

Two Metaheuristics for the Single-machine

Quadratic Tardiness Scheduling Problem

By

Tomás Cabrita Gonçalves

Thesis for Master Degree in Quantitative Methods in Economics and

Management

Supervised by:

 Professor Jorge Valente

2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143401745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Biography

Tomás Cabrita Gonçalves was born on 5
th

of December 1988 in Porto, Portugal.

He did all of his studies in Porto, enrolling into the Faculty of Economics of the

University of Porto in 2006. In 2010, he finished his under-graduation in Economics

and, in that same year, he enrolled in the same Faculty, for the Master degree in

Quantitative Methods in Economics and Management.

iii

Acknowledgments

I would like to thank my family for giving me the chance to pursue this Master degree;

Sofia, Fátima and Pedro, for study companionship and friendship which kept me

motivated (almost) at all times; all my friends, for relaxing times in between work and

of course, my supervisor: Professor Jorge Valente.

iv

Abstract

In this study, we consider the single machine scheduling problem with quadratic

tardiness costs. A very efective problem-specific Local Search is presented, followed by

two metaheuristics: an Iterated Local Search and a Variable Greedy. These two

procedures include the above mentioned Local Search and also a Dispatching Rule,

used in the generation of a high-quality initial solution.

Both metaheuristics are tested on a set of random computer generated problems,

with a wide range of characteristics and difficulty and are shown to have good

performances in very reasonable computational times, including optimally solving

instances with up to 50 jobs.

v

Resumo

Neste estudo, consideramos o problema da minimização dos custos quadráticos

de atraso, no escalonamento de trabalhos numa máquina. É apresentado um

procedimento de Pesquisa Local altamente eficiente, específico para o problema,

seguido de duas metaheurísticas: Iterated Local Search e Variable Greedy. Estes dois

procedimentos incluem a supra-mencionada Pesquisa Local e também uma Dispatching

Rule,usada na geração de uma solução inicial de elevada qualidade.

Ambas as metaheuristicas são testadas num conjunto de problemas gerados

aleatoriamente por computador, com leque variado de características e dificuldades, e

mostram ter boas performances com tempos de computação muito razoáveis, incluindo

a capacidade de encontrar a solução óptima em instâncias com até 50 trabalhos.

vi

Contents

Biography .. ii

Acknowledgments .. iii

Abstract .. iv

Resumo .. v

1 Introduction .. 1

2 Local Search Procedure ... 5

3 Meta-heuristics ... 9

3.1 ITERATED LOCAL SEARCH (ILS) .. 9

3.2 VARIABLE GREEDY (VG) .. 12

4 Computational results .. 14

4.1 Experimental design ... 14

4.2 Preliminary parameter adjustments... 15

4.3 Results ... 15

4.3.1 Comparison with Optimal Results ... 16

4.3.2 Comparison with the Dispatching Rule ... 18

4.3.3 Comparison between metaheuristics ... 20

5 Conclusion ... 22

6 Tables ... 24

7 References ... 34

vii

List of Figures

FIGURE 1 – PSEUDO-CODE FOR THE LOCAL SEARCH PROCEDURE ... 6

FIGURE 2 – PSEUDO-CODE FOR THE ITERATED LOCAL SEARCH PROCEDURE .. 10

FIGURE 3 – PRIORITY INDEX OF BACKWARD DISPATCHING RULE QBACK_V6 ... 10

FIGURE 4 – PSEUDO-CODE FOR THE VARIABLE GREEDY PROCEDURE ... 13

TABLE 1 – COMPARISON WITH OPTIMUM RESULTS .. 24

TABLE 2 – COMPARISON WITH OPTIMUM RESULTS FOR INSTANCES WITH 25 JOBS .. 28

TABLE 3 – IMPROVEMENT OF LOCAL SEARCH ON DISPATCHING RULE ... 29

TABLE 4 – COMPARISON OF ILS AND VG WITH DISPATCHING RULE WITH AND WITHOUT LOCAL SEARCH 29

TABLE 5 – COMPARISON OF N_EQL_D AND N_EQL_D+A WITH N_OPT .. 29

TABLE 6 – COMPARISON OF IMPROVEMENTS VERSUS DISPATCHING RULE WITH AND WITHOUT LOCAL SEARCH, FOR INSTANCES

WITH 100 JOBS ... 30

TABLE 7 – IVW COMPARISON BETWEEN ILS AND VG ... 31

TABLE 8 – IVW COMPARISON BETWEEN ILS AND VG FOR INSTANCES WITH 250 JOBS ... 32

TABLE 9 – RUNTIMES UNTIL BEST SOLUTION, IN SECONDS ... 32

TABLE 10 – RUNTIMES UNTIL BEST SOLUTION, IN SECONDS, FOR INSTANCES WITH 250 JOBS ... 33

1

1 Introduction

The present work deals with the weighted quadratic tardiness minimization

problem, in a single machine environment. We can summarily present this problem as: a

set of independent jobs that need to be scheduled in a single machine which

handles only one job at a time. Job , at any given schedule, requires a

processing time , is completed at , and is so, preferably before its due date .

Single machine settings can be found, for instance, in the chemical (see (Wagner et

al. 2002) for a real industry example) and paint industry, printing press and paper bag

production (Dhingra 2010). Furthermore, the findings made in the single processor case,

can often be transposed to more complex scheduling environments and even improve

settings in which a single bottleneck machine is the source of inefficiency, hence the

importance of studying this subject (Schaller and Valente 2012).

While, Early/Tardy Scheduling Problems are closely related to the concept of Just-

in-Time (Valente 2006) and so, they are applied to cases in which, both stock and delay

minimization is pursued; Tardiness Minimization Problems as the one addressed in this

paper, fit better in settings where to some degree, the early production, that is, the

accumulation of stock, is disregarded in favor of delivering to customers on time, i.e. when

the cost of having inventory can be neglected when compared to that of late shipping. Note

that, the cost of tardy supplying can weigh heavy on a company and may result from

contractual penalties, or lead to loss of customers’ good will and even lost sales (Valente

and Schaller 2012). In (Sun et al. 1999), it is stated that comparatively to linear tardiness

objective functions, its quadratic version is a more robust measure of the quality of service

and that it better highlights, extreme tardiness situations. Furthermore, it is also said, in

analogy to Taguchi’s loss function (Taguchi 1986), that customers’ dissatisfaction is

quadractically related to tardiness. In his function there is an explicit relation between a

2

target level of output/production, the actual level and a loss for society. The loss equals the

squared deviation from the target, multiplied by a weight.

Our objective function is defined as

 , with

 tardiness and a weight associated with job . In this case, instead of a

target output level of production, the target is that all jobs are completed before their due

dates, that is, . Note that, not including quadratic earliness penalties

means there is no regard for the left side of the function. So, with this quadratic cost

function, the later the Completion time is, compared to the Due Date, the heavier the

penalty will be. This relation is congruent with the examples of the risk for tardy deliveries

stated above.

Over the past years, since (Johnson 1954)’s first approach and identification of flow

shop scheduling problems, there has been an intensive focus on the subject. In the surveys

of (Gupta 2006) and (Potts and Strusevich 2009) we can find chronologically organized

overviews on scheduling studies made in the five decades after that seminal work, with

regard to technological and methodological advances and to the progressive widening of

the scheduling problems considered by the research community. As these surveys show,

there has been an extensive investigation in this area and the problems that emerged are

very diverse. Nevertheless, for the sake of brevity, we will here emphasize, only the work

done on the problems more closely related to our own, specifically, tardiness minimization

problems and the ones involving squared tardiness.

