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Resumo

Com o desenvolvimento das redes de computadores, bem como, o aumento da nossa dependência
perante elas, torna-se imperativo aumentar a fiabilidade das mesmas, de forma a reduzir a perda de
conectividade quando um problema acontece. Uma falha de conectividade de longa duração pode
provocar perdas monetárias ou colocar pessoas e bens em perigo.

Temos neste caso de recorrer a técnicas de redundância para assegurar os serviços necessários.
Redundância numa rede de computadores é quando introduzimos equipamentos extras na rede de
forma a garantir que quando algum problema ocorre existem caminhos adicionais para manter
a conexão. Geralmente temos para este efeito uma duplicação de equipamentos nas camadas
principais de uma rede assim como um aumento das ligações entre os componentes.

Na presença destes equipamentos extras, a nossa rede fica mais complexa e mais difícil de
gerir, é então necessário introduzir maneiras de controlar o aumento dos componentes de forma
a gerir-los. Para isso usamos protocolos como Spanning Tree e protocolos de redundância para
impedir a criação de loops na nossa rede.

Este projeto de dissertação nasce então da necessidade de estudar as tecnologias que nos per-
mitam gerir e controlar a redundância introduzida numa rede assim como descobrir novas maneiras
de o fazer. Tendo este objetivo em mente este projeto foca-se em encontrar uma solução ótima e
implementa-la de forma a testar a sua resiliência.

É também pertinente o estudo de técnicas para otimizar a gestão de uma rede deste calibre de
forma a diminuir a dificuldade e o tempo necessário que o processo de gestão toma, assim como o
estudo de serviços a disponibilizar numa rede com estas características.
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Abstract

With the development of computer networks and the increasing dependence on them, we need
more reliability to ensure a reduction of loss of connectivity when a problem arises. A long loss
of connection may cause negative effects on a business and may endanger lives or property.

In this case we need to use redundancy techniques to ensure the necessary services. Network
redundancy occurs when we introduce additional equipments to the network to make sure that if a
problem occurs, additional paths exist to maintain connection. Normally for this effect we have a
duplication of the key network components and an increase of links between them.

In the presence of this additional equipments, our network becomes more complex and difficult
to manage, we need to find a way to control the increase of components so that we can manage it.
To do so we use protocols like Spanning Tree and Redundancy protocols to eliminate loops in our
network.

This dissertation project came from the necessity to study and research technologies that al-
lows us to manage and control the introduced redundancy as well as to find additional ways to do
so. With this goal in mind this project focus on finding an optimal solution and implement it so
that we can test its resilience.

It is also relevant to study the techniques that optimize the management of a network of this
scale, in order to make this process easier and faster, as well as, the study of services that can be
provided on a network with this characteristics.
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“The first rule of any technology used in a business is that automation applied to an efficient
operation will magnify the efficiency. The second is that automation applied to an inefficient

operation will magnify the inefficiency.”

Bill Gates
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Chapter 1

Introduction

This chapter introduces the context, motivation and problem of this dissertation project, providing

a global overview of its structure as well.

1.1 Context

This thesis project was proposed by Professor João Neves and it falls under the programme of

the Master’s Degree in Electrical and Computer Engineering of the Faculdade de Engenharia da

Universidade do Porto (FEUP).

1.2 Motivation

With the development of data networks, the world started to rely more on them. We use them in

our homes, companies, hospitals, almost everywhere. Because of this we need them to be reliable,

available and easy to manage, since a simple 2 minutes down time could cause a loss of millions

of Euro to some companies or in case of a medical facility it could endanger human lives.

To help prevent such unwanted sceneries, there are certain configurations and protocols that

can be implemented on a network, normally known as adding redundancy to a network. This

allows the creation of additional paths in the network that can be used when a disorder occurs, be

it a device failure or a broken link. Redundancy in some cases can also increase the bandwidth of

certain paths improving performance.

1.3 Purpose and Objectives

The problem of this project is the study of the balance between network redundancy and its in-

creased management complexity. With this problem in mind the objectives for this project are the

following:

• Study of redundancy solutions for a enterprise sized network.
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2 Introduction

• Establishment of a reliable enterprise sized network.

• Study of services to provide on the network.

The desired network resembles the one presented on figure 1.1, consisting of a core layer,

composed of two switches, supporting a distribution layer that connects to the access layer, that

provides connectivity to the user terminals and the rest of the equipments.

Figure 1.1: A L2/L3 network[1, p.8]

1.4 Document Structure

This document is arranged in 6 chapters.

As stated before, this chapter describes the context, motivation of this project and its objec-

tives.

The second chapter begins with a description of network redundancy and management and

then presents technologies and protocols that can be used to increase network redundancy and

simplify its management.

The third chapter describes some of the possible solutions to the problem at hand.

The forth chapter describes the implementation of the chosen solution.

The fifth chapter describes the tests performed to validate the solution implemented and to

assert the reliability of the network.

The sixth chapter is a brief conclusion.

Lastly we have the appendixes, in appendix one the necessary configurations (to activate Cisco

Virtual Switching System and for the implementation) are presented and in appendix two we have

some of the python scripts used.



Chapter 2

State of the Art

This chapter will introduce some important concepts and some of the possible protocols and tech-

nologies to help solve this problem, focusing on those using Cisco equipment since it is the one

available for this project.

2.1 Important Concepts

In order to properly find a solution some important concepts are needed. In this first section the

concepts of network redundancy and management are introduced so that proper solutions can be

researched.

2.1.1 Network Redundancy

Network redundancy is the installation of additional or alternate instances of network devices,

equipment and communication mediums. This process helps to ensure network availability in case

of a network device or path failure and unavailability. As such, it provides a means of network

failover.

Network redundancy is primarily implemented in enterprise network infrastructure to provide

a redundant source of network communications. It serves as a backup mechanism for quickly

swapping network operations onto redundant infrastructure in the event of unplanned network

outages.

Typically, network designs achieve redundancy through the addition of alternate network

paths, in this manner, through redundant standby router at the third layer of the Open Systems

Interconnection (OSI) model and backup switches at layer 2. When the primary path is unavail-

able, the alternate path can be instantly deployed to ensure minimal downtime and continuity of

network services.
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4 State of the Art

2.1.2 Network Management

Network management is a broad range of activities, methods, procedures and the use of tools to

administrate, operate, and reliably maintain computer network systems. Being such a broad con-

cept, it is possible to divide network management into different areas: Administration, Operation,

Maintenance and Provisioning.

Network Administration is the area that involves tracking the network resources such as trans-

mission lines, hubs, switches, routers, and servers. It also involves monitoring their performance

and updating their associated software.

Network Operation refers to the smooth network functioning as designed and intended, in-

cluding close monitoring of activities to quickly and efficiently address and fix problems as they

occur and preferably even before users are aware of the problem.

Network Maintenance involves timely repair and necessary upgrades to all network resources

as well as preventive and corrective measures, like replacing or upgrading network equipment such

as switches, routers or damaged transmission lines.

Lastly Network Provisioning refers to configuring network resources to support the require-

ments of a particular service.

2.2 Spanning Tree Protocol (STP)

Spanning Tree Protocol (STP) is a protocol used by network equipments to solve problems caused

by loops in a bridged Ethernet Local Area Network (LAN). The purpose of STP is to avert loops

in a bridged LAN and to eliminate broadcast storms and other problems that arise with loops. STP

helps to manage the redundant links between switches on the second layer, providing control of

automatic backup paths without the need to manually activate them. STP was standardized as

IEEE 802.1d but disfavoured as of 2004 by the Rapid Spanning Tree Protocol (RSTP).

2.2.1 STP operation

In a Local area network (LAN), be it a single segment or an aggregation of bridges and LAN seg-

ments, the bridges collectively compute a spanning tree in order to eliminate loops in the topology

while maintaining access to all the segments.

First a root bridge is selected, the bridge with the lowest bridge Identifier (ID). The bridge

ID is composed of a configurable priority number, by default 32768 and the MAC address. The

priority number can be modified by a network administrator to manually choose a bridge root to

reduce the cost of the spanning tree.

After the root bridge is selected each bridge determines the least-cost path to the root. The port

connecting to that path becomes the root port (RP). The bridges connected to each segment then

compute the bridge that has the least-cost path from the segment to the root. The port connecting

the selected bridge to the segment becomes the designated port (DP) for that segment.

All the active ports that are not a root port or a designated port become a blocked port (BP).
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An example of a spanning tree is represented on Figure 2.1.

Figure 2.1: The STP at work. Numbers represent bridges and letters LAN segments.

In case of a link failure the spanning tree algorithm computes and spans a new tree. Figure 2.2

shows the new spanning tree computed when a link failure occurs in the tree of Figure 2.1.

Figure 2.2: The STP at work after a link failure.
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The process described above specifies how the bridges determine what spanning tree will be

computed, but each bridge requires information about the other bridges to do so. To ensure that

each bridge has enough information, the bridges use special data frames called Bridge Protocol

Data Units (BPDU) to exchange the necessary information.

There are two types of BPDUs, first we have Configuration BPDU (CBPDU), that are used

for the computation of the spanning tree, and Topology Change Notification (TCN) BPDU, used

to announce changes in the network topology.

