other security related aspects, was never the goal. These systems have thus often been
connected to copyright infringing activities (copyright owners allege).

According to the Recording Industry Association of America, the music industry loses about
$12.5 billion per year from all types of piracy activities [164]. The accuracy of these numbers
is disputed [165], but it’s still plausible that considerable revenue losses have occurred as a
result of the rapid increase in the free exchange of copyrighted content over the Internet.

Therefore, as the materiality of media content distribution is eroded, so is the control
producers used to have over content use. All this is rendering the CDists’ traditional role,
obsolete.

CDists have thus reacted by endorsing measures along two main courses of action. The first
was legislative and punitive action against alleged copyright infringers. The second was the
employment of technological measures, known as Digital Rights Management (DRM), to
secure the control of the usage of their content throughout its lifecycle [166].
Simply put, the industry’s response has been to resist or attempt to reverse the on-going
social and technological development with respect to the free flow of information.

III Present Scenario Analysis 73

In the legal sphere, CDists’ efforts have led to the enactment of tighter intellectual property
protection laws in some countries (for example, the Digital Millennium Copyright Act in the
US). Furthermore, their frequent legal actions against alleged copyright infringers led to the
closure of some content sharing initiatives (e.g. shutting down of P2P content sharing
system Napster).

In the technical sphere, the content production and distribution industry has pushed hard for
the adoption of DRM technologies, for the protection of all their content, regardless of the
distribution medium. Furthermore CDists have also (allegedly), hired the services of some
companies to mount poisoning attacks on P2P networks [125].

Nevertheless, CDists, even if reluctantly, have also begun to adopt on-line content
distribution and to employ P2P technology. However, even though they are apparently
moving in a progressive way, CDists are still trying to preserve their age-old reliable BMs.
These initiatives have predominantly employed BMs which are based on (or close to) the
direct sale of media goods (e.g. iTunes Store, 7digital, eMusic, Google Play, etc), and thus,
depend on the restriction of access to such goods [167]. CDists are thus employing,
apparently, technically progressive means but with regressive objectives.

The same applies to P2P commercial media initiatives that have started to appear, even
though in an initial phase, alternative BMs were experimented with. Furthermore, given that
P2P distribution was regarded as no more than an auxiliary aspect of their operation, these
initiatives made no relevant efforts to enhance existing P2P structures. Already existing P2P
structures (e.g. Gnutella), were, thus, simply used as they were. This typically meant that
such structures were outside of CDists’ control and presented unreliable performance.

In light of the above it can be concluded that CDists are holding on to BMs based on the
exploitation of content scarcity in a medium, (the Internet), which is adverse to the
preservation of such scarcity. To secure such BMs, DRM technologies are employed in an
attempt to artificially maintain the necessary IGs scarcity.

The industry’s overall conservative response has produced little or no results. In the legal
field, the obtained results have failed to deter content sharing [5] [168], and have created
considerable dissatisfaction from the consumer and small-creator/producer communities,
causing costly damages to the industry’s public perception [167].

In the technical field, end-user circumvention and rejection of DRM, has been a near
constant, with digital piracy only increasing, despite the prevalence of new and increasingly
elaborate DRM strategies [169].

The failure of DRM, to fulfil all that was demanded of it, is the result of the unrealistic level of
that demand, and of an intrinsic vulnerability of DRM, which consists of the fact that users
(the principal DRM violators), must inevitably be given access to the very content-encoding
keys, whose secrecy is at the core of the operation of these systems.

As a result, all mainstream DRM systems (such as Apple’s FairPlay, Microsoft’s Windows
Media DRM, and so forth) have been circumvented [161], [163]. In addition, DRM imposes
usage restrictions that devalue the content and push consumers away. Finally, DRM isolates
users because, in spite of much propagated interoperability, DRM systems typically lack
interoperability [170], which means users are confined to the vendor’s software and/or
hardware.

DRM’s failure means that the producers must still bear the fixed costs of information
production, but their monetization schemes are losing efficiency. Their privileged foundation
is thus, rapidly eroding and, the countermeasures employed by the producers have

III Present Scenario Analysis 74

backfired, earning them widespread animosity from the very people they are trying to win
over as customers.

Also, these countermeasures have spurred the development of even more decentralized
content-sharing systems (such as Gnutella), which are more resilient to legal and technical
counteraction. In Michael Porter’s terminology [171], these measures have merely built
barriers to the entry of new legal competitors.

In this context, the overall results of on-line commercial content distribution (specifically
P2P), have been unremarkable. In spite of the success of non-commercial P2P content
distribution initiatives, the corresponding commercial counterparts have fared quite poorly,
as shown by the frequent cases of economical failure (e.g. Veoh or ReelTime). Furthermore,
the inevitable loss of control over content, that P2P content delivery implies, is in
contradiction with the control levels required by the chosen BMs (by CDists). This is the
reason why P2P content exchange has frequently been abandoned, in the initiatives
exposed in section 4 of chapter II (e.g. Joost or Babelgum).

From a global perspective, commercial on-line content distribution (P2P or otherwise) is
lagging far behind its once promised performance in terms of impact and adoption.
Furthermore, under the pressure of the ”free” content distribution, commercial distribution
has frequently abandoned DRM altogether, in favour of unprotected content so as to offer a
product which is not hampered by a lack of usability (which inevitably comes with DRM) in its
competition with “pirate” or “free” content [172] [173].

The approach adopted by CDists has thus failed. Their control over information commodities
continues to rapidly decrease and this is debasing the business methods that they still cling
on to. In spite of all the potential of on-line content delivery (especially P2P based one), they
have, thus far, failed to make it live up to its full potential, and the resulting panorama is, as
described at the beginning of this section, one of failure and technological retreat.

Said failure fundamentally results, not from the above mentioned relative technical
insufficiencies of P2P and DRM tools, but instead, as argued in [166], from the non-
observation, on the part of CDists, that the Internet medium has come to radically alter the
technical, economic and social premises underlining IGs production, distribution and
consumption.

The low or negligible storage, reproduction and distribution costs that characterize this new
medium mean that the occurrence of such activities, in mass, is inevitable. Content scarcity
is, consequently, not a characteristic of the Internet. These factors and the failures of DRM
show that such scarcity cannot be artificially imposed either. This medium’s establishment,
thus, represents the rise of a new technical and economical paradigm in the field of
information goods’ exchange and manipulation [166].

In such a paradigm information good scarcity is progressively annulled as they become
pervasively accessible and manipulable. The access to and distribution of these goods is,
thus, not something that may be restrained, and therefore, their monetization can no longer
be approached in the same way of physically bound information commodities.

The immature state of development of commercial on-line content distribution, especially in
the case of P2P employment, has thus resulted from CDists’ anachronic attitude towards the
on-going changes and towards the employment of this technology.

The reacquisition of a useful social role, by CDists and, consequently, the maturing of
commercial on-line P2P content distribution, require that these entities accept and embrace

III Present Scenario Analysis 75

the changes brought by the Internet revolution. They must, thus, accept that, in the Internet
medium, content scarcity is mostly a thing of the past.

4 Conclusion
Accepting the earlier conclusion, CDists must, therefore, replace the hitherto reliable value
chain in which information commodities have been traded (on an access restrictive basis),
with the employment of radical new BMs. These must not depend on content scarcity. They
must enable CDists to relinquish having absolute control over their information goods and to
make the most of the Internet’s cost reduction capabilities.

For progress to occur, in the field of commercial P2P content delivery, it is thus, primarily,
necessary that the mentioned new BMs are identified and validated. P2P content delivery
technologies and associated DRM tools must then be made to support such BMs, by
equipping them with any necessary capabilities.

The BMs, to be employed by commercial P2P content delivery initiatives, should typically be
based on open content access. The extraction of gains should be performed in a lateral
manner [166], which is more dependent on user voluntarism. This dependence means that
the captivation and satisfaction of users will become even more important aspects then
before.

To achieve such attractiveness and fidelization of users, the actual content exchange and
consumption activities, in novel commercial P2P content delivery initiatives, should be
inscribed in a virtual environment of socialization, which enables users to interact with each
other and the media objects in secure, comfortable and reliable ways (i.e. social networks).

This demands that the platforms supporting these initiatives provide a content access
service which is regular, consistent and reliable. They must thus assure content discovery,
location and retrieval services, at a quality level equal or superior to that of centralized
platforms (e.g. Google, in what regards content discovery and location). Furthermore, they
must also assure peer and user identity, and data transaction security in order to guaranty
communicational privacy and authenticity, and to assure monetary resource security. They
must also assure media object integrity and authenticity.

As exposed throughout section 2 of chapter II (and summarized in section 2.4 of the same
chapter), the predominant P2P networks and technologies present a number of
insufficiencies, which meant that they are not yet at the operational reliability and security
levels which are necessary to support the BMs in scope.

Current DRM technologies are powerful and may efficiently support a number of basic and
sound security capabilities. However they are typically focussed on much more complex and
encompassing objectives than the enforcement of the mentioned capabilities.

In light of the requirements that the platforms, supporting the initiatives in scope, must fulfil, it
becomes evident that the state of the art in the involved technologies needs to be advanced.
P2P content distribution systems/technologies must be equipped with the necessary tools for
them to reach a higher level of overall operational constancy and reliability. These systems
must also be given the capacity to assure peer and user identification, inter-peer
communicational security, integrity and authenticity and to guaranty the integrity and
authenticity of the distributed media objects.

The latter capabilities are within the responsibility scope of a DRM system. This means that
such tools (DRM tools), should be added to P2P content distribution platforms. However,

III Present Scenario Analysis 76

DRM tools should have a different focus than their current “incarnation”. They should move
from a situation where their key purpose is to enforce content access restriction, to a new
one where rights management is interpreted in a more flexible way, and where their main
goal is to ensure that security, reliability and trust pervade throughout the content exchange
and consumption environment.

Summarizing: we may conclude that the specific problem that needs to be addressed to
enable successful commercial, P2P based, content distribution, and hence, a safe
distribution of rich media content, is to combine and appropriately adapt the different
components that make up such systems, not just the technologies used.

The first component to be addressed are the BMs employed by commercial P2P content
distributors, given the general inadequacy of the presently predominant ones. For that we
must precisely assess the limitations of current BMs and identify the adequate BMs to
overcome such limitations in a context of on-line content delivery. This is done in chapter IV.

Once this first component is solved, the second aspect that needs to be addressed consists
of the operational and security shortcomings of present P2P technologies and of the current
focus of DRM technologies. To address the earlier, a reliable and secure P2P infrastructure
must be defined. The latter can be addressed through novel DRM/security tools that focus
on providing support for security within the P2P infrastructure, whilst further assisting the
previously identified business models, unlike the traditional tools, which focus on content
access restrictions. This second aspect is addressed in chapter V.

Furthermore, the development of richer, semantically empowered and security supportive
media object formats will also contribute to advancing the operational and security related
capabilities of P2P technologies, at the same time providing additional value to the identified
BMs. Addressing this aspect is, thus, also relevant.
Given the complementary nature of this later component, the manner in which it was
addressed will not be exposed, in this dissertation, with the same level of detail as that of
other components. The solutions devised in its scope will be laterally approached, as a part
of the solutions devised to address the operational and security shortcomings of present
P2P technologies, in chapter V. However, the contributions to the advancement of the state-
of-the-art, which were achieved within this context, are presented in section 4 of chapter VI.

 77

IV Adequate BMs for the New

Paradigm

1 Introduction
The Internet revolution and the exponential progress of the associated digital technologies,
is causing a paradigm shift in the way we manipulate exchange and consume
information/media content. These changes are now profound and deeply rooted in our
Internet usage habits and expectations.

Reversing the occurred developments would require the enforcing of draconian legal and
technical measures, which would, profoundly, impoverish the way we access and exchange
information over the Internet. Furthermore, the development of social practices based on the
free flow of information, that is currently happening, is a continuation of a longstanding trend
that is shifting the socioeconomic support, for this field of human activity (intellectual goods
production and exchange), from voluntary upstream support (patronage) to voluntary
downstream support (user voluntary contribution).

To succeed, information goods producers and distributors should not fight these changes but
instead embrace them by altering their operational paradigm. CDists need to realise that the
controlling gatekeeper role that they occupied, for a very long time, was only a temporary
one. It served its “purpose” of enabling the transitioning, of this field of activity, from the
preindustrial patronage era to the information-industry era, and is now, considerably
exhausted.

The role of the CDists, in the ensuing era, should be to maximize content distribution and
access, to support captivating virtual social spaces, to promote artist and consumer bonding,
and to foster voluntary consumer contribution to the sustainment of media content
production.

In chapter III we exposed that the lack of adequacy of the BMs traditionally employed for on-
line content distribution (P2P), stems precisely, from the fact that they generally go against
the on-going changes. More specifically, traditional BMs depend on the maintenance of
content scarcity in an environment (the Internet), which virtually eliminates such scarcity.

The new BMs, for on-line operation should not depend on the maintenance of content
scarcity. As argued in [166], the scarce resource to be exploited, is no longer the information
commodity but the user’s attention and fidelity. The earlier should be regarded as an
investment that is made in order to obtain the latter. BMs should thus be based on open
content access, enabling the free retrieval and consumption of information products by the
user community, while exploiting the Internet’s capacity to eliminate costs in reproduction
and distribution.

The actual extraction of gains should be performed in a lateral manner [166], predominantly,
through the harnessing of user attention and good will. Accordingly, the BMs in scope,
should seek to ensure that content manipulating activities take place, primarily in a CDist-
managed virtual space of social interaction, where a culture of proximity and
interdependency, (already on the rise), between consumers, artists and CDists can be
fostered. This culture will then enable and sustain a collection of revenues based on
voluntary funding and voluntary/accepted advertisement viewing by users.

IV Adequate BMs for the New Paradigm 78

BMs of this type, will, release CDists’ technical infrastructures from the excess of content
access control tasks that presently overburden them. These structures will thus be able to
operate in much freer and more innovative ways, enabling commercial P2P content delivery
initiatives to succeed and achieve the reliability that has, thus far, eluded them – content
delivery reliability, content governing reliability and economical reliability.

2 Business Models
In light of what we have exposed previously, we have identified and defined the following
BMs that are specifically suitable to support commercial, on-line. P2P based, content
distribution, can be mainly identified as the following:

• user donation – in a donation-based business model, information/media items are
voluntarily, and freely, delivered by artists, typically, expecting to be monetarily
rewarded. Consumers will freely access such items and reward the creators they
deem meritorious. In this context, CDists may obtain their revenue by taxing such
donation transactions. Some real world examples where content production, and
distribution, was/is supported by this BM (or a similar one), are, for instance, The
Real News Network, Radiohead’s and Nine Inch Nails’ experiments with voluntary
user donations or Wikipedia;

• ransom – in a ransom-based BM, the content producer (or the CDist on the

producer’s behalf), conditions the release of a specific content item to the prior
reception of a specific amount of donations. Once that amount is reached, the
content becomes available for all users, free of charge. In this context, again, CDists
may obtain their revenue by taxing the donations;

• advertisement – in an advertisement-based business model, information/media items

are voluntarily delivered by content producers. Users freely consume them, together
with some advertisement messages. In this manner they supply their attention
(advertisement viewing) in exchange for content access. That attention is sold to the
advertisers for money, which is then employed to reward the content producers. In
this context CDists typically obtain their revenue by retaining a portion of the amounts
paid by the advertisers. This BM may take two different forms:

o mandatory unrewarded advertisement viewing – in this mode the user is
made to watch some commercial message before being given access to the
desired content. The advertiser’s payment is invisible to the user;

o voluntary rewarded advertisement viewing – in this mode the user voluntarily
proceeds to the consumption of advertisement messages. The value paid by
the advertiser is shared between the CDist (which operates the user,
advertiser and media interaction space), and the user.

These three BMs ultimately enable the free access to content and thus, do not depend on
the existence or enforcement of content scarcity. This places fewer constraints on the
management of content and enables a fuller exploitation of the Internet’s cost reduction
potentials. Those BMs are therefore appropriate for sustaining on-line content delivery
initiatives.

These BMs do not represent a final and only choice for the Internet-era. They are the basic
models. Others may, hypothetically, be developed, which are also inline with the guidelines
of section 1 of the present chapter.

IV Adequate BMs for the New Paradigm 79

3 Validation
The validation of the proposed BMs is, first and foremost, a logical validation, based on the
analysis of the technical characteristics of the Internet, (in the context of content distribution),
and on the economic consequences of such characteristics. That logical backing was
expressed in chapter III and approached again in section 1 of the present chapter.

To complement this validation an inquiry was performed to assess user receptivity to open
media delivery and to the BMs described earlier. It was performed on a general population of
users consisting of 88% content consumers and 12% content producers. The contents of the
inquiry and the obtained results are presented in Annex C.

The inquiry was composed of four query groups. Such query groups had the following
intents:

• Query group 1: evaluate user acceptance of the correctness of rewarding content
producers and CDists; and assess user awareness of the fact that if such rewarding
does not take place the content will cease to be produced;

• Query group 2: evaluate user receptivity to a total dematerialization of content

distribution (i.e. distribution performed completely on-line);

• Query group 3: assess user general receptivity/preference relatively to content
accessing modes supported though a lateral extraction of gains in opposition to those
which imply a direct and mandatory payment for content access;

• Query group 4: evaluate user receptivity to three specific open content accessing

modes based on lateral gain extraction. Such modes are: voluntary donation
supported mode; advertisement viewing supported mode; and ransom supported
mode.

From the obtained results the following facts, regarding user preferences and attitudes, may
be concluded to be effective:

• the responses to query group 1 enable us to conclude that:
o media users clearly acknowledge the justness of rewarding content producers

and CDists;
o media users recognize the need for such a reward, so that content continues

to be produced, and acknowledge the unfairness of the lack of such a reward;

• the responses to query group 2 enable us to conclude that:
o media users consider that on-line content delivery is more convenient, to

them, than the traditional, physical distribution;
o media users tend to accept that media goods be distributed, predominantly,

on-line;

• the responses to query group 3 enable us to conclude that:
o media users predominantly prefer models, of media content access on-line,

which are based on indirect and/or voluntary payment over those which are
based on direct payment for content access. This is so even if considering
that they are to spend the same amount;

• the responses to query group 4 enable us to conclude that:

IV Adequate BMs for the New Paradigm 80

o media users are receptive to an open content access mode which is
supported through a donation based BM, however most of them have not yet
made any on-line donation;

o media users predominantly believe that a donation based BM, where they
decide to whom donate, enables a fairer rewarding of content producers;

o media users are very receptive to an open content access mode supported
through an advertisement based BM, especially so, in the modality where
they are rewarded for consuming advertisement messages and may then
employ such resources to reward content producers of their preference;

o users are also somewhat receptive to a ransom base BM, but to a smaller
degree than previous models;

The verified facts regarding general user attitude and their receptivity to the content access
modes, and associated BM, that we propose, mean that there is a clear conscience, on the
part of users of the need and justness of rewarding content producers/distributors. Users
reveal great receptivity for an open content access mode and show a clear willingness to
cooperate in the economical supporting of content production/distribution by way of voluntary
donations.

Media users are also very receptive to advertisement viewing and show some receptivity
towards the payment of “ransoms” for content access.

These results give additional credibility to the BMs we have proposed.
Further backing of our views is provided by the acknowledgement of their value by scientific
peers. This was attained by means of paper publications in scientific venues. This subject,
however, is more extensively approached in sections 2 and 5 of chapter VI were we focus on
exposing the effective novel contributions made by this PhD work.

 81

V A Reliable P2P Architecture

for the New Paradigm

1 Introduction
In this chapter we describe a P2P content delivery architecture which is tailored to reliably
support the BMs identified in chapter IV, which are fully inline with the emerging paradigm in
media replication and distribution. To provide that support this architecture must address the
requirements identified in section 2.1 of the present chapter.
The resulting architecture provides the BMs in scope with capabilities that the present state
of the art in P2P technologies fails to do, in the fields of operational reliability and security
assurance.

For ease of referencing, this architecture will be regarded as a system that shall be named
P2PTube.

In the following sections, the precise requirements placed on P2PTube are identified, as well
as the overall technical implications of supporting such requirements (section 2).
Subsequently, the structure (section 3), data structure (section 4), and operation (section 5),
of P2PTube are explained, as well as its inter-system cooperation capabilities (section 6).
We then present the structure and content of the most relevant data objects, employed in
P2PTube (section 7). Finally we explain how the system’s base operational capabilities may
be employed to support its commercial exploitation in accordance with the BMs identified in
chapter IV (section 8).

2 Requirements and Implications

2.1 Requirements

2.1.1 Introduction

The ultimate requirement placed on the P2PTube architecture is that it be able to provide the
necessary tools to support the deployment of the BMs identified in chapter IV. It must
therefore enable an efficient and open P2P content distribution and securely support a
lateral extraction of gains.
The system’s global operation should be integrated and seamless so that a fluid and rich
inter-user and user-media interaction is possible, in order for a dynamic, robust and reliable
interaction environment to be maintained, which facilitates social interaction and the offering
of rewards.

These overall requirements, in their turn, imply a set of base technical requirements such as
a safe and optimal operation. The next sections explore the requirements in scope, in
greater detail.

2.1.2 Overall Requirements

2.1.2.1 Business Requirements

The system operating (a CDist) entity and the content producers (if they so desire), should
be rewarded for their work. The latter should be rewarded by means of user donations and

V A Reliable P2P Architecture for the New Paradigm 82

the earlier, by taxing such donations. In said donations, consumer users reward, producer
users, with monetary amounts which the earlier injected into the system, or which they
acquired by selling their attention (advertisement viewing).

The system must, thus, deliver the necessary provisions to enable the sale of consumer user
attention and its purchase by advertiser users. It must also be the mediator of all rewarding
transactions and tax such transactions.
Furthermore, the system must be capable of performing the monitoring of content usage
activities, on the part of consumers, both on and off line, at the “client” side, so that value
may be extracted from that information.

2.1.2.2 Rights Protection Requirements

The system should protect the authorship rights of content creators. It should assure the
ineludible binding between each specific media item and the identity of its owner.

Any kind of rights usurpation or infraction should be impeded. No user may be able to claim
ownership or collect rewards for an item which is not truly his. Abusive actions over contents,
such as unauthorized changes or removals (by the original author), insertions or diffusions of
corrupted versions or unauthorized copies (of items already in the system), should also be
prevented or undone by the system.

2.1.2.3 Usage Requirements

2.1.2.3.1 Usage Roles

The system participating agents (users) should be able to access the system, in a secure
and authenticated fashion, from any of the system’s peers, employing the same identity
which must be globally recognized.

Said agents should have clear usage roles (or user roles), attributed to them so that their
specific rights and duties and respected and upheld, in what regards interaction with both
content and other users. Given that both professional and amateur content is desired, user
roles should be accordingly defined.

Simple, or consumer, users are those who are mostly involved in the consumption of content
and in the delivery of amateur information objects, for which they expect no reward.
Producing users, are those that supply the system with professional content for which they
generally expect an economic reward.

One other type of actor in this system is the advertiser or sponsor. These actors insert into
the system, information objects with advertisement contents. Advertisers pay the system’s
operating entity for the exposure of users to their advertisements. It is up to the system to
perform the exposition of individual users to advertisement messages.

2.1.2.3.2 Content Usage

Once adequately authenticated, system users should be allowed to search for, consume,
insert, remove, comment or version information items in accordance with their specific
access privileges (e.g. a specific user cannot remove an information item which is not his).

The searching of content should be simple, expeditious and actualized. The system should
enable the user to perform searches over the totality of the system’s content.

V A Reliable P2P Architecture for the New Paradigm 83

2.1.2.3.3 Monetary Resource Usage

The system must provide the necessary technical and financial provisions to enable users to
securely inject (into the system), donate and retrieve (from the system), monetary resources.
It must thus securely maintain user accounts, where the users’ monetary resources are
stored. And enable users to seamlessly and securely access those resources.

2.1.3 Base Requirements

2.1.3.1 Operational Requirements

The system should guaranty an efficient and smooth global operation in face of a transient,
and sometimes sabotaging, peer population. It should assure such aspects as:

• overall scalability – the system should remain efficient and governable in the face of
a growing amount of available content, of a growing number of participating users
and of a growing number of linked peers;

• reliable content availability – every and any media item, stored in the system, should
be, at all times, available for retrieval, by the peers;

• efficient and universal content discovery – content searches should be performed
expeditiously and over the entire content repository;

• efficient content location – the placement of media items over the peer tissue should
be robustly know or efficiently discovered whenever necessary;

• optimal content distribution – content should be diffused throughout the system’s
tissue in an optimal manner, minimizing the overall data transmission expenditure,
distributing the workload homogeneously throughout the system and pre-emptively
delivering content to areas where it is predicted to be desired;

• efficient content retrieval – content should be exchanged, between peers, in an
efficient manner, so that its retrieval is expeditious and does not overburden any
system peer;

• reliable content management – content insertion, removal, updating and versioning
should be supported;

• credible enforcing of cooperative behaviour of peers – the system’s peers should be
compelled to maintain a cooperative and honest behaviour. Inadequate such
behaviour should be detected and adequate measures taken to deal with it;

2.1.3.2 Security Requirements

2.1.3.2.1 Secure Identification

All system peers, users and media items should have a unique, global, verifiable and non-
falsifiable identifier.

This identity should be employed:

• in the case of peers:
o to identify the peer in every interaction it participates in, with other peers, so

that peers are accountable for their actions, the permissions of each
individual peer may be respected and so the fulfilment of their incumbents is
verified;

• in the case of users:
o to identify the user in every interaction it participates in, with the system, its

content or other users, so that users are accountable for their actions, the
rights of each individual user may be respected and so the fulfilment of their
obligations verified;

• in the case of media items:

V A Reliable P2P Architecture for the New Paradigm 84

o to unequivocally identify the media item so that it may be universally
referenced, and so that it is manipulated in accordance with its specific rights
context;

The system is thus responsible for guarantying that the above mentioned identities are not
misused, and for enabling their global accessibility and verifiability.

2.1.3.2.2 Secure Communication

The system must operate in manner which guarantees that all data exchanges between
peers are confidential. It should preserve the integrity of said data, guaranty its undeniability
and enable the validation of its authenticity.

2.1.3.2.3 Secure Content

The system must guaranty the integrity of all media items exchanged though its tissue. It
must enable the validation of said items’ authenticity and guarantee the undeniability of their
authorship.

2.2 Architectural Implications

2.2.1 Introduction

The satisfaction of the requirements, outlaid in section 2.1, has a number of specific, basic,
technical implications on P2PTube’s architecture, which are translatable into a set of
architectural options. These are exposed in the next sub-sections.

2.2.2 Overall Implications

The design of the overall architecture of P2PTube is primarily conditioned by the security
requirements of the BMs to be supported, as the satisfaction of such needs is fundamental
to guaranty the feasibility and sustainability of said BMs. The satisfaction of the operational
requirements is conditioned to the satisfaction of the earlier.

For this reason at the base of the P2PTube architecture, providing the necessary security
and trust, should be a PKI-like infrastructure, as these are robust means of guarantying
security in distributed informatic systems.

Different types of PKIs (in a broad sense), exist. Such types and their most relevant
characteristics are the following [58]:

• Centralized PKI – this is formed by a confederation of trusted entities, (called
certification authorities, or CAs). These structures typically exist independently from
other systems and merely provide security services to them. It is a tried and tested
robust solution;

• Decentralized PKI – the PKI is maintained by the actual entities which need its

services (the clients themselves). No central entities (CAs) are employed. This
approach may be divided into the following three main sub types:

o Web of trust based – in this scheme, every system node (peer) trusts (under

the operating user’s instructions), a specific set of other nodes, whose public
keys it knows. Furthermore, every node relies on its trusted peers to certify
the public key of yet other peers, and so on. Thus a web of trust is formed,
where each peer may confidently discover the public key of another peer by
finding a path, to it, in the peer acquaintance (trust) graph. This scheme

V A Reliable P2P Architecture for the New Paradigm 85

implicitly exploits the small world phenomenon of social acquaintance. Within
that “small world” context it eliminates the need for central authorities.
However, every trust chain is only as strong as its weakest link, and such
links are typically subjective and transitive. Hence, this scheme, especially for
large networks, is not without reliability issues;

o Statistical (quorum) based – in this scheme every peer’s public key

information is stored at multiple random other peers. This information is
retrieved by obtaining a subset of these replicas from a subset of the peers. If
a sufficient number of the peers behaves honestly it will be possible to
securely obtain the public key. This scheme is thus dependent on the
predominance of honest peers and implies an operational overhead in
injecting, storing and retrieving the public key information;

o Hybrid – in a hybrid scheme, public key information replicas are stored and

obtained from many peers. To validate the retrieved information, each replica
is weighted against the trust the retrieving peer places on the replica
supplying peer, and the global trust on the received information is calculated.
This scheme is, potentially, more robust and efficient (in terms of information
discovery), than the previous two alternatives, but is still short of reaching the
robustness level of centralized PKI solutions.

In light of the above, and considering that, as argued in [48], some form of central
certification authority is necessary to guaranty security in a distributed system, regardless of
the honesty of the participating peer majority, the best security option, for P2P systems, is to
employ some form of centralized PKI or similar security means.

As explained in section 2.4 of chapter II, P2P architectures have evolved to avoid having any
coordinating central provision. This was done to avoid the costs of maintaining such an
entity, but mostly, for legal reasons (avoid the legal targeting of that entity), and has resulted
in operational shortcomings.

Many solutions and schemes have been devised, throughout time, to compensate for the
lack of a coordinating entity, in P2P systems. However, these have never truly managed to
provide the operational and security performances that central coordinating entities do.

The P2PTube architecture is specifically conceived to be employed by commercial and
legally operating CDists, which derive the necessary revenue to sustain their activity. Such
CDists can thus support the costs of maintaining said coordinating entities, and they are not
at the risk of any legal attack.

There is thus a need for P2PTube architecture to have centralized coordination, in light of
the security and operational demands that it must live up to. There is also a capability, of the
P2PTube architecture to support such central provisions. For these reasons, the P2PTube
architecture should therefore be equipped with central coordinating provisions which are to
be responsible for the maintenance of trust and security, throughout its tissue, and for the
coordination and optimization of that tissue’s overall operation.

P2PTube’s architecture should thus be a hybrid decentralized structure, which revisits and
greatly enhances Napster’s architecture, by fusing it with PKI-like capabilities. This
architecture provides superior content manipulation and security capabilities because:

• its hybrid P2P structure – combines the security and coordinative capacities of a
centralized system with the (reproduction and distribution), costs reduction properties
of P2P content distribution;

V A Reliable P2P Architecture for the New Paradigm 86

• the integration of its robust security provisions with the hybrid content delivery
structure – enables the exploitation of synergies between the two;

Furthermore, in order to empower the lateral extraction of gains, the system must also
include provisions for monitoring user actions at the terminal side. These are also to be
coordinated by the system’s core.

The central part of the system, (the system core), should be the ultimate source of trust and
security in the system. It thus is the ultimate source of identification information for all system
entities, and of all other information, regarding such entities, as well. It is also to handle all
tasks which require a global view of the system.

The peripheral part of the system (composed by the collective of user owned peers), is to
employ a predominantly P2P mode of operation, under the coordination of the system
centre.
It provides the users with an interface to the global system and its contents. Peers enable
users to perform content searches, insertions, versionings and removals and a number of
other user-system interactions.

2.2.3 Implications Upon the Core

The satisfaction, of the previously specified requirements, has a number of technical and
operational implications, specifically, upon the system core. Said core must thus:

• attribute, manage, deliver and guaranty the uniqueness and un-falsifiability, of the
identities of the users, peers and media items involved in the system;

• collect, maintain and securely deliver public key information pertaining to all the
entities in the system;

• collect, maintain and deliver information mapping peer identifiers to the
corresponding IP address;

• function as the global registry, and ultimate validator, of media content and
respective semantic and security related metadata. It must thus handle the original
injection of media items, perform their backup storage and their original seeding. It
must also prevent, or undo, the insertion of content whose authorship is incorrectly
claimed;

• collect, maintain and deliver information regarding the location of media items over
the peer tissue, and coordinate their retrieval from such locations, by content
retrieving peers;

• enable and coordinate the updating, versioning and removal of media objects;
• support the execution of semantic content searches over all the content that the

system makes available;
• maintain and manage user accounts and intermediate the transactions in which such

accounts take part;
• attribute roles to system users and oversee their maintenance of such roles, and the

actions they perform in the fulfilment of such roles;
• supply the necessary mechanisms to enable the exposing of users to advertisement

content, the rewarding of users for the sale of their attention and the charging of the
advertisers for that same fact;

• supply the necessary mechanisms to enable users to perform donations to producer
users;

• coordinate the monitoring of user activities, at the terminal side, by the peripheral
peers and collection of resulting information;

• handle the maintenance and coordination of “spaces” or means through which the
interaction between users and content, takes place.

V A Reliable P2P Architecture for the New Paradigm 87

Given the operational and security demands placed upon the system’s core, its constituting
provisions should be maintained (economically), and managed by the, commercial, system
operating entity. Only this way will it be possible for it to deliver the necessary trust, to the
rest of the system, and maintain the necessary operational performance.

2.2.4 Implications Upon the Peripheral Peers

The satisfaction, of the specified requirements, has several technical and operational
implications, specifically, upon the system periphery, that is, upon the peripheral peers. A
peripheral peer must thus:

• be able to securely, and in an authenticated manner, access the services of the
system core and to answer its solicitations;

• be capable of securely, and in an authenticated manner, interacting with other peers

by performing solicitations to them and by answering those peers’ solicitations (e.g.
participating in the inter-peer distribution of media items);

• follow the instructions of the system core regarding the servicing or shunning of other

peers and their requests, so that a globally coherent strategy may be enforced for the
curtailing of nefarious peer behaviour;

• comply to the monitoring requests received from the core;

• be able to validate media item integrity and authenticity, upon their retrieval, and to

reliably store them;

• perform the interfacing between the users and the overall system. This means that
the peer must possess the necessary provisions to:

o enable the user to login to the system;
o enable the user to perform global content searches, content insertions,

removals, versionings and consumptions;
o allow the user to enjoy the social interaction capabilities made available by

the system;
o enable users to manipulate the monetary resources stored in their accounts;

2.2.5 Summary

Table 2 performs a summarizing mapping between the main identified requirements and
their architectural implications.

Table 2 – Requirements to Implications Mapping

Requirements
Implications

Overall
On the Core

Core peer(s)

On the Periphery

Peripheral peer(s)

Business
Enable user
donations

Hybrid
decentralized

structure

Manage user accounts

Intermediate all
transactions

Enable users to
securely interface the
core services which
enable them to inject
money into their

V A Reliable P2P Architecture for the New Paradigm 88

Enable user
attention sale

Enable the secure
insertion of money

Coordinate and
intermediate
advertisement
exposure and the
associated advertiser
payment

Enable secure
donations amongst
users

Support secure
extraction of money

Coordinate the
monitoring of user
activities, and collect
the resulting
information

accounts, donate, sell
attention and extract
money from their
account

Perform the monitoring
of user activity and the
collection of related
data at the request of
the system core

Tax user
donations

Enable
monetary

withdrawals

Support user
action

monitoring

Rights

Protection
Prevent

authorship theft

Collect user reports on
illegitimate content

Intermediate insertion
of media objects
preventing or undoing
the insertion of content
with illegitimate
authorship declaration

Enable users to submit
reports, to the system
core, regarding
suspected infringing
content

Usage

Support
different user

roles

Attribute different roles
to users

Intermediate all
relevant user requests
managing them in
accordance with the
user’s role

Enable users to access
the services that the
system provides for
them, in accordance
with their role

Enable
comprehensive

search

Maintain global
registry of all media
objects

Intermediate or
coordinate searches
so that they operate
over the entire content
set

Cooperate with other
peripheral peers in
their content searches
in accordance to core
instructions

Operational
Possess overall

scalability

Coordinate the
retrieval of media
objects

Coordinate the
distribution of
peripheral peer
servicing
responsibilities over
the core tissue

Follow the core’s
instruction pertaining to
the retrieval of media
objects and to the
solicitation of services
from the core tissue

V A Reliable P2P Architecture for the New Paradigm 89

Maintain a
reliable content

availability

Handle the original
injection, backup
storage and seeding
of media objects

Maintain global
registry of media
objects, and their
semantic metadata

Support semantic
content searches over
all the content

Manage and deliver
media item location
information

Coordinate and track
media object
distribution amongst
peripheral peers

Coordinate media item
retrieval

Intermediate and
coordinate the
updating, versioning
and removal of media
objects

Be the ultimate
validator of media
objects and their
associated information

Adequately respond to
service solicitations by
other peers

Adequately store and
redistribute the media
objects that the core
instructs it to
redistribute

Assist other peripheral
peers in semantic
content searches

Assist other peripheral
peers in the location of
media items within the
system’s tissue

Be able to perform the
insertion, search,
location, retrieval, and
removal solicitation of
media objects,
resorting to the
assistance of the core
or of other peripheral
peers

Enable users to
perform content
searches, insertions,
removals, versionings,
retrievals and
consumptions

Enable an
efficient and

universal
content

discovery

Maintain an
efficient content

location

Enforce an
optimal content

distribution

Enable an
efficient content

retrieval

Enforce a
reliable content
management

Maintain a
credible

enforcing of
cooperative
behaviour of

peers

Coordinate, instruct
and track peer
cooperation

Collect peer reports on
other peers’
inadequate behaviour

Expel uncooperative
or sabotaging peers

Report inadequate
peer behaviour to the
core

Follow the core’s
instructions pertaining
to the shunning of
peers and users

Security
Secure

identification

Maintain a global
registry of all media
object, user and peer
identification or
security information
(e.g. public key
information)

Attribute, manage and
guaranty the validity of
user, peer and media
item identifiers and

Be able to securely
authenticate and to
establish secure
communication
sessions with the
system core (login) and
with other peers (inter-
peer session)

Access the services of
the system core and of
other peers within the

V A Reliable P2P Architecture for the New Paradigm 90

Secure
communication

security credentials

Manage the mapping
of peer IDs to their IP
addresses

Enable the
establishment of
secure communication
sessions for peers and
users

Grant access to media
object validation
information

context of secure
communication
sessions

Enable users to
establish secure
communication
sessions with the
system (login)

Be able to validate
media object integrity
and authenticity (with
the assistance of the
system core and other
peripheral peers), upon
their retrieval, and to
reliably store them

Submit reports, to the
system core, if and
when corrupted or
invalid content is
detected

Be able to adequately
authenticate media
objects at insertion
time

Secure content

3 Structure

3.1 Introduction

Section 3 presents the structure of the P2PTube system. Section 3.2 presents the system’s
overall structure. It begins by presenting that structure from a horizontal perspective, looking
at the system as a whole, regardless of its vertical differentiation (layers), paying attention to
the different types of peers that make up that system and, thus, constitute its horizontal
differences. In the subsequent part of section 3.2 the structure in question is presented from
a vertical perspective, therefore, focusing on its different layers and on the services that they
provide each other. Section 3.3 presents the structure of individual peers and section 3.4
defines the structural roles that peers may play within the system.

3.2 Structure Overview

3.2.1 Horizontal (or Peer Based) Perspective

The P2PTube’s structure is composed by a collective of different types of peers organized in
a hybrid decentralized architecture. That collective is composed of a single coordinating
Central Core Peer (CCP), a group of coordination assisting Outer Core Peers (OCPs), and
any number of, user hosting, Peripheral Peers (pp), as presented in Figure 23.

V A Reliable P2P Architecture for the New Paradigm 91

Figure 23 – P2PTube Structural Overview

The core section of the system’s structure will be occupied by highly reliable and trustworthy
peers, which are controlled by the system’s operating entity and are always on-line. The
system’s peripheral section is more heterogeneous. It is composed by (regular user owned),
peers with varying computational capabilities, communicational bandwidth, trustworthiness,
reliability, and with an intermittent availability (as they connect and disconnect from the
system). This section will thus present a very variable composition and topology.

3.2.2 Vertical (or Layer Based) Perspective

The P2PTube’s architecture is divided into horizontal layers. Each such layer provides
services to the one above it and employs the services of the one bellow it.

More specifically, the P2PTube architecture is horizontally divided into the following layers:

• The Usage Environment Layer (UEL) – handles all aspects related to the interfacing
of the user with the system and to the accommodation of the system core’s user
action monitoring requests;

• Peer Link Layer (PLL) – handles the resolution of peer contact endpoints and the
securing of all inter-peer communication;

• Inter-Peer Communication Layer (IPCL) – handles the actual exchanging of
communication messages between different peers.

Figure 24 – P2PTube Horizontal Layers Traversing Peers

All three layers traverse all of the system’s peers, that is, all peers are horizontally divided
into their own particular instances of the UEL, PLL and IPCL. The P2PTube architecture may

V A Reliable P2P Architecture for the New Paradigm 92

thus be depicted, in what regards its horizontal division, in the manner presented in Figure
24.

3.3 Peer Structure

Figure 25 – Peer Architecture

All of the system’s peers have the same internal structure (presented in Figure 25). As
explained in the previous section, each peer’s structure is divided into three layers:

•••• Inter-Peer Communication Layer – at each peer, this layer comprises the following
component:

o IPC Manager (IPCM) – receives internal, outbound, messages (from the
top layers), and sends them to remote peers. Receives external, inbound,
messages and sends them to the top layers;

•••• Peer Link Layer (PLL) – at each peer, this layer comprises the following components:

o CMode PL Manager (CMPLM) – manages the client side of the PLL’s
operation. It receives outbound, request messages, from UEL, which it
authenticates and encrypts. Obtains the IP address of the target remote
peers and passes, that information, along with the processed message, to
the IPCL. It also receives external, inbound, response messages. It
deciphers and validates the authenticity of such messages and passes
them to the top layers;

o SMode PL Manager (SMPLM) – manages the server side of the PLL’s
operation. It receives inbound, request messages, (from remote peers),
which it deciphers and validates. If the messages are destined to the UEL,
it forwards them to the Inner Environment Manager. If not, the SMPLM
processes the messages itself. It also authenticates and encrypts
outbound response messages. At the CCP It handles the PLL monitoring
and managing operations;

o PLL Peer Info Manager (PLLPIM) – handles the manipulation of peer
related information (e.g. peer identification, public key, IP), for PLL
purposes;

V A Reliable P2P Architecture for the New Paradigm 93

o PLL Crypto Tool (PLLCT) – handles all encryption, decryption and
signature calculation activities at the PLL;

o DB – the PLL Database;

•••• Usage Environment Layer (UEL) – at each peer, this layer comprises the following
components:

o Outer Environment Manager (OEM) – receives, and handles the servicing
of, all the requests coming from the exterior of the local peer, that is, from
the user. It does so resorting to the User Info Manager, the Media Item
Info Manager, and the UEL Peer Info Manager;

o Inner Environment Manager (IEM) – receives, and handles the servicing
of, all the requests coming from the system’s interior, that is, from other
peers. It does so resorting to the User Info Manager, the Media Item Info
Manager, the UEL Peer Info Manager and the Monitoring Manager. At the
CPP, It also handles the UEL monitoring and managing operations;

o User Info Manager (UIM) – handles all affairs related to the manipulation
of user related information, such as user identification, user public key,
user profile info, user media property info, user peer property info, user
account and corresponding monetary resources info, etc. It also handles
the authentication (signing) of data objects in behalf of users and
validation of data objects origin authenticity (signature validation) in what
regards to users;

o Media Item Info Manager (MIIM) – handles all affairs related to the
manipulation of media item related information, such as identification and
authentication (signature) information, semantic characteristics
information, location (on the system’s tissue) information, ownership
information, etc.;

o UEL Peer Info Manager (UELPIM) – handles all affairs which involve the
manipulation of peer related information (e.g. peer identification, peer
ownership, etc.) for UEL purposes;

o Monitoring Manager (MM) – handles all user action monitoring
procedures. It registers event report requests, issued by the system core.
The OEM informs the MM about every user action that takes place. The
MM matches that information against the monitoring requests. If a match
occurs a report is produced and sent to the system core;

o UEL Crypto Tool (UELCT) – handles all encryption, decryption and
signature calculation activities;

o DB – is the UEL’s database. It is employed by the UIM, the MIIM and the
UELPIM. It stores information on users, peers and media items.

Given the P2P nature of the system, a peer may receive requests from the system’s exterior
(the user), or from its interior (other peers). The OEM thus handles exterior requests, which
lead the peer to resort to the services of other peers, that is, to be a client of other peers;
The IEM handles interior requests, which lead the peer to provide services to other peers,
that is, to be a server to other peers;

3.4 Peer Structural Roles

3.4.1 Introduction

The CCP, and all the OCPs, are to be owned and operated by the system’s operating entity.
All core peers run on high capacity hardware and have at their disposal large data
transmission capacities. These peers are invariantly reliable and trustworthy.

V A Reliable P2P Architecture for the New Paradigm 94

The PPs are, typically, owned and operated by regular users, and, thus, commonly run on
household PCs. These peers present varying degrees of reliability and trustworthiness.

The different types of peer’s, with their different characteristics, present unequal levels of
capacity, and trustworthiness. For this reason they perform roles with different levels of
responsibility, authority and knowledge, at all of the system’s layers.

3.4.2 Central Core Peer Role

At all of the system’s levels, the CCP is the ultimate authority in the system and should be
fully trusted by all the peers. It is the base source of the system’s integrated PKI-like
capabilities. The CCP coordinates the system’s entire operation and all the interactions that
it comprises, for the servicing of the peripheral peer collective.

The CCP is the only peer in the system which contains the system’s data structure in its
entirety at all times. It is, thus, the ultimate source of all information, at all system levels, and
the sole handler of all peripheral requests which imply some change or addition to the
system’s overall data structure.

As it is the root of all trust, in the system, the CCP, is, therefore, the ultimate assurer of the
system’s operational reliability, provider of the necessary functionalities for the maintenance
of an environment of trust within the system, and deliverer of the necessary means to assure
identity verifiability to all peers, users and media objects.

More specifically, the CCP’s responsibilities include:

• at the PLL:
o storing the PLL part of the system’s data structure (information on all peers),

in its entirety;
o monitoring the system’s internal context, (by monitoring the requests received

from the peripheral tissue and the information pertaining the interactions
between the peripheral peers), in order to optimize the system’s internal
operation and the cooperation between its peers.

• at the UEL:
o storing the UEL part of the system’s data structure (information on all users

and media items and the media items themselves), in its entirety;
• at both levels:

o providing and/or coordinating (reading) access to the system’s data structure,
for PPs and OCPs;

o providing the capability to, and controlling, the alteration the system’s data
structure;

o guaranteeing the validity, coherence and correctness of the information
contained in the systems data structure;

3.4.3 Outer Core Peer Role

The OCPs assist the CCP in the servicing of the peripheral peer collective. Each OCP is a
trustworthy alternative (to the CCP), for access to the system’s data structure which they
store, most of the time, in its entirety.

At the three system levels, the OCPs handle peripheral requests which imply only reading
operations on the system’s data structure.

Each OCP is, therefore, responsible for the delivery, of the information it stores, to the PPs
or other OCPs. They are not, however, to service all and every PP. Whenever a PP logs into
the system (comes on-line), the responsibility for handling its requests is attributed, by the

V A Reliable P2P Architecture for the New Paradigm 95

CCP, to one specific OCP. From that point on, the PP’s “reading” requests should be sent to
the specified OCP.

There is thus a division of responsibilities, regarding the attending of the peripheral peer
collective’s requests, amongst the OCPs, which is coordinated by the CCP. Each OCP is
responsible for the handling of the requests coming from a subsection of the set of all
peripheral peers.

Figure 26 – Example Distribution of OCP Servicing Responsibilities over the PP Collective

Figure 26 presents a possible example of such a responsibility distribution. In it, the following
assignments are in place:

• OCP 1 is responsible for servicing all “reading” requests from peripheral peers AAPP

to AZPP ;

• OCP 2 is responsible for servicing all “reading” requests from peripheral peers BAPP

to BZPP ;

• OCP m is responsible for servicing all “reading” requests from peripheral peers ZAPP

to ZZPP ;

For simplicity’s sake the peer identifiers employed were only composed of two letters, thus
enabling a total set of peripheral peers from AAPP to ZZPP . In reality this set will be much
larger.

3.4.4 Peripheral Peer Role

The PPs host the system users and service other peers in the system.

In specific terms the PPs:

• at the PLL:
o attend to the requests coming from the UEL;
o attend to requests, from other peers, for information on specific peers’

information;
• at the UEL:

V A Reliable P2P Architecture for the New Paradigm 96

o perform the interfacing of users with the system by servicing their requests.
This service typically implies the reading and/or righting of the system’s data
structure, which is achieved by resorting to the services of CCP, OCPs or of
other peripheral peers;

o attend to monitoring requests from the system core;
o attend to requests, from other peers, for information on specific users or

media items;

3.4.5 Summary

Table 3 summarizes the main responsibilities of each type of peer.

