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ABSTRACT    

Background and Objectives: Because skin cancer affects millions of people worldwide, computational 

methods for the segmentation of pigmented skin lesions in images have been developed in order to assist 

dermatologists in their diagnosis. This paper aims to present a review of the current methods, and outline a 

comparative analysis with regards to several of the fundamental steps of image processing, such as image 

acquisition, pre-processing and segmentation. Methods: Techniques that have been proposed to achieve 

these tasks were identified and reviewed. As to the image segmentation task, the techniques were 

classified according to their principle. Results: The techniques employed in each step are explained, and 

their strengths and weaknesses are identified. In addition, several of the reviewed techniques are applied to 

macroscopic and dermoscopy images in order to exemplify their results. Conclusions: The image 

segmentation of skin lesions has been addressed successfully in many studies; however, there is a demand 

for new methodologies in order to improve the efficiency.  
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1 Introduction 

Pigmented skin lesions, which may be classified as benign or malignant, are mainly caused by an 

abnormal production of a group of cells in some specific regions. Benign lesions have a more organized 

behaviour than malignant lesions, since the former do not proliferate into other tissues. Nevus, such as 

melanocytic, blue, halo, sptiz and dysplastic (Figure 1a), and seborrheic keratosis (Figure 1b), are 

examples of benign lesions. In the case of malignant lesions, i.e., skin cancer, the cells split quickly, and 

may invade other parts of the body. Indeed, these cells do not die as generally occurs with normal cells. 

Skin cancer may be divided into two categories: melanoma (Figure 1c) and non-melanoma (Figure 1d). 

Basal cell carcinoma and squamous cell carcinoma are two examples of non-melanoma skin cancer 

(NMSC) and are the most common of all skin cancers. Moreover, these types of cancer have a higher 

chance of cure than melanoma, since they have a reduced capacity to spread (metastasis) to other parts of 

the body. Melanoma is the most aggressive form of skin cancer, and the one with the highest mortality 

rate, due to its high levels of metastasis [1]. 

 

Figure 1 - Four examples of skin lesions: (a) dysplastic nevus, (b) seborrheic keratosis, (c) 
melanoma, and (d) squamous cell carcinoma (images publicly available in [2]). 

 
Melanoma was the 19th most common cancer worldwide in 2008, with an approximate estimation of 

200,000 new cases, and with the highest incidence rate in Australia/New Zealand, Northern America and 

Northern Europe, and the lowest in South-Central Asia [3]. Table 1 presents recent data regarding skin 
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cancer in the United States of America (USA), the United Kingdom (UK) and Brazil, according to gender. 

In the USA, 76,100 new cases of melanoma were estimated to be diagnosed in 2014 [4]. This estimate 

does not include NMSC, since this form of skin cancer is not required to be reported to cancer registries. 

For the same year, 9,710 deaths from melanoma were estimated. Another interesting point concerns 

melanoma incidence rates, which have increased during the last 30 years; for example, the incidence rates 

from 2006 to 2010 have increased by 2.7% per year. In the UK, melanoma was the 15th most common 

cancer in 2010, with approximately 12,800 new cases of this disease [3]. As a result, melanoma was the 

18th most common cause of death from cancer in the UK. In 2011, there were 2,209 deaths from 

melanoma, and 590 deaths from NMSC in the UK. Of these deaths from melanoma, 59% of the deaths 

were male patients, and 41% of the deaths were female patients. In Brazil, NMSC will be the most 

common form of cancer, since approximately 182,000 new cases are estimated in 2014 and 2015 [5]. 

Although NMSC has a lower mortality rate, it has a higher incidence than melanoma.  

Table 1 - Number of new cases of skin cancer, according to gender, in the USA, UK and Brazil. 

Country Type of skin cancer Year 
Number of new cases 

Male Female 

USA1  2014   

 Melanoma  43,890 32,210 

UK2  2010   

 Melanoma  6,201 6,617 

 Non-melanoma  55,747 43,802 

Brazil3  2014   

 Melanoma  2,960 2,930 

 Non-melanoma  98,420 83,710 
1 Estimated number, based on 1995-2010 incidence rates. 
2 Confirmed cases in 2010. 
3 Estimated number in 2014, and valid also for 2015. 

 

Recently, there has been a great interest in the development of computer-aided diagnosis (CAD) 

systems for the detection and analysis of pigmented skin lesions from images [6-9], which can assist the 

dermatologist in preventing the development of malignant lesions. Particularly, CAD systems may be used 

to monitor benign skin lesions, in order to prevent the development of malignancy. Moreover, malignant 

lesions may be diagnosed at an early stage, during which the patient has a higher probability of cure, and 

more favourable conditions for being properly treated.  
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On the other hand, there is also a great interest concerning the image segmentation step of the CAD 

systems. This step allows for a better representation of the lesion under study, and extraction of its 

features. Image segmentation has, therefore, a critical role in the effectiveness of the CAD systems. 