Starting with standard and weighted tardiness minimization problems, we refer to

(Abdul-Razaq et al. 1990), (Potts and Van Wassenhove 1991), (Sen et al. 2003) and

(Koulamas 2010) for surveys on some exact approaches and heuristics, however noting,

that these works barely explore the use of metaheuristics on the problem. Metaheuristics

have been increasingly gaining more followers, for their quickness and efficiency,

especially after (Du and Leung 1990) proved that the single-machine problem considering

total unweighted tardiness minimization is NP-hard. This means that, there likely isn’t any

algorithm to optimally solve the problem in polynomial time. For reviews that include

metaheuristics we suggest (Vallada et al. 2008)’s work for the m-machine case and

(Allahverdi et al. 2008), which is a very complete and extensive survey on various

3

scheduling problems with setup considerations.

Comparatively, in terms of squared tardiness and weighted squared tardiness

minimization problems, there has been, as of yet, very little research done. Due to its

complexity, all of the approaches to squared tardiness use a Lagrangian relaxation, to

decompose the problem into smaller sub-problems, which is a technique that was first

applied to the travelling salesman problem, but was later adapted by (Fisher 1981) for

Scheduling problems. This technique is used for quadratic tardiness minimization in the

work of: (Hoitomt DJ 1990) on parallel machines with precedence constraints; of (Sun et

al. 1999) on single-machines with sequence dependent setup times; in (Thomalla 2001)‘s

approach on job shop scheduling with alternative process plans (e.g. machines that have

different efficiency on processing the same job), in (Valente et al. 2011)’s genetic

algorithms and finally both (Kianfar and Moslehi) and (Schaller and Valente 2012), who

present different dominance conditions and branch-and-bound algorithms.

As for quadratic earliness and tardiness: (Valente and Alves 2008) presented

several dispatching heuristics for the single-machine problem and tested them on large a

range of instances, (Valente and Moreira 2009) propose a few greedy randomized

dispatching rules for the same problem and show how they outperform simple dispatching

rules for some instance sizes, later, in the work of (Valente 2010) a beam search is created

and the effects of three different dispatching rules on the procedure, are tested.

 The last scheduling problem that is reviewed here is the linear earliness quadratic

tardiness minimization. Attempts to solve this problem were made by the branch-and-

bound and the heuristics in (Schaller 2004), the dispatching rules in (Valente 2007), later

(Valente 2008a) proposed another beam search procedure, then, in (Valente and

Gonçalves 2009) a genetic algorithm approach was presented. (Valente and Schaller 2010)

also present a genetic algorithm and a backward Dispatching Rule and apply it to both the

“no idle time” version of the problem and the one that includes it, (Behnamian and Zandieh

2011) use a colonial competitive algorithm to solve this problem in hybrid flow shops and

(Rahmani and Mahdavi) propose another genetic algorithm for the single-machine problem

with preemptions allowed. Lower bounding and branch-and-bound procedures are also

presented in (Valente 2008b), for optimally solving the problem with instances up to 20

jobs.

4

The remainder of this work is organized as follows: a local search procedure

tailored for the quadratic problem is presented in section 2 and the logic behind it pointed

out. Afterwards, in section 3, the proposed metaheuristics are introduced and thoroughly

explained, starting with the Iterated Local Search and ending with the Variable Greedy.

The following section encloses the computational experiments and results and lastly, in

section 5, final observations and conclusions are made.

5

2 Local Search Procedure

In this section we present our problem-specific Local Search Procedure (LS), which

is used in both meta-heuristics presented in the next section.

In short, we can state that this procedure consists of adjacent interchanges guided

by the idea that: early jobs should be “pushed” as forward as they can (that is, without

them becoming tardy) in a schedule and tardy jobs “pulled” backwards.

 Figure 1 shows the pseudo-code of the Local Search which is afterwards explained

in detail.

Let be a position in the sequence and be the job that position and]

the next adjacent position to and the job in that position.

1. Set .

2. While :

2.1. If jobs and are early:

2.1.1. If :

2.1.1.1. Swap jobs and .

2.1.1.2. If , set .

2.1.2. Otherwise, set .

2.2. Else if jobs and are tardy:

2.2.1. If :

2.2.1.1. If the objective function value is improved by swapping jobs and :

2.2.1.1.1. Swap jobs and .

2.2.1.1.2. If , set .

6

2.2.1.2. Otherwise, set .

2.2.2. Otherwise, set .

2.3. Else if job is early and job is tardy:

2.3.1. If :

2.3.1.1. Swap jobs and .

2.3.1.2. If , set .

2.3.2. Else if

2.3.2.1. If the objective function value is improved by swapping jobs i and j:

2.3.2.1.1. Swap jobs and .

2.3.2.1.2. If , set .

2.3.2.2. Otherwise, set .

2.3.3. Else, set .

2.4. Else, set .

FIGURE 1 – PSEUDO-CODE FOR THE LOCAL SEARCH PROCEDURE

In sum, what the search described above does is: run one job at a time, testing the

possible swap of that job with its next adjacent job. This search starts from the job standing

in the first position and ends in the last one and throughout this run, three situations are of

interest: first, if the two jobs being tested are early (corresponding in figure one to step

2.1.); secondly, if the jobs are both tardy (step 2.2.) and lastly, when the first job is early

and the second is tardy (step 2.3.). Naturally, the situation where the first job is tardy and

the second is early is not of interest, as the swap would certainly increase the objective

function value, by making the first job even tardier, so this case is covered by step 2.4.,

where the search is instructed to bypass it.

In step 2.1., when the jobs are both early, the swap is made if the due date of the

first job () is greater than that of the second (), thus, following the logic stated at the

beginning of this chapter.

In step 2.2., when the two jobs are tardy, a lower bound on the increase of the cost

for the first job is compared with an upper bound on the decrease of the cost for the second

7

job. The idea behind the expression is that: we cannot say that, if the lower bound is

inferior to the upper bound, there will be a sure advantage in doing the swap, but logically,

if the opposite situation occurs, no improvement of the objective function value will be

possible. So, the search space when both jobs are tardy is to be reduced to the first

scenario.

The condition itself is based on the findings from (Schaller and Valente 2012).

Both sides of the expression include the derivative of the objective function for the jobs we

are testing: , for and , for . While on the left side, we have the

derivative of the function at job symbolizing the increase of cost in the function, from

moving its completion time forward, by one unit; on the right side, we have the derivative

relative to job , that corresponds to the decrease in the cost function, caused by moving

job ’s completion time backwards by one unit.

Note that, tardiness, , will vary in the same proportion and direction as completion

times, , and this, consequently, causes the objective function to increase/decrease

quadractically, in accordance (see Section 1 for objective function and tardiness function in

terms of completion times). Using that logic, we can state that: the increase in the cost

function caused by moving the first job forward, is at least, equal to the derivative of the

objective function at that job, times the processing time of job , , which is the measure

of the time for which is being postponed. Inversely, for job we can say that the benefit

will be at max, the derivative, times the processing time of (the measure of time for

which is anticipated).

In step 2.3. the scenarios where is early and is tardy are covered.

The first situation (step 2.3.1.) is straightforward. The swap is done if the due date of is

larger than the completion time of , i.e. if after the swap is still early.