Table 3 – Peer Responsibilities

Responsibility

Types

Peer Type Responsibilities

Central Core

Peer Resp.

Outer Core

Peer Resp.

Peripheral Peer

Resp.

ICPL

Resp.
IPCL Manager

Resp.
Receive incoming and send outgoing messages

PLL

Resp.

PLL DB
Resp.

Storing the entire
PLL data structure

at all times

Store all or part of
the PLL data

structure

Store core signed
fragments of the

PLL data structure

PLL Peer Info
Manager

Resp.

Monitor PLL’s
overall operation

Provide and/or

coordinate access
to the PLL data

structure, for PPs
and OCPs

Provide the

capability to, and
control, the

alteration of the
PLL data structure

Guaranty the

validity, coherence
and correctness of

the PLL data
structure

Provide reading
access to the PLL
data structure to

some specific
subset of the PPs

Read and right to
the PLL data

structure (resorting
to the CCP or

OCPs), to perform
its regular operation

in service of the
CMode or SMode

PL Managers

Redistribute core
signed fragments of

the PLL data
structure, to other,
PPs, under CCP or
OCP coordination

CMode PL Manager
Resp.

Handle outgoing requests (coming from the local UEL instance)
and incoming request responses (coming from remote peers)

SMode PL Manager
Resp.

Handle incoming requests (coming from remote peers) and
outgoing request responses

PLL Crypto Tool
Resp.

Perform encryption, decryption, signing, signature validation and
hashing operations

UEL

Resp.

UEL DB
Storing the entire

UEL data structure
at all times

Store all or part of
the UEL data

structure

Store core signed
fragments of the

UEL data structure
Outer Environment

Manager
Handle requests coming from the hosted users. Inform the

Monitoring Manager about relevant user actions
Inner Environment

Manager
Handle requests coming from remote peers

V A Reliable P2P Architecture for the New Paradigm 97

User Info Manager

Monitor UEL’s
overall operation

Provide and/or

coordinate access
to the UEL data

structure, for PPs
and OCPs

Provide the

capability to, and
control, the

alteration of the
UEL data structure

Guaranty the

validity, coherence
and correctness of

the UEL data

Provide reading
access to the UEL
data structure to

some specific
subset of the PPs

Read and right to
the UEL data

structure (resorting
to the CCP or

OCPs), to perform
its regular operation

in service the
Environment

Managers

Redistribute core
signed fragments of

the UEL data
structure, to other,
PPs, under CCP or
OCP coordination

UEL Peer Info
Manager

Media Item Info
Manager

UEL Crypto Tool
Perform encryption, decryption, signing, signature validation and

hashing operations

Monitoring Manager

Coordinate all
monitoring

procedures and
registered the

gathered
information

Register event
report requests,
issued by the
system core

Report to the core

when relevant

Register event
report requests,

issued by the
system core

Report to the core

when relevant

4 Data Structure and Model

4.1 Introduction

The set of all the information, regarding system participating entities (e.g. peers, information
objects and users), system occurring events (e.g. media object insertions, consumption, inter
user monetary donations, etc.), and system occurring relationships (the relationships
between system entities and events, etc.), that the P2PTube architecture requires for its
operation, collectively constitutes its data structure.

This structure is distributedly and redundantly stored throughout the system. It is redundantly
held, in its entirety, by the CCP and the OCPs. The PPs store only fragments of it.

The data structure may logically be divided into UEL and PLL sections. However,
operationally, it is one single coherent and interrelated structure.

The characteristics of data structure in scope, depend on the actual business model(s)
supported and on the services to be delivered by this architecture. Said data structure must,
thus, be able to support the description of realities of varying levels of complexity.

In the following sub-sections, we define the minimal necessary data model (to be embodied
by the P2PTube’s data structure), to support this architecture’s operation and the business
models outlined in chapter IV.

V A Reliable P2P Architecture for the New Paradigm 98

4.2 Rationale

Reality is made up of “things” which exist under involvement in relationships with other
“things”. Each individual “thing”, in its turn, is also composed by interior “things”, which also
exist under involvement in relationships with each other, and so forth, unlimitedly.

All of existence is transitory and is in permanent change. That way, with time, all things
which had a beginning, as a relational aggregation of interior “things”, also have an end, that
is, a disaggregation or alteration of the sub relationships and sub “things” that compose
them. All things may thus be seen as events.

A car is an event composed by all of its parts and components under a specific set of
interrelationships. If destroyed or disassembled, it ceases to be a car, that is, the car event is
terminated. In the same manner, a storm is an event composed by air and water vapour
masses maintaining a specific set of relationships amongst them and with the outer world.
When those relationships change, or, for instance, the water vapour is removed from the
storm (by way of the rain), the storm ceases to exist.

Relationships between “things” only exist when instantiated. That is, a relationship exists
only when the two related “things” exist in a way so as to maintain it. This way, relationships
are realized as occurrences, and are thus relational events. Relationships are therefore the
most basic events. They are those which are closest to a mere logical existence.

Relational events consist of “predicates” and are thus connected to two other events of any
type. One of these plays the role of the “subject” of the connection and the other one, the
role of the “object” of the connection.

Oppositely to relational (or basic) events, the remaining events may be designated as
complex events. These may be divided into two sub-types:

• Procedural events – these events consist of processes or actions (e.g. a flight, a
collision). They are composed of only relational events and other procedural complex
events. Ultimately, a procedural event composed of only one relational event is
logically equivalent to it;

• Entitary events – these events consist of realities that may be seen as entities (e.g. a
car, a person). They are composed by relational, procedural complex and entitary
complex events.

The P2PTube system and its internal operation, as any other reality, may thus be described
as a set of relational, procedural and entitary events.

For every reality a great number of entitary, procedural and relational events may be
identified, at different levels of complexity. Depending on the context, not all of them,
however, are of relevance to the representation or comprehension of the reality in scope.
The aspects of reality that are to be effectively captured must be selected in accordance with
the needs of every different situation.

In the specific context of P2PTube:

• the main complex events are:
o entitary events: peers; users; and the information objects;
o procedural events:

� events pertaining to user interactions with the system, (e.g. user
registration, insertion of media objects, donations);

� events pertaining to internal, autonomously initiated, system activities;
• the main relational events are all those inter-webbing the tissue of complex events;

V A Reliable P2P Architecture for the New Paradigm 99

P2PTube’s data model is therefore defined around these three basic types of phenomena
and their most relevant instances. Given that procedural events represent complex
occurrences in the system, they thus play the main structural role in the system’s data
model. The core of the model is therefore a continuous string of interrelated complex
procedural events, which contain (or are somehow related to), a vast set of events of all
types that describe the rest of the system’s activity.

The richness and complexity of the data model, and its alignment with reality, makes it
extremely versatile and, therefore, able to record any aspect of it, to any level of detail.

Traditional data models are conceived so as to perform a consistent registry of very specific
aspects of certain domains. These models, are typically confined to registering a continuous
succession of states in a given domain of reality, and, often, the registration of new states
involves the loss of information about previous states. One might think of the information
recorded in these structures, at any given moment, as a picture of the most relevant aspects
of the state of reality, at that moment. At each relevant change, of the state of reality, so
does the "photo" necessarily change, being that the changed aspect may, or may not, be
recorded, in the same way that the context of alteration, in question, is generally not saved.

In an opposite manner, P2PTube’s data model, does not record only the current state of
reality. Instead, it registers the entire sequence of relevant procedural events, which occur,
as well as their interrelationships, and thus, their context. It, therefore, captures a whole
contextualized evolution of reality (and, thus, of its states) over time.
For example, in the case of a media item insertion, P2PTube’s data model does not only
register that said item is now available and some further details regarding it (e.g. its owner
user). Instead, it registers the entire procedural event of the item’s insertion, as well as its
relationships with other relevant procedural and entitary events, such as the relationship with
the procedural event consisting of the hosting of the owner user, at some peer, in the system
and the events that consist of the hosting of the media item at various different peers, as a
result of its insertion process. The information related to the availability of the media item or
to the identity of its owner is present, all the same, but distributed across the recorded
events and relationships. It comes, however, enriched by a whole, chronologically organized,
context.

Given the way that P2PTube’s data model is structured, it inevitably stores a more complex
data structure. This means that retrieving information from it requires more complex
operations. However, this is a trade-of, which enables, on the reverse side, an immense
increase of the data model’s versatility and of the wealth and contextualization of the
recorded information. It also facilitates the continuous expansion of the model, so that the
capture that it performs of reality, can evolve over time so as to meet ever-changing needs.

A more versatile, detailed and contextualized capture of reality, and with less information
loss, means that more information, and more valuable information, is available to be
accessed and exploited by both the system itself and by users. The system can thus, for
example, correlate:

• a procedural event consisting of the insertion of a media item A;
• with a procedural event consisting of the hosting of its owner user at a given peer at

given time interval;
• with a "commenting" relational event linking media item A with other media item B;
• with a procedural event corresponding to a consumption of a media item C in a given

time interval;
• with a "commenting" relational event linking media item C and media item B;

V A Reliable P2P Architecture for the New Paradigm 100

and, therefore, determine that the referred user, inserted a comment to media item B, after
having consumed a media Item C which also contained a comment to media item B, when
he was hosted on a given peer at a given time interval.

Users, in turn, can make much more complex searches such as: what is the number of users
that, after consuming a particular item A, consumed, immediately afterwards, a media item
B.

4.3 Registered Information

The information registered by the system’s provisions may be divided into two parts:
• The information that composes the global data model – this is the information which

is permanently stored at the core data structure, and whose registry and knowledge
is necessary for the system’s global operations;

• The information that composes the individual peer data model – this is information
which is stored at every peer, independently from each other, which translates the
peer’s individual experience and is necessary only for the proper operation of the
actual peer.

For the sake of preventing the dissertation’s main body of reaching an excessive size, the
specification of the information which is registered in the system’s data model is described in
Annex D. In said annex the registered information is presented on an event-oriented basis
that delivers a disassembled view of the overall resulting data structure.

The best way to understand the overall system’s data structure, is to interpret it in an object
oriented manner, as a complex mesh of interconnected events which is structured, and built
around, a chain of procedural events in an hierarchical manner, starting from the core
procedural events and then proceeding to all others.

Said core/structuring procedural events are:

• At the PLL – the Peer Participation Session Events;
• At the UEL – the User Attending Session Events;

From the above presented perspective the system’s data structure consists of a series of
events connected by relationships, where each event may “contain” (be bound to by
inclusion relationships), relationships or further series of relationship connected events, and
so forth.

Figure 27 presents a depiction of an exemplifying section of the data structure, from the
above-mentioned perspective. In it, procedural and entitary complex events and entities are
represented as green and purple boxes, interconnected by yellow relationship boxes.

From that image we may see that:

• the top level events are the Peer Participation Session Events. These can be seen as
PLL events that consist of a peer being connected to the system for some time
interval. Peer Participation Session Events are initiated, by Peer Connection Events,
and terminated by Peer Disconnection Events, which in turn are triggered by Peer-
loginTo-System and Peer-loggoffFrom-System relational events, respectively.

• Peer Participation Session Events, may include (be connected to, by inclusionOf

relationships) other events, such as a Peer Reporting Event.

• Peer Participation Session Events are also bound, by supportingOf relationships to
UEL levels events, such as the User Attending Session Events;

V A Reliable P2P Architecture for the New Paradigm 101

• User Attending Session Events consist of user participation sessions. They are

initiated by User Connection Events and terminated by User Disconnection Events,
which, in turn, are triggered by User-loginTo-System and User-loggoffFrom-System
relational events, respectively;

• User Attending Session Events include all events pertaining to user interaction with
the system. As such they may include events such as MO Search Events, MO
Responding Events, MO Commenting Events, etc;

Figure 27 – Example of Data Structure Section

All mentioned procedural and entitary events are stored as entries in their corresponding
tables, along with any other specific, relevant, information about them. They are webbed into
the overall data tissue through their referral by the relational events that they are involved in.

All the explicitly mentioned relationships in the above text, as well as those implicitly defined,
(when we say that some event includes some other event or relationship), are registered in
the data structure as entries in the appropriate relational event table. In such entries there is

V A Reliable P2P Architecture for the New Paradigm 102

a field indicating the subject phenomenon, another referencing the object one and a third
one indicating the “predicate” of the relationship, that is, the actual type of the relationship.

Furthermore, said entries, also carry an indication of the time instant at which the
relationship “came into existence” and an indication of the time instant at which is became
invalid.

As it can be concluded, the data structure will be an intricate mesh of information nodes
(procedural and entitary events), interconnected by relational events, were no past
information is ever lost. Procedural, entitary or relational events, which are no longer
occurring or valid, have their end date introduced, and are marked as inactive. The present
state of the system is described by the set of all the procedural, entitary and relational events
that are still active. All other entries constitute the registry of the system’s past.

4.4 Data Model

In accordance with the rationale presented in section 4.2 and the information set that the
system’s data structure needs to register (presented in section 4.3), three different types of
aspects of reality (identified in section 4.2) are mapped into the system’s data model:

• Entitary Complex Events – real or abstract “things” like peers, users and information
objects;

• Procedural Complex Events – occurrences that take place within reality and are
manifested through the initiation and/or termination of relationships;

• Relational Events – logical bonds between different segments of reality (e.g. between
entities).

The data structure’s model (presented in Figure 28), is defined in terms of those three
aspects of reality.

All system events are registered at the EVENT table. This table carries the information fields,
pertaining to events, which are common to all types of events. As such, each of its rows
contain:

• EvID – the system wide unique identifier of its represented event;
• EvType – the specific type of the event (accepted values are RelEv, ProcCompEv

and EntCompEv);
• BeggDate – the event’s beginning time;
• EndDate – the event’s end time (when available);
• IsActive – a boolean filed indicating if the event in scope is still effectively in

occurrence and part of the system.

However, given that there are three main sub types of events, the latter table is “extended”
by additional ones, in order to carry the information fields specific to each main type of event.
This way:

• the RELEV table extends the EVENT table. It registers all Relational Events. Its
entries carry the following fields:

o RelEvID – the system wide unique identifier of the relational event (foreign
key imported from the EVENT table);

o RelType – the identification of the “predicate” of the relationship represented
by the entry. It may take as value the name of any of the relational events
defined in Annex D;

o SubjectEvID – the identification of event which plays the role of “subject” in
the relationship represented by the entry;

o ObjectEvID – the identification of event which plays the role of “object” in the
relationship represented by the entry;

V A Reliable P2P Architecture for the New Paradigm 103

• the COMPEV table extends the EVENT table. It registers all Complex Events. Its
entries carry the following fields:

o CompEvID – the system wide unique identifier of the complex event (foreign
key imported from the EVENT table);

o EvType – the identification of the type of complex event at stake. Said field
may thus take as value either ProcCompEv or EntCompEv.

This table is “extended” by the following ones:
o PROCCOMPEV – this table registers all Procedural Complex Events. Its

entries carry the following fields:
� PocCompEvID – the system wide unique identifier of the procedural

complex event (foreign key imported from the COMPEV table);
� EvType – the identification of the type of procedural complex event at

stake. It may take as value the name of any of the procedural complex
events defined in Annex D;

o ENTCOMPEV – this table registers all Entitary Complex Events. Its entries
carry the following fields:

� PocCompEvID – the system wide unique identifier of the entitary
complex event (foreign key imported from the COMPEV table);

� EvType – the identification of the type of entitary complex event at
stake. It may take as value the name of any of the entitary complex
events defined in Annex D.

All specific types of entitary, procedural and relational events whose registry requires the
storage of some specific extra data field, besides the ones registered at their corresponding
base tables (ENCOMPEV, PROCCOMPEV and RELEV), have their registry extended by
specific tables, which store said extra information. Thus, if, for instance, the registry of
entities of type “peer” needs to store some extra field, not available in the ENTCOMPEV
table, then, for each registered peer, there will be an entry in the ENTCOMPEV table
pertaining to said instance (peer). Furthermore, there will also be a PEER table (extension
table), with a specific entry for the peer in question, which carries the additional, peer
specific, information fields.

As it was implicitly shown above, in the extension tables, the primary key is a foreign key
received from their corresponding base tables, which corresponds to the primary key of the
latter tables. In the base tables, the field indicating the specific type of the event described in
each entry, functions as a pointer to the specific extension table (if any), with further
information about that event.

In more specific terms the basic data model contains the following extension tables:

• In the context of the registry of entitary complex events, the following tables extend
the ENTCOMPEV table:

o PEER – each table row contains peer-specific information pertaining to a
specific peer;

o USER – each table row contains user-specific information pertaining to a
specific user;

o UACCOUNT – each table row contains user-account-specific information
pertaining to a specific user account;

o PEERIP – each table row contains peer-IP-specific information pertaining to a
specific peer IP address;

o IO – each table row contains IO-specific information pertaining to a specific
information object. This table is extended by the following ones, which pertain
to different types of IOs:

� MO – each table row contains MO-specific information pertaining to a
specific media information object;

V A Reliable P2P Architecture for the New Paradigm 104

� MOFRAG – each table row contains MO-fragment-specific information
pertaining to a specific media object fragment;

� MORNSMANCMNT – each table row contains
MORansonAnnouncement-specific information pertaining to a specific
MORansonAnnouncement;

� KEYPAIR – each table row contains a specific private and public
asymmetric key pair;

� OPERATIONALO – each table row contains operational-IO-specific
information pertaining to a specific operational information object. This
table is extended by the following ones, which pertain to different
types of operational IOs:

• SEARCHQIO – each table row contains SearchQuery-IO-
specific information pertaining to a specific SearchQIO object;

o SEMCONCEPT – each table row contains semantic-concept-specific
information pertaining to a specific semantic concept;

o SYSTEM – each table row contains system-specific information pertaining to
a specific system. In this particular case the table will carry one entry that
pertains to the actual system that the model belongs to;

o TRUSTEDSYSTEM – each table row contains system-specific information
pertaining to a specific trusted outer system;

• In the context of the registry of procedural complex events, the following tables

extend the PROCCOMPEV table:
o UDONATIONEV – each table row contains user-donation-event-specific

information pertaining to a specific user donation event;
o UATTSALEEV – each table row contains user-attention-sale-event-specific

information pertaining to a specific user attention sale event;
o UELOPEV – each table row contains UEL-Operational-Event-specific

information pertaining to a specific UEL Operational Event;
o UELCOOPEV – each table row contains UEL-Coooperational-Event-specific

information pertaining to a specific UEL Coooperational Event;
o UELMSGSENDEV – each table row contains UEL-Message-Sending-Event-

specific information pertaining to a specific UEL Message Sending Event;
o UELMSRECEPTEV – each table row contains UEL-Message-Reception-

Event-specific information pertaining to a specific UEL Message Reception
Event;

o PLLCOOPEV – each table row contains PLL-Coooperational-Event-specific
information pertaining to a specific PLL Coooperational Event;

o PLLMSGSENDEV – each table row contains PLL-Message-Sending-Event-
specific information pertaining to a specific PLL Message Sending Event;

o PLLMSRECEPTEV – each table row contains PLL-Message-Reception-
Event-specific information pertaining to a specific PLL Message Reception
Event;

o PCOMMSESSEV – each table row contains peer-communication-session-
event specific information pertaining to a specific peer communication session
event;

• In the context of the registry of relational events, the following tables extend the

RELEV table:
o UREWARDOFU_RELEV – each table row contains User-rewardingOf-User-

specific information pertaining to a specific User-rewardingOf-User
relationship;

o UPAYOFU_RELEV – each table row contains User-paymentOf-User-specific
information pertaining to a specific User-paymentOf-User relationship;

V A Reliable P2P Architecture for the New Paradigm 105

o UUNLOADOFUACCNTEV – each table row contains User-unloadingOf-User-
specific information pertaining to a specific User-unloadingOf-User
relationship;

o ULOADOFUACCNTEV – each table row contains User-loadingOf-User-
specific information pertaining to a specific User-loadingOf-User relationship;

o STAXOF_UREWARDOFU_RELEV – each table row contains System-
taxationOf-(User-rewardingOf-User)-specific information pertaining to a
specific System-taxationOf-(User-rewardingOf-User) relationship;

o STAXOF_UPAYOFU_RELEV – each table row contains System-taxationOf-
(User-paymentOf-User)-specific information pertaining to a specific System-
taxationOf-(User-paymentOf-User) relationship;

As it can be seen, the relational events tables play a crucial role in the interconnection of the
data model. Each row/tuple in each such table represents one instance of a relationship. The
information collectively carried by these tables describes relational events as subject-
predicate-object constructs. It contains one foreign key for the subject event, one foreign key
for the object event and whatever data fields are relevant to characterize the relationship.

This structural scheme of the data model grants it a great deal of versatility and makes it
easily extensible, through the addition of extra event types (entitary, procedural and
relational), and corresponding extension tables (if necessary), which build on the tables
already present in the model.

4.5 Data Structure Distribution Over the System’s Tissue

The system’s data structure may be seen as having two scope-wise different sections. The
main part is the global one (global scoped part of the data structure), which registers the
events which describe the system’s global operation. This knowledge is necessary to enable
a proper global operation of the system, under the coordination of the core (CCP and
OCPs).

At all system levels (PLL and UEL), the CCP and all the OCPs contain the core part of the
data structure in its entirety. PPs contain only fragments of it.

However, given the system’s distributed and P2P nature, this is not all the data in the
system’s collective data structure. In the course of their operation both the OCPs and the
PPs will accumulate data that is not shared with the CCP (and does not need to be). This
constitutes the locally scoped part of the data structure. For instance, they will register
information on “Peer Operation Events”, “Peer Cooperation Events” or “Peer Communication
Session Events”, pertaining to their regular operation and interactions with other peers,
which is only relevant to them and does not need to be delivered to the CCP. This section of
the data structure is thus particular to every peer and will not be stored at the CCP, thus
being perishable.

The main access gateway to the global part of the data structure is the CCP. It intermediates
all “writing” accesses to it, and takes care of timely updating the data structure copies
located at the OCPs. The “reading” accesses to that section of the data structure are
delegated by the CCP to the OCPs. These handle the distribution of the information and
data objects contained in the system’s data structure, throughout the PPs. As this
distribution takes place, the PPs end up accumulating some knowledge of the information in
scope (e.g. knowledge of Media Objects (MOs), answers to specific search queries,
authentication information about specific peers or users, etc.), and the OCPs take note of
this acquisition. In order to exploit that diffusion of knowledge, the OCPs distribute some of
the PP servicing workload throughout the actual PP collective, by entrusting some PPs with
the responsibility to service some specific requests of other PPs (see section 5.5.8.2.2).

V A Reliable P2P Architecture for the New Paradigm 106

Figure 28 – Basic Data Model

V A Reliable P2P Architecture for the New Paradigm 107

This way, the system’s data structure (or the relevant parts of it), is originally maintained and
expanded by the CCP. It is then progressively diffused throughout the system’s tissue, first
to the outer core and then to the periphery. The responsibility of distributing that data (or
parts of it), is also progressively entrusted to larger sections of the system, first to the outer
core and then to the periphery.

5 Operation

5.1 Introduction

Section 5 explains the operation of the P2PTube architecture with a special focus on the
security and reliability assuring aspects. In section 5.2 an overview is given of its main cross
layer operational aspects. Section 5.3 presents the operation of the IPCL. Section 5.4
presents the operation of the PLL and section 5.5 presents the operation of the UEL.

In said sections the notation presented in Table 4 will be employed.

Table 4 – Notation Definition

user system specific a=iU iiP PK ofkey public the=

ii Uu of id the=
iPiP Kk of identifier the=

iiu UK user ofkey public the= iiP PK ofkey private the1 =−

key public s' of id the iiu Uk = 11 of identifier the −− =
iPiP Kk

iiu UK user ofkey private the1 =− object media specific a=ccp
iMO

key private s' of id the1
iiu Uk =− ccp

iMO
CCP
imo of id the=

peer specific a=iP
i

CCP
i

CCP
iMO

iu UMOL by of use thegoverning license the=

ii Pp of id the=

)(, and between session n cooperatio

 theduringion communicatpeer -inter of

encryption for thekey symmetricsecret a

CCPiP

gi

th

CCPiP
gs

s

sCCPP

g

K

−

−

=

peer peripheral specific a=iPP xx toappliedfunction hash hiccryptograp)h(=

ii PPpp of id the= KxxK with of encryption the)(enc =

peer coreouter specific a=iOCP Kxxhx KK key with of signature))((enc)(signature ==

ii OCPocp of ID the= Kxxxx KK key with signed)(signature)(signed ==

peer core central the=CCP)(enc)(secmsg xx KK =

CCPccp of id the=

5.2 Cross Layer Aspects

5.2.1 Base Operation Types

From a vertical perspective, the system’s overall operation is composed by the overall
operation of each of its layers. The overall operation of each layer is composed by a myriad
of different individual operations that concurrently take place within the layer’s tissue. Each

V A Reliable P2P Architecture for the New Paradigm 108

such individual operation is composed of multiple interactions/cooperations between
homologous layer instances of different peers.

From a horizontal perspective, the system’s overall operation is composed by the overall
operation of each of its peer. The overall operation of each peer is composed by a myriad of
different individual operations that concurrently take place within the peer. As a peer is
divided into different layers, so are the operations that occur within it. Thus, an individual
peer operation typically has a UEL a PLL and an IPCL component.

If the two perspectives are integrated an individual system operation may be seen as a
vertically integrated construct with the typical following structure:

• UEL level operation – composed of spanning tree of inter-peer interactions at the
UEL level. At the root of that tree, is an inter-UEL interaction which has as its client
the UEL instance at the peer which is triggering the entire operation. All other inter-
UEL interactions occur in service to that originating one;

• PLL level operation – composed of multiple spanning trees of inter-peer interactions
at the PLL level. At the root of each such tree, is an inter-PLL interaction which exists
to service a superior inter-UEL interaction. All other inter-PLL interactions, in the
same tree, occur in service to that originating one;

• IPCL level operation – composed of multiple inter-peer interactions at the IPCL level.
Each such inter-IPCL interaction exists to service a superior inter-PLL interaction;

Individual system operations may be triggered by the attending of user requests or by the
issuing of requests or instructions by the CCP.

An operation, originated by a user request, will cause a system-wide intra-UEL operation (as
his request is picked up by the UEL instance at his hosting peer, which will typically resort to
the UEL instances in other peers). This UEL level operation (set of inter-UEL interactions)
will cause a PLL level operation (set of sets of inter-PLL interactions), which, in its turn will
cause an IPCL operation (set of sets of inter-IPCL interactions). Therefore, a user-originated
operation will be composed of sub operations occurring at each of the system’s layers.

The CCP may trigger operations:

• at the UEL:
o to request, from an OCP the updating of its copy of the system’s data

structure, pertaining to the UEL;
o to request from a PP the monitoring of some user actions;
o etc;

• at the PLL:
o to request, from an OCP the updating of its copy of the system’s data

structure, pertaining to the PLL;
o etc;

Operations triggered, by the CCP, at the UEL or PLL will also imply the occurrence of
system-wide operations at the inferior layers.

The possible types of inter-peer interactions at every layer, composing the above-described
operations, are the following:

• PP-to-PP – in this type of interaction a peripheral peer resorts to the services of
another PP. Such an interaction may typically be considered a P2P interaction as it

occurs between hierarchically equal peers and is bidirectional (what APP may

request from BPP may also be requested by the latter from the earlier);

V A Reliable P2P Architecture for the New Paradigm 109

• PP-to-OCP – in this type of interaction a peripheral peer resorts to the services of an
OCP. Such an interaction may typically be considered a client/server interaction as it

occurs between hierarchically different peers and is not bidirectional (what APP may

request from BOCP , typically cannot be requested by the latter from the earlier);

• PP-to-CCP – in this type of interaction a peripheral peer resorts to the services of the
CCP. Such an interaction may typically be considered a client/server interaction,
given the hierarchical difference between the peers and the fact that the information

that a APP may require from CCP cannot also be delivered from the earlier to the
latter;

• OCP-to-OCP – in this type of interaction an outer core peer resorts to the services of

another OCP. Such an interaction may typically be considered a P2P interaction,
given the hierarchical equality between the participating peers and the bi-
directionality of the involved types of requests;

• OCP-to-CCP – in this type of interaction an outer core peer resorts to the services of

the CCP. Such an interaction may typically be considered a client/server interaction,
given the broad hierarchical inequality between the participating peers and the lack of
bidirectionality of the involved types of requests;

• CCP-to-OCP – in this type of interaction the CCP requests something from an OCP

(e.g. the updating of the information that the OCP is storing). Such an interaction may
be considered a client/server interaction, given the broad hierarchical inequality
between the participating peers and the fact that the latter cannot request the same
from the earlier;

• CCP-to-PP – in this type of interaction the CCP requests something from a PP (e.g.

the monitoring and reporting of some user activity). Such an interaction may be
considered a client/server interaction, given the broad hierarchical inequality between
the participating peers and the fact that the latter cannot request the same from the
earlier;

Depending on the specific interactions that compose an operation, it may be predominately
client/server or P2P.

In terms of the involved peer types, the main types of inter-peer interaction sets, (operations)
that will take place in the system, regardless of the level, are presented in Figure 29. Such
sets are the following:

• User triggered interaction sets:

• Type 1 interaction sets – a user submits a request to its hosting PP. If the user’s
request implies only the reading of (some part of) the system’s overall data
structure, the handling PP directs the adequate request to the appropriate OCP.

For instance, if 12
 PPRPP

OCP ⊂ (as is exemplified in Figure 26), and 1PP needs

some information, it will direct a request, (for the needed information), to 2OCP .
The contacted OCP will respond with the requested information;

V A Reliable P2P Architecture for the New Paradigm 110

• Type 2 interaction sets – this interaction set is very similar to the type 1

interaction set. The difference is that the contacted OCP,(3OCP), is for some

reason, overburdened and thus redirects the PP to some other OCP ;

• Type 3 interaction sets – a user submits a request to its hosting PP. If the user’s
request implies only the reading of (a part of) the system’s overall data structure,
but the request (or some of the sub-procedures it implies) needs to be registered,
the inter-peer interaction sequence will be similar to a type 1 interaction, except
for the fact, that the contacted OCP will notify the CCP of the request received
from the PP;

• Type 4 interaction sets – a user submits a request to its hosting PP. If the user’s

request implies some change or addition to the system’s global data structure,
the PP will have to direct the request to the CCP, as the latter is the overall
maintainer of the system’s global data structure and the gatekeeper of that
structure in what regards changes made to it. In this situation (exemplified in
boxed area 4 of Figure 29), the PP will then send the request to CCP. The latter
evaluates its validity and if everything is ok, it performs the necessary changes to
the data structure and sends a confirmation to the calling PP. In a parallel
manner, given the (redundant), distribution of the data structure over the OCPs,
the CCP will need to update the affected information in all the OCPs. It will thus
issue update requests to all of them, with the new information, which these will
store (exemplified by steps 2’ and 3 in boxed area 4 of Figure 29);

• Type 5 interaction sets – this interaction set is very similar to the type 1

interaction set. The difference (as exemplified in boxed area 5 of Figure 29), is

that the contacted OCP, 2OCP , hybridizes the operation by redirecting the

original requesting PP (1PP) to another PP (2PP);

• CCP triggered interaction sets:

• Type 6 interaction sets – due to the occurrence of some change or addition to the

system’s data structure, the CCP instructs the OCPs to update the data that they
are storing (as exemplified in boxed area 6 of Figure 29, for a single OCP);

• Type 7 interaction sets – the CCP needs some monitoring information to be
obtained by some PP. In that regard (as exemplified in boxed area 7 of Figure
29), it sends a monitoring request to the target PP (step 1). The latter sends an
acknowledgement and proceeds to perform the capture of the desired
information. Whenever relevant, the PP sends back to the CCP, event reports
containing its monitoring activity results.

V A Reliable P2P Architecture for the New Paradigm 111

Figure 29 – Basic Inter-Peer Interaction Sequences

5.2.2 Operation Identification

In the course of the system’s operation, each of its peers will need to process numerous
simultaneous operations, handling both user requests and the requests from other peers.
This results in an overall scenario characterized by an intricate and concurrent set of global
operations, where each such operation “traverses” multiple peers on multiple layers of the
system, as it is composed of numerous inter-peer cooperations at multiple levels.
As all cooperations are performed through the exchanging of messages between the
cooperating peers, the above-mentioned scenario translates into a complex and concurrent
mesh of inter-peer message exchanges.

For the system to operate coherently it is necessary that no inadequate cross-
communication occurs, that is, that the procedures and the exchanged messages of different
operations and cooperations are not confused or mixed up. Operations must thus be clearly
distinguishable from each other, and so must their internal composing inter-peer interactions,
and, hence, their supporting messages.

In light of the above, operations must be attributed a system-wide unique identifier at the
time of their initiation. To do so, whenever a peer (be it a PP, an OCP or the CCP), initiates
an operation it builds a unique identifier for it, composed of the following parts:

• the operation initiating peer’s identifier (which is per se system-wide unique);
• the operation’s initiating time;
• the operation’s sequence number, within the context of the peer and of the time of its

initiation. For instance, an operation which is the 12th operation to be initiated by the
peer (at some specific level, e.g. UEL), since the beginning of the last millisecond,
will have “12” as its serial identifier;

For instance, if a PP is identified as “p2ptube:ppeer:xpto001”, if the current time in
milliseconds is “1341227480331”, and if the operation is the “12th” to be initiated by the peer
in the current millisecond, than the operation’s id is
“p2ptube:ppeer:xpto001:1341227480331:12”.

V A Reliable P2P Architecture for the New Paradigm 112

In order to correctly perform the operations that it starts, a peer will typically have to resort to
the services of other peers, i.e., establish cooperations with them. These must also be
uniquely identified. To do so, whenever a peer initiates an inter-peer cooperation, in the
service of a specific operation, it will produce a unique identifier for it, composed of the
following parts:

• the identifier of the encompassing operation;
• the identifier of the target cooperating peer;
• the cooperation’s sequence number, within the context of its encompassing operation

and of the target cooperating peer. For instance, a cooperation which is the 2nd
cooperation to be initiated within the context (at the service) of the same operation,
with the same target cooperating peer, will have “2” as its serial identifier;

For instance, if an operation is identified as “p2ptube:ppeer:xpto001:1341227480331:12”, if
the target cooperating peer is identified as “p2ptube:ppeer:abc1”, and if the cooperation is
the “2nd” to be initiated in the context of the above mentioned operation with the above
mentioned peer, than the cooperation’s id is
 “p2ptube:ppeer:xpto001:1341227480331:12:p2ptube:ppeer:abc1:2”.

Peers may also become involved in operations that they did not start by servicing
cooperation requests coming from other peers. In order to handle such cooperations, said
peers may need to initiate further cooperations with other peers, and will, thus, need to
adequately identify such new cooperations. To do so, whenever a peer initiates an inter-peer
cooperation, in the service of a specific another cooperation (where it plays the server role),
it will produce a unique identifier for the new cooperation, composed of the following parts:

• the identifier of the cooperation request that the new cooperation is servicing, and
which is, thus, its originating cooperation;

• the identifier of the target cooperating peer;
• the cooperation’s sequence number, within the context of its originating cooperation

and of the target cooperating peer. For instance, a cooperation which is the 3rd
cooperation to be initiated within the context (at the service) of the same originating
cooperation, with the same target cooperating peer, will have “3” as its serial
identifier;

For instance, if an originating cooperation is identified as
 “p2ptube:ppeer:xpto001:1341227480331:12:p2ptube:ppeer:abc1:2”, if the target
cooperating peer is identified as “p2ptube:ppeer:abc2”, and if the cooperation is the “3rd” to
be initiated in the context of the above mentioned cooperation with the above mentioned
peer, than the cooperation’s id is:
 “p2ptube:ppeer:xpto001:1341227480331:12:p2ptube:ppeer:abc1:2:p2ptube:ppeer:abc2:3”.

As stated earlier, all cooperations are performed through the exchanging of messages
between the cooperating peers. These messages must be properly exchanged and
managed to ensure the correct execution of operations and cooperations. Thus, the
operation and cooperation identification scheme, presented before, is to be employed in the
identification of said messages.

Every cooperation comprises the bidirectional exchange of one or more messages between
two peers (the client peer and the server peer). The identifiers used in those messages are
composed by the following parts:

• cooperation ID – the identifier of the comprising cooperation;
• cooperation side – a string which indicates if the message is coming from the client

or server side of the interaction. In the earlier case its value is “req”. In the latter case
said value is “resp”;

V A Reliable P2P Architecture for the New Paradigm 113

• counter – a numeric value indicating the cumulative number of messages sent from
the message’s sender peer to its receiver peer, in the context of the cooperation in
scope. It is thus a counter of such messages.

Figure 30 – Cooperation Mesh Constituting an Operation

Figure 30 presents an example of a mesh of inter-peer cooperations resulting from a single
operation, illustrating the identifiers of the involved cooperations. That operation (identified
as 12:3311341227480:p1=opID), is initiated by peer 1P . To adequately perform it,

1P solicits cooperations from peers 2P , 6P , 14P and 9P . From the latter one it actually

requests two different cooperations, in the scope of the same operation. These are therefore
identified as 1:p9:opID and 2:p9:opID , respectively.

The peers initially contacted by 1P eventually solicit the cooperation of further peers, and so
on, and thus, the operational mesh of cooperations expands throughout the system’s tissue.

Two of the cooperation chains (sequences of cooperations were each is caused by the
previous one, and causes the next one, in the chain), are highlighted with different colours to
emphasise a specific possible operational occurrence. That occurrence consists of a peer

14P , being involved in two different cooperation chains (of the same operation), at different

depths of those chains. In the “red” chain 14P is directly contacted by 1P , and in the “blue”

chain, it is reached, by the cooperation mesh of operation 12:3311341227480:p1=opID ,

via 2P . 14P is thus part of the two following cooperation chains:

• 1:p14:opID �� 1:p16:1:p14:opID

• 1:p2:opID �� 1:p14:1:p2:opID �� 1:p12:1:p14:1:p2:opID

However, in spite of the possible complexity of the cooperation mesh that results of the
execution of an operation, once the above defined scheme of operation and cooperation
identification is employed, (for the identification of the exchanged messages), no cross-
communication or message switching will occur and the operations will unfold successfully.

V A Reliable P2P Architecture for the New Paradigm 114

5.2.3 Peer Identification

Every system peer has a system-wide unique identifier. It is composed of the following parts:
• the identifier of the system;
• the identifier of the type of peer;
• the peer’s unique alphanumeric serial;

Thus, for instance, in a system identified as p2ptube, a peripheral peer with serial xpto001
will be identified p2ptube:ppeer:xpto001.

5.3 IPCL Operation

5.3.1 Introduction

The IPCL, operates in a purely P2P fashion. It provides the upper layers with communication
services, through the exchanging of information packets directly between peers.

5.3.2 Interfacing

IPCL instances interface with the local PLL instance “above” them, and with remote other
IPCL instances. As such an IPCL instance exchanges information with both those entities, in
both directions and (given the P2P nature of the system), in both the client and server roles.

The purpose of the IPCL is to attend to the requests of the PLL. Doing so, basically consists
only of relaying internal outbound PLL messages to external PLL instances (PLL instances
of remote peers), and external inbound PLL messages to the local PLL.

To supply such a service, the IPCL requires the delivery of the following parameters:

• from the local PLL instance, (in the case of an outbound internal PLL message):
o the IP address of the destination peer;
o the PLL message to be sent;

• from a remote IPCL instance, (in the case of an inbound external PLL message):
o the actual exchanged IPCL message (from which the PLL message is

extracted and passed up to the PLL);

Outbound messages are sent over TCP/IP to the destination peer. Inbound ones are relayed
to the local PLL.

5.4 PLL Operation

5.4.1 Introduction

The PLL offers a set of core functionalities to enable:
• the security (confidentiality, integrity, authenticity and non-repudiatiability), of all

messages exchanged between peers;
• the registration, removal, login and logoff of peripheral peers from the system (in a

client/server manner);
• the registration and removal of outer core peers (client/server manner);
• the resolution of peer contact endpoints and authentication info, (in a hybrid manner);
• the shunning and readmission of peripheral and outer core peers (client/server

manner).

Every peer has a unique identifier as well as a unique asymmetrical key pair composed of a

public key, (
iPK), and a private key (1−

iPK), which it employs for its authentication. The

V A Reliable P2P Architecture for the New Paradigm 115

ultimate register of the public part of this authentication information, (,,
iPi Kp), and of the

contact endpoints of peers is the CCP ’s PLL. It is assumed that the PLL of all peripheral
and outer core peers “knows” CCP ’s public key.

The following sections explain, in detail, how the PLL provides the above mentioned
functionalities.

5.4.2 Secure Messaging

Inter PLL communication security is assured by the PLL itself. It thus assures the
confidentiality, integrity, authenticity and non-repudiatiability of all messages involved in that
communication.

The procedure employed to assure communicational security varies slightly depending on
whether the communicating peers have already established a communication session or not.

5.4.2.1 Pre-Connection Secure Messaging

The procedure employed to assure that two peers may communicate securely, before they
have established a communication session between them, is always the same regardless of
the types of conversing peers and of the role they play in the interaction (“client” or “server”).

Figure 31 – Pre-Connection Secure Messaging Procedure

Figure 31 exemplifies the procedure in scope (taking into consideration the notation defined
in section 5.1 of the present chapter), with generic peer iP playing the client role and generic

peer kP playing the server role.

V A Reliable P2P Architecture for the New Paradigm 116

The interaction initiating peer, iP , begins by sending the message

()infoinforeqMsg s

kP

iP

kP

iP
,ProdFpreConnMsg= to kP expressing its request (step 1), where

() 











 −= 1, ,,,Ø,, ftrf,ProdFpreConnMsg
iP

kPs

kP

iP
KSigInfoKEncInfoserial

s
infoinfoinfo . That

message contains a transformed (by function 




 ...ftrf), version of the information to be sent.

That function takes as parameters the following set:

• sinfo – is the sensitive information being transmitted. It must always carry, besides

other information, the specification of the type the request;

• info – in the non-sensitive information being transmitted, which, in this case, is null;

• serial – is a serial identifier that enables the logical binding between messages and
the operations and cooperations that they pertain to (see section 5.2.2). It also
performs the unique differentiation between all exchanged messages so that no two
messages are ever alike. If a repetition is ever detected, it is either an error or a
replay attack and the message must be discarded. The serial carries the following
data:

o the identifier of the overall operation which encompasses the cooperation to
which the message pertains;

o the identifier of the inter-peer cooperation to which the message pertains.
Given the way its structure is defined, (see section 5.2.2), this identifier
carries the identification of all the previous cooperations in the cooperation
chain that lead to the current cooperation. It is the last link in the chain that
actually defines the present cooperation. It includes in its structure the
identification of the sender and receiver peers;

o
kP

iP
cntr – a cumulative counter of all the messages sent from iP to kP in the

course of the present cooperation, preceded by the “req” or “resp” string if the
comprising message is coming from the “client” or “server” peer;

o a timestamp indicating the message’s creation time;

The set composed by the identifier of the inter-peer cooperation and
kP

iP
cntr constitutes

the comprising message’s identifier, in accordance with what was defined in section
5.2.2

• EncInfo - carries the necessary information to enable the authorized receiving party
to decode the message. It thus contains: the identification of the peer whose public
key was employed to cipher the overall message (kP), so that only such peer may

decipher it; the definition of the ciphering algorithm; the identifier of said public key;

• the public key of the destination peer (it is employed to encrypt the message’s secure
content);

• SigInfo - carries the necessary information to enable the authorized receiving party

to validate the signature of message’s contents. It thus contains: the identification of

V A Reliable P2P Architecture for the New Paradigm 117

the peer whose private key was employed to sign the overall message (iP); the

definition of the signing algorithm; the identifier of the employed private key; the
identifier of the corresponding public key; and the actual public key. SigInfo , which
will be sent to the receiving peer, includes the public key, of the sender peer, in the
cases were the peer is performing its initial connection to the CCP (registering), as in
that case the CCP (receiving peer) does not yet know that information. In all other
cases, the value of the public key will not be sent as the destination peer must
discover it through the adequately reliable means – asking the CCP (or some OCP);

• the private key of the source peer (it is employed to sign the message’s content);

Function 














BA KSigInfoKEncInfoserialyx ,,,,,,ftrf , performs its work by concatenating the

SigInfo parameter with the serial identifier, with sinfo and with the signature (by iP) of info ,

and by signing that set with iP ’s private key, and ciphering the result with kP ’s public key. The

ciphered result is then concatenated with EncInfo . The information block resulting from the

previous operations is them concatenated with info .
The signing process, enables the receiving peer to verify the integrity and origin authenticity

of the ()














− infosignaturesinfoserialSigInfo
iPK 1 set and, consequently, of info . It also

guarantees the non-repudiability, by iP , of that information. The ciphering process ensures

the confidentiality of the exchanged information, as only kP may decipher it. The presence of

the EncInfo , in plain text, concatenated with the ciphering result is necessary in order to
enable the receiving peer, at the PLL, to know how to proceed to unpack it (what keys to
employ). The fact that EncInfo is in plain text poses no security problems, as it does not
carry any secret key.

In the next step of the interaction (step 2), kP responds to iP , by sending it the message

()infoinforspMsg s

iP

kP

iP

kP
,ProdFpreConnMsg= , expressing its response, where













 −= 1, ,,,Ø,,ftrfProdFpreConnMsg
kP

iPs

iP

kP
KSigInfoKEncInfoserialinfo . The structure of this

message, and the way it is produced, is similar to the structure and production mode of
kP

iP
reqMsg . The only differences are the following:

• sinfo must, now, always carry, besides other information, the specification of the type

of response;

• the employed serial identifier (













=

iP

kP
j

kP

iP
j serialserialserial), is now composed by two

parts. The first one is the serial that was received in the request message. The
second part is the actual serial of the kP -> iP direction. The latter construct, carries

V A Reliable P2P Architecture for the New Paradigm 118

the same data as the previous with the exception that the counter value may be
different and that the timestamp’s value is necessarily different;

• the ()














− infosignaturesinfoserialSigInfo
kPK 1 information set now contains the

signature of info by kP (instead of iP), and is now signed with kP ’s private key and

ciphered with iP ’s public key.

The structure of the response serial enables:

• the unique identification of the message and thus, its differentiation from all others;
• the logical association, at the receiving end, of the response message to the original

request message to which its responds;

• the proving, by kP , that it, in fact possesses kP ’s private key (1−
kPK), and thus is kP -

This is so because the ()














− infosignaturesinfoserialSigInfo
kPK 1 information set is

signed with 1−
kPK . That set contains (inside serial) the serial of the request message.

This serial was never produced before, and thus, its inclusion, in the response serial,
and signing, proves that the response message cannot be a repetition of any kind

and that kP has therefore just now produced it, employing 1−
kPK .

Obviously, the interaction between kP and iP , may continue with further requests from iP and

responses from kP . The employed messages would have the same structure, and production

mode as explained above, but, from this point (step 2) on, the serial in the request
messages would also include the new part of the serial of the previous response messages
in the interaction. Thus, for instance, in a hypothetical next request 1+j , (from iP to kP),

which is following up on the previous response j (from kP to iP), we would have that














= +

kP

iP
j

iP

kP
j serialserialserial 1 .

This chaining of serials enables that which was described in the previous bullets.

The procedure above described, (pre-connection secure messaging), is only employed when
a peer is in the process of registering (see section 5.4.3 of the present chapter), with the
system (communication withCCP), or in the (post-registering) process of establishing a
communication session (see section 5.4.5 of the present chapter) with another peer.

5.4.2.2 Post-Connection Secure Messaging

The procedure employed to assure that two peers may communicate securely, after they
have established a communication session between themselves, is always the same
regardless of the types of conversing peers and of the role (“client” or “server”), that they
play in the interaction.

V A Reliable P2P Architecture for the New Paradigm 119

Figure 32 exemplifies said procedure (taking into consideration the notation defined in
section 5.1 of the present chapter), with generic peer iP playing the client role and generic

peer kP playing the server role.

Figure 32 – Post-Connection Secure Messaging Procedure

In step 1, iP sends a ()infoinforeqMsg s

kP

iP

kP

iP
,gProdFpostConnMs= message to kP expressing its

request, where
















−
−

= 1,,,,,,ftrfgProdFpostConnMs ,

kP

kPiP

g
ss

iP

kP
KSigInfo

s
KEncInfoserialinfoinfo .

