
 

 

 

Two Metaheuristics for the Single-machine 

Quadratic Tardiness Scheduling Problem 

 

By 

 

Tomás Cabrita Gonçalves 

 

 

Thesis for Master Degree in Quantitative Methods in Economics and 

Management 

 

 

 

 

 

 

Supervised by: 

      Professor Jorge Valente 

 

 

2012 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143401745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

ii 

 

 

Biography 

Tomás Cabrita Gonçalves was born on 5
th 

of December 1988 in Porto, Portugal. 

He did all of his studies in Porto, enrolling into the Faculty of Economics of the 

University of Porto in 2006. In 2010, he finished his under-graduation in Economics 

and, in that same year, he enrolled in the same Faculty, for the Master degree in 

Quantitative Methods in Economics and Management. 

 

 

  



 

 

iii 

 

 

Acknowledgments 

I would like to thank my family for giving me the chance to pursue this Master degree; 

Sofia, Fátima and Pedro, for study companionship and friendship which kept me 

motivated (almost) at all times; all my friends, for relaxing times in between work and 

of course, my supervisor: Professor Jorge Valente.  



 

 

iv 

 

 

Abstract 

In this study, we consider the single machine scheduling problem with quadratic 

tardiness costs. A very efective problem-specific Local Search is presented, followed by 

two metaheuristics: an Iterated Local Search and a Variable Greedy. These two 

procedures include the above mentioned Local Search and also a Dispatching Rule, 

used in the generation of a high-quality initial solution.  

Both metaheuristics are tested on a set of random computer generated problems, 

with a wide range of characteristics and difficulty and are shown to have good 

performances in very reasonable computational times, including optimally solving 

instances with up to 50 jobs. 
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Resumo 

Neste estudo, consideramos o problema da minimização dos custos quadráticos 

de atraso, no escalonamento de trabalhos numa máquina. É apresentado um 

procedimento de Pesquisa Local altamente eficiente, específico para o problema, 

seguido de duas metaheurísticas: Iterated Local Search e Variable Greedy. Estes dois 

procedimentos incluem a supra-mencionada Pesquisa Local e também uma Dispatching 

Rule,usada na geração de uma solução inicial de elevada qualidade. 

Ambas as metaheuristicas são testadas num conjunto de problemas gerados 

aleatoriamente por computador, com leque variado de características e dificuldades, e 

mostram ter boas performances com tempos de computação muito razoáveis, incluindo 

a capacidade de encontrar a solução óptima em instâncias com até 50 trabalhos. 
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1 Introduction 

The present work deals with the weighted quadratic tardiness minimization 

problem, in a single machine environment. We can summarily present this problem as: a 

set of   independent jobs              that need to be scheduled in a single machine which 

handles only one job at a time. Job             , at any given schedule, requires a 

processing time   , is completed at   , and is so, preferably before its due date   .  

Single machine settings can be found, for instance, in the chemical (see (Wagner et 

al. 2002) for a real industry example) and paint industry, printing press and paper bag 

production (Dhingra 2010). Furthermore, the findings made in the single processor case, 

can often be transposed to more complex scheduling environments and even improve 

settings in which a single bottleneck machine is the source of inefficiency, hence the 

importance of studying this subject (Schaller and Valente 2012). 

While, Early/Tardy Scheduling Problems are closely related to the concept of Just-

in-Time (Valente 2006) and so, they are applied to cases in which, both stock and delay 

minimization is pursued; Tardiness Minimization Problems as the one addressed in this 

paper, fit better in settings where to some degree, the early production, that is, the 

accumulation of stock, is disregarded in favor of delivering to customers on time, i.e. when 

the cost of having inventory can be neglected when compared to that of late shipping. Note 

that, the cost of tardy supplying can weigh heavy on a company and may result from 

contractual penalties, or lead to loss of customers’ good will and even lost sales (Valente 

and Schaller 2012). In (Sun et al. 1999), it is stated that comparatively to linear tardiness 

objective functions, its quadratic version is a more robust measure of the quality of service 

and that it better highlights, extreme tardiness situations. Furthermore, it is also said, in 

analogy to Taguchi’s loss function (Taguchi 1986), that customers’ dissatisfaction is 

quadractically related to tardiness. In his function there is an explicit relation between a 
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target level of output/production, the actual level and a loss for society. The loss equals the 

squared deviation from the target, multiplied by a weight. 

Our objective function is defined as    
        

   , with                  

             tardiness and    a weight associated with job  . In this case, instead of a 

target output level of production, the target is that all jobs are completed before their due 

dates, that is,                 . Note that, not including quadratic earliness penalties 

means there is no regard for the left side of the function. So, with this quadratic cost 

function, the later the Completion time is, compared to the Due Date, the heavier the 

penalty will be. This relation is congruent with the examples of the risk for tardy deliveries 

stated above.  

 

Over the past years, since (Johnson 1954)’s first approach and identification of flow 

shop scheduling problems, there has been an intensive focus on the subject. In the surveys 

of (Gupta 2006) and (Potts and Strusevich 2009) we can find chronologically organized 

overviews on scheduling studies made in the five decades after that seminal work, with 

regard to technological and methodological advances and to the progressive widening of 

the scheduling problems considered by the research community. As these surveys show, 

there has been an extensive investigation in this area and the problems that emerged are 

very diverse. Nevertheless, for the sake of brevity, we will here emphasize, only the work 

done on the problems more closely related to our own, specifically, tardiness minimization 

problems and the ones involving squared tardiness.  

Starting with standard and weighted tardiness minimization problems, we refer to 

(Abdul-Razaq et al. 1990), (Potts and Van Wassenhove 1991), (Sen et al. 2003) and 

(Koulamas 2010) for surveys on some exact approaches and heuristics, however noting, 

that these works barely explore the use of metaheuristics on the problem. Metaheuristics 

have been increasingly gaining more followers, for their quickness and efficiency, 

especially after (Du and Leung 1990) proved that the single-machine problem considering 

total unweighted tardiness minimization is NP-hard. This means that, there likely isn’t any 

algorithm to optimally solve the problem in polynomial time. For reviews that include 

metaheuristics we suggest (Vallada et al. 2008)’s work for the m-machine case and 

(Allahverdi et al. 2008), which is a very complete and extensive survey on various 
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scheduling problems with setup considerations. 

Comparatively, in terms of squared tardiness and weighted squared tardiness 

minimization problems, there has been, as of yet, very little research done. Due to its 

complexity, all of the approaches to squared tardiness use a Lagrangian relaxation, to 

decompose the problem into smaller sub-problems, which is a technique that was first 

applied to the travelling salesman problem, but was later adapted by (Fisher 1981) for 

Scheduling problems. This technique is used for quadratic tardiness minimization in the 

work of: (Hoitomt DJ 1990) on parallel machines with precedence constraints; of (Sun et 

al. 1999) on single-machines with sequence dependent setup times; in (Thomalla 2001)‘s 

approach on job shop scheduling with alternative process plans (e.g. machines that have 

different efficiency on processing the same job), in (Valente et al. 2011)’s genetic 

algorithms and finally both (Kianfar and Moslehi) and (Schaller and Valente 2012), who 

present different dominance conditions and branch-and-bound algorithms.  

