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Abstract

This dissertation deals with a conjecture proposed in 1979 by Péter Frankl related to
union-closed families of sets. It has been widely studied by several mathematicians
from all around the world. There are many papers on the topic and several websites
dedicated to its study. Despite the fact that the conjecture regards finite union-
closed families of sets, which appear to be very simple objects, very little is known
about them. We try to present in detail the main tools people have been using too
approach the problem and unveil a little bit of the mystery behind these families.

Keywords: Union-closed families of sets, Frankl Conjecture, Union-closed sets
conjecture, Up-compression, Lattice, Dual Families.
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Resumo

Nesta dissertação é apresentada uma conjetura proposta em 1979 pelo matemático
húngaro Péter Frankl relacionada com famı́lias de conjuntos fechadas para a re-
união. Nos recentes anos, esta tem sido amplamente estudada por matemáticos
de todo o mundo. Existem cerca de 50 artigos acerca da mesma e vários websites
dedicados ao seu estudo. Apesar dos objetos do problema serem famı́lias finitas
de conjuntos fechadas para a reunião, que são aparentemente simples, pouco se
sabe ainda sobre os mesmos. Tentamos, neste trabalho, apresentar em detalhe as
principais ferramentas usadas na abordagem do problema e desvendar um pouco
o mistério escondido por detrás destas famı́lias.

Palavras-chave: Famı́lias de conjuntos fechadas para a reunião, Conjetura de
Frankl, Conjetura dos conjuntos fechados para a reunião, Compressão, Reticula-
dos, Famı́lias Duais.
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Introduction

In 1979, Peter Frankl formulated one of the most famous conjecture in extremal
combinatorics, known as Frankl Conjecture or Union-closed Sets Conjecture. It
has piqued the curiosity of some of the most influential combinatorialists and we
hope that, after reading this dissertation, yours will be piqued as well! The main
attraction of Frankl Conjecture is definitely the fact that it is very simple to state. It
only claims that if we are given a finite family of sets F ⊆ P(U), where U is a set,
such that S ∈ F ∧ T ∈ F ⇒ S ∪ T ∈ F , then there is an element x ∈ U such that x
belongs to at least half the sets in F .
In this dissertation, we present the main results and techniques used to study the
conjecture. The goal is to familiarize the reader with the problem and show how the
main partial results toward a proof of the conjecture are obtained. We also study in
great detail the structure of some particular kinds of families.

In Chapter 1 we present the problem as well as some basic definitions about families
of sets. We show how we can reduce the problem so that, instead of studying union-
closed families in general, we only work with a special subclass of families, called
separating. Some results about separating families are obtained. Also, a natural
generalization of the problem is presented. We also show generalizations of the
problem and some approaches that seem viable but are not.

In Chapter 2 it is shown how Frankl conjecture is equivalent to a problem in lattice
theory, and we show the result for the class of lower semimodular lattices.

In Chapter 3 we study the properties that a hypothetical counterexample to the con-
jecture must have, specially the smallest counterexample. The results presented in
this chapter are based essentially on the work of Giovanni Lo Faro, and allow us to
have some bounds and some structural properties of an eventual counterexample.
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In Chapter 4 we study in great detail a new formulation of the conjecture proposed
by Salzborn, and mainly studied by Piotr Wójcik, and the different ways to construct
dual families, which are the families dealt with in the new formulation. A proof of the
equivalence between conjectures are given through the chapter, and some results
about dual families are obtained using these techniques.

In Chapter 5 we show how compression techniques can be applied in the context of
union-closed families of sets. The idea of these techniques is to transform the object
of study, which is in our case union-closed families, into another one of a special
type (in our case upward-closed families) and then study this new object to obtain
results about the initial one. Also, some results about the upward-closed family
that is originated by up-compressing the original family are shown. The concept
of down-compression is also defined and shown to be equivalent to the concept of
up-compression.

In Chapter 6 we present the concept of Frankl Complete families introduced by
Sarvate and Renaud and later formalized by Poonen [18], and the characterization
of such families. Some examples of those families are exhibited.



Notation

• F ∶= family of sets

• [n] = {1,2, . . . , n}
• �S� ∶=#S, where S is a set

• P(S) denotes the set of all subsets of S

• Xc = denotes the complement of X

• F c = {Xc �X ∈ F}
• U(F) ∶= �

X∈F X
• �F ∶= �

X∈F X
• F⊆X ∶= {A ∈ F ∶ A ⊆X}
• F�⊆X ∶= {A ∈ F ∶ A �⊆X}
• F⊇X ∶= {A ∈ F ∶ A ⊇X}
• F�⊇X ∶= {A ∈ F ∶ A �⊇X}
• F

X

∶= {A ∈ F ∶ A ∩X ≠ �}. In particular, we represent F{a} by F
a

• F
ā

∶= {X ∈ F ∶ a ∉X}
• J(F) denotes the subfamily of ∪-irreducible sets in the family F
• F ⊖ S = {X�S ∶X ∈ F}
• ˙∪ denotes the disjoint union of sets

• When L is a lattice, L∗ denotes the dual lattice of L

3
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• [a, b] ∶= {c ∈ P ∶ a ≤ c ≤ b}, where P is a poset and a, b ∈ P
• [a) ∶= {c ∈ P ∶ a ≤ c}
• (a] ∶= {c ∈ P ∶ c ≤ a}
• n0 ∶= �F � where F is the minimal counter-example to the conjecture in terms of

member-sets

• q0 ∶= �U(F)� where F is the minimal counter-example to the conjecture with n0

member-sets in terms of universe elements

• F denotes the set of all counterexamples with n0 sets and q0 elements in its
universe

• mF ∶=min{�F
x

� ∶ x ∈ U(F)}
• M ∶=max{mF ∶ F ∈ F}
• FM ∶= {F ∈ F ∶mF =M}
• FM

r

∶= {F ∈ FM � �{x ∈ U(F) ∶ �F
x

� =M}� = r}
• r0 ∶=min{r ∈ N ∶ FM

r

≠ �}
• G ∶= FM

r0

• @
a

F ∶= {X�{a} ∶X ∈ F}
• P

a

∶= {X ∈ F
ā

∶X ∪ {a} ∈ F}
• F̂ ∶= {a ∈ U(F) ∶ �F

a

� ≥ �F �2 }
• If S and T are subsets of [n], we put [S,T ] = {X ⊆ [n] � S ⊆ X ⊆ T} (which is

empty when S �⊆ T )

• log will always denote log2

• S
S

is the group of permutations of elements in S

• We put A � B when there exists i ∈ [n] such that A ∪ {i} = B
• E(F) ∶= {(A,B) ∈ F2 ∶ A � B}
• EB(F) ∶= {(A,B) ∈ E(P[n]) ∶ A ∉ F ,B ∈ F}
• If F and G are two families of sets, we put F � G = {S ∪ T ∶ S ∈ F , T ∈ G}
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• �⋅, ⋅� is the usual inner product in Rn

• sgn is the sign function in R and is defined as usual: sgn(x) = �x�
x

if x ≠ 0 and
sgn(0) = 0

• nF
j

denotes the number of sets of cardinality j in F
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Chapter 1

The Conjecture and Basic Results

In this chapter, we introduce a popular conjecture in extremal combinatorics known
as union-closed sets conjecture or Frankl conjecture. We will also present some
basic definitions and results to help the reader to get familiar with the problem. In
the last section, we present some statements that might look true, while being false
and the reason why that is the case.

1.1 The Conjecture

The origin of the Frankl conjecture is somewhat mysterious. So much so, that in an
article, Peter Wrinkler wrote that “The ‘union-closed sets conjecture’ is well-known
indeed, except from (1) its origin and (2) its answer!”. Most authors attribute its
formulation to Peter Frankl, while others refer to it as a “folklore conjecture” [12]. It
is a fact that Frankl discovered the conjecture, and that popularized it, and so we
will refer to it as Frankl conjecture, instead of the union-closed sets conjecture.

Although its origin is uncertain, its popularity is a certainty, which might come from
the fact that the formulation of the conjecture is indeed very simple. So, in 1979
Frankl introduced the following problem:

Conjecture 1. Let F ⊆ P(U) be a finite family of sets, such that S ∈ F ∧ T ∈ F ⇒
S ∪ T ∈ F . Then, there is an element x ∈ U such that x belongs to at least half the
sets in F .

Despite having such a simple statement, and being studied by so many mathemati-

7



8 CHAPTER 1. THE CONJECTURE AND BASIC RESULTS

cians throughout the past 35 years, very little is known about this problem. In the
next section, we will present some basic definitions and results in order to study the
conjecture in detail.

1.2 Basic Results

Let F be a finite family of sets. We say that F is union-closed if, for any S,T ∈ F , we
have S ∪ T ∈ F . We define the universe of a family as the union of all its member-
sets and denote it by U(F), so U(F) ∈ F and F ⊆ P(U(F)). Also, for X ⊆ U(F) we
define F

X

= {S ∈ F ∶ S ∩X ≠ �} and, for every a ∈ U(F) denote F{a} by F
a

. Similarly,
we represent {S ∈ F � a ∉ F} by F

ā

.

We can now rewrite the problem using this terminology as follows.

Conjecture 1. If a finite family of sets F is union-closed, then there is an element
of its universe that belongs to at least half the sets of the family, i.e.,

∃a ∈ U(F) ∶ �F
a

� ≥ �F �
2

.

Example 1. Let F = {{1},{2,3},{1,2,4},{1,2,3},{1,2,3,4}}. We have that F is
union-closed, with U(F) = {1,2,3,4}, and we have:

• F1 = {{1,2,4},{1},{1,2,3},{1,2,3,4}};
• F2 = {{1,2,4},{2,3},{1,2,3},{1,2,3,4}};
• F3 = {{2,3},{1,2,3},{1,2,3,4}};
• F4 = {{1,2,4},{1,2,3,4}}

and so the conjecture is verified for this family, when we take a = 1,2 or 3.

One might try to generalize the conjecture and allow the family to be infinite. How-
ever, in that case the conjecture is false (when our definition of half is reasonable)
since we can take the family F = {S1, S2, S3 . . .}, where S

i

= {i, i + 1, i + 2, . . .} and all
elements only belong to finitely many sets.

Despite being studied by many mathematicians in the past few years, there are not
many strong results on this problem, and still very little is known about union-closed
families. However, the conjecture is known to hold for some kinds of families such
as:
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• F such that �U(F)� ≤ 12 (see [26]) or �F � ≤ 50;

• F such that �F � is large when compared to �U(F)� in the sense that �F � ≥
2
32
�U(F)� (see [12]);

• F such that �F � is small when compared to �U(F)� in the sense that �F � ≤
2�U(F)� (see [8]). For this result to hold, we also demand the families to be
separating, which, as we will see towards this chapter, is not a very strong
condition;

• F has a very particular structure, such as having a singleton or a set with only
two elements.

We will now prove the last result.

Lemma 1.2.1. If, in F , there is a set with only one element, then that element
belongs to at least half of the sets in F .

Proof. Suppose that {a} ∈ F . Clearly, F = F
a

˙∪F
ā

, and the map F
ā

→ F
a

given by
B � B ∪ {a} is injective. It follows that �F

a

� ≥ �F
ā

�, and thus �F
a

� ≥ �F �2 . �
Let W be the set of words w in the alphabet ⌃ = U(F) ˙∪{ā ∶ a ∈ U(F)} such that,
for each a ∈ U(F), at most one of the symbols a, ā appears in w. We will abuse
notation by indistinctly dealing with an element of W as a word and as a subset of
⌃. For every w ∈W , set F

w

= �
a∈wFa

,

and
f
w

= �F
w

�.
Also, for a ∈ U(F), set �ā� = �a� = a, ¯ā = a, and, for w = �1�2�3��k

∈ W , put w̄ =
�̄1�̄2�̄3��̄k

and �w� = ��1���2���3����k

�.
Example 2. If w = a¯bc, then F

w

= {S ∈ F ∶ a, c ∈ S ∧ b ∉ S}, �w� = abc, and w̄ = ābc̄ .

Remark 1. For all a ∈ U(F), w ∈W such that neither a nor ā appear in w, one has

• F
aw

˙∪F
āw

= F
w

.
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Proposition 1.2.2. For each w ∈W such that �w� ∈ F , one has f
w

≤ f�w�.
Proof. The map F

w

→ F�w�
S � S ∪ {a ∈ U(F) ∶ ā ∈ w}

is injective, since, for S,T ∈ F
w

, one has that ā ∈ w⇒ a ∉ S ∪ T , and therefore,

S ∪ {a ∈ U(F) ∶ ā ∈ w} = T ∪ {a ∈ U(F) ∶ ā ∈ w}⇔ S = T.
�

Corollary 1.2.3. Let F be an union-closed family of sets. If {a, b} ∈ F , then f
a

≥�F �
2 ∨ f

b

≥ �F �2 .

Proof. It follows from the previous result that f
āb̄

≤ f
ab

. But then f
ā

= f
āb̄

+ f
āb

≤
f
ab

+ f
āb

= f
b

, i.e. f
ā

≤ f
b

.

�
We will now present some results that allow us to restrict the problem to smaller
classes of families.

Proposition 1.2.4. It suffices to prove the conjecture for union-closed families F
such that � ∈ F .

Proof. Consider an union-closed family F such that � ∉ F . Now, take the familyF ′ = F ∪ {�}. If the conjecture holds for F ′, there exists a ∈ U(F ′) = U(F) such that�F ′
a

� ≥ �F ′�2 . In that case, �F
a

� = �F ′
a

� ≥ �F ′�2 = �F �+12 ≥ �F �2 and so the conjecture also holds
for F . �
Definitions 1.2.5. A family F is said to be separating if for every two elements of
its universe a and b, there is a set X ∈ F such that �(X ∩ {a, b})� = 1, i.e., F

a

≠F
b

. Similarly, we call a family totally separating if for every pair of elements of its
universe a and b, there are sets X and Y in F such that a ∈ X�Y , and b ∈ Y �X, i.e.,F

a

and F
b

are not ⊆-comparable.

Example 3. Let F = {{1},{2,3},{1,2,4},{1,2,3},{1,2,3,4}}. As we checked in
Example 1, for all a, b ∈ U(F), one has a ≠ b⇒ F

a

≠ F
b

. Thus F is separating.
Now let G = {{3},{1,2,4},{1,2,3},{1,2,3,4}}.Then G is not separating because G1 =G2 = {{1,2,4},{1,2,3},{1,2,3,4}}.
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Proposition 1.2.6. It suffices to prove the conjecture for separating families.

Proof. Let F be a non separating union-closed family of sets and define an equiv-
alence relation ∼ in U(F) by a ∼ b iff F

a

= F
b

. Then, we replace the occurrence
of a class in each set by a chosen representative element. The new family F ′ is
obviously still union-closed, and �F � = �F ′�. Now, if the conjecture holds for F ′, it also
holds for F (for the same element). Obviously with this process the family F ′ we
obtain is separating, and so the result follows. �
We will now present some results that help us understand a little bit more about the
structure of separating families. When there is no doubt about which family we are
referring to, we sometimes denote U(F

ā

) by U
a

.

Proposition 1.2.7. A family F is separating if and only if U
a

≠ U
b

, ∀a, b ∈ U(F), with
a ≠ b.
Proof. Suppose F is separating and let a, b ∈ U(F), with a ≠ b. Then, assume
w.l.o.g. that we have a set S ∈ F such that a ∈ S and b ∉ S. Then, a ∈ S ⊆ U

b

and
a ∉ U

a

. Hence, U
a

≠ U
b

.

Conversely, if F is not separating, there are a, b ∈ U(F), a ≠ b, such that F
a

= F
b

and
so F

ā

= F
b̄

and therefore U
a

= U
b

. �
Corollary 1.2.8. A separating union-closed family of sets with universe [n] has at
least n sets.

When we stated the conjecture we said nothing about the finiteness of the sets in
the family. It is an easy corollary of the Proposition 1.2.6 that we can assume all
sets to be finite as well, and that is what we will do from now on. We will now show
that we could also assume otherwise, that all sets are infinite, but we don’t seem to
get any advantage by doing that.

Let F be an union-closed family of finite sets such that U(F) = [n]. Let p
a

denote
the a-th prime number greater than n. Consider the family

F ′ = {X ∪ {pk
a

� k ≥ 1, a ∈X} �X ∈ F}
The new family F ′ is union-closed since if we have S,T ∈ F ′ then, S = S′ ∪ S′′
and T = T ′ ∪ T ′′, where S′, T ′ ∈ F and S′′, T ′′ are sets of prime powers. We have
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S′∪T ′ ∈ F and {pk
a

� k ≥ 1, a ∈ S′∪T ′} = {pk
a

� k ≥ 1, a ∈ S′}∪{pk
a

� k ≥ 1, a ∈ T ′} = S′′∪T ′′.
Hence, we have S ∪ T = (S′ ∪ T ′) ∪ (S′′ ∪ T ′′) ∈ F ′. If F ′ satisfies the union-closed
sets conjecture, then either an element of [n] or some pk

a

, for some a ∈ [n], k ∈ N is
in at least half the sets of F ′. Since F ′

p

k
a
= F ′

a

we have that there is an element of [n]
in at least half the sets of F ′ and so, in at least half the sets of F , since �F � = �F ′�.
The next result shows us another class of families the conjecture is known to hold
for. We say that a family is intersection-closed if the intersection of two of its sets is
also a set in the family.

Proposition 1.2.9. Let F be an union-closed and intersection-closed family of sets.
Then F satisfies the conjecture.