The possible advantage in the remaining situation (step 2.3.2.), in which the first job

becomes tardy after the swap, naturally needs to be assessed. While the right side of the

expression, the upper bound in cost reduction, remains the same as in the previous step

(2.2.), the left side differs from before. Now, the measurement of the cost only needs to be

considered from the point in which the job starts becoming tardy after the swap (otherwise

it would fit in step 2.3.1.). So, the left side of the constraint (

) is not a lower

8

bound for the increase in tardiness, but the real increase in the cost of the objective

function caused by moving forward.

Having scrutinized the functioning of the Local Search Procedure, we proceed to

the next section, with the introduction of the metaheuristics that incorporate it.

9

3 Meta-heuristics

As mentioned previously, in this section we propose two metaheuristics that

consider the specificities of the problem: an Iterated Local Search (referred to, in this

paper, as ILS) and a Variable Greedy algorithm (referred to as VG). In their basic form,

both these procedures are well known in this field of knowledge; still, we here explain

more thoroughly the characteristics and functioning of our designs and their particularities.

3.1 ITERATED LOCAL SEARCH (ILS)

An iterated local search or iterated descent is a multi-start search procedure that is

intended to overcome the problem of most local search procedures: getting “stuck” at local

optima. This is done by a move called the kick, which is a pre-determined (that is, in the

range of a certain defined neighborhood) type of modification applied to a local optima,

hoping for that move to be sufficient to escape its descent, but simultaneously, avoid

getting too far from an area of the search space that could be fruitful (Congram et al.

2002).

Our ILS, starts with the generation of a good solution through an efficient

constructive heuristic, followed by the previously presented LS, unlike many multi-start

heuristics which start with random-generated solutions. The rest of the algorithm is very

similar to general iterated local searches, with a slight dissimilarity when it comes to the

kick-acceptance criterion: which in our case is null i.e. the kick is always accepted,

following the approach of (Congram et al. 2002).

10

The pseudo-code for the ILS we propose, is presented below:

Repeat until running time time_limit or the best solution found has a cost of 0 and is

therefore optimal:

 Generate solution using the Qback_v6 dispatching rule.

1. If better than :

1.1 Apply LS.

2. Else, apply LS with probability

3. Set solution as

4. Update

5. If number of iterations without improvement of :

5.1 Do BackTracking, that is, set

6. Else, set as current solution

7. Do kick from

8. Go to step 2

FIGURE 2 – PSEUDO-CODE FOR THE ITERATED LOCAL SEARCH PROCEDURE

In step 1, the initial solution is generated using QBack_v6, which is the backward

dispatching rule for the quadratic tardiness problem, that resulted in better objective

function values, of all the dispatching rules tested in (Valente and Schaller 2012b). It

consists of a constructive heuristic that, starting from the last position in the schedule,

decides which job to add to the solution, in a backward order, based on the following

priority index:

FIGURE 3 – PRIORITY INDEX OF BACKWARD DISPATCHING RULE QBACK_V6

Where: is the weight of job j (present in the objective function);

 is the modified processing time of job , represents the minimum

11

tardiness of all tardy jobs at the current time;
 is the slack of job in the

backward schedule B, is set at 0.5; is the current time in the backward schedule; ,

is the maximum processing time of all unscheduled jobs and, and are as defined

earlier in this work.

The logic behind this priority index is the following: if the job is early, then its

priority index will be positive and equal to its processing time, which will allocate higher-

processing-time early jobs closer to the end of the schedule; when all unscheduled jobs are

tardy, the index becomes negative, but still increases with processing time (but now:

). This latter part of the index takes, to a certain degree, into account the opportunity

cost of scheduling job j at that point, by using both
 and , that include

information about other unscheduled jobs.

In step 2, the LS procedure presented in the previous section is used to improve the

solution provided by the Dispatching Rule. For subsequent solutions, steps 2 and 3 result in

always applying the local search procedure if the current solution is is better than the best

one found so far, and applying that local search procedure with probability ls_prob

otherwise.

The current best solution that is kept in memory, , is updated in step 5 and if the

count of iterations in which has not been improved is equal to , which is a user-

defined parameter, the algorithm backtracks. This means that we go back to the previous

best solution and restart the procedure from it.

Otherwise, we go to step 5 and then 6 where, a predetermined type of modification

is made, called kick, which is the ILS’s way to overcome local optima. In this case, it

corresponds to random swaps and these moves are always accepted.

Afterwards, LS is done again starting from this new solution (step 2), if the

stopping criterion hasn’t been reached i.e. a user defined time limit has not been exceeded

and a solution with an objective function value of 0, which would naturally be optimal, has

not been found.

12

3.2 VARIABLE GREEDY (VG)

Variable Greedy is a very recent hybrid metaheuristic created by (Framinan and

Leisten 2008) that mixes components of both the Iterated Greedy and the Variable

Neighborhood Search algorithms. Of the first algorithm, the VG has inherited the

destruction and construction phases that will be explained below and as for the latter

algorithm, the characteristic that was appropriated by the VG is the systematic change of

neighborhood (variable neighborhood).

Below is presented the pseudo-code for the VG metaheuristic and further on, we

proceed explaining its functioning:

Repeat until running time time_limit or the best solution found has a cost of 0 and is

therefore optimal:

1. Generate solution , using the Qback_v6 dispatching rule

2. If better than :

a. Apply LS.

3. Else, apply LS with probability .

4. Update .

5. Set ,

6. Until , do

a. Remove jobs with the highest Objective Function Value (ofv) from ,

forming set and the remaining non-removed jobs forming .

b. Order each job in in decreasing order of ofv

c. Starting from the first job in , until all k jobs are reinserted (obtaining

), Insert job in best possible slot in the current partial sequence.

d. If better than :

i. Apply LS.

e. Else, apply LS with probability

f. If better than , then set , update and set .

13

g. Otherwise set .

7. Go to step 5.

FIGURE 4 – PSEUDO-CODE FOR THE VARIABLE GREEDY PROCEDURE

This procedure starts-off in the same manner as the ILS: using Qback_v6 for the

generation of the initial solution and applying LS.

Next, in step 6, we move on to the destruction phase, which is, as mentioned

previously, a “heritage” of Iterated Greedy algorithms. The k jobs removed are the ones

that most “damage” the Objective Function Value i.e. the ones with the biggest cost, and,

after ordering, they are greedily reinserted (construction phase) one by one, in each job’s

best position. Afterwards, the solution found is compared with the initial one and, in short,

the logic followed is: each time the solution is improved at an iteration, we iterate again,

using that new solution to start from and reset the destruction parameter, k, to one;

otherwise, we continue exploring an increasing part of the neighborhood of the same

solution by raising k at each iteration, by one unit. The maximum limit for k is

 . To the best of our knowledge, the parameter consists of an innovation in this

algorithm, as usually the maximum value for k is equal to (n-1).The stop criterion is

identical to the one used in the ILS algorithm.

We conclude this sub-section by emphasizing the algorithm’s regard for the

problem specificities in three stages: the first is the Dispatching Rule which, as mentioned

before, was tailored specifically for the quadratic tardiness scheduling problem; the same

applies for the LS; and, finally, the fact that the selection and the sorting in the destruction

phase are made in terms of tardiness.

14

4 Computational results

In this section, we present the problem test-bed generation method for the various

instance sizes and comment on the preliminary parameter tuning, that was made prior to

the actual tests. Lastly, the results of the algorithms are shown and analyzed for

conclusions.

4.1 Experimental design

In this work, we use the same method that was used to create the linear weighted

tardiness problem instances available in the OR-Library

(http://people.brunel.ac.uk/_mastjjb/jeb/orlib/wtinfo.html) and it works as follows.