Previous studies [10-15] have shown that computational methods for image segmentation may provide 

suitable results for the identification of skin lesions in images. Frequently, the images under analysis are 

pre-processed for image enhancement and artefact removal, so that more robust segmentations may be 

achieved [16, 17]. An overview of lesion border detection methods, which addresses the pre-processing, 

segmentation and post-processing steps, is presented in Celebi, et al. [18]. In addition, the authors also 

discuss performance evaluation issues, and propose guidelines for future studies. However, they primarily 

focus on dermoscopy images of pigmented skin lesions, and the segmentation methods were classified 

according to the images to be segmented. In this review, we introduce some of the most relevant solutions 

that have been developed to assist the diagnosis of skin lesions from images, including those concerning 

the steps of image acquisition, pre-processing and segmentation. In particular, we comprehensively review 

the computational techniques that have been suggested for the image segmentation of pigmented skin 

lesions. In the following sections, these techniques are classified into five classes according to their 

segmentation principle, specifically, based on edges, thresholding, regions, artificial intelligence 

techniques, and the ones based on active contours. In addition, several of the reviewed techniques are 

applied to macroscopic and dermoscopy images, in order to exemplify and discuss their applications. 

The paper is organized as follows: in Section 2, a review of the current state-of-the-art concerning the 

image segmentation of pigmented skin lesions is provided. In addition, smoothing and segmentation 

results by using several methods are presented. In Section 3, the properties of some of the reviewed 

computational methods are discussed, and their advantages/disadvantages are identified. Finally, in 

Section 4, the conclusions of the review and future trends are outlined. 

2 Image segmentation of pigmented skin lesions 

2.1 Imaging techniques 

Different non-invasive imaging techniques have been employed to assist dermatologists in the diagnosis 

of skin lesions. Dermoscopy, photography, confocal scanning laser microscopy (CSLM), optical 

coherence tomography (OCT), ultrasound, magnetic resonance imaging (MRI), and spectroscopic imaging 

are examples of these techniques [19-21]. Macroscopic images, commonly known as clinical images [13, 

22, 23], and images acquired by epiluminescence microscopy (ELM), also called dermoscopy or 

dermatoscopy images [12, 14, 15, 24-27], are normally used in the computational analysis of skin lesions. 

Figure 2 presents examples of dermoscopy and macroscopic images. 
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Figure 2 - Examples of dermoscopy (a and c) and macroscopic (b and d) images: (a) and (b) are 
images of melanoma in situ, and (c) and (d) are of invasive melanoma (these images are publicly 
available in [2]). 

 

Clinical images are usually obtained using common digital video or image cameras. However, the 

imaging conditions are frequently inconsistent; for example, images are acquired from variable distances 

or/and under different illumination conditions. Furthermore, the images may have poor resolution, which 

may cause complications when the size of the lesion is small. An additional problem with clinical images 

is related to the presence of artefacts, such as hair, reflections, shadows and skin lines, which may hinder 

the adequate analysis of the imaged skin lesions.  

Essentially, ELM is a non-invasive technique for image acquisition, where the lesion is immersed in 

oil, and subsequently a dermatoscope device (which includes a specific camera) acquires the images. This 

technique allows a better visualization of the pigmentation pattern on the skin surface. Besides the non-

polarised imaging modality due to the oil immersion, there are two other modalities of ELM that may be 

used: cross-polarization and transillumination, also called side or epi-transillumination. In these 

modalities, the images are acquired via a nevoscope device, which allows the acquisition of images with a 

variable amount of transillumination or cross-polarized surface light. Both modalities highlight the surface 

pigmentation, but the transillumination modality has the advantage of highlighting the subsurface 
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vasculature and blood flow. However, hairs and air bubbles must be subsequently removed from the 

images, to allow for a better recognition of the skin lesions. 

2.2 Image pre-processing 

The image pre-processing step is an important aspect for the effective identification and analysis of 

pigmented skin lesions in images. As mentioned earlier, the images under analysis may contain several 

artefacts, such as hairs, reflections, shadows, skin lines and air bubbles, which may affect the accuracy of 

the image segmentation step. Effective methods based on colour space transformation [28-30], 

illumination correction [31, 32], contrast enhancement [28, 29, 33, 34] and artefact removal [28, 35], as a 

pre-processing step have been proposed in order to improve the segmentation accuracy.  

In order to pre-process both macroscopy and dermoscopy images, the original RGB (red, green, blue) 

colour image may be used. The application may adopt scalar (single channel) or vector (multichannel) 

processing. In scalar processing, the colour image is converted into a scalar image such as, for example, a 

grey-level image, or only the blue channel is retained, since the lesions are often more evident in this 

channel [18]. In vector processing, the original RGB image may be used directly or after conversion to 

other colour spaces, such as the CIE L*a*b* [29], CIE L*u*v* [6], and HSV (hue, saturation, value) 

spaces [31]. These colour spaces are commonly used in literature to enhance colour images, since they 

augment the approximate perceptual uniformity of the image colours. Several pre-processing methods 

were originally designed for scalar images. However, these methods may also be applied to colour images, 

for example, by applying the scalar method separately to each colour channel of a given colour space, and 

then combining the results [36], or adopting methods that deal with vector data [37]. 