As for quadratic earliness and tardiness: (Valente and Alves 2008) presented 

several dispatching heuristics for the single-machine problem and tested them on large a 

range of instances, (Valente and Moreira 2009) propose a few greedy randomized 

dispatching rules for the same problem and show how they outperform simple dispatching 

rules for some instance sizes, later, in the work of (Valente 2010) a beam search is created 

and the effects of three different dispatching rules on the procedure, are tested. 

 The last scheduling problem that is reviewed here is the linear earliness quadratic 

tardiness minimization. Attempts to solve this problem were made by the branch-and-

bound and the heuristics in (Schaller 2004), the dispatching rules in (Valente 2007), later 

(Valente 2008a) proposed another beam search procedure, then,  in (Valente and 

Gonçalves 2009) a genetic algorithm approach was presented. (Valente and Schaller 2010) 

also present a genetic algorithm and a backward Dispatching Rule and apply it to both the 

“no idle time” version of the problem and the one that includes it, (Behnamian and Zandieh 

2011) use a colonial competitive algorithm to solve this problem in hybrid flow shops and 

(Rahmani and Mahdavi) propose another genetic algorithm for the single-machine problem 

with preemptions allowed. Lower bounding and branch-and-bound procedures are also 

presented in (Valente 2008b), for optimally solving the problem with instances up to 20 

jobs. 
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The remainder of this work is organized as follows: a local search procedure 

tailored for the quadratic problem is presented in section 2 and the logic behind it pointed 

out. Afterwards, in section 3, the proposed metaheuristics are introduced and thoroughly 

explained, starting with the Iterated Local Search and ending with the Variable Greedy. 

The following section encloses the computational experiments and results and lastly, in 

section 5, final observations and conclusions are made. 
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2 Local Search Procedure  

In this section we present our problem-specific Local Search Procedure (LS), which 

is used in both meta-heuristics presented in the next section.  

In short, we can state that this procedure consists of adjacent interchanges guided 

by the idea that: early jobs should be “pushed” as forward as they can (that is, without 

them becoming tardy) in a schedule and tardy jobs “pulled” backwards. 

  Figure 1 shows the pseudo-code of the Local Search which is afterwards explained 

in detail. 

 

Let     be a position in the sequence and   be the job that position and         ] 

the next adjacent position to     and   the job in that position.  

 

1. Set      . 

2. While      : 

2.1. If jobs   and   are early: 

2.1.1. If      : 

2.1.1.1. Swap jobs   and  . 

2.1.1.2. If      , set          . 

2.1.2. Otherwise, set          . 

2.2. Else if jobs   and   are tardy: 

2.2.1. If                        : 

2.2.1.1. If the objective function value is improved by swapping jobs   and  : 

2.2.1.1.1. Swap jobs   and  . 

2.2.1.1.2. If      , set          . 
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2.2.1.2. Otherwise, set          . 

2.2.2. Otherwise, set          . 

2.3. Else if job   is early and job   is tardy: 

2.3.1. If      : 

2.3.1.1. Swap jobs   and  . 

2.3.1.2. If      , set          . 

2.3.2. Else if            
 
             

2.3.2.1. If the objective function value is improved by swapping jobs i and j: 

2.3.2.1.1. Swap jobs   and  . 

2.3.2.1.2. If      , set          . 

2.3.2.2. Otherwise, set          . 

2.3.3. Else, set          . 

2.4. Else, set          . 

FIGURE 1 – PSEUDO-CODE FOR THE LOCAL SEARCH PROCEDURE 

 

In sum, what the search described above does is: run one job at a time, testing the 

possible swap of that job with its next adjacent job. This search starts from the job standing 

in the first position and ends in the last one and throughout this run, three situations are of 

interest: first, if the two jobs being tested are early (corresponding in figure one to step 

2.1.); secondly, if the jobs are both tardy (step 2.2.) and lastly, when the first job is early 

and the second is tardy (step 2.3.). Naturally, the situation where the first job is tardy and 

the second is early is not of interest, as the swap would certainly increase the objective 

function value, by making the first job even tardier, so this case is covered by step 2.4., 

where the search is instructed to bypass it. 

 

In step 2.1., when the jobs are both early, the swap is made if the due date of the 

first job (  ) is greater than that of the second (  ), thus, following the logic stated at the 

beginning of this chapter. 

 

In step 2.2., when the two jobs are tardy, a lower bound on the increase of the cost 

for the first job is compared with an upper bound on the decrease of the cost for the second 
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job. The idea behind the expression is that: we cannot say that, if the lower bound is 

inferior to the upper bound, there will be a sure advantage in doing the swap, but logically, 

if the opposite situation occurs, no improvement of the objective function value will be 

possible. So, the search space when both jobs are tardy is to be reduced to the first 

scenario.  

The condition itself is based on the findings from (Schaller and Valente 2012). 

Both sides of the expression include the derivative of the objective function for the jobs we 

are testing:            , for   and          , for  . While on the left side, we have the 

derivative of the function at job   symbolizing the increase of cost in the function, from 

moving its completion time forward, by one unit; on the right side, we have the derivative 

relative to job  , that corresponds to the decrease in the cost function, caused by moving 

job  ’s completion time backwards by one unit.  

Note that, tardiness, , will vary in the same proportion and direction as completion 

times,  , and this, consequently, causes the objective function to increase/decrease 

quadractically, in accordance (see Section 1 for objective function and tardiness function in 

terms of completion times). Using that logic, we can state that: the increase in the cost 

function caused by moving the first job forward, is at least, equal to the derivative of the 

objective function at that job, times the processing time of job   ,    , which is the measure 

of the time for which   is being postponed. Inversely, for job   we can say that the benefit 

will be at max, the derivative, times the processing time of      (the measure of time for 

which   is anticipated).  

 

In step 2.3. the scenarios where   is early and   is tardy are covered. 

The first situation (step 2.3.1.) is straightforward. The swap is done if the due date of   is 

larger than the completion time of  , i.e. if after the swap   is still early. 

The possible advantage in the remaining situation (step 2.3.2.), in which the first job 

becomes tardy after the swap, naturally needs to be assessed. While the right side of the 

expression, the upper bound in cost reduction, remains the same as in the previous step 

(2.2.), the left side differs from before. Now, the measurement of the cost only needs to be 

considered from the point in which the job starts becoming tardy after the swap (otherwise 

it would fit in step 2.3.1.). So, the left side of the constraint (         
 
 ) is not a lower 
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bound for the increase in tardiness, but the real increase in the cost of the objective 

function caused by moving   forward. 