Proof. Arguing as above, we can assume w.l.o.g. that F is separating. Let S be
a minimal nonempty set in F . For every T ∈ F , S ≠ T we have S ∩ T ∈ F and by
minimality of S, we have S ∩ T = S or S ∩ T = �. Now, suppose �S� ≥ 2 and let
a, b ∈ S, a ≠ b. Now, for every X ∈ F

a

, we have X ∩ S = S and so b ∈ X, i.e., X ∈ F
b

.
Hence, F

a

⊆ F
b

. Similarly, we can see that F
b

⊆ F
a

and so F
a

= F
b

, which is absurd
since F is separating. From Lemma 1.2.1 the result follows. �
Definitions 1.2.10. Given a finite family G of sets we consider the union-closed
family ∪-generated by G defined by F = {�

X∈G′X � G′ ⊆ G} and denote it by F = �G�.
Given an union-closed family F , we call a set X ∈ F ∪-irreducible if having X = S∪T
for some S,T ∈ F implies S =X or T =X.

It is easy to see that J(F) = {X ∈ F � X is ∪-irreducible} is the (unique) minimal
generating set of the family F .

Example 4. Let F = �{{4},{1,2},{3,5},{1,2,4},{3,4,5}}�.
Then F = {{4},{1,2},{3,5},{1,2,4},{3,4,5},{1,2,3,5},{1,2,3,4,5}}. This set of
generators is not minimal since {3,4,5} = {3,5} ∪ {4}. It is easy to see that, in this
case, J(F) = {{4},{1,2},{3,5},{1,2,4}}.
In [13], the author proposes the following generalization to the conjecture:

Conjecture 2. Let F be an union-closed family of sets with universe U and let
n = �U �. For any k ≤ n positive integer, there exists at least one set S ⊂ U of size k

such that it is contained in at least 2−k�F � of the sets in F .



1.3. APPEALING ASSUMPTIONS AND AN INFINITY OF EXAMPLES 13

It is obvious that, if this conjecture is true, then so is the union-closed sets conjec-
ture. The next theorem shows that Conjecture 2 is in fact equivalent to the union-
closed sets conjecture.

Theorem 1.2.11. Let F be an union-closed family of sets with universe U and let
n = �U �. If the union-closed sets conjecture holds then for any k ≤ n positive integer
there are sets S

k

⊂ U such that �S
k

� = k, S
k

⊂ S
k+1 and such that S

k

is contained in at
least 2−k�F � of the sets in F . Hence, in that case, Conjecture 2 also holds.

Proof. We prove the theorem by induction on k. The case k = 1 is trivial since in
that case Conjecture 2 states the same as the union-closed sets conjecture. Now,
assume that we have some set S

k

⊂ U such that S
k

is contained in at least 2−k�F �
of the sets in F and consider a new family G = {X ∈ F ∶ S

k

⊆ X}. We know
that �G� ≥ 2

−k�F � and also that G is an union-closed set since if S,T ∈ G ⊆ F then
S
k

⊂ S ∪ T ∈ F . Now take the family G ⊖ S
k

= {X�S
k

∶ X ∈ G}. This new family is still
union-closed since if we let A,B ∈ G⊖S

k

we have (A∪S
k

)∪(B∪S
k

) = (A∪B)∪S
k

∈ G,
and, A ∪B ∈ G ⊖ S

k

. Also, �G ⊖ S
k

� = �G�. Let V be the universe of G ⊖ S
k

. Since we
assume the union-closed sets conjecture is valid, we know there exists an element
x ∈ V ⊂ U − S

k

such that x is in at least �G⊖Sk �
2 = �G�2 ≥ 2−(k+1)�F � sets. Now just take the

set S
k+1 = Sk

∪ {x}. We have �S
k+1� = �Sk

� + 1 = k + 1, and S
k+1 is contained in at least

2

−(k+1)�F � of the sets in F . This proves the theorem. �

1.3 Appealing Assumptions and an Infinity of Exam-
ples

In this section, we present several natural conjectures that one may be tempted to
do and the reason why they are false. In some cases, we will find convenient to
represent a family of sets F as a matrix of 0’s and 1’s. If F is a family of n sets,
X1, . . . ,Xn

in [m], we represent F by an n ×m matrix, so that the entry (i, j) is 1 if
j ∈X

i

and 0 otherwise. Define an operation � in Zn

2 as x�y = x+y−xy, where xy is the
product component-wise. It is easy to see that an union-closed family is represented
by a matrix such that the set of its lines is �-closed, because given a row i, then the
entry (i, j) is

Xi(j) and we know that
A∪B(j) = A

(j) +
B

(j) −
A∩B(j), where

S

is the indicator function of the set S. Given a set X of lines of a matrix, the matrix
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generated by them is the matrix such that its lines are the elements of the smallest�-closed set containing X.

Proposition 1.3.1. There is an union-closed family of sets F , such that the average
frequency of its elements is less than �F �

2 .

In fact, we present a more general proposition.

Proposition 1.3.2. There exists a separating union-closed family of sets, such that
the average frequency of its elements is as low as we want.

Proof. For a fixed n consider the families G
k

∶= �{[1], [2],�, [n],{2},{3},�,{k + 1}}�,
for some k < n. When we see G

k

as a matrix and study the average frequency,
what we want to determine is the ratio of 1’s in the matrix. The matrix G

k

is the one
generated by the following (n + k) × n matrix

A =

�������������������������������������

1 0 0 0 0 � 0 0 0

1 1 0 0 0 � 0 0 0

1 1 1 0 0 � 0 0 0

1 1 1 1 0 � 0 0 0⋮ ⋮ � ⋮ ⋮ � ⋮ ⋮ ⋮⋮ ⋮ � ⋮ ⋮ � ⋮ ⋮ ⋮
1 1 1 1 1 � 1 1 0

1 1 1 1 1 � 1 1 1

0 1 0 0 � 0

0 0 1 0 � 0 1 1

0 0 0 1 � 0 0 1⋮ ⋮ � ⋮ � ⋮
0 0 0 � 0 1

�������������������������������������
We will call the first n rows of A the first part of the matrix and we will refer to the
other rows as the second part of the matrix. We claim that when we �-generate the
matrix above we get a (n+2k+1 −k−2)×n matrix. We have n rows in the first part of
the matrix, which is �-closed and when we �-generate the second part, we obtain
2

k − 1 different sets (we exclude the empty set). Now, we have to add the sets that
result from considering rows from different parts. For this, it is enough to consider
the first row of the second part, because, letting l

i

be the i−th row of the first part,
and letting x be a row of the second part, after generating, if i > k, then l

i

� x = l
i

;
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if not, then l
i

� x = l1 � y, for some y in the first part, since we have every possible
row that only have 1’s in entries of index m ≤ k + 1. So, we have 2

k − 1 sets when
we consider rows from different parts, but we have some sets that were already
counted, namely the sets in the first part, that will be generated again which are the
ones with more than one and less than k + 2 ones (exactly k sets). So, we have
n + 2k+1 − k − 2 sets.

Now, we count the number of 1′s. Coming from the first part we have n(n+1)
2 . In the

second part we have k2k−1, and coming from union of sets of both parts we have
k2k−1 + 2k − 1 which are the sets that are the union of the first row of the first part
with sets from the second one, but again we are counting twice the sets of the first
part that have 0 in all entries of index m > k + 1, except the row [100�0] because
we do not consider the empty set as one of the second part. Therefore, the number
of ones counted repeatedly is (k+1)(k+2)−22 .

If we calculate the ratio of ones we get

n2 + n + (k + 1)2k − (k + 1)(k + 2)
2n2 + 2n(2k+1 − (k + 2)) = 1 + 1

n

+ 1
n

2 ((k + 1)(2k+1 − k − 2))
2 + 2

n

(2k+1 − k − 2) .

We can now build a family such the average frequency is smaller than 1
t

for any
t ∈ N.

By forcing

1 + 1

n
+ 1

n2
(k + 1) �2k+1 − k − 2� < 1

t
�2 + 2

n
�
2

k+1 − k − 2��⇔
⇔ t − 2 + t

n
+ t

n2
(k + 1) �2k+1 − k − 2� < 2

n
�
2

k+1 − k − 2�⇔
⇔ (t − 2)n + t + t

n
(k + 1) �2k+1 − k − 2� < 2 �2k+1 − k − 2�

we get the result. This can be achieved by choosing k such that 2

k+1 − k − 2 >(t − 2)t(k + 1) + t and n = t(k + 1) since in that case

(t − 2)n + t + t

n
(k + 1)(2k+1 − k − 2) < 2(2k+1 − k − 2)⇔

⇔ (t − 2)t(k + 1) + t + 2k+1 − k − 2 < 2(2k+1 − k − 2)⇔⇔ (t − 2)t(k + 1) + t < 2k+1 − k − 2.
�

Corollary 1.3.3. There is a separating union-closed family of sets F , such that the
average frequency of its elements is less than �F �

2 .
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In the first version of the preprint [3] the author claims that one can suppose that
every element of U(F) has the same frequency when studying the conjecture. We
cannot prove that this can never be done. What we show is why the proof in the
preprint was incorrect, together with some examples.

The author of [3] argued that if we are given a family F such that the element with
biggest frequency appears in j sets, then for every other element in the universe i

we could, starting by the maximal sets X in F such that i ∉ X and X ∪ {i} ∉ F , add
the element i to the sets until the element i has frequency j. If this could be done
keeping the union-closed property, we would obtain a new union-closed family of
sets such that every element has frequency j, and if for this new family the union-
closed sets conjecture statement holds, then it also holds for the first one, because
that means j ≥ F2 . First of all, this process can not be done in every family for every
element of its universe, since we might not have enough sets to add the element to.
A simple example is the family F = {{1,2},{2,3},{1,2,3}}. Here, we can not add
the element 1 to any set and so its frequency can not raise. The same happens with
the element 3.
The examples given above do not apply if we consider F to be a counterexample to
the conjecture. In this case the statement would be: ”If there is a counterexample to
the conjecture, then there is also one counterexample in which all elements of the
universe have equal frequency.” The problem above is no longer a concern since
if F is a counterexample and a is an element of its universe with frequency i, then
we have �F � − i sets that do not contain {a}. From these, at most i are sets S ∈ F

ā

such that S ∪ {a} ∈ F and so, we can add a to at least �F �− 2i sets. Now, let j be the
maximum frequency out of all elements in the universe. We have i ≤ j < �F �2 and so
i + j < �F �. Hence, �F � − 2i = (�F � − i) − i > j − i. However, it is not clear that we end
up with an union-closed family. Obviously, there isn’t any known counterexample to
the conjecture in which it fails that we know of, but it seems to fail in general. When
we add an element to a set X it might happen that X = S ∪T , for some S,T ∈ F and
that neither S nor T are inflated, and so the family will have the original sets S and
T but not S ∪ T . An example of this is given by the family

{{3},{4},{5},{1,2},{3,4},{3,5},{4,5},{1,2,3},{1,2,4},{1,2,5},{1,3,5},{3,4,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{1,2,3,4,5}}.
The element with highest frequency belongs to 10 sets. When we try to apply the
process above in order to add the element 2 until its frequency is 10, we start by
adding it to the set {3,4,5} (notice we can’t add to the sets {1,3,5} and {1,3,4,5}



1.3. APPEALING ASSUMPTIONS AND AN INFINITY OF EXAMPLES 17

since these sets are 2−problematic). We must add it to one more set. It can be
the set {3,4},{3,5}, or the set {4,5}. In every case, the resulting family will not be
union-closed, since the sets {3},{4} and {5} belong to the family.

Proposition 1.3.4. There exists an union-closed family F such that its smallest set
does not contain an element in at least half the sets.

Proof. In [6], the author presents the following example of a family with 28 sets
and universe [9] such that the smallest set of F is the set {1,2,3} and each of its
elements is present in only 13 sets. We will denote by B

S

the set [9]�S. Let

F = {�,{1,2,3},{4,5,6,7,8},{4,5,6,7,9},{4,5,6,8,9},{4,5,7,8,9},{4,6,7,8,9},{5,6,7,8,9},B{1,2,3},B{1,2,8},B{1,2,9},B{1,3,6},
B{1,3,7},B{2,3,4},B{2,3,5},B{1,2},B{1,3},B{2,3},B{1},

B{2},B{3},B{4},B{5},B{6},B{7},B{8},B{9}, [9]}.
Then one has that

F1 = {{1,2,3},B{2,3,4},B{2,3,5},B{2,3},B{2},B{3},B{4},B{5},B{6},B{7},B{8},B{9}, [9]},
F2 = {{1,2,3},B{1,3,6},B{1,3,7},B{1,3},B{1},B{3},B{4},B{5},B{6},B{7},B{8},B{9}, [9]]}.

and

F3 = {{1,2,3},B{1,2,8},B{1,2,9},B{1,2},B{1},B{2},B{4},B{5},B{6},B{7},B{8},B{9}, [9]}.
�

In [11], Gil Kalai conjectured that for every union-closed family F , there is always
an injective map from F

x̄

to F
x

such that each set in F
x̄

is a subset of its image, for
some x ∈ U(F). That would be a generalization of the original conjecture but was
proved false by Alec Edgington, with the following example.

Example 5. Consider the family F with universe U = {0,1,2,3,4} consisting of the
empty set and all the sets of the form {x,�, x+a}, a = 1,2,3,4, x ∈ U , with +meaning
the addition in Z5. This family has 17 sets, since the sets {x,�, x + a}, a = 1,2,3,
which are all different, for x ∈ Z5, and we have the empty set and the universe. Also,
this family is union-closed: we can see that the union of a 4-set with another set
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is either itself or the universe, thus an element of the family; The union of a 3− set
with another set is either itself, the universe or a 4−set and all 4−sets belong to the
family; finally, the union of a 2−set, say {x, x + 1}, with another set we never get{x, x + 1, x + 3}, which is the only set having x and x + 1 that is not in the family.
But, it does not exist an injective map from F

x̄

to F
x

such that each set in F
x̄

is a
subset of its image, because if there was one then, there would be one for x = 0,
by symmetry. In that case, the set {1,2,3,4} would have to be mapped to the set{0,1,2,3,4}; the set {2,3,4} would have to be mapped to the set {0,2,3,4}, because
the map is injective and the target set is F

x

, and the set {1,2,3} would have to be
mapped to {0,1,2,3}. But then, the set {2,3} would have to be mapped to one set
already used, since {0,2,3} ∉ F .



Chapter 2

Lattice formulation

In this chapter we present two equivalent formulations of the conjecture and study
with more emphasis on one of them, that concerns lattice theory. Some definitions
about lattices are exposed and the conjecture is proved for the largest class of
lattices the conjecture is known to hold.

2.1 Preliminaries

Union-closed sets conjecture has also a dual formulation that is sometimes useful
to consider defined in intersection-closed families, where a family is said to be
intersection-closed if the intersection of any two member sets is still a member set
of the family.

Conjecture 3. Let F be a finite family of finite sets closed under intersection. Then

∃a ∈ U(F) ∶ �F
a

� ≤ �F �
2

.

Proposition 2.1.1. Conjectures 3 and 1 are equivalent.

Proof. Suppose Conjecture 1 holds and let F be an intersection-closed family. Take
the family F c = {Xc ∶ X ∈ F}. Since F is intersection-closed we have that ∀Xc, Y c ∈F c, Xc∪Y c = (X ∩Y )c ∈ F c and so F c is union-closed and so it verifies union-closed
sets conjecture. By definition of F c, the element which belongs to at least half the
sets of F c is in at most half the sets of F and so, Conjecture 3 holds.

The converse is analogous. �
19
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Proposition 2.1.2. It suffices to prove Conjecture 3 for intersection-closed familiesF that have U(F) and � as elements, where � is the intersection of all member
sets.

Proof. Consider an intersection-closed family F such that the intersection of all its
sets, �F , is nonempty and take the family F ′ = {X��F ∶ X ∈ F}. It is obvious that�F ′� = �F � and so F ′ verifies the conjecture if and only if F does.

The second part is analogous to the proof of Proposition 1.2.4. �
This problem has already been approached in several different ways having a graph
theoretical based formulation, and also one based on lattice theory. The existence
of all these formulations is very important since they provide new tools to attack the
problem and strengthen the conviction that the conjecture holds. In this chapter we
will emphasize the lattice theoretical formulation of the union-closed sets conjecture
(actually we will present an equivalent formulation to the intersection-closed sets
conjecture, which is equivalent to the union-closed sets conjecture) and we will
present a proof that lower semimodular lattices verify the conjecture, originally
presented by Reinhold [20].

2.2 Lattices and Frankl Conjecture

A lattice is a poset (P,≤) such that each pair of elements s and t have a meet and
a join, denoted by s ∧ t and s ∨ t, respectively.

A finite intersection-closed family F that has the empty set and the universe as
elements defines a finite lattice L with partial order given by ⊆ since given s and t

we have s∧ t = s∩ t ∈ L and the fact that U(F) ∈ F guarantees the existence of a join
because we can take the intersection of all sets greater or equal to s and t which
is a nonempty element of the lattice and is still greater or equal to both elements.
Notice that the join of two elements might not be their union. The definitions about
lattices will be based on the present in [24].
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{1,2,3,4,5,6}

{4,5,6} {1,2,3,5,6} {1,2,3,4,6} {1,2,3,4,5}

{5,6} {4,6} {4,5} {1,2,3,6} {1,2,3,5} {1,2,3,4}

{2,3,6} {1,3,5} {1,2,4} {1,2,3}

{6} {5} {4} {2,3} {1,3} {1,2}

{3} {2} {1}

�
Figure 2.1: Example of an intersection-closed family seen as a lattice

Definitions 2.2.1. We call a poset P graded of rank n if every maximal chain in P

has size n. In that case, there exists a unique rank function ⇢ ∶ P ⇒ {0,1, . . . , n}
such that ⇢(s) = 0 if s is a minimal element of P and ⇢(t) = ⇢(s) + 1 if t covers s.