Both an integer processing time and an integer weight are generated for each job j;

respectively, is generated from a uniform distribution and from a . An

integer due date, , is also generated, for each job, from the uniform distribution

 , where is the sum of the processing times of all

jobs, is the tardiness factor and is the range of due dates. Both the tardiness factor and

the range of due dates parameters were set at 0.2, 0.4, 0.6, 0.8 and 1.0 and for each

combination of problem size n, T and R, 50 instances were randomly generated. So, a total

of 1250 instances were generated for each problem size. These computational tests were

tested on problem sizes of 10, 15, 20, 25, 30, 40, 50, 75, 100, 250 and 500.

The procedures were coded in C++ and executed on a personal computer with Intel

Core2 Quad Q6600 2.40GHz processor and 3GB RAM on Windows 7 32bit Operative

http://people.brunel.ac.uk/_mastjjb/jeb/orlib/wtinfo.html

15

System.

4.2 Preliminary parameter adjustments

Both the metaheuristics’ parameters were carefully tested, for maximization of their

overall performance, and their results were studied in terms of the number of jobs (n),

tardiness factor (T) and due date range (R).

The ILS was tested first for ls_prob values of 0%, 10%,...,100%, and provided good

results for values of 90% and slightly better ones for 100%, the value that was chosen as

final. We then proceeded testing the α and β values, simultaneously. Alfa was tested for

values of 5, 6 and 7, and beta for values of 5, 10, 20 and 25. We observed that the

combination of both being equal to 5 yielded better results.

As for the VG, the ls_prob and %ns were also tested together. The first, for values

of 0%, 10%,…, 100%, and the latter for values of 10%, 20%,…,100%. The overall best

combination of values was: ls_prob=60% and %ns=90%.

The time_limit parameter used in the stop criterion was also determined by

preliminary tests. As a result of these tests, the maximum computation time (time_limit)

was set equal to . This maximum time was the same for both algorithms,

so that both metaheuristics used the same stop criterion and were tested under similar

conditions.

The parameter adjustment tests were performed on a separate and smaller set of

instances. The instances in this smaller set were generated just as previously described for

the larger set. However, the smaller set contained only instances with 10, 25, 50, 100, 250

and 500 jobs, and only 5 instances were generated for each combination of T and R.

4.3 Results

We now proceed with the analysis, of the performance of the two presented

algorithms, involving: a comparison with the optimal results for problems with up to 50

jobs; a comparison with the performance of the previously mentioned Dispatching Rule

16

(Qback_v6), with and without Local Search and a comparison between the ILS and the

VG.

But, before the presentation of the results we would like to make a quick note,

justifying some of the variables utilized in the analysis: it is very common, in this line of

work, to use a measure called relative improvement, which directly measures the relative

improvement of the OFV of a heuristic over another, calculated as a simple percentage.

However, we draw attention to the fact that this may, for some instances, originate a

division by zero, thus making it possible to have undefined values for those instances. To

overcome this problem, other measures were used in this work, which will be explained

further on. Also, we remark that 10 different seeds were used for the metaheuristics.

4.3.1 Comparison with Optimal Results

For this subsection, the optimal results were obtained with resource to the Branch-

and-Bound procedure of (Schaller and Valente 2012), for instances with up to 50 jobs, and

then compared to the two metaheuristics’ results.

We present three relative improvement ratios that measure the relative

improvement of the optimum over the several heuristics (table 1), and also n_opt, which is

a statistic for the number of times the optimum is attained. The ivh% (Improvement versus

heuristic) for a particular instance is as follows: if the objective function value of the

heuristic (hi) we are comparing (OFVhi), is equal to the optimum (OFVopt), then, the ivh%

is set at 0, otherwise, it is equal to (OFVhi-OFVopt)/(OFVhi)x100. Note that this formula

is directly applicable to DR and DR+LS, because these are deterministic heuristics, and

hence only applied once for each instance; however, this is not the case for the ILS and the

VG metaheuristics which, as previously mentioned, have been ran for ten seeds each. So,

the ivg_avg% and the ivh_best are calculated for these two heuristics, analogously to the

ivh%, but, the first using the average of the ten seeds for each instance, instead of the

OFVhi, and the latter using only the best OFVhi of the ten seeds. For the same reason, the

n_opt statistic is calculated differently: while for the dispatching rule a value of 1 is

attributed for each time the heuristic equals the optimum, for the other two algorithms, a

value of 0,1 is attributed to each seed if it equals the optimum, thus being equal to one, for

17

a certain instance, only if all the seeds led to an optimal solution.

In Table1 it is visible that the Local Search procedure greatly improves the

Dispatching rule, both in n_opt (see column 8 versus 9) and in the reduction of the

“distance” to the optimum, measured by the ivh% (column 2 versus 3).

It is also clear that the ILS is, on average, the closest to the optimum of all four

procedures, failing to reach optimality in only 10 out of 12500 seeds, and being closer than

the other three heuristics, even for that instance size (n=40). The VG shows a poorer

performance than the ILS and it appears to be more strongly influenced by instance size

(decreasing its performance as n increases). However, the ivh_best% suggests that, it is

also capable of achieving very good performances, in some cases. We would also like to

restate that both the ILS and the VG have the DR+LS procedure embedded in their code,

and they both significantly outperform it, for these instances, thus proving the effectiveness

of these two metaheuristics.

Table 2 provides a more thorough analysis of the n=40 sized results, for the two

presented metaheuristics and the Dispatching Rules. Looking at the three types of ivh, we

see that the lowest values, in general, for the four heuristics, occur for T= 1 and 0,8, which

suggests that the heuristics deal well with larger tardiness factors. Although, in particular,

the T=0,8 and R=0,8 instances represent the worst results of ivh_avg% and ivh_best%, for

the ILS and the VG, they are still below the results of the Dispatching Rules’ and they are

still low. The worst results of the improvement versus heuristic ratios, are those of the DR

and DR+LS, for T=0,2 and 0,4, which reach more than 3% “distance” to the optimum, in

some cases. Comparatively, this is a very high percentage for this problem size and

suggests that the Dispatching Rule, may not deal well with low tardiness factors. These

conclusions are in accordance with the results for the Qback_v6 Dispatching Rule (Valente

and Schaller 2012).

It is also of note that very little influence of the Range factor (R), over any of the

variables is perceivable in the table, except for the fact that heuristics seem to take

advantage of low T values (e.g. 0,2) when combined with high R values. These instances

tend to be the easier ones, as the low number of tardy jobs, allied with a possible wide

variety of due dates, gives the algorithms more flexibility in finding better results. When

looking at the last four columns, we again see that the best results occur for T=0,2, where

18

the optimum is reached in more than 90% of the times, for all heuristics. It is also visible

that good results are obtained for T=0,4, although the DR and DR+LS start decreasing

their performance. Looking closer at what happens as T grows, we can see that the LS

procedure takes advantage of larger tardiness factors, as it clearly differentiates the

DR+LS’s n_opt statistic from that of the DR. However, this effect does not affect the

ivh%, so clearly, showing that the relative corresponding improvement may not be as

relevant.

4.3.2 Comparison with the Dispatching Rule

As was stated before, both the metaheuristics we present in this paper use the

previously mentioned Dispatching Rule and the Local Search procedures. Being so, we

saw fit to dedicate a subsection to the comparison and analysis of the two sets of

procedures, in order to see what improvements were made by the first set over the latter.