 

Having scrutinized the functioning of the Local Search Procedure, we proceed to 

the next section, with the introduction of the metaheuristics that incorporate it. 
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3 Meta-heuristics 

As mentioned previously, in this section we propose two metaheuristics that 

consider the specificities of the problem: an Iterated Local Search (referred to, in this 

paper, as ILS) and a Variable Greedy algorithm (referred to as VG). In their basic form, 

both these procedures are well known in this field of knowledge; still, we here explain 

more thoroughly the characteristics and functioning of our designs and their particularities. 

 

3.1 ITERATED LOCAL SEARCH (ILS) 

An iterated local search or iterated descent is a multi-start search procedure that is 

intended to overcome the problem of most local search procedures: getting “stuck” at local 

optima. This is done by a move called the kick, which is a pre-determined (that is, in the 

range of a certain defined neighborhood) type of modification applied to a local optima, 

hoping for that move to be sufficient to escape its descent, but simultaneously, avoid 

getting too far from an area of the search space that could be fruitful (Congram et al. 

2002).  

Our ILS, starts with the generation of a good solution through an efficient 

constructive heuristic, followed by the previously presented LS, unlike many multi-start 

heuristics which start with random-generated solutions. The rest of the algorithm is very 

similar to general iterated local searches, with a slight dissimilarity when it comes to the 

kick-acceptance criterion: which in our case is null i.e. the kick is always accepted, 

following the approach of (Congram et al. 2002).  
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The pseudo-code for the ILS we propose, is presented below: 

 

Repeat until running time   time_limit or the best solution found    has a cost of 0 and is 

therefore optimal: 

 Generate solution   using the Qback_v6 dispatching rule. 

1. If   better than    : 

1.1 Apply LS. 

2. Else, apply LS with probability         

3. Set solution as    

4. Update    

5. If number of iterations without improvement of      : 

5.1 Do BackTracking, that is, set       

6. Else, set    as current solution    

7. Do kick from    

8. Go to step 2 

FIGURE 2 – PSEUDO-CODE FOR THE ITERATED LOCAL SEARCH PROCEDURE 

 

In step 1, the initial solution is generated using QBack_v6, which is the backward 

dispatching rule for the quadratic tardiness problem, that resulted in better objective 

function values, of all the dispatching rules tested in (Valente and Schaller 2012b). It 

consists of a constructive heuristic that, starting from the last position in the schedule, 

decides which job to add to the solution, in a backward order, based on the following 

priority index:  

 

           

                                                                                                          
    

  
  

  
         

  
 
                       

 
                      

  

FIGURE 3 – PRIORITY INDEX OF BACKWARD DISPATCHING RULE QBACK_V6 

 

Where:    is the weight of job j (present in the objective function);   
    

               is the modified processing time of job  ,       represents the minimum 
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tardiness of all tardy jobs at the current time;    
        is the slack of job   in the 

backward schedule B,   is set at 0.5;    is the current time in the backward schedule;     , 

is the maximum processing time of all unscheduled jobs and,    and    are as defined 

earlier in this work. 

The logic behind this priority index is the following: if the job is early, then its 

priority index will be positive and equal to its processing time, which will allocate higher-

processing-time early jobs closer to the end of the schedule; when all unscheduled jobs are 

tardy, the index becomes negative, but still increases with processing time (but now: 

  
   ). This latter part of the index takes, to a certain degree,  into account the opportunity 

cost of scheduling job j at that point, by using both   
    and     , that include 

information about other unscheduled jobs. 

 

In step 2, the LS procedure presented in the previous section is used to improve the 

solution provided by the Dispatching Rule. For subsequent solutions, steps 2 and 3 result in 

always applying the local search procedure if the current solution is is better than the best 

one found so far, and applying that local search procedure with probability ls_prob 

otherwise. 

 

The current best solution that is kept in memory,   , is updated in step 5 and if the 

count of iterations in which    has not been improved is equal to  , which is a user-

defined parameter, the algorithm backtracks. This means that we go back to the previous 

best solution and restart the procedure from it.  

Otherwise, we go to step 5 and then 6 where, a predetermined type of modification 

is made, called kick, which is the ILS’s way to overcome local optima. In this case, it 

corresponds to   random swaps and these moves are always accepted.  

Afterwards, LS is done again starting from this new solution (step 2), if the 

stopping criterion hasn’t been reached i.e. a user defined time limit has not been exceeded 

and a solution with an objective function value of 0, which would naturally be optimal, has 

not been found. 
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3.2 VARIABLE GREEDY (VG) 

 

Variable Greedy is a very recent hybrid metaheuristic created by (Framinan and 

Leisten 2008) that mixes components of both the Iterated Greedy and the Variable 

Neighborhood Search algorithms. Of the first algorithm, the VG has inherited the 

destruction and construction phases that will be explained below and as for the latter 

algorithm, the characteristic that was appropriated by the VG is the systematic change of 

neighborhood (variable neighborhood).  

 

Below is presented the pseudo-code for the VG metaheuristic and further on, we 

proceed explaining its functioning: 

 

Repeat until running time   time_limit or the best solution found    has a cost of 0 and is 

therefore optimal: 

1. Generate solution  , using the Qback_v6 dispatching rule 

2. If   better than    : 

a. Apply LS. 

3. Else, apply LS with probability        . 

4. Update   . 

5. Set    ,  

6. Until                , do 

a. Remove   jobs with the highest Objective Function Value (ofv) from  , 

forming set    and the remaining non-removed jobs forming    . 

b. Order each job in    in decreasing order of ofv 

c. Starting from the first job in   , until all k jobs are reinserted (obtaining 

  ), Insert job in best possible slot in the current partial sequence. 

d. If   better than    : 

i. Apply LS. 

e. Else, apply LS with probability         

f. If    better than  , then set     , update    and set    . 
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g. Otherwise set      . 

7. Go to step 5. 

FIGURE 4 – PSEUDO-CODE FOR THE VARIABLE GREEDY PROCEDURE 

 

 

 

This procedure starts-off in the same manner as the ILS: using Qback_v6 for the 

generation of the initial solution and applying LS. 

 

Next, in step 6, we move on to the destruction phase, which is, as mentioned 

previously, a “heritage” of Iterated Greedy algorithms. The k jobs removed are the ones 

that most “damage” the Objective Function Value i.e. the ones with the biggest cost, and, 

after ordering, they are greedily reinserted (construction phase) one by one, in each job’s 

best position. Afterwards, the solution found is compared with the initial one and, in short, 

the logic followed is: each time the solution is improved at an iteration, we iterate again, 

using that new solution to start from and reset the destruction parameter, k, to one; 

otherwise, we continue exploring an increasing part of the neighborhood of the same 

solution by raising k at each iteration, by one unit. The maximum limit for k  is      

        . To the best of our knowledge, the parameter     consists of an innovation in this 

algorithm, as usually the maximum value for k is equal to (n-1).The stop criterion is 

identical to the one used in the ILS algorithm. 