Notation 1. Let P be a poset and a, b ∈ P . We define

● [a, b] ∶= {c ∈ P ∶ a ≤ c ≤ b}.
● [a) ∶= {c ∈ P ∶ a ≤ c}.
● (a] ∶= {c ∈ P ∶ c ≤ a}.
Definition 2.2.2. The length of a finite poset P is l(P ) ∶=max{l(C) ∶ C is a chain of
P}, where l(C) = �C �− 1 if C is a chain of P . We will denote the length of an interval[s, t] by l(s, t).
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Next we will see an important result that characterizes the class of lower semimod-
ular lattices, for which we intend to prove the conjecture.

Theorem 2.2.3. Let L be a finite lattice. The following conditions are equivalent:

i. L is graded and the rank function ⇢ satisfies:

⇢(s) + ⇢(t) ≤ ⇢(s ∧ t) + ⇢(s ∨ t),∀s, t ∈ L.
ii. If s ∨ t covers s then t covers s ∧ t.
iii. If s ∨ t covers s and t then both s and t cover s ∧ t.

Proof. (i) ⇒ (ii) Suppose that s ∨ t covers s. Then ⇢(s) = ⇢(s ∨ t) − 1. Using i. we
have that ⇢(t) − 1 ≤ ⇢(s ∧ t). Since ⇢(s ∧ t) < ⇢(t) we have that ⇢(s ∧ t) = ⇢(t) − 1 and
so t covers s ∧ t.(ii)⇒ (iii) Suppose that s ∨ t covers s and t. Then by ii., we have the intended.(iii) ⇒ (i) Suppose L is not graded and let [u, v] be a non graded interval with
minimal size. There are s1 and s2 in [u, v] covered by v such that all maximal chains
of [u, s

i

], i = 1,2 have size l
i

and l1 ≠ l2. By iii. there are saturated chains in [u, s
i

] in
this form u = t1 < t2 < ⋅ ⋅ ⋅ < tk < s1 ∧ s2 < si, contradicting l1 ≠ l2.. Hence, L is graded.

Suppose there are s and t in L such that:

⇢(s) + ⇢(t) > ⇢(s ∧ t) + ⇢(s ∨ t) (2.1)

and we choose s and t with minimal l(s ∧ t, s ∨ t) and then, among those ones with
maximal ⇢(s)+⇢(t). By iii. we can not have s and t (both) covered by s∨t. Therefore,
we will assume that s < s′ < s∨ t. By the minimality of l(s∧ t, s∨ t) and maximality of
⇢(s) + ⇢(t) we have that:

⇢(s′) + ⇢(t) ≤ ⇢(s′ ∧ t) + ⇢(s′ ∨ t). (2.2)

We then have s′ ∨ t = s ∨ t and so 2.1 and 2.2 imply ⇢(s) + ⇢(s′ ∧ t) > ⇢(s′) + ⇢(s ∧ t).
It is obvious that s ∧ (s′ ∧ t) = s ∧ t and s ∨ (s′ ∧ t) ≤ s′. So, defining S = s and
T = s′ ∧ t, we find S and T in L satisfying ⇢(S) + ⇢(T ) > ⇢(S ∧ T ) + ⇢(S ∨ T ) and
l(S ∧ T,S ∨ T ) < l(s ∧ t, s ∨ t), which is absurd. �
Definition 2.2.4. A lattice L is said to be lower semimodular if one of the (equiva-
lent) conditions of the previous theorem holds for L.
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Definition 2.2.5. A lattice L is said to be upper semimodular if its dual lattice L∗
is lower semimodular. Moreover, a lattice L is said to be modular if it is lower and
upper semimodular.

s ∨ t
s ● t

●●
s ∧ t

Figure 2.2: Example of an upper semimodular but not modular lattice

Let’s denote the greatest element of a lattice L by � and the lowest by ⊥ . An element
a ∈ L is said to be an atom if a covers ⊥ and a coatom if � covers a.

Definition 2.2.6. We call an element a ∈ L ∨−irreducible if having a = b ∨ c implies
that a = b or a = c. Analogously, we call a ∈ L ∧−irreducible if having a = b ∧ c implies
that a = b or a = c.
The next lemma gives us a characterization of the elements of the lattice based
on the ∨−irreducible elements lower or equal than them, essential to establish the
correspondence between the union-closed sets conjecture and lattice theory.

Lemma 2.2.7. In a finite lattice, each element is the join of the ∨−irreducible ele-
ments lower or equal to it.

Proof. Let L be a finite lattice and P ∈ L. We will prove the lemma by induction
on #(P ]. If P =⊥ or P is ∨−irreducible the result holds. Suppose the result holds
for all elements x such that �(x]� < �(P ]�. If P is not ∨−irreducible then it is the join
of some Q and R, with Q,R < P and so �(Q]�, �(R]� < �(P ]�. Let A,B and C be the
set of the ∨−irreducible elements lower than P,Q and R, respectively. By induction
hypothesis we have that Q and R are the join of B and C, respectively. Therefore,
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we have that P is the join of B ∪ C. But P is an upper bound of A and B ∪ C ⊆ A,
since Q,R < P. Hence, P is the join of A. �
Conjecture 4. In every finite lattice L such that �L� ≥ 2 there exists a ∨−irreducible
element a such that �[a)� ≤ �L�2 .
Theorem 2.2.8. Conjectures 3 and 4 are equivalent. Consequently, Conjectures 1
and 4 are equivalent.

Proof. Let’s suppose Conjecture 4 holds. Let F be an intersection-closed family
having � and U(F) as member sets and consider the lattice associated to F as
seen before. There exists a ∨−irreducible element J ∈ F such that �[J)� ≤ �F �2 .

Suppose every element in J is an element of some proper subset of J that belongs
to F . Then we have:

�
A⊂J
A∈F

A = J and �
A⊂J
A∈F

A ⊆ �
A⊂J
A∈F

A.

It follows that �
A⊂J
A∈F

A = J.
But J is ∨−irreducible, so there exists some x ∈ J that is not an element of any
proper subset of J in F . Let A ∈ F be a set of which x is an element. We have that
J ∩A = J since J ∩A is a subset of J that has x as an element. Therefore, J ⊆ A,
i.e., A ∈ [J). Since �[J)� ≤ �F �2 , then x is an element of at most half the sets of the
family F and so, Conjecture 3 holds.

To prove the converse we suppose Conjecture 3 holds. Let L be a finite lattice and
we associate at each x ∈ L the set S(x) of the ∨−irreducible elements z such that
z ≤ x. We have that, for x, y ∈ L, S(x ∧ y) = S(x) ∩ S(y) and F = {S(x) ∶ x ∈ L} is an
intersection-closed family of sets. By the previous lemma, every element P ∈ L is
the join of the ∨−irreducible elements that belong to S(P ), so S(P ) = S(Q) implies
that P = Q and �L� = �F �. By hypothesis, there is a ∨−irreducible element x in at
most half the sets of F . Therefore, for every y ≥ x we have x ∈ S(y) and so �[x)� is
bounded by the number of sets in F that have x,i.e.,�[x)� ≤ �L�2 . Hence, Conjecture 4
holds. �
It is worth pointing out that if we have a family and consider the lattice associated to
it, then if the lattice verifies Conjecture 4, the family verifies 3 but it is not clear from
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the proof that if the family verifies 3 then the lattice verifies 4 because the proof is
not direct in that sense. However the proof shows that if one conjecture holds for all
families then the other holds for all lattices.

Abe and Nakano [2] proved that Conjecture 4 holds for modular lattices. This result
was generalized by Reinhold [20] that proved the conjecture for lower semimodular
lattices. This is the strongest known result about this conjecture.

Let (P,≤) and (P ′,≤′) be posets. We say that a map ' ∶ P → P ′ is order-preserving
if the implication a ≤ b ⇒ '(a) ≤′ '(b) is verified and that is order-embedding if
a ≤ b⇔ '(a) ≤′ '(b).
Remark 2. If ' ∶ P → P ′ is order-embedding then it is one-to-one since '(a) =
'(b)⇔ '(a) ≤′ '(b) and '(b) ≤′ '(a)⇔ a ≤ b and b ≤ a⇔ a = b.
Now we will see a new characterization of semimodular lattices that will be particu-
larly useful in the proof of the main result.

Lemma 2.2.9. A lattice L is lower semimodular if and only if ∀a, b ∈ L such that b∨a
covers b, the map

' ∶ [a, b ∨ a]→ [b ∧ a, b]
x� b ∧ x

is order-embedding.

Proof. Let L be a lower semimodular lattice. Consider a, b ∈ L such that b ∨ a covers
b and the map ' ∶ [a, b ∨ a] → [b ∧ a, b], x � b ∧ x. Let x, y ∈ [a, b ∨ a] such that x ≤ y.
In that case, b ∧ x ≤ x ≤ y and b ∧ x ≤ b and so b ∧ x ≤ b ∧ y. We then have ' is order
preserving.

Now, let x, y ∈ [a, b ∨ a] be such that x �≤ y and suppose '(x) ≤ '(y). Then:

b ∧ x = '(x) = '(x) ∧'(y) = b ∧ x ∧ y ≤ x ∧ y < x. (2.3)

Since x ∈ [a, b ∨ a] we have that b ∨ a = b ∨ x because b ∨ a ≥ x and b ∨ a ≥ b, so
b∨ a ≥ b∨ x and also b∨ x ≥ x ≥ a and b∨ a ≥ b. Therefore, b∨ x ≥ b∨ a. We then have
that b ∨ x covers b and since L is lower semimodular we have that x covers b ∧ x.
This way, in 2.3 we have equality between b ∧ x and x ∧ y, because b ∧ x < x ∧ y < x
is impossible.

Hence, a ≤ x ∧ y = b ∧ x ≤ b which contradicts the fact that b ∨ a covers b.
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Now, let’s suppose that L is not a lower semimodular lattice. Then, we have a, b, c ∈ L
such that b ∨ c covers b and b ∧ c < a < c. Then b ∨ a = b ∨ c and so b ∨ a covers b. But
a ≤ c ≤ b ∨ a and '(c) = b ∧ c < a. Hence, b ∧ c ≤ b ∧ a ⇒ b ∧ c = b ∧ a, because a ≤ c.
Then '(a) = '(c), and so, ' ∶ [a, b∨a]→ [b∧a, b], x� b∧x is not order-embedding. �
Theorem 2.2.10. Every lower semimodular lattice L with �L� ≥ 2 satisfies Conjecture
4.

Proof. Let L a lower semimodular lattice with �L� ≥ 2. We will prove that there exists
a ∨−irreducible element a such that �[a)� ≤ �L�2 . If � is ∨−irreducible then L satisfies
the conjecture. If not, there exists a coatom b and a ∨−irreducible element a with
a �≤ b. Then � = b∨ a covers b. By the previous lemma, ' ∶ [a)→ [b∧ a, b], x� b∧ x is
order-embedding, hence injective, and so #[b ∧ a, b] ≥#[a).
Since [b ∧ a, b] ⊆ L�[a), it follows that �[a)� ≤ �L�2 . �
The case of the upper semimodular lattices seems much more difficult. Poonen [18]
proved that geometric lattices verified the conjecture, with these being a particular
case of the upper semimodular lattices in which every element is the join of a
set of atoms. Abe [1] considers a different subclass of the upper semimodular
lattices, the one of the strong semimodular lattices and proves the conjecture in
that case. There are still results from Czédli and Schmidt [5] that prove the result
for large upper semimodular lattices in the sense that �L� > 5

82
m, where m represents

the number of ∨−irreducible elements in L. However, a proof of the general case
remains unknown.



Chapter 3

Properties of a possible
counterexample

In this chapter, we study some properties that an eventual counterexample to the
conjecture must have, studying in greater detail the case when the counterexample
is minimal in some sense that will later be made explicit. This approach provided
some bounds on the largest family size and on the largest universe size for which
the conjecture is known to hold, that were later surpassed by the ones obtained
using other techniques. Still, this approach might be improved and provide better
bounds in the future. We follow mostly the approach of Giovanni Lo Faro ([9],[10]).

Throughout this chapter, F will represent, unless said otherwise, a minimal counter-
example to the conjecture, first in terms of �F � and then in terms of �U(F)�. We
define n0 ∶= �F �, where F is a minimal counter-example to the conjecture in terms
of number of member-sets, and q0 ∶= �U(F)� for F a minimal counter-example to the
conjecture with n0 member-sets in terms of number of universe elements.

3.1 Basic properties

Theorem 3.1.1. n0 is odd.

Proof. Suppose n0 is even, let F be a minimal counterexample, and M a ∪−irreducible
element in F . Then F ′ = F�{M} is also union-closed. We have that ∀x ∈ U(F), �F

x

� ≤
n0−2
2 . Since �F ′

x

� ≤ �F
x

� ≤ n0−2
2 < �F ′�2 , we have that F ′ is also a counterexample to the

27
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conjecture, which is absurd by the minimality of F . �
We introduce the concept of derivative of a family with respect to an element of its
universe. It is a way to reduce a family into a new family with smaller universe and
potentially less sets, and it allows us to obtain some structural results on the original
family.

Definition 3.1.2. Let F be a family of sets and a ∈ U(F). We define the derivative
of F with respect to a as the family @

a

F ∶= {S�{a} ∶ S ∈ F}.
Remark 3. The name derivative seemed adequate due to the following properties:

• @
a

(F ∪ G) = @
a

F ∪ @
a

G
• @(a,b)(F × G) = @aF × G ∪F × @bG, where F × G = {S × T � S ∈ F , T ∈ G}

The next proposition shows two basic properties of the derivative of an union-closed
family.

Proposition 3.1.3. Let F be an union-closed family and a ∈ U(F).
i. @

a

F is union-closed.

ii. J(@
a

F) ⊆ @
a

(J(F)).
Proof.

i. Let S,T ∈ @
a

F . Obviously a ∉ S ∪ T . Now, either S ∪ T ∈ F or S ∪ T ∪ {a} ∈ F . In
both cases S ∪ T ∈ @

a

F .

ii. Let S ∈ J(@
a

F). If S ∈ F , then obviously S ∈ J(F) and S�{a} = S ∈ @
a

(J(F)). If
S ∉ F , then S = T �{a}, for some T ∈ F

a

. If T = K ∪ L, for some K,L ∈ F�{T},
then S = (K�{a}) ∪ (L�{a}) and K�{a}, L�{a} ∈ @

a

F�{S}, which is absurd since
S is ∪−irreducible. �

Remark 4. The reciprocal inclusion in ii. does not hold. Take, for example, the
family F = {{2},{1,2},{1,3},{1,2,3}{1,2,3,4}}. In this case, J(F) = F�{{1,2,3}}
and so, @3(J(F)) = {{2},{1,2},{1},{1,2,3}{1,2,4}}, which is different from J(@3F),
since it is not a family of ∪-irreducible elements, because {1,2} = {1} ∪ {2}.
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Example 6. Let F = {{1,2,4},{3,5},{1,2},{4},{3,4,5},{1,2,3,5},{1,2,3,4,5}} be
the union-closed family in Example 4. We will see that in this case, the recipro-
cal inclusion of the one in ii. of the previous proposition holds. Recall that we
have J(F) = {{1,2,4},{3,5},{1,2},{4}}. Then @4F = {{3,5},{1,2},�,{1,2,3,5}} is
union-closed and J(@4F) = {{3,5},{1,2},�}.
Definition 3.1.4. Given a family of sets F and an element a ∈ U(F), we call a set
S ∈ F a−problematic if a ∉ S and S ∪ {a} ∈ F .
Also, we define PF

a

∶= {S ∈ F ∶ S is a−problematic} (usually there is no doubt about
which family we are referring to, so we just denote it by P

a

).

The following theorem gives a property of a minimal counterexample and of its
derivatives

Theorem 3.1.5. If F is a minimal counterexample to the conjecture, then:

i. �@
a

F � < �F �,∀a ∈ U(F);
ii. F

a

≠ F
b

,∀a, b ∈ U(F), i.e., F is separating.

Proof.

i. Clearly �@
a

F � ≤ �F �, ∀a ∈ U(F). Suppose there is an element b ∈ U(F) such that�@
b

F � = �F �. Since @
b

F is also union-closed and its universe has cardinality q0 − 1
there would exist another element z ∈ U(@

b

F) such that �(@
b

F)
z

� > n0
2 . But then

we would have �F
z

� > n0
2 which is absurd.

ii. Note that i. is equivalent to say that there exists, for any a, X ∈ F
ā

∶ X ∪ {a} ∈F , i.e.,P
a

≠ �. Suppose there are elements a, b ∈ U(F), a ≠ b such that F
a

= F
b

and let P ∈ P
a

. We have b ∈ P ∪{a}, which implies that b ∈ P , and so, a ∈ P which
is absurd. �

We will now see that the minimal counterexample must almost satisfy the conjecture
for at least three elements, which was proved by Norton and Sarvate in [21].

Theorem 3.1.6. There are at least three distinct elements x1, x2, x3 ∈ U(F) such
that �F

xi � = n0−1
2 , i = 1,2,3.
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Proof. Let a ∈ U(F) and choose a ∪−irreducible set M
a

such that a ∈M
a

. We know
that Fa = F�{M

a

} is also union-closed and so it satisfies the conjecture. Let x1 be
such that �Fa

x1
� ≥ n0−1

2 . Since �F
x1 � ≤ n0−1

2 , it follows that �F
x1 � = n0−1

2 and x1 ∉ Ma

.