Artefacts due to illumination variation, such as shadows and reflections, may significantly affect the 

skin lesion segmentation results, specifically in macroscopic images. For shading effect attenuation in 

macroscopic images, Cavalcanti, et al. [31] proposed a method for illumination variation modelling with a 

quadratic function. This method converts the original RGB image to the HSV colour space, and retains the 

V channel in order to obtain a higher visibility of the shading effects. The normalized image is obtained by 

applying, on the HSV image, an estimate of the quadratic function computed from the local illumination 

intensity in V channel. Afterwards, the normalized image is converted from the HSV colour space back to 

the RGB colour space, but now with the shading effects significantly attenuated. Colour image 

segmentation is then performed on this illumination-corrected image, by using the Otsu’s thresholding 

segmentation approach [76]. Recently, Glaister, et al. [32] proposed a new multistep illumination 

modelling method to correct the illumination variation in macroscopic images. This method first 

determines a nonparametric model of the illumination by using a Monte Carlo sampling method. Then, a 

parametric quadratic surface model is used to determine the final illumination estimation. Finally, the 
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illumination-corrected image is obtained by using the reflectance component computed from the final 

estimated illumination. 

Another factor that complicates the segmentation of skin lesions, in both macroscopic and dermoscopy 

images, is the low contrast of the lesions. Celebi, et al. [34] presented a method to enhance the contrast in 

dermoscopy images. The method searches for the optimal weights to convert an original RGB image to 

the corresponding grey-level image, by maximizing an Otsu’s histogram bimodality measure. Recently, 

Barata, et al. [36] used a shades-of-grey method for colour compensation in dermoscopy images. This 

method only uses image information to estimate the colour of the light source. Morphological filtering 

[38], which is based on set theory, may also be used to enhance skin lesions in images [39]. For example, 

one may refer to the work of Beuren, et al. [39], where colour morphological filtering is used to enhance 

the regions of the lesions. Moreover, morphological filtering has been applied in order to include areas 

with low contrast borders in the detected lesion regions [26, 40], and to remove image noise [12, 40]. 

Algorithms for hair removal, in both macroscopic and dermoscopy images, are commonly used in pre-

processing steps, since this artefact may considerably affect the detection of the lesion borders. Lee, et al. 

[41] proposed a solution for hair removal, especially thick dark hairs, which is based on one of the first 

widely adopted methods for hair removal in dermoscopy images, and consists of three main steps: 1) 

identify the hair location by applying a grey-level morphological operation to the three colour channels of 

the original RGB image separately, and build the binary hair mask image by using thresholding to divide 

the image into hair and non-hair regions; 2) replace the values of the detected hair pixels in the original 

image by the values of the corresponding nearby non-hair pixels; and 3) apply a binary morphological 

operation and median filter to smooth the thin lines. This method has influenced several other methods for 

hair detection and removal [42-45]. 

The presence of hairs in images may also be reduced by the application of image smoothing methods, 

such as the median and anisotropic diffusion filters, without losing relevant information about the lesions, 

and, therefore improving the accuracy of the segmentation process. The median filter [46], which is a non-

linear image filtering method, has been commonly applied on noisy images showing successful results. 

Unlike linear filters, such as the average filter [46], this type of filter allows the smoothing of the original 

image without blurring edges and thin details. The median filter has been often applied to smooth images 

of skin lesions, as well as to remove artefacts, maintaining the edges of the lesions, which is imperative for 

an adequate segmentation [6, 12, 47, 48]. To establish the best median filtering mask for the smoothing of 

skin lesion images, Celebi, et al. [47] established a theory, which considers that, for an effective 

smoothing, the size of the filtering mask should be proportional to the size of the input image. Anisotropic 

diffusion [49] has also been used for smoothing skin lesion images [17]. This filter is applied iteratively, 

such that the number of iterations is determined according to the amount of noise presented in the input 
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image. However, relevant edges may be removed when the number of iterations is too large. 

Improvements have been proposed, in order to enhance the results of the anisotropic diffusion filter. For 

example, Barcelos, et al. [50] proposed an enhancement of the anisotropic diffusion algorithm, originally 

suggested by Perona and Malik [49]. The improved algorithm not only aims at smoothing very noisy 

images without removing relevant edges, but also considers the improvements proposed by Alvarez, et al. 

[51] and Nordström [52] to enhance the edges. 

The results of the application of the median [46], average [46] and anisotropic diffusion [49] filters to 

an 256 x 256 pixel image are shown in Figure 3. A 9 x 9 convolution mask was used in the median and 

average filtering, since other masks did not lead to a successfully smoothed image with a reduced noise 

level. Regarding the anisotropic diffusion filter, the smoothing was halted after 150 iterations. 

 

Figure 3 - Application of smoothing filters: (a) original dermoscopy image of a melanoma (publicly 
available in [2]), and the corresponding images obtained after (b) median, (c) average, and (d) 
anisotropic diffusion filtering. 

 
Unlike most methods proposed in literature for reducing the influence of hairs on images of skin 

lesions, Abbas, et al. [16] suggested an effective pre-processing method for the reduction of different 

artefacts, in both dermoscopy and macroscopic images, and, consequently, a better detection of lesion 

borders. Essentially, this method consists of three steps: 1) specular reflection reduction by applying 
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homomorphic filtering [53], Fast Fourier Transform (FFT) and high pass filtering, in order to modify the 

illumination and reflectance, and obtaining, therefore, high contrast skin lesions, 2) the reduction of 

dermoscopic-gel or air bubble artefacts, based on an adaptive and recursive weighted median filter, and 3) 

hair, blood vessel and skin line detection and reduction, using a line detection procedure, based on the 

two-dimensional (2D) derivatives of Gaussian (DOG) [54], and the exemplar-based inpainting technique 

[55].  