 

We conclude this sub-section by emphasizing the algorithm’s regard for the 

problem specificities in three stages: the first is the Dispatching Rule which, as mentioned 

before, was tailored specifically for the quadratic tardiness scheduling problem; the same 

applies for the LS; and, finally, the fact that the selection and the sorting in the destruction 

phase are made in terms of tardiness. 
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4 Computational results 

In this section, we present the problem test-bed generation method for the various 

instance sizes and comment on the preliminary parameter tuning, that was made prior to 

the actual tests. Lastly, the results of the algorithms are shown and analyzed for 

conclusions. 

 

4.1 Experimental design 

In this work, we use the same method that was used to create the linear weighted 

tardiness problem instances available in the OR-Library 

(http://people.brunel.ac.uk/_mastjjb/jeb/orlib/wtinfo.html) and it works as follows. 

Both an integer processing time and an integer weight are generated for each job j; 

respectively,    is generated from a uniform distribution         and    from a       . An 

integer due date,   , is also generated, for each job, from the uniform distribution 

                               , where   is the sum of the processing times of all 

jobs,   is the tardiness factor and   is the range of due dates. Both the tardiness factor and 

the range of due dates parameters were set at 0.2, 0.4, 0.6, 0.8 and 1.0 and for each 

combination of problem size n, T and R, 50 instances were randomly generated. So, a total 

of 1250 instances were generated for each problem size. These computational tests were 

tested on problem sizes of 10, 15, 20, 25, 30, 40, 50, 75, 100, 250 and 500. 

The procedures were coded in C++ and executed on a personal computer with Intel 

Core2 Quad Q6600 2.40GHz processor and 3GB RAM on Windows 7 32bit Operative 

http://people.brunel.ac.uk/_mastjjb/jeb/orlib/wtinfo.html
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System. 

 

 

4.2 Preliminary parameter adjustments 

Both the metaheuristics’ parameters were carefully tested, for maximization of their 

overall performance, and their results were studied in terms of the number of jobs (n), 

tardiness factor (T) and due date range (R). 

The ILS was tested first for ls_prob values of 0%, 10%,...,100%, and provided good 

results for values of 90% and slightly better ones for 100%, the value that was chosen as 

final. We then proceeded testing the  α and β values, simultaneously. Alfa was tested for 

values of 5, 6 and 7, and beta for values of 5, 10, 20 and 25. We observed that the 

combination of both being equal to 5 yielded better results. 

As for the VG, the ls_prob and %ns were also tested together. The first, for values 

of 0%, 10%,…, 100%, and the latter for values of 10%, 20%,…,100%. The overall best 

combination of values was: ls_prob=60% and %ns=90%. 

The time_limit parameter used in the stop criterion was also determined by 

preliminary tests. As a result of these tests, the maximum computation time (time_limit) 

was set equal to             . This maximum time was the same for both algorithms, 

so that both metaheuristics used the same stop criterion and were tested under similar 

conditions. 

The parameter adjustment tests were performed on a separate and smaller set of 

instances. The instances in this smaller set were generated just as previously described for 

the larger set. However, the smaller set contained only instances with 10, 25, 50, 100, 250 

and 500 jobs, and only 5 instances were generated for each combination of T and R. 

 

4.3 Results 

We now proceed with the analysis, of the performance of the two presented 

algorithms, involving: a comparison with the optimal results for problems with up to 50 

jobs; a comparison with the performance of the previously mentioned Dispatching Rule 
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(Qback_v6), with and without Local Search and a comparison between the ILS and the 

VG.   

But, before the presentation of the results we would like to make a quick note, 

justifying some of the variables utilized in the analysis: it is very common, in this line of 

work, to use a measure called relative improvement, which directly measures the relative 

improvement of the OFV of a heuristic over another, calculated as a simple percentage. 

However, we draw attention to the fact that this may, for some instances, originate a 

division by zero, thus making it possible to have undefined values for those instances. To 

overcome this problem, other measures were used in this work, which will be explained 

further on. Also, we remark that 10 different seeds were used for the metaheuristics. 

  

4.3.1 Comparison with Optimal Results 

 

For this subsection, the optimal results were obtained with resource to the Branch-

and-Bound procedure of (Schaller and Valente 2012), for instances with up to 50 jobs, and 

then compared to the two metaheuristics’ results. 

We present three relative improvement ratios that measure the relative 

improvement of the optimum over the several heuristics (table 1), and also n_opt, which is 

a statistic for the number of times the optimum is attained. The ivh% (Improvement versus 

heuristic) for a particular instance is as follows: if the objective function value of the 

heuristic (hi) we are comparing (OFVhi), is equal to the optimum (OFVopt), then, the ivh% 

is set at 0, otherwise, it is equal to (OFVhi-OFVopt)/(OFVhi)x100.  Note that this formula 

is directly applicable to DR and DR+LS, because these are deterministic heuristics, and 

hence only applied once for each instance; however, this is not the case for the ILS and the 

VG metaheuristics which, as previously mentioned, have been ran for ten seeds each. So, 

the ivg_avg% and the ivh_best are calculated for these two heuristics, analogously to the 

ivh%, but, the first using the average of the ten seeds for each instance, instead of the 

OFVhi, and the latter using only the best OFVhi of the ten seeds. For the same reason, the 

n_opt statistic is calculated differently: while for the dispatching rule a value of 1 is 

attributed for each time the heuristic equals the optimum, for the other two algorithms, a 

value of 0,1 is attributed to each seed if it equals the optimum, thus being equal to one, for 
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a certain instance, only if all the seeds led to an optimal solution. 

 

In Table1 it is visible that the Local Search procedure greatly improves the 

Dispatching rule, both in n_opt (see column 8 versus 9) and in the reduction of the 

“distance” to the optimum, measured by the ivh% (column 2 versus 3). 

It is also clear that the ILS is, on average, the closest to the optimum of all four 

procedures, failing to reach optimality in only 10 out of 12500 seeds, and being closer than 

the other three heuristics, even for that instance size (n=40). The VG shows a poorer 

performance than the ILS and it appears to be more strongly influenced by instance size 

(decreasing its performance as n increases). However, the ivh_best% suggests that, it is 

also capable of achieving very good performances, in some cases. We would also like to 

restate that both the ILS and the VG have the DR+LS procedure embedded in their code, 

and they both significantly outperform it, for these instances, thus proving the effectiveness 

of these two metaheuristics. 