That message contains a transformed version of the information to be sent (achieved by
function 





.....ftrf). That function takes as parameters the following set:

• sinfo – is the sensitive part of the information being transmitted. It must always carry,

besides other information, the specification the type of the request;

• info – is the non-sensitive part of the information being transmitted;

• serial – is a serial identifier that enables the unique differentiation between all
exchanged messages so that no two messages are ever alike. If a repetition is ever
detected, it is either an error or a replay attack and the message must be discarded.
The serial carries the following data:

o the identifier of the overall operation which encompasses the cooperation to
which the message pertains;

o the identifier of the inter-peer cooperation to which the message pertains.
Given the way its structure is defined, (see section 5.2.2), this identifier
carries the identification of all the previous cooperations in the cooperation
chain that lead to the current cooperation. It is the last link in the chain that
actually defines the present cooperation. It includes in its structure the
identification of the sender and receiver peers;

V A Reliable P2P Architecture for the New Paradigm 120

o
kP

iP
cntr – a cumulative counter of all the messages sent from iP to kP in the

course of the present cooperation, preceded by the “req” or “resp” string if the
comprising message is coming from the “client” or “server” peer;

o a timestamp indicating the message’s creation time;

The set composed by the identifier of the inter-peer cooperation and
kP

iP
cntr constitutes

the comprising message’s identifier, in accordance with what was defined in section
5.2.2

• EncInfo - carries the necessary information to enable the authorized receiving party

to decode the message. It carries only kPiP
gs

−
(the identifier of the communication

session, between iP and kP , in which takes place the inter peer cooperation that the

message belongs to), as that information suffices for the receiving peer to be able to
contextualise the message and know how to decode it;

• the secret session key
kPiP

g
s

s
K

−

, (it is employed in the message’s ciphering);

• SigInfo - carries the necessary information to enable the authorized receiving party

to validate the signature of message’s contents. It thus contains: the identification of
the peer whose private key was employed to sign the overall message (iP); the

definition of the signing algorithm; the identifier of the employed private key; the
identifier of the corresponding public key; and the actual public key;

• the private key of the source peer;

Function 














BA KSigInfoKEncInfoserialyx ,,,,,,ftrf , performs its work by concatenating

SigInfo with the serial identifier, with sinfo , and with the signature (by iP) of info , and by

signing that set with iP ’s private key, and ciphering the result with the secret session

key,
kPiP

gs

sK
−

. It then concatenates the ciphering result with EncInfo . The information block

resulting from the previous operations is them concatenated with info .

The signing processes enables the receiving peer to verify the integrity and origin

authenticity of the ()














− infosignaturesinfoserialSigInfo
iPK 1 set and, consequently, of info . It

also guarantees the non-repudiability, by kP , of that information. The ciphering process

ensures the confidentiality of the sensitive exchanged information,

()














− infosignaturesinfoserialSigInfo
iPK 1 , as only kP knows

kPiP

gs

sK
−

. The presence of the

communication session’s identifier, in plain text (inside EncInfo), concatenated with the
ciphering result is necessary in order to enable the receiving peer, at the PLL, to know the
message’s context, and thus, how to proceed to unpack it (what keys to employ).

V A Reliable P2P Architecture for the New Paradigm 121

In the next step of the interaction (step 2), kP responds to iP , by sending it the message

()infoinforspMsg s

iP

kP

iP

kP
,gProdFpostConnMs= , expressing its response, where

















−
−

= 1,,,,,,ftrfgProdFpostConnMs
k

P

kPiP

gs
s

iP

kP
KSigInfoKEncInfoserialinfo

s
info . The structure of this

message, and the way it is produced, is similar to the structure and production mode

of
kP

iP
reqMsg . The only differences are the following:

• sinfo , must, now, always carry, besides other information, the specification the type

of the response;

• the employed serial identifier (



















=

−− kPiP

gs

j

iP

kP

KPiP

gs

j

kP

iP
serialserialserial), is now composed

by two parts. The first one is the serial that was received in the request message.
The second part is the actual serial of the kP -> iP direction. The latter construct,

carries the same data as the previous with the exception that the counter value may
be different and that the timestamp’s value is mandatorily different;

• the ()














− infosignaturesinfoserialSigInfo
kPK 1 information set is now signed with kP ’s,

and not iP ’s, private key.

The structure of the response serial enables:

• the unique and authenticated identification of the message and thus, its
differentiation from all others and its binding to its comprising operation and
cooperation;

• the logical association, at the receiving end, of the response message to the request
message to which its responds;

Obviously, the interaction between kP and iP , may continue with further requests from iP and

responses from kP . The employed messages would have the same structure and production

mode as explained above, but, from this point on (step 2), the serial in the request
messages would also include the new part of the serial of the previous response message
in the interaction. Thus, for instance, in a hypothetical next request 1+j , (from iP to kP),

which is following up on the previous response j (from kP to iP), we would have that



















=

−

+

− kPiP

gs

j

iP

kP

KPiP

gs

j

kP

iP
serialserialserial

1

.

This chaining of serials enables that which was described in the previous bullets.

V A Reliable P2P Architecture for the New Paradigm 122

5.4.3 Peer Registration

Before a peripheral or outer core peer is ready to start its participation in the system, it must
first go through an initialization or registration phase (that takes place at the PLL).

If at a given moment, (such as the moment of their original start-up), a specific peer knew
nothing about any other system peers, it would be impossible for it to ever become
connected to the system. To prevent such situations a bootstrapping procedure is employed:
all system peers have hardcoded into them, the unchanging IP address of the CCP and its
authentication information (public key).

5.4.3.1 Peripheral Peer Registration

This process is performed in a client/server manner, (between the PP and the CCP
respectively), the first time a peripheral peer interacts with the system. The process,
occurring at the PPL, is depicted in Figure 33 (taking into consideration the notation defined
in section 5.1 of the present chapter).

The registering peripheral peer, iPP, begins by sending CCP the message

()infoinforegreqmsg s

CCP

iPP

CCP

iPP
,ProdFpreConnMsg= , where () Ø,regreq == infosidinfo

iPPs (step 1).

In accordance with what was specified in section 5.4.2.1,
CCP

iPP
regreqmsg will contain the

information block 







iPPsidserialSigInfo regreq , signed with iPP’s private key (assuring its

integrity and authenticity of origin), and encrypted with the CCP’s public key (CCPK), so that

only CCP may read it (assuring confidentiality).

regreq is the identifier of the type of message.

iPPsid is a signed package

(













−
iPP

iPPK
id1signed) containing iPP’s identification information

(











 −=
iPPiPPiPPiiPP KkkoAlgrthmInfppid 1). It is signed by iPP so that any system peer can

assert that iPP validates that information (its thus cannot be faked, even by CCP). It is

signed independently from (and redundantly to) the overall message so that it may latter be
independently redistributed.

CCP then verifies the validity of the received message. If all is correct, it sends back (step 2)
a challenge message to iPP, to check if it truly possesses the private key corresponding to

iPPK , (that iPP specified in
iPPsid), as the message received in step 1, even if signed with

said private key, may be a repetition attack. In the challenge message
Ø, == inforegchlginfos . Said message, (in accordance with the process described in

section 5.4.2.1), contains the ()regchlgserialSigInfo set. SigInfo carries the necessary

information to enable the validation of message content’s signature (mentioned next in the
text), regchlg is the identification of the type of message. serial carries a composed serial,
consisting of a concatenation of the serial received in the request message, plus a new

V A Reliable P2P Architecture for the New Paradigm 123

serial
iPP

CCP
jserial . This content is signed byCCP, and is encrypted with

iPPK so that only iPP

may read it (assuring confidentiality). By containing the older serial it proves thatCCP is who
it claims to be, as it has signed a random unique peace of data, generated and delivered by

iPP. iPP will fully prove its possession of 1−
iPPK by signing the newer (CCPgenerated) serial

(which, in accordance with what was specified in section 5.4.2.1, it has to do).

iPP thus proceeds to produce a third serial, concatenate it with the one received from CCP,

and sign the set of serials, which it then sends to CCP (step 3).

Figure 33 – Peripheral Peer Registration Process

Finally CCP validates the signature of the received serials. If all is ok, at this point, both iPP
and CCP are assured that their partner, in the interaction, is in fact in possession of the
private key it claims to be, and thus, is who it claims to be. As such, CCP produces iPP’s

registration certificate, (
















−= vtermperiphsidSigInfoidrcertif
iPP

CCPKiPP 1signed),

and sends it to iPP (step 4). This certificate contains its identifier (id), SigInfo (carries the

necessary information to enable the validation of the certificate’s signature, where

()CCPCCPCCP KkkoAlgrthmInfccpSigInfo 1−=),
iPPsid , the indication of the role that iPP plays

in the system (peripheral peer), and the validity term after which it expires. It is signed
independently from (and redundantly to) the overall message so that it may latter be
independently redistributed. It may be freely exchanged amongst the peer community as a
proof of iPP’s andCCP’s mutual acceptance of iPP’s participation in the system, (as a

peripheral peer), and of its public authentication credentials.

V A Reliable P2P Architecture for the New Paradigm 124

5.4.3.2 Outer Core Peer Registration

The initialization of an outer core peer consists of its registration withCCP, its retrieval,
fromCCPof the system’s data structure and of the definition of its interval of servicing
responsibility, over the peripheral peer collective.

The registration procedure of outer core peers is in all similar to the homologous procedure
for peripheral peers (explained in 5.4.3.1 of the present chapter). The main differences are
the following:

• given the sensitive role that OCPs play in the system, they are not to be simple user
owned peers. Instead, just as is the case for theCCP, OCPsare especially powerful
peers owned and operated by the system’s operating entity. This way the
acceptance, byCCP, of a specific iOCP , does not depend only on iOCP proving its

possession of its claimed original key pair. Whenever an OCP adhesion request is
received by theCCP, the latter will require user (system operating entity), input
accepting theOCP’s adhesion. Thus, an OCP’s registration is a user assisted
process;

• the registering outer core peer, iOCP , is given a registration certificate,
iOCPrcertif ,

which validates its role as an outer core peer, instead of as a peripheral peer.

After an OCP registers, it will then open a communication session with CCP (in the manner
explained in section 5.4.5), which will remain opened indefinitely. Once the above defined
process is completed the CCP will automatically, instruct the OCP , to store the system’s
data structure (in the manned described in section 5.4.8.6) and also instruct it about its
interval of servicing responsibility (in the manner described in section 5.4.8.7).

5.4.3.3 Post Registration Actions

The registration of a new peer means that the system’s data model needs to be updated to
account for said peer. The CCP updates its own copy (the main copy), of said structure, as it
is processing the request of the prospective new peer (if the request is accepted). It later
proceeds to the updating of the data structures, at allCCPs, in the manner described in
section 5.4.8.6 of the present chapter.

5.4.4 Peer Registration Update

Once a peer’s registration certificate expires or if, for some reason, a peer’s key pair is
compromised, the peer must update its registration. To do so (considering that the peer
already has a communication session established with the CCP), it issues a registration
update request (in the secure manner explained in section 5.4.2.2),

where 




=

iPPs sidinfo regupdreq , and
iPPsid contains the peer’s new identification

parameters. If all is ok the CCP responds (in the secure manner explained in section
5.4.2.2), with the peer’s new registration and connection certificates.

If there is not even the possibility of securely establishing a communication session with the
CCP, then, the registration update process will be in all similar to the one described in

section 5.4.3, with the exception that 




=

iPPs sidinfo regupdreq and not






=

iPPs sidinfo regreq .

V A Reliable P2P Architecture for the New Paradigm 125

5.4.5 Communication Session Establishment

Before any two peers can communicate they must first establish a communication session
between them. This is true for inter-peripheral, periphery to outer core, peripheral to central
core and intra-core peer communication.

This PLL process enables the combination, between the communicating peers, of a secret

symmetric key, (

CCPiP

gs

sK
−

), to be employed in the ciphering of all later communication

between them, within that session (the thg session). Taking into consideration the notation
defined in section 5.1 (of the present chapter), this process, occurring at the PPL, is depicted

in Figure 34, for the connection between a generic peer, iP and CCP .

Figure 34 – Inter-Peer Communication Session Establishment Process

This processes’ initial step (step 1), is similar to the first step described in the registration
process (section 5.4.3.1 of the present chapter). The difference being that the sent message

contains the registration certificate (
iPPrcertif) of the communication initiating peer (iP)

instead of its
iPsid .

CCP obtains the identification information for iP from its database, and validates the

message and
iPrcertif (if the “server” peer, in this interaction was not CCP but a peripheral

peer, it would obtain the requesting peer’s identification information in the manner explained
in section 5.4.7 of the present chapter). If all is correct, it then proceeds to step 2, sending a
challenge message to iP , to check the veracity of its claimed identity. That message, in

accordance with what is defined in section 5.4.2.1, contains its SigInfo field, the identifier

of the type of message (connchlg) and the serial sent by iP , as well as a second new

V A Reliable P2P Architecture for the New Paradigm 126

unique serial generated by CCP , that iP will have to sign to fully prove its identity. These

contents of the challenge message are then signed by CCP , (which proves that CCP in

fact possesses
1−

CCPK , and thus is CCP), encrypted with
iP

K so that only iP may decipher it

(assuring confidentiality), and concatenated with EncInfo .

In a third step, iP proceeds (in accordance with the procedure defined in section 5.4.2.1) to

sign the CCP generated serial, plus a third new serial (plus pconnchlgrs), and sends the

result back to CCP (step 3).
CCP then validates the signature of the serial it sent to iP in step 2. If all is correct

CCP produces the session identifier (
CCPiP

gs
−

), and the secret session encoding key

(

CCPiP

gs

sK
−

). Employing those two objects, plus
iPPrcertif , CCPrcertif , the adequate

SigInfo object, and a validity term, CCP builds the connection certificate CCP

iPccertif (with

a unique id of its own), and sends it to iP (step 4). CCP

iPccertif is signed by CCP , enabling

the verification of its validity, throughout the system, in a distributed manner. From this point
on, the communication session between the two peers is considered open. Communication,
between the two peers will proceed in accordance with what is defined in section 5.4.2.2.

In the case where the peer playing the server role is the CCP , (as in the provided example),
this procedure is equivalent to the login of the client peer with the system, and the
connection certificate may also be seen as a login certificate.

The above presented description, exemplifies the establishing of a communication session,
between a generic peer and the CCP . The actual specific types of communication session
establishments that will occur in the system (in terms of the involved peers), and their
relevant details are the following:

• the establishment, by peripheral peers, of communication sessions with:
o the CCP :

� for a peripheral peer to be eligible to participate in the system it must
have a opened communication session with CCP (the equivalent of
login into the system). Thus, whenever a registered peripheral
peer, iPP, comes on-line, it must first establish a new communication

session withCCP , which should remain open until iPP goes offline;

� in step 4 the sent communication certificate will also include the
identity of the OCP which will be responsible for handling the “read-
only” requests of the peripheral peer, until the end of the session.
Thus

















=
















 −
−

−

CCPiPP

gs

sK

iPKx

CCPiPP

g
CCPK

CCP

iPP encocpsvtermrcertifsSigInfoidsignedccertif 1

o outer core peers:

� in the step corresponding to step 1, (from Figure 34), the sent

V A Reliable P2P Architecture for the New Paradigm 127

certificate will be the connection certificate (CCP

iPPccertif) that iPP,

obtained when it connected/logged in with the CCP ;
o other peripheral peers;

� in the step corresponding to step 1, (from Figure 34), the sent

certificate will be the connection certificate (CCP

iPPccertif) that iPP,

obtained when it connected/logged in with the CCP ;
• the establishment, by outer core peers, of communication sessions with:

o the CCP :
� for an outer core peer to be eligible to participate in the system it must

have a opened communication session with CCP (the equivalent of
logging into the system). Peripheral peers will be intermittently
connected to the system, and thus frequently establish new
communication sessions with the peers that they need to
communicate to. Thus, communication sessions established between
peripheral peers and CCP will typically be of a relatively short
duration. Oppositely, outer core peers are to be permanently
available. The first time an outer core peer, iOCP , comes on-line,

(once it has registered with CCP), it will establish a communication

session, with CCP , that will only end when iOCP ceases to operate,

or if the session key is compromised and needs to be replaced;
o other outer core peers;

� in the step corresponding to step 1, (from Figure 34), the sent

certificate will be the connection certificate (CCP

iPPccertif) that iOCP ,

obtained when it registered with the CCP .

5.4.6 Peer Login

Once a peer has registered with the system, every time it comes online, before it can
actually begin interacting with it, said peer must first login. That process basically consists of
the establishment of a communication session with theCCP , in the manner explained in
section 5.4.5 of the present chapter. In the course of the process the peer, that is logging in,
is given a connection certificate. Said certificate may, in this case be seen, also, as a login
certificate.

If the connecting peer is peripheral, the responsibility for servicing its login request must be

attributed to some specificOCP . This is done through the procedure outlined in section
5.4.8.7 of the present chapter.

The login of a peer means that a new entity is now available to cooperate with the system.
This is a relevant piece of information that needs to be stored in the system’s data structure,
so that it may be coherently handled, accessed and updated. The CCP updates its own
copy of that structure, while processing the login request (if it is accepted). It later proceeds

to the updating of the data structures, at all OCPs , in the manner described in section
5.4.8.6 of the present chapter.

V A Reliable P2P Architecture for the New Paradigm 128

5.4.7 PLL Info Discovery

The regular operation of any peer, at the PLL, implies that peripheral peers will frequently
need to discover information on other peers (such as identifier, IP address, public key,
whether it is quarantined or expelled, etc.), so that they can communicate in a reliable
manner.

The process, undertaken by peripheral peers, to obtain any PLL information is performed in
a client/server or hybrid manner. This PLL process happens as follows (taking into
consideration the notation defined in section 5.1 of the present chapter).

Assuming that a communication session has already been established between the inquiring
peripheral peer (e.g. iPP), and its servicing OCP , the earlier begins by sending (in the

secure manner defined in section 5.4.2.2 of the present chapter), to the latter, a request

message (,reqpllinfo 






 infosinfo
jOCP

iPP
), where the sensitive part of the information,

()infoDefsinfo reqpllinfo= , contains a parameter, (reqpllinfo), which identifies the

message as a request for some PLL info, and a second parameter (infoDef), indicating the
specific information that it wants.

jOCP may immediately send back a message, with the required data

(, 






 infosinforsppllinfo
iPP

jOCP
, ()data desired thersppllinfo=sinfo), or it may send back a message

redirecting iPP to some other peripheral peer jPP (or outer core peer), where







= s

iPP

pllInfo pllildoretrpermitsinfo rsppllinfo . That redirection message, contains, besides

the message type identifier, an, OCP signed, PLL info retrieval permit (iPP

pllInforetrpermit),

enabling it to retrieve the desired information, and the spllildo object, which describes the

location(s) from where iPP may retrieve said information. The retrieval permit may be

described as



















−=
spllildoi

jOCPK
iPP

pllInfo idinfoDefvtermppSigInforetrpermit rPermpllInfoRetidsigned 1 . It

contains the permit’s identifier, its type identifier, the permit’s adequate SigInfo (where








= −
jOCPjOCPjOCPj KkkoAlgrthmInfocpSigInfo 1), the identifier of the peer to which the

permit is granted, the permit’s validity term, the definition of the specific information which
may be retrieved (infoDef) and the identifier of the spllildo object.

As stated, infoDef , is the part of the original request, and of the permit, that identifies the
type of information that is desired or which may be retrieved, respectively. It may bear the
following values:

• if the desired information is the identification (location and authentication),
information on some specific peer (e.g. kPP), then ()kpppIDInfoinfoDef = . In this

case, the information object that will eventually be obtained is

V A Reliable P2P Architecture for the New Paradigm 129







= − vtermIPrcertifSigInfoidppInfo kkPP

jOCPKs 1signed , where vterm is this

object’s validity term date;
• if the desired information is the quarantine or expulsion lists then

()quarListinfoDef = or ()expListinfoDef = respectively. In this case, the
information object that will eventually be obtained, will respectively be

()tstampQListSigInfoquarList
jOCPKs 1signed −= , or

()tstampXListSigInfoexpList

jOCPK
s 1

signed
−

= , where tstamp indicates the

moment of creation of those objects, so that the peers employing them may know
how recent that information is.

In both such cases 






= −
jOCPjOCPjOCPj KkkoAlgrthmInfocpSigInfo 1 .

The PLL Information Location Describing Object may be defined as














= − nPPiPP

jOCPKs rcertifrcertifvterminfoDefSigInfoidpllildosigned 1 . It carries

SigInfo (which takes the same form as the one that was just described above), the definition

of the information set to who’s location it pertains (infoDef), its validity term and a list of the

registration certificates of the peers from where the information, defined in infoDef , may be
retrieved.

The signing, by jOCP , of the retrieval permit and of spllildo , even if redundant (as the

sensitive part of the PLL message is signed by the sending peer), is necessary to enable the
latter independent reuse of those objects and their communication to other peers in an
authenticable form. Both those objects carry inside the identification of their issuing peers,
for much the same reason, so that any peer may authenticate said objects.

If jOCP does redirect iPP, in the next step of the operation, the latter will then establish a

communication session with one (or more), of the peers identified in spllildo (by their

registration certificates), and obtain from it, the desired information. To do so, in its request
for the desired information, iPP will need to send (amongst other fields), both the retrieval

permit and spllildo , so that the contacted peer(s) may validate iPP’s right to retrieve the

information in scope.

As can be seen, from the above description, for a peer to be able to communicate with some
other peer, it will need some information about it, which it, generally, can only obtain through
communication with other peers. If at any moment a peer knew nothing about any other peer
it would be stuck in a situation where it would never be able to communicate with any other
peer. This is avoided because every peer “knows”, from the start, the IP and public key (and
its identifier) of theCCP .This way, even if a peer knows nothing else, it may always contact
CCP and obtain all the information it needs. Furthermore, if, for some reason, the

V A Reliable P2P Architecture for the New Paradigm 130

necessary jOCP , for obtaining the identification of a target peer, is not available, the request

for that information is redirected to CCP or some other OCP .

5.4.8 Management

5.4.8.1 Introduction

The proper operation of the PLL demands that some management procedures are
undertaken periodically, or in response to some event, to assure the overall integrity and
cooperativeness of the peer tissue.

These operations are centrally performed by the CCP , (based on notifications received form
the periphery or outer core), which does all the necessary decision making, and translate
into the issuing of CCP instructions to OCPs or PPs .

Said notifications may be generally described as

()ntnotifcontenotiftypeSigInfonotif
iPKiP

pll

1signed −= , where SigInfo carries the necessary

information to enable the validation of the notification, notiftype designates the type of

notification, and ntnotifconte is the actual content of the notification.
The mentioned instructions may be generally described as

()ntentinstructcopeinstructtySigInfoinstruct
CCPK

pll

iP

CCP 1signed −= , where SigInfo carries the

necessary information to enable the validation of the instruction, peinstructty designates the
type of instruction, and ntentinstructco is the actual content of the instruction.

The main PLL management operations can basically be summed up as the redistribution of
PP servicing workload ofOCPs, the neutralization of infringing or faulty behaviour on the
part of peers, and the updating of OCPdata structures

5.4.8.2 OCP Workload Redistribution

As peripheral peers log into the system, the CCP distributes the responsibility, to service
such peers, in an even manner, through theOCPs. However, some PPs may represent
higher servicing burdens than others. This means that the CCP must somehow obtain
information on the work burden ofOCPs, and proceed to redistribute their servicing
assignments, if necessary.

For this reason, every OCP periodically sends (in the secure manner defined in section
5.4.2.2), to CCP an activity notification which may be described as

()()wrklistwrkldocptidSigInfonotifactiv i

iOCPK

pll
tT

iOCP activitysigned 1−
= = (in a message where














= =

pll
tT

iOCPs notifactivinfo notifload). This notification contains the adequate SigInfo object,

the definition of the type of notification, its unique identifier, the definition of the time instant
which it purports to, the identification of the sending OCP, its total work burden (in terms of
the percentage of CPU usage), and a list discriminating the division of that burden over the

V A Reliable P2P Architecture for the New Paradigm 131

peripheral peers that It is servicing













= 













nPPnPP wrkldppwrkldppwrklist ...
11 .

CCP acknowledges the reception of the notification with a PLL messages where
()cknotifloada=sinfo .

The notification object is independently (and redundantly) signed so as to enable their
independent treatment and aggregation in an authenticable form.

The CCP collects the mentioned notifications, from all OCPs and, periodically, evaluates the
overall situation. If the global workload distribution is uneven, the CCP determines which
PPs must be reassigned to which other OCPs and proceeds to instruct those reassignments
in the manner described in section 5.4.8.7 of the present chapter.

5.4.8.3 Infringing or Faulty Peer Behaviour Neutralization

The system is composed by a distributed mesh of independently controlled peers. Some are
under the control of the system’s operating entity and others are controlled by regular users
of varied levels of trustworthiness.
There is thus a non-negligible possibility of failure and of infringing behaviour occurring
amongst such peers, that the system must be prepared to deal with.

This means that the CCP must somehow obtain information about undesirable behaviour
on the part of peers. For this to occur it must be the PPs and OCPs to notify, to CCP ,
whenever some other peer behaves inappropriately towards them. Such reports must carry
proof of the claimed misbehaviour.

For the present time the system supports only the reporting of a misbehaviour where the
misbehaving peer responds with signed but corrupted or forged information, such as, for
instance, a corrupted version of a PLL info retrieval permit (see section 5.4.7).

Thus whenever a peer iP receives a request or reply message, signed by another peer kP ,
whose contents are undecipherable or (if it is the case that they are to be signed, for
instance, by the CCP or an OCP), incorrectly signed, it proceeds to send (in the secure
manner defined in section 5.4.2.2), a misbehaviour notification (pertaining to kP) to CCP ,

which may be described as:

 ()




= − proofObjpptidSigInfoehavnotifmissb ki

iPK

pll
CCP

iP missbehavsigned 1 , where ip is

the identifier of the sending peer and proofObj is the received signed message. The

notification is sent in a PLL message where













=

pll
CCP

iPs ehavnotifmissbinfo notifbehav , which

the CCP acknowledges with a response PLL message where ()acknotifbehav=sinfo .
pll

CCP

iPehavnotifmissb is independently (and redundantly to the securing process described in

section 5.4.2.2), signed to enable a more independent, and still authenticable, manipulation
of it.

The CCP periodically analyses all pending reports and decides what to do regarding the
“criticized” peers. It may do nothing, it may suspend or it may expel the peer. In the two latter

V A Reliable P2P Architecture for the New Paradigm 132

cases the CCP proceeds in accordance with what is described in section 5.4.8.4 of the
present chapter.

On the other hand, the case of previously shunned peers is also periodically revisited. In
such moments CCP may decide to let the peer remain shunned, or re-enable its
participation in the system. In the latter case it proceeds in accordance with what is
described in section 5.4.8.5.

5.4.8.4 Peer Shunning

The system’s peers may, for whatever reason, engage in abnormal, uncooperative or
sabotaging behaviour or be frequently employed (by users) for dishonest activities. In such
cases, once the CCP detects such patterns (in the manner described in the previous
section), it proceeds to shun the infringing, or malfunctioning, peer from the system either in
a temporary or permanent base, and to place in a quarantine or expulsion list, respectively.
This applies to both peripheral and outer core peers.

5.4.8.4.1 OCP Shunning

To shun a specific OCP (e.g. xOCP), the CCP proceeds (in the secure manner defined in

section 5.4.2.2 of the present chapter) to:
• instruct all OCPs to place xOCP in the peer quarantine or expulsion list if xOCP

was suspended or permanently banned, respectively. Said instruction may be

described as ()()x
CCPK

iOCP

CCP

pll

ocpQSigInfoninginstrpshun X pshunningsigned 1 U−= ,

where the mentioned iOCP is the instructed OCP. They are carried in PLL

messages where













= iOCP

CCP

pll

s ninginstrpshuninfo instrsh , which are acknowledged,

by the destination peers, by sending back a PLL message where
()instrshack=sinfo . From that point on, no requests from xOCP will be attended,

until further notice;
• reattribute every peripheral peer under the care of xOCP to other OCPs and inform

all relevant peripheral and outer core peers of servicing responsibility reattributions,
(in the manner presented in section 5.4.8.7). From that point onward, the affected
peripheral peers can no longer resort to the services of xOCP , until further notice.

If it is possible to contact the shunned peer, it will be sent, to that peer as well, the

iOCP

CCP

pll

ninginstrpshun instruction as a manner of informing it that it has been shunned or

expelled.

5.4.8.4.2 PP Shunning

To shun a specific PP (e.g. xPP), the CCP proceeds (in the secure manner defined in

section 5.4.2.2 of the present chapter) to:
• instruct all OCPs to place xPP in the peer quarantine or expulsion list if xPP was

suspended or permanently banned, respectively. Said instruction may be defined as

V A Reliable P2P Architecture for the New Paradigm 133

()()x
CCPK

pll

iOCP

CCP ppQSigInfoninginstrpshun Xor pshunningsigned 1−= , where the

mentioned (in the equation), iOCP is the instructed OCP . They are carried in PLL

messages where













=

pll

iOCP

CCPs ninginstrpshuninfo instrsh , which are acknowledged,

by the destination peers, by sending back a PLL message where
()instrshack=sinfo . From that point on, no requests from xPP will be attended until

further notice (including by the OCP , which was up until that time responsible for
attending its requests).

If it is possible, the shunned peer itself (xPP) will be sent the
xPP

CCP

pll

ninginstrpshun instruction

as a manner of informing it that it has been shunned or expelled.

5.4.8.5 Peer Readmission

To readmit a previously shunned peer (e.g. xP), the CCP does the following:

• in the secure manner defined in section 5.4.2.2 of the present chapter, the CCP
instruct all OCPs to remove the readmitted peer, from the peer quarantine. The
structure and contents of the readmission instruction may be described as

()()x
CCPK

iOCP

CCP

pll

pQSigInfominstrpread Xor minstrpreadsigned 1−= , where the

mentioned iOCP (in the equation), is the instructed OCP . They are carried in PLL

messages where













= iOCP

CCP

pll

s minstrpreadinfo instrreadm , which are acknowledged,

by the destination peers, by sending back a PLL message where
()instrshack=sinfo . From that point on, requests from xP will again be attended;

• If it is readmitting an OCP (e.g. xOCP):

o CCP then performs a peripheral peer servicing workload reassignment, so
as to attribute to the readmitted peer a set of peripheral peers for it to service;

• If it is readmitting a PP (e.g. xPP):

o CCP then assigns some OCP to service xPP ’s requests and informs the

earlier of that reassignment;
• If the readmitted peer (xP) remained online:

o it is sent the
xP

CCP

pll

minstrpread instruction as a manner of informing it that it has

been readmitted.
• else:

o when the peer attempts to re-establish a communication session with the
CCP (i.e. loggin), it will be allowed to do so.

5.4.8.6 OCP Updating

Whenever some change or addition needs to be made to the system’s data structure (at the
PLL level), it is the CCP that coordinates that activity. The CCP performs such changes on

V A Reliable P2P Architecture for the New Paradigm 134

the version of the data structure which it locally stores, but it then becomes necessary to
update all the other versions of the data structure, stored at the OCPs . Such an
updating/initialization of anOCP’s data structure is also necessary when an OCP first
registers and connects to the system.

To perform such an updating/initialization of the OCP data structures, the CCP issues
instructions, to the relevant set of OCPs, (from one to all of them), commanding them to
perform the necessary update. Said instructions may be defied as,

()updInfoidSigInfoedbinstrupdat
CCPK

iOCP

CCP

pll

edbinstrupdatsigned 1−= (for an exemplifying

iOCP target), where, updInfo is a set of one or more SQL commands and respective data

parameters. They are carried in PLL messages where













=

iOCP

CCP

pll

s edbinstrupdatinfo instrupd

and info is an archive of whatever data objects need to be transferred. OPCs proceed to
do as they are instructed and, after that task is performed, they send back a success PLL
message, to the CCP , where ()kinstrupdac=sinfo .

If the updating of any of the OPCs fails, the CCP retries the operation, until it succeeds, up
to a specific maximum amount of attempts. If it proves impossible to update a specific
OCP , the CCP proceeds to disconnect it from the system in the manner explained in
section 5.4.8.4.1.

5.4.8.7 PP Servicing Assignment

The assignment of peripheral peer servicing responsibilities is done by the CCP. It consists
of assigning the responsibility to service the requests of a specific PP to a specific OCP .

The CCP makes an assignment decision and then it informs the relevant affected peers, by
sending, to which ever of them is necessary, the, appropriate instruction. That may be

defined as 





= −

CCP

iP
CCPK

iOCP

CCP

pll

ccertifSigInfoiceassigninstrpserv signpserviceassigned 1 . It

contains a fresh, CCP generated, login certificate (see section 5.4.6), which contains the

identity of the serviced PP and of its handler OCP . That instruction is carried in a PLL

message where













=

iOCP

CCP

pll

s iceassigninstrpservinfo instrpserv . The targeted peers respond

with a PLL message where ()ackinstrpserv=sinfo .

5.4.9 UEL Info Relaying

The main purpose of the PLL, besides the servicing of inter-PLL requests, is to attend to the
requests of the UEL. Doing so basically consists of relaying internal outbound UEL
messages to external UEL instances (UEL instances of remote peers), and external inbound
UEL messages to the local UEL.

The outbound UEL messages are wrapped in PLL messages (see section 7.3.1 of the
present chapter). This implies the signing (with the local peer’s private key) and ciphering
(with the secret session key), of the earlier (together with some other content), their

V A Reliable P2P Architecture for the New Paradigm 135

wrapping in the latter message and the latter message’s delivery to the IPCL together with
the IP address of the destination peer (the communication port could simply be a constant
and universally established one).

The inbound PLL messages are deciphered and their signature is validated. If all is ok, the
UEL message is extracted and (if necessary), reconstituted, and then relayed to the local
UEL, together with the validated identifier of the message’s sending peer (at the PLL).
All of the above-mentioned PLL messages have a structure where

()sUELInfoinfos uelmrelay= .

5.5 UEL Operation

5.5.1 Introduction

The UEL handles, in a client/server manner all the operations related to:
• the registration, login, logoff and removal of users;
• the maintenance of user accounts and performing of currency transactions;
• the injection, removal, updating and versioning of MOs;
• the injection and removal of MO Ransom Announcements (see section 7.4.8);
• the collection of information on user actions.

In all such cases, the CCP ’s UEL plays the server role and the involved PP ’s UEL, plays
the client role. The clients will typically send their requests to the server side, which judges
their legitimacy and, if adequate, enforces them or provides some required information, if
that is the case.

A mixed P2P and client/server operation mode is employed, by UEL, in:

• the semantics based searching for MOs (and MO Ransom Announcements);
• the retrieval/distribution of MOs (and MO Ransom Announcements);
• the searching and retrieval/distribution of information objects pertaining to users or

other aspects of the system.

The CCP’s UEL instance holds a permanently updated copy of the system’s UEL global data
structure. Furthermore, as explained in section 3.4.3, that information is also replicated over
each of the outer core peers.

Whenever some fragment of that information is needed, peripheral peers will request it from
their handlingOCP , which may respond by handing it over directly or by informing the
“client”, about the appropriate “server”)(sPP , for the acquisition of the desired information.

5.5.2 Secure Messaging

5.5.2.1 Introduction

The division between sensitive and non-sensitive information, which exists in PLL
messages, translates into a similar division in UEL messages. These, therefore, have a
sensitive (sUELinfo), and a non-sensitive part (UELinfo). The earlier part will be carried in

the sensitive part of PLL messages, and the latter part will be carried in the non-sensitive
part of PLL messages.

The PLL’s regular operation guaranties the confidentiality and integrity of communications in
the P2PTube architecture. Thus, in terms of its internal operations, the UEL does not need to
perform any further information obfuscation procedures.

V A Reliable P2P Architecture for the New Paradigm 136

Users, however, are external and independent entities from the system, which have their
own authentication credentials and whose involvement needs to be validated, in order for
their requests to be fulfilled. For this reason, whenever an UEL interaction is caused by the
attending (at a peer iPP), of a user request, the emitted UEL message(s), must bare proof of

the user’s involvement.

5.5.2.2 Pre User Login Secure Messaging

A peer will only engage in UEL cooperations before a user, hosted on it, logs into the system
in the following situations (or without any user hosted on it):

• it is registering a user to the system;
• its is login a user into the system;
• it is participating as a “server” in a UEL cooperation, where its services were

requested by some remote peer.

The procedure employed to securely exchange UEL messages in the situations were a user
is involved is depicted in Figure 35 (taking into consideration the notation defined in section
5.1 of the present chapter). The purpose of said procedure is to provide proof of the involved
user’s (if any) involvement in the UEL cooperation.

Figure 35 – Pre User Login Secure Messaging Procedure

In said figure, a generic peer iP , is hosting user iU and, thus, playing the client role. The

server role is plaid by generic peer kP (in reality in pre-user login UEL cooperations involving

users it will typically be the CCP to play the server role).

At an initial moment iU issues some specific request to his hosting peer iP . In doing so

iU may deliver both sensitive and non-sensitive information. iP performs whatever initial

processing is necessary of the received information and builds, sUELinfo and UELinfo . The

V A Reliable P2P Architecture for the New Paradigm 137

earlier carries whatever sensitive information needs to transmitted (received from the user or
otherwise). This information will always include the designation of the message’s type. The
latter carries the non-sensitive information.

iP then builds the UEL message to be sent. Said message may be defined as

() ()1,,,,ftrf,ProdFpreULogMsg −==
iUss

k
P

iP

k
P

iP
KSigInfoserialUELinfoUELinfoUELinfoUELinforeqMsg .

The execution of function 













AKSigInfoserialyx ,,,,ftrf , over the given arguments results in

the production of two information blocks: 







− s

iUK
UELinfoserialSigInfo1signed ; and UELinfo .

The UEL message is logically composed of the two above mentioned information blocks.

The serial is an UEL level serial identifier. Such an independent serial (from the PLL level
serial mentioned in earlier sections), is necessary to perform the unique identification of UEL
messages. This identification enables the logical binding of those messages to the UEL
operations and cooperations that they pertain to (see section 5.2.2). It also performs the
unique differentiation between all exchanged UEL messages so that no two messages are
ever alike. This uniqueness assurance is necessary also at the UEL level, in spite of the
same already existing for the PLL messages, because UEL communication errors may
occur, even between “honest peers”, and UEL messages be duplicated. If a repetition is ever
detected, it is either an error or a replay attack and the message must be discarded. The
serial carries the following data:

• the identifier of the overall operation which encompasses the cooperation to which
the message pertains;

• the identifier of the inter-peer UEL cooperation to which the message pertains. Given
the way its structure is defined, (see section 5.2.2), this identifier carries the
identification of all the previous UEL cooperations in the cooperation chain that lead
to the current cooperation. It is the last link in the chain that actually defines the
present UEL cooperation. It includes in its structure the identification of the sender
and receiver peers;

•
kP

iP
cntr – a cumulative counter of all the messages sent from iP to kP in the course of

the present cooperation, preceded by the “req” or “resp” string if the comprising
message is coming from the “client” or “server” peer;

• a timestamp indicating the message’s creation time;

The process of signing 







sUELinfoserialSigInfo , when it occurs, enables the receiving peer

to verify that the integrity of that information set and serves as proof of iU ’s involvement. It

thus guarantees the non-repudiability, by iU , of that information.

Once the message is built, iP sends it, (step 1), to kP . To do so, the UEL message is

passed, as single object to the local PLL. At the PLL, however, the UEL message is split,

sUELinfo is carried in the sensitive part of the PLL message and UELinfo in the non-

sensitive part of that message.

In the next step of the cooperation (step 2), kP responds to iP , by sending it the message

() 




== ØØ,,,ftrf,ProdFpreULogMsg ,serialUELinfoUELinfoinfoinforspMsg ss

iP

kP

iP

kP
, expressing

V A Reliable P2P Architecture for the New Paradigm 138

its response. The structure of this message, and the way it is produced, is similar to the

structure and production mode of
kP

iP
reqMsg . The only differences are the following:

• sinfo must, now, always carry, besides other information, the specification the type

of the response instead of the specific type of the request;

• the employed serial identifier (













=

iP

kP
j

kP

iP
j serialserialserial), is now composed by two

parts. The first one is the serial that was received in the request message. The
second part is the actual serial of the kP -> iP direction. The latter construct, carries

the same data as the previous with the exception that the counter value may be
different and that the timestamp’s value is mandatorily different;

• the 







sUELinfoserialSigInfo information set is now only 







sUELinfoserial and it is

no longer subjected to any signature, as there is no user on the responding side
whose presence needs to be proven.

The structure of the response serial enables:

• the unique identification of the message and thus, its differentiation from all others;
• the logical association, at the receiving end, of the response message to the original

request message to which its responds;

Obviously, the interaction between kP and iP , may continue with further requests from iP

and responses from kP . The employed messages would have the same structure, and

production mode as explained above, but, from this point (step 2) on, the serial in the
request messages would also include the new part of the serial of the previous response
message in the interaction. Thus, for instance, in a hypothetical next request 1+j , (from iP

to kP), which is following up on the previous response j (from kP to iP), we would have that














= +

kP

iP
j

iP

kP
j serialserialserial 1 .

This enables that which was described in the previous bullets.

As it was implicitly shown above, the sUELinfo parts of UEL messages which are originated

as a response to UEL requests from other peers (response message from kP to iP in Figure

35), will be signed only by the emitting peer’s private key. Given that the PLL already
performs such a signing, it will not actually be done at the UEL, but at the PLL instead.
The same will happen with the sUELinfo parts of UEL request messages that do not involve

any user, such as UEL messages containing commands (from the CCP).

The only exceptions to the above situations occur when the UEL information is to be later
super-distributed. In such cases it will be redundantly signed, at the UEL, with the peer’s
private key.

V A Reliable P2P Architecture for the New Paradigm 139

5.5.2.3 Post User Login Secure Messaging

The overall procedure employed by the system to ensure messaging reliability, at the UEL,
after a user has logged into the system, hosted at some peer, is practically the same as the
one described in section 5.4.2.1 (pre user login secure messaging). The existing differences,
which occur at the client side (when hosting a user and sending its request), are the
following:

• the user’s hosting certificate, iPP

iUhostcertif , (see section 5.5.5), is an added

parameter that is supplied to 








....ftrf , together with SigInfo . The combined presence

of this certificate, and the signing of the 













s
iPP

iU UELinfoserialhostcertifSigInfo

parameter set, proves the user’s involvement dispensing a challenge-response
procedure.

5.5.3 User Registration

This (pre user login) UEL process is performed in a client/server manner and is depicted
(taking into consideration the notation defined in section 5.1), in Figure 36.
The registering user, (iU), delivers, to her hosting peer, (iPP), her public identification

package,
iUid , (containing iu ,

iUuname , the identifiers of the user’s public and private keys,

and the actual public key itself
iUK), and also her private key, 1−

iUK (step 1).

iPP produces
iUsid , (by concatenating the signing algorithm describing information with

iUid , and signing the set with 1−
iUK), and concatenates it with the identification of the type of

request (uregreq). It thus builds sUELinfo . iPP then performs (....)ftrf on that set (in

accordance with what was defined in section 5.5.2.2), and builds a UEL message, which it
sends it to CCP (step 2). The signature of

iUid (which results in the production of
iUsid),

with 1−
iUK , validates the origin of

iUsid , impedes any later repudiation of
iUsid (by iU), and

enables a later, independent, distribution of that data object. The information in scope is then
sent, within the sensitive part of the PLL message (in the secure manner defined in section
5.4.2.2), thus assuring its confidentiality, integrity and origin authenticity.

CCP then verifies the validity of the received message. If all is ok, the process continues.
Given the upstream security level, provided by the PLL, and the signing, with the user’s
private key, of the received message (which carries inside unique serial identifiers), one
could think that the reception of this message (when correctly built), by the CCP, should be
enough for the latter peer to accept the registration of iU . However, it may be that the PLL

security provisions of iPP were compromised, and an attacker knows its private key (but not

that of iU), and is intercepting its communications. Such an attacker may be replaying some

captured UEL messages to cause disruption in the system. It is for this reason that challenge
and challenge response steps are necessary, i.e. to verify the validity of the specified user
credentials.

In light of the above, CCP sends back (step 3) a challenge message to iPP in order to check

if it truly possesses the private key of iU .

V A Reliable P2P Architecture for the New Paradigm 140

In the challenge message Ø ,uregchlg == 




 UELinfoUELinfos . Said message, (in

accordance with the process described in section 5.5.2.2), contains the








 uregchlgserialSigInfo set. uregchlgis the identification of the type of message.

serial carries a composed serial, consisting of a concatenation of the serial received in the

request message, plus a new serial
iPP

CCP
jserial . iPP will have to sign the newer (CCP

generated), UEL level, serial, (of which it could have no prior knowledge), with iU ’s private

key to prove that it truly knows it.

iPP proceeds, in accordance to what was defined in section 5.5.2.2, to produce a third serial,

concatenate it with the one received from CCP, and sign the set of serials, which it then
sends to CCP (step 4).

Figure 36 – User Registration Procedure

Finally CCP validates the signature of the received serials. If all is ok CCP registers the
new user, and produces a user registration certificate

(
















−= vtermsidSigInfoidrcertif
iU

CCPKiU 1signed), validating the user’s participation in

the system, which it sends (step 5), to iPP, included in the sensitive part of a PLL message.

The certificate is signed by the CCP and contains, its identifier, SigInfo (where

()CCPCCPCCP KkkoAlgrthmInfccpSigInfo 1−=),
iUsid and the validity term after which it

expires, (and a new one must be obtained by the user).

V A Reliable P2P Architecture for the New Paradigm 141

Finally iPP delivers
iUrcertif to iU .

Once the user registration is complete, the CCP takes care of sending the relevant parts of
the information, newly added to the system’s data structure, to all the OCPs (in the manner
presented in section 5.5.7.7), so that the latter may update their copy of the data structure.

In the user registration process, the user’s public key is being delivered, for the first time, to
the CCP, and the corresponding private key employed for the first time. Thus a man-in-the-
middle attack (from an attacker that, somehow, knows iPP’s private key but not iU ’s), may

succeed in sending wrong information to the CCP. However the registration certificate
produced by the CCP will contain those wrong values, and, when passed back to the
original peer, this will detect the error and the operation will fail.

5.5.4 User Registration Update

Once a user’s registration certificate expires or if, for some reason, a user’s key pair is
compromised, said user must update its registration. To do so (considering that the user is
already logged into the system), it issues a registration update request (in the secure

manner explained in section 5.5.2.3), where ()
iUs sidUELinfo uregupdreq = , and

iUsid

contains the user’s new identification parameters. If all is ok the CCP responds (in the
secure manner explained in section 5.5.2.3), with the user’s new registration and hosting
certificates.

If there is not even the possibility of securely logging the user into the system, then, the
registration update process will be in all similar to the one described in section 5.5.3, with the

exception that ()
iUs sidUELInfo uregupdreq = and not ()

iUs sidUELInfo uregreq = .

5.5.5 User Login

A user authentication enables the user to enjoy of all the system’s services. This (pre user
login), UEL process is performed in a client/server manner and is depicted (taking into
consideration the notation defined in section 5.1), in Figure 37.

iU delivers her authentication data to her hosting peer, iPP (step 1). That package contains

her registration certificate, and private key.

iPP communicates with CCP (step 2), indicating that it wishes to login iU . The employed

message has 











=
iUs rcertifUELinfo uauthreq , where uauthreq is the designation of the

type of request, and
iUrcertif provides the full identification of the user that the peer wants

to login. CCP responds (step 3), with a challenge message, whose (UEL) serial iPP will

have to sign (in the course of producing the challenge response message), with iU ’s private

key, to prove that it is in fact hosting iU .

iPP then returns to CCP , a signed package (see section 5.5.2.2) containing the designation

of the message type (spuauthchlgr), as well as the mentioned serial, thus proving that it is

indeed hosting iU (step 4).

V A Reliable P2P Architecture for the New Paradigm 142

If all is correct, CCP then returns a user hosting certificate (step 5), which may be described

as 













−= vtermpprcertifSigInfoidhostcertif iiU
CCPK

iPP

iU 1signed . It is signed by CCP and

contains
iUrcertif (for the clear identification of the hosted user), its identifier, ipp (for the

identification of the hosting peer), and a validity term after which the certificate expires and a
new one must be obtained.

Figure 37 – User Authentication Procedure

After the authentication process is completed the CCP performs the OCP informing
procedure explained in section 5.5.7.7.

5.5.6 User Action Monitoring

User treatment of different MOs will vary. After having retrieved the MO from the system for
local consumption, the consuming user, iU , may for instance, watch it numerous times, only

once or not at all. These different consumption behaviours indicate different preferences on
the part of users.

Information pertaining to such user behaviours may, for instance, be employed for directed
marketing or targeted advertising. Thus, in order to provide further support to the lateral
extraction of gains, P2PTube also provides functionalities for the gathering of information on
user behaviour.

