
	

FIXED SENSORS INTEGRATION FOR FUTURE
CITIES USING M2M

ANDRÉ DA SILVA E SÁ
DISSERTAÇÃO DE MESTRADO APRESENTADA
À FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO EM
Engenharia Eletrotécnica e de Computadores

M 2014

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Fixed Sensors Integration for Future
Cities Using M2M

André da Silva e Sá

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Dra. Tânia Calçada

Second Supervisor: Prof. Dra. Susana Sargento

October 14, 2014

Abstract

The actions of today will shape the future of our cities. Understanding how cities’ dynamics are
changing and taking actions to improve citizens’ life quality is imperative in our rapidly urbanised
world. This dissertation arises in the context of the European project Future Cities that aims to
turn the city of Porto into an urban-scale living lab where researchers and companies can test new
technologies, in order to improve citizens’ quality of life. In the scope of the Future Cities project,
sense units based on the open-source Raspberry Pi platform were sparsely distributed across the
city to measure environmental air parameters.

The data gathered by the sensors need to be transferred to the cloud, preferably taking advan-
tage of existent local infrastructures instead of cellular networks. The data processing does not
have real time constraints, which makes it possible to be transferred in a opportunistic way using
the municipal Wi-Fi hotspots around the city or the vehicular network deployed in six hundred
vehicles as part of the same project.

The goal of this dissertation is to design and implement a solution to opportunistically transfer
sensors data from sense units to the cloud using the vehicular network. This communication sce-
nario is widely known as Delay Tolerant Network (DTN) scenario. Moreover, the bundle protocol,
specified by the Internet Engineering Task Force (IETF), addresses the issues of communicating
in DTNs. The proposed architecture uses the IBR-DTN, an open-source implementation of the
bundle protocol, as a framework to able the developed applications to send sensors data through
the DTN. All devices involved in sensors data opportunistic transmission uses the same commu-
nication protocol.

i

ii

Resumo

O futuro das cidades é definido pelas ações que tomámos no presente. Num mundo cada vez mais
urbanizado, é importante perceber a alteração da dinâmica das cidades e procurar soluções para
melhorar a qualidade de vida dos cidadãos. Esta dissertação surge no contexto do projeto Europeu
Cidades do Futuro, cujo objetivo é transformar a cidade do Porto num laboratório vivo à escala
urbana onde será possível testar novas tecnologias que permitirão melhorar a qualidade de vida
dos cidadãos. No âmbito do projeto Future Cities, foram instalados de forma distribuída por toda
a cidade diversas unidades de sensores baseadas na plataforma livre Raspberry Pi para medir os
parâmetros ambientais do ar.

Os dados adquiridos pelos sensores têm que ser transferidos para a nuvem usando preferen-
cialmente as infraestruturas locais existentes, em vez das redes celulares. Devido à inexistência
de restrições de processamento dos dados em tempo real, pode-se transferir os dados de forma
oportunista usando os pontos de acesso Wi-Fi existentes na cidade ou através da rede veicular que
foi instalada em seiscentos veículos, no âmbito do mesmo projeto.

O objetivo desta dissertação é desenhar e implementar uma solução para transferir os dados
dos sensores para a nuvem de forma oportunista, usando a rede veicular. Este cenário de comu-
nicação é amplamente conhecido como sendo uma rede tolerante a atrasos. Além disso, o IETF
especificou o protocolo Bundle que procura resolver os problemas inerentes à comunicação em
redes tolerantes a atrasos. A arquitetura proposta utiliza o protocolo IBR-DTN, que pode ser uti-
lizado de forma livre e implementa o protocolo Bundle, como uma ferramenta que possibilita às
aplicações desenvolvidas o envio dos dados dos sensores através de redes tolerantes a atrasos. To-
dos os dispositivos envolvidos no envio dos dados dos sensores de forma oportunista utilizam o
mesmo protocolo de comunicação.

iii

iv

Acknowledgements

It is a pleasure to show my gratitude to those who made this "final step" possible.

Firstly, I would like to thank to Dra. Tânia Calçada and Prof. Dra. Susana Sargento, who
gave me the opportunity to do my dissertation in such an interesting project. An opportunity that
has certainly changed my academic path in a very positive way. Their motivation, knowledge and
comprehension were important factors to me in reaching this point.

I could not forget the friends and colleagues I have had since my first day at University, who
studied and worked by my side, creating a stimulating and fun environment to grow and learn.

Also the many great professors, who shared their knowledge and experience, making Electrical
and Computing Engineering subjects even more interesting.

Lastly, and most importantly, I would like to show my love and gratitude to my girlfriend and
to my family, especially my parents and my brother, who have always supported me in everything
I have needed. Here I also include my closer, lifetime friends, who have followed me in every
moments of my life. You can count on me for everything you need.

André da Silva e Sá

v

vi

"Haste is the enemy of perfection"

Portuguese saying

vii

viii

Contents

1 Introduction 1
1.1 Contextualisation . 1
1.2 Motivation and Problem Characterisation . 2
1.3 Goals . 3
1.4 Results . 3
1.5 Document Structure . 4

2 Future Cities Project 5
2.1 Overview . 5
2.2 UrbanSense Platform . 6

2.2.1 Sense Units . 6
2.2.2 Cloud UrbanSense Server and Database 7

2.3 Vehicular Network . 8
2.4 Summary . 9

3 State-of-Art 11
3.1 The Mule Architecture . 11
3.2 DTN Architecture . 13

3.2.1 DTN Architectural Principles . 14
3.2.2 Bundle Security Protocol . 17
3.2.3 Bundle Protocol . 18
3.2.4 Convergence Layer Protocols . 21

3.3 DTN Implementations . 21
3.3.1 DTN-2 . 22
3.3.2 IBR-DTN . 24
3.3.3 Implementations’ Comparison . 26

3.4 Summary . 27

4 The Proposed Architecture 29
4.1 System Overview . 29
4.2 Opportunistic Communications . 30
4.3 Types of Data . 32

4.3.1 Sensors Data . 32
4.3.2 Acknowledgement data . 33

4.4 Sensor Samples Management . 33
4.5 Summary . 34

ix

x CONTENTS

5 Implementation 37
5.1 Implementation Details . 37
5.2 IBR-DTN Application Programming Interface (API) 38

5.2.1 Bundle Register . 38
5.2.2 Commands . 39
5.2.3 Parsing Bundles from IBR-DTN API 41

5.3 UrbanSense Sense Units Application . 41
5.3.1 Sense Units Clock Synchronisation . 42
5.3.2 Sense Unit and On Board Unit (OBU) Connection Test 42
5.3.3 Sensors Data Transmission . 43

5.4 UrbanSense Server Application . 45
5.5 Summary . 47

6 Measurements and Analysis 49
6.1 Controlled Environment Tests Scenarios . 49
6.2 Real-World Environment Applications Validation 51
6.3 Results . 52

6.3.1 Bundles Delay . 52
6.3.2 Bundles Transmissions . 53
6.3.3 Real-World Environment Test Overview 54

6.4 Summary . 57

7 Conclusions and Future Work 59
7.1 Future Work . 60

A IBR-DTN Configuration File 61
A.1 Sense Units IBR-DTN configuration file . 61

References 65

List of Figures

2.1 Sense Unit Platform Components . 6
2.2 Sense Unit Platform Real-Image . 7
2.3 a) OBU Device Real-Image. b) Road Side Unit (RSU) Device Installed on a Traf-

fic Light Real-Image . 8
2.4 Future Cities Project Network Devices . 9

3.1 The Three Layers of the Mule Architecture . 12
3.2 Store and forward operation: a) node B getting close node A, b) opportunistic

contact, c) node B moving around, and d) data delivering to its destination 14
3.3 Bundle Protocol Architecture . 19
3.4 DTN2 Daemon Architecture . 22
3.5 IBR-DTN Daemon Architecture . 24

4.1 Opportunistic Communications Proposed Architecture 31
4.2 Sensor Samples Structure . 32
4.3 Sensors Metadata Structure . 33
4.4 Sensors Acknowledgement Data Structure . 33

5.1 Sense Unit and OBU Connection Test . 43
5.2 Sense Units Application Flowchart . 45
5.3 Cloud UrbanSense Server Application Flowchart 46

6.1 First Controlled Environment Test Scenario . 50
6.2 Second Controlled Environment Test Scenario 51
6.3 Real-Word Environment Test Scenario . 51
6.4 Bundles Delay Histogram . 53
6.5 Bundles Number of Transmission Distribution 54
6.6 Real-Word Environment Test Overview . 55
6.7 Opportunistic Contacts Mean Delay . 56

xi

xii LIST OF FIGURES

List of Tables

3.1 Bundle Primary Block . 21
3.2 DTN2 and IBR-DTN RFC 5050 Features Comparison 26

4.1 Sensor Samples Management Table . 34

5.1 IBR-DTN Time Synchronisation Configuration 42

6.1 Sense Unit Application Configuration Parameters 52
6.2 Bundles Delay Information . 53
6.3 Real-World Environment Test Details . 55
6.4 Opportunistic Contacts Amount of Transferred Data, Mean Delay and Delay Stan-

dard Deviation . 56
6.5 Quantity of Bundles per Bundles Amount of Sensors Data 57

xiii

xiv LIST OF TABLES

Abbreviations

ADU Application Data Unit

API Application Programming Interface

BAB Bundle Authentication Block

BD Bundle Daemon

BSR Bundle Status Report

CB Confidentiality Block

DHCP Dynamic Host Configuration Protocol

DTN Delay Tolerant Network

DTNRG Delay Tolerant Networking Research Group

EID Endpoint Identifier

GPS Global Position System

IETF Internet Engineering Task Force

IP Internet Protocol

IPND IP Neighbour Discovery

IRTF Internet Research Task Force

NTP Network Time Protocol

OBU On Board Unit

PDU Protocol Data Unit

PSB Payload Security Block

QoS Quality of Servive

RSU Road Side Unit

SDNV Self-Delimiting Numeric Value

STCP Service of Transport, City of Porto

TCP Transmission Control Protocol

xv

xvi ABBREVIATIONS

UDP User Datagram Protocol

URI Uniform Resource Identifier

V2V Vehicle-to-Vehicle

Chapter 1

Introduction

1.1 Contextualisation

The intense concentration of people and companies in cities brings new challenges in cities’ man-

agement and economy. The predictions are that by 2050, 67% of the World population will be

urban (United Nations, 2011). This global trend is leading to the cities’ air quality and people’

mobility deterioration, as well as the increase of stress and noise. This dissertation arises in the

context of the European project Future Cities intended to turn the city of Porto into an urban-scale

living lab, where researchers and companies can test technologies, products and services, explor-

ing subjects such as sustainable mobility, urban-scale sensing, as well as citizens’ quality of life

improvement. To accomplish that, three platforms have been implemented: (1) a crowdsensing

smartphone application, which gather citizens’ mobility and wearable clothes sensors data, (2) a

vehicular network, in which six hundred vehicles including buses, taxis and trucks communicate

among them and to the cloud, and (3) an UrbanSense platform, which is composed of sense units

sparsely installed around the city of Porto and mobile sense units installed on-board the city of

Porto transport service buses. This dissertation work focus on the UrbanSense platform and the

vehicular network integration, in order to transfer fixed sense units data to the cloud.

The appearance of low cost computing devices with wireless network capabilities is making

urban-scale sensing a reality, from a device perspective. However, from the network point of

view, there are still many challenges. As an example, measuring and analysing the air quality

in an urban-scale requires installing hundreds of sparsely distributed sensors around the city to

measure relevant air parameters. Consequently, it is required to transfer the acquired sensors data

to the cloud for later processing. Depending on each sensor location, there might be more than

one ways of doing that. We analyse the most cost/benefit appealing solutions to accomplish that

goal.

One possible solution could be using cellular technologies. Installing a GSM module in each

node may be a simple solution from the installation point of view. However, due to the large

1

2 Introduction

amount of sense units, the amount of data that needs to be transferred and the monthly fee that

telecommunications companies charge for that kind of services, make it costly unattractive as a

global solution. Other possible solution is to use the IEEE 802.15.4 standard. Particularly when

sensors nodes have low power consumption constrains, using this standard may be a good solution.

However, the maximum distance between nodes is not enough to highly sparse scenarios, requiring

a great number of gateways to do the interface between the sensors and the cloud. Other possible

solution is to use the IEEE 802.11b/g/n standard and send sensors data to the cloud through the

city of Porto Internet hotspots. Although some of them are paid, its utilisation price has been

decreasing lately. Other possible solution is to opportunistically transfer sensors data to the cloud

through passing vehicles. Taking into account that the city of Porto has a vehicular network already

installed, this is an appealing solution.

1.2 Motivation and Problem Characterisation

This dissertation work tackles the issues of using the city of Porto’s vehicular network as a solution

to reliably transfer sensor data to the cloud UrbanSense database. The way data is acquired and

stored in the local database, how it goes through the vehicular network and reach the Internet,

how sensors data is processed and uploaded to the cloud UrbanSense database, as well as all

issues regarding mobile sense units are beyond the scope of this dissertation. The challenges

we face up are: (1) detect opportunistic contacts and establish a connection between fixed sense

units and vehicular network nodes; (2) send sensors data and receive cloud UrbanSense server

acknowledgement data, through the vehicular network; and (3) manage sense units database, based

on sensors data uploading to cloud UrbanSense database success or a failure.

First, fixed sense units have to detect the vehicular network announced SSID, configured in

managed mode, and transfer sensors data to it through the IEEE 802.11b/g/n interface. Further-

more, they may also receive acknowledgement data from the vehicular network. Second, when

sensors data reaches the vehicular network "border", an application in the cloud UrbanSense server

has to extract sensors data from the vehicular network and send it to an application, which accepts

Transmission Control Protocol (TCP) socket connections and process sensors data. Third, that ap-

plication uploads sensors data to the cloud UrbanSense database and answers acknowledgement

data that needs to be sent to the sense unit that originated that data, through the vehicular network.

Final, the acknowledgement data has to be processed by the sense unit and sensors data success-

fully uploaded to the cloud UrbanSense database has to be deleted from sense unit local database.

This network scenario is widely known as a Delay Tolerant Network, which is characterised by

several minutes or hours delays and frequent network partitions that may cause an end-to-end

inexistent contemporaneous connection path.

1.3 Goals 3

1.3 Goals

The communication problem we have to solve has many tricky aspects involved, which are ad-

dressed by the DTN architecture. Especially, the way fixed and mobile nodes detect the oppor-

tunistic contact and establish a connection, dealing with unexpected connection interruptions, data

fragmentation for improved efficiency, as well as end-to-end reliability and security. The DTN

architecture defines a new layer on top of the transport layer and below of the application layer,

called bundle layer to address the DTN issues. There are several bundle layer open-source proto-

cols implementations [1][2][3][4]. These open-source implementations can be used as frameworks

to make applications the ability to communicate through DTN enabled network nodes.