 

2.3 Image segmentation 

Segmentation allows the extraction of the region of interest (ROI) of an image. Bearing in mind that the 

skin lesion is the ROI in the image under analysis, the segmentation process should not cease until the 

lesion is fully detached from the image background, or until some other outcome is reached. Some 

artefacts, such as hairs, reflections, shadows, skin lines and bubbles, may influence the result of the 

segmentation process, making it a complex computational task. Nonetheless, as mentioned previously, 

pre-processing techniques may be applied to the original images, with the purpose of facilitating the 

segmentation process and improving the resultant accuracy. 

In general, the segmentation process is based on the discontinuity and similarity of some properties of 

the ROIs to be segmented [56]. The segmentation methods may be edge-based, i.e., the methods are based 

on information about the image edges, more specifically, they search for abrupt changes, i.e., 

discontinuities, in the intensity of the image pixels relative to their neighbours. Edge detectors are the 

most common examples of such methods. In addition, the segmentation process may depend on similarity 

criteria, such as similar grey-levels, colours or textures. Thresholding- and region-based segmentation are 

some examples of methods that use similarity criteria to identify skin lesions in images. Many 

segmentation methods are originally designed for scalar images. Therefore, several applications are 

available to convert the original colour image to scalar data [74], for example, grey-level images, pursuing 

the computational simplicity and convenience of scalar processing. However, in order obtain better 

segmentation results by using the information contained in all the colour channels of the original images, 

segmentation methods dedicated to process vector images have been developed [57]. However, this vector 

image processing is usually more computationally demanding and requires appropriate colour spaces. 

In the following sections, we discuss the applicability of some methods commonly used in literature 

for the segmentation of pigmented skin lesions in images, such as the edge-, thresholding- and region-

based methods, and methods based on artificial intelligence (AI) and active contours. Other methods are 

discussed in Section 3. The reviewed research is summarized in Table 2. Research that combines different 

methods [10, 14, 58, 59], and that compares segmentation methods [12], is also include in Table 2. 
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Table 2 - Research that has been performed related to the segmentation of skin lesions in images. 

Segmentation method Technique References 

Edge-based Edge detectors [17, 60] 

Thresholding-based 

Otsu’s thresholding [6, 26, 29, 31, 34, 40, 43, 48, 
61-65] 

Fuzzy logic [14] 
Renyi’s entropy [39] 
Adaptive thresholding [12, 66]  
Iterative thresholding [33, 59, 67] 
Ensemble [24] 
Statistics [7, 23, 68] 

Region-based 
Region growing [6, 7, 10, 12] 
Statistical region merging [32, 47, 60, 69] 
Iterative stochastic region merging [13] 

AI-based 

Neural networks [33, 58, 67] 
Evolutionary computation [11] 

Fuzzy logic [10, 12, 14, 27, 43, 58, 59, 69] 

k-means clustering [43, 69, 70] 

Active contour-based  

Adaptive snake [12] 
Gradient vector flow [12, 15, 63, 71, 72] 

Level set [64]  

Region-based active contour algorithm [16, 28] 
Active contour without edges [12, 65]  

Expectation-maximization level set [12] 

Other methods 
Hill-climbing algorithm  [29] 

Dynamic programming [73, 74] 

 

2.3.1 Edge-based segmentation 

The changes in intensity of the pixels in an image to be segmented may be determined based on the 

magnitude of the gradient used to detect the edges of the ROI [56]. The Prewitt, Sobel, Roberts, Laplacian 

[56] and Canny [75] operators are common examples of edge detectors that lead to image segmentation 

based on edges. According to Sonka, et al. [38], edge detectors may only achieve partial image 

segmentation. Therefore, the application of another segmentation method is needed to improve the final 

segmentation result. In particular, edge detectors present the following problems [38]: 1) the detection of 

an edge where no real border exists, 2) the non-detection of an edge where a real border exists, 3) the 

possibility of generating double edges, and 4) the large sensitivity to image noise.  
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The edge detector developed by Canny [75] has been applied to skin lesion images [17, 60], due to its 

advantages compared with other edge detectors: 1) it provides good edge detection with a low error 

probability, 2) it allows a good location of the edge pixels, and 3) it avoids the detection of double edges. 

Firstly, Canny’s algorithm smooths the input image 𝑓 𝑥, 𝑦 , performing a convolution with a Gaussian 

function 𝐺(𝑥, 𝑦): 

𝑔 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 ∗ 𝐺(𝑥, 𝑦),         (1) 

where: 

𝐺 𝑥, 𝑦 = +
,-./

𝑒1
2/34/

/5/ 	,          (2) 

and where 𝜎 is the Gaussian function standard deviation. Then, the gradient magnitude 𝑀 𝑥, 𝑦 , and the 

direction 𝛼 𝑥, 𝑦 , at each pixel in the smoothed image 𝑔 𝑥, 𝑦 , are computed: 

𝑀 𝑥, 𝑦 = 𝑔:, + 𝑔<,, and          (3)   

𝛼 𝑥, 𝑦 = 𝑡𝑎𝑛1+ @2
@4

.           (4) 

Subsequently, the non-maximum suppression technique is used to preserve all pixels with local maximum 

in the gradient image. Afterwards, double thresholding (𝑇+, 𝑇,) is established to remove the weak edges. 