Consider now the family Fx1 = F�{M1}, for some ∪−irreducible set M1 such that
x1 ∈ M1. Then, we have x2 such that x2 ≠ x1 and �F

x2 � = n0−1
2 . Then, taking the

family Fx1,x2 = F�{M1,M2}, for some ∪−irreducible set M2 such that x2 ∈M2, we get
x3 ≠ x1, x2 and �F

x3 � = n0−1
2 , since n0 is odd. �

Proposition 3.1.7. Consider the set H = {x ∈ U(F) � �F
x

� = n0−1
2 }. One has

i. H ⊆ U(F
x̄

), ∀x ∈ U(F)�H
ii. H�{x} ⊆ U(F

x̄

), ∀x ∈H.

Proof. If a ∈ H and x ∉ H, then we have that x belongs to less sets than a. Hence
there is a set S having a and not having x and so a ∈ S ⊆ U(F

x̄

). Similarly, since F
is separating, H�{x} ⊆ U(F

x̄

), ∀x ∈H. �
Proposition 3.1.8. Let C = {U(F

x̄

) � x ∈ U(F)}. Then C ∩ J(F) = �.
Proof. Consider the set H defined in Proposition 3.1.7. Suppose we have a ∈ H
such that U(F

ā

) ∈ J(F). In that case, let J ∈ J(F) be such that a ∈ J and consider
the family G = F�{J,U(F

ā

)}. Then G is an union-closed family of n0 − 2 sets and no
element is in more that n0−3

2 sets, since H�{a} ⊆ U(F
ā

) and a ∈ J . That contradicts
the minimality of F .
Now, suppose we have a ∈ U(F)�H such that U(F

ā

) ∈ J(F). In that case, G =F�{U(F
ā

)} is an union-closed family of n0 − 1 sets and no element is in more that
n0−3
2 sets, since H ⊆ U(F

ā

). Again, this contradicts the minimality of F . �
Given a family of sets F , we define F̂ ∶= �x ∈ U(F) ∶ �F

x

� ≥ �F �2 �.
Remark 5. It is obvious that both�P

a

and �@
a

F are non-empty sets since both families
are smaller union-closed families than F .

Theorem 3.1.9. We have that�P
a

∩�@
a

F = �, ∀a ∈ U(F).
Proof. Let k = �P

a

� and suppose there exists b ∈�P
a

∩�@
a

F . We have �(@
a

F)
b

� ≥ �@aF �2 =�F �−k
2 , since there are k a-problematic sets and {a} ∉ F . Also, �(P

a

)
b

� ≥ �Pa�
2 = k

2 .
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But we know that if b ∈ X, for some X ∈ P
a

, then b ∈ X ∪ {a} ∈ F�@
a

F . Thus,�(P
a

)
b

� ≤ �(F�@
a

F)
b

�.
It is now clear that b ∈�P

a

∩�@
a

F ⇒ �F
b

� = �(@
a

F)
b

�+ �F�(@
a

F)
b

� ≥ �(@
a

F)
b

�+ �(P
a

)
b

� ≥ �F �2 ,

which is absurd. �
We will now present several results about the structure of a counterexample that
will later be used to obtain some bounds on its size and on the frequency of its
elements.

Theorem 3.1.10. U(F
ā

) ∈ P
a

, ∀a ∈ U(F).
Proof. Let P ∈ P

a

. Since a ∉ P we have P ⊆ U(F
ā

). We also know that P ∪ {a} ∈ F
and so U(F

ā

) ∪ P ∪ {a} = U(F
ā

) ∪ {a} ∈ F . Hence, U(F
ā

) ∈ P
a

. �
The following corollary will help us simplify the proof of Theorem 3.1.16 below, which
is Theorem 9 in [9].

Corollary 3.1.11. For each a ∈ U(F) there are at least three a-problematic sets.

Proof. Consider a ∈ U(F) and take b ∈�@
a

F . Since F
ā

⊆ @
a

F , �F
ā

� > �@aF �2 , and b ∈�@
a

F ,
it follows that b must belong to at least one set of F

ā

, and so b ∈ U(F
ā

). Then, from
Theorem 3.1.10 we have that b is an element of at least one a-problematic set. On
the other hand, Theorem 3.1.9, we must have at least two a−problematic sets that
do not contain {b}. The result follows. �
Remark 6. Note that we can consider U(F) = [n] with �F1� ≤ �F2� ≤ ⋅ ⋅ ⋅ ≤ �Fn

�, which
we assume from now on, up to the end of this chapter. Notice that the previous
corollary implies �F1� ≥ 3.

Definition 3.1.12. Let a, b ∈ U(F). We say b is dominated by a if F
b

� F
a

. Notice
that this is equivalent to b ∉ U(F

ā

).
Theorem 3.1.13. There are at least three distinct elements x1, x2, x3 ∈ U(F) such
that U(F

x̄i) = U(F)�{xi

}, i = 1,2,3, i.e., there are three elements that don’t dominate
any other element.

Proof. We can take x1 = 1, since, if 1 dominated some other element a, then by
the previous remark we would have F1 = Fa

, and that is absurd because F is
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separating. Now, take X ∈ F
x1 such that X ≠ U(F) (its existence is granted by

the previous remark). Take y ∈ U(F)�X. If U(F
ȳ

) = U(F)�{y} then take x2 = y.
Else, take z ∈ U(F)�U(F

ȳ

), with z ≠ y. If U(F
z̄

) = U(F)�{z} take x2 = z. Else, notice
that, since U(F

ȳ

) ∪ {y} ∈ F (by Theorem 3.1.10) and z ∉ U(F
ȳ

), we have x1 ∈ X �
U(F

ȳ

) ∪ {y} ⊆ U(F
z̄

). Obviously, continuing this process we find x2 ∈ U(F), x2 ≠ x1

such that U(F
x̄2) = U(F)�{x2}.

Let M
x1 and M

x2 be ∪−irreducible sets such that x1 ∈ Mx1 and x2 ∈ Mx2 . We can
prove that M

x1 ∪Mx2 ≠ U(F) since otherwise we would consider the union closed
family F ′ = F − {M

x1 ,Mx2} which satisfies the conjecture and so there exists an
element z ∈ U(F ′) such that z belongs to at least n0−1

2 sets and to at least one of
M

x1 ,Mx2 and so, to at least n0+1
2 sets of F and that is absurd. If we argue as above

considering the set M
x1 ∪Mx2 we can complete the proof. �

Theorem 3.1.14. �F1� ≥ 5.

Proof. �F1� ≥ 3 is obvious from Corollary 3.1.11. Suppose �F1� = 4. By the previous
theorem we have F1 = {U(F), U(F)�{x2}, U(F)�{x3},B}, for some B ⊆ U(F). Set
z ∈ F̂1̄. Since �(F1)z � ≥ 2 we have z ∈ F̂ which is a contradiction. �
Theorem 3.1.15. Let x1 = 1, x2, x3 as in Theorem 3.1.13. There is an element
x4 ∈ U(F)�{x1, x2, x3} such that U(F)�{x3, x4} ⊆ U(Fx̄4).
Proof. We start by proving that there are sets X1 ∈ Fx1 and X2 ∈ Fx2 such that
U(F)�{x3} �⊆X1∪X2. Suppose otherwise, i.e., suppose that U(F)�{x3} ⊆X1∪X2 for
all X

i

∈ F
xi , i = 1,2. Take M1,M2 be ∪−irreducible elements such that x

i

∈M
i

, i = 1,2
and consider the family Fx1,x2 = F�{M1,M2}. Let z ∈ �Fx1,x2. Since U(F)�{x3} ⊆
X1 ∪ X2, one has that �Fx1,x2 = {x3}, because if there exists y ∈ �Fx1,x2�{x3} then
y ∈M1 ∪M2 and so y ∈ F̂ , which cannot happen. Hence, we have �F

x3 � = n0−1
2 . Now,

we claim that there exists w ∉ {x1, x2, x3} such that w ∉M1, because if that was not
the case, we would have that U(F)�{x2, x3} ⊆ Y, for all Y ∈ F

x1, which is absurd
since there are only 4 supersets of U(F)�{x2, x3} and by the previous theorem, one
has that �F

x1 � ≥ 5. Now, we know that U(F)�{x3} ⊆M1∪X2, ∀X2 ∈ Fx2 which implies
that x4 ∈X2, ∀X2 ∈ Fx2 , i.e., that F

x2 ⊆ Fx4 . Since �F
x2 � = n0−1

2 , we have that F
x2 = Fx4 ,

which is impossible.

So, take X1 ∈ Fx1 and X2 ∈ Fx2 such that U(F)�{x3} �⊆X1 ∪X2. Then there is y1 ≠ x3

such that y1 ∉X1 ∪X2 and we proceed as in Theorem 3.1.13 in order to get x4 such
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that X1∪X2 ⊆ U(Fx̄4) and U(F)�{x3, x4} ⊆ U(Fx̄4). The idea is that if U(F)�{y1, x3} ⊆
U(F

ȳ1) then we take x4 = y1 and we are done. Otherwise, there is z1 ∉ {x3, y1} such
that U(F

ȳ1) = U(F)�{y1, z1,�, zs} and we have X1 ∪X2 � U(Fȳ1) ∪ {y1} ⊆ U(Fz̄1). �
Theorem 3.1.16. �F1� ≥ 9.

Proof. Suppose �F1� = 5. We have F1 = {U(F), U(F)�{x2}, U(F)�{x3},B1,B2}, for
some B1, B2 ⊆ U(F). From the previous theorem we can take x4 ∉ {1, x2, x3} such
that U(F)�{x3, x4} ⊆ U(Fx̄4) ⊆ U(F)�{x4} and B1 = U(Fx̄4).
Let z ≠ 1 such that �(F1̄)z � ≥ n−5

2 . Since �F
z

� ≤ n−1
2 we have �(F1)z � ≤ 2. It is obvious that

z = x2∨z = x3 since any other element belongs to U(F), U(F)�{x2} and U(F)�{x3}.
In the case z = x2 we have z ∈ U(F), U(F)�{x3},B1 which is absurd. Then one has
that z = x3 ∉ B1,B2; B1 = U(F)�{x3, x4}; and �F

x3 � = n−1
2 . Since x3 ∉ B1 = U(Fx̄4) thenF

x3 ⊆ Fx4, thus F
x3 = Fx4 because �F

x3 � = n−1
2 . That is absurd from Theorem 3.1.5.

The case �F1� = 6 is similar.

Suppose �F1� = 7. We have F1 = {U(F), U(F)�{x2}, U(F)�{x3},B1,B2,B3,B4}, for
some B1, B2, B3, B4 ⊆ U(F). From the previous theorem we can take x4 ∉ {1, x2, x3}
such that U(F)�{x3, x4} ⊆ U(Fx̄4) ⊆ U(F)�{x4} and B1 = U(Fx̄4).
Let z ≠ 1 such that �(F1̄)z � ≥ n0−7

2 . Since �F
z

� ≤ n−1
2 we have �(F1)z � ≤ 3. It can be

easily seen that z ∈ {x2, x3, x4} as above.

Suppose now B1 = U(F)�{x4}, then z ∉ B2 ∪ B3 ∪ B4 because z belongs to U(F)
and to at least two of U(F)�{x2}, U(F)�{x3},B1. Without loss of generality assume
z = x2. If there exists B

i

(i = 2,3,4) such that U(F)�{x2, x3, x4} �⊆ Bi

then there exists
y ∉ B

i

∪ {x2, x3, x4}. Then U(F)�{x3} ⊆ Bi

∪X2 or U(F)�{x4} ⊆ Bi

∪X2, ∀X2 ∈ Fx2,
since B

i

∪X2 ∈ F1 and x2 ∈ Bi

∪X2, thus B
i

∪X2 ≠ B
j

, ∀j ∈ {2,3,4}. So y ∈ X2,∀X2 ∈ Fx2, hence F
y

= F
x2, a contradiction. If U(F)�{x2, x3, x4} ⊆ B

i

, for each
i = 2,3,4, then

F1 = {U(F), U(F)�{x2}, U(F)�{x3}, U(F)�{x4},
U(F)�{x2, x3}, U(F)�{x2, x4}, U(F)�{x2, x3, x4}}.

Let M
x2 be a ∪−irreducible set such that x2 ∈ Mx2 . If we consider the union-closed

family F ′ = F�({M
x2} ∪F1) we have an element in at least n0−7

2 and that contradicts
the fact that F is a counter-example.
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Suppose now B1 = U(F)�{x3, x4} and obviously U(F)�{x4} ∉ F1. We consider
several cases.

Suppose z = x2. Again, as above x2 ∉ B2 ∪ B3 ∪ B4, �Fx2 � = n−1
2 and there exists

y ∉ B
i

∪ {x2, x3, x4} since otherwise we would have

F1 = {U(F), U(F)�{x2}, U(F)�{x3}, U(F)�{x3, x4},
U(F)�{x2, x3}, U(F)�{x2, x4}, U(F)�{x2, x3, x4}}

and that is absurd since, (U(F)�{x2, x4}) ∪ (U(F)�{x3, x4}) = U(F)�{x4} ∉ F1.

We then obtain F
y

= F
x2, which is absurd.

Suppose z = x4. This case is similar to the previous.

Suppose z = x3. Since x3 ∈ U(F) and x3 ∈ U(F)�{x2} we have �F
x3 � ≥ n0−3

2 . Since
U(F)�{x4} ∉ F1, then U(F)�{x3, x4}∪X3 = U(F), ∀X3 ∈ F3, which means F

x3 � Fx4 .

Then, we have �F
x3 � = n0−3

2 and �F
x4 � = n0−1

2 . It follows that U(F)�{x3} is the only set
having x4 and not having x3. But, from Corollary 3.1.11, one has that there are at
least two x3-problematic sets different from U(F)�{x3}. Let P be one x3-problematic
set different from U(F)�{x3}. Then P ∪{x3} ∈ F and since F

x3 ⊂ Fx4, we have x4 ∈ P
and x3 not in P , which is absurd.

The case �F1� = 8 is similar. �

3.2 A relation between n
0

and q
0

Now we present one of the most important results about Frankl conjecture that is
obtained by studying the properties of an eventual counterexample and that has not
been improved since 1994. Lo Faro proved it in [10] and it was later rediscovered by
Roberts and Simpson in [22]. However, we will show that the proof in [22] is flawed.

Theorem 3.2.1. i. If ∀x ∈ U(F), we have U(F
x̄

) = U(F)�{x}, then n0 ≥ 4q0 − 1.

ii. If there exists x ∈ U(F) such that U(F
x̄

) ≠ U(F)�{x}, then n0 ≥ 4q0 + 1.

To prove this, one needs to understand how dominance between elements can
be established. We define some concepts and prove some results to help us
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understand it.
We are considering minimal counterexamples to the conjecture but there might be
several counterexamples with n0 sets and with q0 elements in its universe. Now, we
will try to organize them and select a more specific counterexample among those.
Let F be the set of all counterexamples in these conditions.
The first result will be stated without proof.

Theorem 3.2.2. Let x, y ∈ [q0], with x ≠ y. If �F
y

� + 4 ≥ �F
x

�, then y ∈ U(F
x̄

).
Given F ∈ F, we set:

mF ∶=min{�F
x

� ∶ x ∈ U(F)}
M ∶=max{mF ∶ F ∈ F}
FM ∶= {F ∈ F ∶mF =M}
FM

r

∶= {F ∈ FM � �{x ∈ U(F) ∶ �F
x

� =M}� = r}
r0 ∶=min{r ∈ N ∶ FM

r

≠ �}
G ∶= FM

r0

It is clear that there exists a counterexample to the conjecture if and only if G ≠ �.
Now, we define an equivalence relation ≈ on G by F ≈ G⇔ �F

x

� = �G
x

�, ∀x ∈ [q0] and
denote the class of F by [F] and a total ordering < on G� ≈ by [F] < [G]⇔ �F

k

� < �G
k

�,
where k = min{i ∈ [q0] ∶ �Fi

� ≠ �G
i

�}. Note that < is well defined since k does not
depend on the representative chosen. We now consider F ∈ [F], where F is the
maximum in (G� ≈,≤).
Theorem 3.2.3. Let x, y ∈ U(F), with x ≠ y. If y dominates x, i.e., if x ∉ U(F

ȳ

), then
S ∪ {x} ∈ F , for all S ∈ F

y

.

Proof. Let A = {S ∈ F
y

∶ S ∪ {x} ∉ F}. We want to prove that A = �. To do so, defineF ′ = (F�A) ∪ (A � {{x}}). It is easy to see that F ′ is union-closed and F ′ ∈ F. One
has �F

z

� = �F ′
z

�, ∀z ∈ [q0]�{x} and also �F
x

� ≤ �F ′
x

� and �F
x

� = �F ′
x

�⇔ A = �. Assume
for a contradiction that �F

x

� < �F ′
x

�. We consider two cases:
Case 1 ∶ Suppose �F

x

� = �F1� =M .
If r0 = 1, then x = 1 and mF ′ >mF =M since mF ′ = �F ′

x

� > �F
x

� or ∃z ∈ [q0]�{x} ∶mF ′ =�F ′
z

� = �F
z

� > �F
x

�, because r0 = 1. That contradicts the maximality of M .
If, on the other hand, r0 > 1, then there is an element z ∈ [q0]�{x} such that �F ′

z

� =�F
z

� =M and so F ′ ∈ FM . Also, {x ∈ [q0] ∶ �F ′
x

� =M} = {x ∈ [q0] ∶ �Fx

� =M}�{x} and soF ′ ∈ FM

r0−1, which contradicts the minimality of r0.
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Case 2 ∶ Suppose �F
x

� >M .
In this case F ′ ∈ G. If necessary, reorder the elements in F ′ to have �F ′1� ≤ �F ′2�� ≤�F ′

q0
�. We have that �F ′

z

� = �F
z

�, ∀z ∈ [q0]�{x}, but �F ′
x

� < �F
x

� and so [F] < [F ′], which
is absurd since [F] is the maximum. Hence, we have A = �, as desired. �
Corollary 3.2.4. Let x, y ∈ U(F), with x ≠ y. If y dominates x, then �F

y

� ≤ 2�F
x

�.
Proof. By the previous theorem, we have an injection ' ∶ F

y

�F
x

→ F
x

given by
S � S ∪ {x}. Hence, �F

y

� = �F
x

� + �F
y

�F
x

� ≤ 2�F
x

�. �
Corollary 3.2.5. For each x ∈ [q0], x can only be dominated by at most one element.