Table 2 provides a more thorough analysis of the n=40 sized results, for the two 

presented metaheuristics and the Dispatching Rules. Looking at the three types of ivh, we 

see that the lowest values, in general, for the four heuristics, occur for T= 1 and 0,8, which 

suggests that the heuristics deal well with larger tardiness factors. Although, in particular, 

the T=0,8 and R=0,8 instances represent the worst results of ivh_avg% and ivh_best%, for 

the ILS and the VG, they are still below the results of the Dispatching Rules’ and they are 

still low. The worst results of the improvement versus heuristic ratios, are those of the DR 

and DR+LS, for T=0,2 and 0,4, which reach more than 3% “distance” to the optimum, in 

some cases. Comparatively, this is a very high percentage for this problem size and 

suggests that the Dispatching Rule, may not deal well with low tardiness factors. These 

conclusions are in accordance with the results for the Qback_v6 Dispatching Rule (Valente 

and Schaller 2012). 

It is also of note that very little influence of the Range factor (R), over any of the 

variables is perceivable in the table, except for the fact that heuristics seem to take 

advantage of low T values (e.g. 0,2) when combined with high R values. These instances 

tend to be the easier ones, as the low number of tardy jobs, allied with a possible wide 

variety of due dates, gives the algorithms more flexibility in finding better results. When 

looking at the last four columns, we again see that the best results occur for T=0,2, where 
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the optimum is reached in more than 90% of the times, for all heuristics. It is also visible 

that good results are obtained for T=0,4, although the DR and DR+LS start decreasing 

their performance. Looking closer at what happens as T grows, we can see that the LS 

procedure takes advantage of larger tardiness factors, as it clearly differentiates the 

DR+LS’s n_opt statistic from that of the DR. However, this effect does not affect the 

ivh%, so clearly, showing that the relative corresponding improvement may not be as 

relevant. 

 

 

4.3.2 Comparison with the Dispatching Rule 

 

As was stated before, both the metaheuristics we present in this paper use the 

previously mentioned Dispatching Rule and the Local Search procedures. Being so, we 

saw fit to dedicate a subsection to the comparison and analysis of the two sets of 

procedures, in order to see what improvements were made by the first set over the latter. 

 

In Table 4, the comparison with the results of the Qback_v6 Dispatching Rule, with 

and without Local Search, is presented. In analogy with the ivh and the n_opt statistics, ivd 

and ivd+a and n_btr_d and n_btr_d+a were created for making such a comparison. The ivd 

or Improvement versus Dispatching Rule is calculated the same way as ivh, only 

substituting OFVhi for OFVd, the objective function value of the Dispatching Rule. As for 

n_btr_d, it measures the number of times that the metaheuristic, to which we are 

comparing, yielded a smaller, thus better (since we are minimizing) OFV, than OFVd. Like 

before, as we have ran ten seeds, for each program and instance, we confer a value of 0,1 

each time the metaheuristic result for a seed is better than the result, for that same instance, 

of the Dispatching Rule. 

Ivd+a and n_btrd+a are calculated in the same manner, but this time with reference 

to the Dispatching Rule with Local Search, instead of just the Dispatching Rule.  

The number of times the ILS and the VG improve over the DR and DR+LS are 

very close to one another and have a light growing (non linear) tendency with the instance 

size, although the ILS proves to do slightly better for n>75. 
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For small instance sizes, this happens because the optimum is attained for a large 

number of instances by the Dispatching Rules, so no improvement can be made by the 

other procedures. To further prove this point, we added a Table 5 to the Table’s section 

summarizing the n_eql_d and n_eql_d+a statistics, which give us the number of times the 

metaheuristics’ OFV equaled respectively, the OFV of the DR and the DR+LS. By doing 

this, we found out that, at least for instances with up to 50 jobs, the sum of n_eql_d and 

n_eql_d+a fairly coincide with the sum of n_opt from the first table and, furthermore, very 

few instances apart from these, were not in fact instances where improvement occurred. 

On average, the improvement over the procedure with Local Search is lower than 

for the DR, especially for smaller instances. This is to be expected, and explained by the 

fact that the DR+LS procedure has a better performance as shown in Table 3 (indeed, 

DR+LS can only provide better or equal results to those of DR), which makes it more 

difficult to get better results, both in number (n_btr_d+a) and in quality (ivd+a_avg% and 

ivd+a_best%) . This is also shown by the poor improvement on those smaller instances, 

which again suggests that optimality was reached by the DR+LS. 

 

Table 3 provides a measure for the effect of the LS procedure over the Dispatching 

Rule. Although the number of times that the DR is improved by the Local Search increases 

with instance size, its average ivd% varies in the opposite direction. While the first result 

likely happens because there are fewer instances where the optimum has not been reached, 

for lower sized problems (as explained before), the latter has to do with the fact that the 

bigger the instances, the harder improvements (in terms of ivd%) get; although, in another 

perspective, more opportunities for improvements lie within these problems, which can 

also explain the high n_btr_d for large instances. 

We analyze the case of n=100 in Table 6, discriminating by T and R, both for the 

comparison of the metaheuristics with the DR and with the DR+LS. For both these 

comparisons, the largest improvements lie in instances with low values of tardiness, 

drastically decreasing for bigger tardiness levels. We also point out to the fact that for 

medium and large T values (i.e. 0,6; 0,8; 1), both heuristics improve DR and DR+LS in a 

large number of instances; in fact, for the DR all the instances are improved by both 

procedures. It is also again visible, for instances with 100 jobs, that the improvement over 

the Dispatching Rule with Local Search is lower, on average, for every instance type. 
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4.3.3 Comparison between metaheuristics 

 

We now proceed with the comparison of the two metaheuristics presented in this 

work. To do so, and in line with what has been described before, a very simple comparison 

measure is utilized: the ivw or improvement versus worst. The ivw%, for a particular 

instance and seed, is set at zero if OFVhi, that is, the objective function value of the 

algorithm whose performance we are measuring,  is equal to that of the worse OFV 

(OFVw) of all 20 seeds (10 seeds of each algorithm), for that instance. Otherwise, the 

ivw% is equal to (OFVw-OFVhi)/(OFVw)x100. Logically, the ivw_avg%, for any one of 

the algorithms, is equal to the average of the 10 seeds’ ivw%, for each instance, and the 

ivw_best% corresponds to the largest of those 10 ivw%.  

 

The ILS shows, in table 7 better results for all sizes of problems tested, whether on 

average, or when comparing the best results. We denote that this advantage over the VG 

tends to increase with instance size. This becomes especially clear for the n=250 and 500 

sizes, when the ILS’s mean of the ivw_avg% becomes more than twelve times bigger than 

the ones of the VG.   

The effects of the T and R factors for n=250 instances were tested in Table 8. 