BPDUs are exchanged regularly, by default every 2 seconds, and are sent to the STP multicast

address 01:80:C2:00:00:00. They enable the switches to keep track of network changes that lets

them start or stop forwarding at each port as required.

2.2.2 Rapid Spanning Tree Protocol (RSTP)

In 2001, the Rapid Spanning Tree Protocol was introduced by the IEEE as 802.1w. RSTP presents

a significant boost in the speed of the spanning tree convergence after a topology change, through

new convergence behaviours and bridge port roles.

RSTP is much faster than normal STP, it usually takes 3 times the time of the specified HELLO

time, which default value is 2 seconds, to respond to a change in the topology or in case of a link

failure it recovers in a few milliseconds, where STP would normally take at least 30 seconds to do

so. [2]

2.2.2.1 RSTP operation

In RSTP the bridges ports that would have been blocked in STP have two distinct roles that are

Alternate Port (AP) and Backup Port (BP). An alternate port occurs when there is already a des-

ignated port of another bridge to a LAN segment, and receives more useful BPDUs from another

bridge as is shown on figure 2.3. [2]

Figure 2.3: An Alternate Port.[2]

An Backup Port is a blocked port that connects a bridge to a segment that already has a desig-

nated port from the same bridge, and receives more useful BPDUs from the same bridge it is on

as is shown on figure 2.4.[2]

These new ports roles allow RSTP to converge much faster, than standard STP, after a failure

since it already has some of the information necessary to compute a new tree after a failure.
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Figure 2.4: An Backup Port.[2]

2.3 First Hop Redundancy Protocols (FHRP)

While STP can be used to manage the redundancy at the second layer, but when redundancy needs

to be implemented on the third layer normally a FHRP is used. FHRP protects the default gateway

of a network, by allowing two or more routers to provide backup for the same address. In case

of a failure, one of the backup routers can take the role of primary router and serve as the default

gateway.

These protocols can be used to provide the same service to devices other than routers, like

having backup servers to respond to requests, in case the main one fails.

2.3.1 Hot Standby Router Protocol (HSRP)

Hot Standby Router Protocol is a redundancy protocol developed by Cisco and is described in

detail in RFC 2281 [3]. This protocol is used to provide redundancy to a default gateway making

the network resilient to gateway failures that may arise.

By using this protocol the routers communicate between them establishing a virtual router that,

for the rest of the network, behaves as a single entity. Normally HSRP works in association with

a rapid-converging routing protocol like Enhanced Interior Gateway Routing Protocol (EIGRP) or

Open Shortest Path First (OSPF).

The routers communicate by sending messages using a multicast address (224.0.0.2 for version

1 or 224.0.0.102 for version 2) and the UDP port 1985. By sending HELLO messages to other

HSRP enabled routers, the routers define the priority between them.

The router with the highest configured priority is elected as the Active router, with a pre-

defined gateway IP address, and is responsible for forwarding the packets that hosts send to the

virtual router. The router with the next-highest priority is selected as the Standby router. In the

event of failure of the active router, the standby router will assume the packet forwarding duties of

the virtual router, thus achieving default gateway failover.[4][5]

2.3.2 Virtual Router Redundancy Protocol (VRRP)

Virtual Router Redundancy Protocol, which is described in IETF publication RFC 5798[6], is a

FHRP that automatically assigns routers to hosts. In doing so it increases the availability and

reliability of routing paths.
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VRRP creates virtual routers that represent a group of routers. In each host the default gateway

is assigned to a virtual router, composed of a master and backup routers. In case of failure of the

master router of a given virtual router one of the backup routers takes its place and forwards the

packets delivered to the virtual router.

The master router takes 00:00:5E:00:01:XX as its MAC address, the last byte of the address

is the Virtual Router Identifier, which is unique to each virtual router. When a Address Resolution

Protocol (ARP) request is sent for the virtual router IP, the master router replies with that MAC

address. Routers participating on the same VRRP group send the VRRP HELLO messages to the

multicast address 01:00:5E:00:00:12.[5]

When the master router fails to send a multicast packet, for a period longer than three times

the advertisement timer, the backup routers assumes that the master router is dead. The virtual

router then enters an unsteady state and the election process for the new master router begins.

Backup routers only send multicast packets during an election process or when a router is

configured with a higher priority that the current master, which means that this router will take

over the role of master router.[6]

2.3.3 Gateway Load Balancing Protocol (GLBP)

Gateway Load Balancing Protocol is another Cisco’s proprietary FHRP, that introduces load bal-

ancing functionalities.

Like in other protocols of its kind, in GLBP each router has a configurable priority, however

GLBP allows a weighting parameter to be set. Using this new parameter GLBP is able to balance

the load of the routers by enabling ARP requests to be answered by different routers.

Like in VRRP the routers work in groups to provide gateway redundancy. For each group it is

selected an Active Virtual Gateway (AVG), them if the group has more than two members, the sec-

ond best AVG is placed in Standby state and all the others routers are placed in the Listening state.

The AVG then assigns a virtual MAC address to each member of the group (00:07:B4:00:XX:YY

where XX is the GLBP group and YY the member of the group), including itself , enabling Active

Virtual Forwards (AVFs). Each group can have four AVFs at the same time.

When an ARP request is sent to the virtual IP the AVG responds with the virtual mac of one of

the members depending on the load balancing scheme configured. There are three different modes

for load balancing, first we have Round-Robin in which the AVG responds to ARP requests with

the same AVF during a specific set of time, after this time passes it them proceeds to the next AVF.

Then we have Weight mode that uses the weight parameter of each AVF to balance the load of the

members according to the configured value. Lastly we have the host defined mode, in which every

time an host sends an ARP request the AVG always responds with the same AVF.

By default, GLBP routers use the local multicast address 224.0.0.102 to send HELLO packets

to their peers every 3 seconds over the UDP port 3222.
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2.3.4 Comparison of FHRPs

These three protocols are quite similar since they all serve the same purpose and have similar char-

acteristics, like IPv6 support. GLBP is superior since it provides load balancing and an increased

number of maximum groups of clients but at the cost of performance. Table 2.1 highlights this

comparison of the protocols.

HSRPv2 VRRPv3 GLBP
IPv6 Support yes yes yes
Load Balancing no no yes
Maximum Groups/interfaces 255 255 1024
Name syntax Active, Standby Master, Backup AVG, AVF
Multicast addr. IPv4 224.0.0.102 224.0.0.18 224.0.0.102
Virtual Mac addr 00:00:0E:07:AC:XX 00:00:5E:00:01:XX Added from AVG

Table 2.1: Redundancy protocols comparison[5]

It is possible to provide load balancing to HSRP and VRRP with the configuration of various

groups instead of only one per subnetwork, but this makes the network harder to manage since all

the hosts need to be configured with a virtual IP manually.

In terms of performance all three protocols are quite similar, being HSRP the faster to converge

followed by GLBP and VRRP respectively.[5]

2.4 Routing Protocols

A routing protocol serves the purpose of determining the appropriate path over which data is trans-

mitted between two network nodes, specifying how routers share information with other router of

the same network.

Routing Protocols often save more than one path to the same network but only present the best

one, with this it is possible to control the redundancy of a network, since the network nodes may

know more than one path to the same network even if one of the paths becomes unavailable others

paths remain in its routing table.

2.4.1 Border Gateway Protocol (BGP)

Border Gateway Protocol, described in IETF publication RFC 4271 [7], routes traffic between

autonomous systems. An autonomous system is a network or group of networks under the same

administration and with common routing policies. BGP exchanges routing information for the

Internet and is the protocol used between ISPs. ISPs use BGP to exchange customer and ISP

routes. When BGP is used between autonomous systems, the protocol is referred to as external

BGP (eBGP). If a service provider is using BGP to exchange routes within an autonomous system,

the protocol is referred to as interior BGP (iBGP).
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BGP is a very robust and scalable routing protocol, as evidenced by the fact that it is the rout-

ing protocol employed on the Internet. To achieve scalability at this level, BGP uses many route

parameters, to define routing policies and maintain a stable routing environment. BGP neighbours

exchange full routing information when the TCP connection between neighbours is first estab-

lished. When changes to the routing table are detected, the BGP routers send to their neighbours

only those routes that have changed. BGP routers do not send periodic routing updates, and BGP

routing updates advertise only the optimal path to a destination network.

2.5 Link Aggregation

Link Aggregation refers to various methods of combining multiple physical connections in par-

allel to increase the throughput of a point-to-point connection and/or to provide link redundancy.

There are several standards when it comes to Link Aggregation, one of them is vendor indepen-

dent like the Link Aggregation Control Protocol, but there are proprietary solutions, for example

EtherChannel from Cisco.

Link aggregation can work in various modes, having only one link active while the others stay

as backups, rotate the active link so no link is used more that a certain time or using load balancing

to divide the traffic between all the links aggregated which improves the throughput to almost the

number of links aggregated times their speed. In the case of 8 aggregated links which is the limit

of aggregated links, we can have connections up to 800Mbits/s in case of 10Mbits/s links, 8Gbit/s

in case of 1Gbits/s links or 80Gbits/s in case of 10Gbits/s links.