Operations regarding the gathering and submission of this type of data, are performed at the
peripheral peers (as these are the ones hosting the users), but are requested, (to the latter),
by the CCP . The typical procedure is the following.

V A Reliable P2P Architecture for the New Paradigm 143

Whenever CCP needs such information about user iU , hosted at iPP, it sends, to iPP, a

signed Event Report Request (ERR), (as the sensitive part of the UEL message), soliciting
the monitoring of specific events on the part of iU . iPP validates the ERR. If all is correct, iPP

sends a signed acknowledgment to CCP and proceeds to perform the requested
monitoring.

If and whenever the targeted user action occurs, iPP prepares the corresponding Event

Report (ER), signs it and sends it to CCP.
Further information on the nature and structure of the ERRs and ERs is available in section
7.4.9.

5.5.7 Management

5.5.7.1 Introduction

The proper operation of the UEL demands that some management procedures are
undertaken periodically, or in response to some event, to assure the overall trustworthiness
of the user collective.

These operations are centrally performed by the CCP, (based on notifications received form
the periphery or outer core), which does all the necessary decision making, and translate
into the issuing of CCP instructions to OCPs or PPs .

Said notifications may be generally described as

()ntnotifcontenotiftypeSigInfonotif
iPKiP

uel

1signed −= , where SigInfo carries the necessary

information to enable the validation of the notification, notiftype designates the type of

notification, and ntnotifconte is the actual content of the notification.
The mentioned instructions may be generally described as

()ntentinstructcopeinstructtySigInfoinstruct
CCPK

uel

iP

CCP 1signed −= , where SigInfo carries the

necessary information to enable the validation of the instruction, peinstructty designates the
type of instruction, and ntentinstructco is the actual content of the instruction.

The above introduced notifications and instructions are similar to those of the PLL
(introduced in section 5.4.8.1). They have similar structure and are also signed by their
emitting peers (hence, by the same keys as their PLL counterparts). However their logical
role takes place at the UEL, and thus they are processed and exchanged at that level.

The main UEL management operations can basically be summed up as the pro-active
diffusion of MOs throughout the peer tissue, the neutralization of infringing behaviour on the
part of peers and users, and the updating of OCP data structures.

5.5.7.2 MO Diffusion

When MOs are first injected into the system, they are stored only at the CCP and become
available for redistribution. To optimize the distribution process, once an MO is successfully
injected, the CCP immediately seeds it throughout the peer tissue. This process consists of
sending it (in a fragmented manner), to every OCP and also to several PPs , all of which

will then take part in the distribution of CCP
iMO .

V A Reliable P2P Architecture for the New Paradigm 144

Furthermore, at periodical intervals, the CCP evaluates the state of diffusion of all MOs,
throughout the system’s periphery. If it deems necessary, it delivers the relevant MOs to
additional peripheral peers, which will then also start to redistribute them.

In order to “seed” an MO (e.g. CCP
iMO), the CCP must first prepare its fragmented version.

It thus breaks the MO file into a number of fragments, of predetermined size, which it
concatenates with their identifiers and then signs (the set) with its private key. CCP then

packages each generated fragment (
CCP
iMO

iFrag) of CCP
iMO , by producing its corresponding

















=
CCP
iMO

i

CCP
iMO

i

CCP
iMO

i

CCP

FragfragFrag , where
CCP
iMO

ifrag is the identifier of the fragment.

To seed that content at some specific peer xP , CCP then proceeds (in the secure manner

defined in section 5.5.2.2 of the present chapter) to instruct xP to store and redistribute
CCP
iMO . Said instruction may be defined as

()fraglisttstampSigInfodinstrMOhol
CCPK

uel

xP

CCP dinstrMOholsigned 1−= . It contains the

adequate SigInfo parameter, the instruction type definition, the time of the instruction’s
emission and














= −

CCP
iMO

n

CCP
iMOCCP

i
CCPK

fragdeffragdefmoSigInfoidfraglist01signed . The latter

carries the identifier of fraglist , its appropriate SigInfo parameter, the identifier of CCP
iMO

(CCP
imo), and the definition of each of the fragments

(


































= −

CCP
iMO

j
CCPK

CCP
iMO

j

CCP
iMO

j FragsignatureSigInfoseqnrsizefragfragdef 1), into

which the MO is divided for redistribution (for further information see section 5.5.8.2.2). The
fragdef parameters carry the identifier, the size, the sequence number (within the context

of its encompassing MO), and the signature (by CCP), of their corresponding MO
fragments. It contains, as well, the corresponding (to the latter signature) SigInfo parameter.
The instruction, in scope, is carried in UEL messages where














=

uel

xP

CCPs dinstrMOholUELinfo dinstrMOhol , and
















=
CCP
iMO

n

CCP
CCP
iMOCCP

FragFragUELinfo0 ,

which are acknowledged, by the destination peers, by sending back an UEL message where
()instrshack=sUELinfo .

5.5.7.3 Infringing or Faulty Peer Behaviour Neutralization

The same problems addressed in section 5.4.8.3, within the context of PLL operation, also
occur at the UEL level. The system shall address the issues at the UEL in the manner
already described in section 5.4.8.3. The mains differences are:

• the procedure takes place at the UEL level, employing UEL messages;

V A Reliable P2P Architecture for the New Paradigm 145

• the employed misbehaviour notifications, sent from peripheral or outer core peers to
the CCP , have the same structure as their UEL counterparts, but are designated as

uel
CCP

iPehavnotifmissb . They too are signed by their issuing peers;

• the system supports the reporting of misbehaviour in the same situation as those
described in section 5.4.8.3, but dealing with UEL level information. It also reports
requests which are not accompanied by the appropriate user hosting certificates or
information retrieval permits.

5.5.7.4 Infringing User Behaviour Neutralization

May different users, with varying degrees of honesty, participate in the system. There is thus
a non-negligible possibility of some users incurring in infringing behaviour, which the system
must be prepared to deal with.

This means that the CCP must somehow obtain information about undesirable behaviour on
the part of users. For this to occur, it must be users themselves to notify the CCP , whenever
they feel that some other user is behaving inappropriately. Users may thus report:

• injection of inappropriate content;
• injection of corrupted content;
• injection of low quality content;
• injection of copyrighted content;
• re-injection of their own content by unauthorized user.

In all the above cases, the user hosting peer, iP , will prepare a user misbehaviour

notification, (on behalf of some user), defined as

()




= − infractDefuutidSigInfoehavnotifmissb ki

iUK

uel
CCP

iU missbehavsigned 1 , where id is the

notification’s identifier, t is the notification’s issuing time, iu is the identifier of the issuing (and

thus, the signing), user (the user hosted at the peer), and ku is the identifier of the user

which is targeted by the complaint. infractDef is the definition of the alleged infraction, it

may take the following values: ()CCP
imoinnaproMO , ()CCP

imocorruptMO ,

()CCP
imolowqualMO , ()CCP

imoOcopyrightM , and ()CCP
imoedMOappropriat .

uel
CCP

iUehavnotifmissb is signed by iU , to enable the validation of its integrity and origin

authenticity and assure un-repudiability of the report.

Once the notification is prepared, iP places it in the sensitive part of the UEL message

(













=

uel
CCP

iUs ehavnotifmissbUELinfo vnotifUbeha) and proceeds to send it to CCP (in the

secure manner defined in section 5.5.2.3). CCP then acknowledges it with a response UEL
message where ()vacknotifUbeha=sUELinfo .

The CCP (with the assistance of human agents), periodically analyses all pending reports
and decides what to do regarding the “criticized” users. It may do nothing, it may suspend or

V A Reliable P2P Architecture for the New Paradigm 146

it may expel the user. In the two latter cases the CCP proceeds in accordance with what is
described in section 5.5.7.5 of the present chapter.

On the other hand, the case of previously shunned users is also periodically revisited. In
such moments CCP may decide to let the user remain shunned, or re-enable its
participation in the system. In the latter case it proceeds in accordance with what is
described in section 5.5.7.6.

5.5.7.5 User Shunning

The system’s users may, for whatever reason, engage in inappropriate or sabotaging
behaviour. In such cases, once the CCP detects such patterns (by way of notifications from
users), it proceeds to shun the infringing user from the system either in a temporary or
permanent base, and to place him in a quarantine or expulsion list, respectively.

To shun a specific user (e.g. xU), the CCP proceeds (in the secure manner defined in

section 5.5.2.2 of the present chapter) to instruct all OCPs to place xU in the user

quarantine or expulsion list if xU was suspended or permanently banned, respectively. Said

instruction may be defined as

()()x
CCPK

uel

iOCP

CCP uQninginstrushunSigInfoninginstrushun Xor signed 1−= , where the

mentioned iOCP (in the equation), is the instructed OCP . They are carried in UEL

messages where













=

uel

iOCP

CCPs ninginstrushunUELinfo instrsh , which are acknowledged, by

the destination peers, by sending back an UEL message where ()instrshackUELinfos = .

If it is possible to contact the shunned user (via its hosting peer), he will be sent, as well, one

of the
uel

iOCP

CCPninginstrushun instructions, as a manner of informing him that he has been

shunned or expelled.

From that point on, no requests from xU will be attended, until further notice. Any peripheral

peer that attempts to login xU will fail.

5.5.7.6 User Readmission

To readmit a specific user (e.g. xU), the CCP proceeds (in the secure manner defined in

section 5.4.2.2 of the present chapter), to instruct all OCPs to remove xU from the user

quarantine list. Said instruction may be defined as

()()x
CCPK

uel

iOCP

CCP uQSigInfominstruread Xor minstrureadsigned 1−= , where the mentioned

iOCP (in the expression), is the instructed OCP . They are carried in UEL messages where














=

uel

iOCP

CCPs minstrureadUELinfo instrsh , which are acknowledged, by the destination peers,

V A Reliable P2P Architecture for the New Paradigm 147

by sending back an UEL message where ()instrshack=sUELinfo . From that point on,

requests from xU will again be attended.

5.5.7.7 OCP Updating

Whenever some change or addition needs to be made to the system’s data structure (at the
UEL level), it is the CCP that coordinates that activity. The CCP performs such changes on
the version of the data structure which it locally stores, but it then becomes necessary to
update all the other versions of the data structure, stored at the OCPs . Such an
updating/initialization of an OCP ’s data structure is also necessary when an OCP first
registers and connects to the system.

OCP updating, at the UEL, is in all similar to the same procedure at the PLL, which is
described in section 5.4.8.6. The main differences are:

• the updated part of the data structure pertains to UEL aspects of the system and not
to PLL ones;

• the procedure takes place at the UEL level, employing UEL messages;
• the employed updating instructions, sent from the CCP to the relevant OCPs , have

the same structure as their PLL counterparts, but are designated as
iOCP

CCP

uel

edbinstrupdat . They too are signed by CCP .

5.5.8 User Request Attending

5.5.8.1 Introduction

User request attending operations may be divided into the following main categories, in
terms of their overall complexity:

• Simple Operations – these operations perform the input or retrieval of some
individual piece of information (e.g. the insertion of an MO, the retrieval of an MO, the
insertion of a specific monetary amount into a user’s account, etc.). They may further
be subdivided, in what pertains to their implications on the system’s global data
structure, into:

o Writing Operations – these operations imply the performing of changes to the
system’s global data structure (e.g. monetary transactions, insertion and
removal of MOs, etc.). They are of the client/server type;

o Reading Operations – these operations imply only the reading of the system’s
global data structure (such as the semantics based searching for MOs and
the retrieval/distribution of MOs, among others). These operations will
typically unfold in a hybrid P2P way;

• Composed Operations – these operations are composed of simple and/or other
composed operations. They may thus have client/server and hybrid P2P parts.

5.5.8.2 Simple User Attending Operations

5.5.8.2.1 Simple Writing User Attending Operations

The handling of all user requests that imply a simple type of operation, and some change or
addition to the system’s global data structure, will require the participation, (besides other
peers), of the CCP as it is the gatekeeper to that structure. The handling of such user
requests will thus be performed through client/server operations at the UEL.

V A Reliable P2P Architecture for the New Paradigm 148

Figure 38 – Client/Server User Attending Procedure

Requests included in this group are those involving the following activities:

• user abandonment of the system;
• injection, removal, updating and versioning of MOs;
• maintenance of user accounts and performing of currency transactions;

User registration and login are also handled through simple, client server operations, but in
the ways presented in sections 5.5.3 and 5.5.5 respectively.

The typical simple client/server UEL operation is depicted in Figure 38, (taking into
consideration the notation defined in section 5.1).

iU delivers the sensitive and non-sensitive input parameters that make up its request, to his

hosting peer, iPP (step 1). iPP builds sUELinfo by concatenating the request type

designation with the sensitive input parameter (or some function, 1f , of it). iPP builds, also,

UELinfo as some function, 2f , of the non-sensitive user input information. 1f and

2f represent possible changes or additions that the peer may need to operate on the
received parameters before sending them.

Given what is exposed in section 5.5.2.3, the UEL message will contain the user hosting
certificate and will be signed with the user’s private key. That signature, the presence of this
certificate, and the indication, (that said certificate carries), of the hosting peer, enables the
receiving end to verify, (employing also the PLL delivered information about the message’s
validated sending peer, mentioned in section 5.4.9), if the message sending peer is in fact
the, CCP recognized, host of the user in scope, and thus, is authorized to issue the request
at stake.

V A Reliable P2P Architecture for the New Paradigm 149

iPP, then, securely sends the produced UEL message to CCP (step 2), though the services

of the PLL. The sensitive part of the UEL message is carried as the sensitive part of the PLL
message, while the non-sensitive part of the earlier message is carried as the non-sensitive
part of the latter.

CCP produces the adequate response and securely sends it to iPP (step 3), which displays

the relevant output to iU .

After the user request has been handled, the CCP takes care of propagating the
changes/additions, which were made to the system’s data structure, to the concerned
OCPs (in the manner described in section 5.5.7.7.).

The following sub sections present some examples of client/server user attending
operations.

5.5.8.2.1.1 MO Insertion Operation

iPP builds nreqmoinsertio 








=sUELinfo and UELinfo . The latter object is a function of the

non-sensitive input parameter, iU
input . This parameter consist of all the necessary data

objects to build an MO. UELinfo is, thus, the assembled MO, (identified as imo), which iPP

also signs with the user’s private key (exceptionally, in order to enable a later independent
treatment of iMO while preserving the bond that connects it to the author user).

The UEL message is then sent to CCP . CCP formally validates the MO and it may also
perform some automated or user assisted content analysis to determine if the inserted MO
does not violate the system’s terms of use (respects copyright, etc.). If all is ok, the CCP
accepts iMO , and proceeds to its installation in the system. It thus signs iMO , with its own

private key, to signal the system’s acceptance of that object’s insertion into it, thus

producing iMO ’s delivery-ready version, CCP
iMO . CCP then produces the fragmented

version of CCP
iMO (see section 5.5.7.2).

After that, CCP notifies iPP, of the acceptance of iMO , with an UEL response message

which carries, in its non-sensitive part, the fragmented version of CCP
iMO .

Finally CCP performs the initial seeding of CCP
iMO (see section 5.5.7.2), through the

system’s tissue, by sending it (in a fragmented manner), for storage and redistribution, to
some selected peripheral peer(s).

Furthermore, CCP would also take care of propagating the changes/additions, which were
made to the system’s data structure, to the OCPs . Thus, it would take care of divulging:

• the CCP
iMO and all the relevant information pertaining to it;

• the information that iU is the owner of CCP
iMO ;

• the identification of all the peripheral peers which are storing CCP
iMO , and ready to

redistribute it;

• the information regarding any relationships between CCP
iMO and other MOs or other

operational objects.

V A Reliable P2P Architecture for the New Paradigm 150

5.5.8.2.1.2 Monetary Resource Insertion Operation

In a simplistic manner this operation may be described as follows. iU requests from the

system a specific code to enable him to transfer some amount of many to his account in the
system. iPP, thus, builds eqloadaccntr 











=sUELinfo , and, proceeding in accordance with

what was explained in section 5.5.2.3, sends a UEL request message to the CCP. The latter
peer validates the received message and if all is ok sends back an UEL message

where specfcodentreqackloadacc 











=sUELinfo , and specfcodeis the specific reference for

the user to employ, in the inter-banking transfer, to load his system account.

iU then proceeds to the out-of-band money transfer, by whatever means he prefers

(typically employing the system’s publicly know bank account number and the given
reference). Once the system (the CCP) detects that transfer, it proceeds to load the user’s
system account with the received amount.

From that point on the loaded monetary resources are available for the user to employ,
within the system as he wishes.

5.5.8.2.2 Simple Reading User Attending Operations

The handling of user requests that imply simple operations and no changes or additions to
the system’s data structure, may not require the participation of the CCP , as much of the
information stored in it may also be accessed through the services of theOCPs or of PPs .
The handling of such user requests will thus be performed through a mixed P2P and
client/server operation at the UEL.

Requests included in this group are those involving the following activities:

• the semantics based searching for MOs;
• the retrieval/distribution of MOs;
• the searching and retrieval/distribution of information objects pertaining to users or

other aspects of the system.

To explain the inner workings of this type of system operations, the next sub-section
presents he MO retrieval operation.

5.5.8.2.2.1 MO Retrieval Operation

The typical system procedure to retrieve a specific MO object, CCP
iMO , is depicted in Figure

39, (taking into consideration the notation defined in section 5.1).

iU informs her hosting peer, iPP, that she wishes to consume CCP
iMO (step 1). iPP then

sends an UEL request for CCP
iMO , to iOCP (step 2). That request message contains (as its

sensitive part), the designation of the type of request (requelinfo) and the identifier of the
desired MO.

iOCP prepares an UELInfo retrieval permit (iPP

uelInforetrpermit), enabling iPP to perform the

retrieval of CCP
iMO from a number of other peripheral peers. The permit contains its

identifier, the designation of the permit’s type (rPermuelInfoRet), the SigInfo parameter
which contains the necessary data to enable the validation of the permit’s signature, the
identification of the peer to which it has been emitted (ipp), the specification of the permit’s

V A Reliable P2P Architecture for the New Paradigm 151

validity term date, the definition of the type of information that may be retrieved

(()CCP
imoinfoDef =), and the identifier of the suelildo object (see section 7.4.5).

Figure 39 – Hybrid Operation for MO retrieval

The UEL Information Location Describing Object (suelildo), carries (in this specific case of

the retrieval of an MO), its identifier, the SigInfo parameter which contains the necessary

V A Reliable P2P Architecture for the New Paradigm 152

data to enable the validation of suelildo ’s signature, the fraglist object, a list of the peers

(loclist), from which iPP may retrieve CCP
iMO (or fragments of it), and a timestamp

indicating the time at which suelildo was compiled (so that peers using that information may

know how old it is).

fraglist contains, its identifier, its adequate SigInfo parameter, the MO’s id (CCP

imo) and

the
CCP
iMO

jfragdef objects that pertain to the fragments into which the MO was divided to

enable its fragmented redistribution. Each
CCP
iMO

jfragdef carries the identification, size,

sequence number and signature, (by the CCP), of a specific fragment of CCP
iMO , and the

corresponding (to said signature) SigInfo parameter. fraglist is signed by the CCP to

assure its integrity and authenticity, as it was that peer (CCP) that produced that object at
MO insertion time.

iPP

uelInforetrpermit and suelildo are signed by iOCP (their issuingOCP), to enable the

validation of their authenticity, by any peer. The independent and redundant signing of
iPP

uelInforetrpermit and suelildo , (in regards to the sensitive part of the PLL message that

wraps the UEL message that contains them), enables the later independent P2P distribution

of suelildo amongst the peripheral peers and the presentation of iPP

uelInforetrpermit , by, iPP,

to other peers to prove the authorization of its requests.

In the next step of this operation, iOCP sends iPP

CCP
iMO

retrpermit to iPP (step 3). After that, iPP

proceeds (in a P2P fashion), to simultaneously retrieve CCP
iMO ’s composing fragments, from

its delivering peers (e.g. jPP and kPP). It sends messages to kPP and jPP (steps 4),

requesting fragments
CCP
iMO

Frag0 and
CCP
iMO

Frag1 respectively. In such messages it

includes, (besides the designation of the type of request and the identification of the desired

fragment), the permit and suelildo objects, received from iOCP , so that the jPP and kPP can

verify that iPP is indeed authorized to retrieve the requested MO fragment from them (the

permit carries the identifier of the suelildo object, and so the connection between the two is

established and may be verified).
Finally kPP and jPP deliver said fragments (steps 5), to iPP which validates their integrity

(employing the information present in the suelildo object), reconstitutes CCP
iMO , validates its

overall integrity (as it carries its signature by the CCP) and renders it for user consumption.

After it has answered iPP’s request, iOCP reports to CCP , that iU is consuming CCP
iMO

at iPP (step 3a). CCP then takes care of registering such information in the system’s data

structure and of propagating those changes, to the data structure, to the OCPs .

V A Reliable P2P Architecture for the New Paradigm 153

This overall procedure thus enables an efficient P2P diffusion, of MOs, between peripheral
peers. It may also be applied to other UEL information objects as user registration

certificates (
iUrcertif), user hosting certificates, (iPP

iUhostcertif), content search response

objects (see sqro in section 7.4.4), or UEL Information Location Describing Objects

(suelildo s).

5.5.8.3 Composed User Attending Operations

To explain the inner workings of composed user attending operations we present bellow an
example of such an operation.

5.5.8.3.1 User Attention Sale Operation

As explained in section 2 of chapter IV, two main types of user attention sale procedures are
to be supported by the P2PTube architecture. These are: mandatory unrewarded
advertisement viewing; and voluntary rewarded advertisement viewing.

The latter procedure is supported as a set of UEL operations, which may be described in the
following manner:

• At an initial time, a specific advertising user, addU , inserts into the system a number

of advertising MOs and their corresponding Inquiry IOs and Inquiry Response IOs

(see section 7.4.10). Amongst these is CCP
addMO , one of its corresponding inquiry IO,

CCP
iinquiryIO and its respective Inquiry Response IO CCP

ipIOinquiryRes . These MO

and IO insertion operations are supported in the client/server manner indicated in
section 5.5.8.2.1;

• Some time later, a regular user, iU , decides to “sell” some attention. For that she

selects a list of available advertisement MOs from the system by performing a query.
This operation is supported in a hybrid manner as explained in section 5.5.8.2.2;

• iU then selects her preferred advertisement MO (e.g. CCP
addMO), requesting its

retrieval – this retrieval operation unfolds in the hybrid manner explained in section
5.5.8.2.2;

• iU then retrieves CCP
iinquiryIO , (in the hybrid manner explained in section 5.5.8.2.2),

and answers its questions, pertaining to the contents of CCP
addMO . Said answers are

then sent back to the CCP. The latter checks them against the information present in
CCP
ipIOinquiryRes . If all is ok, a specific monetary amount is extracted from addU ’s

account and a portion of it is deposited in iU ’s account. Another portion is deposited

in the system’s operating entity’s account.

The earlier procedure may be supported by the following set of UEL operations:

• The initial step is the same as in the previous bullet list;

• Some time later, a regular user, iU , selects some specific MO (e.g. CCP
iMO) for

consumption, which is retrieved in the hybrid manner explained in section 5.5.8.2.2;

• In its rights expressing metadata CCP
iMO indicates that it should only be given access

to, after the user consumes a specific advertisement MO (e.g. CCP
addMO). Thus, the

user hosting peer (iPP) retrieves CCP
addMO , from the system, in the hybrid manner

explained in section 5.5.8.2.2;

V A Reliable P2P Architecture for the New Paradigm 154

• iPP then renders CCP
addMO and only after that does it render CCP

iMO ;

• After CCP
addMO has been rendered, iPP informs CCP (in the client server manner

explained in section 5.5.8.2.1), with a signed (with the user’s private key) notification,
of the advertisement consumption activity that has occurred;

• CCP then proceeds to extract a specific monetary amount from addU ’s account and

deposit it in the system’s operating entity’s account.

5.5.9 DRM Enforcement

The enforcing of DRM-like aspects is not handled in any isolated component or operations in
the system. Instead said enforcement is logically included in numerous operations that take
place within the system.

Figure 40 – Logical DRM Functionalities in P2PTube Peer Structure

All UEL (and the related PLL) security related measures are devoted to guarantying
communicational confidentiality, data integrity, data origin authenticity and non-repudiability
and user and peer identity. They thus contribute to a reliable and trustworthy identification of
users, peers and media content, to the preservation of MO integrity and to the protection of
the association between users and the media content that they own.
Said measures, thus, protect the right of all users to privacy and to a secure access to their
account and user data, and protect the rights of content owners as they guard against
content corruption and wrongful ownership declaration (by way of user reports).

The mechanisms supported, by the system, for the reporting, by system users, of user
misbehaviour (described in section 5.5.7.4), basically consist of a distributed collaborative
system for the detection of content whose authorship is being wrongfully claimed, that is, for

V A Reliable P2P Architecture for the New Paradigm 155

the detection of copyright infringement. Given the overall collaborative nature, intended for
the system, and its interdependency-based business models, it is expectable that users will
proactively aid in the detection of copyright infringement, and thus, this mechanism should
be successful.

Furthermore, the user action monitoring capabilities of the system (at the UEL), also enable
the gathering of information on user behaviour with implication on the protection of content
owner rights. The collected information may also be used for the purpose of making
monetary gains, by the system’s operating entity, thus supporting its right to be rewarded for
its operation.

Revisiting Figure 25 (from section 3.3 of the present chapter), which describes the structure
of a peer, one may thus visualize the DRM capacities of the system, as being logically
distributed over the set of components signalled with a red circle in Figure 40.

In accordance with the type of business models that are to be supported, the systems, thus,
employs “light” DRM capabilities.

6 Inter-System Cooperation

6.1 Overview

Systems, embodying this architecture, may cooperate with one another. Said architecture
provides the necessary means to assure operational reliability and communicational security
and confidentiality and informational authenticity. It achieves this through the employment of
semi-centralized cryptographic means which are to be under the control of a trustworthy
entity.

The provision of the above stated guaranties, to peers and users, in the context of inter-
system interaction demands the existence of a solid context of trust between the interacting
systems. Users and peers of system ASys can only interact with users and peers of

system BSys , if ASys trusts BSys , that is, if the operating entity of the earlier system trusts
the operating entity of the latter one. If this trust relationship, which can only be built through
inter-human interaction in the real world, does not exist, the two systems cannot interact.

Furthermore, for the correct operation of these systems, the trust relationships between
them must be reciprocal. For instance, for a peer, AP , from system ASys , to be able to

cooperate with some peer, BP , in system BSys , AP must know and trust the authentication

information of BP and vice-versa. For said peers to be able to trust that information, about

each other, ASys must trust BSys and vice-versa.

The cooperation, between any two such systems, implies, thus, the existence of a mutual
trust between their operating entities.
The cooperation networks, collectively established by these systems, are therefore
constituted as a form of web of trust [174]. That network is composed by a set of bilateral
trust relationships between individual systems, where each system, in the relationship, will
trust (and therefore cooperate with), the other system.

In a typical web of trust approach if entity A trusts entity B, and B trusts entity C, then, it
follows that A trusts C, that is, trust is a transitive relationship. However, given the
demanding security requirements for a safe operation of the P2PTube architecture, in the
context of the trust networks established between these systems, that relationship must not

V A Reliable P2P Architecture for the New Paradigm 156

be transitive. Thus, a P2PTube system trusts and cooperates only with the homologue
systems that its operating entity directly instructs it to trust, and no others.
The set of all (reciprocally) trusted systems of some specific system is defined as the latter’s
trust sphere.

Figure 41 – Inter System Trust Spheres Example

Figure 41 presents an example of a possible trust context maintained by a set of 9
independent systems. In the exemplified context three different trust spheres are highlighted:

• The trust sphere of system 1 – includes all the systems with which it maintains a
bidirectional trust relationship, that is, system 2, system 3, system 4 and system 5;

• The trust sphere of system 2 – includes systems 1, 8 and 9;
• The trust sphere of system 3 – includes systems 1, 6 and 7;

As it can be seen, no transitivity exists, in inter-system trust relationships, as, for instance,
while system 6 is part of system 3’s trust sphere, and the latter is part of system 1’s trust
sphere, system 6 is not part of system 1’s trust sphere.

The establishment of a mutual trust relationship between two P2PTube systems is involves
the active participation of their operating entities. These entities must configure their
systems’ CCPs to trust each other. Each CCP will then diffuse information describing and
validating the established trust relationship throughout the system’s tissue.

6.2 Trust Relationship Establishment

The inter-system trust establishing process is performed at the UEL, and is exemplified in
Figure 42. To initiate it, the operating entity of one of the systems takes the initiative to
instruct its system’s CCP, ACCP , to trust the CCP of the target system, BCCP . To do so,

said entity supplies its peer the identification, public key and present IP address of BCCP
(step 1).

ACCP then prepares and signs the trust relationship describing info object, trustrel . This
contains the identification, public and private key identifiers and the public key of each of the
CCPs of both systems. It carries also a timestamp indicating the validity termination date of

V A Reliable P2P Architecture for the New Paradigm 157

the described trust relationship. The signed version of trustrel (concatenated with the
adequate SigInfo), is then sent to BCCP (step 2).

Figure 42 – Inter-System Trust Establishment

In order to accept or refuse the received request to establish a trust relationship, BCCP must
obtain the input of its operating entity. For that reason it requests (step 3), from said entity,
an authorization to establish a trust relationship between the two systems.
If system B’s operating entity does accept what was requested (step 4), BCCP produces the

trust certificate object, BCCP

ACCPftrustcerti . This object contains the signatures of the

()trustrelSigInfo set, by ACCP and BCCP , and trustrel itself. The two signatures prove the

mutual acceptance of the trust relationship. BCCP

ACCPftrustcerti is then sent to ACCP , (step 5),

and the trust relationship is established.

6.3 Trust Information Diffusion

Whenever a peer, AP , from system ASys needs to interact (either at the PLL or at the UEL),

with a peer, BP , from another system, BSys , it must first assess if the target peer’s system is

trusted or not. To do so, AP must obtain from its CCP, (ACCP), a list of all the trust
relationships in which its system participates with other systems

(() () ()nCCP

ACCPn
CCP

ACCPA ftrustcertisysftrustcertisystrustlist ||.....||1
1=). This object is a list of the trust

V A Reliable P2P Architecture for the New Paradigm 158

certificates of all the trust relationships in which the ASys participates along with the
identification of every trusted system.

In possession of this information, AP may determine if BP is part of a trusted system or not.
This is possible because every peer’s identifier carries, as a prefix, the identification if its
encompassing system (as explained in section 5.2.3).

7 Data and Metadata Objects

7.1 Introduction

The regular operation of the system involves the production and exchange/distribution of a
set of different information objects. To assure systemic reliability, these must be structured
so as to guarantee their integrity, authenticity and temporal validity.
In P2PTube, MPEG-21 is employed for the definition of most such objects, given the
information structuring capabilities of that standard. The most relevant of these objects are
presented in the following sub sections of section 7.

7.2 IPCL Objects

7.2.1 IPCL Message

IPCL messages (the messages exchanged between IPCL instances in different peers),
consist of TAR archives which have the following content:

• IPCL Message Head File (IPCLMHFile) – contains the IPCL message’s metadata;
• PLL Message File (PLLMFile) – consists of the PLL message which is being wrapped

by the IPCL message.

The contents of the IPCLMHFile may be defined

as 




= fpllMFileRedstPIPsrcPIPipclMHFile , where srcPIP and dstPIP are the IP

addresses of the source and destination peers, respectively, and fpllMFileRe is the ref to
the PLL message carried inside the IPCL message file. In more precise terms it consists of
an MPEG-21 DID with the structure depicted in Figure 43.

Figure 43 – IPCLMHFile Structure

Said structure consists of the following:

• A root DIDL element carrying a Container element which functions as the top
element of the head file’s contents. This latter element carries:

o a Descriptor element containing the IP address of the sending peer;
o a Descriptor element containing the IP address of the destination peer;
o an Item element (identified as ipclm_content), which carries a reference to the

PLL message file which is wrapped inside the IPCL message object.

An example of an IPCLMHFile may be found in section A.1.1 of Annex A.

V A Reliable P2P Architecture for the New Paradigm 159

7.3 PLL Objects

7.3.1 PLL Message

In section 5.4.2 a PLL message (sent from iP to kP) is logically defined as

() ()




































































−− InfoInfoInfoserialSigInfoEncInfo

iPK
S

iPKkPK 11 signaturesignedenc , where














=

−
















− kPiP

giPiPiPi sKkkoAlgrthmInfpEncInfo U
1 ,
















−=

iPiPiPi KkkoAlgrthmInfpSigInfo 1 .

In more precise terms they consist of TAR archives with the following content:

• PLL Sensitive Info File (PLLSIFile) – contains the PLL message’s sensitive
information. It consists of a Tar archive containing:

o PLL Sensitive Info Head File (PLLSIHFile) – contains the top, unprotected
metadata of the PLLSFile;

o PLL Protected Sensitive Info File (PLLPSIFile) – a TAR archive, (encoded
with

kPK), containing:

� PLL Protected Sensitive Info Head File (PLLPSIHFile) – contains the
signature of the content of the following file;

� PLL Protected Sensitive Info Core File (PLLPSICFile) – contains the
signed part of the PLLPSIFile;

• None or one PLL Non Sensitive Info File (PLLNSIFile) – carries non sensitive PLL
information. It may wrap a UEL Non Sensitive Info File (UELNSIFile).

The PLLSIHFile (which basically contains the EncInfo part), consists of an MPEG-21 DID
with the structure depicted in Figure 44. An example of the contents of a PLLSIHFile may be
found in section A.2.1.1 of Annex A.

Figure 44 – PLLSIHFile Structure

Said structure consists of the following:

• A root DIDL element carrying a Container element which functions as the top
element of the file’s contents. This latter element carries:

o one of the following two options:
� a Descriptor element containing the EncInfo parameter. This element

carries a DIDL which may contains inside:
• either:

V A Reliable P2P Architecture for the New Paradigm 160

o an Item element which carries the identifier of the peer
that performed the encoding;

o an Item element which carries the definition of the
encoding algorithm;

o an Item element which carries the peer’s public key and
its identifier;

o an Item element which carries the identifier of the
peer’s private key;

• or:
o an Item element which carries the identifier of the

communication session of which this PLL message is a
part;

o an Item element (identified as pllm_securecontent), which carries a reference
to the file containing the ciphered contents of the PLL message.

The PLLPSIFile consists of ()








































−− InfoInfoserialSigInfo
iPKS

iPKkPK 11 signaturesignedenc .

The PLLPSIHFile (which contains ()




















−− InfoInfoserialSigInfo
iPKS

iPK 11 signaturesignature),

consists of an MPEG-21 DID with the structure depicted in Figure 45.

Figure 45 – PLLPSIHFile Structure

Said structure consists of the following:

• A root DIDL element carrying a Container element which functions as the top
element of the head file’s contents. This latter element carries:

o a Descriptor element containing the signature of the file referenced in the item
bellow;

o an Item element (identified as pllm_pllpsic), which carries a reference to the
PLL Protected Sensitive Info Core File (PLLPSICFile);

An example of the contents of a PLLPSIHFile may be found in section A.2.1.2 of Annex A.

The PLLPSICFile is a Tar archive containing the following files:

• The PLLPSIC Top File (PLLPSICTopFile) – carries ()serialSigInfo ;

• The PLLPSIC Middle File (PLLPSICMiddleFile) – carries SInfo ;

V A Reliable P2P Architecture for the New Paradigm 161

• The PLLPSIC Bottom File (PLLPSICBottomFile) – carries ()













− Info
iPK 1signature .

The PLLPSICTopFile (which contains 






 serialSigInfo), consists of an MPEG-21 DID with

the structure depicted in Figure 46.

Figure 46 – PLLPSICTopFile Structure

Said structure consists of the following:

• A root DIDL element carrying a Container element which functions as the top
element of the file’s contents. This latter element carries:

o an Item element (identified as sigInfo), which carries the serial of SigInfo
parameter;

o an Item element (identified as serial), which carries the serial of the PLL
message;

An example of the contents of a PLLPSICTopFile may be found in section A.2.1.3 of
Annex A.

The PLLPSICBottomFile (which contains ()













− Info
iPK 1signature), consists of an MPEG-21

DID with a structure consisting of the following:
• A root DIDL element carrying a Container element which functions as the top

element of the file’s contents. This latter element carries:
o an Item element (identified as nonsensitiveinfosig), which carries the

signature, (by the message sending peer) of the file carrying the Info part of
the PLL message;

The PLLPSICMiddleFile is a Tar archive that carries a concatenation of the following files:

• PLLPSICMiddle Metadada File (PLLPSICMiddleMDFile) – carries the PLL level
metadata of SInfo ;

• None or one UEL Sensitive Info File (UELSIFile) – this file consists of the sensitive
part of the UEL message file which is being wrapped by the PLL message;

The PLLPSICMiddleMDFile consists of an MPEG-21 DID with a structure consisting of the
following:

V A Reliable P2P Architecture for the New Paradigm 162

• an Item element (identified as pllSensitiveInfo), which carries the PLL specific
metadata of the PLL message;

• any number of Item elements carrying the remaining PLL level parameters of SInfo .

7.3.2 Peer Registration Certificate

Upon a successful completion of its registration with the system, a peripheral or outer core,
peer, iP , is given a Registration Certificate by the CCP. In section 5.4.3 it is logically

described as
















−= vtermpeerTypesidSigInfoidrcertif
iP

CCPKiP 1signed , where id is

the certificate’s identifier, SigInfo contains the necessary data to enable the validation of the

certificate’s signature, peerType is the structural type of the peer (peripheral or outer core or

central core), 













−=
iP

iPKiP idsid 1signed and 











 −=
iPiPiPiiP KkkoAlgrthmInfpid 1 . In more

precise terms it consists of an MPEG-21 DID with the structure depicted in Figure 47.

Figure 47 – Peer Registration Certificate Structure

Said structure, (for a hypothetical peripheral peer iP), consists of the following:

• A root DIDL element carrying a Container element which functions as the top
element of the certificate. This latter element carries:

o a Descriptor element containing CCP ’s signature of the remaining content of
its parent Container element (the signature of its Item sibling);

o an Item element (identified as prc_content), which carries the actual contents
of the certificate. It contains:

� a Descriptor containing the certificate’s identifier;

V A Reliable P2P Architecture for the New Paradigm 163

� a Descriptor containing the specification of the certificate’s validity
term.

� A Descriptor (identified as siginfodescr) which consists of
the SigInfo parameter;

� an Item (identified as sid) which consists of the
iPsid parameter;

� an Item containing the specification of the role played by iP in the

system (either peripheral, outercore or centralcore);

The SigInfo Descriptor contains (inside its Statement child) a root DIDL element carrying a

Container element which functions as the top element of the rest of SigInfo ’s structure.
This latter element carries:

• an Item containing the identification of the siging peer (iP);

• an Item containing the employed siging algorithm.
• an Item containing iP ’s public key and its identifier;

• an Item containing iP ’s private key identifier;

The

iPsid Item contains:

• a Descriptor element containing iP ’s signature of the remaining content of its parent

Item element (the signature of its Item sibling);
• an Item which consists of the

iPid . It contains:

o an Item containing iP ’s id;

o an Item containing iP ’s siging algorithm.

o an Item containing iP ’s public key and its identifier;

o an Item containing iP ’s private key identifier;

An example of a Peer Registration Certificate may be found in section A.2.2 of Annex A.

7.3.3 Peer Connection Certificate

Upon a successful establishing of a connection between two peers (iP and kP), the “client”

peer (the peer which requested the establishment of the connection e.g. iP), is given a

Connection Certificate by the “server” peer (the peer to whom the establishment of the
connection was requested e.g. kP).

In section 5.4.5 said certificate is logically described as














































=

−
−

−

CCPiP

gs

s
iPK

CCPiP

gkPiP

kPK
kP

iP KencsvtermrcertifrcertifSigInfoidccertif 1signed . In

more precise terms it consists of an MPEG-21 DID with the structure depicted in Figure 48.

V A Reliable P2P Architecture for the New Paradigm 164

Figure 48 – Peer Connection Certificate Structure

Said structure, (for a hypothetical peripheral peer iP initiating a communication session with

peer kP), consists of the following:

o A root DIDL element carrying a Container element which functions as the top
element of the certificate. This latter element carries:a Descriptor element
containing the signature (by kP), of the remaining content of its parent

Container element (the signature of its Item sibling);
o an Item element (identified as pcc_content), which carries the actual contents

of the certificate. It contains:
� a Descriptor containing the certificate’s identifier;
� a Descriptor containing the SigInfo parameter;
� a Descriptor containing the validity term of the connection certificate;
� an Item (identified as rCertifPi) which contains

iPrcertif ;

� an Item (identified as rCertifPk) which contains
iPrcertif ;

� an Item (identified as sessionID) which contains
CCPiP

gs
−

;

� an Item (identified as cipheredSessionKey) which contains













 −CCPiP

gs

s
iPK Kenc ;

7.3.4 Peer Info Object

In section 5.4.7 the Peer Info Object, of a specific peer iP , built by a specific jOCP , is

logically described as 





= − vtermIPrcertifSigInfoidpInfo iiP

jOCPKs 1signed . In more

precise terms it consists of an MPEG-21 DID with the structure depicted in Figure 49.

Said structure consists of the following:

• A root DIDL element carrying a Container element which functions as the top
element of the object. This latter element carries:

o a Descriptor element containing an OCP ’s signature of the remaining content
of its parent Container element (the signature of its Item sibling);

o an Item element (identified as pio_content), which carries the actual contents
of the object. It contains:

� a Descriptor containing the object’s identifier;

V A Reliable P2P Architecture for the New Paradigm 165

� a Descriptor element containing the object’s validity term;
� a Descriptor element containing the SigInfo parameter;

� an Item containing iP ’s IP address;

� an Item containing iP ’s registration certificate.

The last mentioned Item carries a Component which carries a Resource element. The latter
contains, inline, iP ’s registration certificate. The structure of this certificate is the one

presented in section 7.3.2.

Figure 49 – Peer Info Object Structure

An example of a Peer Info Object may be found in section A.2.3 of Annex A.

7.3.5 Peer Quarantine and Expulsion Lists

In section 5.4.7 the peer quarantine list (compiled by jOCP), is logically defined as

()tstampQListSigInfoquarList
jOCPKs 1signed −= . In more precise terms it consists of an

MPEG-21 DID with the structure depicted in Figure 50.

Figure 50 – Peer Quarantine List Structure

Said structure consists of the following:

• A root DIDL element carrying a Container element which functions as the top
element of the object. This latter element carries:

o a Descriptor element containing an OCP ’s signature of the remaining content
of its parent Container element (the signature of its Item sibling);

o an Item element (identified as pql_content), which carries the actual contents
of the object. It contains:

� a Descriptor element containing the object’s validity term;
� a Descriptor element containing the SigInfo parameter;

V A Reliable P2P Architecture for the New Paradigm 166

� any number of Item elements, each containing the identifier of a
quarantined peer;

The structure of a peer expulsion list, logically defined as

()tstampXListSigInfoexpList

jOCPK
s 1

signed
−

= , in section 5.4.7, is the same as that of the

peer quarantine list.
An example of a Peer Quarantine List may be found in section A.2.4 of Annex A.

7.3.6 PLL Info Retrieval Permit

In section 5.4.7 the Peer Info Retrieval Permit, (a permit, issued by a specific jOCP ,

enabling a specific peripheral peer iPP to retrieve some PLL level information from another

peripheral peer, jPP), is logically described as:



















−=
spllildoi

jOCPK
iPP

pllInfo idinfoDefvtermppSigInforetrpermit rPermpllInfoRetidsigned 1 ,

where. In more precise terms it consists of an MPEG-21 DID with the structure depicted in
Figure 51.

Figure 51 – Peer Info Retrieval Permit Structure

Said structure consists of the following:

• A root DIDL element carrying a Container element which functions as the top
element of the permit. This latter element carries:

o a Descriptor element containing an OCP ’s signature of the remaining content
of its parent Container element (the signature of its Item sibling);

o an Item element (identified as piorp_content), which carries the actual
contents of the permit. It contains:

� a Descriptor element containing the permit’s identifier;
� a Descriptor element containing the designation of the type of the

object (PPL Info Retrieval permit);
� a Descriptor element containing the permit’s validity term;
� a Descriptor element containing the SigInfo parameter;

V A Reliable P2P Architecture for the New Paradigm 167

� an Item containing the relevant information about the peer to whom

the permit has been issued (iPP). It contains an inner Item which

carries (inside a Resource inside a Component), iPP ’s identifier;

� an Item containing the information which iPP is allowed to retrieve. It

corresponds to the infoDef parameter;
� an Item containing the identifier of the permit’s corresponding

spllildoid ;

An example of a Peer Info Object Retrieval Permit may be found in section A.2.5 of Annex A.

7.3.7 PLL Information Location Describing Object

In section 5.4.7 the PLL Information Location Describing Object, is logically described as:














= − nPPiPP

jOCPKs rcertifrcertifvterminfoDefSigInfoidpllildosigned 1 .

In more precise terms it consists of an MPEG-21 DID with the structure depicted in Figure
51.

Figure 52 – PLL Information Location Describing Object

Said structure consists of the following:

• A root DIDL element carrying a Container element which functions as the top
element of the object. This latter element carries:

o a Descriptor element containing an OCP ’s signature of the remaining content
of its parent Container element (the signature of its Item sibling);

o an Item element (identified as pllildo_content), which carries the actual
contents of the object. It contains:

� a Descriptor element containing the object’s identifier;
� a Descriptor element containing the SigInfo parameter;
� a Descriptor element containing the information which is located by

this object. It corresponds to the infoDef parameter;
� a Descriptor element containing the object’s validity term;
� an Item containing the necessary registration certificates of the peers

which hold the information defined in the infoDef parameter;

V A Reliable P2P Architecture for the New Paradigm 168

7.4 UEL Objects

7.4.1 UEL Message

In section 5.5.2 an UEL message (whose production involves user iU) is, logically defined

(in an implicit manner) as





















− UELinfoUELinfoserialSigInfo s

iUK 1signed .

In more precise terms they consist of a TAR archive with the following content:
• UEL Sensitive Info File (UELSIFile) – contains the UEL message’s sensitive

information.
• None or one UEL Non Sensitive Info File (UELNSIFile) – carries non sensitive UEL

information. It consists of a TAR archive containing:

The UELSIFile (which basically contains the 







− s

iUK
UELinfoserialSigInfo1signed part),

consists of an MPEG-21 DID with the structure depicted in Figure 53.

Figure 53 – UELSIFile Structure

Said structure consists of the following:

• A root DIDL element carrying a Container element which functions as the top
element of the file’s contents. This latter element carries:

o a Descriptor element containing the user’s signature of the remaining content
of its parent Container element (the signature of its Item sibling);

o an Item element containing:
� a Descriptor element containing the SigInfo parameter;
� a Descriptor element containing the serial of the UEL message;
� an Item element (identified as uels_info), which carries the sensitive

UEL information of the message;
� an Item element (identified as uelm_uelsi_ssinfo), which carries the

sensitive UEL information of the message. It contains:
• an Item element carrying the definition of the type of UEL

message;
• zero or more Item elements carrying futher sensitive UEL

parameters;

An example of the contents of a UELSIFile may be found in section A.3.1.1 of Annex A.

V A Reliable P2P Architecture for the New Paradigm 169

7.4.2 User Registration Certificate

After a user, iU , successfully finishes his registration with the system, he is given a User

Participation Certificate. In section 5.5.3 it is logically described by the following

equation
















−= vtermsidSigInfoidrcertif
iU

CCPKiU 1signed . The definitions of some of the

most relevant of its parameters are 







−=

iU

iUKiU idsid 1signed and








= −
iUiUiU

iUiiu KkkoAlgrthmInfunameuid 1 . In more precise terms it consists of an

MPEG-21 DID with the structure depicted in Figure 54.

Figure 54 – User Registration Certificate Structure

Said structure consists of the following:

• A root DIDL element carrying a Container element which functions as the top
element of the certificate. This latter element carries:

o a Descriptor element containing the CCP ’s signature of the remaining
content of its parent Container element (the signature of its Item sibling);

o an Item element which carries the actual content of the certificate. It contains:
� a Descriptor containing the certificate’s identifier;
� a Descriptor element containing the validity term of the certificate;
� a Descriptor element containing the SigInfo parameter;

� an Item element which carries the
iUsid . It contains a DID which

carries the actual
iUsid . Said DID has at its root a DIDL element

carrying a Container element which contains:
• a Descriptor element containing iU ’s signature of the

remaining content of its parent Item element (the signature of
its Item sibling);

V A Reliable P2P Architecture for the New Paradigm 170

• an Item which constitutes
iUid . It contains five inner Items

which respectively carry:
o iU ’s identifier;

o iU ’s username;

o iU ’s signing algorithm definition;

o iU ’s public key and its identifier;

o The identifier of iU ’s private key;

An example of a User Registration Certificate may be found in section A.3.2 of Annex A.