Proof. Suppose there are two different elements y, z ∈ [q0]�{x} such that x ∉ U(F
ȳ

)
and x ∉ U(F

z̄

). By the Theorem 3.2.3, we have that S∪{x} ∈ F
x

⊆ F
z

,∀S ∈ F
y

, which
implies S ∈ F

z

and so F
y

⊆ F
z

. Analogously, we get F
z

⊆ F
y

and so F
y

= F
z

, which is
absurd from Theorem 3.1.5. �
Remark 7. One can write the previous corollary as follows: for each x ∈ [q0], we
have 1 ≤ �{i ∈ [q0] ∶ x ∉ U(F

ī

)}� ≤ 2.
Corollary 3.2.6. M = �F1� ≥ 2q0 − 5.
Proof. Consider the union-closed family F1̄. Since F is a minimal counterexample
to the conjecture, there exists z ∈ [q0]�{1} such that �(F1̄)z � ≥ n0−M

2 . By the previous
corollary, we have that �{i ∈ [q0]�{1, z} ∶ {1, z} ⊆ U(F

ī

)}� ≥ q0 − 4.
So z belongs to at least q0 − 3 sets in F1, because {1, z} is also contained in U(F) =[q0], and to at least n0−M

2 sets in F1̄. Since F is a counterexample to the conjecture,
one has �F

z

� ≤ n0−1
2 . It follows that n0−M

2 + q0 − 3 ≤ n0−1
2 . Since

n0 −M
2

+ q0 − 3 ≤ n0 − 1
2

⇔
⇔ n0 −M

2

≤ n0 + 5 − 2q0
2

⇔
⇔ n0 −M ≤ n0 + 5 − 2q0⇔⇔ M ≥ 2q0 − 5,

we have the desired result. �
Now, we are ready to prove Theorem 3.2.1, which we recall.



3.2. A RELATION BETWEEN N0 AND Q0 37

Theorem 3.2.1. i. If ∀x ∈ U(F), we have U(F
x̄

) = U(F)�{x}, then n0 ≥ 4q0 − 1.

ii. If there exists x ∈ U(F) such that U(F
x̄

) ≠ U(F)�{x}, then n0 ≥ 4q0 + 1.

Proof.

i. We repeat the argument used to prove the last corollary, only here we have�{i ∈ [q0]�{1, z} ∶ {1, z} ⊆ U(F
ī

)}� = q0 − 2 and so we can prove that M ≥ 2q0 − 1.
Hence, n0−1

2 ≥M ≥ 2q0 − 1 and so n0 ≥ 4q0 − 1.
ii. Let x be such that U(F

x̄

) ≠ U(F)�{x} and let y ≠ x such that y ∉ U(F
x̄

). By
Theorem 3.2.2 we have that �F

y

� + 5 ≤ �F
x

�. Thus, n0−1
2 ≥ �Fx

� ≥ �F
y

� + 5 ≥ �F1� + 5 ≥
2q0, by the previous corollary and the result follows. �

As pointed out earlier, this result was rediscovered in a slightly different form by
Roberts and Simpson [22]. In the paper they prove that if q is the minimum cardi-
nality of U(F) taken over all counterexamples (assuming the conjecture fails), then
any other counterexample must have at least 4q − 1 sets. However, to prove this,
the authors prove some auxiliary results and in the proof of Theorem 3 there is a
flaw. The authors define the subfamily D ∶= F�{U(F)}�C and claim that, if x ∈H and
a ∉ H, then �D

x

� = n − q and �D
a

� < n − q, where n = �F �−12 and q = �U(F)�. To prove
so, they assume w.l.o.g. that �D

a

� is maximal for a ∈ S�H. Then they consider two
different cases, but there is one case missing. First, he obtains a contradiction if
there exists b ≠ a such that a ∉ U(F

b̄

). Since the contradiction is obtaining using the
maximality of a, then it means that the b ∈ S�H. But in the second case, the authors
consider is when a ∈ U(F

b̄

), for all b ≠ a, with b ∈ S. Nothing is said about the case
when there is b ∈H such that a ∉ U(F

b̄

).
Still, this result is strong because improving a lower bound on the universe of the
family for which the conjecture is known to hold also improves the lower bound on
member-sets for which the conjecture is known to hold.
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Chapter 4

The Salzborn Formulation

In this chapter, we present a very surprising equivalent formulation of the union-
closed sets conjecture attributed to Salzborn by Piotr Wójcik [27]. The main advan-
tage that this formulation seems to have over the usual one is that it only concerns a
subclass of union-closed families, which we call normalized. In Section 4.2 we study
the structure of normalized families and then we present the main result, which is
the new formulation of the conjecture. The ideas for the latter part of the section
are based on the ones in Piotr Wójcik’s paper [27]. In the last section, we present
different ways of formalizing the ideas of the previous section based on the ideas
from Vaughan and Johnson [14] and some other results concerning normalized
families and the conjecture are obtained.

4.1 Notation

Throughout this chapter, we use the following notation: Given a family of sets F ,
and X ⊆ U(F) we set

• F⊆X ∶= {A ∈ F ∶ A ⊆X}
• F�⊆X ∶= {A ∈ F ∶ A �⊆X}
• F⊇X ∶= {A ∈ F ∶ A ⊇X}
• F�⊇X ∶= {A ∈ F ∶ A �⊇X}
• F

X

∶= {A ∈ F ∶ A ∩X ≠ �}
39
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• The family of all ∪−irreducible sets of a family F is denoted by J(F).
• As done before, given a set S ⊆ U(F), F ⊖ S will denote the family {X�S ∶X ∈F}. Also, F c = {Xc �X ∈ F} and we will call U

i

to U(F
ī

), as done in Chapter 1.

4.2 The Salzborn formulation

We now define a subclass of families that will play a central role in this chapter.

Definition 4.2.1. A family of sets F is said to be normalized if it’s a separating
union-closed family such that � ∈ F and �U(F)� = �F � − 1.

We will also call normalized to families which are separating, without the empty set
and such that �U(F)� = �F �.
Corollary 1.2.8 reinforces the idea that the condition of being normalized is a strong
one, in the sense that a separating family must have at least n sets and normalized
families have exactly n + 1 sets. In fact, every set of a normalized family F is either
the universe of the family or a set of the form U

i

, for some i ∈ U(F). Since none of
the sets U

i

is equal to U(F) because every element of the universe must belong to
some set in the family, we have that there exists x ∈ U(F) such that U

x

= �, which
means that x belongs to every set in the family.

Proposition 4.2.2. Let F be a separating union-closed family of sets. There is an
element x ∈ U(F) such that U(F)�{x} ∈ F .

Proof. We will deal with the family F c and prove it has a singleton. We start by
observing that F c is also separating since if there is a set in F such that x1 ∈ S
and x2 ∉ S, for some x1, x2 ∈ U(F), the Sc ∈ F c and x2 ∈ Sc, x1 ∉ Sc. Obviously, we
can assume that there is a set S ∈ F such that �S� > 1. Let S = {x1, . . . , xk

} be an
arbitrary set in F c. Let T ∈ F c such that x1 ∈ T and x2 ∉ T or vice-versa. Then S ∩ T
is a set that belongs to the family (since F c is intersection-closed) whose cardinality
is smaller than the cardinality of S, but still greater or equal to one, since x1 or x2

belong to S ∩ T , depending on which of the elements belongs to T . Iterating this
process, it is obvious that there must be a singleton in F c . �
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Similarly, we see that in a totally separating union-closed family, all sets of the form
U(F)�{x}, x ∈ U(F) belong to the family, which in particular implies that there are
no normalized totally separating union-closed families of sets.

Proposition 4.2.3. Let F be an union-closed family and i, j, k ∈ U(F). If U
i

= U
j

∪U
k

,
then F

i

⊆ F
j

and F
i

⊆ F
k

. In particular, �F
i

� ≤ �F
j

� and �F
i

� ≤ �F
k

�.
Proof. Suppose we have U

i

= U
j

∪ U
k

. Let S ∈ F
j̄

and suppose i ∈ S. Then,
i ∈ S ⊆ U

j

⊆ U
i

, which is absurd since i ∉ U
i

. Hence, S ∈ F
j̄

⇒ i ∉ S. We can proceed
similarly for k. Then we have i ∈ S ⇒ {j, k} ⊆ S and the result follows. �
Now, we present a concept strictly related with the class of normalized families.

Definition 4.2.4. Given a family of sets F , the family F∗ = {F
X

∶X ⊆ U(F)} is called
the dual family of F .

Now, we present some lemmas that give us structural properties of the dual family
of an union-closed family F .

Lemma 4.2.5. Let F be any family of sets. Then:

i. F∗ is union-closed ;

ii. � ∈ F∗;
iii. U(F∗) = F�{�}.

Proof. Let S,T ∈ F∗. By definition, S = F
X

and T = F
Y

, for some X,Y ⊆ U(F).
Obviously, X ∪ Y ⊆ U(F) and we have F

X∪Y = FX

∪ F
Y

since the intersection of a
set with X ∪ Y is nonempty if and only if its intersection with X or Y is nonempty.
Hence, i. holds. Also, F� = � and so ii. holds. It is clear that U(F∗) ⊆ F�{�} and
since � ≠X ∈ F , implies X ∈ F

X

⊆ U(F∗), one sees that F�{�} ⊆ U(F∗), and so iii.

holds. �
Lemma 4.2.6. Let F be an union-closed family with � ∈ F and let G be a generating
subfamily of F , i.e. every set in F is the union of sets from G. Then:

i. G∗ = {G�⊆X �X ∈ F},
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ii. �G∗� = �F �,
iii. G∗ is separating, i.e., for every X, Y ∈ U(G∗),X ≠ Y, there exists a set in G∗

which separates X and Y .

iv. J(G∗) ⊆ {G
x

�x ∈ U(G)} ∪ {�}.
Proof.

i. We have U(G) = U(F). Also, notice that G�⊆C = GCc . By definition, G∗ = {G
X

∶ X ⊆
U(G)} = {G

X

∶ X ⊆ U(F)} = {G
X

c ∶ X ⊆ U(F)} = {G�⊆X ∶ X ⊆ U(F)}. We will now
see that for each X ⊆ U(F) and G ∈ G, one has G ⊆X iff G ⊆ U(G⊆X). Let X and
G in the conditions defined. It is obvious that if G ⊆ X, then G ⊆ U(G⊆X) since
G ∈ G⊆X . Conversely, we have G ⊆ U(G⊆X) ⊆X. Hence, G∗ = {G�⊆X �X ⊆ U(F)} ={G�⊆U(G⊆X) �X ⊆ U(F)}.
We now claim that {U(G⊆X) � X ⊆ U(F)} = F , and i. follows. Since F is union-
closed, it is clear that {U(G⊆X) � X ⊆ U(F)} ⊆ F . Conversely, let S ∈ F . Then
S = U(G⊆S), because G is a subfamily of generators.

ii. It is obvious from i. that �G∗� ≤ �F �. But it is true that for every X,Y ∈ F , X ≠ Y ⇒G�⊆X ≠ G�⊆Y , since if G�⊆X = G�⊆Y then X = U(G⊆X) = U(G⊆Y ) = Y , and so, ii. holds.

iii. Let X,Y ∈ U(G∗) = G��, X ≠ Y . Assume that X �⊆ Y (the reciprocal case is
analogous). Then X ∈ G�⊆Y and Y ∉ G�⊆Y . So, G�⊆Y separates X and Y . By i. we
have G�⊆Y ∈ G∗.

iv. Note that G
X∪Y = GX ∪ GY . Let M ∈ J(G∗). Then, by definition of G∗, M = G

X

,

for some X ⊆ U(G). If �X � = 1, then we are done. Else, �X � = s ≥ 2, say
X = {x1, x2,�, xs

}, then M = �s

i=1 Gxi . If there exists x
i

such that M = G
xi

we are done. If not, we have that M is not an element in J(G∗) becauseG
xi ∈ G∗, ∀i ∈ [s]. �

Remark 8. Let X,Y ∈ F . If X ⊆ Y , then for every set Z such that Z �⊆ Y , one has
Z �⊆ X, which means that in this case, G�⊆Y ⊆ G�⊆X . From i. of the previous lemma,
it follows that the lattice of G∗ is the dual lattice of F . Also, in ii., we show that the
map from F to G∗ that maps X to G�⊆X is a bijection.

Lemma 4.2.7. If F is a union-closed family of sets with � ∈ F , then F∗ is a normal-
ized family and �F∗� = �F �.
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Proof. Follows from previous lemmas with G = F in the previous lemma. �
The next lemma exhibits a property that suggests that normalized families have a
particularly regular structure, in some sense.

Lemma 4.2.8. If F is a normalized family of sets, then for every X ∈ F , �F�⊇X � = �X �.
Proof. For each x ∈ U(F), let TF(x) = U(Fx̄

). We will show that for each X ∈ F and
x ∈ U(F) we have:

i. x ∈X iff X �⊆ TF(x),
ii. TF is a bijection from U(F) to F�U(F) and

iii. TF(X) = F�⊇X .

Clearly, Lemma 4.2.8 follows from properties ii. and iii. since from ii. one has�TF(X)� = �X � and from iii. it follows that �TF(X)� = �F�⊇X �.
Suppose x ∈ X. Since x ∉ TF(x), then X �⊆ TF(x). Now, suppose X �⊆ TF(x). Then
X ∉ F

x̄

and so x ∈X. So i. holds.

To check ii., let y, z ∈ U(F), y ≠ z. Since F is separating we can consider A ∈ F that
separates y and z. We can assume without loss of generality y ∈ A (and so, z ∉ A).
Then, by i. we have A �⊆ TF(y) and A ⊆ TF(z), so TF(z) ≠ TF(y). Thus TF is an
injection.
Given that �U(F)� = �(F�U(F))�, since F is normalized and that TF(U(F)) ⊆ F�U(F),
because for all x ∈ U(F), TF(x) = U(Fx̄

) ∈ F and x ∉ TF(x), one has ii..

By i., TF(X) ⊆ F�⊇X . Now if x ∈ T −1F (F�⊇X), then X �⊆ TF(x) and so, by i. we have
x ∈ X. Hence, T −1F (F�⊇X) ⊆ X. The last inclusion yields F�⊇X ⊆ TF(X). Therefore, iii.
holds. �
The next theorem provides an equivalent formulation of the union-closed sets con-
jecture that concerns solely normalized families, which sounds very surprising be-
cause normalization is a very strong condition to impose on the families to study.
However, this formulation hasn’t yet produced any strong new results about union-
closed families.

Theorem 4.2.9. Let n ≥ 2 and k ≥ 0. The following assertions are equivalent:
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i. For every union-closed family F with �F � = n there exists an element x ∈ U(F)
such that �F

x

� ≥ k.
ii. For every union-closed family F with �F � = n and � ∈ F there exists a ∪−irreducible

set M such that �F�⊇M � ≥ k.

iii. For every normalized family F with �F � = n there exists a ∪−irreducible set M ofF such that �F�⊇M � ≥ k.

iv. For every normalized family F with �F � = n there exists a ∪−irreducible set M ofF such that �M � ≥ k.
Proof. Let us fix n and k. Clearly ii. implies iii.. The equivalence of iii. and iv.

follows from the previous lemma. So we will only prove i.⇒ ii. and iv.⇒ i..

i. ⇒ ii.. Suppose i. holds. Let F be an union-closed family of sets such that� ∈ F and let n = �F � and G = J(F). It is obvious that G satisfies the conditions of
Lemma 4.2.6. Applying Lemmas 4.2.5 and 4.2.6 (i. of the former ii. of the latter,
in particular) we get that G∗ satisfies assumptions of i.. Therefore, there exists an
element G ∈ U(G∗) such that �G∗�∋G ≥ k. So G ∈ G by Lemma 4.2.5 (iii.). Hence,
Lemma 4.2.6 (i.) gives G∗∋G = {G�⊆X �X ∈ F and G ∈ G�⊆X} = {G�⊆X �X ∈ F�⊇G}.
Thus, �F�⊇G� = �G∗∋G� ≥ k and ii. follows.

iv.⇒ i.. Suppose now that iv. holds. Let F be an union-closed family of sets such
that � ∈ F and let �F � = n. By Lemma 4.2.7, F∗ satisfies the conditions of iv.. From
iv. and Lemma 4.2.6 (iv.) it follows that there exists x ∈ U(F) such that F

x

∈ J(F∗)
and �F

x

� ≥ k. So i. holds. �
Note that in case k = n

2 we get different formulations of the union-closed sets
conjecture. The one in iv. is known as the Salzborn formulation of Frankl conjecture.