In Table 4, the comparison with the results of the Qback_v6 Dispatching Rule, with

and without Local Search, is presented. In analogy with the ivh and the n_opt statistics, ivd

and ivd+a and n_btr_d and n_btr_d+a were created for making such a comparison. The ivd

or Improvement versus Dispatching Rule is calculated the same way as ivh, only

substituting OFVhi for OFVd, the objective function value of the Dispatching Rule. As for

n_btr_d, it measures the number of times that the metaheuristic, to which we are

comparing, yielded a smaller, thus better (since we are minimizing) OFV, than OFVd. Like

before, as we have ran ten seeds, for each program and instance, we confer a value of 0,1

each time the metaheuristic result for a seed is better than the result, for that same instance,

of the Dispatching Rule.

Ivd+a and n_btrd+a are calculated in the same manner, but this time with reference

to the Dispatching Rule with Local Search, instead of just the Dispatching Rule.

The number of times the ILS and the VG improve over the DR and DR+LS are

very close to one another and have a light growing (non linear) tendency with the instance

size, although the ILS proves to do slightly better for n>75.

19

For small instance sizes, this happens because the optimum is attained for a large

number of instances by the Dispatching Rules, so no improvement can be made by the

other procedures. To further prove this point, we added a Table 5 to the Table’s section

summarizing the n_eql_d and n_eql_d+a statistics, which give us the number of times the

metaheuristics’ OFV equaled respectively, the OFV of the DR and the DR+LS. By doing

this, we found out that, at least for instances with up to 50 jobs, the sum of n_eql_d and

n_eql_d+a fairly coincide with the sum of n_opt from the first table and, furthermore, very

few instances apart from these, were not in fact instances where improvement occurred.

On average, the improvement over the procedure with Local Search is lower than

for the DR, especially for smaller instances. This is to be expected, and explained by the

fact that the DR+LS procedure has a better performance as shown in Table 3 (indeed,

DR+LS can only provide better or equal results to those of DR), which makes it more

difficult to get better results, both in number (n_btr_d+a) and in quality (ivd+a_avg% and

ivd+a_best%) . This is also shown by the poor improvement on those smaller instances,

which again suggests that optimality was reached by the DR+LS.

Table 3 provides a measure for the effect of the LS procedure over the Dispatching

Rule. Although the number of times that the DR is improved by the Local Search increases

with instance size, its average ivd% varies in the opposite direction. While the first result

likely happens because there are fewer instances where the optimum has not been reached,

for lower sized problems (as explained before), the latter has to do with the fact that the

bigger the instances, the harder improvements (in terms of ivd%) get; although, in another

perspective, more opportunities for improvements lie within these problems, which can

also explain the high n_btr_d for large instances.

We analyze the case of n=100 in Table 6, discriminating by T and R, both for the

comparison of the metaheuristics with the DR and with the DR+LS. For both these

comparisons, the largest improvements lie in instances with low values of tardiness,

drastically decreasing for bigger tardiness levels. We also point out to the fact that for

medium and large T values (i.e. 0,6; 0,8; 1), both heuristics improve DR and DR+LS in a

large number of instances; in fact, for the DR all the instances are improved by both

procedures. It is also again visible, for instances with 100 jobs, that the improvement over

the Dispatching Rule with Local Search is lower, on average, for every instance type.

20

4.3.3 Comparison between metaheuristics

We now proceed with the comparison of the two metaheuristics presented in this

work. To do so, and in line with what has been described before, a very simple comparison

measure is utilized: the ivw or improvement versus worst. The ivw%, for a particular

instance and seed, is set at zero if OFVhi, that is, the objective function value of the

algorithm whose performance we are measuring, is equal to that of the worse OFV

(OFVw) of all 20 seeds (10 seeds of each algorithm), for that instance. Otherwise, the

ivw% is equal to (OFVw-OFVhi)/(OFVw)x100. Logically, the ivw_avg%, for any one of

the algorithms, is equal to the average of the 10 seeds’ ivw%, for each instance, and the

ivw_best% corresponds to the largest of those 10 ivw%.

The ILS shows, in table 7 better results for all sizes of problems tested, whether on

average, or when comparing the best results. We denote that this advantage over the VG

tends to increase with instance size. This becomes especially clear for the n=250 and 500

sizes, when the ILS’s mean of the ivw_avg% becomes more than twelve times bigger than

the ones of the VG.

The effects of the T and R factors for n=250 instances were tested in Table 8.

Again, low tardiness factors (0,2 and 0,4) implied larger values of ivw, and from the values

the improvements started to decrease significantly, finally reaching extremely low values.

The values shown for the ILS are superior to those of the VG, for all combinations of T

and R, once more proving the supremacy of the first metaheuristic over the latter, in what

regards solution quality.

After the comparison of the ILS and the VG in terms of OFV, we now proceed to

study their efficiency, by analyzing their computational runtimes.Table 9 summarizes the

average runtimes of the heuristics, in seconds, until the best solution of that instance was

found. As it was expected, runtimes grow with instance size and it is also clear that the ILS

is faster for instances with up to 100 jobs, point from where the VG takes clear advantage,

reaching a value of more than eleven times less computational time than the ILS, for

n=500.

Finally, we made the parameter influence analysis of T and R, for the runtimes of

the two algorithms, this time for instances of 250 jobs (Table 10). The conclusions of that

21

analysis are that the ILS is slower than the VG for all levels of T, except for T=1. While

the first increases until T=0,6 and then decreases, having particularly bad performances for

that value of T and also for T=0,8, the VG increases more steadily along with the increase

of T.

22

5 Conclusion

The present work dealt with the single machine scheduling problem with quadratic

tardiness costs. Two metaheuristics, an Iterated Local Search and a Variable Greedy, and a

Local Search procedure, specifically tailored for this problem, were proposed and

analyzed. The Dispatching Rule that is used to generate initial solutions was also fairly

explored and used for comparison of results, along with the Local Search.

The results show that, for small sized problems, both metaheuristics reach the

optimum on most of the instances, with a very low computational effort. When compared

to the Dispatching Rule, a procedure proven to be very effective and efficient for this

problem, the two metaheuristics, again, demonstrated their value by providing better

results for a very large number of instances, , for most instance sizes, within very low

computational times.

Our study, however, suggests that the ILS is the overall, better metaheuristic, for

almost every analysis. Although, on average, it has comparatively high runtimes for

instances with 250 and 500 jobs, the improvement it makes is over 12 times larger, than

that of the VG. Since these improvements can consist in very large cost savings for a

company, and since the runtimes of the ILS, even for the highest instance sizes, still seem

reasonable in a real environment, this procedure is to be preferred.

 As was mentioned previously, this problem is NP-hard and so, it is our

understanding that future research should be focused on producing better and faster,

metaheuristics, cleverly tailored for the specificities of this and other similar problems. By

“similar problems” we wish to suggest that new real world constraints could be included

and problem complexity increased, as to better approximate the reality of industrial

environments and to widen the applicability of these techniques. As such, the consideration

23

of release dates, setup times or additional machines are certainly interesting opportunities

for further research.