7.4.3 User Hosting Certificate

After a user, iU , successfully logs into the system, his hosting peripheral peer, iPP , his

given, by CCP , a certificate proving that iPP is in fact hosting user iU . In section 5.5.5 said

certificate is logically described as















−= vtermpprcertifSigInfoidhostcertif iiU
CCPK

iPP

iU 1signed , where

















−= vtermsidSigInfoidrcertif
iU

CCPKiU 1signed . In more precise terms it consists of an

MPEG-21 DID with the structure depicted in Figure 55.

Figure 55 – User Hosting Certificate Structure

Said structure consists of the following:

• A root DIDL element carrying a Container element which functions as the top
element of the certificate. This latter element carries:

o a Descriptor element containing the CCP ’s signature of the remaining
content of its parent Container element (the signature of its Item sibling);

o an Item element which contains:
� a Descriptor containing the certificate’s identifier;
� a Descriptor element containing a timestamp with the certificate’s

validity term;
� a Descriptor element containing the SigInfo parameter;
� an Item which contains the identification of the hosting peer;
� an Item which constitutes the

iUrcertif . Its contents and structure are

the same as those explained in section 7.4.2.

An example of a User Hosting Certificate may be found in section A.3.3 of Annex A.

V A Reliable P2P Architecture for the New Paradigm 171

7.4.4 Search Query Response Objects

Before a user decides to consume a specific Media Object (MO), he must first learn about
the existence of such an object. That knowledge is typically obtained through content
searches (e.g. googling).
The user will thus specify a number of semantic criteria that his target MO(s) must respect
and tell his hosting peer, iPP , to obtain a list with such MOs. The searching procedure that

will then ensue (which will unfold in the manner presented in section 5.5.8.2.2), will ultimately
result in the reception, by iPP , of a Search Query Response Object (sqro), (sent from

theCCP , from an OCP or from another peripheral peer), originally produced by the CCP, or
an OCP , which contains the response. An sqro may be logically described

as 







−= moListansweredQtstatmpSigInfoidsqro
CCPK 1signed (alternatively it may instead

be signed by an OCP), where ()






= − querySigInfoidansweredQ
CCPK 1signed , and







































=

nMOnMO semcharsmosemcharsmomoList
.............

11 . In more precise terms it

consists of an MPEG-21 DID with the structure depicted in Figure 56.

Figure 56 – SQRO Structure

Said structure consists of the following:

• an inner Item – it carries:
o the identifier of the object – within Descriptor “id”;
o the SigInfo parameter – within Descriptor “siginfodescr”;
o the emission date of the query response information – within Descriptor

“sqro_emissiontime”;
o the answered query – within Descriptor “sqro_answeredquery”: It carries an

inner DID which constitutes the answered query object. It contains:
� a Descriptor carrying the signature of the answered query object’s

content;
� an Item carrying the actual content of the object. It contains:

V A Reliable P2P Architecture for the New Paradigm 172

• a Descriptor carrying the objects identifier;
• a Descriptor carrying the adequate SigInfo parameter;

• a Component carrying, inline, the actual query string;
o the actual query response information – within the “sqro:MIList” child of its

Component child;
• an outer Container – it carries:

o the inner Item;
o the security assuring provisions – consist of the digital signature, (by CCP or

an OCP), of the inner Item, expressed by a dsig:Signature element of
Descriptor “sqro_signature”.

The sqro:MOList element is structured in accordance with the schema depicted in Figure 57.

Figure 57 – MOList Schema Depiction

The signing of the inner item, (by the CCP or by an OCP , at sqro ’s original production
time), assures sqro ’s integrity and authenticity during its propagation across the system’s

tissue, thus enabling its P2P diffusion, independently of the CCP or of the OCPs .
SQRO’s emission date, contained within the “sqro_emissiontime” Descriptor, enables any
peripheral peer to assess the freshness or staleness of the information.
The signing of the “answered query object” assures that it has the same security and
distribution related properties, as the contents of the above mentioned inner Item.

An example of an sqro may be found in section A.3.4 of Annex A.

7.4.5 UEL Information Location Describing Objects

The UEL Information Location Describing Object contains the necessary information for a
peer to know where to retrieve a specific portion of UEL information (which may be an MO,
an sqro , etc.), from. It may be described by the following equation,















−= fospecificinloclisttstampSigInfoiduelildo
iOCP

iOCPKs 1signed , where id is the object’s

identifier,
iOCPSigInfo carries the necessary information to validate iOCP ’s signature of

suelildo , tstamp is suelildo ’s emission time, ()
nPPPPloclist1= is the list of peers

from where the target information object may be retrieved, and fospecificin is an optional
parameter whose presence and contents depend on the type of the target UEL information.

In section 5.5.8.2.2, an example of an MO retrieval operation is given. In that specific case,
the employed suelildo takes the form















−= fraglistloclisttstampSigInfoiduelildo
iOCP

OCPKs 1signed , where

V A Reliable P2P Architecture for the New Paradigm 173














=

















−

CCP
iMO

n

CCP
iMOCCP

i
CCPK

fragdeffragdefmoSigInfoidfraglist01signed , and



































= −

CCP
iMO

j
CCPK

CCP
iMO

j

CCP
iMO

j FragsignatureSigInfoseqnrsizefragfragdef 1 .

That is, fraglistfospecificin = . fraglist is the list of fragments into which the media

object, CCP
iMO , is divided into. The rest of this section will use this specific instance of a

suelildo to exemplify it.

In precise terms, a suelildo consists of an MPEG-21 DID with the structure depicted in

Figure 58.

Figure 58 – UELILDO Structure

Said structure consists of the following:

• A root DIDL element carrying a Container element which functions as the top
element of the object. This latter element carries:

o a Descriptor element containing the CCP ’s (or an OCP’s) signature of the
remaining content of its parent Container element (the signature of its Item
sibling);

o an Item – it contains:
� a Descriptor containing the object’s identifier;
� a Descriptor element containing the SigInfo parameter, with the

necessary data to enable the validation of the suelildo signature;

� a Descriptor element containing the IOLDO’s emission timestamp;
� an Item containing the loclist . It contains:

• an Item element, for each of the peers hosting the MO. Each
such Item contains the identification of a specific peer;

� an Item containing the fraglist . It contains the fraglist carrying DID.
It thus carries (inside the Resource child of a Component child):

V A Reliable P2P Architecture for the New Paradigm 174

• A top DIDL element carrying a Container element which
functions as the top element of the fraglist . This latter
element carries:

• a Descriptor containing fraglist ’s signature;

• an Item carrying fraglist ’s actual content. It contains:
o a Descriptor containing the object’s identifier;
o a Descriptor element containing the SigInfo parameter,

with the necessary data to enable the validation of
fraglist ’s signature;

o an Item carrying the identification of the MO at stake;
o an Item element, for each of the Fragdef objects

describing MO fragments. Each such Item contains:
� an Descriptor element carrying the fragment ID;
� an Descriptor element specifying the fragment

size;
� a Descriptor element containing the

SigInfo parameter, with the necessary data to
enable the validation of fragment’s signature
(bellow);

� an Item element carrying the fragment’s
signature;

� a Component element which defines the
fragment at stake.

Said Components carry an Anchor element, which carries the identification of the fragment
(within a Descriptor), and carries the fragment’s definition within a Fragment element [175].

The signing of Item “uelildo_content” by CCP (or by some OCP) enables the validation
of suelildo ’s integrity and of its origin authenticity.

Besides the description of the location of MOs, suelildo may also be used, for instance, for

the description of the location of
iUrcertif , iPP

iUhostcertif , or other suelildo . In all such cases

Ø=fospecificin .

An example of a UELILDO, of the above exemplified type, may be found in section A.3.5 of
Annex A.

7.4.6 UEL Info Retrieval Permit

A UEL Info Retrieval Permit is a permit enabling a specific peripheral peer iPP , to retrieve a

specific piece of UEL information, from a number of other peers. It may logically be defined
as















−=
suelildoiiOCP

iOCPK
iPP

uelInfo idinfoDefvtermppSigInforetrpermit rPermuelInfoRetidsigned 1 .

In section 5.5.8.2.1.1 such a permit is employed to enable the retrieval of an MO (e.g.

CCP
iMO). In the remainder of this section we shall exemplify the structure of the permit in

scope, employing a permit of the latter type. Thus, in this particular case, ()CCP
imoinfoDef =

is the identifier of the desired MO.

V A Reliable P2P Architecture for the New Paradigm 175

In precise terms a UEL Info Retrieval Permit consists of an MPEG-21 DID with the structure
depicted in Figure 59.

Figure 59 – MO Retrieval Permit Structure

Said structure consists of the following:

• A root DIDL element carrying a Container element which functions as the top
element of the permit. This latter element carries:

o a Descriptor element containing CCP ’s, or an OCP ’s, signature of the
remaining content of its parent Container element (the signature of its Item
sibling);

o an Item element (identified as uelrip_content), which carries the actual
contents of the permit. It contains:

� a Descriptor containing the certificate’s identifier;
� a Descriptor element containing the definition of the certificate’s type;
� a Descriptor element containing the certificate’s emission timestamp;
� a Descriptor containing the SigInfo parameter;
� an Item containing the identification of the peer to which the permit is

granted;
� an Item containing the definition of the information to which the peer is

being granted access to;
� an Item containing the identifier of the suelildo which specifies where

the targeted information may be retrieved from;

Besides the given example, this certificate may also be employed to enable a peer to
retrieve other UEL information objects such as user registration certificates (

iUrcertif), user

hosting certificates, (iPP

iUhostcertif) or content search response objects (see SQRO in

section 7.4.4).

An example of an UEL Info Retrieval Permit may be found in section A.3.6 of Annex A.

7.4.7 Media Objects

P2PTube’s MOs consist of TAR archives which have the following content:
• MO Top Head File (MOTHFile) – this file contains all of the CCP inserted metadata

pertaining to the overall MO;
• MO Inner File (MOIFile) – this is a TAR archive that basically consists of the user

delivered MO object at insertion time. It contains:

V A Reliable P2P Architecture for the New Paradigm 176

o MO Inner Head File (MOIHFile) – this file contains all the metadata of the
MOIFile;

o One or more MO Inner Content File(s) (MOICFile) – each containing an
actual media (video) content;

The contents of the MOTHFile may be defined

as ()




































−−= i
CCPK

CCP
i

CCPK

CCP
i MOItstampSigInfomoMOTH 11 signaturesigned , where

iMOI corresponds to the MOIFile. It may be described

as ()nii MOICMOICMOIHMOI1= , where iMOIH corresponds to the MOIHFile

and each iMOIC corresponds to a MOICFile. The earlier may be defined as














= 








− xrightssemanticsSigInfoMOIH

iUKi 1signed , where the latter variable may be defined as

()











































= −− n

iUKn

iUK
MOICmoicMOICmoicx 1111 signature....)(signature and imoic is the

identifier of iMOIC .

In more precise terms, a MOTHFile consists of an MPEG-21 DID with the structure depicted
in Figure 60.

Figure 60 – MOTHFile Structure

Said structure consists of the following:

• A root DIDL element carrying a Container element which functions as the top
element of the object. This latter element carries:

o a Descriptor carrying the digital signature, (byCCP), of the remaining content
of its parent Container element (the signature of its Item sibling);

o an inner Item – it contains:
� a Descriptor element carrying the identifier of the MO;
� a Descriptor element carrying the SigInfo parameter;
� a Descriptor element carrying the time stamp indicating the MO’s

injection time, into the system;
� a Descriptor element carrying the signature of the MOIFile TAR

archive;
� a Component element carrying a reference to the MOIFile TAR

archive;

V A Reliable P2P Architecture for the New Paradigm 177

The signing, byCCP , of the MOTHFile’s contents and of the MOIFile enables any peer in
the system to verify the integrity of those files as well as the veracity of its acceptance by the
system.

An example of a MOTHFile’s contents may be found in section A.3.7 of Annex A.

A MOIHFile consists of an MPEG-21 DID with the structure depicted in Figure 61.

Figure 61 – MOIHFILE Structure

Said structure consists of the following:

• A root DIDL element carrying a Container element which functions as the top
element of the object. This latter element carries:

o a Descriptor carrying the digital signature, (by the MO’s issuing user, e.g.

iU), of the remaining content of its parent Container element (the signature of

its Item sibling);
o an Item element – it contains:

� a Descriptor element carrying the SigInfo parameter;
� a Descriptor element (identified as moih_ownerU) carrying the identity

of the MO’s owner user (iu);

� a Descriptor element (identified as moih_semantics) carrying the MO’s
semantically describing metadata. This metadata describes the
semantic characteristics of the MO and its relationships with other
MOs. Said relationships are described employing MPEG-21’s
relationship describing capabilities which were added to that work as a
result of this PhD work (see section 4.3 of chapter VI). Semantic
information is typically is expressed in the RDF format;

� a Descriptor element (identified as moih_rights), carrying the rights
information pertaining to the MO. This information is carried by an
REL element rel:license [113]. In light of the nature of the business
models that this architecture is meant to enforce (presented in chapter
IV), and of its implications on MO access by users, the purpose of this
rights information is merely to formalize the openness of content
access;

� an Item element carrying the information pertaining to the MO’s
MOICFiles: It contains:

• one or more Item elements. Each such element carries the
information pertaining to a single MOICFile, and, thus,
contains:

V A Reliable P2P Architecture for the New Paradigm 178

o a Descriptor (identified as moic1_u_signature), carrying
the digital signature, (by iU), of the corresponding

MOICFile;
o a Component carrying a reference to the MOICFile in

scope;

The signing, by iU , of each of the MO’s MOICFiles enables the validation of their integrity

and of their origin authenticity. It also guarantees their non repudiability. Furthermore, the
signing, by iU , of the moih_content Item enables the same actions towards that Item, thus

securing the semantic and rights metadata.

In accordance with what was expressed in section 5.5.8.2.1.1, at the production time of an
MO, iMO , iU produces the signatures of all MOICFiles, prepares the moih_content Item

declaration, produces the signature of the latter Item and then finishes the production of the
MOIHFile and of the MOIFile.

This way iU produces an iMO which is effectively signed by him. iMO is sent to CCP

which calculates its own signature of the MOIFile, builds the MOTHFile, and then
repackages the set (MOTHFile and MOIFile) into what then is its distribution ready form,

CCP
iMO .

An example of a MOIHFile’s contents may be found in section A.3.7 of Annex A.

7.4.8 MO Ransom Announcement

An MO Ransom Announcement may be defined as

()semanticsammountumoidRnsmAnn i
CCP
i

CCP
iMO

= . It thus contains its own identifier, the

identifier of the prospective MO, the identifier of the MOs producing user (which is to be the
one to be donated to), the specification of the required ransom amount and the semantic
characterization of the prospective MO.

7.4.9 User Monitoring Requests and Responses

The ERR and ER objects mentioned in section 5.5.6 may logically be described, respectively

as 













−= iA
iPP

CCP
CCP

iPP

CCP PPerrSigInfoerriderr of signed 1K
, (where






= −

CCPCCPCCP KkkoAlgrthmInfccpASigInfo 1 and err is the actual MPEG-21 Part 15,

event report requesting information), and



































= −− ererridSigInfoeridBSigInfoer iPP

CCPC
CCP

iPP
iUiPP

CCP

iPP of of signedsigned 1K1K
(where er is

the reported information, 






= −
iPPiPPiPPi KkkoAlgrthmInfppBSigInfo 1 and








= −
iUiUiUi KkkoAlgrthmInfuCSigInfo 1).

V A Reliable P2P Architecture for the New Paradigm 179

In more precise terms, they are expressed as MPEG-21 DIDs carrying MPEG-21 ERRs and
MPEG-21 ERs respectively [102]. Figure 62 depicts the structure of a P2PTube ERR and
Figure 63 depicts the structure of a P2PTube ER.

Figure 62 – ERR Structure

An ERR’s structure consists of the following:

• A root DIDL element carrying a Container element which functions as the top
element of the report. request This latter element carries:

o a Descriptor carrying the digital signature, (byccp), of the remaining content
of its parent Container element (the signature of its Item sibling);

o an inner Item – it contains:
� a Descriptor carrying the identification of the ERR;
� a Descriptor carrying the SigInfo parameter;
� an Item carrying the actual ERR information. It carries that

information as an erl:ERR element [102];
� an Item element carrying the identification of the event report

request’s target peer (e.g. ipp);

The presence of CCP’s signature of err_content Item’s (inside Descriptor err_cp_signature),
enables the peer receiving the ERR to validate its origin authenticity.

An example of a P2PTube’s ER may be found in section A.3.8 of Annex A.

Figure 63 – ER Structure

An ER’s structure consists of the following:

V A Reliable P2P Architecture for the New Paradigm 180

• A root DIDL element carrying a Container element which functions as the top
element of the report. This latter element carries:

o a Descriptor carrying the digital signature, (by iPP), of its Item sibling;

o an inner Item – it contains:
� a Descriptor carrying the BSigInfo parameter;

� a Descriptor carrying the digital signature, (by iU), of its Item sibling;

� an inner Item – it contains:
• a Descriptor carrying the identification of the ER;
• a Descriptor carrying the CSigInfo parameter;

• an Item carrying the identifier of the original event eport
request that caused the emission of this event repor;

• an Item carrying the actual ER information as its inline
resource. It carries that information as an erl:ER element
[102];

The presence of iPP ’s signature of er_content Item (inside Descriptors er_pp_signature),

enables the CCP to check if the report was in fact sent by iPP . The presence of iU ’s

signature of the er Item (inside Descriptor er_u_signature), enables CCP to determine if the
involved user was in fact the targeted one.

An example of a P2PTube’s ER may be found in section A.3.8 of Annex A.

7.4.10 Inquiry and Inquiry Response Objects

An Inquiry IO is associated to a specific advertisement MO. It carries a set of multiple choice
style queries pertaining the semantic content of the associated advertisement MO. An
Inquiry Response IO carries the indication of the correct response alternatives to the queries
in its corresponding Inquiry IO.

When an advertiser inserts an advertising MO he also supplies the associated Inquiry IOs
and Inquiry Response IOs (potentially dozens of them).

An Inquiry IO may be described as ()xSigInfoinquiryIO

xU
i 1K

signed −= and

() () 


















= n

nnn
n nqRespAlternqRespAlterquerynqRespAlternqRespAlterqueryidx 1
1

1
11

An Inquiry Response IO may be described as ()xSigInfopIOinquiryRes

xU
i 1K

signed −= where

() ()





= ??

11 toref toref... toref toref nn nqRespAlterquerynqRespAlterqueryidx . Upon

reception of these objects the CCP produces their distribution ready versions, which are
()iCCP

CCP

CCP
i inquiryIOSigInfoinquiryIO 1K

signed −= , and

()iCCP
CCP

CCP
i pIOinquiryResSigInfopIOinquiryRes 1K

signed −= , respectively.

Examples of an Inquiry IO and of an Inquiry Response IO may be found in section A.3.9 of
Annex A.

V A Reliable P2P Architecture for the New Paradigm 181

8 Exploitation

8.1 Introduction

The P2PTube architecture, described in previous sections, constitutes an efficient,
distributed, reliable and secure platform for the interaction between users, and between
these and media content or services.

The PLL provides a versatile base platform on which a variety of different, independent,
inter-peer interactions may take place, in a secure manner, under the security-wise
coordination of the CCP’s PLL instance. This layer provides the UEL with the necessary
services so that it may perform its role, also, in a secure manner and support the safe
unfolding of complex distributed operations within its tissue.

This architecture therefore provides a versatile and secure base platform on top of which (by
building upon UEL capabilities), multiple different operational patterns may be supported.

The P2PTube architecture may thus be employed by a variety of on-line media distributing
entities, lending support to various different types of business models. Specifically, it
provides the necessary tools and provisions to support the BMs identified in chapter IV, as
the appropriate ones for an on-line media delivering initiative.

The following sub-sections, of section 8, demonstrate how this architecture may effectively
be exploited to support said business models and associated content delivery operations.

8.2 Advertisement BM Support

When employing an advertisement based BM, a media content delivering initiative obtains
its revenue by selling captured user attention, to advertisers. The user’s attention is attracted
by providing him with some interesting content. That attention is sold to advertisers by,
somehow, linking the consumption of said content to the consumption of advertisement
messages.

The P2PTube architecture provides optimal support for the “Add supported BM” described in
chapter IV, which is especially suited for an on-line medium.
Said BM’s most relevant operation (in economic terms), is a user’s sale of his attention to an
advertiser over the watching of some specific advertisement Media Object (MO). As
explained in section 2 of chapter IV, there are two modes to this BM: mandatory unrewarded
advertisement viewing; and voluntary rewarded advertisement viewing.

The P2PTube architecture supports both such modes through two different sets of UEL
operations which were already explained in section 5.5.8.3.1. In this manner this system
enables a robust and secure economic exploitation, of the sale of user attention, to take
place.

8.3 Donation BM Support

When employing a donation based BM, a media content delivering initiative obtains its
revenue through the reception of voluntary donations, from content consuming users. Such
initiatives strive to captivate user’s good will and translate it into donations.

This type of BM, which is described in chapter IV, is perfectly supported by the P2PTube
architecture. Its most relevant operation (in economic terms), is a user’s donation, of

V A Reliable P2P Architecture for the New Paradigm 182

monetary, funds to another user and the taxation of that donation, by the content delivering
entity.

This monetary funds donation scheme is supported as a set of UEL operations, which may
be described in the following manner:

• At an early time, a specific producer user, prodU , inserts into the system a specific

MO CCP
iMO . The MO insertion operation is supported in the simple client/server

manner indicated in section 5.5.8.2.1.
• Also at an early time, a specific regular user, iU , loads his system account with

some amount of monetary funds. The monetary funds injection operation is
supported in the simple client/server manner indicated in section 5.5.8.2.1, where the
CCP takes care of all necessary banking operations;

• Some time later, iU decides to consume CCP
iMO . His hosting peer retrieves

CCP
iMO , from the system in the hybrid manner explained in section 5.5.8.2.2;

• iU consumes CCP
iMO , likes it and decides to reward prodU . He specifies prodU and

CCP
iMO ’s identities and the amount to be donated. His hosting peer (e.g. iPP), then

proceeds in the client/server manner indicated in section 5.5.8.2.1. That is:
o iPP issues a secure request to CCP , informing it of the desired donation;

o CCP checks if iU ’s account balance permits the desired donation. If all is ok,

the CCP extracts the indicated amount from iU ’s account, deposits a pre-

determined fraction of it in prodU ’s account and the rest of it in the operating

entity’s account. It then sends acknowledgement response back to iPP for

user information.

Through this set of operations the P2PTube architecture thus enables, in a secure fashion,
the economic exploitation of inter-user monetary donations, over a hybrid P2P architecture.

8.4 Ransom BM Support

The ransom BM is merely a variant of the donation BM. In this variant, donations, from
consumer users to producer ones, are performed before the actual MO is published, as a
form of financing its production.

The only difference from the set of operations presented in section 8.3, is that user iU will

not initially be able to retrieve and consume CCP
iMO . Instead he will only come into contact

with a Ransom Announcement for CCP
iMO (

CCP
iMO

RnsmAnn), published by prodU ,

proclaiming the possibility of CCP
iMO ’s future existence, conditioned to it’s a priori financing

(ransom payment). Furthermore, after a specific cumulative monetary amount (initially

specified in
CCP
iMO

rnsmAnn), is achieved (i.e. the ransom is paid), through donations, it no

longer is possible to donate to prodU , on the grounds of that MO (CCP
iMO), and said

producer is expected to deliver it, within reasonable time.

The base, UEL, operational scheme supporting this BM is the following:

V A Reliable P2P Architecture for the New Paradigm 183

• At an early time, a specific producer user, prodU , inserts into the system a specific

Ransom Announcement,
CCP
iMO

RnsmAnn , publicizing the possible future existence

of MO CCP
iMO , if the system users donate a specific monetary amount (Xamount) to

prodU on the grounds of CCP
iMO . The

CCP
iMO

RnsmAnn insertion operation is

supported in the client/server manner indicated in section 5.5.8.2.1.
• Also at an early time, a specific regular user, iU , securely loads his system account

with some amount of monetary funds. The monetary funds injection operation is
supported in the client/server manner indicated in section 5.5.8.2.1, where the CCP
takes care of all necessary banking operations;

• Some time later, iU comes across
CCP
iMO

RnsmAnn (through an MO search

operation, supported in the hybrid manner explained in section 5.5.8.2.2), and

decides to donate to prodU to finance the production of the CCP
iMO . He specifies

prodU and
CCP
iMO

RnsmAnn , and identities and the amount to be donated. His

hosting peer (e.g. iPP), then proceeds in the client/server manner indicated in

section 5.5.8.2.1. That is:
o iPP issues a secure request to CCP , informing it of the desired donation;

o CCP checks if iU ’s account balance permits the desired donation and if an

Xammount of donations to prodU on the grounds of CCP
iMO

(
CCP
iMO

RnsmAnn), as not yet been reached. If all is ok, the CCP extracts the
indicated amount from iU ’s account, deposits a pre-determined fraction of it

in prodU ’s account and the rest of it in the operating entity’s account. It then

sends acknowledgement response back to iPP for user information.

Through this set of operations the P2PTube architecture thus securely enables the economic
exploitation of a MO ransoming, over a hybrid P2P architecture.

8.5 Traditional BM Support

The traditional BMs supporting the activities of real-world or on-line media content delivering
initiatives are typically based on the direct sale of content access. As argued in chapter IV,
such BMs are not truly suited for an on-line operation. Nonetheless, the P2PTube
architecture is also capable of supporting such business models (if the data model,
presented in section 4, is augmented to support the necessary extra event types).

The basic, UEL, operational scheme to support a BM based on the direct sale of content
access rights is the following:

• At an early time, a specific producer user, prodU , inserts into the system a specific

MO (CCP
iMO). The MO’s media contents are ciphered with a specific secret key,

xK . The delivery of the MO and associated key, to the system, is performed in the

client/server manner indicated in section 5.5.8.2.1, where the key is included in the
sensitive part (see section 5.5.2), of the UEL request message , and the ciphered
MO is included in the non-sensitive part of said message;

V A Reliable P2P Architecture for the New Paradigm 184

• Also at an early time, a specific regular user, iU , loads his system account with

some amount of monetary funds. The monetary funds injection operation is
supported in the simple client/server manner indicated in section 5.5.8.2.1, where the
CCP takes care of all necessary banking operations;

• Some time later, iU decides to consume CCP
iMO . His hosting peer, iPP :

o securely interacts with the CCP (in the simple client/server manner explained

in section 5.5.8.2.1), to acquire, for iU , access rights to CCP
iMO . If all is ok the

CCP handles all the necessary monetary transactions, and sends back

to iPP a data object (
CCP
iMO

iUL), containing a license granting iU the right to

access CCP
iMO and the necessary key to decrypt the MO’s media contents;

o retrieves CCP
iMO , from the system in the hybrid manner explained in section

5.5.8.2.2;

• iPP inspects the received license and CCP
iMO to verify iU ’s right to consume

CCP
iMO , and if all is ok, (as it presumably should be), it proceeds to decipher
CCP
iMO ’s ciphered parts, and render it for iU ’s consumption.

The mentioned license object may be defined as

()


















− 









= x

iUK
iU

CCP
iiCCP

CCPK

CCP
iMO

iU KencEncInfomourightsdefSigInfoidL ensemomaniplicsigned 1

, where parameter ensemomaniplic is the identification of the type of the object, id is the

license’s identifier, CCPSigInfo carries the necessary information to enable the validation of

CCP’s signature of the license, rightsdef is the definition of the specific rights to which the

user is entitled, iu is the identification of the user being given the rights, CCP
imo is the

identifier of the MO over which rights are being granted. The final part of the license is
composed by

iU
EncInfo (a parameter carrying the necessary information, other than the

decryption key, to decode xK), and by the decoding key which is encrypted with the user’s

public key and may, thus, only be decrypted by the user (with his private key).

Other BMs exist (such as the subscription based one, for instance), which are based on the
sale of content access. P2PTube architecture may also enforce such BMs. The main
differences between their supporting operational scheme, and the above presented one, are
that:

• access purchase (and thus, license emission), will be performed with different
periodicity;

• license
CCP
iMO

iUL will grant different rights over different sets of MOs;

The P2PTube thus, also, provides also the necessary tools for a secure exploitation of more
traditional business models.

8.6 Conclusions

As demonstrated in the previous sections, the P2PTube architecture’s versatility enables it to
securely support the business models identified in chapter IV, while harnessing all the

V A Reliable P2P Architecture for the New Paradigm 185

advantages of delivering content over a hybrid P2P architecture. It is thus equipped with the
necessary tools to support successful on-line media delivering initiatives.

 187

VI Contributions

1 Introduction
In this chapter we explain, in a systematic and integrated way, the contributions brought in
by the work developed during the course of this thesis and thoroughly described in the
previous chapters. In particular we explain how they contribute to the advancement of the
current state of the art in the field of safe P2P delivery of rich media content, and in related
fields. We also show how the mentioned contributions were subjected to peer analysis and
acceptance though scientific publication.

Section 2 explains the value-added achieved by having clearly identified and characterized
the on-going techno-economical paradigm change as well as its consequences in terms of
the adequacy of new BMs for on-line content distribution, which may be profitable and
simultaneously popular among consumers.

Section 3 explains the advantages of the innovative P2PTube architecture, over the current
alternatives, in supporting the above-mentioned BMs in a secure and efficient manner. It
shows how said architecture combines and expands different pre-existing technologies and
concepts to provide capabilities presently missing in the field of P2P content delivery.

Section 4 explains the innovative work conducted towards the development of complex and
rich information objects, which are better suited for the new BMs indicated in section 2 and
which take better advantage of the potentialities of the P2PTube architecture.

Section 5 lists and contextualizes the publications which resulted from the work that was
carried out in the course of this thesis.

Finally, section 6 presents this chapter’s concluding remarks.

2 Adequate BM Identification
The work exposed in chapter IV builds on the realization, laid out in chapter III, that the
characteristics of the on-line medium and of on-line content delivery, are leading to an
operational and economic paradigm change in the way media content is distributed.
In chapter IV, we, thus, identify the optimal BMs to support on-line content delivery, within
the conditions established by the mentioned emerging paradigm.

The realization and definition that we have performed, of the on-going paradigm change is
deeper and clearer than those that have come out of other researches and reflections in this
field, and leads us to more radically new conclusions.

In [176] it is realized that the characteristics of information goods production and distribution
are different than those of material goods. They clearly understand that the main costs, in
this context, are those involved in the production of the first copy of an information good, and
that, reproduction costs, (i.e. marginal costs), are approaching zero. Furthermore, the
authors of [176], recognize the economic importance of the capture and sale of user
attention, especially in a context which is characterized by network effects. They also
understand that copyright owners should focus on maximizing the value of their property,
and not its access protection.
In the view, of said authors, there are two main commercial strategies that information goods
producers may follow:

VI Contributions 188

• striving to become the dominant firm, in a specific product niche, and thus achieve a
cost advantage over its competitors, by reducing the average costs of production
though increased sales volume;

• striving to maintain a differentiated product from its competitors:

The study in scope, nonetheless, supports scarcity based BMs, were the revenue is
predominantly derived though the direct sale of content. Thus, in spite of their recognition of
the progressive disappearance of marginal costs, and hence, virtual scarcity, they do not
take the next logical step, that we do, in their analysis of reality, and stop short of truly
realizing, and appreciating the consequences of, the on-going techno-economical parading
shift.

In [177] it is also recognized that online distribution and retail is leading us to a world were
media reproduction (copying) and distribution costs are almost non-existent and
informational scarcity is annulled. Their conclusion is that the way forward, for content
producers/distributors is to “sell less of more”. They argue, that online media stores should
exploit the fact that virtual “shelf space” is unlimited, and, thus, greatly extend their offer in
order to harness the profits of selling low priced and less demanded media goods, i.e. the
“tail goods”. They maintain that such goods are, collectively, profitable enough to sustain
distributors’ operations and competitive enough (price-wise), to compete with free
distribution (typically pirate distribution).
The authors thus identify the progressive annulment of virtual goods’ scarcity, but still cling
onto scarcity dependent BMs, leaning on the use of low pricing schemes to keep the sold
goods competitive. This way, the analysis presented in [177], does not really perceive, we
believe, to its full extent, the consequences of the on-going paradigm change in the field of
information goods’ production and distribution.

In light of the above stated, it becomes evident that the analyses of present reality, in the
field in scope, that are exposed in [176] or [177], (as many other similar works), are not as
incisive and comprehensive as the one we espouse.
The analysis that we have performed, and exposed in chapter IV, contributes, thus, to a
clearer identification and to an expansion of the comprehension of the true dimensions and
consequences, of the on-going changes in the area of information goods production and
distribution, caused by the digitalization and virtualization of such activities.

The conclusions that we derived have taken us a step beyond the views arguing for the
exploitation of the “long tail“, “freemium” BMs, or dynamic pricing schemes, and have lead us
to a fuller acceptance of the fact that the main commodity is user attention, fidelity and good
will.

Given the deeper, and more radical, realizations that are at their base, the BMs, that we
have identified/devised (in chapter IV) for supporting on-line content delivery, are more
realistic and better suited to their operational environment (on-line medium), and to the
“information access culture” of the Internet, than the predominant BMs in current use in that
context.

The BMs, that we have defined, frontally accept the practical elimination of on-line scarcity.
They are thus better prepared to deal with that fact than even service-oriented BMs such as
subscription based ones.

They also take into greater consideration the importance of user attention, as they perform a
more explicit, aggressive, and user satisfactory, acquisition of user attention.

Furthermore, the BM identification and definition work, presented in chapter IV, also
contributes with the definition of BMs, which, more clearly, systematically, and unhesitantly

VI Contributions 189

(than current alternatives in the field in scope), bet on donation and ransom based economic
gain derivation.

Supporting the above mentioned contributions are the inquiry results analysed in section 3 of
chapter IV. Lending further validity, to such contributions, is their recognition by scientific
peers by means of their publication, (by this work’s authors), in the papers referenced in
[166], [178] and [179].

3 Necessary P2P Architecture Definition

3.1 Introduction

To provide the necessary technical support structure for the BMs described in chapter IV, we
defined the P2PTube architecture (exposed in chapter V). It extends and optimizes the
capabilities of current P2P technology, to achieve a better overall performance and to endow
said technology with dependable reliability and security assuring provisions, which,
presently, are typically missing or very poor (in the non-commercial sector), or over
complicated, over intrusive and over stretched (in the commercial sector).

The P2PTube architecture thus merges a hybrid P2P operation with PKI-like security
provisions and rights management capabilities, to provide a superior support for said BMs.

The added value of this architecture, its contribution to the supporting of the new BMs,
resides, more than on any of its individual concepts or solutions, on the devised overall
proposal that results from the conjunction of all said concepts and solutions. The P2PTube
must thus be comparatively analysed in its entirety, and within the technical and economical
context of its operation, so that its contribution becomes more apparent.

Within the above defined context, when compared with the tools and systems exposed in
section 2 of chapter II, (predominantly employed in non-commercial scenarios), the
P2PTube’s advantages consist of a superior efficiency in content delivery and overall system
performance, as well as of a greater level of operational security and reliability.

When compared with the technologies exposed in section 3 of chapter II (typically employed
in commercial scenarios), the P2PTube’s corresponding functionalities present much greater
simplicity and are less intrusive on the user’s enjoyment of the information goods, while
protecting the content owner’s contextual rights.

In comparison to the overall technical solutions typically employed by commercial, P2P
based, content delivery initiatives, the P2PTube architecture presents advantages in the
fields of overall system performance, versatility, seamless integration of security provisions
throughout all system sectors, non-intrusiveness, and exploitation of synergies between
content delivery and security structures.

Given its, overall, superior security capabilities, better operational performance and non-
intrusiveness, the P2PTube architecture is, thus, better equipped and more finely tuned to
support the BMs identified in chapter IV, than existing alternatives.

The next sub-sections present each of the above comparisons in a more detailed manner.

VI Contributions 190

3.2 Comparison to Current P2P Technology

When compared to the technical solutions approached in chapter II, (typically employed in
non-commercial, P2P based, content delivery initiatives), the P2PTube architecture is much
more reliable in the discovery and retrieval of content.

Its centralized registry, (at the CCP, and at the CCP managed OCP collective), of all the
system’s Media Objects (MOs), of the semantic information that characterizes each of them,
and of the availability for their redistribution by the peripheral peer collective (besides other
information), enables:

• semantic based content searches (equivalent to googling), to be performed over the
entire set of available MOs in a rapid manner without flooding the network with
queries and in a single inter-peer interaction (between a PP and the CCP or an
OCP);

• the optimization of content discovery (locating the media files for retrieval). As the
CCP , and all OCPs , have a global view of the system, they are capable of
directing downloading PPs to the most appropriate “server” peers, thus performing an
optimized load balancing and eliminating free riding;

• the optimization of content retrieval. For the reasons expressed in the previous bullet,
the P2PTube architecture can efficiently distribute the burden of content redistribution
over the peer collective thus enabling faster and more reliable media object
retrievals;

• the performing of more efficient, reliable and coherent searches over the entire data
structure of the system, such as searches over users, peers, etc.

Given the trustworthiness of the CCP, and of all OCPs, the system’s distributed core
structure also enables it to provide a number of security facilities which are generally absent
from the P2P platforms (especially those employed in the non-commercial sector), such as:

• guaranteeing the confidentiality, authenticity, integrity and non-repudiability of all
exchanged messages;

• guaranteeing the authenticity, integrity and non-repudiability of all the MOs, and other
information objects distributed across the system (either in a client/server or P2P
fashion);

• guaranteeing peer, user and MO identity.

Endowed with the above stated security capabilities, the P2PTube is thus capable of
supporting a secure management and transaction of monetary funds.

Even if compared to technical solutions, which employ distributed collective/mutual
authentication provisions, as those mentioned in chapter II (e.g. [49] [51]), P2PTube is at an
advantage because such solutions (as explained in section 2.4 of chapter II):

• imply a considerable operational overhead – multiple interactions between peers are
necessary to achieve some security. In P2PTube this is achieved with far less
interactions;

• present considerable weaknesses in the face of sufficiently vast attacks – require that
a minimum quorum of “honest” peers is present. No such necessity exists in
P2PTube architecture;

• frequently assume the reliability of the network – no such assumption exists in
P2PTube architecture;

It may be argued that, as the P2PTube architecture is coordinated by a central entity, it is
less scalable than the typical P2P solution (especially in the non-commercial sector).
However, this is not so. Fully distributed P2P systems present a vast range of scalability

VI Contributions 191

problems, of their own, which are related to the inter-discovery of peers and to the discovery
of content, as the number of peers in the system grows and no entity exists with a global and
consistent view of the system’s state.
In P2PTube architecture, the CCP eliminates such problems, and, if enough resources are
invested into CCP , it’s centrality will not be a problem, just like the centrality of Wikipedia’s
and Google’s central server farms, is not a problem.

A further advantage of the P2PTube solution resides in its employment of a powerful,
versatile and standard tool in all its provisions which deal with serialized information
expression. The tool in question is the MPEG-21 standard. It is employed in the expression
(structuring) of:

• the PLL and UEL messages exchanged between P2PTube peers;
• all the operational information objects employed and distributed in the system;
• the event report request and corresponding event reports;
• the actual consumable MOs distributed throughout the P2PTube;

MPEG-21’s extensive employment renders the P2PTube architecture more standard, than
its current counterparts (which frequently do not even follow a clear and public
communication standard), easier to expand (given the standard’s extensiveness, added
capabilities and continuous evolution), and easier to interface with.

For all this, the P2PTube architecture is capable of reliably and securely supporting a
number of business models, for the delivery of media content, which the solutions employed
in the non-commercial sector of P2P content delivery, clearly cannot, and which the
commercial sector solutions are not optimally suited for.

3.3 Comparison to Current DRM Capabilities

As explained in section 5.5.9 of chapter V, in the P2PTube architecture, the enforcing of
DRM aspects is not handled by isolated components or operations. Instead, its enforcement
pervades the system’s overall structure and operation.

The P2PTube architecture provides all the necessary security provisions to enable a reliable
and trustworthy identification of users, peers and media content, the preservation of MO
integrity, the protection of the association between users and the media content that they
own, and the collection of information on user actions over content.
It thus safeguards the rights of all users to privacy, to a secure access to their account and
user data, and a to a reliable access to MOs. It also protects the rights of content owners as
is guards against content corruption, misuse, and wrongful ownership declaration.

In the present context, when compared with the tools and platforms exposed in section 2, of
chapter II, the P2PTube architecture naturally presents much higher rights management
capabilities, as it possesses much more solid and dependable security provisions (as
explained in section 3.2 of the present chapter).

When compared with the technologies exposed in section 3 of chapter II, P2PTube’s DRM
provisions are lighter and intrude less into the users manipulation of content.
Said provisions have less content access restriction capabilities, but this is really not a
shortcoming. P2PTube’s DRM-like skills serve different immediate objectives (than those of
most technologies presented in section 3 of chapter II) that are dictated by the BMs that the
system must support, which do not depend on content access restriction (scarcity creation).

For that, the provisions in scope are not focussed on access restriction but on the assurance
of information integrity and of authorship declaration authenticity. Such more realistic

VI Contributions 192

objectives are thus more fully achieved by P2PTube’s DRM provisions. These may therefore
be simpler, and intrude less into the users’ enjoyment of content, without it being a
disadvantage. To the contrary, it serves the BMs, defined in chapter IV, better than the
solutions presented in section 3 of chapter II, and contributes to fomenting a more
cooperative attitude, from users, which may thus be counted upon to actually contribute to
the system’s DRM activities, by reporting illegitimate content.

3.4 Comparison to Current Commercial Platforms

When compared to the typical technical platforms employed in commercial, P2P based,
content delivery initiatives (approached in section 4 of chapter II), the P2PTube architecture
presents several technical and BM related advantages.

The P2PTube architecture is tailored to support BMs that derive gains in a lateral manner to
the actual consumption of media goods, (through advertisement and donations).
In accordance with that, it, therefore, practically does not enforce access control. As already
stated in the previous section, this enables the system to maintain a simpler and more
efficient operation, and to provide a level of security which is, contextually, better than those
of the systems presented in section 4 of chapter II (for instance, the access restrictive, Qtrax
or ReelTime).

Also, the P2PTube architecture does not rely on any pre-existing P2P structure (such as
Qtrax and iMesh do), which globally is out of the system’s control and presents reliability
issues. Instead it employs a hybrid structure of its own. Content object location and retrieval
are, thus, performed in a P2P fashion, but under the optimizing coordination of the system’s,
reliable, central provisions (CCP andOCPs), which also handle all trust and security
demanding tasks and maintain a global and updated view of the system’s overall state.
This dedicated structure and its hybridness, therefore, allow the P2PTube architecture to
perform such content object location and retrieval tasks, more efficiently than most systems
presented in section 4 of chapter II (e.g. Babelgum and Joost). Simultaneously, these
characteristics of P2PTube architecture enable it to perform such tasks, in a more reliable
way than most such systems (e.g. Qtrax and iMesh).

Furthermore, the full integration between the architecture’s security and content delivery
provisions enable it to take advantage of synergies between the two. It thus transforms the
typical TTP security solutions, employed by commercial initiatives (for security provisioning),
into an integral component of the overall architecture, which is able to exploit its P2P
capabilities also for security purposes.
For all of the above, the P2PTube architecture is much better equipped, than the technical
solutions in scope, to take full advantage of data super-distribution, in a reliable manner.

The P2PTube architecture, when compared to the technical solutions employed by existing
commercial, P2P based, content delivery systems, thus presents:

• more efficient and reliable content distributions capabilities;
• more powerful content usage monitoring provisions;
• more flexible content manipulation (by users) permissions;

In light of the above, the P2PTube architecture, thus provides more adequate tools, than the
existing, commercially employed, alternatives, to reliably support the opened BMs that we
deem necessary (as explained in chapter IV), for a successful operation in the field of
commercial P2P content delivery.

VI Contributions 193

3.5 Conclusions

Given what was argued in sections 3.2, 3.3 and 3.4 of the present chapter, it may be
concluded that the P2PTube architecture offers new and expanded capabilities when
compared to existing alternatives in the field of P2P content distribution (both in the
commercial and non-commercial sectors).

Its advantages over its non-commercial counterparts stem, basically, from its employment of
reliable and trusted central coordinating provisions and of a number of security tools, whose
employment is rendered possible by said provisions. An added advantage is the
normalization that results from P2PTube’s pervasive employment of MPEG-21.

The advantages of P2PTube solution, over its commercial counterparts, stem from its
employment of a specific and dedicated hybrid-P2P structure of its own, and the synergistic
operation of this structure and of the architecture’s security provisions.

Furthermore, the provisions, of the P2PTube architecture, described in section 6 of chapter
V, enable the reliable, coherent and secure interoperation between any two, mutually
trusted, systems which employ this architecture. This is also an advantage over existing
alternatives, especially in the commercial sector, where interoperability problems are
commonplace.

For all the above, the P2PTube architecture contributes to the expansion of the state-of-the-
art in the field of secure P2P content distribution with opened BMs.

The validation of the P2PTube architecture could, typically, be achieved by means of its
implementation and test. That process was, indeed, approached and some of the system’s
components were effectively developed (such as the cryptographic module for instance).
However, the implementation of the entire architecture proved to be an immense task that
would inevitably be excessively time consuming. Furthermore, the new mechanisms and
architectural solutions, included in P2PTube, are based on some very well established
technological building blocks and concepts (hybrid P2P, PKI, asymmetric cryptography,
MPEG-21). This lends a basic credibility to our proposals. Therefore, P2PTube’s technical
implementation is, we believe, not of fundamental importance to demonstrate its overall
feasibility, as its basic building blocks are robustly established
In light of the above, the full implementation of the P2PTube architecture was not pursued.

Our validation efforts were, instead, focused on attaining scientific peer recognition of the
value of the P2PTube architecture and of the view and concepts that it embodies. In that
regard the papers referenced in [180] [181] were published.

4 Complex MO Development

4.1 Introduction

As it was concluded in chapter IV, online content distribution initiatives, should employ open
access BMs to capture user attention, interest and good will. In this context, the distribution
of richer media objects will be advantageous as it contributes to such acquisitions.

In accordance with this fact, we also performed innovative work in the development of rich
and empowered information objects. This work, even if it is only lateral to the overall thesis
exposed in this dissertation, did attain some relevance, and his, for that reason worth
mentioning.

VI Contributions 194

The work in scope comprises the definition of the file and (MPEG-21 based) metadata
formats of the MOs, distributed though the P2PTube architecture, (presented in chapter V). It
also comprises the definition of a (MPEG-21 based) mechanism for the expression of inter
MO relationships, which has resulted in an extension to part 3 of the MPEG-21 standard.

4.2 MO Format Definition

The defined P2PTube MO format constitutes a novel, complex media object format, with
added capabilities when compared to current media file formats, including those presently
exchanged in P2P networks.

Said format heavily employs the, open and widely known, MPEG-21 standard. This
employment lends the standard’s versatility and power to P2PTube’s MOs, and facilitates
the inclusion of other provisions, in said MOs, that are presented below. The use of MPEG-
21 for the structuring of P2P exchanged secure information objects is a novel contribution.

The P2PTube MO format includes the necessary security provisions to enable the validation
of the integrity and origin authenticity of such objects. It also includes the tools to enable the
precise (RDF based) semantic definition of their content. These features, even if not
exclusive to P2PTube’s MOs, are attained, in them, in a more powerful and organic way,
given the value of the employed standards (MPEG-21 and RDF) and the systemic
integration of the MO’s structure and the system’s overall operation.

The P2PTube MO format thus permits the construction of secure, complex information
(media) objects containing multiple different media resources, richly characterized and inter-
webbed with RDF based semantic metadata. It is, therefore, a more versatile, standard, self-
contained, richer, and more semantically contextualized, object, than those exchanged in
current P2P platforms, both in the commercial and non-commercial sector, enabling a richer
usage experience.

The above mentioned work, (or its forerunning work), was successfully subjected to peer
scrutiny which resulted in the publication of the paper referenced in [182].

4.3 Inter MO Relationships Expression Development

In the course of the development of the P2PTube MO format, work was also done on the
conception of means to perform the expression of inter-MO relationships. This work was
done synergistically with that done within European project CONVERGENCE.

A novel, RDF based, mechanism, was thus defined, to enable the expression of semantic
relationships between MPEG-21 information objects. Said mechanism enables a self-
contained, clearer and less ambiguous expression of the relational context of MOs. It does
so in a more effective and semantically informed manner, than alternate methods (e.g.
HTML). Furthermore, it achieves it in alignment with emergent Semantic Web initiatives as
the Linked-Data proposal.