4.3 Other constructions

In the previous section, we present a way to build a dual family of F , F∗. Here we
present an alternative way to build similar dual families as the one above, and some
ideas based on the ones proposed by Vaughan and Johnson in [14]. Consider
an union-closed family F = {X1,�,Xn

} with universe [m] and a subfamily H =
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{H1,�,Hs

} ⊆ F . For each x ∈ [m], set H(x) = {i ∈ [s] ∶ x ∈ H
i

}, ¯H(x) = {i ∈ [s] ∶
x ∉ H

i

} and H ′(F) = {H(x) ∶ x ∈ U(H)}. Then we can define H+ as the family
generated by H ′(F). If we recall iv. of Lemma 4.2.6, it becomes clear that whenH is a subfamily of generators, H+ and H∗ are basically the same except that we
replace each set by its index. It is very easy to see that the proof of the equivalence
between the Salzborn formulation and the usual one could be adapted using this
new way of constructing the sets. This is specially useful because it allows us to
easily create normalized families with any size we want by constructing F+, which
is always normalized, like F∗.
Example 7. Suppose we want to construct a normalized family of sets with size 6.
To do so, we need an union-closed family with 6 sets, for example, F = P([3])�{�,{1}} ={{2},{3},{1,2},{1,3},{2,3},{1,2,3}}. One has F (1) = {3,4,6}, F (2) = {1,3,5,6}
and F (3) = {2,4,5,6}. Now, we simply build

F+ = �{{3,4,6},{1,3,5,6},{2,4,5,6}}�= {{3,4,6},{1,3,5,6},{2,4,5,6},{1,3,4,5,6},{2,3,4,5,6},{1,2,3,4,5,6}},
which is normalized with size 6.

Let F be an union-closed family of sets and G = {G1,�,Gt

} a subfamily of gener-
ators. The following results appear in [14] in the particular case where the family
of generators is J(F). Since these results hold in general we present the general
case.

Lemma 4.3.1. Let X ∈ F and suppose X ≠ U(F), say X = U�{y1,�yk}. Put I =�k

i=1 ¯G(y
i

). Then X = �
j∈I Gj

.

Proof. Let J be the set of all indices i such that G
i

⊆ X. Then, since X ∈ F ,
X = �

j∈J Gj

. Set I = �k

i=1 ¯G(y
i

). If j ∈ J then G
j

⊆X, which means j ∈ ¯G(y
i

),∀i ∈ [k],
i.e., j ∈ I. So, J ⊆ I. Conversely, j ∈ I ⇒ j ∈ ¯G(y

i

),∀i ∈ [k] ⇒ ∀y
i

, y
i

∉ G
j

⇒ G
j

⊆
X ⇒ j ∈ J. Hence, we have I = J and the lemma follows. �
Next, we define the correspondence � from F�{U(F)} to (G+)c�{�} that maps X =
U(F)�{y1,�, yk} to �k

i=1 ¯G(y
i

).
Lemma 4.3.2. Let X,Y ∈ F .

i. X = �
i∈�(X)Gi

;
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ii. �(X) = �(Y ) if and only if X = Y ;

iii. If X ⊆ Y, then �(X) ⊆ �(Y ) ;

iv. �(X) ∪ �(Y ) ⊆ �(X ∪ Y ).
Proof.

i. This follows from the previous lemma.

ii. This follows from i..

iii. Let X = U(F)�{y1, . . . , yk} for some k. and suppose X ⊆ Y . Then, one has that
Y = U(F)�{y1, . . . , yr} for some r ≤ k. Then �(X) = �k

i=1 ¯G(y
i

) ⊆ �r

i=1 ¯G(y
i

) =
�(Y ).

iv. From iii. we know that �(X) ⊆ �(X ∪ Y ) and �(Y ) ⊆ �(X ∪ Y ). Therefore, we
have �(X) ∪ �(Y ) ⊆ �(X ∪ Y ). �

So, we have that this correspondence is order-preserving (from iii.) and one-to-one
(from ii.). Now, for every nonempty set S ∈ (G+)c, we have S = (�

x∈X G(x))c =�
x∈X ¯G(x) for some X ⊆ U(F). We can also see that S = �(�

j∈S Gj

) and so the
correspondence is onto. Let us call T = �

j∈S Gj

. We have �(�
j∈S Gj

) = �
t∈T c ¯G(t).

Now, if t ∈ T c, then S ⊆ ¯G(t) because t is not element of any G
i

, i ∈ S and so
S ⊆ �(�

j∈S Gj

). Conversely, we have x ∈ X, and so x ∈ T c, since an element in X

does not belong to any G
i

, i ∈ S. Therefore, X ⊆ T c ⇒ �(�
j∈S Gj

) = �
t∈T c ¯G(t) ⊆�

t∈X ¯G(t) = S. The following theorem follows trivially:

Theorem 4.3.3. Let F be an union-closed family of sets and G a subfamily of
generators. Then, �F � = �G+�.
Proof. This follows immediately form the previous lemma and the observation
above. �
This is not surprising because we knew from the previous section that this was the
case (Lemma 4.2.6, ii.). Also, the fact that the correspondence between F and(G+)c is order preserving implies that both of these families have the same lattice
structure, which we already knew from the previous section (the lattice correspon-
dent to F+ is the dual lattice of the one corresponding to F).
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It is now very easy to show that the usual formulation of Frankl conjecture implies
the Salzborn formulation using the particular case where G = J(F).
Theorem 4.3.4. If F is a normalized family of n sets and F+ satisfies the union-
closed sets conjecture, then F satisfies the Salzborn formulation of the conjecture.

Proof. Let F be a normalized family of n sets and let J(F) = {M
i

∶ i ∈ [t]}, where t =�J(F)�. We have that J ′(F) is a family of n sets in [t] and since �F+� = n we know thatF+ = J ′(F), and so we have that J ′(F) is union-closed. If F+ = J ′(F) = {X1,�Xn

}
satisfies the union-closed sets conjecture, then there is an element a ∈ [t] in at least
half the sets of F+. Now by definition of J ′(F) a ∈ X

i

⇔ i ∈ M
a

. Therefore, if we
have a in at least n

2 sets of F+, we have �M
a

� ≥ n

2 and so F satisfies the Salzborn
formulation of the union-closed sets conjecture. �
Corollary 4.3.5. If F is an union-closed normalized family with universe U such that� ∉ F , then there is x ∈ U such that x is an element of every set of the family.

Proof. Since F is normalized, we have that J ′(F) is union-closed. That means that[t] = U(J ′(F)) ∈ J ′(F), where t = �J(F)� and from the definition of J ′(F) used as
above follows that there is an element a in every ∪−irreducible set, and that implies
that a is in every set. �
We now present a generalization of the concept of separation in union-closed fam-
ilies, which we call independence. Independent families will have a relevant role in
the construction of dual families.

Definition 4.3.6. A family F of sets on [n] is called independent if, ∀i ∈ [n],∀S ⊆[n] − {i}, it satisfies one of the following conditions :

• There is a set T in F such that S ∩ T ≠ �∧ i ∉ T ;

• There is a set T in F such that S ∩ T = �∧ i ∈ T .

We say that a family is dependent if it is not independent.

It is easy to see by the definition of independent families that they are in particular
separating, when we have �S� = 1, the definition coincides with the definition of
separating family. The following proposition will help understanding the relevance
of this concept when studying dual families.



48 CHAPTER 4. THE SALZBORN FORMULATION

Proposition 4.3.7. Let I be a family of sets. Then I is dependent if and only if
there exists i ∈ U(I) and S ⊆ U(I) − {i} such that I

i

= �
j∈S Ij.

Proof. Let I be a dependent family of sets. Then ∃i ∈ U(I), S ⊆ U(I)�{i} such that
given a set T ∈ I, one has that S ∩T = �∨ i ∈ T and S ∩T ≠ �∨ i ∉ T . Hence, if i ∈ T ,
then S ∩ T ≠ �. If not, S ∩ T = �. So, we have that if T ∈ I

i

, then there is j ∈ S ∩ T ,
which implies that T ∈ I

j

and so T ∈ �
k∈S Ik. Thus I

i

⊆ �
j∈S Ij. Analogously, one has�

j∈S Ij ⊆ Ii, and so I
i

= �
j∈S Ij.

Conversely, suppose there exists i ∈ U(I) and S ⊆ U(I)�{i} such that I
i

= �
j∈S Ij.

From I
i

⊆ �
j∈S Ij it follows that i ∈ T ⇒ ∃k ∈ S ∶ k ∈ T. From �

j∈S Ij ⊆ Ii, it follows that∃k ∈ S ∶ k ∈ T ⇒ i ∈ T. Hence, I is dependent. �
It is now easy to see the relation between independent families and dual families.
If we have an independent family F and we construct F+ (or G+ for a ∪-generating
subfamily G), what we have before generating is a family of ∪-irreducible sets.

Given a totally separating union-closed family F we can easily see that (J(F))+ is
generated by an antichain A in [t] where t is the number of ∪-irreducible sets of F
and �A� = �U(F)�.
Remark 9. If the family F = {X1,�,Xn

} is totally separating, then J(F+) is an
antichain since J(F+) ⊆ {F (x) ∶ x ∈ U(F)}, where F (x) = {t ∶ x ∈ X

t

} and {F (x) ∶
x ∈ U(F)} is an antichain because F is totally separating. In this case, we can see
that the join-irreducible sets of the normalized family F+ are exactly the sets of the
form U

k

, with �F
k̄

� = 1. It is clear that, if �F
k̄

� = 1, then U
k

is join-irreducible. If we
have a join-irreducible set J , then it does not have any proper subset in the family,
because if it did, then it had a proper subset which is a join-irreducible set and that
is not possible, since J(F+) is an antichain. So, if some U

k

is a join-irreducible set
and has no subsets, then it is the only set that does not have k as its element.

It follows the following theorem.

Theorem 4.3.8. If F is a totally separating union-closed family with �U(F)� =m and
t ∪-irreducible sets, then we have

m ≤ � t� t2��.
Also, this condition is sharp.
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Proof. The result follows from the observations above, together with Sperner’s
theorem that states that the largest antichain in [t] has � t� t

2
�� sets.

To see that the bound is sharp, given t ∈ N, take A as the set of subsets of [t] with
size � t2�. Consider A+. It is not hard to see that A is independent and so A+ has t∪-irreducible sets. �
Theorem 4.3.9. [Kleitman, [7]] If F is a separating union-closed family with �U(F)� =
m and t ∪-irreducible sets, then we have

t ≤ � m�m2 �� + 2

m

m
.

Corollary 4.3.10. If I is a family such that �I � =m and �U(I)� = t ≥ � m�m
2
��+ 2m

m

, then I
is not independent.

Proof. Notice that if I was independent, then I+ would contradict Theorem 4.3.9. �
Note that any improvement on this bound will result on an improvement of the
previous one.

It is very easy to give examples of a normalized family of any size, if we consider the
staircase family {[1],�, [n]}. But the example above shows us a process that can
be used to build every normalized family with size n by choosing different original
union-closed families as the next lemma shows.

Lemma 4.3.11. Let G be a normalized family of sets. Then G = F+ for some F
independent union-closed family of sets.

Proof. Let G = {G1,�,Gn

} be a normalized family of n sets and J(G) = {M1,�,Mt

}.
We will see that G = (J(G)+)+. The family (J(G)+)+ is union-closed. Therefore,
to show that G ⊆ (J(G)+)+ it is enough to show J(G) ⊆ (J(G)+)+. Fixed i ∈ [t],
let {x1,�, xk

} = M
i

∈ J(G) and consider the family J(G)+ = �{Y1,�, Yn

}�, where
Y
i

= {r ∈ [t] � i ∈ M
r

}. Since �J(G)+� = �G� = n, one has that J(G)+ = {Y1,�, Yn

}. By
construction, J(G)+

i

= {Y
x1 ,�Yxk

} and analogously one gets that M
i

= {x1,�, xk

} ∈(J(G)+)+. We have proved that G ⊆ (J(G)+)+.
Conversely, we have to show that J((J(G)+)+) ⊆ G. Since (J(G)+)

i

= {Y
x1 ,�Yxk

},
we have that (J(G)+)+ = �{M1,�,Mt

}� and thus J((J(G)+)+) = {M1,�,Mt

} ⊆ G.
Also, since {M1,�,Mt

} is a family of ∪-irreducible sets, we have that J(G)+ is
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independent and the result follows. �
Example 8. Let F be the following normalized family of size 7:

F = {{1,4,6,7},{2,5,6,7},{3,4,5,6}, [7] − {3}, [7] − {2}, [7] − {1}, [7]}.
We have J(F) = {{1,4,6,7},{3,4,5,6},{2,5,6,7}}. We will build (J(F)+)+ and see
that it coincides with F as the previous lemma guarantees.

J(F)+ = �{{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}�= {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}.
Now, we see that (J(F)+)+ = �{{1,4,6,7},{2,5,6,7},{3,4,5,6}}� = F , as expected.

To emphasize how the concept of independence is stronger than the concept of
separation we will show that there is only one independent normalized family with n

sets, while by definition all normalized families are separating.

Proposition 4.3.12. The only independent normalized family with n sets is the
staircase family F = {[1],�, [n]}.
Proof. It is easy to see that the staircase family is independent for every n ∈ N. Now
let F be an independent normalized family of sets. Then, J ′(F) is union-closed and,
by independence, all its sets are ∪−irreducible. Let X,Y ∈ J ′(F). Then, X ∪ Y = X
and so Y ⊆X or X ∪Y = Y and so X ⊆ Y , by the irreducibility of sets in J ′(F). Then
J ′(F) is a chain. Since that is the case, it cannot have two elements of the same
rank in the lattice of P([n]). Since it has n sets in [t], where t = �J(F)� ≤ n, then
t = n and it has exactly one element of each rank and it is a chain. Then it must be
the staircase family. �
We already know that it suffices to prove Frankl Conjecture for separating union-
closed families. We know prove a stronger result, that states that it is enough to
prove the conjecture for independent families.

Theorem 4.3.13. It is enough to prove the union-closed sets conjecture for inde-
pendent families.

Proof. Let F be an union-closed family of sets with universe U . If F is not inde-
pendent, then, by Proposition 4.3.7, there is some X ⊆ U(F) and some y ∉ X such
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that J(y) = �
x∈X J(x). Now, consider the family F ⊖ {y}. It is obvious the family is

still union-closed and since we have for every S ∈ F , y ∈ S ⇔ S ∩X ≠ � we know
that the correspondence S � S�{y} is one-to-one and so �F ⊖ {y}� = �F �. So, if the
new family satisfies the conjecture, so does F . If we do this for every element of the
universe under the conditions of the theorem we get an independent family and the
result follows. �
In Theorem 4.3.4, we proved that the usual formulation of Frankl conjecture implies
the Salzborn formulation. Now it is easier to see a link between both formulations.
It is clear that the size of the sets of the family we will generate corresponds to the
frequency of elements in the original family. Although it is not true that the sets we
get to generate are always ∪− irreducible sets, that is the case if the original family
is independent. So, if we have an independent union-closed family G and build G+,
the sets we have before generating, G(x) for x ∈ U(G), are exactly J(G+). It now
becomes obvious that the Salzborn formulation implies the usual one.
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Chapter 5

Up-compression

In this chapter, we see how compression techniques can be used to study union-
closed families. The idea of these techniques is to transform the object of study,
which is in our case union-closed families, into another one of a special type (in our
case upward-closed families) and then study this new object to obtain results about
the initial one. Compression may also be referred to as shifting. This approach
is typical in extremal combinatorics but regarding the study of Frankl Conjecture it
was introduced by Reimer in [19], whose results we present in the first part of the
chapter, and then followed by Rodaro in [23] and Balla, Bollobás and Eccles in [12].
In order to get an idea of how powerful the concept of shifting is, we recommend
reading Gil Kalai’s post in [15].

5.1 Notation

Throughout this chapter we use the following notation:

• If S and T are subsets of [n] we denote by [S,T ] the set {X ⊆ [n] � S ⊆X ⊆ T}
(which is empty when S �⊆ T );

• We denote log2 by log;

• We denote the group of permutations of elements in S by S
S

.

53
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5.2 Upward-Closed Families

In this section, we consider a new class of families, which we call upward-closed
families and present some of its properties

Definition 5.2.1. A family of sets F is said to be upward-closed if, given a set S ∈ F ,
we have that [S,U(F)], i.e., every superset of a set of the family is itself a set of
the family, as long as it is a subset of the universe. These families have also been
called up-closed or up-sets. Analogously, a family F is called downward-closed if,
given a set S ∈ F , we have that T ⊆ S ⇒ T ∈ F , i.e., every subset of a set of the
family is itself a set of the family.

It is obvious that an upward-closed family F is itself an union-closed family, since
given two sets A, B ∈ F , we have A ∪ B is a superset of A (and B) contained in
U(F) and so A ∪ B ∈ F . Also, it is easy to see that Conjecture 1 holds for every
element in the universe of this families because the map '

a

∶ F
ā

→ F
a

defined by
S � S ∪ {a} is well defined and injective for all a ∈ U(F).
Definition 5.2.2. Given a family G of sets, the union-closed family ↑-generated byG is defined by F = {S ⊆ U(G) � ∃G ∈ G such that G ⊆ S} and denoted by F = �G�↑. It
is easy to see that the set of minimal sets in F is the (unique) minimal ↑-generating
set of the family F .

A family of sets (not necessarily union-closed) F such that U(F) = [n] can be seen
as a directed graph whose vertices are the sets, and whose edges are pairs of sets
that differ by exactly one element, directed from the smaller set to the larger set.

Notation 2. Put A � B when there exists i ∈ [n] such that A ∪ {i} = B.

Definition 5.2.3. Let A,B ∈ F . The graph associated to F has set of vertices V (F)
and set of edges E(F), where

V (F) ∶= F ,
E(F) ∶= {(A,B) ∈ F2 ∶ A � B}.

We also define the edge boundary of an upward closed family F as

EB(F) ∶= {(A,B) ∈ E(P[n]) ∶ A ∉ F ,B ∈ F}.