First, this dissertation goal is to use the studies around DTN to integrate the UrbanSense and

vehicular network platforms, in order to solve the communication problem between sense units

and the cloud UrbanSense server. Second, it is necessary to develop the necessary applications

upon a bundle layer open-source implementation, to reliably transfer sensors data to the cloud

UrbanSense server, receive acknowledgement data from cloud UrbanSense server and manage

the sense units local database according to sensors data uploading to cloud UrbanSense database

success or failure. Final, metadata has to be added to data transferred in sense units to cloud

UrbanSense server direction, to make the ability to understand the overall system performance

through metadata analysis.

1.4 Results

This dissertation work specifies an architecture to reliably send sensors data from sense units to

cloud UrbanSense server using the city of Porto’s vehicular network. The proposed architecture

relies on the IBR-DTN protocol utilisation as a framework, in order to developed applications

communicate through the DTN, as well as an application running on the cloud UrbanSense server

that accepts TCP socket connection, receives sensors data, uploads it to the cloud UrbanSense

database and answers acknowledgement data about sensors data uploading success or failure.

Metadata information is added to sensor samples, in order to understand the overall system

performance. Statical metadata analysis, permits to understand the delay since bundles leave sense

units until reach the cloud UrbanSense database, the retransmitted sensor samples percentage, the

amount of sensors data transferred in a period of time or in opportunistic contacts and how bundles

amount of sensors data varies.

The proposed architecture was validated in a real-world environment single test, conducted

during one hour, thirty two minutes and forty five seconds. This test metadata analysis permitted

to conclude that sense units to cloud UrbanSense database sensors data transmission through the

vehicular network opportunistic contacts can be a reality at an urban-scale and that the developed

applications perform very well. Moreover, the bundles delay varies in accordance with the roads

traffic conditions. The minimum, mean and maximum bundles delay were 27 s, 140 s and 257 s,

respectively. The percentage of sensor samples transmitted in first, second and third transmission

4 Introduction

attempts was 75%, 20% and 5%, respectively. However, the sensor samples transmissions that

failed had been attempted to be transmitted over TCP, before the sending over the vehicular net-

work test started. To sum up, the test had a duration of 5565 s, 11 opportunistic contacts between

the sense unit and the OBU and were transferred 250 bundles with a total 145.85 kilobytes of

sensors data.

1.5 Document Structure

Beyond the introduction, this dissertation has more 6 chapters. Chapter 2 presents the Future

Cities project overview, as well as details the vehicular network and the UrbanSense platform de-

vices roles. Chapter 3 presents the mule architecture and the theoretical background necessary

to understand the DTN concepts and the applications developed in the scope of this dissertation.

Chapter 4 presents the proposed architecture to send sensors data from sense units to cloud the

UrbanSense server, using the vehicular network. Chapter 5 presents a sense units detailed expla-

nation and the cloud UrbanSense server applications. Chapter 6 presents and discusses the results

obtained in a single real-world environment test, which permitted to understand the overall system

performance. Finally, chapter 7 presents the dissertation work conclusions and future work.

Chapter 2

Future Cities Project

This chapter presents the Future Cities project. First, the project overview is presented and de-

scribed its three main platforms: the crowdsensing Android application, the UrbanSense platform

and the city of Porto vehicular network. Final, the UrbanSense platform and vehicular network

devices and applications are detailed. These two platforms are further detailed, because this dis-

sertation goal is to use the vehicular network to reliably send sensors data from sense units to the

cloud UrbanSense server and send acknowledgement data in the reverse direction.

2.1 Overview

The Future Cities project is a FP7 European funded project. The key goal of the project is to boost

the research and development of commercial products for smart cities turning the city of Porto into

an urban-scale living lab to test technologies and services thought to improve the citizens’ quality

of life. To accomplish that, it aims to work in an interdisciplinary way, sharing knowledge among

engineers, psychologists, social scientists and urban studies specialists. Three main urban-scale

platforms have already been implemented and are continuously being improved: the crowdsensing

application a vehicular network and an UrbanSense platform.

The crowdsensing application, also known as SenseMyCity, runs on Android devices and en-

ables the use of smartphones’ embedded and external sensors to collect data from users. Logging

their ECG information using a vital jacket - ambulatory ECG system, is an example of an external

sensor that people can use with this application. The analysis of data acquired with this kind of

sensors, can lead to detection of heart diseases and city locations where people’ level of stress is

higher. The platform main targets of study are smart mobility and psychology.

The UrbanSense platform includes twenty five sense units sparsely installed in city and fifty

mobile sense units installed on board of the Service of Transport, City of Porto (STCP) buses.

Sensors data from mobile sense units is acquired when buses are stopped. Both types of sense

units gather data such as the number of people or vehicles in a restricted area, air quality, noise

5

6 Future Cities Project

and meteorological conditions. The gathered data permits to identify critical urban areas and

evaluate the impact of urban intervention actions. This platform also enables the development of

research and public interest projects in areas such as public health, urban transportation planning

and environment management. Furthermore, companies can use it as a proof of concept for their

products.

The vehicular network testbed has already been installed on over six hundred vehicles, in-

cluding buses, taxis and trucks, representing the largest Vehicle-to-Vehicle (V2V) communication

platform in the world, at the time of the submission of this dissertation. Each participating vehicle

carries an OBU communication device with four communication interface cards: Wi-Fi, 802.11p,

3G and Global Position System (GPS). Moreover, six RSU devices are connected to the city of

Porto high-speed optical network bringing to the vehicular network the ability to reach the Internet.

RSUs and OBUs communicate using the IEEE 802.11p technology, which is the IEEE standard

for vehicular communications. The OBU and RSU devices and interfaces are further explained in

chapter 2.3. This platform offers a wide range of services, which includes Internet access to bus

passengers, fleet management and urban-traffic enforcement. Moreover, due to the platform huge

dimension and potential, new services such as data mulling can be efficiently implemented.

2.2 UrbanSense Platform

This dissertation work focus on the integration of the UrbanSense and vehicular network plat-

forms. The next sub-sections will further detail the sense units, cloud server and cloud database

UrbanSense platform devices, especially its software and hardware components.

2.2.1 Sense Units

Local
Database

DTN Hotspot

Data
Acquisition

Unit

CO

CO2

NO2

O3

... ...

...

Figure 2.1: Sense Unit Platform Components

The sense units platform, represented in Figure 2.1, has three main modules: a DataAcquisi-

tionUnit, a local database and a Raspberry Pi. Furthermore, it has a Wi-Fi 802.11n interface that

enables sense units to connect to OBUs and Internet hotspots Wi-Fi interfaces. Since sense units

2.2 UrbanSense Platform 7

are power sourced by the national electrical network grid, sensors energy consumption is not a

concern in this dissertation work.

Figure 2.2: Sense Unit Platform Real-Image

The DataAcquisitionUnit hardware is composed of a micro-controller, sensors signal condi-

tioning electronic components and several different types of sensors, which includes: temperature,

relative humidity, anemometer, luminosity, solar radiation, ozone, carbon dioxide/monoxide and

noise. The micro-controller stores the newer sensors acquired samples in registers in RAM and

update their values in accordance with sensors acquisition time interval. Furthermore, the DataAc-

quisitionUnit answers to different types of sensor samples requests from the Raspberry Pi, through

a serial communication, to exchange data between both. In other words, a client-server model is

implemented between both modules, in which the Raspberry is the client and the DataAcquisitio-

nUnit is the server. Raspberry Pi requests sensor samples from the DataAcquisitionUnit and stat-

ically stores it in a SD card database. Sensor samples statically storage increases the UrbanSense

platform robustness, in case of system failure.

Figure 2.2 shows a sense unit real image, installed on a city of Porto traffic light in Damião

de Gois street. It was the sense unit used to conduct a real-word environment test and obtain the

results discussed in chapter 6.3.

2.2.2 Cloud UrbanSense Server and Database

The cloud UrbanSense server is the sensors data destination. In the server, runs an application

that accepts TCP socket connections to receive sensors data and upload it to the cloud UrbanSense

database. It is prepared to receive data in JSON format and once it uploads data to the cloud

UrbanSense database, it sends acknowledgement data back through the same TCP socket. The

acknowledgement data contains information about the number of sensor samples successfully up-

loaded to the cloud UrbanSense database, the number of unknown sensor samples types and the

number of sensor samples unsuccessfully uploaded. This application was developed to receive

sense units data in case they are connected to an Internet hotspot and there is an end-to-end TCP

8 Future Cities Project

connection. The tables structure to store sensors data in cloud UrbanSense database is equal to the

tables structure used in sense units local database.

2.3 Vehicular Network

The vehicular network platform is composed of OBUs - devices installed on board of buses, trucks

and taxis, and RSUs - devices strategically installed on traffic lights in places with a great number

of vehicles belonging to the vehicular network. Sub-Figures 2.3a and 2.3b show real images of an

OBU and a RSU, respectively.

(a)

(b)

Figure 2.3: a) OBU Device Real-Image. b) RSU Device Installed on a Traffic Light Real-Image

Figure 2.4 shows all Future Cities project network devices used in this dissertation work and

the interfaces they use to communicate among them. OBUs have three network interfaces: (1) Wi-

Fi - configured in the managed mode, through which bus passengers and other devices connect to

the OBU and have access to Internet and other services; (2) 802.11p - used to form the vehicular

network and communicate with RSUs; and (3) 3G - used as a last resource to send data to the

Internet, when connectivity through the 802.11p interface is unavailable, as well as OBUs clock

synchronisation purposes. Moreover, OBUs have a GPS service that can be used to tag the sensors

data location, clock synchronisation services and other purposes.

RSUs have an 802.11p interface for communications between RSUs and OBUs, a optical fiber

interface connected to the Internet and a Wi-Fi interface. RSUs are used as gateways from the

vehicular network to the Internet. The RSUs Wi-Fi interface is not used in the scope of this

dissertation.

2.4 Summary 9

OnBoardUnit

802.11p3G

Road Side UnitSense Unit

802.11p Optic
Fiber

Future Cities Server
and Database

Figure 2.4: Future Cities Project Network Devices

2.4 Summary

First, this chapter presented the Future Cities project overview and described its three main plat-

forms. At this moment, the reader understands the project huge dimension and how it is "seg-

mented". Final, the UrbanSense and the vehicular network platforms are described in minute

detail, due to this dissertation goal of integrating both. Sense units can either be installed on-board

the vehicular network vehicles or in fixed locations. However, this dissertation work focus on send

sensors data from fixed sense units to the cloud UrbanSense server, using the vehicular network.

Consequently, along this dissertation, the "sense unit" term refers to sense units installed in fixed

locations.

10 Future Cities Project

Chapter 3

State-of-Art

This dissertation work uses the vehicular network to reliably send sensors data from sense units

to the cloud UrbanSense server. This chapter presents a particular DTN scenario which uses

data mules, as well as some state-of-art information related to Delay Tolerant Networks (DTNs).

First, the mule architecture is presented and discussed the principal advantages and disadvantages

of carrying data instead of forwarding. Second, the DTN architecture and the bundle protocol

specification are presented. Last, two open-source bundle protocol implementations are presented

and compared.

3.1 The Mule Architecture

The mule architecture consists on using data mules, mobile entities with network capabilities, to

carry data from sense units until an wired access point, which ables the mule to offload sensors

data to the Internet. This architecture has been studied in [5] [6]. In [5], the mule architecture

analysis is made through an analytical model, which considers mules random walks to provide

insight into data transmission success rate and buffer sizes performance metrics. In [6], a TOSSIM

simulator permitted to test their proposed ADT protocol, which tries to optimise the amount of

data transferred on opportunistic contacts. Figure 3.1 shows the three different network nodes

types used in the mule architecture: sensors, data mules and access-points.

Lower layer — sensors: Sensors acquire data, communicate via a short-range radio, and have

limited memory. The amount of work performed by sensors should be minimised because they

have the most constrained resources among the three layers. In our project, sensors are called sense

units and its power resources consumptions is not a concern, because they are power sourced by

the national electrical network grid.

11

12 State-of-Art

Access Points

Data Mules

Sensors

Figure 3.1: The Three Layers of the Mule Architecture

Middle layer — data mules: Data mules are mobile entities with large storage capacities (rel-

ative to sensors), renewable power, and have the ability to communicate with sensors and access-

points. A data mule has the responsibility of sensors and access-points discovery and carry data

between them. In our project, sense units have the responsibility to detect data mules, which are

the vehicular network members.

Upper layer — access-points: These are the destination of sensor data. These are nodes with

Internet connectivity and enhanced power, storage and processing capabilities. They are used

to offload the data collected by and stored in the data mules. The Future Cities project has six

access-points, called RSUs, which data mules use offload their collected data.

3.1.0.1 Mule Discovery Protocol

A data mule needs to discover a nearby sensors node to be able to collect its data. An important

aspect in the mule discovery protocol is mule mobility, which can be characterised as random,

predictable or controllable [7]. Different node detection approaches, depending on mule mobility

and node transmission initiation, were found in the literature. In [8], transmissions are scheduled

and initiated from sense units taking into account energy minimisation and the data being trans-

mitted. In the articles [7] [9] [10] [6], a mule is considered to be within the node range when the

sensor detects the first beacon from the mule. On the other hand, a mule is considered to be out

of range when the number of missed ACK messages exceeds a pre-defined threshold [9] [10] [6].

According to [7], beacons from data mules are continuously sent at fixed time intervals and a mule

is considered to be away when beacons are not received for a certain period of time.

3.2 DTN Architecture 13

3.1.0.2 Trade-offs

When compared to vehicular networks, where generally data is routed instead of being carried,

the mule architecture presents some advantages and disadvantages:

3.1.0.3 Advantages

Energy Efficient Substantial energy is saved because sensors communicate over a short range.

Moreover, as sensors do not forward data between each other, the sensors near the gateway to the

cloud are not overloaded.

Spatial Reuse The mule architecture exploits spatial reuse of bandwidth by using short-range

communication avoiding radio communication complexities such as collisions.

Routing overhead The mule architecture has less routing protocol overhead.

Robustness Performance degrades gracefully as mules fail. Any single mule failure does not

lead to a disconnected network. The primary effect of a mule failure on the overall system is a

slight increase in latency as there are now fewer mules to pick up data.

Scalable The mule architecture is easily scalable as deployment of new sensors or mules do not

requires network reconfiguration.

Simplicity The data routing aspect of the mule architecture is very simple and lightweight for

all nodes evolved.

3.1.0.4 Disadvantages

Latency The mule architecture has high latency what limits its applicability to realtime applica-

tions.

Best-effort delivery Data delivery is best-effort. After collecting sensors data, the mule may

take some time to reach near an access-point to deliver it.