The pixels with a gradient magnitude below the 𝑇+ are considered as weak edges, and the pixels with a 

gradient magnitude above 𝑇, are considered as strong edges. Finally, the final edges are defined by all the 

pixels considered as strong edges or also by the weak pixels that can be connected to any strong pixels. 

Figure 4 illustrates the segmentation results from application of Canny’s edge detector to two skin 

lesion images [75]. Usually, a median filter [46] is applied before the edge detector, in order to smooth the 

original image and reduce the noise. However, the edges generated by Canny’s edge detector are usually 

not satisfactory. Although the lesions are identified by the detector, the generated edges are discontinuous; 

thus, the boundaries of the lesions are not fully detected. In addition, there is a large sensitivity to the 

noise, which generates boundaries that are not part of the lesions. 
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Figure 4 - Segmentation results after applying Canny’s edge detector to a dermoscopy image (a and 
c), and to a macroscopic image (b and d). 

 
Barcelos and Pires [17] employed Canny’s edge detector after the application of an anisotropic 

diffusion smoothing filter [50], and the results demonstrated that the unwanted edges were removed. 

However, some regions of the skin lesions were not included in the detected edge map, and the edges were 

not completely closed. 

2.3.2 Thresholding-based segmentation 

The thresholding technique has been commonly used in several skin lesion segmentation methods 

proposed in literature. This technique is based on the histogram of the input image, which represents the 

distribution of the image pixels, 𝑃C = 𝑛C/𝑁, in terms of each possible intensity level, 𝑖 = [1, 2,… , 𝐿], 

where 𝑛C is the number of pixels for a particular intensity level 𝑖, 𝑁 is the total number of pixels of 

the image, and L is the number of intensity levels. Thus, the thresholding technique entails the selection of 

one or multiple threshold values to separate the ROIs in the input images. 

Among the various techniques proposed in literature to define the threshold value(s), we may cite 

Otsu's method [76], which has many applications in image segmentation of skin lesion [6, 26, 29, 40, 48, 
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61, 65]. This method is based on a normalized histogram, built in order to set the optimal threshold value 

𝑘, which separates the pixels of the input image into two homogeneous classes (𝐶0, 𝐶1), with minimal 

variance (𝜎P,): one class for the ROI, 𝐶Q = [1,2, … , 𝑘], and the other class for the image background, 

𝐶+ = [𝑘 + 1, 𝑘 + 2,… , 𝐿]: 

𝜎P, = 𝜔Q 𝜇Q − 𝜇U , + 𝜔+ 𝜇+ − 𝜇U ,,       (5) 

𝜔Q = 	 𝑃CV
CW+ , 𝜔+ = 	 𝑃CX

CWVY+ ,        (6) 

𝜇Q 	= 	
CZ[
\]

V
CW+ , 𝜇+ 	= 	

CZ[
\[

V
CWVY+  , and       (7) 

𝜇U 	= 	 𝑖𝑃CV
CWVY+ ,          (8) 

where 𝜔Q and 𝜔+ are the probabilities, and 𝜇Q and 𝜇+ the means of the classes 𝐶Q and 𝐶+, 

respectively. Thus, 𝜇U is the total mean of the intensities of the input image. Figure 5 presents the 

segmentation results after the application of Otsu's method [76] to dermoscopy and a macroscopic images. 

A median filter [46] was employed before the segmentation step, to reduce the noise in the original 

images. Although several lesion boundaries are correctly detected, several other regions, such as edges 

with low contrast, are not identified as part of the lesions. Furthermore, this edge detector is very sensitive 

to artefacts and, therefore, because of reflections, some interior regions of the lesions are wrongly 

identified as belonging to the lesions. 

 

Figure 5 - Segmentation results after applying Otsu’s method (a) to the dermoscopy image shown in 
Figure 4a, and (b) to the macroscopic image shown in Figure 4b. 

 

Otsu's method has revealed some problems, such as: (1) the segmented lesions tend to be smaller than 

they are in reality; and (2) it may lead to very irregular lesion edges. Yuksel and Borlu [14] proposed a 

method using the type-2 fuzzy logic technique [77] to solve such problems, which automatically 

determines the threshold value to segment dermoscopy images. This technique exhibits good performance 
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in dealing with fuzzy values, by determining whether a specific image intensity level belongs to lesion 

regions or belongs to the background skin. Alcón, et al. [23] proposed an improved thresholding technique 

to overcome some issues of Otsu’s method. In the proposed algorithm, the threshold is defined by finding 

the average value between the means of both background and lesion probability distributions. Cavalcanti, 

et al. [31] and Gómez, et al. [70] suggested building projections of the original RGB colour space, where 

they were able to properly apply Otsu’s method. A thresholding method based on the Renyi’s entropy [78] 

has also been applied to define the desired threshold value, leading to segmentations that preserve the 

geometry and shape of the lesions [39]. Another technique to define the threshold value is indicated by 

Xu, et al. [68], which considers the average intensity of the strongest gradient pixels in the input image. 