24

6 Tables

Average

 ivh%

Average

ivh_avg%

Average

ivh_best%
Sum of n_opt

N DR DR+LS ILS VG ILS VG DR DR+LS ILS VG

10 0,5142 0,2626 0 0 0 0 836 1117 1250 1250

15 0,5904 0,3906 0 0 0 0 670 1036 1250 1250

20 0,6522 0,4660 0 0 0 0 531 935 1250 1249,9

25 0,7801 0,6217 0 0 0 0 485 882 1250 1248,2

30 0,7026 0,5552 0 0,0034 0 0 441 849 1250 1237,6

40 0,6591 0,5559 0,0080 0,0195 0,0080 0,0093 372 744 1249 1210,2

50 0,7388 0,6453 0 0,0209 0 0,0074 330 680 1250 1144,3
TABLE 1 – COMPARISON WITH OPTIMUM RESULTS

28

Average ivh% Average ivh_avg% Average ivh_best% Sum of n_opt

T R DR DR+LS ILS VG ILS VG DR DR+LS ILS VG

0,2

 0,2 2,6022 2,3322 0,0000 0,1571 0,0000 0,0169 29 36 50,0 46,0

0,4 0,6478 0,0000 0,0000 0,0000 0,0000 0,0000 48 50 50,0 50,0

0,6 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 50 50 50,0 50,0

0,8 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 50 50 50,0 50,0

1 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 50 50 50,0 50,0

0,6500 0,4664 0,0000 0,0314 0,0000 0,0034 227 236 250,0 246,0

0,4

 0,2 0,9374 0,7939 0,0000 0,0824 0,0000 0,0076 9 21 50,0 40,1

0,4 3,1943 3,0098 0,0000 0,0067 0,0000 0,0000 9 19 50,0 48,0

0,6 2,5639 2,2808 0,0000 0,0091 0,0000 0,0000 15 29 50,0 49,0

0,8 1,0386 0,8410 0,0000 0,0006 0,0000 0,0000 36 42 50,0 49,9

1 1,2643 1,1478 0,0000 0,0000 0,0000 0,0000 42 45 50,0 50,0

1,7997 1,6146 0,0000 0,0197 0,0000 0,0015 111 156 250,0 237,0

0,6

 0,2 0,2235 0,1544 0,0000 0,0104 0,0000 0,0017 2 22 50,0 43,3

0,4 0,6478 0,5414 0,0000 0,0090 0,0000 0,0000 2 17 50,0 46,9

0,6 0,7812 0,7169 0,0000 0,0029 0,0000 0,0005 3 17 50,0 49,0

0,8 1,0191 0,8627 0,0000 0,0068 0,0000 0,0053 2 19 50,0 46,4

1 0,8060 0,6353 0,0000 0,0008 0,0000 0,0000 0 16 50,0 49,7

0,6955 0,5821 0,0000 0,0060 0,0000 0,0015 9 91 250,0 235,3

0,8

 0,2 0,0679 0,0444 0,0000 0,0001 0,0000 0,0000 2 16 50,0 48,4

0,4 0,1712 0,1384 0,0000 0,0006 0,0000 0,0002 1 19 50,0 46,9

0,6 0,0713 0,0471 0,0000 0,0000 0,0000 0,0000 0 17 50,0 49,7

0,8 0,2966 0,2686 0,2008 0,2008 0,2008 0,2008 0 15 49,0 48,8

1 0,0829 0,0606 0,0000 0,0001 0,0000 0,0000 4 26 50,0 49,0

0,1380 0,1118 0,0402 0,0403 0,0402 0,0402 7 93 249,0 242,8

1

 0,2 0,0130 0,0028 0,0000 0,0000 0,0000 0,0000 1 35 50,0 49,4

0,4 0,0123 0,0053 0,0000 0,0000 0,0000 0,0000 4 33 50,0 50,0

0,6 0,0116 0,0054 0,0000 0,0000 0,0000 0,0000 4 27 50,0 49,7

0,8 0,0103 0,0022 0,0000 0,0000 0,0000 0,0000 5 38 50,0 50,0

1 0,0131 0,0057 0,0000 0,0000 0,0000 0,0000 4 35 50,0 50,0

0,0121 0,0043 0,0000 0,0000 0,0000 0,0000 18 168 250,0 249,1

Total 0,6591 0,5559 0,0080 0,0195 0,0080 0,0093 372 744 1249,0 1210,2
TABLE 2 – COMPARISON WITH OPTIMUM RESULTS FOR INSTANCES WITH 25 JOBS

29

N
Average

ivd%

Sum of

n_btr_d

10 0,2518 315

15 0,2003 454

20 0,1877 582

25 0,1594 639

30 0,1494 692

40 0,1049 790

50 0,0953 845

75 0,0694 913

100 0,0582 944

250 0,0534 962

500 0,0511 966
TABLE 3 – IMPROVEMENT OF LOCAL SEARCH ON DISPATCHING RULE

Average

ivd_avg%

Average

ivd_best%

Sum of

n_btr_d

Average

ivd+a_avg%

Average

ivd+a_best%

Sum of

n_btr_d+a

N ILS VG ILS VG ILS VG ILS VG ILS VG ILS VG

10 0,5142 0,5142 0,5142 0,5142 414,0 414,0 0,2626 0,2626 0,2626 0,2626 133,0 133,0

15 0,5904 0,5904 0,5904 0,5904 580,0 580,0 0,3906 0,3906 0,3906 0,3906 214,0 214,0

20 0,6522 0,6522 0,6522 0,6522 719,0 718,9 0,4660 0,4660 0,4660 0,4660 315,0 314,9

25 0,7801 0,7799 0,7801 0,7801 765,0 764,9 0,6217 0,6215 0,6217 0,6217 368,0 367,8

30 0,7026 0,6994 0,7026 0,7025 809,0 808,0 0,5552 0,5520 0,5552 0,5552 401,0 397,6

40 0,6510 0,6403 0,6510 0,6498 878,0 873,0 0,5478 0,5371 0,5478 0,5465 506,0 492,4

50 0,7388 0,7186 0,7388 0,7315 920,0 916,0 0,6453 0,6251 0,6453 0,6380 570,0 532,5

75 0,6881 0,6552 0,6881 0,6715 955,0 952,9 0,6196 0,5866 0,6196 0,6030 719,0 635,0

100 0,7091 0,6555 0,7091 0,6713 967,0 963,1 0,6521 0,5985 0,6521 0,6143 788,0 668,8

250 0,6548 0,6130 0,6548 0,6182 969,0 969,0 0,6023 0,5605 0,6024 0,5657 937,9 800,8

500 0,5629 0,5278 0,5630 0,5294 968,0 967,0 0,5126 0,4774 0,5126 0,4790 959,0 856,1
TABLE 4 – COMPARISON OF ILS AND VG WITH DISPATCHING RULE WITH AND WITHOUT LOCAL SEARCH

TABLE 5 – COMPARISON OF N_EQL_D AND N_EQL_D+A WITH N_OPT

30

Sum of n_eql_d
Sum of

n_opt
Sum of n_eql_d+a

Sum of

n_opt

N ILS VG DR ILS VG DR+LS

10 836 836 836 1117 1117 1117

15 670 670 670 1036 1036 1036

20 531 531,1 531 935 935,1 935

25 485 485,1 485 882 882,2 882

30 441 442 441 849 852,4 849

40 372 377 372 744 757,6 744

50 330 334 330 680 717,5 680

75 295 297,1

531 615

 100 283 286,9

462 581,2

 250 281 281

312,1 449,2

 500 282 283

291 393,9

 Total 4806 4823,2

7839,1 8337,1

29

Average ivd_avg% Average ivd_best% Sum of n_btr_d Average ivd+a_avg% Average ivd+a_best% Sum of n_btr_d+a