3.2 DTN Architecture

Delay Tolerant Network is a store and forward network architecture that seeks to address the

technical issues in heterogeneous networks. This network environment is characterised by very

long delay communications and frequent network partitions, which may take to the lack of an end-

to-end contemporaneous path. DTN defines a new layer on top of the transport layer and below

of the application layer, called bundle layer. The bundle layer is responsible for the end-to-end

delivery mechanism of messages, called virtual message forwarding. This problem contrasts with

14 State-of-Art

the end-to-end connected data networks which typically selects the shortest policy-compliant path

to send data. Examples of DTNs are: deep space networks, sensor-based networks, terrestrial

wireless networks, underwater acoustic networks and satellite networks [11].

3.2.1 DTN Architectural Principles

The DTN architectural principles presented here, RFC 4838 [11], were defined by the Internet

Research Task Force (IRTF), but do not define any kind of Internet standard. They are an upgrade

from the architectural principles previously defined for the Interplanetary Internet.

Virtual Message Switching using Store-and-Forward Operation A DTN-enabled application

creates messages of arbitrary length called Application Data Units (ADUs). Then, at the bundle

layer, ADUs are transformed into one or more Protocol Data Units (PDUs) called bundles con-

taining two or more blocks of data. Each block may contain either application data or control

information used to deliver the bundle payload to its destination(s). Due to the lack of an end-to-

end connected path, bundles may have to be stored in the network for long periods. Consequently,

persistent storage is required to cope with hardware failures and increased reliability.

A

B C

(a)

A
B

C

(b)

A B

C

(c)

A

C
B

(d)

Figure 3.2: Store and forward operation: a) node B getting close node A, b) opportunistic contact,
c) node B moving around, and d) data delivering to its destination

Figure 3.2 depicts how the store-and-forward mechanism works and how the node B mobility

is used to deliver a bundle from the node A to the node C. In subfigure 3.2a, the node A can not

reach any node in its neighbourhood. However, the node B is moving toward it. As shown in

subfigure 3.2b, the node B mobility allowed bundles to be transferred from the node A to the node

B. In subfigure 3.2c the node B is not yet able to forward the message to the node C. If the node

3.2 DTN Architecture 15

B had come across another node trying to send bundles, node B could also collect its bundles. In

subfigure 3.2d, the node B can finally deliver the collected bundles to their destination.

Naming and Addressing Mechanism Every node in the DTN architecture is identified through

an Endpoint Identifier (EID), but in case of multicast or anycast, an EID may refer to multiple

DTN nodes. In other words, a single EID may point to one or more nodes, and a single node

may have more than one EID. However, every node must be a member of at least one “singleton”

endpoint, i.e., have a unique (singleton) EID. An EID is a name, expressed using the general

syntax of Uniform Resource Identifiers (URIs), which has been designed as a way to express

names or addresses for a wide range of purposes, and is therefore useful for constructing names

for DTN nodes. URIs intended for use with DTNs should be compliant with the guidelines given

in [12]. EIDs are used to identify the source and destination endpoints of a bundle, the endpoint to

which bundle status reports are to be sent, and the current custodian of the bundle. The following

is an example of an EID:

dtn://Server.dtn/ServerA (dtn://<scheme>/<scheme-specific part>)

A DTN-enabled application can subscribe ADUs destined for a particular EID through a "reg-

istration", which is generally persistently stored by DTN nodes. When an application does a

registration with an EID, it signals that these particular application wishes to receive bundles sent

to that EID. If the node receives bundles destined to a registered EID, they are handed over to the

application that performed the registration.

In contrast to the name resolution process of the Internet, in which the destination IP address

is determined at the source before data is sent, DTN also incorporates the concept of late binding.

It means that the mapping between a destination EID and its lower-layer address is not necessarily

performed at the source node. In DTN, the mapping may occur at the source, during transit or

possibly at the destination. This is advantageous because the transit time of a bundle may exceed

the validity time of a binding. The use of name-based routing with late binding may also reduce

the amount of administrative traffic in the network.

Custody Transfer and Return Receipt DTNs can implement data reliability at the transport

layer and the bundle layer. However, due to DTN supports different transport layer protocols be-

tween nodes, end-to-end reliability has to be implemented at the bundle layer. It is made through

a return receipt, sent from the destination to the source node, when a bundle reaches its destina-

tion. The source node must keep sent bundles until their return receipt have been received, and

retransmit in case it had failed.

The bundle layer also supports hop-by-hop reliability by means of custody transfers. The

custody of the bundle traverses the network until the final destination is reached or the bundle

is discarded, if its time-to-live expires. When the source application request custody transfer, it

sends a bundle and starts a time-to-acknowledge retransmission timer. If the next hop node accepts

custody, it returns an acknowledgment to the sender. If no acknowledgment is returned before the

16 State-of-Art

retransmission time expires, the sender retransmits the bundle. A custodian node must store the

bundle until another node accepts custody or the bundle’s time-to-live expires. [13]

Priority Classes The DTN architecture implements a Quality of Servive (QoS) mechanism

which classifies delivering ADUs priority as low, medium or high. However, this mechanism

doesn’t guarantee a bundle will be delivered within an fixed time interval, it just offers a relative

priority between ADUs. According to the DTN-enable application desire to affect the ADU de-

livery, the QoS mechanism is implemented at the bundle layer through the primary bundle block

flags.

Delivery Options and Administrative Records DTN applications can choose eight delivery

options for sending ADU. The first four are designed for ordinary use by applications, while the

last four are primarily designed for diagnostic purposes. Due to the extra overhead, their use may

be restricted or limited to environments subject to congestion or attack.

• Custody Transfer Requested Requests sent bundles to be delivered with enhanced reliabil-

ity using custody transfer procedures.

• Source Node Custody Acceptance Required Requires the source DTN node to provide cus-

tody transfer for the sent bundles.

• Report When Bundle Delivered requests a bundle delivery status report to be generated

when the subject ADU is delivered to its intended recipient(s).

• Report When Bundle Acknowledged by Application Requests an acknowledgement sta-

tus report to be generated when the subject ADU is acknowledged by a receiving applica-

tion.

• Report When Bundle Received Requests a bundle reception status report to be generated

when each sent bundle arrives at a DTN node.

• Report When Bundle Custody Accepted Requests a custody acceptance status report to

be generated when each sent bundle has been accepted using custody transfer

• Report When Bundle Forwarded Requests a bundle forwarding status report to be gener-

ated when each sent bundle departs a DTN node after forwarding.

• Report When Bundle Deleted Requests a bundle deletion status report to be generated

when each sent bundle is deleted at a DTN node.

If the bundle security protocol procedures defined in chapter 3.2.2 are also enabled, then three

additional delivery options become available:

• Confidentiality Required Requires the subject ADU be made secret from parties other than

the source and the members of the destination EID.

3.2 DTN Architecture 17

• Authentication Required Requires all non-mutable fields in the bundle blocks of the sent

bundles be made strongly verifiable .

• Error Detection Required Requires modifications to the non-mutable fields of each sent

bundle be made detectable with high probability at each destination.

According to the chosen delivery options, administrative records are used at the bundle layer to

report bundles status information or error conditions. It is accomplished by a method for uniquely

identifying bundles based on a transmission timestamp and sequence number. There are two

types of administrative records defined: Bundle Status Reports (BSRs) and custody signals. The

following BSRs are currently defined: bundle reception, custody acceptance, bundle forwarded,

bundle deletion, bundle delivery and acknowledged by application. Additionally to status reports,

the custody signal indicates the status of a custody transfer. It indicates either a successful or

a failed custody transfer attempt, through a Boolean indicator. These are sent to the current-

custodian EID contained in an arriving bundle.

Fragmentation and Reassembly There are two types of fragmentation/reassembly currently

designed. They are used to improve the efficiency of bundle transfer by ensuring that contact

volumes are fully utilised and by avoiding retransmission of partially-forwarded bundles.

• Proactive Fragmentation Based on contact history or predicted contact time, a DTN node

may divide the bundles into smaller ones and transmit each of them as an independent

bundle.

• Reactive Fragmentation When a bundle is only partially transferred, the receiving DTN

node modifies the incoming bundle to indicate it is a fragment, and forwards it normally.

Timestamps and Time Synchronisation The DTN architecture depends on time synchronisa-

tion among DTN nodes for four primary purposes: bundle and fragment identification based on

the timestamp, routing with scheduled or predicted contacts, bundle expiration time computations,

and application registration expiration.

Neighbour Discovery Identity and meeting schedule among DTN nodes may be unknown. The

ability to discovering and exchanging data between DTN nodes is accomplished through a neigh-

bour discovery mechanism. In [14] is specified the DTN IP Neighbour Discovery (IPND). IPND

sends and listens IP UDP "beacons" to detect opportunistic contacts. Depending on the remote tar-

get neighbours, beacons can be addressed to IP unicast, multicast or unspecified local neighbours.

3.2.2 Bundle Security Protocol

The DTN architecture security can be achieved through the bundle security protocol specified in

[15]. It implements separately hop-by-hop and end-to-end authentication and integrity mecha-

nisms. The purpose of this distinction is to be able to handle access control for data forwarding

18 State-of-Art

and storage separately from application-layer data integrity. On one hand, the end-to-end mech-

anism provides authentication for a principal such as a user. On the other hand, the hop-by-hop

mechanism is intended to authenticate DTN nodes as legitimate transceivers of bundles to each-

other.

The DTN security architecture has the following goals:

• Prevent unauthorised applications from having their data carried through or stored in the

DTN.

• Prevent unauthorised applications from taking control over the DTN infrastructure.

• Prevent applications from sending bundles at a rate or class of service for which they lack

permission.

• Discard bundles that are damaged or improperly modified in transit.

• Detect and de-authorise compromised entities.

To summarise, bundle security is concerned with the authenticity, integrity, and confidentiality

of bundles transmitted among bundle nodes. This is accomplished via the use of three independent

security-specific bundle blocks, which may be used together to provide multiple bundle security

services or independently of one another, depending on the secure level required. The Bundle

Authentication Block (BAB) ensures the authenticity and integrity of bundles on a hop-by-hop

basis between bundle nodes. The BAB allows each bundle node to verify a bundle authenticity

before processing or forwarding the bundle. In this way, entities that are not authorised to send

bundles will have unauthorised transmissions blocked by security-aware bundle nodes. Addition-

ally, the Payload Security Block (PSB) provides "security-source" to "security-destination" bundle

authenticity and integrity. It can be checked along the delivery path by any security-aware entity.

Finally, payload confidentiality is provide using the Confidentiality Block (CB). The CB indicates

the cryptographic algorithm and key IDs that were used to encrypt the payload [16].

3.2.3 Bundle Protocol

The bundles carried between DTN nodes obey to the bundle protocol specification in [16]. The

bundle protocol is the primary DTN protocol running at the bundle layer and its location within the

standard protocol stack is as shown in figure 3.3. The bundle protocol end-to-end successful opera-

tion depends on the operation of underlying protocols at what is termed the "convergence layers".

These protocols accomplish point-to-point communication between DTN nodes. To implement

the main DTN principles, bundle protocol has to be able to deal with intermittent connectivity,

supports late binding of reactively fragmented bundles, implements discovery mechanisms and

custody based retransmission.

3.2 DTN Architecture 19

Application Layer

Bundle Layer

Network Layer

Data Link Layer

Physical Layer

C
onvergence layers

Transport Layer

Figure 3.3: Bundle Protocol Architecture

The bundle protocol uses Self-Delimiting Numeric Values (SDNVs) encoding scheme in order

to minimise the transmission bandwidth consumption. The SDNVs are closely adapted from the

Abstract Syntax Notation One Basic Encoding Rules for sub-identifiers within an object identifier

value [17]. An SDNV is a numeric value encoded in N octets.

The bundle protocol is designed with a mandatory primary block, an optional payload block

and a set of optional extension blocks. The following fields are present in the primary block, figure

3.1, and therefore are present for every bundle and fragment:

• Bundle Processing Control Flags Is an SDNV that contains the bundle processing control

flags depending on the Delivery Options 3.2.1.

• Block Length Contains the length of all remaining fields of the block.

• Destination Scheme Offset Contains the scheme name of the EID of the bundle destination.

• Destination SSP Offset Contains the scheme-specific part of the EID of the bundle destina-

tion.

• Source Scheme Offset Contains the scheme name of the EID of the bundle source node.

• Source SSP Offset Contains the scheme-specific part of the EID of the bundle source.

• Report-to Scheme Offset Contains the scheme name of the EID to which status reports

pertaining to the forwarding and delivery of this bundle are to be sent.

20 State-of-Art

• Report-to SSP Offset Contains the scheme-specific part of EID to which status reports per-

taining to the forwarding and delivery of this bundle are to be sent.

• Custodian Scheme Offset Contains the scheme name of the current custodian EID.

• Custodian SSP Offset Contains the scheme-specific part of the current custodian EID.

• Creation Timestamp Is a pair of SDNVs that, together with the bundle source EID and

(if the bundle is a fragment) the fragment offset and payload length, serve to identify the

bundle.

• Lifetime Indicates the time at which the bundle payload will no longer be useful.

• Dictionary Length Contains the length of the dictionary byte array.

• Dictionary Is an array of bytes formed by concatenating the null-terminated scheme names

and SSPs of all EIDs referenced by any fields in this Primary Block together with, poten-

tially, other EIDs referenced by fields in other DTN protocol blocks. Its length is given by

the value of the Dictionary Length field.

• Fragment Offset If the bundle processing control flags of this primary block indicate that

the bundle is a fragment, then the fragment offset field is an SDNV indicating the offset from

the start of the original application data unit at which the bytes comprising the payload of

this bundle were located. If not, then the fragment offset field is omitted from the block.

• Total Application Data Unit Length If the bundle processing control flags of this primary

block indicate that the bundle is a fragment, then the total ADU length field is an SDNV

indicating the total length of the original ADU of which this bundle payload is a part. If not,

then the total ADU length field is omitted from the block.

3.3 DTN Implementations 21

Version Proc.Flags

Block lenght

Destination scheme
offset Destination SSP offset

Source scheme offset

Report-to scheme offset

Custodian scheme offset

Source SSP offset

Report-to SSP offset

Custodian SSP offset

Creation timestamp time

Creation timestamp sequence number

Lifetime

Dictionary length

Dictionary byte array

Fragment offset

Total application data unit length

Table 3.1: Bundle Primary Block

3.2.4 Convergence Layer Protocols

The major categorisation splits convergence layers into connection oriented and non-connection

oriented groups. There are significant differences between the ways in which the two types op-

erate. On one hand, in connection oriented convergence layers, a communication link is estab-

lished before any useful data can be transferred. TCP convergence layer is an example of this

communication mode and provides reliable and ordered packets delivery. On the other hand, in

non-connection oriented convergence layers bundles are simply transferred. This communication

mode neither implement flux control mechanisms nor reliability, what results in a reduced com-

munication overhead. User Datagram Protocol (UDP) convergence layer is an example of this

communication mode.