Again, low tardiness factors (0,2 and 0,4) implied larger values of ivw, and from the values 

the improvements started to decrease significantly, finally reaching extremely low values.  

The values shown for the ILS are superior to those of the VG, for all combinations of T 

and R, once more proving the supremacy of the first metaheuristic over the latter, in what 

regards solution quality. 

After the comparison of the ILS and the VG in terms of OFV, we now proceed to 

study their efficiency, by analyzing their computational runtimes.Table 9 summarizes the 

average runtimes of the heuristics, in seconds, until the best solution of that instance was 

found. As it was expected, runtimes grow with instance size and it is also clear that the ILS 

is faster for instances with up to 100 jobs, point from where the VG takes clear advantage, 

reaching a value of more than eleven times less computational time than the ILS, for 

n=500.  

Finally, we made the parameter influence analysis of T and R, for the runtimes of 

the two algorithms, this time for instances of 250 jobs (Table 10). The conclusions of that 
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analysis are that the ILS is slower than the VG for all levels of T, except for T=1. While 

the first increases until T=0,6 and then decreases, having particularly bad performances for 

that value of T and also for T=0,8, the VG increases more steadily along with the increase 

of T. 
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5 Conclusion 

The present work dealt with the single machine scheduling problem with quadratic 

tardiness costs. Two metaheuristics, an Iterated Local Search and a Variable Greedy, and a 

Local Search procedure, specifically tailored for this problem, were proposed and 

analyzed. The Dispatching Rule that is used to generate initial solutions was also fairly 

explored and used for comparison of results, along with the Local Search. 

The results show that, for small sized problems, both metaheuristics reach the 

optimum on most of the instances, with a very low computational effort. When compared 

to the Dispatching Rule, a procedure proven to be very effective and efficient for this 

problem, the two metaheuristics, again, demonstrated their value by providing better 

results for a very large number of instances, , for most instance sizes, within very low 

computational times. 

Our study, however, suggests that the ILS is the overall, better metaheuristic, for 

almost every analysis. Although, on average, it has comparatively high runtimes for 

instances with 250 and 500 jobs, the improvement it makes is over 12 times larger, than 

that of the VG. Since these improvements can consist in very large cost savings for a 

company, and since the runtimes of the ILS, even for the highest instance sizes, still seem 

reasonable in a real environment, this procedure is to be preferred. 

 As was mentioned previously, this problem is NP-hard and so, it is our 

understanding that future research should be focused on producing better and faster, 

metaheuristics, cleverly tailored for the specificities of this and other similar problems. By 

“similar problems” we wish to suggest that new real world constraints could be included 

and problem complexity increased, as to better approximate the reality of industrial 

environments and to widen the applicability of these techniques. As such, the consideration 
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of release dates, setup times or additional machines are certainly interesting opportunities 

for further research. 
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6 Tables 

 

 

Average 

 ivh% 

Average 

ivh_avg% 

Average 

ivh_best% 
Sum of n_opt 

N DR DR+LS ILS VG  ILS VG  DR DR+LS ILS VG  

10 0,5142 0,2626 0 0 0 0 836 1117 1250 1250 

15 0,5904 0,3906 0 0 0 0 670 1036 1250 1250 

20 0,6522 0,4660 0 0 0 0 531 935 1250 1249,9 

25 0,7801 0,6217 0 0 0 0 485 882 1250 1248,2 

30 0,7026 0,5552 0 0,0034 0 0 441 849 1250 1237,6 

40 0,6591 0,5559 0,0080 0,0195 0,0080 0,0093 372 744 1249 1210,2 

50 0,7388 0,6453 0 0,0209 0 0,0074 330 680 1250 1144,3 
TABLE 1 – COMPARISON WITH OPTIMUM RESULTS 
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Average ivh% Average ivh_avg% Average ivh_best% Sum of n_opt 

T         R DR DR+LS ILS VG ILS VG DR DR+LS ILS VG 

0,2 

          0,2 2,6022 2,3322 0,0000 0,1571 0,0000 0,0169 29 36 50,0 46,0 

0,4 0,6478 0,0000 0,0000 0,0000 0,0000 0,0000 48 50 50,0 50,0 

0,6 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 50 50 50,0 50,0 

0,8 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 50 50 50,0 50,0 

1 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 50 50 50,0 50,0 

 

0,6500 0,4664 0,0000 0,0314 0,0000 0,0034 227 236 250,0 246,0 

0,4 

          0,2 0,9374 0,7939 0,0000 0,0824 0,0000 0,0076 9 21 50,0 40,1 

0,4 3,1943 3,0098 0,0000 0,0067 0,0000 0,0000 9 19 50,0 48,0 

0,6 2,5639 2,2808 0,0000 0,0091 0,0000 0,0000 15 29 50,0 49,0 

0,8 1,0386 0,8410 0,0000 0,0006 0,0000 0,0000 36 42 50,0 49,9 

1 1,2643 1,1478 0,0000 0,0000 0,0000 0,0000 42 45 50,0 50,0 

 

1,7997 1,6146 0,0000 0,0197 0,0000 0,0015 111 156 250,0 237,0 

0,6 

          0,2 0,2235 0,1544 0,0000 0,0104 0,0000 0,0017 2 22 50,0 43,3 

0,4 0,6478 0,5414 0,0000 0,0090 0,0000 0,0000 2 17 50,0 46,9 

0,6 0,7812 0,7169 0,0000 0,0029 0,0000 0,0005 3 17 50,0 49,0 

0,8 1,0191 0,8627 0,0000 0,0068 0,0000 0,0053 2 19 50,0 46,4 

1 0,8060 0,6353 0,0000 0,0008 0,0000 0,0000 0 16 50,0 49,7 

 

0,6955 0,5821 0,0000 0,0060 0,0000 0,0015 9 91 250,0 235,3 

0,8 

          0,2 0,0679 0,0444 0,0000 0,0001 0,0000 0,0000 2 16 50,0 48,4 

0,4 0,1712 0,1384 0,0000 0,0006 0,0000 0,0002 1 19 50,0 46,9 

0,6 0,0713 0,0471 0,0000 0,0000 0,0000 0,0000 0 17 50,0 49,7 

0,8 0,2966 0,2686 0,2008 0,2008 0,2008 0,2008 0 15 49,0 48,8 

1 0,0829 0,0606 0,0000 0,0001 0,0000 0,0000 4 26 50,0 49,0 

 

0,1380 0,1118 0,0402 0,0403 0,0402 0,0402 7 93 249,0 242,8 

1 

          0,2 0,0130 0,0028 0,0000 0,0000 0,0000 0,0000 1 35 50,0 49,4 

0,4 0,0123 0,0053 0,0000 0,0000 0,0000 0,0000 4 33 50,0 50,0 

0,6 0,0116 0,0054 0,0000 0,0000 0,0000 0,0000 4 27 50,0 49,7 

0,8 0,0103 0,0022 0,0000 0,0000 0,0000 0,0000 5 38 50,0 50,0 

1 0,0131 0,0057 0,0000 0,0000 0,0000 0,0000 4 35 50,0 50,0 

 