T R ILS VG ILS VG ILS VG ILS VG ILS VG ILS VG

0.2

 0.2 4,7905 4,1597 4,7905 4,3107 45 41,4 4,6042 3,9725 4,6042 4,1237 38 31,2

0.4 0,4724 0,4724 0,4724 0,4724 3 3 0,4249 0,4249 0,4249 0,4249 1 1

0.6 0,0000 0,0000 0,0000 0,0000 0 0 0,0000 0,0000 0,0000 0,0000 0 0

0.8 0,0000 0,0000 0,0000 0,0000 0 0 0,0000 0,0000 0,0000 0,0000 0 0

1 0,0000 0,0000 0,0000 0,0000 0 0 0,0000 0,0000 0,0000 0,0000 0 0

1,0526 0,9264 1,0526 0,9566 48 44,4 1,0058 0,8795 1,0058 0,9097 39 32,2

0.4

 0.2 1,0761 0,9816 1,0761 0,9846 50 50 0,9614 0,8668 0,9614 0,8699 43 34,5

0.4 3,0298 2,6540 3,0298 2,8058 50 50 2,8362 2,4598 2,8362 2,6119 46 37,3

0.6 2,7005 2,6831 2,7005 2,6967 47 46,7 2,4563 2,4389 2,4563 2,4525 33 31,6

0.8 2,1805 2,1694 2,1805 2,1792 20 20 1,8383 1,8272 1,8383 1,8371 12 11,3

1 0,0475 0,0475 0,0475 0,0475 2 2 0,0302 0,0302 0,0302 0,0302 1 1

1,8069 1,7071 1,8069 1,7428 169 168,7 1,6245 1,5246 1,6245 1,5603 135 115,7

0.6

 0.2 0,2323 0,1990 0,2324 0,2005 50 50 0,1733 0,1400 0,1733 0,1415 44 26,7

0.4 0,4151 0,3859 0,4152 0,3949 50 50 0,3432 0,3140 0,3434 0,3230 47 30,5

0.6 0,6040 0,5802 0,6041 0,5890 50 50 0,5643 0,5405 0,5644 0,5493 48 36,7

0.8 1,1921 1,1195 1,1923 1,1497 50 50 1,1611 1,0885 1,1613 1,1186 49 44,6

1 0,8010 0,7627 0,8011 0,7748 50 50 0,7609 0,7225 0,7610 0,7347 49 39,4

0,6489 0,6095 0,6490 0,6218 250 250 0,6005 0,5611 0,6007 0,5734 237 177,9

0.8

 0.2 0,0560 0,0500 0,0560 0,0510 50 50 0,0493 0,0432 0,0493 0,0443 47 35,2

0.4 0,0453 0,0415 0,0454 0,0436 50 50 0,0389 0,0351 0,0390 0,0372 48 40,2

0.6 0,0344 0,0334 0,0344 0,0340 50 50 0,0281 0,0272 0,0282 0,0277 45 39,9

0.8 0,0206 0,0199 0,0206 0,0204 50 50 0,0158 0,0150 0,0158 0,0155 34 30,8

1 0,0145 0,0140 0,0145 0,0143 50 50 0,0093 0,0089 0,0093 0,0092 42 37,6

30

TABLE 6 – COMPARISON OF IMPROVEMENTS VERSUS DISPATCHING RULE WITH AND WITHOUT LOCAL SEARCH, FOR INSTANCES WITH 100 JOBS

0,0342 0,0318 0,0342 0,0327 250 250 0,0283 0,0259 0,0283 0,0268 216 183,7

1

 0.2 0,0032 0,0032 0,0032 0,0032 50 50 0,0015 0,0015 0,0015 0,0015 39 39

0.4 0,0025 0,0025 0,0025 0,0025 50 50 0,0011 0,0011 0,0011 0,0011 35 34,7

0.6 0,0034 0,0034 0,0034 0,0034 50 50 0,0019 0,0018 0,0019 0,0018 29 28,7

0.8 0,0027 0,0027 0,0027 0,0027 50 50 0,0012 0,0012 0,0012 0,0012 32 31,9

1 0,0025 0,0025 0,0025 0,0025 50 50 0,0013 0,0013 0,0013 0,0013 26 25

0,0029 0,0029 0,0029 0,0029 250 250 0,0014 0,0014 0,0014 0,0014 161 159,3

Total 0,7091 0,6555 0,7091 0,6713 967 963,1 0,6521 0,5985 0,6521 0,6143 788 668,8