Threshold selection by an iterative [33, 59, 67] or an adaptive [12, 66] process has also been adopted to 

segment skin lesions in images. The fusion of the results provided by the ensemble of thresholding 

methods results in another segmentation technique based on thresholding [24]. 

 

2.3.3 Region-based segmentation 

The region growing algorithm [79], splitting and merging operations [80], and the Mumford-Shah method 

[81] are examples of region-based techniques that have been used to segment skin lesion images. The 

region growing algorithm consists in grouping similar neighbouring pixels, or in grouping sub-regions, 

into larger homogeneous regions according to a growing criterion. For example, in a given region of an 

image, pixels with similar properties, such as grey-level, colour or texture, are grouped together [6, 7]. 

The splitting and merging operations are region-based techniques applied to group similar regions [10, 

12]. Thus, the same intensity is attributed to all input pixels that have similar intensity, in agreement with 

the grouping criterion. On the other hand, the Mumford-Shah method divides the original image into 

several regions Ω_ = Ω+ ∪ Ω, ∪ …∪ Ωa ∪ k, where 𝑘 is the boundary between them, merging the 

close regions by analysing their pixel intensities. This technique is based on an energy functional 𝐸 𝑘 , 

calculated as: 

𝐸 𝑘 = 𝑢 − 𝑐C
,
𝑑𝑥	𝑑𝑦gh

+⋋ 𝑙(𝑘)C ,       (9) 

where 𝑢 is a constant function into each image region Ω_, 𝑐C = 𝑚𝑒𝑎𝑛(𝑢), 𝑑𝑥 and 𝑑𝑦 are the differentials 

of 𝑥 and 𝑦, ⋋ is a parameter that is incremented at each iteration, and 𝑙(𝑘) is the total length of the regions 

at each iteration. 

The active contour model without edges [82] is based on the Mumford-Shah method and has been used 

in the image segmentation of skin lesions [12, 16]. Examples of the results obtained by the Mumford-Shah 

method applied to skin lesion images are presented in Figure 6. The method was employed on two images 
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that were previously smoothed using the median filter [46]. Observation of the resultant images, shows 

that the lesions are completed identified, including the lesion regions with considerable colour variation. 

However, some regions are erroneously identified as belonging to the lesions due to image artefacts. 

 

Figure 6 - Segmentation results after applying the Mumford-Shah method: (a) to the dermoscopy 
image shown in Figure 4a, and (b) to the macroscopic image shown in Figure 4b.   

 
Castillejos, et al. [69], Celebi, et al. [47] and Ganzeli, et al. [60] employed the statistical region 

merging (SRM) algorithm [83] to detect the edges in images of skin lesions. This algorithm is a technique 

developed to segment colour images based on region growing and merging. Simplicity, computational 

efficiency and excellent performance are the main advantages reported for the SRM algorithm. Image 

quantization and colour space transformation steps, that are commonly applied to the original images 

before their segmentation, are unnecessary when this algorithm is used to segment skin lesion images. 

A method to segment skin lesion images through iterative stochastic region merging has been proposed 

by Wong, et al. [13], based on the SRM algorithm [83]: each image pixel is assigned to a single region, 

which is subsequently merged with other regions in a stochastic way, based on a probability function of 

region fusion. This process is characterized by a multi-path refining of the results, in order to achieve the 

best final segmentation. This method has been shown to be robust to image artefacts, and to perform 

successfully in cases where several skin lesions, structural lesion variations, varying illuminations and 

colour variations are present in the input images. In addition, it achieves successful segmentation in cases 

where there is low contrast between the lesion and the skin background near the lesion boundaries. 

2.3.4 Segmentation based on artificial intelligence 

Techniques based on artificial intelligence (AI) have also been proposed for the image segmentation of 

skin lesions, in which the image pixels are classified as belonging to the ROIs or to the background of the 

images. Neural networks, evolutionary computation and fuzzy logic are some examples of these 

techniques, which aim at performing similar tasks to humans, based on learning, natural evolution and 
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human reasoning. These techniques may be combined among themselves, or with other traditional image 

processing techniques, in order to improve segmentation performance. 

Artificial neural networks (ANNs) [84], which are parallel distributed systems composed of simple 

processing units with the purpose of obtaining similar results to the human brain, have been applied to 

segment images with skin lesions [33, 67]. The segmentation performance of ANNs may be improved 

through the application of Genetic Algorithms (GAs) [85], which are computational techniques for 

searching and optimization. GAs are based on natural evolution and biological genetics, with the aim of 

finding the best solution for a given problem; for example, GAs may be employed to optimize ANN 

parameters.  

Roberts and Claridge [11] presented a method to segment skin lesion images through Genetic 

Programming (GP) [86], which is a technique based on natural evolution to solve problems following the 

concepts of genetic algorithms. The proposed method consists in creating a random population of 

programs from the function and terminal sets. The function set is built from the image processing 

operations, such as image thresholding, morphological operations, edge detection and merging. The 

terminal set is built from information in the input image, such as the intensity and coordinate values of the 

pixels. This method showed good generalization with a very small set of training samples. Furthermore, 

the system learns by example, thus increasing the amount of problems in which it is applicable. However, 

this method has some disadvantages regarding the complexity of its implementation, and the presence of 

unnecessary steps, which is computationally demanding. 