0,0121 0,0043 0,0000 0,0000 0,0000 0,0000 18 168 250,0 249,1 

Total 0,6591 0,5559 0,0080 0,0195 0,0080 0,0093 372 744 1249,0 1210,2 
TABLE 2 – COMPARISON WITH OPTIMUM RESULTS FOR INSTANCES WITH 25 JOBS 
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N 
Average 

ivd% 

Sum of  

n_btr_d 

10 0,2518 315 

15 0,2003 454 

20 0,1877 582 

25 0,1594 639 

30 0,1494 692 

40 0,1049 790 

50 0,0953 845 

75 0,0694 913 

100 0,0582 944 

250 0,0534 962 

500 0,0511 966 
TABLE 3 – IMPROVEMENT OF LOCAL SEARCH ON DISPATCHING RULE 

 

 

 

 

  

Average 

ivd_avg% 

Average 

ivd_best% 

Sum of 

n_btr_d 

Average 

ivd+a_avg% 

Average 

ivd+a_best% 

Sum of 

n_btr_d+a 

N ILS VG ILS VG ILS VG ILS VG ILS VG ILS VG 

10 0,5142 0,5142 0,5142 0,5142 414,0 414,0 0,2626 0,2626 0,2626 0,2626 133,0 133,0 

15 0,5904 0,5904 0,5904 0,5904 580,0 580,0 0,3906 0,3906 0,3906 0,3906 214,0 214,0 

20 0,6522 0,6522 0,6522 0,6522 719,0 718,9 0,4660 0,4660 0,4660 0,4660 315,0 314,9 

25 0,7801 0,7799 0,7801 0,7801 765,0 764,9 0,6217 0,6215 0,6217 0,6217 368,0 367,8 

30 0,7026 0,6994 0,7026 0,7025 809,0 808,0 0,5552 0,5520 0,5552 0,5552 401,0 397,6 

40 0,6510 0,6403 0,6510 0,6498 878,0 873,0 0,5478 0,5371 0,5478 0,5465 506,0 492,4 

50 0,7388 0,7186 0,7388 0,7315 920,0 916,0 0,6453 0,6251 0,6453 0,6380 570,0 532,5 

75 0,6881 0,6552 0,6881 0,6715 955,0 952,9 0,6196 0,5866 0,6196 0,6030 719,0 635,0 

100 0,7091 0,6555 0,7091 0,6713 967,0 963,1 0,6521 0,5985 0,6521 0,6143 788,0 668,8 

250 0,6548 0,6130 0,6548 0,6182 969,0 969,0 0,6023 0,5605 0,6024 0,5657 937,9 800,8 

500 0,5629 0,5278 0,5630 0,5294 968,0 967,0 0,5126 0,4774 0,5126 0,4790 959,0 856,1 
TABLE 4 – COMPARISON OF ILS AND VG WITH DISPATCHING RULE WITH AND WITHOUT LOCAL SEARCH 

 

 

 

 

 

 

TABLE 5 – COMPARISON OF N_EQL_D AND N_EQL_D+A WITH N_OPT 
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Sum of n_eql_d 
Sum of 

n_opt 
Sum of n_eql_d+a 

Sum of 

n_opt 

N ILS VG DR ILS VG DR+LS 

10 836 836 836 1117 1117 1117 

15 670 670 670 1036 1036 1036 

20 531 531,1 531 935 935,1 935 

25 485 485,1 485 882 882,2 882 

30 441 442 441 849 852,4 849 

40 372 377 372 744 757,6 744 

50 330 334 330 680 717,5 680 

75 295 297,1 

 

531 615 

 100 283 286,9 

 

462 581,2 

 250 281 281 

 

312,1 449,2 

 500 282 283 

 

291 393,9 

 Total  4806 4823,2 

 

7839,1 8337,1 
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Average ivd_avg% Average ivd_best% Sum of n_btr_d Average ivd+a_avg% Average ivd+a_best% Sum of n_btr_d+a 

T       R ILS VG ILS VG ILS VG ILS VG ILS VG ILS VG 

0.2 

            0.2 4,7905 4,1597 4,7905 4,3107 45 41,4 4,6042 3,9725 4,6042 4,1237 38 31,2 

0.4 0,4724 0,4724 0,4724 0,4724 3 3 0,4249 0,4249 0,4249 0,4249 1 1 

0.6 0,0000 0,0000 0,0000 0,0000 0 0 0,0000 0,0000 0,0000 0,0000 0 0 

0.8 0,0000 0,0000 0,0000 0,0000 0 0 0,0000 0,0000 0,0000 0,0000 0 0 

1 0,0000 0,0000 0,0000 0,0000 0 0 0,0000 0,0000 0,0000 0,0000 0 0 

 
1,0526 0,9264 1,0526 0,9566 48 44,4 1,0058 0,8795 1,0058 0,9097 39 32,2 

0.4 

            0.2 1,0761 0,9816 1,0761 0,9846 50 50 0,9614 0,8668 0,9614 0,8699 43 34,5 

0.4 3,0298 2,6540 3,0298 2,8058 50 50 2,8362 2,4598 2,8362 2,6119 46 37,3 

0.6 2,7005 2,6831 2,7005 2,6967 47 46,7 2,4563 2,4389 2,4563 2,4525 33 31,6 

0.8 2,1805 2,1694 2,1805 2,1792 20 20 1,8383 1,8272 1,8383 1,8371 12 11,3 

1 0,0475 0,0475 0,0475 0,0475 2 2 0,0302 0,0302 0,0302 0,0302 1 1 

 
1,8069 1,7071 1,8069 1,7428 169 168,7 1,6245 1,5246 1,6245 1,5603 135 115,7 

0.6 

            0.2 0,2323 0,1990 0,2324 0,2005 50 50 0,1733 0,1400 0,1733 0,1415 44 26,7 

0.4 0,4151 0,3859 0,4152 0,3949 50 50 0,3432 0,3140 0,3434 0,3230 47 30,5 

0.6 0,6040 0,5802 0,6041 0,5890 50 50 0,5643 0,5405 0,5644 0,5493 48 36,7 

0.8 1,1921 1,1195 1,1923 1,1497 50 50 1,1611 1,0885 1,1613 1,1186 49 44,6 

1 0,8010 0,7627 0,8011 0,7748 50 50 0,7609 0,7225 0,7610 0,7347 49 39,4 

 
0,6489 0,6095 0,6490 0,6218 250 250 0,6005 0,5611 0,6007 0,5734 237 177,9 

0.8 

            0.2 0,0560 0,0500 0,0560 0,0510 50 50 0,0493 0,0432 0,0493 0,0443 47 35,2 

0.4 0,0453 0,0415 0,0454 0,0436 50 50 0,0389 0,0351 0,0390 0,0372 48 40,2 

0.6 0,0344 0,0334 0,0344 0,0340 50 50 0,0281 0,0272 0,0282 0,0277 45 39,9 

0.8 0,0206 0,0199 0,0206 0,0204 50 50 0,0158 0,0150 0,0158 0,0155 34 30,8 

1 0,0145 0,0140 0,0145 0,0143 50 50 0,0093 0,0089 0,0093 0,0092 42 37,6 
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TABLE 6 – COMPARISON OF IMPROVEMENTS VERSUS DISPATCHING RULE WITH AND WITHOUT LOCAL SEARCH, FOR INSTANCES WITH 100 JOBS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
0,0342 0,0318 0,0342 0,0327 250 250 0,0283 0,0259 0,0283 0,0268 216 183,7 