3.3 DTN Implementations

Considering our network scenario and the use of the Raspberry Pi platform, there are two bundle

protocol open-source implementations, developed to run on embedded systems, available: DTN2

and IBR-DTN.

22 State-of-Art

3.3.1 DTN-2

DTN2 [18] is the reference implementation of the bundle protocol by the Delay Tolerant Net-

working Research Group (DTNRG). The core implementation is written in C++ using a frame-

work called Oasys that is designed to provide a uniform interface to the DTN2 code. DTN2

optionally supports the bundle security protocol, Ethernet and Bluetooth convergence layers, rout-

ing mechanisms including static, epidemic, prophet, DTLSR and TCS routing, as well as storage

mechanisms including file system, Berkeley database, RAM memory, SQLite and MySQL.

3.3.1.1 Architecture

OS Network Interface

API Interface

OS Filing System

OS Network Interface

Local and
Remote

Management
DTN Applications

Bundle Daemon Core

IP/DTN Network

Bundle
Storage

Bundle Factory
and

Fragmentation
Manager

Interface
Manager

Discovery &
Link

Management
Convergence

Layers Router

Dynamic
Routing

Contact Manager

Internal
Applications

Figure 3.4: DTN2 Daemon Architecture

The bundle protocol agent and all its support code is implemented as a user space daemon called

Bundle Daemon (BD). Figure 3.4 shows the DTN2 architecture. The main blocks are: the API

interface, the Bundle Daemon Core, OS Network Interface and OS Filing System.

3.3.1.2 API Interface

Local and Remote Management Provides configuration and monitoring functionalities of the

operations of the DTN2 daemon.

DTN Applications Handles RPC-based communication between applications and the Bundle

daemon process.

3.3 DTN Implementations 23

3.3.1.3 Bundle Daemon Core

Bundle Daemon Core is the master component of the DTN2 daemon. It is responsible for statistics,

event distribution and event handler.

Bundle Factory and Fragmentation Manager Deal with bundles as defined in the bundle pro-

tocol 3.2.3 and the bundle security protocol 3.2.2.The Bundle Factory is responsible for creating

the bundles. Fragmentation Manager is responsible for organising sets of fragments of a bundle

and determining when the available fragments "cover" a bundle so that it can be reassembled and

delivered to local applications.

Bundle Router The Bundle Router is the main decision maker for all routing and forwarding

decisions related to bundles. It receives events from the Bundle Daemon Core after they have

been processed in the bundle core. Routing mechanisms can be classified into static and dynamic

mechanisms. For static mechanisms the routes are worked out in advance either due to static

configuration or a schedule. For dynamic mechanisms, information (normally known as metadata)

is exchanged between BDs that use it to determine routes and whether to forward bundles on

particular links.

3.3.1.4 OS Network Interface

Dynamic Routing Is only viable if a low latency reliable link can be established locally between

nodes involved in an opportunistic encounter. The local information exchange will therefore take

place using a separate TCP-based connection rather than being encapsulated in bundles.

Contact Manager Is the central actor in the communications sub-system of the DTN2 daemon.

Is responsible for managing communications links from the local node to other nodes over which

bundles can be sent.

Interface Manager Maintains a table of Interfaces that are the low level communication end-

points for the DTN2 daemon. Interfaces are created and activated through administrative action,

typically by initial configuration of the DTN2 daemon and abstract a bundle transport communi-

cation end point.

Discovery and Link Management Maintains the set of active Discovery Agents and provides

means for adding new ones and deleting ones that are no longer required. A Discovery Agent can

be configured to advertise one or more convergence layers. Advertisements are sent out periodi-

cally according to a configured interval. An advertisement contains the name of the convergence

layer to be used and address information that can be used to either send bundles towards for

non-connection oriented convergence layers or to establish a connection for connection oriented

convergence layers. On receiving an advertisement from a prospective next-hop neighbour, the

24 State-of-Art

Discovery Agent will pass the advertisement to the Link manager, to determine if there is an

existing reusable link or, if not, to create a new opportunistic link to handle communications.

Convergence Layers encapsulates the protocol used for communication on a particular link

during a contact, and manages the interactions between the local communication devices and

the DTN2 daemon in establishing a link, closing down a link, and handling data reception and

transmission on the link.

3.3.2 IBR-DTN

IBR-DTN [3] is a bundle protocol implementation developed specifically for embedded systems

and is designed for and tested against uClibc. It provides a DTN daemon based on an event

mechanism that supports different routing schemes, different convergence layers, persistent and

non-persistent storage, security mechanisms, proactive and reactive fragmentation, as well as two

discovery mechanisms.

3.3.2.1 Architecture

Wall Clock

Event Switch

Discovery Agent

Base Router

Connection
ManagerAPI Server

Bundle Storage

Figure 3.5: IBR-DTN Daemon Architecture

Figure 3.5 depicts an architectural overview of IBR-DTN. Due to its modular implementation,

when compiling IBR-DTN, different modules can be chosen to best fit the implementation sce-

nario. The IBR-DTN standard modules are [3]:

Event Switch At the core of IBR-DTN, Event Switch dispatches a set of standard events to all

relevant sub-modules. Existing and new modules can receive and raise events to communicate

with other parts of the daemon.

Discovery Agent Is responsible for implementing a discovery mechanism through pluggable

discovery modules. Currently, there are DTN IPND version one and two as specified in 3.2.1 and

3.3 DTN Implementations 25

IP-Discovery frames compatible to DTN2. The Discovery Agent events are triggered by neighbour

discovery and disappearance.

Connection Manager The Connection Manager manages the instances of convergence layer

modules, based on the daemon configuration. Each convergence layer provides an interface to

transfer bundles to neighbouring nodes. IBR-DTN (version 12.0) has five built-in convergence

layers:

• TCP Convergence Layer Compatible with IETF draft [19]. TCPCL uses a handshake mech-

anism before useful data transmission and an acknowledge mechanism for data flux control

between DTN nodes.

• UDP Convergence Layer Compatible with IETF draft [20]. UDPCL is the simpler way of

bundles transfer between DTN nodes. Since it requires that a bundle fits into a single UDP

datagram, the maximum bundle size is limited.

• Hypertext Transfer Protocol Convergence Layer Can use an HTTP server to send and re-

ceive bundles. This convergence layer is based on libcurl4.

• LowPersonal Area Network Convergence Layer Supports the IEEE 802.15.4 MAC stan-

dard commonly used in sensor networks.

• Generic Datagram Convergence Layer Is a protocol abstraction layer that supports the

IEEE 802.15.4 MAC and UDP standard.

Bundle Storage IBR-DTN supports the three types of bundle storage following described:

• Memory-based storage This is a non-persistent bundle storage and is used by default if no

storage path is set. All bundles are kept in RAM in this case.

• File-system based storage This is a persistent storage based on simple files. The function-

ality is equal to the memory-based storage, but all bundles are serialised to disk.

• SQLite SQLite uses a database as backend and can store more metadata information for

bundles than the other solutions.

Base Router The Base Router is able to manage one or more different routing modules at the

same time. Receiving events by routing modules are triggered every time discovered and nodes

disappeared occurs, as well as whenever new bundles arrive in the storage. When a routing module

needs to send a bundle, it generates an event to the Connection Manager requesting the appropriate

converge layer to send the bundle to the next hop.

Wall Clock The Wall Clock module determines the current global time in the DTN through its

local clock. Additionally to basic time querying functionality this module provides a global time

tick event, which triggers the initiation of simple modules recurring tasks.

26 State-of-Art

IBR-DTN API IBR-DTN reuses the bundle streaming protocol to provide a socket based API

interface. This can either be a TCP socket which allows to run the daemon and DTN applications

on different machines, or a Unix Domain Socket.

Implemented tools IBR-DTN (version 0.12.0) distribution provides eight tools: (1) and (2)

dtnsend and dtnrecv - can send and receive files and standard in/output; (3) dtnping - sends out

bundles to a DTN Endpoint Identifier and waits for a bundle with the same payload as reply; (4)

dtntracepath - the path of a bundle is discovered using the bundle forwarded reports from each

hop as defined in [16]; (5) and (6) dtninbox and dtnoutbox - automatise the process of sending

and receiving bundles to and from the DTN. The bundles in the outbox folder are automatically

transferred to the inbox folder; (7) dtnstream - it allows receiving a stream on a DTN node; (8)

dtntrigger - calls an executable every time a bundle to a specific EID is received.

3.3.3 Implementations’ Comparison

The Basic Bundle Protocol

Self Describing Numeric Values

Endpoint Identifiers

Bundle Expiration

Registrations

Persistent Bundle Storage

Reactive Bundle Fragmentation

Bundle Fragment Reassembly

Custody Transfer

Received

Forwarded

Delivered

Deleted

Bundle Status
Reports

Acknowledge by
Application

Custody Acceptance

Proactive Bundle Fragmentation

Extension Blocks

Bundle Security Blocks

X

IBR-DTNDTN2

X

X

X

X

X

X

X

-

X

X

X

X

X

X

X

-

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

-

X

X

Table 3.2: DTN2 and IBR-DTN RFC 5050 Features Comparison

3.4 Summary 27

In [21], the DTN2 and the IBR-DTN performance characteristics are evaluated, using a DTN em-

ulation testbed. For 2-3 nodes, they concluded that both the DTN2 and the IBR-DTN functioned

as expected. Increasing the DTN2 scale, its performance degraded quickly, leading to poor results

for 26-node scenarios, even if only some of them are mobile. IBR-DTN behaved as expected in all

the tested scenarios. In [22], IBR-DTN and DTN2 throughput between two nodes connected via

GBit Ethernet is measured. IBR-DTN almost reaches the theoretical limit of the link (940 MBit/s)

for large bundle sizes with a throughput of up to 843.341 MBit/s for disk storage. Whereas, the

DTN2 reaches a maximum of 719.977 MBit/s with memory storage. A lower bandwidth indicates

that bundle processing overhead in a given daemon might be too high. Table 3.2 compares the

DTN2 and IBR-DTN RFC 5050 features. Both implementations implements most of the RFC

5050 DTN architectural principles.

3.4 Summary

Firstly, the mule architecture is presented and detailed the advantages and disadvantages of carry-

ing bundles instead of forward them. Instead of using a complex routing protocol to forward the

sensors data from node to node until the destination, a data mule carries it until reach an access

point and offloads it to the Internet. Secondly, DTN principles are presented. The DTN architec-

ture addresses many of the problems of heterogeneous networks that must operate in environments

subject to long delays and discontinuous end-to-end connectivity. It also proposes a model for se-

curing the network infrastructure against unauthorised access through the bundle security protocol.

Clearly, DTN architecture abodes the sense units to cloud UrbanSense communication problem

issues, what makes the use of the work around DTNs a good start point to this dissertation work.

Finally, DTN2 and IBR-DTN open-source bundle protocol implementations are presented and

compared. Both bundle protocol implementations, implements most of the DTN principles.

28 State-of-Art

Chapter 4

The Proposed Architecture

This chapter presents the proposed architecture to send UrbanSense sense units data to the Ur-

banSense server in the cloud. Firstly, the system overview is presented and explained the sense

units types of communication infrastructures available to send sensors data to the cloud Ur-

banSense server. Secondly, this dissertation proposed architecture is presented, in order to reliably

send sensors data from sense units to the cloud UrbanSense server using opportunistic commu-

nications. Thirdly, it is presented the type and format of data that flows in sense units to the

cloud UrbanSense server and in the inverse direction. Finally, our solution to make sensors data

transmission reliable is presented.

4.1 System Overview

The UrbanSense sense unit platforms, presented in chapter 2.2, can either be installed on-board the

vehicular network vehicles or in fixed locations. The UrbanSense mobile sense units integration

is beyond the scope of this dissertation. In this dissertation, the sense unit term refers to sense

units installed in fixed locations. A Wi-Fi interface, configured in client mode, is the only network

capability sense units can use to send sensors data to the cloud UrbanSense server. It makes

them the ability to communicate with vehicular network vehicles and Internet hotspots. Although

the city of Porto has a wide variety of public hotspots around: PortoDigital, MEO, NOS, at this

moment only PortoDigital can be used. However, new accords can be celebrated in the future.

Both the vehicular network and Internet hotspots are configured in managed mode and an-

nounce an SSID. A network manager application running on sense units aware of the types of net-

works around it, decides if data is sent to the cloud UrbanSense server through Internet hotspots

or opportunistic communications. Internet hotspots are the preferred option to accomplish that,

because of their stability and larger bandwidth. When they are available, sense units connect to

them, establish an end-to-end TCP connection to the cloud UrbanSense server and send their lo-

cally stored sensors data. Only after sensors data has been uploaded to the cloud UrbanSense

29

30 The Proposed Architecture

database, sensors data is deleted from the local storage. When there is not any Internet hotspot

available, sensors data is transferred to the cloud UrbanSense server through the vehicular net-

work. This dissertation work focus on sense units and vehicular network integration, to reliably

send sensors data to the cloud UrbanSense server, in an opportunistic way.

All devices involved in opportunistic sensors data transmission from sense units to the cloud

UrbanSense server, make part of the DTN. It means they use a bundle protocol implementation,

which implements the RFC 5050 bundle protocol specification [16], to encapsulate data into bun-

dles and communicate among them. Introduced in the previous chapter 3.2.3, the bundle protocol

is a layer five protocol, developed to communicate in DTN network scenarios. It uses a store and

forward mechanism to transmit bundles from the source to the destination.

4.2 Opportunistic Communications

Figure 4.1 represents all the architecture devices involved in data transmission between sense units

and the cloud UrbanSense server, as well as the type of data exchanged between them. The left

side, represents a sense unit UrbanSense platform device. The center, represents the vehicular

network devices, namely the OBUs installed on board of buses and the RSUs that are connected to

the cloud UrbanSense server through optical fiber. In the right side, it shows the cloud UrbanSense

server and database. As we can see in Figure 4.1, sensors data is transferred from sense units to

cloud UrbanSense server, whereas application level acknowledgement data is transferred in the

reverse direction.

The bundle protocol runs on both Wi-Fi and 802.11p OBU interfaces. Otherwise, OBUs would

not be able to communicate with sense units and RSUs. The RSUs also run a bundle protocol

to communicate with OBUs and the cloud UrbanSense server through the 802.11p and optical

fiber interfaces, respectively. Although communications between RSUs and the cloud UrbanSense

server are stable, they use a bundle protocol to communicate. The cloud UrbanSense database is

not part of the DTN.