So far the only solution for multichassis link aggregation is the Multichassis EtherChannel

developed by Cisco and only available on Cisco’s Virtual Switching System.

2.6 Stackable Switches

A stackable switch works like any other switch when operating on standalone, but can be set to

operate together with one or more switches, becoming a stack. During the initial configuration

of a stack it receives an IP address for the whole stack which simplifies the management of the

switches, since the system administrator can control the whole stack from a single connection.

Stackable switches used in combination with link aggregation can be used to improve the

resilience of the network since they permit the aggregation of links connected in different switches

of the same stack.[8]

Even if one of the switches fails the the rest of the stack can still work properly and with link

aggregation can provide the necessary connection to other levels of the network.
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2.7 Virtual Switching System (VSS)

Cisco’s Virtual Switching System permits the merge of two or more physical switches into an

unique logical entity. This technology grants improvements in availability, reliability, manage-

ment, scalability and maintenance.

The Virtual Switching System is created by logically merging two standalone Cisco Catalyst

able systems. This conversion is a one-time process that requires simple configuration steps.

The VSS can be seen as a single logical network entity from the network control plane and

management perspectives. To neighbouring devices, the VSS appears as a single logical switch or

router, due to the use of Cisco IOS Stateful Switchover technology, as well as Non-Stop Forward-

ing extensions to routing protocols.[9]

2.7.1 VSS Architecture

Within a VSS, one chassis is designated as the active virtual switch while the other is the standby

virtual switch. The control plane functions are managed by the active supervisor engine of the

active virtual switch, including:

• Management (Telnet, SSH, SNMP, etc)

• Layer 2 protocols (STP, LACP, etc)

• Layer 3 protocols (routing protocols, etc)

• Software data path

From the data plane perspective both switches in the VSS actively forward traffic but only the

active virtual switch has the control plane active making him responsible for the management of

both equipments. This is better visualized on figure 2.5.

Figure 2.5: Components of a VSS.[9]
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2.7.2 Virtual Switching Link (VSL)

Since the VSS consists of two chassis, in order to bond them into a single logical node, special

signalling and control information must be exchanged. To facilitate this information exchange, a

dedicated link is used to transfer both data and control traffic between the two chassis. This link

is referred to as the virtual switch link.

The VSL is formed as a EtherChannel interface and can comprise of one to eight physical

member ports.

All the communication over the VSL is encapsulated with a virtual switch header, which is

appended to the frames. This header is placed after the Ethernet preamble and directly before the

layer 2 header as seen on figure 2.6.

Figure 2.6: VS Header.[9]

2.7.3 High Availability

VSS can provide High Availability like other solutions but it is simpler to implement. VSS takes

care of all the management of the connection between the two redundant switches and automat-

ically bonds the links from the other levels of the network using Cisco’s proprietary solution

MultiChassis EtherChannels (MECs).

2.7.4 Hardware and Software requirements

VSS is supported on Catalyst 6500, 4500-E and 4500-X but require specifics supervisors. For

Catalyst 6500 the supervisors Sup2T or Sup720-10G are required but the Catalyst 4500-E require

supervisors Sup7-E or Sup7L-E for it to be possible to create a VSS.

For VSS created from Catalyst 6500 and 4500-E, there is not a need for the chassis and the

installed modules to be the same, this means that we can create a VSS using a Catalyst 6506 and

a Catalyst 6509 that have different modules installed.

2.8 Software Defined Networking (SDN)

SDN is the physical separation of the network control plane from the forwarding plane enabling

one control plane to control several devices[10].
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SDN is an emerging architecture, that is dynamic and easily manageable. Today switches and

routers already have their control and data planes decoupled even through they run on the same

chassis, this architecture further decouples them and allow the control plane to be moved outside

of the chassis to a centralized controller.[11]

This controller dictates the overall network behaviour, making it easier to introduce changes

in the behaviour through a software program that manually configure several equipments with a

set of commands. This simplifies the management of a network making it easier to administrators

to adapt the network to changes as needed.[12]

To be possible to implement SDN, the network equipments need to be able to communicate

with the controller, normally called the southbound SDN interface. The most common one is

OpenFlow since several vendors produce OpenFlow capable equipment. the Open Networking

Foundation is responsible for standardizing the OpenFlow protocol. There are several controllers

with compatibility with OpenFlow, for example NOX, Floodlight and Maestro. Nox is a con-

troller that facilitates the development of C++ and Python controllers, Floodlight is a java-based

controller and Maestro focus on achieving better performance using multithreading. This archi-

tecture is shown on figure 2.7.

Figure 2.7: SDN architecture.

2.9 OpenStack

OpenStack is a cloud operating system that controls large pools of compute, storage, and network-

ing resources throughout a datacenter, all managed through a dashboard. It is backed by some

of the biggest companies in software development and hosting as well as individuals community

members. It is managed by the OpenStack Foundation.[13]

This system gives its users the ability to deploy virtual machines and other instances that can

handle different tasks for managing a cloud environment quite easily.

OpenStack is open source software, that means that anyone who needs to make modifications

to adapt OpenStack to its needs can access the source code and do so, and freely share those

changes to the community.[14]
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2.9.1 Key components

OpenStack is made up by several components, given its open nature anyone can add additional

components to OpenStack to help it to meet their needs. However the OpenStack community

has collaboratively identified nine key components that are distributed as a part of any OpenStack

system and officially maintained by the OpenStack community.

2.9.1.1 Nova - Computing

Nova is the primary computing engine behind OpenStack. It is a "fabric controller" which is

used for deploying and managing large numbers of virtual machines and other instances to handle

computing tasks.

Nova can work with widely available virtualization technologies. KVM, VMware, and Xen

are available choices for hypervisor technology, together with Hyper-V and Linux container tech-

nology such as LXC

2.9.1.2 Swift - Object Storage

Swift is a storage system for objects and files. Rather than the traditional idea of a referring to files

by their location on a disk drive, developers can instead refer to a unique identifier referring to the

file or piece of information and let OpenStack decide where to store this information.

Swift is redundant system responsible for ensuring data replication and integrity across the

cluster. In the event of a server or hard drive failure, Swift replicates their content from other

active nodes to new locations in the cluster.

2.9.1.3 Cinder - Block Storage

Cinder is a block storage component, which is more analogous to the traditional notion of a com-

puter being able to access specific locations on a disk drive.

Cinder manages the creation, attaching and detaching of the block devices to servers. Block

storage volumes are fully integrated into Nova and the Dashboard, allowing for cloud users to

manage their own storage needs.

2.9.1.4 Neutron - Networking

Neutron provides the networking capability for OpenStack. It helps to ensure that each of the com-

ponents of an OpenStack deployment can communicate with each other quickly and efficiently.

Neutron provides networking models for different applications or user groups. It manages IP

addresses, allowing for dedicated static IP addresses or DHCP. Floating IP addresses let traffic be

dynamically rerouted to any resources in the IT infrastructure, so users can redirect traffic during

maintenance or in case of a failure.

Users can create their own networks, control traffic, and connect servers and devices to one

or more networks. Administrators can use software-defined networking (SDN) technology like
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OpenFlow to support high levels of multi-tenancy and massive scale. Neutron provides an exten-

sion framework that can deploy and manage additional network services such as intrusion detec-

tion systems (IDS), load balancing, firewalls, and virtual private networks (VPN).

2.9.1.5 Horizon - Dashboard

Horizon is the dashboard behind OpenStack. It is the only graphical interface to OpenStack, so

for users wanting to give OpenStack a try, this may be the first component they actually “see”

Developers can access all of the components of OpenStack individually through an application

programming interface (API), but the dashboard provides to the system administrators a look at

what is going on in the cloud and allow them to manage it as needed.

2.9.1.6 Keystone - Identity Service

Keystone provides identity services for OpenStack. It is essentially a central list of all of the

users of the OpenStack cloud mapped against all of the services provided by the cloud and the

users permission. It provides multiple means of access, meaning developers can easily map their

existing user access methods against Keystone.

2.9.1.7 Glance - Image Service

Glance provides image (virtual copies of hard disks) services to OpenStack. Glance allows these

images to be used as templates when deploying new virtual machine instances.

2.9.1.8 Ceilometer - Telemetry

Ceilometer provides telemetry services, which allow the cloud to provide billing services to indi-

vidual users of the cloud. It also keeps a verifiable count of each user’s system usage of each of

the various components of an OpenStack cloud.

2.9.1.9 Heat - Orchestration

Heat is the orchestration component of OpenStack, which allows developers to store the require-

ments of a cloud application in a file that defines what resources are necessary for that application.

In this way, it helps to manage the infrastructure needed for a cloud service to run.

2.10 Python

Python is an interpreted, interactive, object-oriented programming language. It combines remark-

able power with very clear syntax and has many interfaces with system calls and libraries. Python

is a high-level general purpose language that can be applied to many different problems, be it sim-

ple scripts to boost productivity or more complex applications capable of working with internet
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protocols such as HTTP, FTP and SMTP or operating directly on the system interfaces like file

systems or TCP/IP sockets [15].