5.3. COMPRESSION 55

Example 9. Let F = {{2},{1,3},{2,4},{1,2,4}}.One has

E(F) = {({2},{2,4}) , ({2,4},{1,2,4})},
and

EB(F) = {(�,{2}), ({1},{1,3}), ({3},{1,3}),({4},{2,4}), ({1,4},{1,2,4}), ({1,2},{1,2,4})}.
Lemma 5.2.4. For every upward closed family of sets F , one has

2 �
F ∈F �F � = n�F � + �EB(F)�

Proof. Start by noticing that for every F ∈ F , �F � = ∑
G�F 1. Similarly, we have for

every F ∈ F , n − �F � = ∑
F�G 1. Now we have,

2 �
F ∈F �F � = �F ∈F �F � + �F ∈F �

G∈F ∶G�F 1 + �F ∈F �
G∉F ∶G�F 1

Now, ∑
F ∈F ∑G∈F ∶G�F 1 = ∑

G∈F ∑G�F 1 since F is upward-closed. Hence,

2 �
F ∈F �F � = �F ∈F �F � + �G∈F �G�F 1 + �EB(F)�

= �
G∈F �G� + �G∈F(n − �G�) + �EB(F)�
= �

G∈F n + �EB(F)�
= n�F � + �EB(F)�.

�
Remark 10. The number of ways we have to choose a set of (minimal) generators of
an upward closed family with universe [m] is the number of ways we have to choose
a totally separating family with m sets, since those are exactly the antichains (see
Remark 9).

5.3 Compression

We start by defining a rising function that subjects a given family to small changes
until we obtain an upward-closed family.
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Definition 5.3.1. Given a family of sets F with universe [n], for A ∈ F and i ∈ [n]
define

RF ,i(A) ∶= ���������
A, if A ∪ {i} ∈ F ,
A ∪ {i}, if A ∪ {i} ∉ F .

Then define the i-rising of F by

R
i

(F) ∶= {R
i

(A) ∶ A ∈ F}.
When there is no doubt about which family we are referring to, we will simply write
R

i

(A) instead of RF ,i(A). It is easy to see that given a family F , the map A� R
i

(A)
is one-to-one. Now, given a family of sets F and a set A ∈ F , define

F
i

∶= ���������
F , if i = 0,
R

i

(F
i−1), if i > 0.

A
i

∶= (RFi−1,i ○RFi−2,i−1 ○ � ○RF0,1)(A).
If A

i

≠ A
i−1 we say A

i−1 rises.

Example 10. When we apply up-compression to the union closed family

F = {{4},{1,2},{3,5},{1,2,4},{3,4,5},{1,2,3,5},{1,2,3,4,5}},
we obtain

• F1 = {{1,4},{1,2},{1,3,5},{1,2,4},{1,3,4,5},{1,2,3,5},{1,2,3,4,5}}
• F2 = {{1,4},{1,2},{1,3,5},{1,2,4},{1,3,4,5},{1,2,3,5},{1,2,3,4,5}}
• F3 = {{1,3,4},{1,2,3},{1,3,5},{1,2,3,4},{1,3,4,5},{1,2,3,5},{1,2,3,4,5}}
• F4 = {{1,3,4},{1,2,3},{1,3,5},{1,2,3,4},{1,3,4,5},{1,2,3,5},{1,2,3,4,5}}
• F5 = {{1,3,4},{1,2,3},{1,3,5},{1,2,3,4},{1,3,4,5},{1,2,3,5},{1,2,3,4,5}}

Lemma 5.3.2. Given A
i−1 ∈ Fi−1, one has A

i−1 ∪ {i} ∈ Fi

and A
i

∪ {i} ∈ F
i

.

Proof. If A
i−1 rises, then A

i

= A
i−1 ∪ {i} ∈ Fi

and also i ∈ A
i

, thus A
i

∪ {i} = A
i

∈ F
i

.

If, on the other hand, A
i

= A
i−1, i.e., RFi−1,i(Ai−1) = A

i−1 one has A
i−1 ∪ {i} ∈ Fi−1,

by definition of the rising function. Also, A
i

∪{i} = A
i−1∪{i} = RFi−1,i(Ai−1∪{i}) ∈ Fi

. �
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Lemma 5.3.3. If F
i−1 is union-closed and C

i−1,Di−1 ∈ Fi−1 are such that D
i−1 =

C
i−1 ∪X for some X ⊆ [n], then C

i

∪X ∈ F
i

. Furthermore, C
i−1 ≠ Ci−1 ∪X implies

C
i

≠ C
i

∪X.

Proof. Suppose we have C
i

∪ X ∉ F
i

. We know that C
i−1 ∪ X ∪ {i} ∈ Fi

and so
C

i−1 ∪X ∪ {i} ≠ Ci

∪X. Therefore, C
i−1 does not rise, i.e., C

i−1 = Ci

, and one has
that C

i

, X and D
i−1 do not contain i. We know, from the previous lemma, that

C
i−1 ∪ {i} ∈ Fi−1, and by closure (C

i−1 ∪ {i}) ∪Di−1 = Di−1 ∪ {i} ∈ Fi−1. Hence, D
i−1

does not rise and C
i

∪X = C
i−1 ∪X =Di−1 =Di

∈ F
i

, a contradiction.

Now, if C
i−1 ≠ Ci−1 ∪X and C

i

= C
i

∪X then we obviously have C
i

≠ C
i−1 and C

i−1
rises. But X ⊆ C

i−1 ∪ {i} and X �⊆ C
i−1 implies i ∈ X and so C

i

= (C
i−1 ∪ {i}) ∪X =

C
i−1 ∪X =Di−1 ∈ Fi−1, and one concludes that C

i−1 does not rise, which is absurd. �
The following lemma shows us that applying the rising operator to a given union-
closed family keeps the structure of the family in the sense that it preserves the
union-closure property.

Lemma 5.3.4. If F is union-closed, then F
i

is union-closed for all i ∈ {0,1,�, n}.
Proof. We will prove this by induction on i. In the case i = 0 there is nothing
to prove. Now assume F

j

is union-closed for all j ∈ {0,1,�, i − 1} and let A
i

,

B
i

∈ F
i

. Set C
i−1 = A

i−1 and D
i−1 = A

i−1 ∪ B
i−1 ∈ Fi−1 in the previous lemma.

Then A
i

∪D
i−1 = A

i

∪ A
i−1 ∪ Bi−1 = A

i

∪ B
i−1 ∈ Fi

. Now, A
i

∪ B
i

is either A
i

∪D
i−1

or A
i

∪D
i−1 ∪ {i}. But, by Lemma 5.3.2, A

i

∪D
i−1 ∈ Fi

implies A
i

∪D
i−1 ∪ {i} ∈ Fi

and
we are done. �

The goal of the compression technique is to obtain an upward-closed family after
applying the rising operator to an union-closed family F . We will now see that this
is the case, since F

n

is always upward-closed. But first, we present an auxiliary
Lemma, which is a consequence of Lemma 5.3.3.

Lemma 5.3.5. Let i, j ∈ [n], where i < j. Let C
i

, D
i

∈ F
i

such that D
i

= C
i

∪X for
some X ⊆ [n]. Then C

j

∪X ∈ F
j

. Furthermore, C
i

≠ C
i

∪X implies C
j

≠ C
j

∪X.

Proof. This result is obtained by repeated application of Lemma 5.3.3. �
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Proposition 5.3.6. F
n

is an upward closed family of sets.

Proof. It is enough to show that A
n

∪ {i} ∈ F
n

, for all A ∈ F , i ∈ [n]. Let i ∈ [n]. We
know, from Lemma 5.3.2, that A

i

∈ F
i

implies A
i

∪ {i} ∈ F
i

. Letting C
i

= A
i

, X = {i}
and j = n in Lemma 5.3.5, one concludes that A

n

∪ {i} ∈ F
n

. �
The next lemma, together with Lemma 5.2.4, will play a crucial role in order to
obtain a lower bound for the average set size of a given union-closed family. To
prove the next lemma we will use Jensen’s inequality, which we recall.

Remark 11. Jensen’s inequality states that for a real convex function ', numbers
x1, x2, . . . , xn

in its domain, and positive weights a
i

, one has

'
��∑a

i

x
i∑a

i

�� ≤ ∑a
i

'(x
i

)∑a
i

.

Lemma 5.3.7. Let F be an union-closed family with U(F) = [n]. Then, the map
from F to F

n

, defined by A� A
n

is a bijection. Also, we have:

1. A ⊆ A
n

;

2. A,B ∈ F , A ≠ B ⇒ [A,A
n

] ∩ [B,B
n

] = �;

3. ∑
A∈F �An

−A� ≤ �F � (n − log(�F �)).
Proof. It is obvious that A� A

n

is a bijection from F to the upward closed family F
n

since it is the composition of bijections RFn−1,n ○RFn−2,n−1 ○ � ○RF0,1. We now need
to prove parts 1–3 of the lemma.

1. For every i ∈ [n], A
i−1 ⊆ Ai

by definition, so A = A0 ⊆ An

.

2. Let A,B ∈ F and suppose that [A,A
n

] ∩ [B,B
n

] ≠ �, i.e., there exists Y ∈[A,A
n

] ∩ [B,B
n

]. Since A,B ⊆ Y we have A ∪ B ⊆ Y ⊆ A
n

. Hence, A ∪ B ∈[A,A
n

]. By closure, A ∪B ∈ F and [A,A
n

] ∩ [A ∪B, (A ∪B)
n

] ≠ �. If B �⊆ A,
then A ≠ A ∪B. So, if we replace B with A ∪B we have A ⊂ B. Therefore, if
2. does not hold, then it does not hold for some A,B ∈ F such that A ⊂ B, thus
we may assume that.

Let C
i

= A, X = B, i = 0 and j = n in Lemma 5.3.5. Since A ≠ A ∪B, we get
A

n

≠ A
n

∪ B which implies B �⊆ A
n

and B ∉ [A,A
n

], which is a contradiction
since B ⊆ Y ⊆ A

n

.
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3. Since A ⊆ A
n

, we know �[A,A
n

]� = 2�An�A�. We have ˙�
A∈F[A,An

] ⊆ P(n), with
the intervals being disjoint by 2., so

�
A∈F �[A,An

]� ≤ 2n
and obviously ∑

A∈F 2�An�A� = ∑
A∈F �[A,An

]� ≤ 2n. Applying Jensen’s inequality
to the function '(x) = 2x, which is convex, with the weights being a

i

= 1,∀i ∈[�F �], we get

2

(�F �−1∑A∈F �An�A�) ≤ �F �−1 �
A∈F 2�An�A� ≤ 2

n�F � .
Then we have

�F �−1 �
A∈F �An

−A� ≤ n − log (�F �) ,
and so

�
A∈F �An

−A� ≤ �F �(n − log (�F �)).
�

Remark 12. It is clear that, given an union-closed family F such that the average
frequency of the elements is greater than half the size of the family, then there is
at least one element in half the sets, and so Frankl conjecture holds for such F ,
i.e., if 1�U(F)� ∑x∈U(F) �Fx

� ≥ �F �2 , then F satisfies Frankl conjecture. In Section 1.3, we
showed an example of an union-closed family F such that the average frequency
is lower than �F �

2 . Since ∑
S∈F �S� = ∑x∈U(F) �Fx

�, then if the average set size is at
least half the size of the universe, i.e., 1�F � ∑S∈F �S� ≥ 1

2 �U(F)�, then F satisfies Frankl
conjecture.

The theorem that follows shows how we can use up-compression in order to obtain
a bound on the average set size of an union-closed family.

Theorem 5.3.8. If F is an union-closed family with universe U(F) = [n], then

∑
A∈F �A��F � ≥ 1

2

log(�F �).
When F = P([n]), both sides of the inequality become n

2 and hence the result is
sharp.
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Proof. We start by considering the set E(P([n]))} defined in 5.2.3. For each A ∈ F ,
define the edge set E

A

∶= {(B,A
n

) ∈ E(P([n])) ∶ B = A
n

−{i}, i ∈ A
n

−A}. Obviously,�E
A

� = �A
n

−A�. Note that the sets E
A

are disjoint.
Now, we claim that E

A

⊆ E([A,A
n

]) ∩ EB(F
n

). We have A ⊆ A
n

and so, A ⊆
A

n

− {i},∀i ∈ A
n

− A, thus E
A

⊆ E([A,A
n

]). On the other hand, A
n

− {i} ∉ F
n

,

for i ∈ A
n

− A, because if that was not the case, we would have B ∈ F such that
B

n

= A
n

− {i} and A,B ∈ F , A ≠ B such that A
n

− {i} ∈ [A,A
n

] ∩ [B,B
n

] which
contradicts the second condition of Lemma 5.3.7. Hence, E

A

⊆ EB(F
n

). It follows
that ∑

A∈F �EA

� ≤ �EB(F
n

)�, or equivalently ∑
A∈F �An

−A� ≤ �EB(F
n

)�. Apply Lemma
5.2.4 to F

n

noticing that ∑
A∈F �An

� = ∑
A∈F �A� +∑A∈F �An

−A�. We have

2 �
A∈F �A� + 2 �A∈F �An

−A� = n �F � + �EB(F
n

)�,
2 �
A∈F �A� + �A∈F �An

−A� ≥ n �F �
By part 3. of Lemma 5.3.7, we get

2 �
A∈F �A� + �F �n − �F � log(�F �) ≥ �F �n,∑
A∈F �A��F � ≥ 1

2

log(�F �).
�

In [23], Rodaro slightly changes the way we consider the rising function by allowing
the family to be risen with respect to the elements of the universe but taken in
different orders. So he defines F

j

= '
j

(F
j−1), where '

j

= RFj−1,aj ○ 'j−1 is called
the rising function with respect to the word w = a1a2 . . . an of the family F , and we
denote it by '

w

. He then uses the following result about the upward-closed family
F = '

w

(F) to generalize the second statement of 5.3.7, by showing that it holds no
matter the order of the elements by which we raise the family.

To do so, we define the notion of principal ideal of a set and present an auxiliary
result that appears in [23] needed to prove the proposition.

Definition 5.3.9. Let F be an union-closed family of sets with universe U and S

a subset of U . We call the principal ideal of S to the set of all the elements of F
containing S and denote it by F[S]. This can be extended to any subfamily G ⊂ F
and so we define the principal ideal generated by G as the set F[G] = �

S∈G F[S].
Remark 13. Clearly, if S ∈ F , then F[S] = {S ∪ T, T ∈ F}.



5.3. COMPRESSION 61

The author also proves that for each G ⊆ F , one has that '
w

∶ F[G] → F [G] is a
bijection, and that the inverse of '

w

∶ F → F is given by

'−1
w

(⌘) = �{f∈F ∶f⊆⌘}f.
Proposition 5.3.10. Let f, g ∈ F and �, ✓ ∈SU . Then f ≠ g if and only if [f,'

w✓

(f)]∩[g,'
w�

(g)] = �.
Proof. Suppose that S ∈ [f,'

w✓

(f)] ∩ [g,'
w�

(g)] ≠ �. In this case we obviously
have f ⊆ '

w�

(g) because f ⊆ S ⊆ '
w�

(g). By the previous theorem, we know g =�{h∈F ∶h⊆'w�(g)} h and so, f is necessarily a subset of g since g is the union of f with
another set. Changing g with f we get the other inclusion g ⊆ f . Hence f = g. Clearly
the other side of the implication holds since f = g ⇒ [f,'

w✓

(f)] ∩ [g,'
w�

(g)] ≠ �
since f is its element. �

Example 11. Consider the union-closed family

F = {{3,4},{2,3,5},{1,2,3,4},{1,3,5,6},{2,3,4,5},{1,2,3,4,5},{1,2,3,5,6},{1,3,4,5,6},{1,2,3,4,5,6}}.
When we apply up-compression to this family defined in the usual way, i.e., with
respect to the word 123456 we obtain the upward-closed family

G = {{1,3,5,6},{1,2,3,5},{1,3,4,5},{1,2,3,4,6},{1,2,3,5,6},{1,3,4,5,6},{2,3,4,5,6},{1,2,3,4,5},{1,2,3,4,5,6}}.
When, for example we apply compression with respect to the word 213456, we get
the upward-closed family

H = {{1,3,5,6},{1,2,3,5},{2,3,4,6},{1,2,3,4,6},{1,2,3,5,6},{1,3,4,5,6},{2,3,4,5,6},{1,2,3,4,5},{1,2,3,4,5,6}}.
Notice that these families are different in the sense that there is no way to rename
the elements of G that makes it equal to H, since 1 has frequency 7 in H and there
is no element in G with frequency 7.

We know that for each word w, the family '
w

(F) is an upward-closed family of sets.
However this families are not necessarily equal for different words w as the example
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above shows. Since the union of upward-closed families with the same universe is
still an upward-closed family of sets, we define for each union-closed family F with
universe U the upward-closed family

U(F) = �
#∈SU 'w#

(F)
where w = a1 . . . an which we call the invariant upward-closed family associated to F .

Using these techniques, in [23], the author obtained an upper bound on the number
of ∪−irreducible sets of an union-closed family, proving that for every union-closed
family F , with �U(F)� = n, one has that �J(F)� ≤ 2

� n�n
2
�� + � n�n

2
�+1�. Despite being a

worse bound than Kleitman’s (see Theorem 4.3.9) it is possible that some better
bounds can be obtained using up-compression.
Also, in [12] the authors prove, using averaging and up-compression techniques,
that Frankl conjecture holds for union-closed families with at least 2

32
�U(F)� sets.

Analogously we can define the i−lowering of F
L
i

(F) ∶= {L
i

(S) ∶ S ∈ F},
where

L
i

(S) ∶= ���������
S, if S�{i} ∈ F ,
S�{i}, if S�{i} ∉ F ,

and

F i ∶= ���������
F , if i = 0,
L
i

(F i−1), if i > 0.
The next theorem gives us a nice relation between up and down-compression and
shows that it both techniques are equivalent in some sense.