31

Average

ivw_avg%

Average

ivw_best%

N ILS VG ILS VG

10 0 0 0 0

15 0 0 0 0

20 0,0002 0,0002 0,0002 0,0002

25 0,0013 0,0011 0,0013 0,0013

30 0,0109 0,0076 0,0109 0,0109

40 0,0204 0,0090 0,0204 0,0191

50 0,0308 0,0101 0,0308 0,0234

75 0,0557 0,0218 0,0557 0,0387

100 0,0675 0,0126 0,0675 0,0289

250 0,0468 0,0037 0,0469 0,0091

500 0,0386 0,0023 0,0387 0,0039
TABLE 7 – IVW COMPARISON BETWEEN ILS AND VG

Average ivw_avg% Average ivw_best%

T R ILS VG ILS VG

0.2

 0.2 0,4491 0,0133 0,4491 0,0304

0.4 0,0000 0,0000 0,0000 0,0000

0.6 0,0000 0,0000 0,0000 0,0000

0.8 0,0000 0,0000 0,0000 0,0000

1 0,0000 0,0000 0,0000 0,0000

0,0898 0,0027 0,0898 0,0061

0.4

 0.2 0,1037 0,0020 0,1037 0,0034

0.4 0,1868 0,0084 0,1868 0,0164

0.6 0,1940 0,0146 0,1940 0,0901

0.8 0,0646 0,0411 0,0646 0,0552

1 0,0000 0,0000 0,0000 0,0000

0,1098 0,0132 0,1098 0,0330

0.6

 0.2 0,0192 0,0003 0,0192 0,0003

0.4 0,0263 0,0005 0,0263 0,0009

0.6 0,0341 0,0024 0,0342 0,0079

0.8 0,0531 0,0052 0,0540 0,0137

1 0,0310 0,0048 0,0314 0,0083

0,0327 0,0026 0,0330 0,0062

0.8

 0.2 0,0055 0,0001 0,0056 0,0002

32

0.4 0,0020 0,0001 0,0021 0,0005

0.6 0,0006 0,0001 0,0006 0,0002

0.8 0,0004 0,0000 0,0004 0,0001

1 0,0006 0,0001 0,0006 0,0003

0,0019 0,0001 0,0019 0,0003

1

 0.2 0,0000 0,0000 0,0000 0,0000

0.4 0,0000 0,0000 0,0000 0,0000

0.6 0,0000 0,0000 0,0000 0,0000

0.8 0,0000 0,0000 0,0000 0,0000

1 0,0000 0,0000 0,0000 0,0000

0,0000 0,0000 0,0000 0,0000

Total 0,0468 0,0037 0,0469 0,0091
TABLE 8 – IVW COMPARISON BETWEEN ILS AND VG FOR INSTANCES WITH 250 JOBS

N ILS VG

10 0,0000 0,0000

15 0,0000 0,0001

20 0,0000 0,0006

25 0,0000 0,0029

30 0,0000 0,0069

40 0,0002 0,0146

50 0,0013 0,0273

75 0,0106 0,0612

100 0,0409 0,0947

250 0,8090 0,3524

500 6,3268 1,3457
TABLE 9 – RUNTIMES UNTIL BEST SOLUTION, IN SECONDS

33

ILS VG

T R

 0.2

 0.2 0,0937 0,0019

0.4 0,0023 0,0013

0.6 0,0014 0,0014

0.8 0,0015 0,0015

1 0,0015 0,0015

0,0201 0,0015

0.4

 0.2 0,4011 0,0038

0.4 0,2083 0,0345

0.6 0,1827 0,6467

0.8 0,0414 0,0607

1 0,0017 0,0018

0,1670 0,1495

0.6

 0.2 0,7473 0,0097

0.4 1,1861 0,0071

0.6 1,6607 0,1804

0.8 3,0267 0,5081

1 3,0880 0,5881

1,9418 0,2587

0.8

 0.2 1,5940 0,0594

0.4 2,7506 0,3978

0.6 1,5882 1,1422

0.8 1,0591 0,6272

1 1,2485 0,9618

1,6481 0,6377

1

 0.2 0,1417 0,7433

0.4 0,2693 0,9800

0.6 0,2168 0,7806

0.8 0,2577 0,5967

1 0,4540 0,4716

0,2679 0,7144

Total 0,8090 0,3524
TABLE 10 – RUNTIMES UNTIL BEST SOLUTION, IN SECONDS, FOR INSTANCES WITH 250 JOBS

34

7 References

Abdul-Razaq, T. S., C. N. Potts, and L. N. Van Wassenhove. 1990. A survey of algorithms

for the single machine total weighted tardiness scheduling problem. Discrete

Applied Mathematics 26 (2–3):235-253.

Allahverdi, A., C. T. Ng, T. C. E. Cheng, and M. Y. Kovalyov. 2008. A survey of

scheduling problems with setup times or costs. European journal of operational

research 187 (3):985-1032.

Behnamian, J., and M. Zandieh. 2011. A discrete colonial competitive algorithm for hybrid

flowshop scheduling to minimize earliness and quadratic tardiness penalties. Expert

Systems with Applications 38 (12):14490-14498.

Congram, R. K., C. N. Potts, and S. L. van de Velde. 2002. An iterated dynasearch

algorithm for the single-machine total weighted tardiness scheduling problem.

INFORMS JOURNAL ON COMPUTING 14 (1):52-67.

Dhingra, A. K. 2010. Multi-objective flow shop scheduling using metaheuristics,

Mechanical Engineering, National Institute of Technology, Kurukshetra.

Du, J., and J. Y. T. Leung. 1990. Minimizing Total Tardiness on One Machine Is NP-Hard.

Mathematics of Operations Research 15 (3):483-495.

Fisher, M. L. 1981. The Lagrangian Relaxation Method for Solving Integer Programming

Problems. Management Science 27 (1):1-18.

Gupta, J. N. D. S., Edward F. 2006. Flowshop scheduling research after five decades.

European journal of operational research 169 (3):699 -711.

Hoitomt DJ, L. P., Max E, Pattipati KR. 1990. Scheduling jobs with simple precedence

constraints on parallel machines. Control Systems Magazine, IEEE 10 (2):34-40.

Johnson, S. M. 1954. Optimal Two- and Three-stage Production Schedules with Setup

Times Included: Rand Corporation.

Kianfar, K., and G. Moslehi. A branch-and-bound algorithm for single machine scheduling

with quadratic earliness and tardiness penalties. Computers & Operations

Research.

Koulamas, C. 2010. The single-machine total tardiness scheduling problem: Review and

extensions. European journal of operational research 202 (1):1-7.

Potts, C. N., and V. A. Strusevich. 2009. Fifty years of scheduling: a survey of milestones.

J Oper Res Soc 60 (S1):S41-S68.

Potts, C. N., and L. N. Van Wassenhove. 1991. Single Machine Tardiness Sequencing

Heuristics. IIE Transactions 23 (4):346-354.

Rahmani, K., and I. Mahdavi, 2012. A genetic algorithm for the single machine preemptive

scheduling problem with linear earliness and quadratic tardiness penalties. The

International Journal of Advanced Manufacturing Technology:1-8.

Schaller, J. 2004. Single machine scheduling with early and quadratic tardy penalties.

Computers & Industrial Engineering 46 (3):511-532.

35

Schaller, J., and J. M. S. Valente. 2012. Minimizing the weighted sum of squared tardiness

on a single machine. Comput. Oper. Res. 39 (5):919-928.

Sen, T., J. M. Sulek, and P. Dileepan. 2003. Static scheduling research to minimize

weighted and unweighted tardiness: A state-of-the-art survey. International Journal

of Production Economics 83 (1):1-12.

Sun, X., J. S. Noble, and C. M. Klein. 1999. Single-machine scheduling with sequence

dependent setup to minimize total weighted squared tardiness. IIE Transactions 31

(2):113-124.

Taguchi, G. 1986. Introduction to Quality Engineering : Designing Quality into Products

and Processes: Tokio, Japan : Asian Productivity Organization.

Thomalla, C. S. 2001. Job shop scheduling with alternative process plans. International

Journal of Production Economics 74 (1–3):125-134.

Valente, J., and M. Moreira. 2009. Greedy randomised dispatching heuristics for the single

machine scheduling problem with quadratic earliness and tardiness penalties. The

International Journal of Advanced Manufacturing Technology 44 (9):995-1009.

Valente, J., M. Moreira, A. Singh, and R. Alves. 2011. Genetic algorithms for single

machine scheduling with quadratic earliness and tardiness costs. The International

Journal of Advanced Manufacturing Technology 54 (1):251-265.

Valente, J. M. S. 2007. Heuristics for the single machine scheduling problem with early

and quadratic tardy penalties. European Journal of Industrial Engineering 1

(4):431-448.

Valente, J. M. S. 2008a. Beam Search Heuristics for the Single Machine Scheduling

Problem with Linear Earliness and Quadratic Tardiness Costs. Asia-Pacific Journal

of Operational Research (APJOR) 26 (3):319-339.

Valente, J. M. S. 2008b. An exact approach for the single machine scheduling problem

with linear early and quadratic tardy penalties. Asia-Pacific Journal of Operational

Research 25 (2):169-186.

Valente, J. M. S.. 2010. Beam search heuristics for quadratic earliness and tardiness

scheduling. J Oper Res Soc 61 (4):620-631.

Valente, J. M. S., and R. A. F. S. Alves. 2008. Heuristics for the single machine scheduling

problem with quadratic earliness and tardiness penalties. Computers &

Operations Research 35 (11):3696-3713.

Valente, J. M. S., and J. F. Gonçalves. 2009. A genetic algorithm approach for the single

machine scheduling problem with linear earliness and quadratic tardiness penalties.

Computers & Operations Research 36 (10):2707-2715.

Valente, J. M. S., and J. E. Schaller. 2010. Improved heuristics for the single machine

scheduling problem with linear early and quadratic tardy penalties. European

Journal of Industrial Engineering 4 (1):99-129.

Valente, J. M. S., and J. E. Schaller. 2012. Dispatching heuristics for the single machine

weighted quadratic tardiness scheduling problem. Computers & Operations

Research 39 (9):2223-2231.

Valente, J. M. S. G., J.F.; Alves, A.F.S. 2006. A Hybrid Genetic Algorithm for the

Early/Tardy Scheduling Problem. Asia-Pacific Journal of Operational Research 23

(3):393-405.

Vallada, E., R. Ruiz, and G. Minella. 2008. Minimising total tardiness in the m-machine

flowshop problem: A review and evaluation of heuristics and metaheuristics.

Computers & Operations Research 35 (4):1350-1373.

36

Wagner, B. J., D. J. Davis, and H. V. Kher. 2002. The Production of Several Items in a

Single Facility with Linearly Changing Demand Rates. Decision Sciences 33

(3):317-346.