Python has a wide variety of third-party extensions like Paramiko an implementation of the

SSH2 protocol that let us send commands though a SSH session[16] or ciscoconfparse a library

which parses through Cisco IOS style configurations.

Using some of the available libraries we can create scripts to automate equipment configura-

tions and or monitor our network. For this effect exists a library called Netmiko that enhances the

library previously refereed Paramiko, providing us with functions to connect to a network equip-

ment through SSH and send commands to configure or view information about the connected

equipment.

Other libraries enhance the Simple Network Management Protocol (SNMP) functionalities of

Python letting us send SNMP requests to get information on the equipment or to alter its configu-

ration.



Chapter 3

Solutions

This chapter introduces the possible solution to establish a reliable enterprise sized network and a

brief comparison between them.

3.1 Problem Analyses

This project introduces some of the main problems around networks in this era. With the necessity

for reliable and available connection to content like servers or data storages, it is required to

implement certain precautions to ensure that the levels of performance and availability required

are met.

These requirements bring us several problems, like how to ensure the redundancy of a key

network device or a specific link. Generally this is achieved by duplicating the desired device and

its connections and adding the relevant connections between them. For example a core switch

should be duplicated so that even if one of the switches fails there is always one active to provide

connectivity, as shown on figure 3.1.

Figure 3.1: Network equipment duplication.

17
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However this brings another problem that is the difficulty to manage the network with all

the additional components. This requires certain protocols and/or technologies that smooth the

management and control of a more complex network.

3.2 Possible Solutions

There are several ways to add and manage the redundancy of a network. We describe two different

solutions on this chapter: one solution that works with equipment from any manufacturer and one

another that relies on Cisco’s proprietary technology.

3.2.1 General Solution

First we have the general solution. This solution is manufacturer independent, it uses standard

protocols and does not require any technology available to a specific company. Those conditions

make this the most used solution, easier to implement, due to the vast amount of information

available.

This solution manages the redundancy of the network using some of the protocols and tech-

nologies referred in the previous chapter such as: Spanning Tree, Redundancy and Routing Pro-

tocols and Link aggregation. This technologies combined with the correct duplication of the key

network equipments, enable the creation of a reliable and stable network that can sustain equip-

ment and link failures.

Considering an enterprise sized network, we will have a duplication of the Core and Distri-

bution switches and/or routers. When we do this we require the protocols mentioned before to

manage the increased number of equipment and links, so we use Spanning Tree Protocol to ensure

that we do not end up with loops in our network.

However in order to reach connectivity with the outside we need another layer of equipment

above the core switches, normally we have at least one border router connected to the core layer,

this requires us to manage how they communicate with each other. In order to manage the default

gateway of the hosts we set up a Redundancy Protocol on the core layer so that we distribute a

single IP address to the hosts. But we still have the problem of how the core layers communicates

with the border routers, at this point a routing protocol is required to distribute the routes of the

border routers to the core layer so that when a request is sent from a host and one of the core

equipments receives that request, it knows where to forward that request to.

Another precaution we can take is to make use of the link aggregation technology to ensure

that the links between our equipment are reliable, not only from the point of view of performance

but also from the point of view of failover.

In general this will be our setup for a possible solution, as we can see in more detail in figure

3.2, we have STP on the Distribution and Core layers, a FHRP on the Core layer, Link aggregation

between our equipment and a Routing protocol running between the Core layer and the Border

routers.
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Figure 3.2: Protocols per Layer.

3.2.1.1 Advantages and disadvantages

The main advantage of this solution is that it works with any manufacturer’s equipment, making

it possible to implement in almost every scenery that we may encounter. Other advantage is that

its quite simple to implement and we can encounter a lot of information about the technologies

involved on the internet or in books.

The main disadvantage is that this solution may be difficult to manage given the size that the

network may have. Certain protocols used on this solution were not designed with the goal of

redundancy in mind, like the case of STP that was designed to prevent loops, this makes this

solution not optimized as we desire, given that the protocols may take more time that we want to

recover.

3.2.2 Virtual Switching System

Virtual Switching System Cisco’s Proprietary solution to simplify the management of a redundant

network. This technology was created with the goal of optimizing the behaviour of a network

where redundancy is desired. The VSS enables the merge of two Cisco Catalyst 6500 or 4500

series switches, making it seem like a single logical unit.

This allow us to remove some of the protocols needed on the previous solution such as the

FHRP used on the core layer. VSS takes care of much of the management of the corresponding

layer. It optimizes the management of link aggregation by enabling the creation of Multichassis

Etherchannels which opens new possibilities.

VSS also reduces the use of Spanning Tree since some of the links that were blocked by it are

now used to create MECs that use them to improve the throughput.

Figure 4.2 presents us with the characteristics of a network with the core and distribution layer

composed of a VSS.
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Figure 3.3: VSS network characteristic [1]

3.2.2.1 Advantages and disadvantages

VSS brings to the table several advantages, we have a reduction of the presence of STP, elimination

of the redundancy protocol, better throughput and less routing neighbours. VSS also simplifies

the management of the network since the two merged chassis have only one configuration file that

covers the two chassis. The creation of MECs improve the link aggregation and lets us use some

of the links that were blocked by STP [19].

Of course that this solution also has some disadvantages, such as the fact that is a Cisco pro-

prietary solution that only works with some of Cisco’s chassis, Catalyst 6500 series and Catalyst

4500 series.

3.3 Choosing a solution

Although there are other possible solutions using equipments from other manufactures, we wanted

a solution that was compatible with the equipment available, in this case we have 2 Cisco Catalyst

6506 switches that support VSS so we have to choose between implementing the most used and

general solution and to implement a scenery based on VSS.

We had some concerns about VSS, such as the fact that the two switches are not symmet-

rical since one of them has more modules installed that the other, but after consulting the VSS

documentation [9] available on Cisco’s website we discovered that this would not be a problem.

Our initial approach to this choice was to simulate the two sceneries using Cisco’s Packet

Tracer simulation software, to simulate and evaluate the two solutions. However Packet Tracer

is not capable of simulating the most complex equipments and protocols making this approach

impossible to pursue. We tried other network simulators but none was able to simulate VSS.

3.3.1 Solution comparison

Without the possibility to simulate VSS we resorted to the documents that we could find about

VSS to try to compare it with the general solution.
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Most of the documents found reported that VSS was outperforming the normal solution in

terms of throughput, failover and manageability. An article from Network World about VSS,

states "VSS not only delivers a 20fold improvement in failover times but also eliminates layer-2

and layer-3 redundancy protocols at the same time."[19]. In this article we can find the result

of some tests run by Network World on the difference of performance, between a network with

a single Cisco Catalyst 6509 switch on the distribution and core layers with a network with two

6509 switches merged with VSS, and found that the VSS-enabled virtual switch moved a record

770 million frames per second in one test, and routed more than 5.6 billion unicast and multicast

flows in another. Those numbers are exactly twice what a single physical Catalyst 6509 can do.

In terms of failure recovery time that same article also contains the results of some tests where

they tested the recovery time of a Layer 2/Layer 3 network, they began with a conventional setup

of STP on layer 2 and HSRP at layer 3 and with 16000 hosts emulated sending traffic across

redundant pairs of access, distribution and core switches, and compared the results with the same

network architecture but with VSS enabled. The first setup took 6.883 seconds to recover while

the second converged much faster with a record of 322 milliseconds.

At this point we can almost say with certainty that VSS is a superior solution, then we still have

the fact that VSS replaces STP and redundancy protocols, since from the rest of the network the

VSS virtual router is seen as one machine only enabling the creation of MECs. This makes VSS

an active-active solution, this way we do not end up with blocked links and passive equipments

that are only enabled when the active counterpart fails.

In figure 4.3 we can see that by enabling VSS on the distribution level we eliminate the need

for STP and redundancy protocols, because it becomes seen as a single switch therefore we do not

have loops in our network thanks to the MECs.

Figure 3.4: General solution versus VSS [19]
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3.3.2 Implemented Solution

The core switches for this project are the Cisco Catalyst 6506. This switches are compatible with

VSS enabling the use of this technology. Given the high availability and simple management

characteristics of the VSS, it is the most suitable solution to use in this case. However those

switches are the core of INESC TEC network, making this solution impossible to implement at

this time, because as is referred on appendix A, the switches need to reboot to enable the VSS, this

would mean disabling the entire network for some minutes.

So for this project we have chosen to implement a general solution using the equipment avail-

able on FEUP Netlab. The equipment available were six Cisco Catalyst 3560 switches and six

Cisco 2900 series Routers.



Chapter 4

Implementation

This chapter presents the implementation of the solution.

4.1 Implementation

Using the available equipment it was possible to implement a network composed of a core and

distribution layers with a redundant connection to the internet using two routers to connect to 2

different ISPs. For the core layer, since the catalyst 3560 switches have reduced routing capabili-

ties (they can not run VRRP and GLBP like catalyst 6500 can) we have paired them with a 2901

router making the pair one of core "switches". This can be better described by the figure 4.1

Figure 4.1: Network Diagram.
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All the connections between the core and distribution layers are 2 ports link aggregations, this

required Spanning Tree to be enabled on those layers to manage the redundant links. Both core

routers compose a virtual router using one of the redundancy protocols mentioned before. This

routers are connected to the border routers that each connect to a different ISP using BGP.