Fuzzy logic deals with uncertain and imprecise values. Many algorithms based on fuzzy logic have 

been proposed to segment skin lesions in images [10, 12, 14, 27, 58, 59]. This method allows the 

representation of intermediate values within an interval; in other words, the input data is qualitatively 

analysed (linguistic values). Frequently, the fuzzy method is applied together with other segmentation 

techniques. In Maeda, et al. [10] and Silveira, et al. [12] the fuzzy method, combined with both splitting 

and merging techniques, was used to segment dermoscopy images. This combination, originally proposed 

by Maeda, et al. [87, 88], generates an algorithm for the unsupervised perceptual segmentation of natural 

colour images using a fuzzy-based homogeneity measure, which performs the fusion of colour and texture 

features. The algorithm includes four steps: simple splitting, local merging, global merging and boundary 

refinement. 

The fuzzy method was also used to define a threshold value from fuzzy intensity, by applying the type-

2 fuzzy logic technique [77]; the idea was to determine whether a specific intensity belongs to the ROI or 

to the image background [14]. Another method, named neuro-fuzzy approach [58], combines fuzzy logic 

with neural networks to segment dermatological images. In addition, fuzzy logic, combined with 
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clustering techniques, has been employed in the image segmentation of skin lesions, e.g., the fuzzy c-

means (FCM) algorithm [27, 59, 69]. The basic idea behind the FCM algorithm is to find the centre of 

each cluster, similarly to the traditional k-means algorithm. Nevertheless, this process is more flexible, 

since partial membership may be introduced in the clusters. For each iteration of FCM, the minimization 

of the objective function 𝐹 is computed as: 

𝐹 = 	 𝜇CmVn
mW+ 𝑥C − 𝑐m

,o
CW+ ,         (10) 

𝜇Cm =
+
2[pqr

2[pqs
//(tpu)

v
swu

 , and         (11) 

𝑐m =
x[r
t :[y

[wu

x[r
ty

[wu
 ,           (12) 

where 𝑁 is the number of pixels in the input image, 𝐶 is the number of defined clusters, 𝑐m is the centre of 

each cluster 𝑗, 𝜇Cm is the degree of membership for the pixels 𝑥C in cluster 𝑗, and 𝑘 is a coefficient that 

defines the fuzziness of the resulting clusters. The term 𝑥C − 𝑐m  is used to measure the similarity of the 

pixels to the centre 𝑐m of a given cluster 𝑗. 

Figure 7 presents the segmentation results obtained by applying the fuzzy c-means method to two 

images, which have been previously smoothed by applying the median filter [46]. Two clusters were 

defined with the initial mean intensities of 8 and 250. Using these parameters, the resultant images 

demonstrates that the lesions are successfully segmented. However, some lesion pixels with low contrast 

are not clustered into the lesion groups. 

 

Figure 7 - Segmentation results obtained after applying the fuzzy c-means method: (a) to the 
dermoscopy image shown in Figure 4a, and (b) to the macroscopic image shown in Figure 4b. 

 

Zhou, et al. [27] proposed a new mean shift approach, based on the FCM algorithm, called the 

anisotropic mean shift algorithm (AMSFCM), to segment dermoscopic images. The AMSFCM algorithm 

[89] is more effective than the FCM algorithm, and requires less computational time than the traditional 
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mean shift technique. Furthermore, it provides superior segmentation results. Mean shift-based techniques 

[90] allow the estimation of local density gradients of similar pixels by using radially symmetric kernels. 

However, these kernels may not adequately deal with the presence of irregular structures and noise in the 

input image. On the other hand, the AMSFCM algorithm provides improved performance in these cases, 

since it uses an anisotropic kernel. Castillejos, et al. [69] proposed a cluster pre-selection algorithm based 

on the FCM algorithm (CPSFCM), in order to use fuzzy logic to automatically determine the optimal 

number of clusters, based on the input image data, such as the intensity values.  

2.3.5 Segmentation based on active contours 

Algorithms based on active contours have been used for segmenting skin lesion images [12, 15, 16, 28, 

64]. In these algorithms, the initial curves move toward the boundaries of the objects of interest through 

appropriate deformation. A deformable model may be classified as parametric [91-93] or geometric [57, 

82, 94-96], according to the technique used to track the curve movement.   

Parametric models include the traditional active contour models, namely, snake models [92]. 

Typically, in these models, the curve deformation is guided by energy forces, in which an internal energy 

determines the smoothness level by the definition of the curve’s elasticity and rigidity; in other words, it 

controls the degree of shrinkage or expansion of the model curve in order to avoid over-deformations. An 

external energy is also included in the models, which has the function of driving the curve to the desired 

boundary. This energy may be defined by the user or through an automatic process. Image-based energies 

may also be defined, which drive the curve toward interesting image features, such as those based on 

image intensity, gradient, line segments and corners. However, these models have some limitations [82, 

93]: 1) the curve initialization must be near the object’s boundary, 2) the models have difficulty in dealing 

with boundaries with large curvatures, 3) the stop criterion of the curve deformation usually depends on 

the image gradient, which may cause bad edge localization when the gradient value is not high enough, 

and 4) these models have difficulty in dealing with topological changes during the curve evolution. 