Figure 4.1 shows the data transmission proposed architecture. In phase 1, when an opportunis-

tic contact between a sense unit and an OBU happens, sensors data is encapsulated into bundles

and transferred from the sense unit to the OBU. In phase 2, the OBU carries bundles until it find

a RSU. In phase 3, bundles are transferred from the OBU to the RSU. In phase 4, bundles are

transferred from the RSU to the cloud UrbanSense server. In phase 5, sensors data is extracted

from bundles and sent to an application that process sensors data and uploads it to the cloud Ur-

banSense database. In phase 6, that application answers the application level acknowledgement

data that is sent to the sense unit data source. Acknowledgement data is encapsulated into bundles

and transferred in cloud UrbanSense server to sense units direction, when opportunistic contacts

among DTN devices happen.

Although the bundle protocol specifies the necessary mechanisms to store and forward bun-

dles from the source to the destination, we have to design two applications, one in the cloud

UrbanSense server and the other in sense units, in order to send and receive data over the DTN.

4.2 Opportunistic Communications 31

Vehicular Network UrbanSense
Cloud

UrbanSense
Sense Unit

Road Side
Unit

Local
Database

DTN

Hotspot

FutureCities
Database

Sensors Data

Application Ack

DTN

OnBoardUnit

OnBoardUnit

Figure 4.1: Opportunistic Communications Proposed Architecture

The application that runs in the cloud UrbanSense server (1) checks if there are bundles avail-

able, (2) gets the bundle sensors data, (3) establishes a TCP socket connection to the application

that process sensors data, and (4) sends sensors data to that application. After uploading sensors

data to the UrbanSense database, that application sends acknowledgement data through the TCP

connection, which our application sends through the DTN to the sense unit that originated that

data. The application that runs in sense units (1) detects the opportunistic contact with OBUs, (2)

sends and receives bundles over the DTN, and (3) manages the local database in accordance with

sensors data transmission success or failure. When acknowledgement data reaches the sense unit,

the locally stored sensors data that correspond to that acknowledgement data is deleted.

The application that runs in the cloud UrbanSense server process sensors data in the same way,

either if data is sent through an end-to-end TCP connection, in case sense units are connected to a

Internet hotspot, or DTN plus TCP connections, when data is sent over the DTN and "converted"

to TCP. The application that "converts" DTN to TCP and TCP to DTN, can run both on RSUs or

in the server. Ideally, due to the stable Internet connection between both, it should should run in

the RSU, reducing the communication overhead. However, we did not propose to the vehicular

network managers to install it on RSUs.

32 The Proposed Architecture

4.3 Types of Data

Types of data carried in bundles is divided in two categories: sensors data and acknowledgement

data. Sensors data flows from sense units to the cloud UrbanSense server and acknowledgement

data flows in cloud UrbanSense server to sense units direction.

4.3.1 Sensors Data

Sensors data includes sensor samples data, metadata and data about that transmission. Figure 4.2

shows the sensor samples structure. The cyan fields corresponds to transmission information, the

yellow fields corresponds to sensor samples and green fields corresponds to metadata information.

The SERIAL, VERSION and SEQ fields, stores the network node identifier, data structure version

and transmission sequence number, respectively. The DATA variable contains sensor samples and

metadata. For each type of sensor sample type, it has the acquisition time instant and the respective

sensor value measured.

SERIAL VESION DATA SEQ

net_stats co co2

seconds co_data seconds co2_data

…

Figure 4.2: Sensor Samples Structure

Metadata statistical analysis permits to understand the system performance, namely the delay,

percentage of retransmissions, amount of sensors data sent on each bundle and the total amount

of sensors data transmitted on each contact. Figure 4.3 shows the metadata data structure, em-

phasising the metadata information. Metadata information is represented in the green fields. The

connection_type distinguish if that data was sent over the DTN or not. If it is sent over DTN, its

value is equal to 1. The SRC and DST variables store the source and destination EIDs, respectively.

The seconds variable stores the instant that bundle was created. The tx_count variable stores the

number of times the same sensor sample was sent. The payload_size variable identifies the size of

sensors data.

4.4 Sensor Samples Management 33

net_stats

connection_type SRC DST tx_count seconds payload_size

SERIAL VERSION DATA SEQ

co co2 …

Figure 4.3: Sensors Metadata Structure

4.3.2 Acknowledgement data

Acknowledgement data contains data about the transmission and data about sensors data upload-

ing attempt to the cloud UrbanSense database. Figure 4.4 shows the acknowledgement data struc-

ture. The cyan fields corresponds to transmission information and orange fields corresponds to

acknowledgement data. The SEQ field stores the transmission sequence number and acknowl-

edgement data has four parameters: (1) FAIL - number of sensor measurement samples that failed

to write in database; (2) NEW - number of sensor measurement samples different from already

stored ones; (3) UNK - number of sensor measurement samples unknown; and (4) REC - number

of sensor measurement samples recorded.

ACK SEQ

FAIL NEW UNK REC

Figure 4.4: Sensors Acknowledgement Data Structure

4.4 Sensor Samples Management

Sense units locally stored sensor samples can be deleted, only after they have been successfully

uploaded to the cloud UrbanSense database. Moreover, transmitted sensor samples can not be

stored eternally. To accomplish these two goals, sense units have a sensor samples management

table in the local database, which stores information about transmitted sensor samples. That infor-

mation permits to identify which sensor samples can be deleted when an acknowledgement data

34 The Proposed Architecture

bundle is processed, identifying which sensor samples are expired and retransmitting sensor sam-

ples a pre-defined number of times, after sensor samples timeout. When sensor samples reach the

maximum number of retransmissions, they are deleted from sense units local database.

Table 4.1 shows sense units sensor samples management table. The red rectangle highlights

two table entries that correspond to two types of sensor samples transmitted in a single bundle.

The id column stores the transmission identifier. The sequence column stores a sensor sample

transmission sequence number. All sensor samples transmitted in the same bundle have the same

sequence number. When an acknowledgement data bundle arrives, the sequence number is used

to identify which sensor samples can be deleted from the local database. The sampleType variable

identifies the type of a sensor sample. The seconds variable stores sensor samples acquiring time

instant. The timeout variable stores the time instant sensor samples expire. The txCnt variable

stores how many times sensor samples have already been sent.

Sensor samples management table entries are created, updated and deleted in accordance with

bundles creation and retransmission, as well as acknowledgement data bundles processing. A

new entry per each sensor sample in a bundle is added, every time a new bundle is created. All

entries that correspond to samples transmitted in a bundle are updated, if that sensor samples are

retransmitted. All entries that correspond to sensor samples sent in a bundle are deleted, if an

acknowledgement data bundle confirms that those sensor samples were successfully uploaded to

the cloud UrbanSense database. Entries involved on this operations are determined through their

sequence number.

id sequence sampleType seconds timeout txCount
349 9 8 1406645458 2014-07-29 14:52:39.422931+00 1
350 9 9 1406645458 2014-07-29 14:52:39.422931+00 1
347 8 8 1406645362 2014-07-29 14:52:49.855998+00 2
348 8 9 1406645362 2014-07-29 14:52:49.855998+00 2
345 7 8 1406645272 2014-07-29 14:53:00.275209+00 3
346 7 9 1406645272 2014-07-29 14:53:00.275209+00 3
351 10 8 1406645489 2014-07-29 14:53:11.102923+00 1
352 10 9 1406645489 2014-07-29 14:53:11.102923+00 1

Table 4.1: Sensor Samples Management Table

4.5 Summary

This chapter presented our proposed architecture to reliably send sensors data to the cloud Ur-

banSense server. It relies on the use of a bundle protocol implementation, as specified in RFC

5050 [16], and an application running on cloud UrbanSense server, which processes sensors data

and generates an acknowledgement data report about data uploading success or failure. That

application receives and sends data through a TCP socket. Moreover, the sensors data and the

4.5 Summary 35

acknowledgement data format are specified. Sensors data term refers to sensor samples, metadata

and transmission information, which is sent in sense units to cloud UrbanSense server direction.

Finally, sense units sensor samples management table functions are described. It identifies sensor

samples sent in each bundle through a sequence number, making the ability to delete sensor sam-

ples only after an acknowledgement data bundle confirms it was successfully uploaded to cloud

UrbanSense database.

36 The Proposed Architecture

Chapter 5

Implementation

After laying down the conceptual groundwork in the previous chapters, this chapter presents the

implementation of the two opportunistic communication applications developed in the scope of

this dissertation. Sense units and server applications use the open-source IBR-DTN protocol 1 as

a framework to able developed applications to send data over a DTN. First, the implementations

details are presented, specifying the hardware and software used in this dissertation work. Sec-

ond, the IBR-DTN API bundle register and API commands are detailed, in order to the reader

easily understand the developed applications, as well as the applications methods to parse data

received from the IBR-DTN API are explained. Final, sense units and cloud UrbanSense server

applications flow charts are presented and explained applications operation in minute detail.

5.1 Implementation Details

The IBR-DTN protocol runs on all devices involved in opportunistic sensors data transmission

from sense units to the cloud UrbanSense server. In sensors data transmission intermediary nodes,

it is not necessary to create further software to make data flow from the source to the destina-

tion. IBR-DTN protocol implements a store and forward mechanism to accomplish that and has

a configuration file that permits to configure IBR-DTN daemons. Sense units IBR-DTN daemons

configuration file, can be seen in appendix A.1. Among other things, it permits to configure the

convergence layers, routing protocol, as well as security and time synchronisation mechanisms.

The sense unit and the cloud UrbanSense server applications developed in the scope of this

dissertation are in the edges of the DTN. They are a tool to add and remove bundles from the DTN

and implement the sense units and cloud UrbanSense reliably sensors data transmission. The two

applications were developed in python programming language and use IBR-DTN protocol as a

framework to communicate through the DTN. Sense units also uses the Django framework to

1https://trac.ibr.cs.tu-bs.de/project-cm-2012-ibrdtn/wiki

37

38 Implementation

access to the local database. The local database structure and the code to insert and to extract

sensors data from the local database was developed by a member of the Future Cities project.

Sense units have a Raspberry Pi model B running the operating system version 7, (Wheezy)

and have a TP-link TP-WN722N model wireless interface. Controlled environment scenarios vir-

tual machine have installed the Linux operating system version 12.10, Quantal Quetzal. Cloud

UrbanSense server have installed the Linux operating system version is 12.04.4 LTS, Precise Pan-

golin. All devices have installed Python programming language version 2.7.3. All devices have

installed IBR-DTN version 0.12.0.

5.2 IBR-DTN API

The IBR-DTN, presented in chapter 3.3.2, is an open-source implementation of the bundle proto-

col RFC 5050 specification [16]. IBR-DTN implementation was specifically developed for embed-

ded systems and offers a TCP socket based API, in order to applications interact with IBR-DTN

daemons. The API documentation is available on-line in the IBR-DTN project wiki page 2. The

IBR-DTN API commands presented in the following subsections were not developed in the scope

of this dissertation.

The sense unit and cloud UrbanSense server applications establish a TCP socket connection to

IBR-DTN daemons API running on their machines and interaction between them is made through

commands. Our applications are clients and the IBR-DTN API is a server. Whenever the API

receives a command from a client, it responds a status code. As an example, if the application

sends the protocol extended command, the API responds 200 API_STATUS_OK in case of suc-

cess, or 400 ERROR in case of failure. Binary or plain format can be used to input and output

data from a daemon. Due to its simplicity, our applications use plain format. IBR-DTN dae-

mons may receive bundles that are destined to him and bundles that it should store and transfer

to another IBR-DTN daemons, when opportunistic contacts happens. IBR-DTN API implements

a bundle notification mechanism to notify IBR-DTN daemons, whenever a bundle to a regis-

tered destination EID arrives. That message is of the form 602 NOTIFY BUNDLE <timestamp>

<seq_nr>[<fragment_offset>]<source_eid>.

5.2.1 Bundle Register

IBR-DTN daemons use "registrations" to define particular bundles destination EIDs it want to be

notified about. Only this way, it is notified and is able to access to bundles content. If a bundle

destination EID matches a registered EID, that bundle is queued on a first in first out queue of

bundles waiting to be processed. The bundle register is used to add or remove bundles from the

daemon. For instance, if we want to get a bundle data, we use the bundle load queue command

to load the first bundle in the queue to the bundle register. After that, we can use the bundle get

2https://trac.ibr.cs.tu-bs.de/project-cm-2012-ibrdtn/wiki/docs/api

5.2 IBR-DTN API 39

plain command, which sends the bundle content to the client in plain tthe format. The following

subsection presents further API commands.

5.2.2 Commands

The IBR-DTN API commands are divided in accordance with their function. Commands that

apply to the bundle in bundle register start with bundle or payload. Registration management

commands start with registration. Additionally, there are set, neighbor and protocol commands.

Our applications use the following commands to interact with IBR-DTN daemons:

Protocol Command

protocol extended Changes the IBR-DTN API mode to extended. Otherwise, the following

commands cannot be used.

Neighbor Command

neighbor list Shows the singleton EID of IBR-DTN daemons in the neighbourhood. Bundles

sent to those EIDs reach their IBR-DTN daemon in a single hop.

Set Command

set endpoint <endpoint_affix> Configures the singleton EID identifier. The endpoint_affix is

concatenated to the EID of the daemon. For example, if the daemon EID is "dtn://raspberrypi"

and the endpoint_affix is "nodeA", the singleton EID would be "dtn://raspberrypi/nodeA".

Registration Command

registration add <endpoint> Adds an EID to a registration list. Every time a bundle destination

EID matches an EID in the registration list, it is queued and applications have access to their

content. For instance, "dtn://cloudServer/sensorsdata" is a valid EID. This command permits an

application to be notified about bundles sent to group EIDs, as well as to unique EIDs.

Bundle and Payload Commands

bundle load queue Loads the bundle in the first position of the bundle queue to the bundle

register. If it loads successfully, API will answer bundle load <timestamp> <seq_nr> [<frag-

ment_offset>] <source_eid>. The cloud UrbanSense application parses this API answer of all

bundles it processes. It stores sensors data bundles source EID until receive their acknowledge-

ment data about sensors data uploading success or failure, and send it to sensors data bundles

source EID.

40 Implementation

1 Processing flags: 16
2 Timestamp: 0
3 Sequencenumber: 0
4 Source: dtn:none
5 Destination: dtn:none
6 Reportto: dtn:none
7 Custodian: dtn:none
8 Lifetime: 3600
9 Blocks: 1

10

11 Block: 10
12 Flags: LAST\char‘_BLOCK REPLICATE\char‘_IN\char‘_EVERY\char‘_FRAGMENT
13 Length: 5
14 Encoding: base64
15

16 gYXksjc=

Listing 5.1: IBR-DTN API Bundles Input/Output Format

bundle get plain Sends the entire bundle in the bundle register to the client, in plain format.