To simulate the ISPs we used two 2901 routers that simulate two different autonomous system

(AS), being each one an ISP as shown on figure 4.2. Our redundant network was configured as

AS10 and the ISPs were AS50 and AS60.

Figure 4.2: Network Diagram.

4.1.1 Network Connections and Configurations

We established six subnetworks for this implementation, one for the desired network (Home), one

for the connection between our network and the border routers (Border), two for the connections

between the border routers and ISP routers (Connection) and two more for the ISP Autonomous

System (ISP). Table 4.1 presents the subnetworks IP addresses and netmask.

Table 4.1: Subnetworks

Subnetwork IP address Netmask
Home 10.0.0.0 255.255.255.0
Border 10.10.10.0 255.255.255.248
Connection 1 10.2.2.0 255.255.255.252
Conenction 2 10.3.3.0 255.255.255.252
ISP 1 10.22.22.0 255.255.255.0
ISP 2 10.33.33.0 255.255.255.0

After the initial designs we established the network from the bottom to the top.
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The first step was to establish the connections between the switches, we wanted to have redun-

dant links between them so we connected two cables between each switch on the ports described

on table 4.2 and, using Cisco Etherchannel, we bonded those ports as one establishing six Port-

channels between the switches.

Table 4.2: Ports used to create the Port-Channels

Port-Channel
Ports

Core 1 Core 2 Dist 1 Dist 2
1 23/24 23/24 -/- -/-
2 21/22 -/- 23/24 -/-
3 -/- 21/22 -/- 23/24
4 -/- 19/20 21/22 -/-
5 19/20 -/- -/- 21/22
6 -/- -/- 19/20 19/20

Then we configured IP Addresses on the switches, described on table 4.3, so that we could

easily access them using SSH, making the configurations easier and faster.

Table 4.3: Switches IP addresses

Switch IP Address
Core 1 10.0.0.10
Core 2 10.0.0.40
Distro 1 10.0.0.20
Distro 2 10.0.0.50

We enabled Spanning Tree on Vlan 2, the Vlan configured as the ports access, and defined

Core 1 as the Spanning tree root and Core 2 as the standby root.

After the configuration of the switches it was time to set-up the core routers. Core Router 1

was connected directly to Core Switch 1, using the GigabitEthernet interfaces available on both

equipments, and Core Router 2 was connected to Core Switch 2. The Core Routers were then con-

nected to the Border Routers using another switch. The Core and Border Routers were configured

with the IP addresses presented on table 4.4.

Table 4.4: Core and Border Routers interfaces IP addresses

Router Port IP Address

Core 1
Gigabit 0/0 10.10.10.1
Gigabit 0/1 10.0.0.19

Core 2
Gigabit 0/0 10.10.10.2
Gigabit 0/1 10.0.0.29

Border 1
Gigabit 0/0 10.2.2.1
Gigabit 0/1 10.10.10.3

Border 2
Gigabit 0/0 10.3.3.1
Gigabit 0/1 10.10.10.4

Extra Switch 1 10.10.10.6
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VRRP was the redundancy protocol enabled, during the implementation, on the GigabitEther-

net 0/1 interfaces of Core 1 and 2 with VRRP group 1 and the virtual IP address 10.0.0.254. The

hosts connected to our network would use this IP address as their default Gateway.

At this point our network was established but some configurations were still amiss that will be

presented ahead.

Now for the configuration of the fictitious ISPs, the remaining routers were used to establish

two autonomous systems simulating two different ISPs. Since this two routers only have 2 in-

terfaces available it was required to create virtual interfaces to meet our design. Each router is

connected to one of the Border routers and to another extra switch. This switch has four Vlans,

two of them are the ISPs own networks (Vlan 22 and 33), another is the vlan that connects the ISP

routers to the NETLAB network to simulate internet access (Vlan 44) and a vlan that is used to

manage this switch (Vlan 2) that connects to our network with the IP address 10.0.0.30.

The IP addresses given to the ISP routers interfaces can be visualized on table 4.5.

Table 4.5: ISP Routers interfaces IP addresses

Router interface IP address

ISP 1
Gigabit 0/0.1 10.22.22.59
Gigabit 0/0.2 172.16.1.59
Gigabit 0/1 10.2.2.2

ISP 2
Gigabit 0/0.1 10.33.33.69
Gigabit 0/0.2 172.16.1.69
Gigabit 0/1 10.3.3.2

At this point all the equipment used was configured with the exception of BGP and Network

Address Translation (NAT) that will be presented now.

At this point all used equipment was configured without BGP and Network Address Transla-

tion (NAT).

BGP was configured on all the routers, the Core and Border Routers were configured as AS 10,

ISP 1 as AS 50 and ISP 2 as AS 60. The Core routers advertised the 10.0.0.0 and the 10.10.10.0

sub network and had the Border routers configured as neighbours. The Border routers advertised

the 10.10.10.0 and the sub network that was used to connect to the respective ISP, in case of Border

1 10.2.2.0 and in case of Border 2 10.3.3.0, they also advertised themselves as default gateway to

the Core routers, they had the respective ISP router and the Core routers as neighbours. The ISP

routers advertised their respective sub networks and 172.16.1.0 and had the corresponding Border

router as neighbour and the other ISP. This configuration is best verified on table 4.6.

The default Gateway of the Border and ISP routers was 172.16.1.254, the IP address of the

Netlab router that connects to the exterior. Having BGP enabled and configured this way enabled

two different paths to the exterior. The default Gateway of the Core routers was acquired through

BGP being the possible gateways the Border routers.

Now to have connectivity to the exterior, NAT is needed to be configured on the layers that

required it. The first NAT configured was on the Core routers this NAT converted the IP range of
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Table 4.6: BGP configurations

Router Core 1/2 Border 1 Border 2 ISP 1 ISP2

Advertised
Nerworks

10.0.0.0
10.10.10.10

10.10.10.0
10.2.2.0

10.10.10.0
10.3.3.0

10.2.2.0
10.22.22.0
172.16.1.0

10.3.3.0
10.33.33.0
172.16.1.0

Neighbours Border 3/4
Core 1/2
Border 2

ISP 1

Core 1/2
Border 1

ISP 2

Border 1
ISP 2

Border 2
ISP 1

the 10.0.0.0 network to the respective router IP on the network 10.10.10.0. The second layer of

NAT was deployed on the Border routers, here the IP addresses of Core 1 and 2 were translated

to the IP of the connection network between the Border and ISP routers. The Last layer of NAT

was enabled on the ISP routers translating the IP address of the corresponding Border router and

its own network range of IP to its IP in the 172.16.1.0 network in order to establish connectivity

to the exterior. To note that each layer of NAT only allowed the translation of IP from the network

hierarchically lower to the router were it was configured.

The commands used to configure this network can be found in appendix A section 2.

4.1.2 Hosts configurations

In order to better manage and test the network, some hosts were configured on this network. It

was configured a host in each ISP with an FTP server to test the limits of the network, and four

hosts on our network one of them running Nagios and MRTG to monitor the network.

Nagios is a piece of software that monitors an IT infrastructure to make sure that systems and

services are working properly. MRTG is another software that, using SNMP requests, analyses

the network equipment bandwidth over time.

The hosts were configured with the following IP address (table 4.7) and connected to the

Distribution switches using the GigabitEthernet, when possible, and FastEthernet interfaces with

the exception of one that was connected using a 2 ports bond.

Table 4.7: Host IP addresses

Host IP Network Purpose
Tux-41 10.0.0.41 Home FTP server - Tests
Tux-42 10.0.0.42 Home FTP server - Tests
Tux-43 10.0.0.43 Home FTP server - Tests
Tux-44 10.0.0.45 Home Wireshark - Tests
Tux-14 10.0.0.14 Home Nagios and MRTG
Tux-24 10.22.22.24 ISP 1 FTP server - Tests
Tux-32 10.33.33.32 ISP 2 FTP server - Tests

To create the bond we required to install the ifenslave package that enabled us to create a

virtual interface, in this case Bond0, that enslaved two of the available interfaces, as shown on

figure 4.3
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Figure 4.3: Bond interface.

MRTG was configured to monitor the bandwidth of all the switches and routers interfaces.

Figure 4.4 shows the daily statistics of one of the routers interfaces.

Figure 4.4: MRTG daily statistics.

Nagios was configured to monitor all the equipments involved as shown on figure 4.5.

Figure 4.5: Nagios service overview.



4.1 Implementation 29

For the hosts we configured Nagios to monitor the CPU load, latency, disk and swap usage,

number of processes and the state of HTTP and SSH services as we can see in figure 4.6.

Figure 4.6: Nagios Host services.

For the Routers and Switches we configured Nagios to monitor the uptime and ping of each

equipment as well as the bandwidth usage and the status of the most important interfaces (figure

4.7).

Figure 4.7: Nagios switch services.

To facilitate the tests we installed and configured vsftpd FTP server on several hosts to test

the reliability of the port-channels. We enabled the anonymous user and configured the maximum

tranfer rate allowed to anonymous users to 1 Gigabyte per second, in order make the equipment

bandwidth the bottleneck of the network.