Theorem 5.3.11. The following diagramF F c

Fi F i

⋅c
Ri Li⋅c

commutes, where ⋅c is the map F � F c.
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Proof. Let A ∈ F and so Ac ∈ F c. It is enough to see (R
i

(A))c = L
i

(Ac). Suppose
now A ∪ {i} ∈ F . In that case (R

i

(A))c = Ac. Also, notice that Ac − {i} = Ac ∩ {i}c =(A ∪ {i})c ∈ F c since A ∪ {i} ∈ F and so L
i

(Ac) = Ac = (R
i

(A))c.
Now, if A ∪ {i} ∉ F , we have (R

i

(A))c = (A ∪ {i})c = Ac − {i}. Since A ∪ {i} ∉ F , we
know Ac − {i} = (A ∪ {i})c ∉ F c and so L

i

(Ac) = Ac − {i} = (R
i

(A))c.
�

Corollary 5.3.12. Let F be an intersection-closed family. Then Fn is a downward-
closed family of sets.
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Chapter 6

FC-families

In Chapter 1, we proved that a family containing a singleton or a set with two
elements satisfies the conjecture, and that in the first case the element in the
singleton was the one present in at least half the sets in the family, while in the
second case one of the two elements was present in at least half the sets of the
family.

In this section, we present a formalization of that concept and a characterization of
those families due to Poonen [18]. The proof is surprising because it uses discrete
geometry tools to attack this problem, which was something that had not been done
before. We give a couple examples and prove that the result announced for families
with a singleton or with a 2-set cannot be generalized to families having a 3-set.
After Poonen, Vaughan [25] and Morris [17] also explored this concept and the
latter presents a full list of all FC-families with universe having at most 5 elements
and proves the conjecture for families with an universe having at most 9 elements.

6.1 Notation

Throughout this chapter, we will use the following notation:

• If F and G are two families of sets, we put F � G = {S ∪ T ∶ S ∈ F , T ∈ G};
• �⋅, ⋅� will denote the usual inner product in Rn;

• sgn is the sign function in R and is defined as usual: sgn(x) = �x�
x

if x ≠ 0 and
sgn(0) = 0;

65
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• nF
j

denotes the number of sets of cardinality j in F .

6.2 FC-Families

Definition 6.2.1. A family of sets F ′ with universe U(F ′) = [k] is called FC (or
Frankl Complete) if for every union closed family F containing F ′, there exists i ∈ [k]
such that �F

i

� ≥ �F �2 .

Theorem 6.2.2. (Bjorn Poonen) The following are equivalent, for a family F ′ with
U(F ′) = [k]:

1. F ′ is FC.

2. There exist nonnegative real numbers c1,�, ck with sum 1 such that, for every
union-closed family G ⊆ P([k]) with F ′ � G = G, one has ∑k

i=1 ci�Gi� ≥ �G�2 .
Proof. Throughout this proof, we will call F ′-closed to an union-closed family G
allowed in (2), i.e., if G ⊆ P([k]) and F ′ � G = G.(1)⇒ (2) For each F ′-closed family G, we set

X(G) = ��G1� − �G�
2

,�, �G
k

� − �G�
2

� ∈ Rk.

Let C be the convex hull of these points, and let

N = {(x1,�, xk

) ∈ Rk � x
i

< 0, for all i = 1, . . . , k}.
We will prove that C ∩N = �. Suppose the opposite. Then, one has

r�
j=1wj

X(Gj) ∈ N
for some F ′-closed families G1, G2.�, Gr, and for some nonnegative real numbers
w1, w2,�, wr

with sum 1. Since N is open, we may assume the w
j

are rational and
so, we can suppose that the w

j

are nonnegative integers with nonzero sum w (no
longer 1), by multiplying by a common denominator. So we have F ′-closed familiesH1,�,Hw such that

w�
j=1X(Hj) ∈ N ,
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where H1 = � =Hw1 = G1,Hw1+1 = � =Hw1+w2 = G2, etc.

For a positive integer d, let B = {↵1,↵2,�,↵wd

} be a set of wd elements disjoint from[k], and for 1 ≤ s ≤ wd, let B
s

= B�{↵
s

}. Note that B
s

∪B
t

= B, ∀s ≠ t. Consider the
following subset of P([k] ∪B):

F = F ′ ∪ ({B1,B2,�,Bd

} �H1)∪ ({B
d+1,Bd+2,�,B2d} �H2)⋮∪ ({B(w−1)d+1,B(w−1)d+2,�,Bwd

} �Hw)∪ ({B} �P([k])).
We will check that F is an union-closed family of sets. Let X,Y ∈ F . It is obvious
that each of the families F ′, and {B} � P([k]), is union-closed, and so if X and Y

are both in one of these families, then X ∪ Y ∈ F . We now consider all the other
cases:

• If X,Y ∈ {B
id+1,Bid+2,�,B(i+1)d}�Hi+1, i ∈ {0,1,�, w−1}, for some i ∈ {0, . . . , w−

1}, then X ∪ Y ∈ {B} �P([k]) ⊆ F , since B
s

∪B
t

= B, ∀s ≠ t;
• If X ∈ F ′ and Y ∈ {B

id+1,Bid+2,�,B(i+1)d} �Hi+1, for some i ∈ {0,1,�, w − 1}
then let Y = B

j

∪ Z, for some j ∈ {id + 1, id + 2,�, (i + 1)d} and Z ∈ Hi+1. We
have X ∪ Z ∈ F ′ �Hi+1 = Hi+1 (by hypothesis), and so X ∪ Y = X ∪ Z ∪ B

j

∈Hi+1 � {B
id+1,Bid+2,�,B(i+1)d} ⊆ F .

• If X ∈ F ′ and Y ∈ {B} �P([k]), then let Y = B ∪Z, for some Z ⊆ [k]. We have
that X ∪Z ⊆ [k] and so X ∪ Y = B ∪X ∪Z ∈ {B} �P([k]) ⊆ F .

• If X ∈ {B
id+1,Bid+2,�,B(i+1)d} �Hi+1 and Y ∈ {B

jd+1,Bjd+2,�,B(j+1)d} �Hj+1,
for some i, j ∈ {0,1,�, w − 1}, i ≠ j, then let X = B

m

∪ Z, for some m ∈ {id +
1, id + 2,�, (i + 1)d} and Z ∈ Hi+1 and let Y = B

n

∪W, for some n ∈ {jd + 1, jd +
2,�, (j + 1)d} and W ∈Hj+1. We have X ∪ Y = B

n

∪B
m

∪Z ∪W = B ∪Z ∪W ∈{B} �P([k]) ⊆ F .
• If X ∈ {B

id+1,Bid+2,�,B(i+1)d} �Hi+1 and Y ∈ {B} � P([k]), let X = B
j

∪ Z, for
some j ∈ {id + 1, id + 2,�, (i + 1)d} and Z ∈ Hi+1 and Y = B ∪W , for some
W ⊆ [k]. Then, X ∪ Y = B ∪Z ∪W ∈ {B} �P([k]) ⊆ F .
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If i ∈ [k], then

�F
i

� − �F �
2

= ��F ′
i

� − �F ′�
2

� + d���H1
i

� − �H1�
2

� +� + ��Hw

i

� − �Hw�
2

��.
One has that ���H1

i

�− �H1�
2 �+�+��Hw

i

�− �Hw �
2 �� is negative, since it is the ith coordinate

of the point ∑w

j=1X(Hj), which is in N . So for sufficiently large d, we obtain for all
i ∈ [k], �F

i

� − �F �2 < 0, which is absurd since F ′ ⊆ F and F ′ is FC by hypothesis.

So, one has that C ∩ N = �. But C and N are convex, with N open, so by
the separating hyperplane theorem, that can be found in [16] (p.6), there exists
a nonzero vector v = (c1,�, ck) and a real number c such that

�x, v� < c and �y, v� ≥ c,∀x ∈ N , y ∈ C.
We will now prove that we then must also have such a vector that satisfies the
inequalities for c = 0. We start by seeing that c ≥ 0. Assume otherwise, and take
x = � c

2`c′1 ,�, c

2`c′k �, where ` is the number of nonzero entries in v and c′
i

= �c
i

� if c
i

≠ 0,
and 1 otherwise. It is clear that x ∈ N and that if we consider c

i1 ,�, cil to be the
nonzero coordinates of v we have

�x, v� = sgn(c
i1) c

2`
+� + sgn(c

i`
) c
2`
≥ `�

i=1
c

2`
= c

2

> c.
Therefore, c must be nonnegative. We will see that if we have a vector v satisfying
both inequalities for a positive real number c then that same vector satisfies the
inequalities for c = 0. Obviously if we have c > 0 and �y, v� ≥ c,∀y ∈ C, then �y, v� ≥
0,∀y ∈ C. If c

i

≥ 0,∀i ∈ [k], then �x, v� < 0,∀x ∈ N . If there exists i ∈ [k] such that
c
i

< 0, taking x = � (sgn(c1)−1)`c−c
`c

′
1

,�, (sgn(ck)−1)`c−c
`c

′
k

� ∈ N , we have

�x, v� = sgn(c
i1)(sgn(ci1) − 1)`c − c`

+� + sgn(c
i`
)(sgn(ci`) − 1)`c − c

`

Note that each summand is either −c
l

or 2`+1
`

, and the smallest value this sum can
take is (2`+1)c

`

+∑`−1
i=1 −c

`

, when only one summand is 2`+1
`

, since we are assuming that
there exists i ∈ [k] such that c

i

< 0. Hence,

�x, v� ≥ (2` + 1)c
`

+ `−1�
i=1
−c
`
= (1 − `)c

`
+ (2` + 1)c

`
= (` + 2)c

`
> c.

So, we have that there exists a vector v = (c1,�, ck), with c
i

≥ 0,∀i ∈ [k] and such that
c1x1 +�+ ckxk

is nonnegative for (x1, . . . , xk

) ∈ C. By scaling, assume c1 +�+ ck = 1.
For each F ′-closed family G,X(G) ∈ C, one then has

c1��G1� − �G�
2

� +� + c
k

��G
k

� − �G�
2

� ≥ 0,
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which implies

c1�G1� +� + ck�Gk� ≥ (c1 +� + ck) �G�
2

= �G�
2

.

So (2) holds.

(2) ⇒ (1) Let F be an union-closed family of sets such that F ′ ⊆ F and let B =
U(F) − [k]. We have that each set in F can be written as S ∪ T, with S ⊆ B and
T ⊆ [k]. Write

F = �
S⊆B{S} � GS,

where GS ⊆ P([k]) for each S and consists on the family of sets X ⊂ [k] such that
X ∪ S ∈ F . Since F is union-closed and F ′ ⊆ F , we have that if X ∈ GS and Y ∈ F ′,
then X ∪ Y ∈ GS because X ∪ S ∈ F and Y ∈ F , so (X ∪ Y ) ∪ S ∈ F . Therefore
X ∪Y ∈ GS and we have GS �F ′ = GS for each S ⊆ B. Also, GS �GS = GS and so, GS is
either union-closed or empty (note that we cannot have GS = {�}, since in that case
we would have GS �F ′ = F ′ ≠ {�} and by definition every FC-family has a nonempty
universe). By (2), we have nonnegative real numbers c1,�, ck such that

k�
i=1 ci�GSi � ≥ �GS �2

for each S (this also holds when GS = �). Then

k�
i=1 ci�Fi

� = k�
i=1 ci �

S⊆B �GSi �
= �

S⊆B
k�
i=1 ci�GSi �≥ �

S⊆B
�GS �
2

= �F �
2

.

But if a weighted average of the �F
i

� is at least �F �2 , then for some i, �F
i

� ≥ �F �2 and so
(1) holds. �
Note that, for fixed F ′, there are only finitely many F ′-closed families, which leads
to a finite system of linear inequalities in c1,�, ck. A terminating algorithm can thus
determine whether this system has a solution, and therefore this theorem gives a
method for determining whether a subfamily F ′ is enough to guarantee an element
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in half of the sets. Also, if a family G is F ′-closed, we have U(G) = U(F ′), sinceG ⊆ P([k]) and so U(G) ⊆ U(F ′) and F ′ � G = G implies that we have, in particular,[k] ∪X ∈ G for every X ∈ G, and so U(G) ⊇ U(F ′). The lemma that follows will be
very useful in applying the previous theorem.

Lemma 6.2.3. Suppose U(G) = [m], for some m < 1. If ∑m−1
j=1 (j − m

2 )nGj ≥ 0, then
1
m

∑m

i=1 �Gi� ≥ �G�2 .
Proof. Writing n

j

for nG
j

, one has that

m�
j=0�j − m

2

�n
j

= m

2

(n
m

− n0) + m−1�
j=1 �j − m

2

�n
j

≥ 0,
since n

m

= 1 and n0 is either 0 or 1 depending on the presence or absence of � onG. Hence,

m�
i=1 �Gi� = �

S∈G �S� = m�
j=0nj

j = m�
j=0�j − m

2

�n
j

+ m

2

m�
j=0nj

≥ 0 + m

2

�G�,
and dividing by m gives the desired result. �
We now present an alternative proof of Lemma 1.2.1 and Corollary 1.2.3 using the
previous theorem.

Corollary 6.2.4. If an union-closed family F has a set S with only one or two
elements, some element of S is in at least half the elements of F , i.e., {S} is FC.

Proof. Let S = [m], where m = 1 or m = 2, and F ′ = {S} in Theorem 6.2.2. If G is F ′-
closed, and G ≠ �, then S = U(F ′) = U(G) ∈ G ⊂ P(S) and we can apply the previous
lemma. The hypothesis there is automatically satisfied when m = 1 or m = 2. So in
(2) of the Theorem 6.2.2, we can take c1 = � = cm = 1

m

. �
Corollary 6.2.5. There exists an union-closed family F having a set S with three
elements, such that no element of S is in at least half the sets of F .
Proof. Let S = {1,2,3} and let F ′ = {�, S}. We will prove that F ′ is not an FC-family
and so the result will follow. Suppose F ′ is an FC-family. From Theorem 6.2.2 we
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have real numbers c1, c2 and c3 satisfying

c1 + c2 + c3 = 1
2c1 + c2 + c3 ≥ 3

2

(from G = {�,{1},{1,2,3}})
c1 + 2c2 + c3 ≥ 3

2

(from G = {�,{2},{1,2,3}})
c1 + c2 + 2c3 ≥ 3

2

(from G = {�,{3},{1,2,3}})
Adding the last three inequalities, and dividing by four we get c1 + c2 + c3 ≥ 9

8 , which
contradicts the first equation. So by Theorem 6.2.2, we get that F ′ is not FC, thus
there is an union-closed family having S as a member and such that no element of
S is in at least half the sets of F . �
A concrete example of such a family was given in Section 1.3.

FC-families are called proper if it contains no strictly smaller FC-family. From the
results above, it is clear that there are no proper FC-families whose universe has
only 3 elements. In [17], FC-families are defined with the additional condition that
they must be union-closed. This is not a restriction since any union-closed family
containing an FC-family must also contain its ∪-closure.

In [25] a list of FC-families is given, and in [17] the author provides a characterization
of all proper (union-closed) FC-families whose universe has at most 5 elements
which we present next (without proof). He is also able to prove that the conjecture
holds for families whose universe has 9 elements.

Theorem 6.2.6. A family F is a proper union-closed FC-family if and only if it is gen-
erated by one of the following set systems (under some permutation of {1,2,3,4,5}).

• Any three of the subsets of {1,2,3,4,5} with 3 elements,

• {1,2,3}, {1,2,4} and {1,3,4,5},
• {1,2,3}, {1,4,5} and {2,3,4,5},
• {1,2,3}, {1,4,5}, {1,2,3,4}, {1,2,3,5}, {1,2,4,5} and {1,3,4,5},
• {1,2,3}, {1,2,4,5}, {1,3,4,5} and {2,3,4,5},
• All five subsets of {1,2,3,4,5} with 4 elements.
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Conclusion

In this dissertation, we covered some of the main techniques used to approach
Frankl conjecture, illustrating them with several examples and developed some of
these techniques a bit further in order to clarify some results and also to obtain
some other ones.

In Chapter 1 we presented with great detail the concept of separation in union-
closed families, and obtained some results about separating union-closed families.
Finally, in Section 1.3, we provided some counterexamples to some tempting gen-
eralizations of the problem and one of a separating family such that the average
frequency of its elements is as low as we want, which we weren’t able to find in the
literature.
In Chapter 2, we presented a conjecture related with lattice theory that is equivalent
to Frankl conjecture and show it for lower semimodular lattices.
We were able to prove in Chapter 3 that there are at least 3 a-problematic sets for
every a ∈ U(F), where F represents a minimal hypothetical counterexample to the
conjecture, as a corollary of two results, Theorems 3.1.9 and 3.1.10, that help us
understand the family of a-problematic sets, P

a

, which are results that we weren’t
able to find in the literature.
We believe that in Chapter 4 we made clear the relation between the dual families
defined by Johnson and Vaughan [14] and the ones defined by Piotr Wójcik in
[27]. Also, the concept of independence was studied and formalized in detail and
proved that there is only one independent normalized family. Structural properties
of normalized families were also obtained, and we proved that every normalized
family can be seen as the dual of a regular union-closed family.
In Chapter 5, we studied upward-closed families and provided a series of examples
of the up-compression technique. Also, we proved that up-compression and down-
-compression are symmetrical processes, in the sense of Theorem 5.3.11.
In Chapter 6 we show a full proof of Poonen’s Theorem which characterizes FC-
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families as well as some examples.
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