The mechanism in scope provides the means for the expression of information which can
later be exploited for performing smarter searches over the interrelations between MOs. It
also provides the means to trade query precision for recall and vice-versa, and facilitates the
decoupling of content from location by replacing static links between object locations (the
typical http links), with semantically rich relationships between information objects. It, thus,
semantically and relationally, empowers MPEG-21 enabling the development of a complex,
yet precise and easily interpretable, overall MO fabric.

VI Contributions 195

The, above described, work was validated by peer recognition by means of its publication in
the papers referenced in [183] and [192]. It also originated the submission of a proposal, to
the MPEG-21 consortium, for the extension of part 3 of the MPEG-21 standard, with the
relational capabilities in scope. Said proposal has been accepted and is now part of an
international standard.
The specific MPEG-21 standardization contribution documents are those referenced in [184],
[185], [186] and [187].

5 Publications
In the context of the development of this PhD work, several publications were achieved,
focusing on different aspects of said work. Those publications have already been briefly
addressed in the previous sections of this chapter. It is, however, relevant to present them in
a more detailed and contextualized manner. Below we include a table which lists the
publications in question, in a contextualized manner.

Table 5 – Publications

C
on

fe
re

nc
e

P
ap

er

Paper Reference
Helder Castro , A. Pimenta Alves, "Support for Media Content
Production and Distribution in the Internet Era", First Workshop on
Interdisciplinary Research in New Media, 2007.

Focused Aspect
of Phd Work

This paper presents a long term analysis of the socio-economical

evolution of the support structures for information content production.

The realities that it reveals and the conclusions at which it arrives,

helped guide and fuel the reflexion and analysis present in chapters III

and IV.

C
on

fe
re

nc
e

P
ap

er

Paper Reference

H. Castro , M. T. Andrade, A. P. Alves, "Governed Media
Distribution based on Nonrestrictive DRM", International
Conference on Telecommunications and Multimedia, Ierapetra,
Crete, Greece, 2008.

Focused Aspect
of Phd Work

This paper presents work, developed synergistically with European

project (ENTHRONE), which reflects the analysis presented in chapters III

and IV and which provided some basic ideas for the for the P2PTube

architecture, exposed in chapter V.

C
on

fe
re

nc
e

P
ap

er

Paper Reference
H. Castro , A. P. Alves, "Cognitive Object Format", International
Conference on Knowledge Engineering and Ontology
Development, Funchal, Madeira, Portugal, 2009.

Focused Aspect
of Phd Work

This paper presents work pertaining to the development of complex and

versatile information objects, to increase the attractiveness of all-digital,

on-line content consumption. This work’s contributions are addressed in

section 4 of chapter VI.

Jo
ur

na
l P

ap
er

Paper Reference
Helder Castro , Artur P. Alves, Carlos Serrão, Brett Caraway, "A
New Paradigm for Content Producers", IEEE MultiMedia, vol. 17,
no. 2, pp. 90-93, Apr. 2010.

Focused Aspect
of Phd Work

This paper presents the reflexion and analysis that we have performed,

and the conclusions that we have derived, regarding the on-going

changes, in the field of information distribution, with the development

of on-line delivery. Its content is present in chapters III and IV.

VI Contributions 196

C
on

fe
re

nc
e

P
ap

er

Paper Reference

Helder Castro , Maria Teresa Andrade, Fernando Almeida,
Giuseppe Tropea, Nicola Blefari Melazzi,Leonardo Chiariglione,
Aziz S. Mousas and Dimitra I. Kaklaman, "Exploring Semantic
Relationships Across Internet Resources", NWeSP 2011, Spain,
2011.

Focused Aspect
of Phd Work

This paper presents work pertaining to the development of complex and

versatile information objects, to increase the attractiveness of all-digital,

on-line content manipulation. It’s development was synergistic with the

work done in the European project CONVERGENCE. The developed

work’s contributions are addressed in section 4 of chapter VI.

C
on

fe
re

nc
e

P
ap

er

Paper Reference Helder Castro , Artur P. Alves, "A P2P Content Delivery System
for Alternative Business Models", NWeSP 2011, Spain, 2011.

Focused Aspect
of Phd Work

This paper presents some of the analysis exposed in chapters III and IV.

It then builds on said analysis in order to define a P2P content delivery

system which is adequate for the BMs defined in chapter IV, and whose

basic architectural options are reflected in chapter V.

Jo
ur

na
l P

ap
er

Paper Reference

H. Castro , M.T. Andrade, F. Almeida, G. Troppea, N.B. Melazzi,
A.S. Mousas, and D.I. Kaklamani, “Semantically Connected Web
Resources with MPEG-21”, Springer Multimedia Tools and
Applications (submitted).

Focused Aspect
of Phd Work

This paper presents work pertaining to the development of complex and

versatile information objects, to increase the attractiveness of all-digital,

on-line content manipulation. It focuses on the definition and

exploitation of a mechanism conceived to enable the explicit expression

of inter-Digital Item relationships in MPEG-21. Said mechanism was

accepted as an extension to the MPEG-21 DII and is now part of that

international standard. It’s development was synergistic with the work

done in the European project CONVERGENCE. This work’s contributions

are addressed in section 4.3 of chapter VI.

Jo
ur

na
l P

ap
er

Paper Reference

H. Castro , A. P. Alves and M. T. Andrade, "Reliable P2P Content
Delivery for Alternative Business Models", International Journal of
Computer Information Systems and Industrial Management
Applications, vol. 5, pp. 11–29, 2013 (accepted).

Focused Aspect
of Phd Work

This paper presents the key aspects of the P2P architecture that we have

conceived to securely support the BMs, which, we argue, are adequate

to sustain the on-line distribution of information content. Its contents

are included in chapter V.

6 Conclusions
As the previous sections of the present chapter show, the overall contribution of this thesis,
to the advancement of safe content delivery over P2P networks, is not a single,
individualized, point or proposal. It is instead composed by a set of interrelated and
interdependent parts, as depicted in Figure 64.

At the root of the contribution is the realization, that was performed, of the true depth of the
occurring changes (brought on by on-line, all-digital content delivery), in the world of

VI Contributions 197

information content production and distribution. This realization shaped the posterior course
of our work, as it revealed that safety, in a content distribution operation, is, first and
foremost, dependent of the economical/business aspects of that operation. That is the
reason why said realization, and the consequent identification of adequate BMs to operate in
the on-line medium, play the root role, in our contributions.

Building on the earlier contribution component, is a second such component which consists
of the definition of a P2P architecture containing the necessary/missing security and
coordination provisions to adequately support the enforcement of the above mentioned BMs.

A third and final component, whose need and role is identified by the previous two, consists
of the conception/development of a complex information object format, which enables a
more powerful manipulation of such objects by the system, and a more pleasant usage, of
them, by the users.

Figure 64 – Contribution Interrelations and Publications

Figure 64 also indicates (references) the papers which publish the work done on each of the
contribution components.

 199

VII Final Remarks
Throughout the previous chapters we have presented an interrelated set of reflections,
analyses and proposals, whose full value can best be appreciated only when they are
observed collectively. This means that the defence of that value is not a simple matter as it
requires validating each research component and their logical interconnection.

This complex and broad reaching nature, that our work acquired, was not the fruit of choice
but was, instead, demanded by the characteristics of the problems that we set ourselves to
address. Our search for a safe P2P distribution of media content has thus leads us through
various fields of research, which, we believe, we have managed to successfully traverse to
reach valid and innovative solutions.

In spite of all the work that was developed there is still ample room for further
advancements. In our opinion the most relevant venues for the continuation and
concretization of this work are the following:

• Advancing the architectural solution, presented in chapter V:
o so that the unique CCP, may be replaced by a group of CCPs, which divide

the central core workload amongst themselves, and enable a more
concurrent “writing” access to the system’s data structure, while preserving its
coherence;

o in order to enable a finer differentiation of the roles of core peers, so that finer

grained responsibility and workload distributions can be achieved;

o so as to further empower the system’s periphery so that it becomes able to
distribute, amongst itself, progressively broader parts of the system’s data
structure, whiteout breaching system security and that structure’s coherence;

o in order for it to accommodate the temporary operation of the system (more

accurately, the system’s periphery), in the advent of the (temporary) complete
failure of the CCP or of the entire core;

• Further enrichment of the MO format to enable a more fine grained binding of

semantic concepts to specific “locations” of the media resources;

• Continuation of the studies of user opinion on different on-line content access modes
and BMs in order to further fine tune the BMs identified in chapter IV;

• Implementation and testing of the P2PTube architecture.

We hope that, in this dissertation, we have managed to communicate a clear idea of the
problems that we addressed, of the solutions that we proposed and of the interdependencies
between said problems and solutions.

 201

Annex A – Data Objects

A.1 IPCL Data Objects

A.1.1 IPCLMHFile

Figure 65 presents an example of an IPCL Message Head File.

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:pllm="urn:p2pt:pllm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS
 didl.xsd">
 <Container id="ipclm">
 <Descriptor id="ipclm_srcPIP">
 <Statement mimeType="text/plain">
 IP address of the source peer
 </Statement>
 </Descriptor>
 <Descriptor id="ipclm_dstPIP">
 <Statement mimeType="text/plain">
 IP address of the destination peer
 </Statement>
 </Descriptor>
 <Item id="ipclm_content">
 <Component>
 <Resource mimeType="application/tar" ref="PLLMFile name"/>
 </Component>
 </Item>
 </Container>
</DIDL>

Figure 65 – IPCLMHFile Example

A.2 PLL Data Objects

A.2.1 PLL Message

A.2.1.1 PLLSIHFile

Figure 66 presents an example of a PLL Sensitive Info Head File.

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:pllm="urn:p2pt:pllm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS
 didl.xsd">
 <Container id="pllm_pllsih">
 <Descriptor id="encinfodescr">
 <Statement mimeType="text/xml">
 <DIDL id="encinfo">
 <Container>
 <Item id="pid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the encoding peer

Annex A 202

 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the encoding algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">
 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 <Item id="commSessID">
 <Component >
 <Resource mimeType="text/plain">
 id of the communication session
 </Resource>
 </Component>
 </Item>
 </Container>
 </DIDL>
 </Statement>
 </Descriptor>
 <Item id="pllm_securecontent">
 <Component>
 <Resource mimeType="application/tar" ref="EncodedFileName"/>
 </Component>
 </Item>
 </Container>
</DIDL>

Figure 66 – PLLSIHFile Example

A.2.1.2 PLLPSIHFile

Figure 67 presents an example of a PLL Protected Sensitive Info Head File.

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:pllm="urn:p2pt:pllm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS
 didl.xsd">
 <Container id="pllm_pllpsih">

Annex A 203

 <Descriptor id="signature">
 <Statement mimeType="text/xml">
 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Item id="pllm_pllpsi_signed_content">
 <Item id="pllm_pllpsic">
 <Component>
 <Resource mimeType="text/xml" ref="PLLPSICFileName"/>
 </Component>
 </Item>
 </Item>
 </Container>
</DIDL>

Figure 67 – PLLPSIHFile Example

A.2.1.3 PLLPSICTopFile

Figure 68 presents an example of a PLL Protected Sensitive Info Core Top File.

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:pllm="urn:p2pt:pllm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS
 didl.xsd">
 <Container id="pllm_pllsic">
 <Item id="siginfo">
 <Component>
 <Resource>
 <DIDL id="siginfo">
 <Container>
 <Item id="pid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the signing peer
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the signing algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">
 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>

Annex A 204

 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 </Container>
 </DIDL>
 </Resource>
 </Component>
 </Item>
 <Item id="serial">
 <Item id="previousSerialPart">
 <Item id="sessionID">
 <Component>
 <Resource mimeType="text/plain">
 session id
 </Resource>
 </Component>
 </Item>
 <Item id="tstamp">
 <Component>
 <Resource mimeType="text/plain">
 YYYY-MM-DDThh:mmTZD
 </Resource>
 </Component>
 </Item>
 <Item id="msgcount">
 <Item id=”type”>
 <Component>
 <Resource mimeType="text/plain">
 req
 </Resource>
 </Component>
 </Item>
 <Item id=”count”>
 <Component>
 <Resource mimeType="text/plain">
 value of the message counter
 </Resource>
 </Component>
 </Item>
 </Item>
 </Item>
 <Item id="newSerialPart">
 <Item id="sessionID">
 <Component>
 <Resource mimeType="text/plain">
 session id
 </Resource>
 </Component>
 </Item>
 <Item id="tstamp">
 <Component>
 <Resource mimeType="text/plain">
 YYYY-MM-DDThh:mmTZD
 </Resource>
 </Component>
 </Item>

Annex A 205

 <Item id="msgcount">
 <Item id=”type”>
 <Component>
 <Resource mimeType="text/plain">
 resp
 </Resource>
 </Component>
 </Item>
 <Item id=”count”>
 <Component>
 <Resource mimeType="text/plain">
 value of the message counter
 </Resource>
 </Component>
 </Item>
 </Item>
 </Item>
 </Item>
 </Container>
</DIDL>

Figure 68 – PLLPSICTopFile Example

A.2.2 Peer Registration Certificate

Figure 69 presents an example of a peripheral peer’s registration certificate.

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:prc="urn:p2pt:prc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS
 didl.xsd">
 <Container id="prc">
 <Descriptor id="prc_signature">
 <Statement mimeType="text/xml">
 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Item id="prc_content">
 <Descriptor id="id">
 <Statement mimeType="text/xml">
 <dii:Identifier>
 p2ptube:io:rcertif001
 </dii:Identifier>
 </Statement>
 </Descriptor>
 <Descriptor id="prc_validTerm">
 <Statement mimeType="text/plain">
 "YYYY-MM-DDThh:mmTZD"
 </Statement>
 </Descriptor>
 <Descriptor id="siginfodescr">
 <Statement mimeType="text/xml">
 <DIDL id="siginfo">
 <Container>
 <Item id="pid">
 <Component>
 <Resource mimeType="text/plain">

Annex A 206

 identification of the signing peer
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the signing algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">
 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 </Container>
 </DIDL>
 </Statement>
 </Descriptor>
 <Item id="sid">
 <Descriptor id="peerIDInfo_signature">
 <Statement mimeType="text/xml">
 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Item id="peerIDInfo">
 <Item id="pid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the peer
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the peer's signing algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">

Annex A 207

 identifier of the peer's public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the peer's private key
 </Statement>
 </Descriptor>
 </Item>
 </Item>
 </Item>
 <Item id="prc_peerRole">
 <Component>
 <Resource mimeType="text/plain">
 peripheral
 </Resource>
 </Component>
 </Item>
 </Item>
 </Container>
</DIDL>

Figure 69 – Peer Registration Certificate Example

A.2.3 PLL Peer Info Object

Figure 70 presents an example of a PLL Peer Info Object.

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:pio="urn:p2pt:pio"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS
 didl.xsd">
 <Container id="pio">
 <Descriptor id="pio_signature">
 <Statement mimeType="text/xml">
 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Item id="pio_content">
 <Descriptor id="id">
 <Statement mimeType="text/xml">
 <dii:Identifier>
 p2ptube:io:pio001
 </dii:Identifier>
 </Statement>
 </Descriptor>
 <Descriptor id="vTerm">
 <Statement mimeType="text/plain">
 YYYY-MM-DDThh:mmTZD

Annex A 208

 </Statement>
 </Descriptor>
 <Descriptor id="siginfodescr">
 <Statement mimeType="text/xml">
 <DIDL id="siginfo">
 <Container>
 <Item id="pid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the signing peer
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the signing algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">
 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 </Container>
 </DIDL>
 </Statement>
 </Descriptor>
 <Item id="peerIP">
 <Component>
 <Resource mimeType="text/plain">

 </Resource>
 </Component>
 </Item>
 <Item id="peerRegCertif">
 <Component>
 <Resource mimeType="text/xml">
 <DIDL>

 </DIDL>
 </Resource>
 </Component>
 </Item>
 </Item>

Annex A 209

 </Container>
</DIDL>

Figure 70 – Peer Info Object Example

A.2.4 Peer Quarantine List

Figure 71 presents an example of a Peer Quarantine List.

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:pql="urn:p2pt:pql"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS
 didl.xsd">
 <Container id="pql">
 <Descriptor id="pql_signature">
 <Statement mimeType="text/xml">
 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Item id="pql_content">
 <Descriptor id="vTerm">
 <Statement mimeType="text/plain">
 YYYY-MM-DDThh:mmTZD
 </Statement>
 </Descriptor>
 <Descriptor id="siginfodescr">
 <Statement mimeType="text/xml">
 <DIDL id="siginfo">
 <Container>
 <Item id="pid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the signing peer
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the signing algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">
 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">

Annex A 210

 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 </Container>
 </DIDL>
 </Statement>
 </Descriptor>
 <Item id="quarantinedPeer1">
 <Component>
 <Resource mimeType="text/plain">
 peer 1 id
 </Resource>
 </Component>
 </Item>

 <Item id="quarantinedPeerN">
 <Component>
 <Resource mimeType="text/plain">
 peer N id
 </Resource>
 </Component>
 </Item>
 </Item>
 </Container>
</DIDL>

Figure 71 – Peer Quarantine List Example

A.2.5 PLL Info Retrieval Permit

Figure 72 presents an example of a PLL Info Retrieval Permit.

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:plliorp="urn:p2pt: plliorp"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS
 didl.xsd">
 <Container id="pirp">
 <Descriptor id="pirp_signature">
 <Statement mimeType="text/xml">
 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Item id="pirp_content">
 <Descriptor id="id">
 <Statement mimeType="text/xml">
 <dii:Identifier>
 p2ptube:io:pirp001
 </dii:Identifier>
 </Statement>
 </Descriptor>
 <Descriptor id="objectType">
 <Statement mimeType="text/plain">
 ppInfoRetrPermit

Annex A 211

 </Statement>
 </Descriptor>
 <Descriptor id="vTerm">
 <Statement mimeType="text/plain">
 YYYY-MM-DDThh:mmTZD
 </Statement>
 </Descriptor>
 <Descriptor id="siginfodescr">
 <Statement mimeType="text/xml">
 <DIDL id="siginfo">
 <Container>
 <Item id="pid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the signing peer
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the signing algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">
 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 </Container>
 </DIDL>
 </Statement>
 </Descriptor>
 <Item id="queryingPeerInfo">
 <Item id="queryingPeerID">
 <Component>
 <Resource mimeType="text/plain">
 p2ptube:ppeer:xpto001
 </Resource>
 </Component>
 </Item>
 </Item>
 <Item id="searchedInfoDef">

 </Item>

Annex A 212

 <Item id="pllildoID">
 <Component>
 <Resource mimeType="text/plain">
 p2ptube:ppeer:pllildo001
 </Resource>
 </Component>
 </Item>
 </Item>
 </Container>
</DIDL>

Figure 72 – PLL Info Object Retrieval Permit Example

A.3 UEL Data Objects

A.3.1 UEL Message

A.3.1.1 UELSIFile

Figure 73 presents an example of a UEL Sensitive Info File.

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:uelsif="urn:p2pt:uelsif"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS
 didl.xsd">
 <Container id="uelm_uelsi">
 <Descriptor id="usignature">
 <Statement mimeType="text/xml">
 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Item id="uelsif_content">
 <Descriptor id="siginfodescr">
 <Statement mimeType="text/xml">
 <DIDL id="siginfo">
 <Container>
 <Item id="uid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the signing user
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the signing algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">
 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>

Annex A 213

 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 </Container>
 </DIDL>
 </Statement>
 </Descriptor>
 <Descriptor id="serial">
 <Statement mimeType="text/xml">

 </Statement>
 </Descriptor>
 <Item id="uels_info">
 <Item id="uelmsgtype">
 <Component>
 <Resource mimeType="text/xml">

 </Resource>
 </Component>
 </Item>
 <Item id="further_uels_info_param1">
 <Component>
 <Resource mimeType="text/xml">

 </Resource>
 </Component>
 </Item>

 <Item id="further_uels_info_paramn">
 <Component>
 <Resource mimeType="text/xml">

 </Resource>
 </Component>
 </Item>
 </Item>
 </Item>
 </Container>
</DIDL>

Figure 73 – UELSIFile Example

A.3.2 User Registration Certificate

Figure 74 presents an example of a User Registration Certificate.

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:urc="urn:p2pt:urc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS

Annex A 214

 didl.xsd">
 <Container id="urc">
 <Descriptor id="urc_signature">
 <Statement mimeType="text/xml">
 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Item id="urc_content">
 <Descriptor id="id">
 <Statement mimeType="text/xml">
 <dii:Identifier>
 p2ptube:io:rcertifu001
 </dii:Identifier>
 </Statement>
 </Descriptor>
 <Descriptor id="vTerm">
 <Statement mimeType="text/plain">
 YYYY-MM-DDThh:mmTZD
 </Statement>
 </Descriptor>
 <Descriptor id="siginfodescr">
 <Statement mimeType="text/xml">
 <DIDL id="siginfo">
 <Container>
 <Item id="pid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the signing peer
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the signing algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">
 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 </Container>

Annex A 215

 </DIDL>
 </Statement>
 </Descriptor>
 <Item id="sidU_item">
 <Component>
 <Resource mimeType="text/xml">
 <DIDL id="sidU">
 <Container>
 <Descriptor id="uInfoSignature">
 <Statement mimeType="text/xml">
 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Item id="userInfo">
 <Item id="uid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the user
 </Resource>
 </Component>
 </Item>
 <Item id="uname">
 <Component>
 <Resource mimeType="text/plain">
 username
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the user's signing algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">
 identifier of the user's public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the user's private key
 </Statement>
 </Descriptor>
 </Item>
 </Item>
 </Container>
 </DIDL>
 </Resource>

Annex A 216

 </Component>
 </Item>
 </Item>
 </Container>
</DIDL>

Figure 74 – User Registration Certificate Example

A.3.3 User Hosting Certificate

Figure 75 presents an example of a User Hosting Certificate.

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:upc="urn:p2pt:upc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS
 didl.xsd">
 <Container id="uhc">
 <Descriptor id="uhc_signature">
 <Statement mimeType="text/xml">
 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Item id="uhc_content">
 <Descriptor id="id">
 <Statement mimeType="text/xml">
 <dii:Identifier>
 p2ptube:io:uhostcertif001
 </dii:Identifier>
 </Statement>
 </Descriptor>
 <Descriptor id="vTerm">
 <Statement mimeType="text/plain">
 "YYYY-MM-DDThh:mmTZD"
 </Statement>
 </Descriptor>
 <Descriptor id="siginfodescr">
 <Statement mimeType="text/xml">
 <DIDL id="siginfo">
 <Container>
 <Item id="pid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the signing peer
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the signing algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">

Annex A 217

 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 </Container>
 </DIDL>
 </Statement>
 </Descriptor>
 <Item id="hostPeerInfo">
 <Item id="hostPeerID">
 <Component>
 <Resource mimeType="text/plain">
 p2ptube:ppeer:xpto001
 </Resource>
 </Component>
 </Item>
 </Item>
 <Item id="rcertifU">

 </Item>
 </Item>
 </Container>
</DIDL>

Figure 75 – User Hosting Certificate Example

A.3.4 Search Query Response Object

Figure 76 presents an example of a Search Query Response Object.

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:sqro="urn:p2pt:sqro"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS
 didl.xsd">
 <Container id="sqro">
 <Descriptor id="sqro_signature">
 <Statement mimeType="text/xml">
 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Item id="sqro_content">
 <Descriptor id="id">
 <Statement mimeType="text/xml">
 <dii:Identifier>
 p2ptube:io:sqro001

Annex A 218

 </dii:Identifier>
 </Statement>
 </Descriptor>
 <Descriptor id="siginfodescr">
 <Statement mimeType="text/xml">
 <DIDL id="siginfo">
 <Container>
 <Item id="pid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the signing peer
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the signing algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">
 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 </Container>
 </DIDL>
 </Statement>
 </Descriptor>
 <Descriptor id="sqro_emissiontime">
 <Statement mimeType="text/plain">
 YYYY-MM-DDThh:mmTZD
 </Statement>
 </Descriptor>
 <Descriptor id="sqro_answeredquery">
 <Statement mimeType="text/xml">
 <DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:sqro="urn:p2pt:sqro"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS
 didl.xsd">
 <Container id="answeredQ">
 <Descriptor id="answeredQ_signature">
 <Statement mimeType="text/xml">

Annex A 219

 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Item>
 <Descriptor id="id">
 <Statement mimeType="text/xml">
 <dii:Identifier>
 p2ptube:io:answeredQ001
 </dii:Identifier>
 </Statement>
 </Descriptor>
 <Descriptor id="siginfodescr">
 <Statement mimeType="text/xml">
 <DIDL id="siginfo">
 <Container>
 <Item id="pid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the signing peer
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the signing algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">
 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 </Container>
 </DIDL>
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 query string
 </Resource>
 </Component>
 </Item>

Annex A 220

 </Container>
 </DIDL>
 </Statement>
 </Descriptor>
 <Component id="sqro_molist">
 <Resource mimeType="text/xml">
 <sqro:MOList>

 </sqro:MOList>
 </Resource>
 </Component>
 </Item>
 </Container>
</DIDL>

Figure 76 – SQRO Example

A.3.5 UEL Information Location Describing Object

Figure 77 presents an example of a UELILDO Object.

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:uelildo="urn:p2pt:uelildo"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS
 didl.xsd">
 <Container id="uelildo">
 <Descriptor id="uelildo_signature">
 <Statement mimeType="text/xml">
 <dsig:Signature>..........</dsig:Signature>
 </Statement>
 </Descriptor>
 <Item id="uelildo_content">
 <Descriptor id="id">
 <Statement mimeType="text/xml">
 <dii:Identifier>
 p2ptube:io:uelildo001
 </dii:Identifier>
 </Statement>
 </Descriptor>
 <Descriptor id="siginfodescr">
 <Statement mimeType="text/xml">
 <DIDL id="siginfo">
 <Container>
 <Item id="pid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the signing peer
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the signing algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">

Annex A 221

 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">
 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 </Container>
 </DIDL>
 </Statement>
 </Descriptor>
 <Descriptor id="uelildo_emissiontime">
 <Statement mimeType="text/plain">
 YYYY-MM-DDThh:mmTZD
 </Statement>
 </Descriptor>
 <Item id="uelildo_loclist">
 <Item id="hostPeer1Info">
 <Item id="hostPeerID">
 <Component>
 <Resource mimeType="text/plain">
 p2ptube:ppeer:xpto001
 </Resource>
 </Component>
 </Item>
 </Item>

 <Item id="hostPeerNInfo">
 <Item id="hostPeerID">
 <Component>
 <Resource mimeType="text/plain">
 p2ptube:ppeer:xpto00n
 </Resource>
 </Component>
 </Item>
 </Item>
 </Item>
 <Item id="uelildo_fraglist">
 <Component>
 <Resource mimeType="text/xml">
 <DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS didl.xsd">
 <Container id="fraglist">
 <Descriptor id="fraglist_signature">
 <Statement mimeType="text/plain">
 YYYY-MM-DDThh:mmTZD
 </Statement>

Annex A 222

 </Descriptor>
 <Item id="fraglist_content">
 <Descriptor id="fraglist_id">
 <Statement mimeType="text/xml">
 <dii:Identifier>
 p2ptube:io:fraglist001
 </dii:Identifier>
 </Statement>
 </Descriptor>
 <Descriptor id="siginfodescr">
 <Statement mimeType="text/xml">
 <DIDL id="siginfo">
 <Container>
 <Item id="pid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the signing peer
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the signing algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">
 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 </Container>
 </DIDL>
 </Statement>
 </Descriptor>
 <Item id="moID">
 <Component>
 <Resource mimeType="text/plain">
 p2ptube:mo:abc1
 </Resource>
 </Component>
 </Item>
 <Item id="fragDefs">
 <Item id="fragDef1">
 <Descriptor id="fragID">

Annex A 223

 <Statement mimeType="text/xml">
 p2ptube:mo:abc1:frag0
 </Statement>
 </Descriptor>
 <Descriptor id="fragSize">
 <Statement mimeType="text/xml">
 size of the fragment
 </Statement>
 </Descriptor>
 <Descriptor id="siginfodescr">
 <Statement mimeType="text/xml">
 <DIDL id="siginfo">
 <Container>
 <Item id="pid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the signing peer
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the signing algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">
 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 </Container>
 </DIDL>
 </Statement>
 </Descriptor>
 <Descriptor id="fragSignature">
 <Statement mimeType="text/xml">
 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="application/p2ptmo" ref="p2ptube:mo:abc1"/>
 <Anchor>

Annex A 224

 <Descriptor>
 <Statement mimeType="text/plain">
 p2ptube:mo:abc1:frag0
 </Statement>
 </Descriptor>
 <Fragment fragmentId="offset(0,100000)"/>
 </Anchor>
 </Component>
 </Item>

 <Item id="fragDefN">
 <Descriptor id="fragID">
 <Statement mimeType="text/xml">
 p2ptube:mo:abc1:fragN
 </Statement>
 </Descriptor>
 <Descriptor id="fragSize">
 <Statement mimeType="text/xml">
 size of the fragment
 </Statement>
 </Descriptor>
 <Descriptor id="fragSignature">
 <Statement mimeType="text/xml">
 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="application/p2ptmo" ref="p2ptube:mo:abc1"/>
 <Anchor>
 <Descriptor>
 <Statement mimeType="text/plain">
 p2ptube:mo:abc1:fragN
 </Statement>
 </Descriptor>
 <Fragment fragmentId="offset(100000,200000)"/>
 </Anchor>
 </Component>
 </Item>
 </Item>
 </Item>
 </Container>
 </DIDL>
 </Resource>
 </Component>
 </Item>
 </Item>
 </Container>
</DIDL>

Figure 77 – UELILDO Example

A.3.6 UEL Info Retrieval Permit

Figure 78 presents an example of an UEL Info Retrieval Permit.

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"

Annex A 225

 xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS
 didl.xsd">
 <Container id="uelirp">
 <Descriptor id="uelirp_signature">
 <Statement mimeType="text/xml">
 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Item id="uelirp_content">
 <Descriptor id="uelirp_permtype_declaration">
 <Statement mimeType="text/plain">
 UEL Info Retrieval Permit
 </Statement>
 </Descriptor>
 <Descriptor id="uelirp_tstamp">
 <Statement mimeType="text/plain">
 YYYY-MM-DDThh:mmTZD
 </Statement>
 </Descriptor>
 <Descriptor id="siginfodescr">

 </Descriptor>
 <Item id="enabledPeerInfo">
 <Item id="enabledPeerID">
 <Component>
 <Resource mimeType="text/plain">
 p2ptube:ppeer:xpto001
 </Resource>
 </Component>
 </Item>
 </Item>
 <Item id="infodef">
 <Item id="moID">
 <Component>
 <Resource mimeType="text/plain">
 p2ptube:mo:abc1
 </Resource>
 </Component>
 </Item>
 </Item>
 <Item id="uelildo">
 <Component>
 <Resource mimeType="text/xml">
 <DID>

 </DID>
 </Resource>
 </Component>
 </Item>
 </Item>
 </Container>
</DIDL>

Figure 78 – UEL Info Retrieval Permit Example

A.3.7 Media Objects

Figure 79 presents an example of a MOTHFile’s contents.

Annex A 226

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS
 didl.xsd">
 <Container id="moth">

 <Descriptor id="moth_signature">

 <Statement mimeType="text/xml">

 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>

 <Item id="moth_content">

 <Descriptor id="moid">

 <Statement mimeType="text/xml">

 <dii:Identifier>

 p2ptube:io:mo001
 </dii:Identifier>
 </Statement>
 </Descriptor>

 <Descriptor id="siginfodescr">

 <Statement mimeType="text/xml">

 <DIDL id="siginfo">

 <Container>

 <Item id="pid">

 <Component>

 <Resource mimeType="text/plain">

 identification of the signing peer
 </Resource>
 </Component>
 </Item>

 <Item id="algdef">

 <Component>

 <Resource mimeType="text/plain">

 definition of the signing algorithm

 </Resource>
 </Component>
 </Item>

 <Item id="pubk">

 <Descriptor id="pubkid">

 <Statement mimeType="text/plain">

 identifier of the public key

 </Statement>
 </Descriptor>
 <Component>

 <Resource mimeType="text/plain">

 public key
 </Resource>
 </Component>
 </Item>

 <Item id="privk">

 <Descriptor id="privk">

 <Statement mimeType="text/plain">

 identifier of the private key

 </Statement>
 </Descriptor>
 </Item>
 </Container>
 </DIDL>
 </Statement>
 </Descriptor>

 <Descriptor id="tstamp">

Annex A 227

 <Statement mimeType="text/plain">

 YYYY-MM-DDThh:mmTZD
 </Statement>
 </Descriptor>

 <Descriptor id="moi_signature">

 <Statement mimeType="text/xml">

 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>

 <Component id="moiRef">

 <Resource mimeType="application/tar" ref="MOIFileName"/>

 </Component>
 </Item>
 </Container>
</DIDL>

Figure 79 – MOTHFile Example

Figure 80 presents an example of a MOIHFile’s contents.

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS
 didl.xsd">
 <Container id="moih">
 <Descriptor id="moih_u_signature">
 <Statement mimeType="text/xml">
 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Item id="moih_content">
 <Descriptor id="siginfodescr">
 <Statement mimeType="text/xml">
 <DIDL id="siginfo">
 <Container>
 <Item id="uid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the signing user
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the signing algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">
 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>

Annex A 228

 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 </Container>
 </DIDL>
 </Statement>
 </Descriptor>
 <Descriptor id="ownerUserID">
 <Statement mimeType="text/plain">
 p2ptube:user:abc1
 </Statement>
 </Descriptor>
 <Descriptor id="moih_semantics">
 <Statement mimeType="text/xml">
 <rdf:RDF>

 </rdf:RDF>
 </Statement>
 </Descriptor>
 <Descriptor id="moih_rights">
 <Statement mimeType="text/xml">
 <r:license>

 </r:license>
 </Statement>
 </Descriptor>
 <Item id="moicFilesInfo">
 <Item id="moic1">
 <Descriptor id="moic1_u_signature">
 <Statement mimeType="text/xml">
 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="video/mpeg" ref="MOIC1_FileName"/>
 </Component>
 </Item>
 ……. further Items
 <Item id="moicn">
 <Descriptor id="moicn_u_signature">
 <Statement mimeType="text/xml">
 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="video/mpeg" ref="MOICN_FileName"/>
 </Component>

Annex A 229

 </Item>
 </Item>
 </Item>
 </Container>
</DIDL>

Figure 80 – MOIHFile Example

A.3.8 ERRs and ERs

Figure 81 presents an example of a P2PTube DID carrying an ERR (the actual ERR content
is adapted from [102]).

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xmlns:r="urn:mpeg:mpeg21:2003:01-REL-R-NS"
 xmlns:erl="urn:mpeg:mpeg21:2005:01-ERL-NS"
 xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-NS">
 xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS didl.xsd">
 <Container id="err">
 <Descriptor id="err_cp_signature">
 <Statement mimeType="text/xml">
 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Item id="err_content">
 <Descriptor id="err_ID">
 <Statement mimeType="text/plain">
 <dii:Identifier>p2ptube:err:0001</dii:Identifier>
 </Statement>
 </Descriptor>
 <Descriptor id="siginfodescr">
 <Statement mimeType="text/xml">
 <DIDL id="siginfo">
 <Container>
 <Item id="pid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the signing peer
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the signing algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">
 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">

Annex A 230

 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 </Container>
 </DIDL>
 </Statement>
 </Descriptor>
 <Item id="err_proper">
 <Component>
 <Resource mimeType="text/xml">
 <erl:ERR xmlns="urn:mpeg:mpeg21:2005:01-ERL-NS"
 xmlns:sx="urn:mpeg:mpeg21:2003:01-REL-SX-NS"
 xmlns:dia="urn:mpeg:mpeg21:2003:01-DIA-NS"
 xmlns:mpeg7="urn:mpeg:mpeg7:schema:2004">
 <ERRDescriptor>
 <LifeTime>
 <StartTime>2011-07-01T00:00:00</StartTime>
 <EndTime>2011-07-08T00:00:00</EndTime>
 </LifeTime>
 <Modification>
 <PeerId>........................</PeerId>
 <UserId>........................</UserId>
 <Time>2011-06-30T18:15:00</Time>
 <Description>Creation of ER-R by Bob@acme.org</Description>
 </Modification>
 <Priority>1</Priority>
 </ERRDescriptor>
 <ERSpecification>
 <Identifier xmlns="urn:mpeg:mpeg21:2002:01-DII-NS">urn:mpegRA:mpeg21:dii:eid:1702</Identifier>
 <ERDescription>This is a description of the ER</ERDescription>
 <AccessControl/>
 <ERPayloadSpecification>
 <ERIdentifier baseId="true">p2ptube:err:0001:er</ERIdentifier>
 <PeerId/>
 <UserId/>
 <Time/>
 <Location/>
 <DIOperation/>
 <DomainData reportTag="Name" semantics="acme:PhoneName" syntax="xsd:String"/>
 <DomainData semantics="AcmeFilm:length" syntax="xsd:Integer" value="155"/>
 <DIMetadata>
 <DISelection>
 <DISelectionViaDII>
 urn:mpegra:mpeg21:dii:isrc:BE-R45-98-03948576
 </DISelectionViaDII>
 </DISelection>
 <DIMetadataElement tagName="Title"/>
 <DIMetadataElement tagName="Artist"/>
 <DIMetadataElement tagName="ISWC"/>
 </DIMetadata>
 </ERPayloadSpecification>
 <ERFormatSpecification>

Annex A 231

 <Ref>http://www.acme.org/schemas/phones.xsd</Ref>
 </ERFormatSpecification>
 <ERDeliverySpecification>
 <Recipient>
 <PeerId>p2ptube:ppeer:ccp</PeerId>
 <UserId>........................</UserId>
 </Recipient>
 <DeliveryTime>
 <SpecificTime>
 <AfterOn>2012-07-06T00:00:00</AfterOn>
 <BeforeOn>2012-09-06T00:00:00</BeforeOn>
 </SpecificTime>
 </DeliveryTime>
 <DITransportService>
 <r:serviceReference>
 <sx:wsdlComplete>
 <sx:wsdl>
 <nonSecureIndirect URI="http://www.acme.org/ER-wsdlfile.xml"/>
 </sx:wsdl>
 <sx:service>er:SendERService</sx:service>
 <sx:portType>er:SendERPortType</sx:portType>
 </sx:wsdlComplete>
 </r:serviceReference>
 </DITransportService>
 </ERDeliverySpecification>
 <EmbeddedERR>
 <ERRReference>mpeg:mpeg21:dii:ERRID:010</ERRReference>
 </EmbeddedERR>
 </ERSpecification>
 <EventConditionDescriptor>
 <TimeCondition>
 <TimeEvent>
 <SpecificTime>
 <AfterOn>2012-01-01T00:00:00</AfterOn>
 <BeforeOn>2012-01-31T00:00:00</BeforeOn>
 </SpecificTime>
 </TimeEvent>
 <Operator Name="OR"/>
 <TimeEvent>
 <PeriodicTime>
 <Start>2012-07-06T00:00:00</Start>
 <Period>P2M10D</Period>
 <Duration>P1D</Duration>
 <End>2013-07-06T00:00:00</End>
 </PeriodicTime>
 </TimeEvent>
 </TimeCondition>
 <Operator Name="AND"/>
 <DIOperationCondition>
 <DIOperationEvent>
 <Operation>REL:Play</Operation>
 <DII>mpeg:mpeg21:dii:ID:ACME-010</DII>
 </DIOperationEvent>
 </DIOperationCondition>
 <Operator Name="AND"/>
 <PeerCondition>
 <PeerEvent Name="=" Location="infix">
 <mpeg7:Region>au</mpeg7:Region>
 </PeerEvent>
 <Operator Name="OR"/>

Annex A 232

 <PeerEvent Name="=" Location="infix">
 <mpeg7:Region>kr</mpeg7:Region>
 </PeerEvent>
 </PeerCondition>
 </EventConditionDescriptor>
 </erl:ERR>
 </Resource>
 </Component>
 </Item>
 <Item id="peerInfo">
 <Item id="peerID">
 <Component>
 <Resource mimeType="text/plain">
 p2ptube:ppeer:xpto001
 </Resource>
 </Component>
 </Item>
 </Item>
 </Item>
 </Container>
</DIDL>

Figure 81 – ERR DID Example

Figure 82 presents an example of a P2PTube DID carrying an ER (the actual ER content is
adapted from [102]).

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xmlns:r="urn:mpeg:mpeg21:2003:01-REL-R-NS"
 xmlns:erl="urn:mpeg:mpeg21:2005:01-ERL-NS"
 xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-NS">
 xsi:schemaLocation="urn:mpeg:mpeg21:2002:02-DIDL-NS didl.xsd">
 <Container id="er">
 <Descriptor id="er_pp_signature">
 <Statement mimeType="text/xml">
 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Item id="er_content">
 <Descriptor id="siginfodescrB">
 <Statement mimeType="text/xml">
 <DIDL id="siginfo">
 <Container>
 <Item id="pid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the signing peer
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the signing algorithm
 </Resource>
 </Component>

Annex A 233

 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">
 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 </Container>
 </DIDL>
 </Statement>
 </Descriptor>
 <Descriptor id="er_u_signature">
 <Statement mimeType="text/xml">
 <dsig:Signature>

 </dsig:Signature>
 </Statement>
 </Descriptor>
 <Item id="er">
 <Descriptor id="id">
 <Statement mimeType="text/xml">
 <dii:Identifier>
 p2ptube:io:er001
 </dii:Identifier>
 </Statement>
 </Descriptor>
 <Descriptor id="siginfodescrC">
 <Statement mimeType="text/xml">
 <DIDL id="siginfo">
 <Container>
 <Item id="pid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the signing user
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the signing algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">

Annex A 234

 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 </Container>
 </DIDL>
 </Statement>
 </Descriptor>
 <Item id="err_ID">
 <Component>
 <Resource mimeType="text/plain">
 p2ptube:err:0001
 </Resource>
 </Component>
 </Item>
 <Item>
 <Component>
 <Resource mimeType="text/xml">
 <erl:ER xmlns="urn:mpeg:mpeg21:2005:01-ERL-NS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:mpeg7="urn:mpeg:mpeg7:schema:2004">
 <ERDescriptor>
 <Description>
 A Free-text description of the ER
 </Description>
 <Recipient>
 <PeerId>p2ptube:ppeer:xpto001</PeerId>
 <UserId>........................</UserId>
 </Recipient>
 <Status value="true"/>
 <Modification>
 <PeerId>........................</PeerId>
 <UserId>........................</UserId>
 <Time>2005-11-03T01:22:30</Time>
 </Modification>
 <ERSource>
 <ERRReference>mpeg:mpeg21:dii:ERRID:342</ERRReference>
 </ERSource>
 </ERDescriptor>
 <ERData>
 <PeerId>........................</PeerId>
 <UserId>........................</UserId>
 <Time>2005-11-02T05:11:32</Time>
 <Location>
 <mpeg7:Region>au</mpeg7:Region>
 </Location>
 <DIOperation>REL:Play</DIOperation>
 <ReportedDomainData semantics="acme:PhoneName">

Annex A 235

 <Name>AcmeModel231-ANS</Name>
 </ReportedDomainData>
 <ReportedDomainData>

 </ReportedDomainData>
 <ReportedDIMetadata>
 <Title>A very catchy Tune</Title>
 <Artist>The hippest guys on the Block</Artist>
 <ISWC>T-345246800-1</ISWC>
 </ReportedDIMetadata>
 </ERData>
 </erl:ER>
 </Resource>
 </Component>
 </Item>
 </Item>
 </Item>
 </Container>
</DIDL>

Figure 82 – ER DID Example

A.3.9 Inquiry and Inquiry Response IOs

Figure 83 presents an example of an Inquiry IO.

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:r="urn:mpeg:mpeg21:2003:01-REL-R-NS"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xmlns:erl="urn:mpeg:mpeg21:2005:01-ERL-NS"
 xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-NS">
 <Container id="inqio_ccp">
 <Descriptor id="inqio_ccp_signature">
 <Statement mimeType="text/xml">
 <dsig:Signature>..........</dsig:Signature>
 </Statement>
 </Descriptor>
 <Item id="inqio_ccp_content">
 <Descriptor id="siginfodescrCCP">
 <Statement mimeType="text/xml">
 <DIDL id="siginfo">
 <Container>
 <Item id="pid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the signing peer
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the signing algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">

Annex A 236

 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">
 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 </Container>
 </DIDL>
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/xml">
 <DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:r="urn:mpeg:mpeg21:2003:01-REL-R-NS"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xmlns:erl="urn:mpeg:mpeg21:2005:01-ERL-NS"
 xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-NS">
 <Container id="inqio">
 <Descriptor id="inqio_signature">
 <Statement mimeType="text/xml">
 <dsig:Signature>..........</dsig:Signature>
 </Statement>
 </Descriptor>
 <Item id="inqio_content">
 <Descriptor id="id">
 <Statement mimeType="text/xml">
 <dii:Identifier>
 p2ptube:io:inqio001
 </dii:Identifier>
 </Statement>
 </Descriptor>
 <Descriptor id="siginfodescrU">
 <Statement mimeType="text/xml">
 <DIDL id="siginfo">
 <Container>
 <Item id="pid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the signing user
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the signing algorithm

Annex A 237

 </Resource>
 </Component>
 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">
 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 </Container>
 </DIDL>
 </Statement>
 </Descriptor>
 <Item id="p2ptube:io:inqio001:queryBlock1">
 <Item id="p2ptube:io:inqio001:queryBlock1:query">
 <Component>
 <Resource mimeType="text/plain">
 query
 </Resource>
 </Component>
 </Item>
 <Item id="p2ptube:io:inqio001:queryBlock1:responseAlterns">
 <Item id="p2ptube:io:inqio001:queryBlock1:responseAlterns:respAltern1">
 <Component>
 <Resource mimeType="text/plain">
 resp altern 1
 </Resource>
 </Component>
 </Item>

 <Item id="p2ptube:io:inqio001:queryBlock1:responseAlterns:respAlternN">
 <Component>
 <Resource mimeType="text/plain">
 resp altern N
 </Resource>
 </Component>
 </Item>
 </Item>
 </Item>

 <Item id="p2ptube:io:inqio001:queryBlockN">
 <Item id="p2ptube:io:inqio001:queryBlockN:query">
 <Component>
 <Resource mimeType="text/plain">
 query
 </Resource>
 </Component>

Annex A 238

 </Item>
 <Item id="p2ptube:io:inqio001:queryBlockN:responseAlternatives">
 <Item id="p2ptube:io:inqio001:queryBlockN:responseAlterns:respAltern1">
 <Component>
 <Resource mimeType="text/plain">
 resp altern 1
 </Resource>
 </Component>
 </Item>

 <Item id="p2ptube:io:inqio001:queryBlockN:responseAlterns:respAlternN">
 <Component>
 <Resource mimeType="text/plain">
 resp altern N
 </Resource>
 </Component>
 </Item>
 </Item>
 </Item>
 </Item>
 </Container>
 </DIDL>
 </Resource>
 </Component>
 </Item>
 </Container>
</DIDL>

Figure 83 – Inquiry IO Example

Figure 84 presents an example of an Inquiry Response IO.