We installed Wireshark on Tux-44 and in a personal laptop to analyse the network traffic.
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Chapter 5

Tests and results

This chapter presents tests that were performed and its results.

5.1 Tests

To fully grasp the depth of the implemented solution several tests were designed and performed.

This includes the validation tests of our solution and the tests to assert the level of performance

reached.

5.1.1 Validation Tests

The first tests performed were to validate our implementation. The most important point was the

existence of connectivity with the outside so this was the first test, verification of connectivity

with the exterior. To do so we tried to ping Google’s DNS server with the IP address 8.8.8.8 with

success and a traceroute to verify the desired path, as shown on figure 5.1 (for security reasons

part of the traceroute is not displayed).

Figure 5.1: Traceroute to 8.8.8.8.

Once verified the connectivity we successfully tried to reach all hosts, figure 5.2 shows us the

result of the pings to the hosts in each of the fictitious ISPs.
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Figure 5.2: Pings to the ISP hosts.

At this point we were sure that all the equipments were correctly connected, which left us with

the task of verifying the proper functioning of the redundancy measures implemented. To do so

we disconnected the router that was serving as tux-44 gateway, during a ping request, to verify

the correct functioning of the redundancy protocol in the Core routers. Figure 5.3 shows the ping

request and we can see that a problem occurred between request 6 and request 18 this resulted on

a loss of connectivity during approximately 11 seconds.

Figure 5.3: Ping to verify redundancy.

With the network validated we were ready to start the rest of the tests to analyse and compare

the different technologies available.

5.1.2 Failover Time tests

Certain tests to measure the time that each protocol takes to recover from a failure were performed.

The procedure for each test involving a FHRP was similar, first we did a traceroute to the

IP address of the virtual router created with the FHRP in question, to discover which router was

forwarding packets for the virtual router, then during a ping command we disconnected that router

from the rest of the network and measured the time that the protocol took to recover, calculated

using the missing packets from the ping command and confirmed with Wireshark. Lastly we did

another traceroute just to be sure the router forwarding packets changed.

To change the redundancy protocol enabled between the tests we used some Python scripts

that are included in Appendix B.
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To test the reaction time of BGP, we did something similar to the previous tests, in the case of

STP tests we shutdown the root bridge to calculate the time STP took to reconverge, in the case

of BGP we did a traceroute to discover which of the border router was forwarding packets to the

outside and disconnected him during a ping command.

5.1.2.1 HSRP

On figure 5.4 we see that before the test the master router of our virtual router was CoreRt1 since it

was the one that responded to the traceroute sent to the virtual IP address. This was the router that

we disconnected during the test, and in the end of the test we can see that the Router that responds

to our traceroute is CoreRt2 confirming the change of its state.

Figure 5.4: HSRP reaction time.

By counting the number of packets that were lost during the ping command we can get a

approximated value of the reaction time of the protocol. In this case ten packets were lost and

since the ping command sends request every second by default we can estimate that the delay

is around 10 seconds. On figure 5.5 we can confirm that result by checking the Wireshark logs,

we filtered the packets so that only Internet Control Message Protocol (ICMP) packets originated

from the virtual router IP address were shown, and configured the time to show the amount of

seconds since the last packet that is shown. We can see that packet 48 had a delay of 11 seconds (1

second of the normal ping delay plus the 10 seconds of delay) from the previous displayed packet

confirming the value calculated before.

Figure 5.5: HSRP reaction time 2.

On figure 5.6 we have displayed the HSRP packets and the ICMP packets shown on the pre-

vious figure. We can see that the 11 seconds interval between packet 15 and packet 48 is the time
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that CoreRt2 took to detect that the other Core was not responding and changed its state to active,

making him forward the packets sent to the virtual IP address.

Figure 5.6: HSRP reaction time 3.

5.1.2.2 VRRP

On figure 5.7 we see that the router that was forwarding the packets for the virtual router was

CoreRt2, making this the router that we disconnected during the test. At the end of the test we

confirmed that CoreRt1 switched to the role of master.

Figure 5.7: VRRP reaction time.

In this case we had 4 lost packets that translate roughly into a reaction of time of about 4

seconds. Analysing the packets from figure 5.8 where we applied the same filter as before, we see

a delay of 5 seconds on packet 55 thus confirming the value estimated before.

Figure 5.8: VRRP reaction time 2.



5.1 Tests 35

Figure 5.9 shows the ICMP packets sent from 10.0.0.254 and the VRRP packets, on packet 50

we see that the source of the VRRP packets change from 10.0.0.29 to 10.0.0.19, meaning that just

before this packet we disconnected the CoreRt2 and CoreRt1 not receiving VRRP packets from

the master for more that 3 seconds (default timer) took the role of master and started to forward

the packets sent to the virtual IP address.

Figure 5.9: VRRP reaction time 3.

5.1.2.3 GLBP

In the case of GLBP the router that was serving our host during the tests was CoreRt1 because

it was the one that the master had attributed to us, as shown on figure 5.10. We can also see a

successful switch to CoreRt2.

Figure 5.10: GLBP reaction time.
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In the case of GLBP 10 packets were lost during the recovery time which corresponds approx-

imately to 10 seconds of reaction time for this protocol. Figure 5.11 displays the ICMP packets

originated from the virtual router to our host, we can confirm the time stated before.

Figure 5.11: GLBP reaction time 2.

Note that in GLBP both the AVG and AVFs send HELLO packets to communicate that they

are available, in figure 5.12 we can notice that the time between packet 25 and packet 49 is the

time that CoreRt2 takes to confirm that CoreRt1 is dead, and it will start to take care of the requests

sent to router 1 MAC address.

Figure 5.12: GLBP reaction time 3.

5.1.2.4 BGP

We also tested the reaction of BGP when the border router that per default forwards the traffic to

the outside gets disconnected. In this case we tweaked on the timers of BGP because the default

"keep alive" timer for BGP is greater that 1 minute and we do not want our network to experience

that much time without connectivity. As is shown on figure 5.13 when we sent a traceroute to

the router on the other side of our "ISPs" (Netlab’s router) the default path was to pass through

BorderRt1 and ISPRt1. After our test the path shifted to the second ISP.
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Figure 5.13: BGP reaction time.

From the packets lost we estimate a delay of 26 seconds and when compared with the time

from packet 120 on Figure 5.14 we can confirm this number. Note that the keep alive time that we

configured on the routers were 30 seconds so our result is within the speculated time.

Figure 5.14: BGP reaction time 2.

In the case of BGP we can not visualize the shift as well as we can do it with the Redundancy

Protocols. This is because BGP normally only sends packets when a change in the network is

made so even after the change is completed several BGP packets are sent to inform the neighbours

of the changes.

5.1.3 Performance tests

After the reaction time tests there was still a piece of our implementation that we had not tested

and that was the link aggregation. On figure 5.15 we have the report of two simultaneous file

transfers from different FTP servers(Tux 41 and 43) started from the same host (Tux 44). As we

can see both transfers had a similar download speed, around 10.7 Megabytes per second, that is

almost the maximum bandwidth of a FastEthernet link (100 megabits per second is equal to 12.5

Megabytes per second).
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Figure 5.15: Bandwidth test.

For this test we had the two hosts with the FTP servers connected to one of the Distribution

switches using FastEthernet links and our host from where we started the transfers connected to

the other Distribution switch using a GigabitEthernet interface. The Distribution switches were

connected using a 2 FastEthernet Interfaces Link aggregation that is estimated to have almost twice

the bandwidth of a single FastEthernet Link.

We can conclude that the link aggregation was working as desired to provide resilience and a

boost in performance.

5.2 Results

From the tests conducted we could validate our implementation as providing the redundancy de-

sired and managing it as optimized as possible. The rest of the tests went as expected except for

the time that HSRP took to recover from a failure, the time obtained was longer than the expected

for this protocol that theoretically should have been the fastest one.

Note that the Redundancy Protocols were configured with the default configurations we did

not change any of the timers, however in doing so we can better control the time that takes the

protocols to recover in exchange for increasing the number o packets that travel in our network.

The main difference between the FHRP, is that in VRRP only the master router sends HELLO

packets, this enables VRRP to detect a failure quicker that the other protocols since when the

standby routers do not receive an HELLO package from the master during the time defined, the

next router in line automatically assumes the role of master and starts to forward the packets sent

to the virtual router.

In the case of HSRP when the routers become aware of the failure of the master or standby

router, they start an election process to determine the next master or standby and only then the

elected master starts to forward the packets sent to the virtual router.

GLBP works similar to HSRP, when the AVG or an AVF sends a HELLO packet the other

members reset the timer in each they trust who sent the packet. Only when that time expires the

members take action, in case of a AVG failure a new AVG is elected, normally there is already a

router in standby to take the role of AVG, but when is an AVF that fails the AVG needs to distribute

the hosts that were being served by that AVF between the other AVFs and elect another AVF is

possible.
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So if we set the hold time (default 10 seconds) to a smaller value we can reduce the reaction

time for GLBP. In the case of VRRP the default HELLO time is already 1 second (and its standard

does not require to support milliseconds although some switches may be able to use milliseconds)

we already have the optimum time. In HSRP we can also change the hold time so that the routers

declare the master to be down faster(the default is also 10 seconds like in GLBP)
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Chapter 6

Conclusion and Future Work

This chapter concludes this document, with a brief conclusion of the project and some of the future

work that would be relevant to conduct.