1 

            0.2 0,0032 0,0032 0,0032 0,0032 50 50 0,0015 0,0015 0,0015 0,0015 39 39 

0.4 0,0025 0,0025 0,0025 0,0025 50 50 0,0011 0,0011 0,0011 0,0011 35 34,7 

0.6 0,0034 0,0034 0,0034 0,0034 50 50 0,0019 0,0018 0,0019 0,0018 29 28,7 

0.8 0,0027 0,0027 0,0027 0,0027 50 50 0,0012 0,0012 0,0012 0,0012 32 31,9 

1 0,0025 0,0025 0,0025 0,0025 50 50 0,0013 0,0013 0,0013 0,0013 26 25 

 
0,0029 0,0029 0,0029 0,0029 250 250 0,0014 0,0014 0,0014 0,0014 161 159,3 

Total 0,7091 0,6555 0,7091 0,6713 967 963,1 0,6521 0,5985 0,6521 0,6143 788 668,8 
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Average  

ivw_avg% 

Average 

ivw_best% 

N ILS VG ILS VG 

10 0 0 0 0 

15 0 0 0 0 

20 0,0002 0,0002 0,0002 0,0002 

25 0,0013 0,0011 0,0013 0,0013 

30 0,0109 0,0076 0,0109 0,0109 

40 0,0204 0,0090 0,0204 0,0191 

50 0,0308 0,0101 0,0308 0,0234 

75 0,0557 0,0218 0,0557 0,0387 

100 0,0675 0,0126 0,0675 0,0289 

250 0,0468 0,0037 0,0469 0,0091 

500 0,0386 0,0023 0,0387 0,0039 
TABLE 7 – IVW COMPARISON  BETWEEN ILS AND VG 

 

 

Average ivw_avg% Average ivw_best% 

T      R ILS VG ILS VG 

0.2 

    0.2 0,4491 0,0133 0,4491 0,0304 

0.4 0,0000 0,0000 0,0000 0,0000 

0.6 0,0000 0,0000 0,0000 0,0000 

0.8 0,0000 0,0000 0,0000 0,0000 

1 0,0000 0,0000 0,0000 0,0000 

 
0,0898 0,0027 0,0898 0,0061 

0.4 

    0.2 0,1037 0,0020 0,1037 0,0034 

0.4 0,1868 0,0084 0,1868 0,0164 

0.6 0,1940 0,0146 0,1940 0,0901 

0.8 0,0646 0,0411 0,0646 0,0552 

1 0,0000 0,0000 0,0000 0,0000 

 
0,1098 0,0132 0,1098 0,0330 

0.6 

    0.2 0,0192 0,0003 0,0192 0,0003 

0.4 0,0263 0,0005 0,0263 0,0009 

0.6 0,0341 0,0024 0,0342 0,0079 

0.8 0,0531 0,0052 0,0540 0,0137 

1 0,0310 0,0048 0,0314 0,0083 

 
0,0327 0,0026 0,0330 0,0062 

0.8 

    0.2 0,0055 0,0001 0,0056 0,0002 
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0.4 0,0020 0,0001 0,0021 0,0005 

0.6 0,0006 0,0001 0,0006 0,0002 

0.8 0,0004 0,0000 0,0004 0,0001 

1 0,0006 0,0001 0,0006 0,0003 

 
0,0019 0,0001 0,0019 0,0003 

1 

    0.2 0,0000 0,0000 0,0000 0,0000 

0.4 0,0000 0,0000 0,0000 0,0000 

0.6 0,0000 0,0000 0,0000 0,0000 

0.8 0,0000 0,0000 0,0000 0,0000 

1 0,0000 0,0000 0,0000 0,0000 

 
0,0000 0,0000 0,0000 0,0000 

Total 0,0468 0,0037 0,0469 0,0091 
TABLE 8 – IVW COMPARISON BETWEEN ILS AND VG FOR INSTANCES WITH 250 JOBS 

 

 

 

 

N ILS VG 

10 0,0000 0,0000 

15 0,0000 0,0001 

20 0,0000 0,0006 

25 0,0000 0,0029 

30 0,0000 0,0069 

40 0,0002 0,0146 

50 0,0013 0,0273 

75 0,0106 0,0612 

100 0,0409 0,0947 

250 0,8090 0,3524 

500 6,3268 1,3457 
TABLE 9 – RUNTIMES UNTIL BEST SOLUTION, IN SECONDS 

 

 

 

 

 

 

 

 



 

 

33 

 

 
ILS VG 

T             R 

  0.2 

  0.2 0,0937 0,0019 

0.4 0,0023 0,0013 

0.6 0,0014 0,0014 

0.8 0,0015 0,0015 

1 0,0015 0,0015 

 
0,0201 0,0015 

0.4 

  0.2 0,4011 0,0038 

0.4 0,2083 0,0345 

0.6 0,1827 0,6467 

0.8 0,0414 0,0607 

1 0,0017 0,0018 

 
0,1670 0,1495 

0.6 

  0.2 0,7473 0,0097 

0.4 1,1861 0,0071 

0.6 1,6607 0,1804 

0.8 3,0267 0,5081 

1 3,0880 0,5881 

 
1,9418 0,2587 

0.8 

  0.2 1,5940 0,0594 

0.4 2,7506 0,3978 

0.6 1,5882 1,1422 

0.8 1,0591 0,6272 

1 1,2485 0,9618 

 
1,6481 0,6377 

1 

  0.2 0,1417 0,7433 

0.4 0,2693 0,9800 

0.6 0,2168 0,7806 

0.8 0,2577 0,5967 

1 0,4540 0,4716 

 
0,2679 0,7144 

Total 0,8090 0,3524 
TABLE 10 – RUNTIMES UNTIL BEST SOLUTION, IN SECONDS, FOR INSTANCES WITH 250 JOBS  
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