Before sending the bundle, API sends a 200 BUNDLE GET PLAIN <timestamp> <source_eid>

message. Listening 5.1 shows an example of a bundle content. Lines one to nine corresponds to

the bundle header, which is the first block, and lines eleven to sixteen corresponds to the payload

block, which contains the sensors data or acknowledgement data. If security mechanisms were

used, bundles would have additional blocks.

Bundle header parameters were explained in chapter 3.2.3. Payload Block header parameters

are: (1) Block, line eleven - stores an int value that identifies the block number; (2) Flags, line

twelve - is a space separated flag specifier that depends on the delivery options chosen and if the

block is the last or not. Delivery options were presented in chapter 3.2.1. Developed applications

only use the LAST_BLOCK flag; (3) Length, line thirteen - stores the length of data on that block;

(4) Encoding, line fourteen - identifies the encoding scheme used to encode data. Line sixteen is

data encoded in base sixty four scheme.

bundle clear Clears the bundle in the bundle register.

bundle free Similarly to bundle clear, it clears the bundle in the bundle register, but also removes

it from the bundle storage.

bundle put plain Adds a bundle to the bundle register in plain format. After bundle put plain

command, application have to send each bundle line in the same format as the bundle example in

listing 5.1.

bundle send Sends the bundle in bundle register. In fact, the bundle is stored in the bundles

storage and sent to another IBR-DTN daemon when an opportunistic contact happens.

5.3 UrbanSense Sense Units Application 41

1

2 def get_bundle_data(self):
3 data = []
4 while True:
5 line = Globals.fsock_thread.readline()
6 if line == "\n":
7 return "".join(data)
8 payload.append(line)
9

10 def parse_headers(self,headerstr):
11 headers = {}
12 for line in headerstr.splitlines():
13 k, _, v= line.partition(":")
14 headers[k] = v.strip()
15 return headers

Listing 5.2: Get_Bundle_Data and Parse_Headers Methods

payload <block number> get Sends the bundle block <block number> in the bundle register to

the client.

5.2.3 Parsing Bundles from IBR-DTN API

IBR-DTN API command answers can have different types of data. As a result, two methods to

parse IBR-DTN API data were developed in the scope of this dissertation, in order to developed

applications are able to parse API answers data. Bundles always have a bundle header and can

have a variable number of data blocks with a header each. Header information is represented

of the form: the description of the variable followed by ":" and the variable data. For instance:

Processing flags: 16. As represented in listing 5.1 line 10, an empty line delimits a bundle header

and a block header, a block header and block data, line 15, as well as a end of a block data and a

start of a block header, not represented in listing 5.1.

Before parsing a bundle a header information, it is necessary to get that part of the bundle.

Applications developed use the method get_bundle_data in listing 5.2, to read every line of the

bundle until it finds a "\n" character, and store all lines in a list type variable. Then, applications

use the parse_headers method in listing 5.2 to parse the bundle data returned by get_bundle_data

method. It finds the ":" character in each list line and adds each word pair before and after ":"

to a dictionary. Parsing blocks header data procedure is the same of parsing bundle header data.

Applications also use the get_bundle_data method to get the blocks data.

5.3 UrbanSense Sense Units Application

Sense Units have to connect to OBUs, send sensors data, store information about transferred sensor

samples in the local database and delete sensor samples after an acknowledgement data bundle

confirms it was successfully upload to cloud UrbanSense database. Types of data sent on each

42 Implementation

direction were discussed in chapter 4.3 and sensor samples management table was presented in

chapter 4.4. First, this section presents the sense units clock synchronisation mechanism, when

sense units do not have Internet access through hotspots. Second, the sense units and OBUs

connection test is detailed. This test is carried out in order to trigger bundles transmission to

OBUs and to solve a problem related with sense units wireless interface Internet Protocol (IP)

configuration. Finally, it presents the data transmission protocol flowchart, which sums up how

the entire sense unit applications work.

5.3.1 Sense Units Clock Synchronisation

Clock synchronisation is an important aspect in the system, because sense units have to tag the

time instant sensors data is acquired and the time instant bundles are created accurately. In sce-

narios where sense units have Internet access, they can synchronise their local clock through a

Network Time Protocol (NTP) server. However, in situations it is not possible, clock synchroni-

sation is accomplished through the IBR-DTN feature that permits to synchronise sense units local

clock through the IBR-DTN clock. Table 5.1 depicts OBUs and sense units IBR-DTN time syn-

chronisation configurations. Due to OBUs ability to synchronise their clock through 3G and GPS,

they are configured as master and sense units are configured as slave. Time Set Clock configuration

parameter set to yes, permits to use the IBR-DTN clock to set the sense units local clock. It is pos-

sible only if IBR-DTN daemon is running as root. Otherwise, sense units have not permissions to

change the local clock time. The entire IBR-DTN configuration parameters are in appendix A.1.

Time Discovery
Announcements

Time Synchronise

Time Reference

Time Set Clock

Yes No

Yes

Yes

No

Yes

Yes

Yes

Master (OBU) Slave (Fixed Sensor)

Table 5.1: IBR-DTN Time Synchronisation Configuration

5.3.2 Sense Unit and OBU Connection Test

Sense Units and OBUs connection serve two purposes: (1) when connections between sense

units and OBUs fails, drop sense unit IP received from OBUs Dynamic Host Configuration Pro-

tocol (DHCP) server, and (2) check if sense units are connected to OBUs and trigger bundles

transmission. Only when sense units are connected to OBUs, they attempt to transmitting sensors

data. The wireless interface has to be turned off and turned on, in order to drop the configured

IP address when sense units and OBU are not connected. Figure 5.1 shows the flowchart of the

5.3 UrbanSense Sense Units Application 43

method that permits realise if the sense units wireless interface should be "restarted" or not. First,

a sense unit tries to connect to the vehicular network announced SSID. If it fails, the sense unit

keeps trying. If connection succeeds, the sense unit tries to ping the OBU interface. IF ping suc-

ceeds, it means that the sense unit is effectively connected to the OBU and it can send bundles to

the OBU. On the contrary, if ping fails, the sense unit wireless interface is turned off and turned

on. After that, the sense unit tries to connect to an OBU again.

Start/Stop

connected to OBU?

ping OBU interface

ping
succeed?

turn off wireless interface
turn on wireless interface

Connected
to Vehicular

Network

connect to OBU

TF

TF

Figure 5.1: Sense Unit and OBU Connection Test

5.3.3 Sensors Data Transmission

Sense units application is divided in two threads: one to send and other to receive bundles. It has

this architecture because it uses blocking functions. Otherwise, it would not be able to send and

receive bundles, at the same time.

Figure 5.2, in the left side branch, shows the sending thread. After a IBR-DTN daemon is run-

ning, sense units application establish a TCP socket connection to the IBR-DTN daemon running

on its machine, sends the protocol extended command to change the daemon’s API to extended

mode and sends the set endpoint <endpoint_affix> command to configure the sense unit singleton

EID (Figure 5.2 box 1). Then, it uses the sense unit and OBU connection test to verify if it is con-

nected to a vehicular network OBU (Figure 5.2 box 2). If the test fails, it keeps trying to connect

vehicular network OBUs. On the contrary, if the test succeeds, from the connection point of view,

sense units can send bundles to the OBU. Bundles transmitted in sense units to OBUs direction,

encapsulate sensor samples, metadata and transmission information data.

44 Implementation

Expired transmitted sensor samples have higher priority to be transferred to cloud UrbanSense

server than sensor samples that have never been sent. To accomplish that, the application checks

if sensor samples number of simultaneous transmissions have not reached the maxSimultTX value

and if there is expired sensor samples to send (Figure 5.2 box 3). If it is true, expired sensor

samples number of transmissions counter is checked (Figure 5.2 box 4). If it is higher than the

MAX_TX_COUNT value, sensor samples are dropped (Figure 5.2 box 5). Otherwise, metadata,

sensor samples and transmission information is encapsulated in a bundle and sent to the oppor-

tunistic contact OBU (Figure 5.2 box 6). At that instant, sensor samples management table txCnt

and sensor samples timeout values are updated (Figure 5.2 box 7).

If sensor samples number of simultaneous transmissions have not reached the maxSimultTX

value and if there is not expired sensor samples to send (Figure 5.2 box 3), the application tries to

send sensor samples that have never been transmitted to OBUs (Figure 5.2 box 8). To accomplish

that, it checks if there is sensor samples in database that have never been sent (Figure 5.2 box 9).

If the check fails, the program goes to the beginning. It check succeeds, metadata, sensor samples

and transmission information is encapsulated in a bundle and sent to the opportunistic contact

OBU (Figure 5.2 box 10). At that instant, sensor samples management table is updated (Figure

5.2 box 11).

Figure 5.2, in the right side branch, shows the receiving thread. Similarly to the sending

process, it first establishes a TCP socket connection to the IBR-DTN API, changes the API to

extended mode and configures the singleton EID (Figure 5.2 box 12). If the application uses the

same TCP socket connection to the IBR-DTN API for sending and receiving bundles, the API

would use the same bundle register, which may cause conflicts.

After the the initial API configuration, the application has to be aware of bundles that may

arrive. To accomplish that, it sends the bundle load queue command to the IBR-DTN API (Figure

5.2 box 13). If there is not bundles available, the API answers 400 ERROR and application goes to

(Figure 5.2 box 13) again. If there is bundles available, the API answers bundle load <timestamp>

<seq_nr> [<fragment_offset>] <source_eid> (Figure 5.2 box 14). In that case, the application

gets the bundle source EID through the parsing of the bundle load queue command answer (Figure

5.2 box 15). After that, the application has to get the acknowledgement data from the bundle. To

accomplish that, the application sends the payload 100 get command to the IBR-DTN API and it

answers the data block number 100 (Figure 5.2 box 16). The acknowledgement data is always in

the bundle last block. Even if bundle last block is not the block number 100, the last block number

is for sure less than 100. When this situation happens, API sends the block with higher number,

which is the bundle last block. After application gets the bundle last block, which contains the

acknowledgement data, the bundle is deleted from the daemon bundle register and daemon bundle

storage through the bundle free command (Figure 5.2 box 17).

At this point, acknowledgement data needs to be processed (Figure 5.2 box 18). If FAIL and

UNK acknowledgement data variables values are equal to zero, it means that sensors data was suc-

cessfully uploaded to cloud UrbanSense database. Consequently, sensor samples can be deleted

from the sense unit local database and sensor samples management table entries that correspond

5.4 UrbanSense Server Application 45

F T

T

T

T

F

F

F

F

F

T

T

Start/Stop

is sense unit connected to
vehicular network hotspot ?

pending acks <
maxSimultTx AND

expired sensor samples
> 0 ?

expired sensor
samples txCnt <

maxTxCnt?

get new sensor
samples

make bundle
send data to EID

load bundle queue

bundles
available?

get source EID

bundle free

get bundle sensors’ data

process acknowledgement data

fail == 0 AND
unk == 0 ?

update sensor
samples timeout

available new
sensor samples to

send ?

make bundle
send bundle to EID

establish socket connection to IBR-DTN API
set API in extended mode
configure singleton EID

sstablish socket connection to IBR-DTN API
set API in extended mode
configure singleton EID

update sensor samples
timeout and txCnt

clean up sensor
samples

drop
sensor

samples

update sensor
samples

management table

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 21

Figure 5.2: Sense Units Application Flowchart

to these sensor samples can be deleted too (Figure 5.2 box 20). On the contrary, If FAIL and UNK

variables values are not equal to zero, the sensor sample entries in sensor samples management

table that correspond to that bundle are set as expired.

5.4 UrbanSense Server Application

The cloud UrbanSense server application works as the interface between the DTN and Internet.

Conceptually, (1) the server application receives bundles from the vehicular network; (2) gets

sensors data from bundles and send it to the application that processes it through a TCP socket;

(3) waits for the sensors data correspondent acknowledgement data; and (4) finally sends the ac-

knowledgement data to the sense unit that originated that sensors data. Figure 5.3 shows the cloud

46 Implementation

UrbanSense server application flowchart. When it is started, it establishes a socket to the IBR-

DTN API, set the API in extended mode and configures the singleton and group EIDs. The group

EID is the sense units bundles destination EID. Furthermore, it establishes a socket connection

to the application that accepts TCP socket connections, process JSON format sensors data and

answers acknowledgment data about sensors data uploading success or failure (Figure 5.3 box 1).

FT

load bundle queue

bundles
available?

send acknowledgement data to
source EID through DTN

establish socket connection to IBR-DTN API
set API in extended mode
configure singleton EID
add registration EID (sense units bundles destination EID)
establish socket connection to cloud UrbansSense server

Start/Stop

get source EID

bundle free

get bundle sensors’ data

4

send sensors’ data to server
 and

 wait for acknowledgement data

1

2

3

5

6

7

8

Figure 5.3: Cloud UrbanSense Server Application Flowchart

The cloud UrbanSense application code correspondent to Figure 5.3 boxes 2, 3, 4, 5 and 6 is

equal to the code used in sense units application in chapter 5.3.3 and its detailed explanation is

not repeated in this sub-section. After the initial configuration, application loads the bundle queue

until there is a bundle available (Figure 5.3 boxes 2 and 3), gets the bundle source EID and stores

it (Figure 5.3 box 4). This is the EID that the application has to send the acknowledgement data.

After that, the application gets the sensors data from the bundle (Figure 5.3 box 5) and delete the

bundle from bundle register and bundle storage (Figure 5.3 box 6). At this point, the application

sends sensors data to the application that process sensors data in JSON format and waits for the

5.5 Summary 47

acknowledgement data correspondent to sensors data uploading to the cloud UrbanSense database

(Figure 5.3 box 7). When the acknowledgement data is received, the application encapsulates the

acknowledgement data in a bundle and sends it to the EID of the sense unit that originated the

sensors data and the program sequence ends (Figure 5.3 box 8).

5.5 Summary

This chapter details the two applications that run in sense units and cloud UrbanSense server, de-

veloped in the scope of this dissertation. These applications able us to reliably send sensors data

from sense units to the cloud UrbanSense server using the vehicular network. Firstly, the imple-

mentation details are presented, including the software and hardware used on this dissertation.

Secondly, the IBR-DTN API is presented, namely the bundle register, IBR-DTN API commands

and bundles parsing methods developed in the scope of this dissertation. IBR-DTN API does the

interface between developed applications and IBR-DTN daemons. Thirdly, sense units application

implementation is presented, explaining every step involved in sensors data transmission and ac-

knowledgement data reception and processing. Finally, server application flowchart is presented

and explained how it does the "conversion" from DTN to TCP and TCP to DTN.

48 Implementation

Chapter 6

Measurements and Analysis

This chapter presents the validation of the architecture and implementation described earlier and

shows how the entire system performs in a real-word environment scenario. First, the two con-

trolled environment test scenarios are presented. These scenarios were used to carry out a set of

basic tests. Second, we describe the real-word environment tests carried out to validate the devel-

oped applications and understand the overall system performance. Final, the results obtained are

presented and discussed.