6.1 Conclusion

Reached the end of this project it is safe to conclude that there are different approaches to the

subject of network redundancy.

We were subject to some unexpected problems like the fact that Cisco’s Packet Tracer could

not simulate newer and more complex equipment and protocols, this prevented us from simulating

both the solution in order to attain more concrete data. The fact that to enable VSS the Catalyst

6500 switches needed to reboot, disrupting the proper performance of INESC TEC also prevented

us from establishing a reliable network based on VSS.

Even so we were able to establish a proper redundant network using a general and independent

solution based on several protocols and we were able to prove that it could withstand device and

link failures.

We also found ways to automate some of the tasks involving network management, using

Python scripts, reduced the time wasted on manual configuration of all the equipment.

We propose the implementation of services like OpenStack and virtualization servers and stor-

age, since this services require high transfer rate and would enhance the user experience of INESC-

TEC employees

6.2 Future Work

It would be relevant to research more technologies to establish and manage a redundant network

specially those who require equipment from other manufacturers and be on the vanguard of new

solutions.

It would also be relevant to enable VSS in a controlled environment to study and comprehend

how the system works and the benefits of VSS as a redundancy solution.
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Appendix A

Configuration Commands

This appendix contains the commands used to enable VSS and to establish the network of chapter

4.

A.1 Enabling VSS

In order to establish a VSS between the two Cisco Catalyst 6506 certain configuration are required.

In this chapter a example configuration will be presented.

Step 1: Configure virtual switch ID and domain. Both switches should be configured with the

same domain but different IDs

Switch 1

VSS-sw1#conf t

Enter configuration commands, one per

line. End with CNTL/Z.

VSS-sw1(config)#switch virtual domain

100

Domain ID 100 config will take effect only

after the exec command ‘switch convert mode

virtual’ is issued

VSS-sw1(config-vs-domain)#switch 1

VSS-sw1(config-vs-domain)#

Switch 2

VSS-sw1#conf t

Enter configuration commands, one per

line. End with CNTL/Z.

VSS-sw1(config)#switch virtual domain

100

Domain ID 100 config will take effect only

after the exec command ‘switch convert mode

virtual’ is issued

VSS-sw1(config-vs-domain)#switch 1

VSS-sw1(config-vs-domain)#

Step 2. Configure the VSL port channel and member ports. Unique port channel IDs must be

chosen.

VSS-sw1#conf t

Enter configuration commands, one per

line. End with CNTL/Z.

VSS-sw1(config)#interface port-channel 1

VSS-sw1(config-if)#switch virtual link 1

VSS-sw1(config-if)#no shut

VSS-sw1(config-if)#
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VSS-sw2#conf t

Enter configuration commands, one per

line. End with CNTL/Z.

VSS-sw2(config)#interface port-channel 2

VSS-sw2(config-if)#switch virtual link 2

VSS-sw2(config-if)#no shut

VSS-sw2(config-if)#

Now the ports of each side of the VSL should be added to the respective port channel

VSS-sw1(config)#interface range tenGiga-

bitEthernet 5/4 - 5

VSS-sw1(config-if-range)#channel-group 1

mode on

VSS-sw1(config-if-range)#no shut

VSS-sw1(config-if-range)#^Z

VSS-sw1#

VSS-sw2(config)#interface range tenGiga-

bitEthernet 5/4 - 5

VSS-sw2(config-if-range)#channel-group 2

mode on

VSS-sw2(config-if-range)#no shut

VSS-sw2(config-if-range)#^Z

VSS-sw2#

Step 3. Convert to virtual switch mode.

VSS-sw1#switch convert mode virtual

This command will convert all interface

names to naming convention “interface-type

switch-number/slot/port”, save the running con-

fig to startup-config and reload the switch.

Do you want to proceed? [yes/no]: yes

Converting interface names Building con-

figuration...

[OK]

Saving converted configurations to boot-

flash . . .

[OK]

VSS-sw2#switch convert mode virtual

This command will convert all interface

names to naming convention “interface-type

switch-number/slot/port”, save the running con-

fig to startup-config and reload the switch.

Do you want to proceed? [yes/no]: yes

Converting interface names Building con-

figuration...

[OK]

Saving converted configurations to boot-

flash . . .

[OK]

Four actions occur when this last commands is issued:

• he running configuration of the individual switch is converted into a three-level virtual

switch interface notation. Two-level interface configurations (such as 10 GigabitEthernet

5/4) are converted into three-level interfaces (such as 10 GigabitEthernet 1/5/4 in Switch 1

and 10 GigabitEthernet 2/5/4 in Switch 2).

• The startup configuration is updated with the three-number notation.

• A copy of the original startup configuration converted to three-number notation is written to

the multilayer switch feature card (MSFC) bootflash of the respective switch.

• Both switches reload.
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When the two switches are brought online, they proceed with VSL initialization and initial-

ize their respective VSL ports. The two switches communicate with each other and determine

active and standby roles. This exchange of information is evident through the following console

messages:

System detected Virtual Switch configura-

tion...

Interface TenGigabitEthernet 1/5/4 is mem-

ber of PortChannel 1

Interface TenGigabitEthernet 1/5/5 is mem-

ber of PortChannel 1

<snip>

00:00:26: %VSL_BRINGUP-6-MODULE_

UP: VSL module in slot 5 switch 1 brought up

Initializing as Virtual Switch active

System detected Virtual Switch configura-

tion...

Interface TenGigabitEthernet 2/5/4 is mem-

ber of PortChannel 2

Interface TenGigabitEthernet 2/5/5 is mem-

ber of PortChannel 2

<snip>

00:00:26: %VSL_BRINGUP-6-MODULE_

UP: VSL module in slot 5 switch 2 brought up

Initializing as Virtual Switch standby

After the VSL is initialized and the Cisco Virtual Switching System becomes active, you may

notice that the console is active only for the active virtual switch and has been disabled for the

standby virtual switch:

00:08:01: SW1_SP: Card inserted in

Switch_number = 2,

physical slot 3, interfaces are now online

VSS >

VSS>en

VSS#

00:01:43: %CRYPTO-6-ISAKMP_ON_OFF:

ISAKMP is OFF

00:01:43: %CRYPTO-6-ISAKMP_ON_OFF:

ISAKMP is OFF

VSS-sdby>

Standby console disabled

Although not required, it is possible to verify that all modules have been automatically provi-

sioned and their module types stored in the configuration by issuing the following command on

the active virtual switch:

VSS#sh run | begin module provision

With the following command you can determine that the Cisco Virtual Switching System is

now operating and that the two switches are acting as a single, logical network node.

VSS#show switch virtual

Switch mode : Virtual Switch

Virtual switch domain number : 100

Local switch number : 1

Local switch operational role: Virtual Switch Active

Peer switch number : 2

Peer switch operational role : Virtual Switch Standby
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If the conversion process is performed using software release 12.2(33)SXI3 or newer, it is

complete once the two supervisors reach the SSO Standby Hot redundancy mode. If the conversion

is performed using a software release prior to 12.2(33)SXI3, there is one more critical step to

perform in order to finalize the conversion.

During the conversion process, the configuration of the standby virtual switch (in this case,

Switch 2) is cleared, including the configuration of the two VSL interfaces on the switch. If the

switch were to reload at this point it would not have the information available to determine which

interfaces to use for VSL communication. Therefore the configuration for the VSL interfaces on

the standby switch must be applied, or merged from the active switch configuration. In order to

facilitate this information to be repopulated again, you must complete the next step.

Step 4. Finalize the Virtual Switch Conversion

When the standby virtual switch is in SSO hot mode, you must execute the following command

to automatically configure the standby virtual switch configuration on the active virtual switch:

VSS#switch accept mode virtual

This command will bring in all VSL configurations from the standby switch and populate it

into the running configuration.

In addition the startup configurations will be updated with the new merged configurations.

Do you want proceed? [yes/no]: yes

Merging the standby VSL configuration. . .

Building configuration... [OK]

This concludes the initial configurations of the VSS.

A.2 Network configuration Commands

To implement the solution on FEUP Netlab several IOS commands were needed.