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:r="urn:mpeg:mpeg21:2003:01-REL-R-NS"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xmlns:erl="urn:mpeg:mpeg21:2005:01-ERL-NS"
 xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-NS">
 <Container id="inqrio_ccp">
 <Descriptor id="inqrio_ccp_signature">
 <Statement mimeType="text/xml">
 <dsig:Signature>..........</dsig:Signature>
 </Statement>
 </Descriptor>
 <Item id="inqrio_ccp_content">
 <Descriptor id="siginfodescrCCP">
 <Statement mimeType="text/xml">
 <DIDL id="siginfo">
 <Container>
 <Item id="pid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the signing peer
 </Resource>
 </Component>
 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">

Annex A 239

 definition of the signing algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">
 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 </Container>
 </DIDL>
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/xml">
 <DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:r="urn:mpeg:mpeg21:2003:01-REL-R-NS"
 xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
 xmlns:erl="urn:mpeg:mpeg21:2005:01-ERL-NS"
 xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-NS">
 <Container id="inqrio">
 <Descriptor id="inqrio_signature">
 <Statement mimeType="text/xml">
 <dsig:Signature>..........</dsig:Signature>
 </Statement>
 </Descriptor>
 <Item id="inqrio_content">
 <Descriptor id="id">
 <Statement mimeType="text/xml">
 <dii:Identifier>
 p2ptube:io:inqrio001
 </dii:Identifier>
 </Statement>
 </Descriptor>
 <Descriptor id="siginfodescrU">
 <Statement mimeType="text/xml">
 <DIDL id="siginfo">
 <Container>
 <Item id="pid">
 <Component>
 <Resource mimeType="text/plain">
 identification of the signing user
 </Resource>
 </Component>

Annex A 240

 </Item>
 <Item id="algdef">
 <Component>
 <Resource mimeType="text/plain">
 definition of the signing algorithm
 </Resource>
 </Component>
 </Item>
 <Item id="pubk">
 <Descriptor id="pubkid">
 <Statement mimeType="text/plain">
 identifier of the public key
 </Statement>
 </Descriptor>
 <Component>
 <Resource mimeType="text/plain">
 public key
 </Resource>
 </Component>
 </Item>
 <Item id="privk">
 <Descriptor id="privk">
 <Statement mimeType="text/plain">
 identifier of the private key
 </Statement>
 </Descriptor>
 </Item>
 </Container>
 </DIDL>
 </Statement>
 </Descriptor>
 <Item id="p2ptube:io:inqrio001:resp1">
 <Descriptor id="p2ptube:io:inqrio001:resp1:answeredQueryID">
 <Statement mimeType="text/xml">
 <dii:Identifier>
 p2ptube:io:inqio001:queryBlock1:query
 </dii:Identifier>
 </Statement>
 </Descriptor>
 <Item id="p2ptube:io:inqrio001:resp1:correctRespAlternID">
 <Component>
 <Resource mimeType="text/plain">
 p2ptube:io:inqio001:queryBlock1:responseAlterns:respAltern?
 </Resource>
 </Component>
 </Item>
 </Item>

 <Item id="p2ptube:io:inqrio001:respN">
 <Descriptor id="p2ptube:io:inqrio001:respN:answeredQueryID">
 <Statement mimeType="text/xml">
 <dii:Identifier>
 p2ptube:io:inqio001:queryBlockN:query
 </dii:Identifier>
 </Statement>
 </Descriptor>
 <Item id="p2ptube:io:inqrio001:respN:correctRespAlternID">
 <Component>
 <Resource mimeType="text/plain">
 p2ptube:io:inqio001:queryBlockN:responseAlterns:respAltern?

Annex A 241

 </Resource>
 </Component>
 </Item>
 </Item>
 </Item>
 </Container>
 </DIDL>
 </Resource>
 </Component>
 </Item>
 </Container>
</DIDL>

Figure 84 – Inquiry Response IO Example

 243

Annex B – P2P Technologies

B.1 Structured P2P Lookup Protocols

B.1.1 Content Addressable Network

CAN [188] is a distributed infrastructure that provides hash table-like functionality, on an
Internet-like scale, for the mapping of file names to their location in the network. It does so
by supporting the insertion, lookup, and deletion of (key, value) pairs in said table.
The key space (and corresponding values), is divided into zones and individual CAN nodes
store a part (a zone), of the hash table data (corresponding to a key sub-space), and also
some information about the adjacent zones.

Figure 85 – CAN Coordinate Space divided between 5 zones (left side image) and 6 zones (right side image)
(adapted from [2])

CAN defines a virtual d-dimensional Cartesian coordinate space. Each hash table zone
corresponds to a section of the coordinate space. Every key K in the key space is
deterministically mapped onto a point P in the coordinate space. A (K, V) pair is then stored
at the node which is responsible for handling the zone that point P belongs to (for instance in
Figure 85, a (K,V) pair whose key is mapped to coordinate (0.1,0.2) would be stored in zone
B, that is, in the peer handling that zone).

CAN nodes may retrieve a (K, V) pair simply by applying the same deterministic function to
K in order to obtain P and then retrieve the corresponding value V from the node handling
the zone containing P.

If P is not located in the requesting node’s zone, a request for the V stored at P must be
routed through the system, from node to node until it reaches the node covering P.
For the handling of such routing procedures, CAN nodes possess a routing table containing
the IP addresses for the nodes handling the adjacent zones to their own.

In the CAN system, the routing of requests is performed by following a straight line path
through the Cartesian space from source to destination coordinates (for instance in Figure
85, a request from node A for a key mapped to point P would be routed though nodes A, B,
E, through the straight line represented by the arrow). Within this structure, requests to

Annex B 244

insert, lookup or delete a particular (K, V) pair are routed via adjacent zones to the node
handling the zone containing the P to which the involved key maps.

When a new node joins the CAN system, it is attributed a portion of the coordinate space.
That zone is defined by dividing in half the space allocated to an existing node (right side
image of Figure 85). This procedure begins with the selection of an already existing node by
the newcomer node (through a bootstrapped mechanism). Then, employing the CAN routing
mechanism, the adhering node randomly selects a point P in the coordinate space and
issues a JOIN request to the node handling that point. The zone handled by the latter node
is then split, and half of it is attributed to the new node.
The new node then proceeds to construct its routing table with the IP addresses of its
neighbours. The nodes adjacent to the split zone are also informed of the division so that
they update their routing tables to include the new node.

Under ideal conditions, when a node leaves the CAN system, its handled zone and the
associated hash table entries are explicitly handed over to one of its neighbouring nodes.
Still, under normal conditions, what happens is that nodes send periodic update messages
to all of their neighbouring nodes declaring their zone coordinates, their list of neighbours
and the coordinates of their neighbour’s zones. When prolonged absences of such update
messages occur, the neighbouring nodes assume that a failure has happened, and
undertake a procedure for the taking over of the abandoned zone.
In the case where several neighbouring nodes fail simultaneously, an expanding ring search
mechanism is commenced by one of the operating neighbouring nodes, in order to identify
other functioning nodes outside the abandoned region.

The overall design of the CAN system may nonetheless be improved. The main envisioned
improvements are:

• Use of multi-dimensional coordinate space – If the number of dimensions of the CAN
coordinate space is increased, the routing path length and latency is diminished;

• Multiple coordinate spaces – Each node in the system is assigned a different zone in

each coordinate space. Each coordinate space is a “reality”. Therefore, for a CAN
system with r realities, a single node has r coordinate zones attributed to it, one on
every reality and has r independent sets of neighbours. If the contents of the hash
table are replicated on every reality, data availability and routing fault tolerance are
greatly improved since that in the case of a routing or node failure on one reality,
messages can continue to be routed and contents reached using the remaining
realities;

• Employment of more advanced CAN routing metrics – The request routing metric for

the CAN system may be improved by taking into account the underlying IP topology
by having peers measure the network-level round-trip-time to each of its neighbours.
A message is then forwarded, for a specific destination, to the neighbour with the
maximum ratio of progress to round-trip-time. This procedure would diminish path
latency;

• Overloading coordinate zones – This consists of permitting multiple nodes to share

the same zone. In such a case a node maintains a list of its peers as well as a
neighbour list. This offers such advantages as: reduced path length and latency,
because increasing the number of nodes per zone results in the reduction of the
number of nodes in the system; reduced per-hop latency; improved fault tolerance
because a zone is only abandoned when all the nodes in it, leave simultaneously;

Annex B 245

• Multiple hash functions – If k different hash functions are used to map a single key
onto k points in the coordinate space and thus replicate the corresponding (key,
value) pair at k distinct nodes in the system, the content’s availability will be
increased. Furthermore queries for a specific hash table entry may also be
simultaneously sent to all k nodes thus reducing the average query latency;

• Topologically sensitive construction of the CAN overlay network – This consists of

taking into account the underlying IP network topology for the allocation of nodes to
zones;

• Uniform Coordinate Space Partitioning – According to CAN, when a new node joins,

some randomly selected existing node will split its zone in two, and one of the
portions will be attributed to the new node. This may be improved if instead the
existing occupant node first compares the volume of its zone with those of its
immediate neighbours, and then the zone with the largest volume is split to
accommodate the new node. This more uniform partitioning of the coordinate space
permits a better load balancing;

• Caching and Replication techniques for “hot spot” management – Popular (key,

value) pairs in a CAN system may be made more widely available by employing
some caching and replication techniques commonly applied to the Web:

o Caching – Maintenance of a cache of the data keys most recently accessed

by a CAN node. Before forwarding a request for a data key towards its
destination, a node first checks its cache. This way the number of caches
from which a data key may be retrieved from increases in direct proportion to
its popularity and thus popular content becomes more widely available;

o Replication – A CAN node overloaded with requests for a particular data key

replicates it at each of its neighbouring nodes.

B.1.2 Chord

Chord [189] is a distributed lookup protocol for the efficient location of data objects in P2P
structures. This protocol employs deterministically generated keys as file and node
identifiers, and it performs the mapping of file keys into node keys in order to determine the
location for the storage of the (key, file) pair, which is the mapped node.

A node identifier is derived by hashing the node’s IP address. A key identifier is calculated
by hashing the data key.

The node identifying keys are ordered in a modulo
m2 "identifier circle". File key k is

attributed to the first node whose identifier is equal to or follows k in the identifier space. This
is termed the successor node of key k.
Figure 86, for instance, presents an identifier circle with m=3. The successor of the identifier
6 is peer 0, so key 6 will be located at the node with an id value of 0.

Within the Chord scheme, the only routing information that nodes need to possess is the
location of its successor node on the circle. Queries are forwarded around the circle via
these successor pointers up to the point where a node which possesses the key is
encountered. This is the node the query maps to.

Annex B 246

Upon adhesion of a new node n to the network, certain keys previously assigned to n’s
successor will be assigned to n. Upon n’s removal from the network, all of its keys attributed
are reassigned to its successor.

Figure 86 – Chord identifier circle (m=3) (adapted from [2])

Chord nodes employ a stabilization protocol that periodically updates the successor pointers
and the finger table. The correct operation of the Chord depends on the actualization of the
routing data. To avoid the situation where a node fails and other peers are left without any
way of locating their new successor, nodes maintain a successor list, which contains a
number of the peer’s first successors. When a node’s successor does not respond, it simply
contacts the next peer on its successor list.

The performance of a Chord network degrades slowly as routing information loses validity,
(due to node adhesion and abandonment), and availability remains high only as long as
nodes fail independently. Given the fact that Chord’s topology does not take into account the
underlying physical IP network topology, a small connectivity failure in the IP network may
cause multiple, scattered link failures in the Chord overlay [2].

The previously described searching mechanism may in a worst case scenario require the
traversal of all nodes in the overly. To increase this mechanism’s efficiency, Chord nodes
are also to maintain additional routing information, in the form of a "finger table". Each table
entry i points to the successor of node n+2i. For a node n to perform a lookup for key k, it
consults the table to determine the highest node n¢ whose ID is between n and k. If node n¢
exists, the procedure is repeated starting from node n¢. If no such node exists, the
successor of n is returned [2].

B.1.3 Tapestry

Tapestry is a peer-to-peer overlay routing infrastructure which permits location-independent
routing of messages directly to nearby replicas of an object or service resorting only to
localized resources, It implements a self-repairing, soft-state-based routing layer that allows
the bypassing of failed routes and nodes and the rapid adaptation of communication
topologies to circumstances.

Tapestry’s architecture employs a variation of the Plaxton [190] distributed search technique,
combined with extra mechanisms to ensure availability, scalability, and adaptation in the
case of failures and attacks.

Annex B 247

The Plaxton mesh is a distributed data structure that allows peers to locate objects and
reach them with messages through an arbitrarily-sized overlay network employing small and
constant sized routing maps [2].

In a Plaxton mesh the nodes may perform three different roles:

• Servers – which store data objects;
• Routers – which forward messages between nodes ;
• Clients – which originate requests for data objects and consume them.

Figure 87 – Neighbour Map maintained by a Tapestry Node with ID 67493 (adapted from [2])

Each node maintains a neighbour map (as presented in Figure 87) composed by multiple

levels. Each level l contains pointers to nodes whose ID must be matched with l digits, this
way, each table entry is a pointer to the closest network node with an ID which matches the

number in the neighbour map up to a digit position (the
thl position).

For instance, the 4th table entry for the 2nd level identifies the closest node to node 67493 in
network distance whose ID ends in 43 [2].

Figure 88 – Tapestry/Plaxton Mesh Routing Example using 5 digit long IDs (adapted from [2])

Within the Tapestry overlay, messages are routed to the destination peer, in a “digit by digit”
manner, from the nodes on the right to the nodes on the left of the neighbour table (as
presented in Figure 87).

Annex B 248

An example path followed by a message from node with an ID value of 67493 to a node with
an ID value of 34567 is presented in Figure 88. The end node location is reached by
resolving (into the closest peer location) the digits of the desired node, one at a time at every
node hop, as follows: xxxx7 � xxx67 � xx567 � x4567 � 34567.

The Plaxton scheme makes use of root nodes for the location of data objects, in order to
assure that some node from which the object can be located is available.

Upon the object insertion of an object o in the system and its storage at an sn node, a root

node rn is attributed through the employment of a globally consistent deterministic algorithm.

Then, sn issues a message to rn , which triggers the storing at all nodes along the

message’s path, of data mapping the object id o to storer id sn .

At content location time, messages destined for o are initially directed towards rn , up to the

point were a node is encountered which contains the (o , sn) location mapping.

The Plaxton mesh’s capability to route around a single link or node by selecting a node with
a similar suffix provides the mesh with fault handling capabilities and the overall object
location scheme provides it with scalability. On the other hand the need for a global or
central knowledge for the attribution and identifying of root nodes is a possible point of failure
for this system.

Whilst the Plaxton mesh assumes a static population of nodes, Tapestry augments this
design so that it can handle the typically transient populations of peer-to-peer networks and
provide adaptability and fault tolerance and in order to provide further optimizations. Some of
the main additions brought on by Tapestry consist of the following [2]:

• Tapestry nodes maintain an additional list of back-pointers, which identifies nodes
where they are pointed to as a neighbour. Such lists are employed in the procedures
for the dynamic insertion of nodes, to allow the efficient creation of correct neighbour
maps for new nodes;

• Tapestry adds semantic flexibility to the concept of distance between nodes. More

than one object replica are stored in the system permitting the architecture to more
flexibly define how the "closest" node will be determined;

• Cached content is maintained on a soft-state manner, based on an announce/listen

approach. Tapestry employs this strategy to detect, circumvent and recover from
failures in routing or object location. The caches maintained at the nodes are
periodically updated by refreshment messages, or cleaned if no such messages are
received. Furthermore the neighbour map is increased in order to maintain two
backup neighbours in addition to the closest neighbour. When a node detects that a
neighbour has for become unreachable, in order to avoid costly reinsertions, instead
of removing the missing node’s pointer, it temporarily flags it as invalid, so that it may
have time to come back online if that is the case, and directs messages through
alternative paths in the meantime;

• The root nodes constitute a single point of failure. In order to avoid this, Tapestry

attributes multiple roots to each object. Tapestry employs surrogate routing to choose
root peers incrementally, during the publishing process, to insert location information

Annex B 249

into Tapestry. Surrogate allows the unique mapping of any identifier to an existing
network node. The nodes selected to be the root or surrogate node for a data object
is that which matches the data object’s ID, x. Given the sparse nature of Tapestry’s
NodeID space the occurrence of such a node is unique. To verify the x node’s
existence a message is routed to it. If it does not exist, the routing of the message
terminates when a neighbour map is reached, where the only non-empty routing
entry belongs to its holding node. In such a case, that node is designated to be the
surrogate root for the data object;

• Tapestry nodes optimize their neighbour pointers by periodically evaluating their

network latency values. Algorithms are implemented to detect query hotspots and
provide possible alternative locations for the storage of additional copies of objects
so as to improve query response time. Nodes also maintain a "hotspot cache".

B.1.4 Kademlia

Kademlia [191] is a peer-to-peer (key, value) pair storage and lookup system. This
decentralized overlay network, much to the similarity of Pastry and Tapestry, employs the
basic technique of attributing a NodeID to each peer, in a 160-bit key space, and of storing
(key, value) tuples at the peers bearing IDs which are close to the key (data keys are also
160-bit identifiers). Within this system, tuple holding peers are located through a NodeID
based routing algorithm which uses the keys as destination definers.

One of the fundamental innovations of Kademlia’s architecture is its employment of an XOR
metric for distance measuring between points in the key space. The symmetry of the XOR
operation allows nodes to receive lookup queries from the same distribution of peers
contained in their routing tables.
A Kademlia node may issue a query to any node within an interval, using latency as criteria
to choose routes or send parallel asynchronous queries. It employs a single routing
algorithm throughout the process to locate peers near a particular ID.
All messages transmitted by a Kademlia node include its NodeID. This allows the recipient
node to apprehend the sender peer’s existence [17].

The location of (key, value) pairs, by Kademlia nodes relies on the notion of distance
between two identifiers. Such a distance is calculated as follows:

The distance between two 160-bit identifiers, a and b, is defined as their bitwise
exclusive OR (XOR), which is a non-Euclidean metric. XOR’s unidirectional nature
assures that for any specific point x and distance d > 0, there exists only one point y
such that d(x; y) = d. This guarantees that all lookups for the same key converge
along the same path, irrespectively of the originating peer. This way, caching (key,
value) pairs throughout the lookup path alleviates hot spots.

A Kademlia node stores a list of (IP address, UDP port, NodeID) tuples for peers within a
certain distance. These lists (or k-buckets) are kept ordered by last time contacted, (least
recently accessed node at the head, most recently accessed at the tail).

The routing protocol employed by Kademlia is composed by:

• PING messages which are used to probe a node in order to determine if it is active;
• STORE instructs a node to store a (key, value) pair for posterior retrieval;
• FIND NODE receives a 160-bit ID, and returns a {IP address, UDP port, NodeID}

tuple for a number of the peers it knows that are closest to the target ID;
• FIND VALUE is similar to FIND NODE, it returns {IP address, UDP port, NodeID}

tuples, except for the case where a node received a STORE for the key. In such a
case, the stored value is returned.

Annex B 250

To locate a (key, value) pair, Kademlia nodes commence by performing a FIND VALUE
lookup to find the k peers with IDs closest to the pair’s key. To adhere to the network, a peer
n must know an already participating peer m. Peer n adds peer m to the appropriate k-
bucket, and then undertakes a peer lookup for its own NodeID. This procedure refreshes all
k-buckets further away than n’s closest neighbour, and n also fills its own k-buckets and
adds itself to other nodes’ k-buckets [17].

 251

Annex C – BM Inquiry Results

C.1 Introduction

The inquiry was composed of four parts. Said parts and their purposes are the following:
• Query group 1 – its purpose is to:

o evaluate user acceptance of correctness of rewarding content producers and
CDists;

o evaluate user awareness of the fact that if such rewarding does not take
place the content will cease to be produced;

• Query group 2 – its purpose is to evaluate user receptivity to a total dematerialization

of content distribution (i.e. distribution performed completely on-line);

• Query group 3 – its purpose is to assess user general receptivity/preference
relatively to content accessing modes supported though a lateral extraction of gains
in opposition to those which imply a direct and mandatory payment for content
access;

• Query group 4 – its purpose is to evaluate user receptivity to three specific content

accessing modes based on lateral gain extraction. As such it:
o evaluates user receptivity to an open access mode, supported by voluntary

donations;
o evaluates user receptivity to an open access mode, supported by

advertisement viewing;
o evaluates user receptivity to an open access mode, supported by ransoms.

C.2 Results

The specific queries that where defined, and the obtained response results are presented
below, discriminated by query group (results presented in percentage terms).

C.2.1 Query Group 1

Query/Answer
I completely

agree I agree
I neither

agree nor
disagree

I
disagree

I completely
disagree

1.1
It is fair that media content
producers are rewarded for the
content that they produce

59 39 2 0 0

1.2
It is fair that the intermediary
players, in the field of media content
production, are rewarded for their
work, in the support of the action of
media content producers.

23 63 11 1 1

Annex C 252

1.3
The continued production of the
media goods (movies, series,
music, etc.), that we consume on a
daily basis, depends on the
economical compensation of that
activity. If the final consumers stop
compensating said activity those
goods will cease to be produced.

20 45 15 12 9

1.4
It is fair that I systematically access
and consume media goods without
compensating, in any way, the
producers of such goods.

2 15 27 48 9

C.2.2 Query Group 2

Query/Answer
I completely

agree I agree
I neither

agree nor
disagree

I
disagree

I completely
disagree

2.1
For the same payment modes, on-
line media goods delivery is more
convenient (to me as a consumer),
and more efficient than the
traditional distribution of such
goods.

28 45 16 10 1

2.2
It is acceptable that media goods
are to be predominately distributed
on-line, and that physical
distributions of such goods (based
on CDs, DVDs, etc.), are restricted
to “vintage” or “collector” editions.

9 33 24 24 10

C.2.3 Query Group 3

Query/Answer
I completely

agree I agree
I neither

agree nor
disagree

I
disagree

I completely
disagree

3.1
The models of media content
access on-line should be based on
indirect and/or voluntary payment
instead of on direct and mandatory
one.

17 44 30 9 0

3.3
I prefer an on-line media content
access and producer rewarding
model that allows me to have some
control of how the revenue is
shared, (amongst producers and
others), to a model where I have no
such power or responsibility.

18 46 29 5 1

Annex C 253

A mode where you had to pay for
content access, where such
payment would liberate only your
access to that content and said
access would be subjected to some
constraints (e.g. the number of
devices where you could consume
the content).

A mode where you made only
voluntary donations to the artists of
your preference, and where the access
to media content was free, both for
you and everyone else, regardless of
any contribution (donation), yours or
theirs.

3.2
Considering that you
would spend about the
same monthly amount,
which content access
mode would you
prefer?

30 70

C.2.4 Query Group 4

Query/Answer
I completely

agree I agree
I neither

agree nor
disagree

I
disagree

I completely
disagree

4.1
If I had convenient and secure ways
to do it, I would voluntarily perform
monetary donations to artists and
content producers that were
responsible for the creation of
media products (movies, songs,
etc), which I considered worthy of
being rewarded.

13 49 22 13 2

4.3
The compensation of media content
producers, by way of voluntary
donations, enables that such
entities are rewarded in a fairer
manner.

10 38 35 13 4

4.6
I am willing to watch commercial
advertisements in order to
contribute (with my attention, which
is being resold to advertisers), to
the rewarding of artists/content
producers.

21 52 15 11 1

4.8
If my “consumption” of
advertisement messages is
rewarded with some form of
“credits” that I could donate to
artists of my preference, I would
voluntarily request the viewing of
such messages.

24 54 18 4 0

4.10
Within the context of the donation
based rewarding of artists and
media producers, if one such entity,
that I trusted, requested to be
financed, in advance, for the
production of a media good (that I
considered that I was going to like),
I would have no problems in
donating some amount to him, even
before the actual good existed.

11 32 22 24 11

Annex C 254

 Yes No
4.2
Have you ever
performed any
monetary donation to
some on-line initiative?

17 83

1 to 5 € 5 to 10 € 10 to 20 € 20 to 50 € more than 50

€
4.4
Considering that you
would not have to
spend any other
resources to acquire
the media goods of
your preference, other
than the amounts that
you donated, how much
would you be willing to
donate (in average), on
a monthly basis, to the
set of artists and
content producers of
your preference?

56 33 11 0 0

1 to 5 € 5 to 10 € 10 to 20 € 20 to 50 € more than 50

€
4.5
And how much would
you be willing to donate
to each individual artist,
in the same conditions
ant time interval?

87 13 0 0 0

A model where publicity is juxtaposed
with the media contet and must be
consumed, for instance, before you
can listen to/watch the desired
content (for instance, in YouTube,
before you can watch some of the
videos you must first watch an
advertisement).

A model where the advertisement
messages are separated from the
media content and where you have
to be the one to request the
viewing of such messages, and
thus, where you may “consume”
them at the moment of your
preference.

4.7
The two ways, of
supporting content
producers’ activity,
presented below, are
based on
advertisement.
Considering that you
would have to
“consume” the same
amount of advertising
messages in both of
them, which one would
you prefer?

43 57

Annex C 255

1 to 5 5 to 10 10 to 20 20 to 30 more than

30
4.9
In the context of
question 4.8, how
many minutes of your
attention would you be
willing to donate, on a
daily basis, through the
viewing of
advertisement
messages?

51 38 10 0 1

 257

Annex D – Data Model Info

D.1 Registered Information

D.1.1 Introduction

The registry of all system events will comprise the following basic set of data fields:
• The event’s ID – the system-wide unique identifier of the event;
• The event’s beginning time – the time at which the event begun its existence, i.e. its

participation in the system;
• The event’s end time – the time at which the event ceased its existence, i.e. its

participation in the system;
• The EntCompEv’s validity state – a Boolean field indicating if the event is still

existent;

The following sections describe all the registered system events indicating the connections
that bind all such registries into a coherent and meaningful tissue.

D.1.2 Registered Global Information

D.1.2.1 Registered Global PLL Information

D.1.2.1.1 Registered Global PLL Relational and Procedural Complex Events

P
ro

c
C

om
p

E
v

Event Name Peer Registration Event
Event Nr #1

Explanation This is an event that represents a peer’s registration with the system.

Event’s
Relationships

as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-initiationOf-Event Peer-participationIn-System 1

Event-casusationOf-Event

PregCertif

-pertinenceTo-

Peer-participationIn-System

1

Event-initiationOf-Event Peer-maintenanceOf-PeerIP 1

Event-initiationOf-Event Peer-maintenanceOf-PeerKeyPair 1

Event-initiationOf-Event User-ownageOf-Peer 1

P
ro

c
C

om
p

E
v

Event Name Peer Registration Update Event
Event Nr #2

Explanation
This is an event that represents a peer’s updating of its registration with the

system.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event PLoginCertif-pertinenceTo-Peer 0 –1
Contextual

Connecting RelEv Name Connected Object Event Cardinality

Event-casusationOf-Event

PregCertif

-pertinenceTo-

Peer-participationIn-System

1

Event-terminationOf-Event Peer-maintenanceOf-PeerKeyPair 1

Event-initiationOf-Event Peer-maintenanceOf-PeerKeyPair 1

Annex D 258

P
ro

c
C

om
p

E
v

Event Name Peer Deregistration Event
Event Nr #3

Explanation This is an event that represents a peer’s registration with the system.

Event’s
Relationships

as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-terminationOf-Event Peer-participationIn-System 1

Event-terminationOf-Event Peer-maintenanceOf-PeerIP 1

Event-terminationOf-Event Peer-maintenanceOf-PeerKeyPair 1

Event-terminationOf-Event User-ownageOf-Peer 1

P
ro

c
C

om
p

E
v

Event Name Peers Evaluation Event
Event Nr #4

Explanation
This is a periodical, internal, system event which consists of an evaluation of

all of the system peer’s conduit.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event Peer Evaluation Event 1 – ∞

P
ro

c
C

om
p

E
v

Event Name Peer Evaluation Event
Event Nr #5

Explanation

This is an internal system event. It consists of the evaluation of a specific

peers’s conduit, taking into consideration other peers’ misbehaviour reports

regarding that peer. It may lead to the expulsion, quarantining or

dequarantining of the evaluated peer.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event System-evaluationOf-Peer 1

Event-inclusionOf-Event
System-analysisOf-

PeerMissbehavReport
0 – ∞

Event-inclusionOf-Event

(System-analysisOf-

PeerMissbehavReport)-

pertainmentTo-

(System-evaluationOf-Peer)

0 – ∞

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event System-evictionOf-Peer 0 – 1

Event-initiationOf-Event System-quarantiningOf-Peer 0 – 1

Event-terminationOf-Event System-quarantiningOf-Peer 0 – 1

R
el

 E
v

Event Name System-evictionOf-Peer
Event Nr #6

Explanation This is a relational event that represents a peer’s eviction from the system.

Subject
Event

System

Object Event Peer

Event’s
Relationships

as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event User Disconnection Event 0 - ∞

Event-causationOf-Event Peer Disconnection Event 0 –1

Event-causationOf-Event MO Deregistration event 0 - ∞

Event-causationOf-Event Peer Deregistration event 0 - 1

Annex D 259

R

el
 E

v
Event Name Peer-loginTo-System

Event Nr #7

Explanation
This is a relational event that represents a peers’s action to log into the

system.

Subject
Event

Peer

Object Event System
Event’s

Relationships
as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event Peer Connection Event 0 –1

R
el

 E
v

Event Name Peer-logoffFrom-System
Event Nr #8

Explanation
This is a relational event that represents a peer’s action to log out of the

system.

Subject
Event

Peer

Object Event System
Event’s

Relationships
as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event Peer Disconnection Event 0 –1

P
ro

c
C

om
p

E
v

Event Name Peer Connection Event
Event Nr #9

Explanation
This is an event which represents system procedures to perform a peers’s

connection (logging in) to the system.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event PLoginCertif-pertinenceTo-Peer 0 –1
Contextual

Connecting RelEv Name Connected Object Event Cardinality
Event-initiationOf-Event Peer Participation Session Event 0 –1

Event-initiationOf-Event PLL Servicing Session Event 1

Event-initiationOf-Event UEL Servicing Session Event 1

P
ro

c
C

om
p

E
v

Event Name Peer Disconnection Event
Event Nr #10

Explanation
This is an event which represents system procedures to perform a peer’s

disconnection (logoff) to the system.

Event’s
Relationships

as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-terminationOf-Event Peer Participation Session Event 0 –1

Event-terminationOf-Event PLL Servicing Session Event 1

Event-terminationOf-Event UEL Servicing Session Event 1

Annex D 260

P
ro

c
C

om
p

E
v

Event Name Peer Participation Session Event
Event Nr #11

Explanation This event consists of a peer participation session in the system.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event Peer Reporting Event 0 - ∞

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-supportingOf-Event User Attending Session Event 0 – ∞

P
ro

c
C

om
p

E
v

Event Name Peer Reporting Event
Event Nr #12

Explanation
This event consists of a peer reporting the misbehaviour of another peer to

the system.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event Peer-denouncingOf-Peer 1

Event-inclusionOf-Event
PMissbehavReport

-pertinenceTo-

(Peer-denouncingOf-Peer)

1

P
ro

c
C

om
p

E
v

Event Name PLL Servicing Session Event
Event Nr #13

Explanation
This event consists of the maintenance of PLL servicing responsabilities (over

the peripheral peer collective) by a specific OCP.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event

 (Peer(OCP)

-pllServicingOf-

Peer(PP))

1

Event-inclusionOf-Event

Instruction OP IO

-pertainmentTo-

 (Peer(OCP)

-pllServicingOf-

Peer(PP))

1

D.1.2.1.2 Registered Global PLL Entitary Complex Events

E
nt

 C
om

p
E

v

Event Name Peer
Event Nr #14

Explanation This event consists of a peer.

Data Fields

Peer Type The peer type (PP, OCP, or CCP)

Peer Pub Key The peer’s public key

Peer Priv Key The peer’s private key

Is

Quarantined
An indication if the peer is quarantined

Annex D 261

E
nt

 C
om

p
E

v Event Name Peer Key Pair
Event Nr #15

Explanation This event consists of a peer’s public and private key pair.

Pub Key The peer’s public key

Priv Key The peer’s private key

D.1.2.2 Registered Global UEL Information

D.1.2.2.1 Registered Global UEL Relational and Procedural Complex Events

D.1.2.2.1.1 User Originated

R
el

 E
v

Event Name User-joiningOf-System
Event Nr #16

Explanation This is a relational event that represents a user’s action to join the system.

Subject
Event

User

Object Event System

Event’s
Relationships

as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event User Registration Event 0 - 1

R
el

 E
v

Event Name User-abandoningOf-System
Event Nr #17

Explanation This is a relational event that represents a user’s action to leave the system.

Subject
Event

User

Object Event System
Event’s

Relationships
as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event User Derigistration Event 1

P
ro

c
C

om
p

E
v

Event Name User Registration Event
Event Nr #18

Explanation
This is an event which represents system procedures to perform a user

registration.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event User-ownageOf-UAccount 1

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-initiationOf-Event User-participationIn-System 1

Event-initiationOf-Event User-maintenanceOf-UserKeyPair 1

Event-casusationOf-Event

URegCertif

-pertinenceTo-

User-participationIn-System

1

Annex D 262

P
ro

c
C

om
p

E
v

Event Name User Registration Update Event
Event Nr #19

Explanation
This is an event which represents system procedures to perform a user

registration update.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event ULoginCertif-pertinenceTo-User 0 –1
Contextual

Connecting RelEv Name Connected Object Event Cardinality

Event-terminationOf-Event User-maintenanceOf-UserKeyPair 1

Event-initiationOf-Event User-maintenanceOf-UserKeyPair 1

Event-casusationOf-Event

URegCertif

-pertinenceTo-

User-participationIn-System

1

P
ro

c
C

om
p

E
v

Event Name User Deregistration Event
Event Nr #20

Explanation
This is an event which represents system procedures to perform a user

deregistration.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event User Disconnection Event 0 - 1

Event-inclusionOf-Event MO Deregistration Event 0 - 1

Event-inclusionOf-Event Peer Deregistration Event 0 - 1

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-terminationOf-Event User-participationIn-System 1

Event-terminationOf-Event User-maintenanceOf-UserKeyPair 1

R
el

 E
v

Event Name User-loginTo-System
Event Nr #21

Explanation This is a relational event that represents a user’s action to log into the system.

Subject
Event

User

Object Event System
Event’s

Relationships
as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event User Connection Event 0 –1

R
el

 E
v

Event Name User-logoffFrom-System
Event Nr #22

Explanation
This is a relational event that represents a user’s action to log out of the

system.

Subject
Event

User

Object Event System
Event’s

Relationships
as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event User Disconnection Event 0 –1

Annex D 263

P

ro
c

C
om

p
E

v
Event Name User Connection Event

Event Nr #23

Explanation
This is an event which represents system procedures to perform a user’s

connection (logging in) to the system.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event ULoginCertif-pertinenceTo-User 0 –1
Contextual

Connecting RelEv Name Connected Object Event Cardinality

Event-initiationOf-Event User Attending Session Event 0 –1

P
ro

c
C

om
p

E
v

Event Name User Disconnection Event
Event Nr #24

Explanation
This is an event which represents system procedures to perform a user’s

disconnection (logoff) to the system.

Event’s
Relationships

as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-terminationOf-Event User Attending Session Event 0 –1

P
ro

 C
om

p
E

v

Event Name User Attending Session Event
Event Nr #25

Explanation
This event consists of a user participation session in the system. It starts with a

user login and ends with his logoff.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event User-loginTo-System 1

Event-inclusionOf-Event User-logoffFrom-System 0 – 1

Event-inclusionOf-Event Forceful User Logout 0 – 1

Event-inclusionOf-Event User Registration Update Event 0 – ∞

Event-inclusionOf-Event User-InsertionOf-MO 0 – ∞

Event-inclusionOf-Event User-removalOf-MO 0 – ∞

Event-inclusionOf-Event Add MO Insertion Event 0 – ∞

Event-inclusionOf-Event Add MO Removal Event 0 – ∞

Event-inclusionOf-Event
User-insertionOf-

MORansmAnnoncement
0 – ∞

Event-inclusionOf-Event
User-removalOf-

MORansmAnnoncement
0 – ∞

Event-inclusionOf-Event MO Search Event 0 – ∞

Event-inclusionOf-Event User-consumptionOf-Mo 0 – ∞

Event-inclusionOf-Event
User-consumptionOf-

MORansmAnnoncement
0 – ∞

Event-inclusionOf-Event MO Ownership Exchange Event 0 – ∞

Event-inclusionOf-Event MO Commenting Event 0 – ∞

Event-inclusionOf-Event MO Responding Event 0 – ∞

Event-inclusionOf-Event MO Versioning Event 0 – ∞

Event-inclusionOf-Event User Reporting Event 0 – ∞

Event-inclusionOf-Event Donation Event 0 – ∞

Event-inclusionOf-Event User Attention Sale Event 0 – ∞

Annex D 264

Event-inclusionOf-Event User-loadingOf-UAccount 0 – ∞

Event-inclusionOf-Event User-unloadingOf-UAccount 0 – ∞

Event-inclusionOf-Event Peer Ownership Exchange 0 – ∞

Contextual
Connecting RelEv Name Connected Object Event Cardinality
Event-precedenceOf-Event User Attending Session Event 0 – ∞

R
el

 E
v

Event Name User-insertionOf-MO
Event Nr #26

Explanation
This is a relational event which represents the user initiated action of inserting

an MO into the system.

Subject
Event

User

Object Event MO

Event’s
Relationships

as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event MO Registration Event 0 – 1

P
ro

c
C

om
p

E
v

Event Name MO Registration Event
Event Nr #27

Explanation
This is an event which represents system procedures to perform an MO

registration.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-initiationOf-Event User-ownageOf-MO 1

Event-initiationOf-Event

SemanticConcept

-characterizationOf-

MO

1 – ∞

Event-initiationOf-Event

MO

-pertainmentTo-

MORnsmAnn

0 – ∞

Event-initiationOf-Event MO Storage Event 1 – ∞

R
el

 E
v

Event Name User-removalOf-MO
Event Nr #28

Explanation
This is a relational event which represents the user initiated action of

removing an MO from the system.

Subject
Event User

Object Event MO
Event’s

Relationships
as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event MO Deregistration Event 0 - 1

Annex D 265

P
ro

c
C

om
p

E
v

Event Name MO Deregistration Event
Event Nr #29

Explanation
This is an event which represents system procedures to perform an MO

deregistration.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality
Event-terminationOf-Event User-ownageOf-MO 1

Event-terminationOf-Event

SemanticConcept

-characterizationOf-

MO

1 – ∞

Event-terminationOf-Event

MO

-pertainmentTo-

MORnsmAnn

0 – ∞

Event-terminationOf-Event MO-commentingTo-MO 0 – ∞

Event-terminationOf-Event MO-versioningOf-MO 0 – ∞

Event-terminationOf-Event MO-respondingTo-MO 0 – ∞

Event-terminationOf-Event System-quarantiningOf-MO 0 – 1

Event-terminationOf-Event MO Storage Event 1 – ∞

P
ro

c
C

om
p

E
v

Event Name Add MO Insertion Event
Event Nr #30

Explanation
This is a user initiated event that consists of the insertion of an Advertisement

MO into the system.

Event’s
Relationships

as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event User-insertionOf-MO 1

Event-inclusionOf-Event User-insertionOf-InquiryIO 1 – ∞

Event-inclusionOf-Event

(User-insertionOf-InquiryIO)

-pertainmentTo-

(User-insertionOf-MO)

1 – ∞

Event-inclusionOf-Event User-insertionOf-InquiryRespIO 1 – ∞

Event-inclusionOf-Event

(User-insertionOf-InquiryRespIO)

-pertainmentTo-

(User-insertionOf-MO)

1 – ∞

P
ro

c
C

om
p

E
v

Event Name Add MO Removal Event
Event Nr #31

Explanation
This is a user initiated event that consists of the removal of an MO from the

system.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event User-removalOf-MO 1

Event-inclusionOf-Event User-removalOf-InquiryIO 1 – ∞

Event-inclusionOf-Event

(User-removalOf-InquiryIO)

-pertainmentTo-

(User-removalOf-MO)

1 – ∞

Event-inclusionOf-Event User-removalOf-InquiryRespIO 1 – ∞

Event-inclusionOf-Event (User-removalOf-InquiryRespIO) 1 – ∞

Annex D 266

-pertainmentTo-

(User-removalOf-MO)

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-terminationOf-Event System-quarantiningOf-MO 0 – 1

R
el

 E
v

Event Name User-insertionOf-InquiryIO
Event Nr #32

Explanation This event consists of the insertion of an Inquiry IO into the system.

Subject
Event

User

Object Event Inquiry IO

Event’s
Relationships

as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event OpIO Registration Event 0 – 1

R
el

 E
v

Event Name User-insertionOf-InquiryRespIO
Event Nr #33

Explanation This event consists of the insertion of an Inquiry Response IO into the system.

Subject
Event

User

Object Event InquiryRespIO

Event’s
Relationships

as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event OpIO Registration Event 0 – 1

R
el

 E
v

Event Name User-removalOf-InquiryIO
Event Nr #34

Explanation This event consists of the removal of an Inquiry IO into the system.

Subject
Event

User

Object Event InquiryRespIO

Event’s
Relationships

as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event OpIO Deregistration Event 0 – 1

R
el

 E
v

Event Name User-removalOf-InquiryRespIO
Event Nr #35

Explanation This event consists of the removal of an Inquiry Response IO into the system.

Subject
Event

User

Object Event InquiryRespIO

Event’s
Relationships

as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event OpIO Deregistration Event 0 – 1

Annex D 267

P
ro

c
C

om
p

E
v

Event Name OpIO Registration Event
Event Nr #36

Explanation
This is an event which represents system procedures to perform the

registration of an operational IO.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-initiationOf-Event OpIO-pertainmentTo-MO 0 – ∞

Event-initiationOf-Event OpIO-pertainmentTo-Peer 0 – ∞

Event-initiationOf-Event OpIO-pertainmentTo-User 0 – ∞

Event-initiationOf-Event OpIO-pertainmentTo-OpIO 0 – ∞

Event-initiationOf-Event Peer-storageOf-OpIO 0 – ∞

P
ro

c
C

om
p

E
v

Event Name OpIO Deregistration Event
Event Nr #37

Explanation
This is an event which represents system procedures to perform the

deregistration of an operational IO.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality
Event-terminationOf-Event OpIO-pertainmentTo-MO 0 – ∞

Event-terminationOf-Event OpIO-pertainmentTo-Peer 0 – ∞

Event-terminationOf-Event OpIO-pertainmentTo-User 0 – ∞

Event-terminationOf-Event OpIO-pertainmentTo-OpIO 0 – ∞

Event-terminationOf-Event Peer-storageOf-OpIO 0 – ∞

R
el

 E
v

Event Name Peer-storageOf-OpIO
Event Nr #38

Explanation
This is a relational event that represents the storage of an operational IO by

some specific peer.

Subject
Event

Peer

Object Event All types of operational events

R
el

 E
v

Event Name OpIO-pertainmentTo-OpIO
Event Nr #39

Explanation
This is a relational event that represents a logical relationship between

operational IOs.

Subject
Event

InquiryIO, InquiryRespIO

Object Event InquiryIO, InquiryRespIO

R
el

 E
v

Event Name User-insertionOf-MORansomAnnoncement
Event Nr #40

Explanation
This is a user initiated event that consists of the insertion of an MO Ransom

Announcement into the system.

Subject
Event

User

Annex D 268

Object Event MORansomAnnoncement

Event’s
Relationships

as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event
MORansomAnnoncement

Registration Event
0 – 1

R
el

 E
v

Event Name User-removalOf-MORansomAnnoncement
Event Nr #41

Explanation
This is a user initiated event that consists of the removal of an MO Ransom

Announcement from the system.

Subject
Event

User

Object Event MORansomAnnoncement

Event’s
Relationships

as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event
MORansomAnnoncement

Deregistration Event
0 – 1

P
ro

c
C

om
p

E
v

Event Name MORansomAnnoncement Registration Event
Event Nr #42

Explanation
This is an event which represents system procedures to perform an

MORansomAnnoncement registration.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-initiationOf-Event User-ownageOf-MORnsmAnn 1

Event-initiationOf-Event

SemanticConcept

-characterizationOf-

MORnsmAnn

1 – ∞

Event-initiationOf-Event

Peer

-storageOf-

MORansomAnnoncement

1 – ∞

Event-initiationOf-Event Ransoming Event 0 – 1

P
ro

c
C

om
p

E
v

Event Name MORansomAnnoncement Deregistration Event
Event Nr #43

Explanation
This is an event which represents system procedures to perform an

MORansomAnnoncement deregistration.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality
Event-terminationOf-Event User-ownageOf-MORnsmAnn 1

Event-terminationOf-Event

SemanticConcept

-characterizationOf-

MORnsmAnn

1 – ∞

Event-terminationOf-Event

Peer

-storageOf-

MORansomAnnoncement

1 – ∞

Event-terminationOf-Event Ransoming Event 0 – 1

Annex D 269

P

ro
c

C
om

p
E

v
Event Name MO Search Event

Event Nr #44

Explanation
This event consists of the performing, by a user, of a search for MOs, based on

user specified search criteria.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event User-emissionOf-SearchQuery 1

Event-inclusionOf-Event

(User-emissionOf-SearchQuery)

-causationOf-

(System-returningOf-SQRO)

1

Event-inclusionOf-Event SQRO-respondingTo-SearchQuery 1

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-initiationOf-Event OpIO(SQRO) Registration Event 1

R
el

 E
v

Event Name User-consumptionOf-MO
Event Nr #45

Explanation This event consists of the consumption, by a user, of a specific MO.

Subject
Event

User

Object Event MO

Event’s
Relationships

as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-initiationOf-Event MO Storage Event 1

Event-initiationOf-Event
OpIO(SQRO) Deregistration

Event
0 - 1

R
el

 E
v

Event Name User-consumptionOf-MORansomAnnoncement
Event Nr #46

Explanation
This event consists of the consumption, by a user, of a specific

MORansomAnnoncement.

Subject
Event

User

Object Event MORansomAnnoncement

Event’s
Relationships

as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-initiationOf-Event

Peer

-storageOf-

MORansomAnnoncement

1

Annex D 270

P
ro

c
C

om
p

E
v

Event Name MO Storage Event
Event Nr #47

Explanation This event consists of the storage, by a specific peer, of a specific MO.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event Peer-StorageOf-MO 1

Event-inclusionOf-Event

(Peer-StorageOf-MO)

-implimentOf-

(Peer-storageOf-MOFrag)

1 – ∞

Event-inclusionOf-Event Peer-storageOf-MOFrag 1 – ∞

P
ro

c
C

om
p

E
v

Event Name MO Ownership Exchange Event
Event Nr #48

Explanation
This event consists of the exchanging of ownership, over an MO, between two

users.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event

User

-proposalOf-

(User-ownageOf-MO)

1

Event-inclusionOf-Event
User

-acceptanceOf-

(User-ownageOf-MO)
0 – 1

Event-inclusionOf-Event

User

-rejectionOf-

(User-ownageOf-MO)

0 – 1

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-terminationOf-Event User-ownageOf-MO 0 – 1

Event-initiationOf-Event User-ownageOf-MO 0 – 1

P
ro

c
C

om
p

E
v

Event Name MO Commenting Event
Event Nr #49

Explanation
This event consists of a user inserting an MO into the system which consists of

a comment to some other MO.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event User-insertionOf-MO 1

Event-inclusionOf-Event
(User-insertionOf-MO)

-establishingOf-

(MO-commentingTo-MO)
1

Annex D 271

P
ro

c
C

om
p

E
v

Event Name MO Responding Event
Event Nr #50

Explanation
This event consists of a user inserting an MO into the system which consists of

a response to some other MO.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event User-insertionOf-MO 1

Event-inclusionOf-Event
(User-insertionOf-MO)-

establishingOf-

(MO-respondingTo-MO)
1

P
ro

c
C

om
p

E
v

Event Name MO Versioning Event
Event Nr #51

Explanation
This event consists of a user inserting an MO into the system which consists of

a different version of some other MO (of those owned by the inserting user).

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event User-insertionOf-MO 1

Event-inclusionOf-Event
(User-insertionOf-MO)-

establishingOf-

(MO-versioningOf-MO)
1

P
ro

c
C

om
p

E
v

Event Name User Reporting Event
Event Nr #52

Explanation
This event consists of a user reporting the misbehaviour of another user

(typically) regarding MO inserted by the latter.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event User-denouncingOf-User 1

Event-inclusionOf-Event
UMissbehavReport

-pertinenceTo-

(User-denouncingOf-User)

1

P
ro

c
C

om
p

E
v

Event Name Peer Ownership Exchange Event
Event Nr #53

Explanation
This event consists of the exchanging of ownership, over a Peer, between two

users.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event

User

-proposalOf-

(User-ownageOf-Peer)

1

Event-inclusionOf-Event
User

-acceptanceOf-

(User-ownageOf-Peer)
0 – 1

Event-inclusionOf-Event
User

-rejectionOf-
0 – 1

Annex D 272

(User-ownageOf-Peer)

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-terminationOf-Event User-ownageOf-Peer 0 – 1

Event-initiationOf-Event User-ownageOf-Peer 0 – 1

P
ro

c
C

om
p

E
v

Event Name Donation Event
Event Nr #54

Explanation
This event consists of a user donating some monetary resources to another

user, on the grounds of some MO produced by the latter, that the earlier

deems meritorious of a reward.

Data Fields Total Donated
Amount

The value of the total amount donated by the
donating user

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event User-likingOf-MO 1

Event-inclusionOf-Event

(User-likingOf-MO)

-causationOf-

(User-rewardingOf-User)

1

Event-inclusionOf-Event User-rewardingOf-User 1

Event-inclusionOf-Event

System

-taxatingOf-

(User-rewardingOf-User)

1

R
el

 E
v

Event Name User-rewardingOf-User
Event Nr #55

Explanation
This is a relational event that represents a user action which consists of

rewarding another user with a specific amount of monetary resources.