6.1 Controlled Environment Tests Scenarios

Preliminary IBR-DTN configuration and applications controlled environment tests were performed

prior to the real-world environment test, because that way is easier to debug and improve applica-

tions without compromise other services utilisation. Moreover, the IBR-DTN had being installed

in the vehicular network and cloud UrbanSense server, when the implementation described in 5

was in its final stage of deployment. To cope with that, two controlled environment test scenarios

were created.

Figure 6.1 depicts the first controlled environment test scenario. The left side, represents the

sense unit local database, Raspberry Pi and Wi-Fi interface configured in client mode. In this

controlled environment test scenario, instead of using sensors data acquired from real sensors, the

sense unit local database tables correspondent to the different types of sensor samples were popu-

lated with random values. The Figure 6.1, on right side, does not represent any of the devices de-

scribed in our proposed architecture. The Linux virtual machine runs the software that is supposed

to run in the cloud UrbanSense server and has an Wi-Fi interface configured in managed mode,

which is the OBUs Wi-Fi interface configuration. The Wi-Fi interface managed mode configura-

tion was accomplished through a hostapd daemon application. Both the sense unit and the Linux

run the IBR-DTN daemon in the Wi-Fi interfaces. As detailed in proposed architecture chap-

ter 4.2, IBR-DTN runs in sense units Wi-Fi interface, OBUs Wi-Fi and 802.11p interface, RSUs

49

50 Measurements and Analysis

802.11p and optical fiber interfaces and cloud UrbanSense server Ethernet interface. Once the

sense unit connects to the Linux wireless interface, both IBR-DTN daemons became neighbours

and are able to exchange bundles between them. The sense unit and Linux run the applications

developed to send data using the IBR-DTN protocol as a framework. The sense unit application

sends the locally stored data to the Linux IBR-DTN daemon and the application developed to run

in the server, extracts sensors data from bundles and sent it to the application that process sensors

data through a TCP socket. That application stores sensors data in a Linux database and answers

the acknowledgement data. The developed server application sends the acknowledgement data to

the sense unit through the DTN. The sense unit application deletes the locally stored data that

the received acknowledgement data bundle reports to had been successfully uploaded to the Linux

database.

Mac OS XSense Unit

Linux Virtual Machine

Local
Database

IBR-DTN Server
application

Postgres
Database

Sensors’
data

processing
application

Client Mode Managed Mode

TCP/IP

TCP/IP

TCP/IP

Figure 6.1: First Controlled Environment Test Scenario

Figure 6.2, shows the second controlled environment test scenario. In this setup, the Linux

virtual machine can be looked as if it was a RSU. The only difference from a real one is that it

runs in a different hardware, communicate through a Wi-Fi 802.11n interface instead of 802.11p

and communicates with a sense unit instead of an OBU. Similarly to the first scenario, it uses

a sense unit and a Linux virtual machine, but the server application developed in the scope of

this dissertation and the application that process sensors data run in the cloud UrbanSense server.

Furthermore, the database and IBR-DTN daemon run in the cloud UrbanSense server. At this

point, cloud UrbanSense server runs all software modules it runs in the real-world environment

scenario. This test environment was very useful because it permitted to test the statical connection

IBR-DTN feature between the Linux and the cloud UrbanSense server. The statical connection

IBR-DTN feature permits to establish a TCP connection between RSUs and the cloud UrbanSense

server, making the ability to both IBR-DTN daemons became neighbours and exchange bundles

over the Internet. In this controlled environment test scenario, cloud UrbanSense runs the same

application it runs in real-world scenario.

6.2 Real-World Environment Applications Validation 51

Mac OS X

Cloud Future Cities

Linux Virtual
Machine

Local
Database

IBR-DTN

Server
application

Client Mode Managed Mode

Future
Cities

Database

Sensors’ data
processing
application

TCP/IP
IBR-DTN

TCP/IP TCP/IP

Sense Unit

Figure 6.2: Second Controlled Environment Test Scenario

6.2 Real-World Environment Applications Validation

At the time of this dissertation submission, IBR-DTN had not been running on the vehicular

network yet. Therefore, an OBU similar to those installed on buses was installed on a private car

to do this test. Figure 6.3 shows the test scenario in the city of Porto. The sense unit platform was

installed on a traffic light of Damião de Gois street, the OBU was installed in a car that followed

the path represented by the dot-slash line, and the RSU was the one installed on a traffic light of

Marquês square. Dotted ellipses on Figure 6.3, represent the approximate wireless communication

range of the sense unit, OBU and RSU.

Sense Unit Road Side Unit

On-Board Unit

Figure 6.3: Real-Word Environment Test Scenario

The sensor samples acquisition interval was 60 s. The system was configured to send data just

over the DTN and the test took 5525 s. Table 6.1 shows the sense unit configuration parameters.

The sense unit is configured to connect to the SSID VENIAM_TEST announced by the OBU

52 Measurements and Analysis

installed on a private vehicle. The maximum number of attempts to transmit each sensor sample

was 3 times, the sensor samples expired after 1 hour and the maximum number of bundles in

transit was 1000.

Fixed Sensors Application

Source EID

Destination EID

dtn://raspberrypi/nodeA

dtn://sensorsdata/serverA

Bundle Timeout

Max. Tx. Attempts

Max. Simultaneous Tx.

OBU SSID

IBR-DTN API HOST

IBR-DTN API PORT

3600 (seconds)

3

1000

VENIAM_TEST

127.0.0.1

4550

Table 6.1: Sense Unit Application Configuration Parameters

6.3 Results

These results presented in the current section were obtained through the analysis of bundles meta-

data information, sense unit and server applications log, obtained in the real-world environment

test, detailed in chapter 6.2. The real-world environment test was conducted using one sense unit,

one OBU and one RSU. The first two sub-sections refer to the bundles delay and percentage of

sensor samples retransmissions and the last sub-section presents the test overview.

6.3.1 Bundles Delay

Bundles delay is the time difference between a bundle creation and its cloud UrbanSense database

uploading instants. The instant of a bundle creation is added to the bundles metadata immediately

before bundles are transmitted from a sense unit to a OBU. The instant a bundle is uploaded to

the cloud UrbanSense database is automatically filled when sensors data is uploaded to the cloud

UrbanSense database. The sense unit builds bundles after the sense unit and OBU establish a

connection and then the sense unit attempt to transmit them to the OBU.

Table 6.2 shows further information related with bundles delay and the test total number of

transmitted bundles. The minimum delay was 27 s, the average delay was 141 s and the maximum

delay was 254 s, in a total of 250 bundles.

Figure 6.4 shows the histogram of delays experienced in bundles transmitted from sense units

to cloud UrbanSense server. Six equally spaced delay intervals are represented along the x-axis,

6.3 Results 53

Bundles Minimum Delay

Bundles Mean Delay

Bundles Maximum Delay

00:00:27.00 (H:M:S)

00:02:20.94 (H:M:S)

00:04:17.00 (H:M:S)

Number of Bundles 250

Table 6.2: Bundles Delay Information

whereas y-axis represents the number of bundles that experienced delays within that interval. The

histogram shows that bundles delay in this test had a bimodal distribution. The median values

were 96 s and 188 s.

50 96 142 188 234

10

0

20

30

40

50

60

70

80

Bundles Delay (s)

N
um

be
r o

f B
un

dl
es

Figure 6.4: Bundles Delay Histogram

6.3.2 Bundles Transmissions

The percentage of bundle transmissions was calculated through the txCnt metadata information.

Discussed in chapter 4.4, it is a sensor samples management table variable that identifies to which

sensors data transmission attempt a bundle corresponds. If the acknowledgement of a transmitted

bundle did not arrive within 3600 s and the maximum of MAX_TX_COUNT transmission attempts

had not been reached, a bundle was retransmitted. After reaching the MAX_TX_COUNT number,

data was discarded. Figure 6.5 shows the percentage of bundles that corresponded to the first,

second and third transmission attempts. The bundles that corresponded to second and third trans-

missions had already been transmitted over TCP and unacknowledged before our test started. It

happened because the sense unit we used in the test had been sending data over TCP, before the

54 Measurements and Analysis

sending over DTN test had started. The transmitted sensor samples expired after 3600 s. Con-

sequently, in a test that took 5565 s, the same sensor sample could not had expired three times.

During the sensors data transmission over DTN test, all sensors data was transmitted in a single

attempt.

1 Transmission
2 Transmissions
3 Transmissions

75%

20%

5%

Figure 6.5: Bundles Number of Transmission Distribution

6.3.3 Real-World Environment Test Overview

The real-world environment test occurred throughout a day during 5565 seconds. Table 6.3 shows

additional information about the test. The term "opportunistic contact" refers to a passage of the

OBU close to the sense unit, in which may had existed more then one connection establishment

moment between them. There were a total of 11 opportunistic contacts between the sense unit and

the OBU on-board the vehicle and 145.85 kilobytes of sensors data was transferred from the sense

unit to the cloud UrbanSense database.

Figure 6.6 shows the delay experienced while transmitting the bundles during the test. The y-

axis represents the bundles delay and the x-axis represents the bundles creation time instant. The

different marks distinguish the 11 opportunistic contacts. Bundles were created after the sense

unit and the OBU had established connection. In C1, yellow circles, all bundles were created

at closely instants, but a delay of approximately 140 s was verified between the two clusters of

transmitted bundles. This difference existed, because the connection between the OBU and the

RSU failed at the middle of the transmission and not all bundles were transmitted at the same

time. In contacts C2, C3, C5, C9, C10 and C11, the sense unit transmitted at closely instants

all sensor samples expired and sensor samples that had never been attempted to be transmitted

and then, a few seconds latter, the sense unit transferred two or three bundles more. The isolated

transferred bundles correspond to sensor samples acquired after all other sensor samples had been

transferred. In C4, represented by red circles, the OBU got into the sense unit range, received a

6.3 Results 55

 Test Started Time

 Test Ended Time

Date of Test

18:49:53 (H:M:S)

20:22:38 (H:M:S)

21-Aug-2014

Total Transferred Data 145.7 kilobytes

Number of Contacts 11

 Test Duration 5565 (S)

Table 6.3: Real-World Environment Test Details

few bundles, but the connection between them was temporarily lost. After the connection had been

re-established, the OBU was able to receive more bundles. In C6, all bundles were transferred at

once. One of the bundles created during the contact C7 was transferred only in contact C8. The

connection test between the sense unit and OBU was successful and the bundle was created, but

the connection failed right after that, which caused the transmission to fail. However, that bundle

was transferred in the following opportunistic contact and sensors data was not lost.

18:49:53 19:05:20 19:36:15 19:51:43 20:07:10 20:21:13
0

50

100

150

200

250

300

Bundles Creation Time (H:M:S)

D
el

ay
 (S

ec
on

ds
)

19:20:48

 C1: 50 Bundles
 C2: 52 Bundles
 C3: 11 Bundles
 C4: 58 Bundles
 C5: 8 Bundles
 C6: 30 Bundles
 C7: 52 Bundles
 C8: 6 Bundles
 C9: 6 Bundles
 C10: 8 Bundles
 C11: 9 Bundles

Figure 6.6: Real-Word Environment Test Overview

Table 6.4 shows the amount of sensors data transferred on each opportunistic contact and in

56 Measurements and Analysis

total, as well as the mean delay and delay standard deviation. It could had been transferred a

higher amount of sensors data, in most of the opportunistic contacts. However, the sense unit

sensor samples acquisition interval used in this test was 60 s, which resulted in the acquisition of

a few sensor samples between consecutive opportunistic contacts. Figure 6.7, shows a bar plot of

the mean delay correspondent to each opportunistic contact, presented in Table 6.4.

Opportunistic Contact

Length of Transferred
Data (kilobytes)

1 2 3 4 5 6 7 8 9 10 Total11

29.9 30.7 6.25 10.1 4.4 17.2 30.7 3.6 3.6 4.4 145.855

Mean Delay (s) 92.28 208.94 115 84.67 134.5 77.3 199.21 85.83 145.16 71.88 140.94139

Standard Deviation
Delay (s) 56.39 24.03 29.5 20.42 22.2 5.42 16.46 29.17 30.12 9.09 63.8230.81

Table 6.4: Opportunistic Contacts Amount of Transferred Data, Mean Delay and Delay Standard
Deviation

1 2 3 4 5 6 7 8 9 10 11

250

200

150

100

50

0

Opportunistic Contact

D
el

ay
 (s

)

Mean Delay

Figure 6.7: Opportunistic Contacts Mean Delay

The sense unit builds bundles with one sample of each type of sensors available data. Table

6.5 shows the quantity of bundles per bundle sensors amount of data. It shows that most of them

had more then 600 bytes correspondent to sensors data. It corresponded to bundles that contained

one sensor sample of each sensor type. The bundles with a lower amount of sensors data might

correspond to bundles that had sensors data acquired during the opportunistic contacts. At the

6.4 Summary 57

beginning of the opportunistic contact all stored data was transferred and then, as local database

was filled with new sensor samples, new bundles were created with less types of sensors samples.

Size of Transferred Data
(Bytes)

Quantity of Bundles

337 339 463 511 515 608 608 610 611 612

9 1 1 1 8 3 1 6 26 194

Total

250

Table 6.5: Quantity of Bundles per Bundles Amount of Sensors Data

6.4 Summary

First, this chapter presents the controlled environment test scenarios that permitted to test IBR-

DTN and developed applications in laboratory conditions, which took to the reduction of applica-

tion development time. Second, the methodology to validate developed applications in real-world

environment is described. Final, the real-world environment test results are presented and dis-

cussed. The roads traffic conditions are determinant to the bundles delay. The minimum, mean

and maximum bundles delay were 27 s, 140 s and 257 s, respectively. The percentage of sensor

samples transmitted at the first, second and third transmission attempts was 75%, 20% and 5%,

respectively. However, the failed sensor samples transmissions attempts had been done over TCP,

before the sending over the vehicular network test started. To sum up, the test had a duration

of 5565 s, 11 opportunistic contacts between the sense unit and the OBU and 250 bundles where

transferred, corresponding to a total 145.85 kilobytes of sensors data.