A.2.1 Interfaces

To change the between the access and trunk modes of the interfaces we use the following com-

mands:

Listings A.1: Enabling Access mode

c o n f i g u r e t e r m i n a l

i n t e r f a c e t y p e number

s w i t c h p o r t mode a c c e s s

s w i t c h p o r t a c c e s s v l a n v l a n

end
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Listings A.2: Enabling Trunk mode

c o n f i g u r e t e r m i n a l

i n t e r f a c e t y p e number

s w i t c h p o r t mode t r u n k

s w i t c h p o r t t r u n a l l o w e d v l a n v l a n s

end

To configure the IP address of an interface we require this commands:

Listings A.3: Configure interface IP address

c o n f i g u r e t e r m i n a l

i n t e r f a c e t y p e number

i p a d d r e s s ip−a d d r e s s mask

end

To activate NAT on an interface we use this commands:

Listings A.4: Activating Nat on an interface

c o n f i g u r e t e r m i n a l

i n t e r f a c e t y p e number

i p n a t i n s i d e | o u t s i d e

end

To create the Etherchannels the following commands are required:

Listings A.5: Creating an Etherchannel

c o n f i g u r e t e r m i n a l

i n t e r f a c e r a n g e t y p e numbers

channe l−group group i d mode on

end

A.2.2 Spanning Tree Protocol

To enable STP on the switches the following commands are required:

Listings A.6: Enabling spanning tree

c o n f i g u r e t e r m i n a l

spann ing− t r e e mode p v s t | mst | r a p i d−p v s t

end
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After STP is enabled certain parameter of its behaviour can be configured at will. To change

the priority of a switch:

Listings A.7: Changing the priority of a vlan

c o n f i g u r e t e r m i n a l

spann ing− t r e e v l a n vlan−i d p r i o r i t y v a l u e

end

A.2.3 Virtual Router Redundancy Protocol

To enable VRRP:

Listings A.8: Enabling VRRP

c o n f i g u r e t e r m i n a l

i n t e r f a c e t y p e number

i p a d d r e s s ip−a d d r e s s mask

v r r p group i p ip−a d d r e s s

end

To configure VRRP timers:

Listings A.9: Configuring VRRP timers

c o n f i g u r e t e r m i n a l

i n t e r f a c e t y p e number

v r r p group t i m e r s a d v e r t i s e [ msec ] i n t e r v a l

end

A.2.4 Hot Standby Redundancy Protocol

To enable HSRP:

Listings A.10: Enabling HSRP

c o n f i g u r e t e r m i n a l

s t a n d b y group−number i p ip−a d d r e s s

end

To configure HSRP timers:

Listings A.11: configuring HSRP timers

c o n f i g u r e t e r m i n a l

s t a n d b y group−number t i m e r s h e l l o t i m e h o l d t i m e

end
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A.2.5 Gateway Load Balancing Protocol

To enable GLBP:

Listings A.12: Enabling GLBP

c o n f i g u r e t e r m i n a l

i n t e r f a c e t y p e number

i p a d d r e s s ip−a d d r e s s mask

g lbp group i p ip−a d d r e s s

end

To configure GLBP load balancing mode:

Listings A.13: Configuring GLBP load balancing

c o n f i g u r e t e r m i n a l

i n t e r f a c e t y p e number

g lbp group load−b a l a n c i n g hos t−d e p e n d e n t | round−r o b i n | w e i g h t e d

end

To configure GLBP weight:

Listings A.14: Configuring GLBP weight

c o n f i g u r e t e r m i n a l

i n t e r f a c e t y p e number

g lbp group w e i g h t i n g maximum [ lower lower ] [ uppe r uppe r ]

end

To configure GLBP timers:

Listings A.15: Configuring GLBP timers

c o n f i g u r e t e r m i n a l

i n t e r f a c e t y p e number

g lbp group i d t i m e r s [ msec ] h e l l o t i m e [ msec ] h o l d t i m e

end

A.2.6 Network address translation

To create and add IP address to an access list:

Listings A.16: Configuring Access Lists

c o n f i g u r e t e r m i n a l

a c c e s s− l i s t number p e r m i t IP a d d r e s s

end

To enable NAT:
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Listings A.17: Configuring NAT

c o n f i g u r e t e r m i n a l

i p n a t poo l name s t a r t −i p end−i p p r e f i x −l e n g t h p r e f i x −l e n g t h

i p n a t i n s i d e s o u r c e l i s t a c c e s s− l i s t poo l name o v e r l o a d

A.2.7 Show

Some commands to verify the configuration and the state of the equipment are: Show running

configuration, Show Vlan, Show IP routes, Show BGP, Show GLBP, Show VRRP, Show HSRP.



Appendix B

Python scripts

This appendix includes the Python scripts used in the tests to change the redundancy protocols.

This is the HSRP enabling script

Listings B.1: HSRP activation script

from ne tmiko import Connec tHand le r

from c i s c o c o n f p a r s e import C i s c o C o n f P a r s e

r1 = {

’ d e v i c e _ t y p e ’ : ’ c i s c o _ i o s ’ ,

’ i p ’ : ’ 1 0 . 0 . 0 . 1 9 ’ ,

’ username ’ : ’ u s e r ’ ,

’ password ’ : ’ p a s s ’ ,

}

r2 = {

’ d e v i c e _ t y p e ’ : ’ c i s c o _ i o s ’ ,

’ i p ’ : ’ 1 0 . 0 . 0 . 2 9 ’ ,

’ username ’ : ’ u s e r ’ ,

’ password ’ : ’ p a s s ’ ,

}

r o u t e r 1 = Connec tHand le r (** r1 )

r o u t e r 2 = Connec tHand le r (** r2 )

config_commands = [ ’ i n t e r f a c e g i 0 / 1 ’ ,

’ no g lbp 1 i p 1 0 . 0 . 0 . 2 5 4 ’ ,

’ no g lbp 1 load−b a l a n c i n g ’ ,
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’ no v r r p 1 i p 1 0 . 0 . 0 . 2 5 4 ’ ,

’ s t a n d b y 1 i p 1 0 . 0 . 0 . 2 5 4 ’ ,

’ s t a n d b y v e r s i o n 2 ’ ]

o u t p u t = r o u t e r 1 . s e n d _ c o n f i g _ s e t ( config_commands )

p r i n t ( o u t p u t )

o u t p u t = r o u t e r 2 . s e n d _ c o n f i g _ s e t ( config_commands )

p r i n t o u t p u t
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This is the VRRP enabling script

Listings B.2: VRRP activation script

from ne tmiko import Connec tHand le r

from c i s c o c o n f p a r s e import C i s c o C o n f P a r s e

r1 = {

’ d e v i c e _ t y p e ’ : ’ c i s c o _ i o s ’ ,

’ i p ’ : ’ 1 0 . 0 . 0 . 1 9 ’ ,

’ username ’ : ’ u s e r ’ ,

’ password ’ : ’ p a s s ’ ,

}

r2 = {

’ d e v i c e _ t y p e ’ : ’ c i s c o _ i o s ’ ,

’ i p ’ : ’ 1 0 . 0 . 0 . 2 9 ’ ,

’ username ’ : ’ u s e r ’ ,

’ password ’ : ’ p a s s ’ ,

}

r o u t e r 1 = Connec tHand le r (** r1 )

r o u t e r 2 = Connec tHand le r (** r2 )

config_commands = [ ’ i n t e r f a c e g i 0 / 1 ’ ,

’ no g lbp 1 i p 1 0 . 0 . 0 . 2 5 4 ’ ,

’ no g lbp 1 load−b a l a n c i n g ’ ,

’ no s t a n d b y 1 i p 1 0 . 0 . 0 . 2 5 4 ’ ,

’ no s t a n d b y v e r s i o n 2 ’ ,

’ v r r p 1 i p 1 0 . 0 . 0 . 2 5 4 ’ ]

o u t p u t 1 = r o u t e r 1 . s e n d _ c o n f i g _ s e t ( config_commands )

p r i n t ( o u t p u t 1 )

o u t p u t 2 = r o u t e r 2 . s e n d _ c o n f i g _ s e t ( config_commands )

p r i n t o u t p u t 2
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This is the GLBP enabling script

Listings B.3: GLBP activation script

from ne tmiko import Connec tHand le r

from c i s c o c o n f p a r s e import C i s c o C o n f P a r s e

r1 = {

’ d e v i c e _ t y p e ’ : ’ c i s c o _ i o s ’ ,

’ i p ’ : ’ 1 0 . 0 . 0 . 1 9 ’ ,

’ username ’ : ’ u s e r ’ ,

’ password ’ : ’ p a s s ’ ,

}

r2 = {

’ d e v i c e _ t y p e ’ : ’ c i s c o _ i o s ’ ,

’ i p ’ : ’ 1 0 . 0 . 0 . 2 9 ’ ,

’ username ’ : ’ u s e r ’ ,

’ password ’ : ’ p a s s ’ ,

}

r o u t e r 1 = Connec tHand le r (** r1 )

r o u t e r 2 = Connec tHand le r (** r2 )

config_commands = [ ’ i n t e r f a c e g i 0 / 1 ’ ,

’ no s t a n d b y 1 i p 1 0 . 0 . 0 . 2 5 4 ’ ,

’ no s t a n d b y v e r s i o n 2 ’ ,

’ no v r r p 1 i p 1 0 . 0 . 0 . 2 5 4 ’ ,

’ g lbp 1 i p 1 0 . 0 . 0 . 2 5 4 ’ ,

’ g lbp 1 load−b a l a n c i n g w e i g h t e d ’ ]

o u t p u t = r o u t e r 1 . s e n d _ c o n f i g _ s e t ( config_commands )

p r i n t ( o u t p u t )

o u t p u t = r o u t e r 2 . s e n d _ c o n f i g _ s e t ( config_commands )

p r i n t o u t p u t
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