Subject
Event

User

Object Event User

Data Fields
Received

Amount
The amount received by the rewarded user.

R
el

 E
v

Event Name System-taxationOf-(User-rewardingOf-User)
Event Nr #56

Explanation
This is a relational event that represents the system’s action of taxing an inter-

user donation.

Subject
Event

User

Object Event User

Data Fields
Taxed

Amount
The amount extracted by the system as tax.

Annex D 273

P
ro

c
C

om
p

E
v

Event Name User Attention Sale Event
Event Nr #57

Explanation
This event consists of the sale, by a user, of his attention, to another user

(advertiser), by viewing some specific MO containing an advertisement

message.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event User-consumptionOf-MO 1

Event-inclusionOf-Event User-answeringOf-InquiryIO 1

Event-inclusionOf-Event User-paymentTo-User 0 – 1

Event-inclusionOf-Event

System

-taxatingOf-

(User-paymentTo-User)

0 – 1

R
el

 E
v

Event Name User-paymentTo-User
Event Nr #58

Explanation
This is a relational event that represents a user action which consists of paying

another user with a specific amount of monetary resources, for attention that

the latter sold to the earlier.

Subject
Event

User

Object Event User

Data Fields
Paid

Amount
The amount paid by the advertiser user.

R
el

 E
v

Event Name System-taxationOf-(User-paymentTo-User)
Event Nr #59

Explanation
This is a relational event that represents the system’s action of taxing an inter-

user sale of attention.

Subject
Event

User

Object Event User

Data Fields
Taxed

Amount
The amount extracted by the system as tax.

P
ro

c
C

om
p

E
v

Event Name Ransoming Event
Event Nr #60

Explanation
This event consists of the requesting by the CCP, to some peripheral peer, for

it to periodically report back to CCP on specific user actions.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event Ransom Donation Event 0 – ∞

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event User-insertionOf-MO 0 – ∞

Annex D 274

P
ro

c
C

om
p

E
v

Event Name Ransom Donation Event
Event Nr #61

Explanation
This event consists of a user donating some monetary resources to another

user, on to pay for the ransom of some prospective MO, which is announced

by some specific MO Ransom Announcement.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event User-likingOf-MORnsmAnn 1

Event-inclusionOf-Event

(User-likingOf-MORnsmAnn)

-causationOf-

(User-rewardingOf-User)

1

Event-inclusionOf-Event User-rewardingOf-User 1

Event-inclusionOf-Event

System

-taxatingOf-

(User-rewardingOf-User)

1

R
el

 E
v

Event Name User-loadingOf-UAccount
Event Nr #62

Explanation
This is a relational event that represents a user action which consists of

loading a user’s account with monetary resources.

Subject
Event

User

Object Event UAccount

Data Fields LoadedAmount The amount loaded by the user.

R
el

 E
v

Event Name User-unloadingOf-UAccount
Event Nr #63

Explanation
This is a relational event that represents a user action which consists of

extracting monetary resources from his account.

Subject
Event

User

Object Event UAccount

Data Fields LoadedAmount The amount extracted by the user.

R
el

 E
v

Event Name User-insertionOf-Peer
Event Nr #64

Explanation
This is a relational event that represents a user’s initiative to insert a peer into

the system.

Subject
Event

User

Object Event Peer

Event’s
Relationships

as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event Peer Registration Event 0 - 1

Annex D 275

R
el

 E
v

Event Name User-removalOf-Peer
Event Nr #65

Explanation
This is a relational event that represents a user’s initiative to remove a peer

from the system.

Subject
Event

Peer

Object Event System

Event’s
Relationships

as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event User Disconnection Event 0 - ∞

Event-causationOf-Event MO Deregistration event 0 - ∞

Event-causationOf-Event Peer Deregistration Event 0 - 1

D.1.2.2.1.2 System Originated

P
ro

c
C

om
p

E
v

Event Name Report Requesting Event
Event Nr #66

Explanation
This is an internal system event. It consists of the requesting by the CCP, to

some peripheral peer, for it to periodically report back to CCP on specific user

actions.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event Peer-requestTo-Peer 1

Event-inclusionOf-Event

ERR

-pertinenceTo-

(Peer-requestTo-Peer)

1

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event Reporting Event 0 – ∞

P
ro

c
C

om
p

E
v

Event Name Reporting Event
Event Nr #67

Explanation
This is an internal system event. It consists of a peripheral peer reporting back

to the CCP (regarding some user action), in response to a previous Event

Report Request received by the earlier from the latter.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event Peer-respondingTo-Peer 1

Event-inclusionOf-Event

ER

-pertinenceTo-

(Peer-respondingTo-Peer)

1

P
ro

c
C

om
p

E
v

Event Name Users Evaluation Event
Event Nr #68

Explanation
This is a periodical, internal, system event which consists of an evaluation of

all of the system users’ conduit.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event User Evaluation Event 1 – ∞

Annex D 276

P

ro
c

C
om

p
E

v
Event Name User Evaluation Event

Event Nr #69

Explanation

This is an internal system event. It consists of the evaluation of a specific

user’s conduit, taking into consideration other users’ misbehaviour reports

regarding that user. It may lead to the expulsion, quarantining or

dequarantining of the evaluated user.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event System-evaluationOf-User 1

Event-inclusionOf-Event
System-analysisOf-

UserMissbehavReport
0 – ∞

Event-inclusionOf-Event

(System-analysisOf-

UserMissbehavReport)-

pertainmentTo-

(System-evaluationOf-User)

0 – ∞

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event System-evictionOf-User 0 – 1

Event-initiationOf-Event System-quarantiningOf-User 0 – 1

Event-terminationOf-Event System-quarantiningOf-User 0 – 1

R
el

 E
v

Event Name System-evictionOf-User
Event Nr #70

Explanation
This is an internal system event. It consists of the eviction of a user from the

system’s user community. This implies the removal of all his MOs and Peers.

Subject
Event

System

Object Event User

Event’s
Relationships

as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event User Deregistration Event 0 – ∞

P
ro

c
C

om
p

E
v

Event Name MOs Evaluation Event
Event Nr #71

Explanation
This is a periodical, internal, system event which consists of an evaluation of

all of the system MOs.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event MO Evaluation Event 1 – ∞

P
ro

c
C

om
p

E
v

Event Name MO Evaluation Event
Event Nr #72

Explanation
This is an internal system event. It consists of the evaluation of a specific MO,

taking into consideration users misbehaviour reports that concern it. It may

lead to the eviction, quarantining or dequarantining or of the evaluated MO.

Event’s
Relationships

Structural
Connecting RelEv Name Connected Object Event Cardinality

Annex D 277

as Subject Event-inclusionOf-Event System-evaluationOf-MO 1

Event-inclusionOf-Event
System-analysisOf-

UserMissbehavReport
0 – ∞

Event-inclusionOf-Event

(System-analysisOf-

UserMissbehavReport)-

pertainmentTo-

(System-evaluationOf-MO)

0 – ∞

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event System-evictionOf-MO 0 – 1

Event-initiationOf-Event System-quarantiningOf-MO 0 – 1

Event-terminationOf-Event System-quarantiningOf-MO 0 – 1

R
el

 E
v

Event Name System-evictionOf-MO
Event Nr #73

Explanation
This is an internally triggered relational system event. It represents the

eviction of an MO from the system.

Subject
Event System

Object Event MO
Event’s

Relationships
as Subject

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event MO Deregistration Process 0 - 1

P
ro

c
C

om
p

E
v

Event Name UEL Servicing Session Event
Event Nr #74

Explanation
This event consists of the maintenance of UEL servicing responsabilities (over

the peripheral peer collective) by a specific OCP.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event

 (Peer(OCP)

-uelServicingOf-

Peer(PP))

1

Event-inclusionOf-Event

Instruction OP IO

-pertainmentTo-

 (Peer(OCP)

-uelServicingOf-

Peer(PP))

1

D.1.2.2.2 Registered Global UEL Entitary Complex Events

E
nt

 C
om

p
E

v

Event Name User
Event Nr #75

Explanation This event consists of a system human user.

Data Fields

User Type
The type of user (regular consumer/producer user or advertiser

user)

Username The user’s username

Pub Key The user’s public key

Priv Key The user’s private key

Annex D 278

E
nt

 C
om

p
E

v Event Name User Account
Event Nr #76

Explanation This event consists of a the user account of a system user.

Data Fields
Account

balance
The amount of momentary funds stored in the account

E
nt

 C
om

p
E

v

Event Name Trusted System
Event Nr #77

Explanation
This event consists of another (P2PTube-like) system, which is trusted by the

present system.

Data Fields
System

Name
The identifying name of the trusted system

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event
Peer (the CCP of the trusted

system)
1

E
nt

 C
om

p
E

v Event Name System
Event Nr #78

Explanation This event consists of the actual system.

Data Fields
System

Name
The identifying name of this system

E
nt

 C
om

p
E

v

Event Name Operational IO
Event Nr #79

Explanation This event consists of an operational information object in the system.

Data Fields

OpIO Type The type of operational IO

Tstamp
Time stamp indication the validity termination date of the data

contained in the operational IO

Usig
The signature of the user involved (if any) in the production of

the operational IO

Psig
The signature of the peer involved (if any) in the production of

the operational IO

Ssig The system’s (CCP’s or OCP’s) signature of the operational IO

E
nt

 C
om

p
E

v

Event Name Search Query IO
Event Nr #80

Explanation
This event consists of a specific search query. Desides the data fields

presented in the Operational IO event, its registry will also contain the one

presented bellow.

Data Fields
Search

Query
The search query string.

Annex D 279

E
nt

 C
om

p
E

v
Event Name MO

Event Nr #81

Explanation This event consists of a media object.

Data Fields

MO Usage

Type

The usage type of the media object (regular MO, advertisement

MO, etc)

Semantic

Type

The basic semantic category to which the MO pertains (comedy,

drama, etc)

Size The byte-wise size of the MO

Duration The temporal length of the MO

Usig The owner user’s signature of the media object

Ssig The system’s (CCP’s) signature of the MO

Frag Nr
The number of fragments the MO is broken into for

redistribution

E
nt

 C
om

p
E

v

Event Name MOFrag
Event Nr #82

Explanation This event consists of a fragment of an MO.

Data Fields

Size The byte-wise size of the MO fragment

Ssig The system’s (CCP’s) signature of the MO fragment

Frag Seq Nr
The MO fragment’s sequence number within the context of its

“parent” MO

E
nt

 C
om

p
E

v

Event Name MORansomAnnouncement
Event Nr #83

Explanation
This event consists of an announcement of the ransoming of a prospective

future M.

Data Fields

Semantic

type
The semantic type of the prospective MO

Has Been

Paid
A boolean indication if the ransom has already been paid

MO

Delivered

A boolean indication if the corresponding MO has already been

delivered

E
nt

 C
om

p
E

v Event Name User Key Pair
Event Nr #84

Explanation This event consists of a user’s public and private key pair.

Pub Key The user’s public key

Priv Key The user’s private key

Annex D 280

D.1.2.3 Registered Global Cross Layer Information

P
ro

c
C

om
p

E
v

Event Name Data Model Synchronization Event
Event Nr #85

Explanation
This is an internal system event. It consists of the updating, by the CCP, of the

data structure copies located at all the relevant OCP, so that all data structure

copies are coherent.

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event Peer-updatingOf-Peer 1 – ∞

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-causationOf-Event Peer Evaluation Event 0 – ∞

P
ro

c
C

om
p

E
v

Event Name OCP Activity Reporting Event
Event Nr #86

Explanation
This is an internal system event. It consists of an OCP reporting to the CCP

information regarding its workload

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event
Peer(OCP)-notificationTo-

Peer(CCP)
1

Event-inclusionOf-Event

OCPActivityNotification

-pertainmentTo-

(Peer(OCP)

-notificationTo-

Peer(CCP))

1 – ∞

D.1.3 Registered Individual Peer Information

The event registries, presented bellow, are temporarily stored at every peer to enable the
coordination of their individual operation. They constitute the peer’s individual model and are
not stored at the core data structure.

D.1.3.1 Registered Individual PLL Information

D.1.3.1.1 Registered Individual Relational and Procedural Complex Events

P
ro

c
C

om
p

E
v

Event Name Inter-Peer PLL Connection Event
Event Nr #87

Explanation
This event consists of the establishment of a PLL communicational connection

between two peers.

Parent Type Peer PLL Operation Event

 Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event Peer-connectionTo-Peer 0 - 1

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-initiationOf-Event
Inter Peer PLL Comm Session

Event
0 – 1

Annex D 281

P
ro

c
C

om
p

E
v

Event Name Inter-Peer PLL Disconnection Event
Event Nr #88

Explanation
This event consists of the termination of a PLL communicational connection

between two peers.

Parent Type Peer PLL Operation Event

 Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event
Peer-disconnectionFrom-

Peer
0 - 1

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-terminationOf-Event
Inter Peer PLL Comm Session

Event
0 – 1

P
ro

c
C

om
p

E
v

Event Name Inter Peer PLL Comm Session Event
Event Nr #89

Explanation
This event consists of a the maintenance of a communication session between

two peers.

Data Fields Session Key
The secret key for the encryption of the messages exchanged

during the communication session

 Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-enablingOf-Event Inter Peer PLL Cooperation Event 0 – ∞

P
ro

c
C

om
p

E
v

Event Name Peer PLL Operation Event
Event Nr #90

Explanation
This event consists of the performing of some specific PLL operation by some

peer.

Data Fields Op Type The type of the operation

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event Inter Peer PLL Cooperation Event 0 – ∞

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-supportingOf-Event Peer UEL Operation Event 0 – 1

P
ro

c
C

om
p

E
v

Event Name Inter Peer PLL Cooperation Event
Event Nr #91

Explanation This event consists of the cooperation between to peers (at the PLL level).

Data Fields
Played Role Client or server

Coop Type The type of the cooperation

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event PLL Msg Sending Event 0 – ∞

Event-inclusionOf-Event PLL Msg Reception Event 0 – ∞

Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-supportingOf-Event Inter Peer UEL Cooperation Event 0 – ∞

Annex D 282

P
ro

c
C

om
p

E
v

Event Name PLL Msg Sending Event
Event Nr #92

Explanation This event consists of the sending of a PLL message.

Data Fields Msg. Seq. Nr The sequence number of the sent PLL message

 Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-reactingTo-Event PLL Msg Reception Event 0 - 1

P
ro

c
C

om
p

E
v

Event Name PLL Msg Reception Event
Event Nr #9

Explanation This event consists of the reception of a PLL message.

Data Fields Msg. Seq. Nr The sequence number of the received PLL message

 Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-reactingTo-Event PLL Msg Sending Event 0 - 1

D.1.3.2 Registered Individual UEL Information

D.1.3.2.1 Registered Individual Relational and Procedural Complex Events

P
ro

c
C

om
p

E
v

Event Name Peer UEL Operation Event
Event Nr #93

Explanation
This event consists of the performing of some specific UEL operation by some

peer.

Data Fields Op Type The type of the operation

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event Inter Peer UEL Cooperation Event 0 – ∞

P
ro

c
C

om
p

E
v

Event Name Inter Peer UEL Cooperation Event
Event Nr #94

Explanation This event consists of the cooperation between to peers (at the UEL level).

Data Fields Plaid Role Client or server

Event’s
Relationships

as Subject

Structural
Connecting RelEv Name Connected Object Event Cardinality

Event-inclusionOf-Event UEL Msg Sending Event 0 – ∞

Event-inclusionOf-Event UEL Msg Reception Event 0 – ∞

P
ro

c
C

om
p

E
v

Event Name UEL Msg Sending Event
Event Nr #95

Explanation This event consists of the sending of a UEL message.

Data Fields Msg Seq Nr The sequence number of the sent UEL message.

 Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-reactingTo-Event UEL Msg Reception Event 0 - 1

Annex D 283

P
ro

c
C

om
p

E
v

Event Name UEL Msg Reception Event
Event Nr #96

Explanation This event consists of the reception of a UEL message.

Data Fields Msg Seq Nr The sequence number of the received UEL message.

 Contextual
Connecting RelEv Name Connected Object Event Cardinality

Event-reactingTo-Event UEL Msg Sending Event 0 - 1

 285

References
[1] Techtarget, D. Wolff, “peer-to-peer”, 2004,

http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212769,00.html.
[2] Stephanos Androutsellis-Theotokis, “A Survey of Peer-to-Peer File Sharing

Technologies”, Athens University of Economics and Business, 2002,
http://www.spinellis.gr/pubs/jrnl/2004-ACMCS-p2p/html/AS04.html.

[3] IBM, T. Sundsted, “The practice of peer-to-peer computing: Introduction and history”,
2001.

[4] OECD, “OECD Information Technology Outlook – Peer To Peer Networks in OECD
Countries – Pre-release of Section from Chapter 5 of the Information Technology
Outlook”, 2004.

[5] OECD, “OECD Information Technology Outlook”, 2006.
[6] Networks and Telecommunications Research Group at Trinity College Dublin,

“Website dedicated to P2P and networking technologies”, 2003,
http://ntrg.cs.tcd.ie/undergrad/4ba2.02-03/Intro.html.

[7] Mp3newswire, R. Menta, “RIAA Sues Music Startup Napster for $20 Billion”, 1999,
http://www.mp3newswire.net/stories/napster.html.

[8] San Francisco Chronicle, E. Benny, "Napster runs out of lives – judge rules against
sale", 2002.

[9] Gnutella Homepage, http://www.gnutella.com.
[10] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A distributed anonymous

information storage and retrieval system”, Proceedings of ICSI Workshop on Design
Issues in Anonymity and Unobservability, 2000.

[11] Edonkey Network, http://www.edonkey2000.com (This site has been disabled for
legal reasons).

[12] PIER Project Homepage, Berkeley, Computer Science Division,
http://pier.cs.berkeley.edu/index.html.

[13] Edutella Project, http://www.edutella.org/edutella.shtml.
[14] Mac-P2P.com, “Peer to Peer (P2P) Introduction and History”, 2003, http://www.mac-

p2p.com/p2p-history.
[15] Gnutella Protocol Development Registration Site, Sourcefourge, http://rfc-

gnutella.sourceforge.net/.
[16] “The FastTrack Protocol”, http://cvs.berlios.de/cgi-bin/viewcvs.cgi/gift-fasttrack/giFT-

FastTrack/PROTOCOL?rev=HEAD&content-type=text/vnd.viewcvs-markup, 2004.
[17] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim, “A Survey and Comparison of

Peer-to-Peer Overlay Network Schemes”, Communications Surveys & Tutorials,
IEEE, 2005.

[18] L. Garcés-Erice, E. W. Biersack, P. A. Felber, K. W. Ross, G. Urvoy-Keller,
“Hierarchical Peer-to-peer Systems”, Proceedings of ACM/IFIP Intl. Conference on
Parallel and Distributed Computing, 2003.

[19] M. Schlosser, M. Sintek, S. Decker, W. Nejdl, “HyperCuP – Hypercubes, Ontologies
and Efficient Search on P2P Networks”, Proceedings of the First International
Workshop on Agents and Peer-to-peer Computing (AP2PC), 2002.

[20] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman, “SkipNet: a
scalable overlay network with practical locality properties”, Proceedings of 4th
USENIX Symposium on Internet Technologies and Systems (USITS), 2003.

[21] Q. Lv, S. Ratnasamy, and S. Shenker, “Can heterogeneity make Gnutella scalable?”,
In Proceedings of the 1st International Workshop on Peer-to-Peer Systems (IPTPS
'02), MIT Faculty Club, 2002.

 286

[22] Miguel Castro, Manuel Costa, and Antony Rowstron, “Should we build Gnutella on a
structured overlay?”, SIGCOMM Comput. Commun. Rev. 34, 1 (January 2004), 131-
136, 2004.

[23] C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication in
unstructured peer-to-peer networks”, Proceedings of the 16th international
conference on Supercomputing, New York, 2001.

[24] B. Yang, H. Garcia-Molina, “Improving search in peer-to-peer networks”, Proceedings
of the 22nd International Conference on Distributed Computing Systems (ICDCS'02),
2002.

[25] P. Reynolds, A. Vahdat, “Efficient peer-to-peer keyword searching”, Proceedings of
IFIP/ACM Middleware, 2003.

[26] S. Rhea, C. Wells, and others, “Maintenance-free Global Data Storage”, IEEE
Internet Computing, Volume 5, pages 40 - 49, 2001.

[27] A. Ghodsi, “Distributed k-ary System: Algorithms for Distributed Hash Tables”,
Doctoral thesis, Chapter 6.1, KTH, Royal Institute of Technology, 2006.

[28] P. Druschel, A. Rowstron, “Past: A large-scale, persistent peer-to-peer storage
utility”, Proceedings of the Eighth Workshop on Hot Topics in Operating Systems,
2001.

[29] M. Waldman, A. D. Rubin, L. F. Cranor, “Publius: A robust, tamper-evident,
censorship-resistant web publishing system”, Proceedings of the 9th USENIX
Security Symposium, USA, 2000.

[30] S. Hand, T. Roscoe, “Mnemosyne: Peer-to-peer steganographic storage”,
Proceedings of the 1st International Workshop on Peer-to-Peer Systems (IPTPS '02),
MIT Faculty Club, 2002.

[31] C. Peery, F. M. Cuenca-Acuna, R. P. Martin, T. D. Nguyen, “Collaborative
Management of Global Directories in P2P Systems”, Rutgers University, 2002.

[32] A. Muthitacharoen, R. Morris, T. M. Gil, B. Chen, “Ivy: A Read/Write Peer-to-Peer
File System”, 5th Symposium on Operating Systems Design and Implementation,
USA, 2002.

[33] A. R. Butt, T. A. Johnson, Y. Zheng, Y. C. Hu “Kosha: A Peer-to-Peer Enhancement
for the Network File System”, Proceedings of the ACM/IEEE SC2004 Conference,
20004.

[34] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The Eigentrust algorithm for
reputation management in p2p networks”, Proceedings of the Twelfth International
World Wide Web Conference, 2003.

[35] M. Gupta, P. Judge, and M. Ammar, “A reputation system for peer-to-peer networks”.
NOSSDAV'03 Conference, California, 2003.

[36] L. Xiong and L. Liu, “Building Trust in Decentralized Peer-to-Peer Electronic
Communities”, 5th International Conference on Electronic Commerce Research,
2002.

[37] Liu, “Free riding: A new challenge for peer-to-peer file sharing systems”, Proceedings
of the 36th HICSS Conference, Hawaii, 2003.

[38] E. Damiani et al, “A Reputation-Based Approach for Choosing Reliable Resources in
Peer-to-Peer Networks”, Proceedings of the 9th ACM conference on Computer and
Communications Security (CCS’02), pages 207 to 216, 2002.

[39] B. Chun, Y. Fu, A. Vahdat, “Bootstrapping a distributed computational economy with
peer-to-peer bartering”, Proceedings of the 1st Workshop on Economics of Peer-to-
Peer Systems, 2003.

[40] B. Cohen, “Incentives Build Robustness in BitTorrent”, Proceedings of the First
Workshop on the Economics of Peer-to-Peer Systems, California, 2003.

 287

[41] K. Anagnostakis, M. Greenwald, “Exchange-based incentive mechanisms for peer-to-
peer file sharing”, 24th International Conference on Distributed Computing Systems
(ICDCS'04), Tokyo, 2004.

[42] B. F. Cooper, H. Garcia-Molina, “Peer-to-peer resource trading in a reliable
distributed system”, Proceedings of the 1st International Workshop on Peer-to-Peer
Systems (IPTPS '02), MIT Faculty Club, 2002.

[43] R. Dingledine, M. J. Freedman, D. Molnar, “The FreeHaven project: Distributed
anonymous storage service”, Proceeding of the Workshop on Design Issues in
Anonymity and Unobservability, 2000.

[44] V. Vishnimurthy, S. Chandrakumar, E. Gun Sirer, “Karma: A secure economic
framework for p2p resource sharing”, Proceedings of the 1st Workshop on
Economics of Peer-to-Peer Systems, 2003.

[45] B. Yu, M. P. Singh, “Incentive mechanisms for peer-to-peer systems”, Proceedings of
the 2nd International Workshop on Agents and Peer-to-Peer Computing, 2003.

[46] B. Yang, H. Garcia-Molina, “PPay: Micropayments for Peer to Peer Systems”,
Proceedings of the 10th ACM Conference on Computer and Communications
Security (CCS), 2003.

[47] O’Reilly, Andy Oram and others, “Peer-to-Peer: Harnessing the Power of Disruptive
Technologies”, 2001, ISBN 10: 0-596-00110-X | ISBN 13: 9780596001100.

[48] J. R. Douceur, “The Sybil attack”, Proceedings of the 1st International Workshop on
Peer-to-Peer Systems (IPTPS '02), MIT Faculty Club, 2002.

[49] Nitesh Saxena, Gene Tsudik, and Jeong Hyun Yi, “Threshold cryptography in P2P
and MANETs: The case of access control”, Comput. Netw. 51, 12, pp 3632-3649,
August 2007.

[50] S. Garfinkel, "PGP: Pretty Good Privacy", O'Reilly & Associates, Inc., Cambridge,
MA,1995.

[51] V. Pathak, L. Iftode, "Byzantine fault tolerant public key authentication in peer-to-peer
systems", Computer Networks. Special Issue on Management in Peer-to-Peer
Systems: Trust, Reputation and Security,50(4):579–596, March 2006.

[52] J. Dinger, H. Hartenstein, “Defending the Sybil Attack in P2P Networks: Taxonomy,
Challenges, and a Proposal for Self-Registration”, Proceedings of the First
International Conference on Availability, Reliability and Security, 2006.

[53] R. Dingledine, M. J. Freedman, D. Molnar, “Peer-to-Peer: Harnessing the Power of
Disruptive Technologies”, O’Reilly, 2001.

[54] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, S. R. Gummadi, H.
Weatherspoon, W. Weimer, C. Wells, B. Zhao, “Oceanstore: An architecture for
global-scale persistent storage”, Proceedings of the Ninth international Conference
on Architectural Support For Programming Languages and Operating Systems,
2000.

[55] W. J. Bolosky, J. R. Douceur, D. Ely, M. Theimer, “Feasibility of a Serverless
Distributed File System Deployed on an Existing Set of Desktop PCs”, Proceedings
of ACM SIGMETRICS 2000, 2000.

[56] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica, “Wide-Area Cooperative
Storage with CFS”, Proceedings of the 18th ACM symposium on Operating systems
principles, 2001.

[57] Shane Balfe, Amit D. Lakhani, and Kenneth G. Paterson, “Trusted Computing:
Providing Security for Peer-to-Peer Networks”, In Proceedings of the Fifth IEEE
International Conference on Peer-to-Peer Computing (P2P '05), IEEE Computer
Society, Washington, DC, USA, 117-124.

 288

[58] A. Datta, M.Hauswirth,K. Aberer, "Beyond "web of trust": Enabling P2P E-
Commerce", Proceedings of IEEE International Conference on Electronic Commerce
(CEC), 2003.

[59] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wallach, “Secure routing for
structured peer-to-peer overlay networks”, Proceedings of the 5th Symposium on
Operating Systems Design and Implementation (OSDI 2002), 2002.

[60] T. Chothia, K. Chatzikokolakis, “A Survey of Anonymous Peer-to-Peer File-Sharing”,
Proceedings of the IFIP International Symposium on Network-Centric Ubiquitous
Systems (NCUS 2005), Japan, 2005.

[61] M. Reiter, A. Rubin, “Crowds: anonymity for web transactions”. ACM Transactions on
Information and System Security (TISSEC), Volume 1, Issue 1, pages 66 - 92, 1998.

[62] D. Goldschlag, M. Reed, P. Syverson, “Onion routing for anonymous and private
Internet connections”, Communications of the ACM, 1999.

[63] D. Chaum, “Untraceable electronic mail, return addresses and digital pseudonyms”,
Communications of the ACM, Volume 24, Issue 2, pages: 84 - 90, 1981.

[64] A. Serjantov, “Anonymizing censorship resistant systems”. Proceedings of the 1st
International Workshop on Peer-to-Peer Systems, MIT Faculty Club, 2002.

[65] M. J. Freedman, E. Sit, J. Cates, R. Morris, “Introducing tarzan, a peer-to-peer
anonymizing network layer”, Proceedings of the 1st International Workshop on Peer-
to-Peer Systems (IPTPS '02), MIT Faculty Club, 2002.

[66] S. Hazel, B. Wiley, “Achord: A variant of the Chord lookup service for use in
censorship resistant peer-to-peerpublishing systems”, Proceedings of the 1st
International Workshop on Peer-to-Peer Systems (IPTPS '02), MIT Faculty Club,
2002.

[67] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica,
“Wide-area cooperative storage with CFS”, In Proc.ACM SOSP’01, Banff, Canada,
October 2001.

[68] P. Maniatis, M. Baker, “Secure History Preservation Through Timeline
Entanglement”, Proc. 11th USENIX Security Symposium, SF, CA, USA (2002).

[69] Neil Daswani, Hector Garcia-Molina and Beverly Yang, “Open Problems in Data-
sharing Peer-to-peer Systems”, Technical Report, Stanford InfoLab, 9th International
Conference on Database Theory (ICDT 2003) Siena, Italy, January 8-10, 2003.

[70] A. Shamir, “How to share a secret”, Communications of the ACM, Volume 22, Issue
11, pages: 612 - 613, 1979.

[71] Slyck News, T. Mennecke, “eDonkey2000 Nearly Double the Size of FastTrack”,
2005, http://www.slyck.com/news.php?story=814.

[72] Gnutella For Users Homepage, http://rakjar.de/gnufu/index.php/GnuFU_en.
[73] A. Jantunen, S. Peltotalo, J. Peltotalo, “Peer-to-Peer Analysis State-of-the-art”,

Tampere University of Technology, 2006,
http://delco.cs.tut.fi/doc/other/p2p_analysis_v01.pdf.

[74] The BitTorrent Protocol Specification, http://www.bittorrent.org/beps/bep_0003.html.
[75] Azureus official Homepage, http://azureus.sourceforge.net.
[76] Azureus wiki page on DHT usage, http://azureuswiki.com/index.php/DHT.
[77] Kademlia specification at Sourceforge,

http://xlattice.sourceforge.net/components/protocol/kademlia/specs.html.
[78] I. Thomson, Vnunet.com , “P2P network eDonkey to close”, 2005,

http://www.vnunet.com/vnunet/news/2142972/p2p-company-falls.
[79] N. Mook, BetaNews, “eDonkey Firm to Pay RIAA $30 Million”, 2006,

http://www.betanews.com/article/eDonkey_Firm_to_Pay_RIAA_30_Million/11580931
47.

 289

[80] S. B. Handurukande, A.M. Kermarrec, F. Le Fessant, L. Massoulié and S. Patarin,
“Peer Sharing Behaviour in the eDonkey Network, and Implications for the Design of
Server-less File Sharing Systems”, Proceedings of the 2006 EuroSys conference,
2006.

[81] Kazaa Media Desktop, http://www.kazaa.com.
[82] J. Liang, R. Kumar, K. W. Ross, "The FastTrack overlay: A measurement study",

Computer Networks: The International Journal of Computer and Telecommunications
Networking, 2006.

[83] Q. Liu, R. Safavi-Naini, N. P. Sheppard, “Digital Rights Management for Content
Distribution”, Proceedings of the Australasian information security workshop
conference on ACSW frontiers, 2003.

[84] World Intellectual Property Organization, Standing Committee on Copyright and
Related Rights, Tenth Session, J. P. Cunard, K. Hill, C. Barlas, “Current
Developments in the Field of Digital Rights Management”, 2005.

[85] MEDIANET Project, “DRM/CP Requirements of Selected Use Cases and Business
Scenarios”, Deliverable DB.5.7.

[86] Open Digital Rights Language (ODRL) Initiative Homepage, http://odrl.net.
[87] Cover Pages, “ODRL Version 1.0 Submitted to ISO/IEC MPEG for Rights Data

Dictionary and Rights Expression Language (RDD-REL)”,
http://xml.coverpages.org/ni2001-11-21-d.html.

[88] eXtensible Rights Markup Language Homepage, http://www.xrml.org.
[89] EURESCOM, Project OPERA, S. Wegner, “Overview of the state-of-the-art at DRM

Systems and Standardisation Activities”, 2002.
[90] R. G. González, “A Semantic Web approach to Digital Rights Management”, PhD

Thesis, Universitat Pompeu Fabra, Barcelona 2005.
[91] Creative Commons Homepage, http://creativecommons.org.
[92] OASIS XACML committee Homepage, http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=xacml.
[93] Cover Pages Technology Reports, “Extensible Access Control Markup Language”,

http://xml.coverpages.org/xacml.html, 2005.
[94] Microsoft, “Microsoft Next-Generation Secure Computing Base Technical FAQ”,

http://www.microsoft.com/technet/archive/security/news/ngscb.mspx?mfr=true.
[95] Trusted Computing Group Homepage, https://www.trustedcomputinggroup.org/home.
[96] Windows Live ID Homepage,

https://accountservices.passport.net/ppnetworkhome.srf.
[97] OpenID Homepage, http://openid.net.
[98] OpenID Foundation Homepage, http://openid.net/foundation.
[99] Shibboleth Homepage, http://shibboleth.internet2.edu.
[100] OASIS, “OASIS Security Services (SAML)”, http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=security.
[101] E. Rodríguez, J. Delgado, “Trust in event reporting mechanisms for DRM”, 3rd IEEE

International Workshop on Digital Rights Management Impact on Consumer
Communications (CCNC 2007), 2007.

[102] MPEG-21, “Information Technology — Multimedia Framework — Part 15: Event
Reporting”, ISO/IEC JTC 1/SC 29/WG 11, 2006.

[103] Open Mobile Alliance Homepage, http://www.openmobilealliance.org.
[104] CEN/ISSS (European Committee for Standardization / Information Society

Standardization System), “Digital Rights Management Final Report”, European
Commission, 2003, http://ec.europa.eu/enterprise/ict/policy/doc/drm.pdf.

 290

[105] Open Mobile Alliance, "OMA-TS-DRM-DRM-V2_0-20050614-C", 2005,
http://www.openmobilealliance.org/technical/release_program/docs/DRM/V2_0-
20050614-C/OMA-TS-DRM-DRM-V2_0-20050614-C.pdf.

[106] FindArticles.com, “Vodafone Selects Industry Leading Digital Rights Management
Solution from CoreMedia”, 2004,
http://findarticles.com/p/articles/mi_m0EIN/is_2004_Nov_23/ai_n7073339.

[107] CoreMedia, “VIVO, Brazil's largest mobile operator selects CoreMedia DRM”,
http://www.coremedia.com/en/103250/vivo-brazils-largest-mobile-operator-selects-
coremedia-drm.

[108] OPIMA Homepage, http://www.chiariglione.org/leonardo/standards/opima/index.htm.
[109] ISMA Homepage, http://www.isma.tv.
[110] ISMA, “Internet Streaming Media Alliance Encryption and Authentication Version

1.1”, 2005, http://www.isma.tv/technology/TD00084.pdf.
[111] Michael LoBue, Reuters,”MPEGIF and ISMA: ISMA Mission Accomplished, Residual

Assets Assumed by MPEGIF”, 2010 ,
http://www.reuters.com/article/2010/04/27/idUS30029+27-Apr-2010+BW20100427

[112] MPEG, “MPEG-4 IPMPX white paper ISO/IEC JTC 1/SC 29/WG 11”
http://www.chiariglione.org/mpeg/technologies/mp04-ipx/index,htm.

[113] MPEG-21 Consortium, “ISO/IEC FDIS 21000-5:2003(E) Information Technology —
Multimedia Framework — Part 5: Rights Expression Language”, 2003.

[114] Digital Media Project Homepage, http://www.dmpf.org.
[115] The Digital Media Project, L. Chiariglione, Proposal for “Approved Document No. 4,

WD 1.1 – Technical Specification: Use Cases and Value Chains, ver. 3.0”, 2007.
[116] Microsoft, “Architecture of Windows Media Rights Manager”,

http://www.microsoft.com/windows/windowsmedia/howto/articles/drmarchitecture.asp
x.

[117] SCG AG Homepage, http://www.digicont.ch/c_index.html.
[118] SDC AG, “Mobile Code Architecture and Digital Container Object”,

http://www.digicont.ch/sdc_java_drm/core_technology/index.html.
[119] OpenIPMP Homepage, http://objectlab.com/clients/openipmp/index.htm.
[120] AXMEDIS project Homepage, http://www.axmedis.org.
[121] AXMEDIS project, “AXMEDIS DRM FOR DUMMIES”,

http://www.axmedis.org/documenti/view_documenti.php?doc_id=3964.
[122] Nate Anderson, “Hacking Digital Rights Management”, Ars Technica, 2007,

http://arstechnica.com/apple/news/2006/07/drmhacks.ars.
[123] Veoh Homepage, http://www.veoh.com.
[124] Jon Brodkin 2011, “Appeals Court reaffirms DMCA protection for user-generated

content”, Ars Technica, http://arstechnica.com/tech-policy/news/2011/12/appeals-
court-reaffirms-dmca-protection-for-user-generated-content.ars.

[125] Babelgum Homepage, http://www.babelgum.com.
[126] Screendigest, “Babel Networks to join increasingly crowded online video market”,

http://www.screendigest.com/online_services/intelligence/broadband/updates/bi-
070307-dcsj1/view.html.

[127] PaidContent Org, R. Andrews, “Joost Rival Babelgum Opens Doors To P2P TV
Viewers”, 2007, http://www.paidcontent.org/entry/419-joost-rival-babelgum-opens-
doors-to-p2p-tv-viewers.

[128] News.com, G. Sandoval, “Skype founders name new video start-up Joost”, 2007,
http://www.news.com/Skype-founders-name-new-video-start-up-Joost/2100-1026_3-
6150225.html.

 291

[129] Staci D. Kramer, “Joost Says It Has No Future As Portal, Enters White-Label Market;
Volpi Out As CEO”, paidContent Org, 2009, http://paidcontent.org/article/419-joost-
admits-no-future-as-portal-volpi-out-as-ceo-staff-cuts-white-labe.

[130] PPLive Homepage, http://www.pplive.com/en/index.html.
[131] ReelTime Homepage, http://www.reeltime.com.
[132] Livestation Homepage, http://www.livestation.com.
[133] NewTeeVee, J. Roettgers, “Livestation Opens Up Beta Test, Focuses on News”,

2008, http://newteevee.com/2008/02/11/livestation-opens-up-beta-test-focuses-on-
news.

[134] Livestation, “Scalable High Quality Solution”,
http://www.livestation.com/broadcast_platform?tracker=main_menu.

[135] TVNewSer, “The Future of News Viewing”,
http://www.mediabistro.com/tvnewser/nabrtnda_2008/the_future_of_news_viewing__
82514.asp.

[136] InternetNews, S. M. Kerner, “Imeem Launches P2P Social Network”, 2005,
http://www.internetnews.com/xSP/article.php/3527381.

[137] Devin Leonard, "Making free music pay off", CNNMoney,
2008.http://money.cnn.com/2008/08/07/technology/imeem.fortune/index.htm.

[138] Eliot Van Buskirk, "MySpace Music Acquires Shuttered Imeem Music Service", Wired
Magazine, 2009, http://www.wired.com/business/2009/12/myspace-music-acquires-
shutters-imeem.

[139] BBC iPlayer Homepage, http://www.bbc.co.uk/iplayer.
[140] Kontiki Home Page, http://www.kontiki.com.
[141] The Register, C. Williams, “BBC iPlayer for iPhone and iPod Touch is iGo”, 2008,

http://www.theregister.co.uk/2008/03/07/iplayer_iphone_availablity.
[142] Channel Register, C. Williams, “BBC iPlayer finally hits the streets”,

http://www.channelregister.co.uk/2007/06/27/iplayer_launch, 2007.
[143] CNET News, D. Meyer, “BBC iPlayer launch on schedule, despite DRM crack”, 2007,

http://news.cnet.co.uk/software/0,39029694,49291676,00.htm.
[144] The New York Times, R. Levine, “New Model for Sharing: Free Music With Ads”,

2007, http://www.nytimes.com/2007/04/23/technology/23qtrax.html.
[145] EMI Press Release, “EMI Music becomes the first major music company to make its

catalogue available to Qtrax: the world's first ad-supported, legitimate P2P service”,
2006, http://www.emigroup.com/Press/2006/press25.htm.

[146] Qtrax Home Page, http://music.qtrax.com.
[147] Eliot Van Buskirk, “Surprise! Qtrax, The ‘Free and Legal Music Downloads’ Service,

Is Back”, Wired Magazine, 2011, http://www.wired.com/epicenter/2011/03/qtrax-is-
back.

[148] Sky Anytime Home Page, http://anytime.sky.com.
[149] Sky Home Page, http://www.sky.com.
[150] MPPGlobal Home Page, http://www.mppglobal.com/07_news/n_news60-BSkyB-and-

MPP-Link-to-Provide-Multi-faceted-Web-Payments-for-Sky-Anytime.asp.
[151] ZDNet News, David Meyer, “Sky hit by Windows Media DRM crack”, 2006,

http://news.zdnet.com/2100-1009_22-149516.html.
[152] iMesh Home Page, http://www.imesh.com.
[153] BusinessWire, “iMesh Inc. Subsidiary MusicLab Announces Beta Launch of

BearShare Authorized Peer-to-Peer Service; Offering Includes ToGo Portable Music
Subscription Service and Social Networking Features”, 2006,

 292

http://www.businesswire.com/portal/site/google/index.jsp?ndmViewId=news_view&n
ewsId=20060817005185&newsLang=en.

[154] Niall McKay, “Peer-to-Peer Goes Legit”, Wired Magazine, 2005,
http://www.wired.com/entertainment/music/news/2005/11/69457.

[155] TVU Networks Home Page, http://www.tvunetworks.com.
[156] StreamingMedia.com, “TVU Showcases In-stream Video Ads for HP, Rolex and

NetJets”, 2008, http://www.streamingmedia.com/press/view.asp?id=8623.
[157] Zattoo Home Page, http://zattoo.com.
[158] BroadbandTVNews, Julian Clover, “Zattoo joins online TV crowd”, 2008,

http://www.broadbandtvnews.com/?p=4191.
[159] PRNewsWire, “Quick-start, Long-play Internet Television Arrives with Zattoo P2P

IPTV”, 2006,
http://media.prnewswire.com/en/jsp/tradeshows/events.jsp?option=tradeshow&beat=
BEAT_ALL&eventid=1001995&view=LATEST&resourceid=3218275.

[160] Constellation Protfolio Page,
http://www.constellation.ch/eng/portfolio/constellation_i/zattoo.

[161] Jeremy Reimer, "Windows Media DRM cracked", Ars Technica, 2006,
http://arstechnica.com/uncategorized/2006/08/7607.

[162] Bruce Schneier, "Quickest Patch Ever", Wired Magazine - Commentary, 2006,
http://www.wired.com/politics/security/commentary/securitymatters/2006/09/71738.

[163] Anders Bylund, "Apple's DRM cracked again", Ars Technica, 2006,
http://arstechnica.com/uncategorized/2006/08/7619.

[164] Recording Industry Association of America, “Piracy: Online and On The Street” 2008,
http://www.riaa.com/physicalpiracy.php.

[165] K. Fisher, “The Problem with MPAA’s Shocking Piracy Numbers”, Ars Technica,
2006, http://arstechnica.com/old/content/2006/05/6761.ars.

[166] H. Castro, A. P. Alves, C. Serrão, B. Caraway, "A New Paradigm for Content
Producers", IEEE Multimedia,vol.17, no.2, pp.90-93, April-June 2010.

[167] N. Anderson, “Five Years of Failure: EFF Says RIAA Must Embrace New Model”, Ars
Technica, 2008, http://arstechnica.com/tech-policy/news/2008/10/five-years-of-
failure-eff-says-riaa-must-embrace-new-model.ars.

[168] E. Bangeman, “P2P traffic shifts away from music, towards movies”, Ars Technica,
2007, http://arstechnica.com/tech-policy/news/2007/07/p2p-traffic-shifts-away-from-
music-towards-movies.ars.

[169] T. Karagiannis et al., ‘‘Is P2P Dying or Just Hiding?’’, Proc. IEEE Globecom 2004—
Global Internet and Next Generation Networks, vol. 3, 2004,pp. 1532-1538.

[170] R. Koenen et al., ‘‘The Long March to Interoperable Digital Rights Management’’
Proc. IEEE,vol. 92, no. 6, 2004, pp. 883-897.

[171] M. Porter, "Competitive Advantage—Creating and Sustaining Superior Performance",
Free Press, 2004.

[172] Z. Mutter, ‘‘Universal Offers DRM-free Music’’, PC Advisor, 2007,
http://www.pcadvisor.co.uk/news/index.cfm?newsid=8675.

[173] EMI Group, ‘‘EMI Music Launches DRM-Free Superior Sound Quality Downloads
Across Its Entire Digital Repertoire’’, 2007,
http://www.emigroup.com/Press/2007/press18.htm.

[174] J. Golbeck, B. Parsia, and J.A. Hendler, "Trust Networks on the Semantic Web", In
Proceedings of WWW (Posters), 2003.

[175] MPEG-21 Consortium, “ISO/IEC FDIS 21000-17:2006(E) MPEG-21 - Part 17:
Fragment Identification of MPEG Resources”, 2006.

 293

[176] Carl Shapiro, Hal R. Varian, "Information Rules: A Strategic Guide to the Network
Economy", Harvard Business Press, 1999.

[177] C. Anderson, “The Long Tail: Why the Future of Business is Selling Less of More”,
Hyperion, 2006.

[178] Helder Castro, A. Pimenta Alves, "Support for Media Content Production and
Distribution in the Internet Era", First Workshop on Interdisciplinary Research in New
Media, 2007.

[179] H. Castro, M. T. Andrade, A. P. Alves, "Governed Media Distribution based on
Nonrestrictive DRM", International Conference on Telecommunications and
Multimedia, Ierapetra, Crete, Greece, 2008.

[180] Helder Castro, Artur P. Alves, "A P2P Content Delivery System for Alternative
Business Models", NWeSP 2011, Spain, 2011.

[181] H. Castro, A. P. Alves and M. T. Andrade, "Reliable P2P Content Delivery for
Alternative Business Models", International Journal of Computer Information Systems
and Industrial Management Applications, vol. 5, pp. 11–29, 2013 (accepted).

[182] H. Castro, A. P. Alves, "Cognitive Object Format", International Conference on
Knowledge Engineering and Ontology Development, Funchal, Madeira, Portugal,
2009.

[183] Helder Castro, Maria Teresa Andrade, Fernando Almeida, Giuseppe Tropea, Nicola
Blefari Melazzi,Leonardo Chiariglione, Aziz S. Mousas and Dimitra I. Kaklaman,
"Exploring Semantic Relationships Across Internet Resources", NWeSP 2011, Spain,
2011.

[184] Teresa Andrade, Helder Castro, Edoardo Radica, Giuseppe Tropea, “Preliminary
input contribution for DID extension”,ISO/IEC JTC1/SC29/WG11, March 2011.

[185] Giuseppe Tropea, Helder Castro, "Amendment for DII Digital Item Semantic
Relationships", ISO/IEC JTC1/SC29/WG11, November 2011.

[186] Teresa Andrade, Helder Castro, Leonardo Chiariglione, Aziz Moussas, Giuseppe
Tropea, “Proposal to extend MPEG-21 DII with means to support a semantically
explicit declaration of relationships between Digital Items“, ISO/IEC
JTC1/SC29/WG11, July 2011.

[187] Teresa Andrade, Helder Castro, Leonardo Chiariglione, Aziz Moussas, Giuseppe
Tropea, “Information technology — Multimedia framework (MPEG-21) — Part 3:
Digital Item Identification, AMENDMENT 2: Digital Item Semantic Relationships”,
ISO/IEC JTC1/SC29/WG11, January 2012.

[188] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable content
addressable network”, Processings of the ACM SIGCOMM, 2001.

[189] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A
scalable peer-to-peer lookup protocol for internet applications”, Proceedings of the
ACM SIGCOMM, California, 2001.

[190] C. Plaxton, R. Rajaraman, A. Richa, “Accessing nearby copies of replicated objects
in a distributed environment” in Proceedings of the 9th Annual ACM Symposium on
Parallel Algorithms and Architectures,1997.

[191] P. Maymounkov, D. Maziéres, “Kademlia: A peer-to-peer information system based
on the xor metric”, Proceedings of IPTPS02, USA, 2002.

[192] H. Castro, M.T. Andrade, F. Almeida, G. Troppea, N.B. Melazzi, A.S. Mousas, and
D.I. Kaklamani, “Semantically Connected Web Resources with MPEG-21”, Springer
Multimedia Tools and Applications (submitted).