58 Measurements and Analysis

Chapter 7

Conclusions and Future Work

This dissertation work presents an approach to reliably send sense units data to the cloud Ur-

banSense server, in an opportunistic way, using the city of Porto existing vehicular network. Fur-

thermore, in order to understand the overall system performance, metadata information is added

by side sensor samples and transmission information, which is encapsulated in bundles and flows

in sense units to cloud UrbanSense server direction. The first chapter, presents the dissertation

contextualisation, discusses a few approaches to send sensors data from sense units to the cloud

and presents some of the communications challenges. The second chapter, makes an overview of

the Future Cities project, as well as details the UrbanSense and vehicular network platforms. The

third chapter, presents the mule architecture, the DTN communication principles and the bundle

protocol, which addresses the DTN issues. This dissertation uses the studies around DTN, as part

of the solution to reliably transfer sensors data from sense units to cloud UrbanSense server. The

chapter four, presents this dissertation proposed architecture, which involves sense units and server

devices from UrbanSense platform, as well as OBUs and RSUs devices from the vehicular net-

work platform. Moreover, the proposed architecture also relies on the IBR-DTN protocol, which

implements the RFC 5050 bundle protocol specification [16], two applications developed in the

scope of this dissertation, running on sense units and cloud UrbanSense server, and a application

that runs in cloud Urbansense server that process sensors data. The chapter five, details the two

applications implemented on sense units and cloud UrbanSense server, which use the IBR-DTN

as a framework to communicate over the vehicular network DTN. Finally, chapter six, presents

the overall system performance results and discussion.

This dissertation work main contributions are the sense units and cloud UrbanSense applica-

tions, as well as the ability to understand the overall system performance through metadata statical

analysis. Now, sense units can be installed in places without Internet hotspots and 3G coverage,

and be able to reliably send sensors data to the cloud UrbanSense server. Hence, sense units still

need a vehicular network around. Even in places with 3G coverage, sending sensors data in an

opportunistic way may have some advantages. For instance, using opportunistic communications

59

60 Conclusions and Future Work

instead of 3G, takes to the reduction of 3G utilisation service costs. Turning to the system perfor-

mance, its analysis can be useful for adapting sensors data acquisition in accordance with moments

of the day there are more vehicular network bandwidth available and understand if developed ap-

plication are working properly.

Although the applications and metadata validation test was not conducted at an urban-scale,

the test metadata analysis permits to conclude that the developed applications accomplishes all

the proposed goals, particularly the reliable transmission of sensor data from the sense units to

the cloud UrbanSense server in an opportunistic way. Furthermore, the test metadata analysis,

permitted to have an idea of the kind of analysis that can be performed at an urban-scale. For

each sense unit, metadata permits to know sense units bundles delay, percentage of sensors data

retransmissions, amount of sensors data transferred in period of time and how size of sensors data

in bundles varies.

7.1 Future Work

In the future work, there is plenty room for improvements on IBR-DTN utilisation, the applications

developed and overall system performance analysis. For instance, IBR-DTN protocol implements

a lot of pretty good functionalities that we did not test, such as proactive and reactive fragmenta-

tion, security mechanisms and data compression. Instead of using the IBR-DTN API, developed

applications functionalities could be embedded in IBR-DTN code. Although their performance

may increase, it has the disadvantage of when a new IBR-DTN version comes out, porting every-

thing to the new version may be hard work. Also, DTN performance analysis could be performed

in both directions, from sense units to the server and in the reverse way. Finally, at this moment,

sense units can run the sending sensors data over TCP and DTN applications independently or

both at the same time. However, in these ways, sending sensors data over TCP is not prioritised.

As future work, is necessary to implement the network manager discussed in chapter 4, which

integrates both applications and ables sense units to automatically choose the best interface to

accomplish sensors data transmission.

Appendix A

IBR-DTN Configuration File

In A.1 the IBR-DTN sense units configuration file is presented. Vehicular network devices config-

uration files is not presented, because their configuration is beyond the scope of this dissertation.

A.1 Sense Units IBR-DTN configuration file

#############IBR-DTN daemon#############

#local_uri = dtn://node.dtn

logfile = /var/log/ibrdtn/ibrdtn.log

#timezone = +1

#limit_blocksize = 1.3G

#limit_foreign_blocksize = 500M

#limit_predated_timestamp = 604800

#limit_lifetime = 604800

#limit_bundles_in_transit = 5

#api_socket = /tmp/ibrdtn.sock

#api_interface = any

#api_port = 4550

#fragmentation = yes

#limit_payload = 500K

stats_traffic = no

#blob_path = /tmp

#storage_path = /var/spool/ibrdtn/bundles

#storage = default

#limit_storage = 20M

#############convergence layer configuration #############

61

62 IBR-DTN Configuration File

#discovery_address = ff02::142 224.0.0.142

#discovery_timeout = 5

#discovery_short = 0

discovery_version = 2

#discovery_announce = 0

discovery_crosslayer = yes

net_interfaces = lan0

#net_autoconnect = 60

#net_internet = eth0

#configuration for a convergence layer named lan0

net_lan0_type = tcp

net_lan0_interface = wlan0

net_lan0_port = 4556

#configuration for a convergence layer named lan1

#net_lan1_type = udp

#net_lan1_interface = eth0

#net_lan1_port = 4556

#tcp_nodelay = yes

#tcp_chunksize = 4096

#tcp_idle_timeout = 0

#P2P configuration#

#p2p_ctrlpath = /var/run/wpa_supplicant/wlan1

#############routing configuration#############

routing = epidemic

routing_forwarding = yes

#scheduling = no

#route1 = dtn://[[:alpha:]].moon.dtn/[[:alpha:]] dtn://router.dtn

#static1_address = 192.168.150.10

#static1_port = 4556

#static1_uri = dtn://raspberrypi

#static1_proto = tcp

#static1_immediately = yes

#static1_global = yes

#static2_address = 192.168.0.10

#static2_port = 4556

#static2_uri = dtn://node-ten.dtn

#static2_proto = udp

#static1_immediately = no

A.1 Sense Units IBR-DTN configuration file 63

#############prophet configuration #############

#prophet_p_encounter_max = 0.7

#prophet_p_encounter_first = 0.5

#prophet_p_first_threshold = 0.1

#prophet_beta = 0.9

#prophet_gamma = 0.999

#prophet_delta = 0.01

#prophet_time_unit = 1

#prophet_i_typ = 300

#prophet_next_exchange_timeout = 60

#prophet_forwarding_strategy = GRTR

#prophet_gtmx_nf_max = 30

#############bundle security protocol#############

#security_level = 0

#security_bab_default_key = /etc/ibrdtn/bpsec/default-bab-key.mac

#security_path = /etc/ibrdtn/bpsec/keys

#security_key = /etc/ibrdtn/tls/local.key

#security_trusted_ca_path = /etc/ibrdtn/tls/

#security_tls_required = yes

#security_tls_disable_encryption = yes

#############time synchronization#############

time_reference = no

time_synchronize = yes

time_discovery_announcements = yes

#time_sigma = 1.001

#time_psi = 0.9

#time_sync_level = 0.15

time_set_clock = yes

#############DHTNameService settings#############

#dht_enabled = yes

64 IBR-DTN Configuration File

#dht_port = 9999

#dht_id = <randomstring>

#dht_enable_ipv4 = yes

#dht_enable_ipv6 = yes

#dht_bind_ipv4 = 127.0.0.1

#dht_bind_ipv6 = ::1

#dht_nodes_file = <filepath>

#dht_bootstrapping = yes

#dht_bootstrapping_domains = dtndht.ibr.cs.tu-bs.de

#dht_bootstrapping_ips = 192.168.0.1; 192.168.0.2 8888;

#dht_blacklist = yes

#dht_self_announce = yes

#dht_min_rating = 1

#dht_allow_neighbour_announcement = yes

#dht_allow_neighbours_to_announce_me = yes

#dht_ignore_neighbour_informations = no

References

[1] Marc Blanchet, Simon Perreault, and Jean-Philippe Dionne. Postellation: an enhanced delay-
tolerant network (dtn) implementation with video streaming and automated network attach-
ment. 2012.

[2] Scott Burleigh. Interplanetary overlay network: An implementation of the dtn bundle pro-
tocol. In Consumer Communications and Networking Conference, 2007. CCNC 2007. 4th
IEEE, pages 222–226. IEEE, 2007.

[3] Sebastian Schildt, Johannes Morgenroth, Wolf-Bastian Pöttner, and Lars Wolf. Ibr-dtn: A
lightweight, modular and highly portable bundle protocol implementation. Electronic Com-
munications of the EASST, 37, 2011.

[4] Melissa Ho Jain and Robin Patra. Implementing delay tolerant networking. December 2004.

[5] R.C. Shah, S. Roy, S. Jain, and W. Brunette. Data mules: modeling a three-tier architecture
for sparse sensor networks. In Sensor Network Protocols and Applications, 2003. Proceed-
ings of the First IEEE. 2003 IEEE International Workshop on, pages 30–41, May 2003.
doi:10.1109/SNPA.2003.1203354.

[6] G. Anastasi, M. Conti, Emmanuele Monaldi, and A. Passarella. An adaptive data-transfer
protocol for sensor networks with data mules. In World of Wireless, Mobile and Multimedia
Networks, pages 1–8, June 2007. doi:10.1109/WOWMOM.2007.4351776.

[7] A.A. Somasundara, A. Kansal, D.D. Jea, D. Estrin, and M.B. Srivastava. Controllably mobile
infrastructure for low energy embedded networks. IEEE Transactions on Mobile Computing,
5(8):958–973, August 2006. doi:10.1109/TMC.2006.109.

[8] Damla Turgut and Ladislau Bölöni. Heuristic approaches for transmission scheduling in
sensor networks with multiple mobile sinks. The Computer Journal, 54(3):332–344, March
2011.

[9] Giuseppe Anastasi, Eleonora Borgia, Marco Conti, and Enrico Gregori. A hybrid adaptive
protocol for reliable data delivery in wsns with multiple mobile sinks. April 2010.

[10] Sushant Jain, Rahul C. Shah, Waylon Brunette, Gaetano Borriello, and Sumit Roy. Ex-
ploiting mobility for energy efficient data collection in wireless sensor networks. Mob.
Netw. Appl., 11(3):327–339, June 2006. URL: http://dx.doi.org/10.1007/
s11036-006-5186-9, doi:10.1007/s11036-006-5186-9.

[11] Vinton Cerf, Scott Burleigh, Adrian Hooke, Leigh Torgerson, Robert Durst, Keith Scott,
Kevin Fall, and Howard Weiss. Delay-tolerant networking architecture, rfc 4838 (informa-
tional). April 2007.

65

http://dx.doi.org/10.1109/SNPA.2003.1203354
http://dx.doi.org/10.1109/WOWMOM.2007.4351776
http://dx.doi.org/10.1109/TMC.2006.109
http://dx.doi.org/10.1007/s11036-006-5186-9
http://dx.doi.org/10.1007/s11036-006-5186-9
http://dx.doi.org/10.1007/s11036-006-5186-9

66 REFERENCES

[12] Larry Masinter, Tim Berners-Lee, and Roy T Fielding. Uniform resource identifier (uri):
Generic syntax, rfc 3986 (internet standard). January 2005.

[13] Forrest Warthman. “Delay-Tolerant Netwokrs (DTNs): A Tutorial”, 2003.

[14] Alex Gladd, Daniel Brown, Daniel Ellard, and Richard Altmann. DTN IP Neighbor Discov-
ery (IPND), draft-irtf-dtnrg-ipnd-02 (work in progress), November 2012.

[15] Susan Symington, Stephen Farrell, Howard Weiss, and Peter Lovell. Bundle security proto-
col specification, rfc 6257 (experimental). Work Progress, May 2011.

[16] K. Scott and S. Burleigh. Bundle protocol specification. rfc 5050 (experimental). November
2007.

[17] PT Barry. Abstract syntax notation-one (asn. 1). In Formal Methods and Notations Applica-
ble to Telecommunications, IEE Tutorial Colloquium on, pages 2–1. IET, 1992.

[18] N4C. Functional specification for dtn infrastructure software, n4c-wp2-023-dtn-
infrastructure-fs,. April 2010.

[19] Joerg Ott, Michael Demmer, and Simon Perreault. Delay Tolerant Networking TCP Conver-
gence Layer Protocol, draft-irtf- dtnrg-tcp-clayer-05 (work in progress), January 2013.

[20] Samuel Jero, Hans Kruse, and Shawn Ostermann. Datagram Convergence Layers for the
DTN Bundle and LTP Protocols, draft-irtf-dtnrg-dgram-clayer-05 (work in progress), Octo-
ber 2013.

[21] Razvan Beuran, Shinsuke Miwa, and Yoichi Shinoda. Performance evaluation of dtn imple-
mentations on a large-scale network emulation testbed. In Proceedings of the Seventh ACM
International Workshop on Challenged Networks, CHANTS ’12, pages 39–42, New York,
NY, USA, 2012. ACM. URL: http://doi.acm.org/10.1145/2348616.2348624,
doi:10.1145/2348616.2348624.

[22] Wolf-Bastian Pöttner, Johannes Morgenroth, Sebastian Schildt, and Lars Wolf. Performance
comparison of dtn bundle protocol implementations. In Proceedings of the 6th ACM work-
shop on Challenged networks, pages 61–64. ACM, 2011.

http://doi.acm.org/10.1145/2348616.2348624
http://dx.doi.org/10.1145/2348616.2348624

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contextualisation
	1.2 Motivation and Problem Characterisation
	1.3 Goals
	1.4 Results
	1.5 Document Structure

	2 Future Cities Project
	2.1 Overview
	2.2 UrbanSense Platform
	2.2.1 Sense Units
	2.2.2 Cloud UrbanSense Server and Database

	2.3 Vehicular Network
	2.4 Summary

	3 State-of-Art
	3.1 The Mule Architecture
	3.2 DTN Architecture
	3.2.1 DTN Architectural Principles
	3.2.2 Bundle Security Protocol
	3.2.3 Bundle Protocol
	3.2.4 Convergence Layer Protocols

	3.3 DTN Implementations
	3.3.1 DTN-2
	3.3.2 IBR-DTN
	3.3.3 Implementations' Comparison

	3.4 Summary

	4 The Proposed Architecture
	4.1 System Overview
	4.2 Opportunistic Communications
	4.3 Types of Data
	4.3.1 Sensors Data
	4.3.2 Acknowledgement data

	4.4 Sensor Samples Management
	4.5 Summary

	5 Implementation
	5.1 Implementation Details
	5.2 IBR-DTN API
	5.2.1 Bundle Register
	5.2.2 Commands
	5.2.3 Parsing Bundles from IBR-DTN API

	5.3 UrbanSense Sense Units Application
	5.3.1 Sense Units Clock Synchronisation
	5.3.2 Sense Unit and OBU Connection Test
	5.3.3 Sensors Data Transmission

	5.4 UrbanSense Server Application
	5.5 Summary

	6 Measurements and Analysis
	6.1 Controlled Environment Tests Scenarios
	6.2 Real-World Environment Applications Validation
	6.3 Results
	6.3.1 Bundles Delay
	6.3.2 Bundles Transmissions
	6.3.3 Real-World Environment Test Overview

	6.4 Summary

	7 Conclusions and Future Work
	7.1 Future Work

	A IBR-DTN Configuration File
	A.1 Sense Units IBR-DTN configuration file

	References