The gradient vector flow (GVF) [93] is another parametric model that has been used in the 

segmentation of skin lesions [12, 15, 63]. Xu and Prince [93] proposed a new external energy for the 

active contour models, which is computed by a linear partial differential equation, and extends the 

gradient vectors at the image edges to the whole image. The goal of the new model was to overcome some 

of the main problems of the traditional snake model, in particular, the curve initialization and the 

convergence onto boundary regions with large curvature. On the other hand, Zhou, et al. [15], Zhou, et al. 

[72] and Zhou, et al. [71] proposed a new type of dynamic energy for the segmentation of skin lesions, 

that combines the classical GVF model [93] and the mean shift algorithm [97]. This algorithm was 

designed to find the most similar edges to the true boundaries, by calculating the distance between the 
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centroid of the curve and the true boundary of the object of interest. Thus, the curve evolution towards the 

ROI is generated by the gradient vector flow as well as by the mean shift of the pixels contained within 

the curve. This combination makes the model versatile, because the successful calculation of the image-

based energies is guaranteed, even in very noisy images. 

Geometric models are characterized by the topological changes that the curve may experience during 

the segmentation process, and are less dependent on the initial curve conditions. Level set method [94] 

and active contour model without edges, known as Chan-Vese’s model [82], are such examples of 

geometric models. The level set method was originally proposed by Osher and Sethian [94] to handle 

topological changes during the curve evolution, which is one of the limitations of the traditional 

parametric models. The curve evolution is implicitly tracked by a level set function, which allows the easy 

identification of a pixel: whether an image pixel is located inside, outside or on the curve. The geometric 

properties of the curve may be easily computed by the level set function. 

The active contour model without edges proposed by Chan and Vese [82] is based on the average of 

the intensities of the image pixels, and not on the image gradient. Therefore, the model uses the concepts 

of the Mumford-Shah [81] and Level Set [94] segmentation techniques. Essentially, Chan-Vese’s model 

considers a "fitting" term 𝐹 for the energy minimization, which is calculated by means of an energy 

functional based on the level set function, 𝜙, to identify whether the object of interest is inside or outside 

the curve, 𝐶. The minimization of the energy function 𝐹 𝑐+, 𝑐,, 𝜙  allows the deformation of the curve 

toward the boundary of the object, where the inside and outside intensities are constant and similar:  

𝐹 𝑐+, 𝑐,, 𝜙 = 𝜇 𝛿 𝜙 𝑥, 𝑦 ∇𝜙 𝑥, 𝑦 𝑑𝑥	𝑑𝑦g + 𝜈 𝐻 𝜙 𝑥, 𝑦 𝑑𝑥	𝑑𝑦g +⋋+ 𝑢Q 𝑥, 𝑦 −g

𝑐+ ,𝐻 𝜙 𝑥, 𝑦 𝑑𝑥	𝑑𝑦 +⋋, 𝑢Q 𝑥, 𝑦 − 𝑐, , 1 − 𝐻 𝜙 𝑥, 𝑦 𝑑𝑥	𝑑𝑦g ,               (13)  

where 𝑢Q is a pre-processed image, as a bounded function on Ω and with real values. The fixed parameters 

𝜇, 𝜈 ≥ 0, ⋋+ and ⋋,> 0 are weights for the fitting term. The terms 𝐻 and 𝛿 are the Heaviside and Dirac 

delta functions, respectively. The constants 𝑐+ and 𝑐,, which are based on Mumford-Shah’s segmentation 

model, are the average image 𝑢Q inside and outside the curve 𝐶, respectively, and given by: 

𝑐+ 𝜙 =
�] :,< �(� :,< )�:�<�

�(� :,< )�:�<�

	, and        (14) 

𝑐, 𝜙 =
�] :,< (+1�(� :,< ))�:�<�

(+1�(� :,< ))�:�<�

	.         (15) 

 

Chan-Vese’s model has been used in the segmentation of skin lesions in images [12, 16, 65], due to its 

advantages when compared with other segmentation techniques based on the active contour model [82], 

such as: 1) the initial curve may be defined more freely in the image, 2) the inner contours are 
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automatically detected without the need to introduce a second curve in the image, 3) the object detection is 

carried out even in the presence of varying intensities, very smooth boundaries and where the boundaries 

may not be successfully defined by the gradient, a situation which is not effectively handled by the 

traditional active contour model, and 4) it provides effective detection of object boundaries even on noisy 

images, without the necessity to previously smooth the original images. 

Figure 8 presents the segmentation results obtained by applying the traditional Chan-Vese’s model [82] 

to two images, which were previously smoothed using a median filter [46]. The segmentation process was 

halted when the edges were on the lesion boundaries, or when the maximum number of iterations was 

reached. From the resultant images, one may confirm that this model has provided good segmentation 

results, having identified low contrast boundaries and overcome the image noise. 

 

Figure 8 - Segmentation results obtained after applying Chan-Vese’s model: (a) to the dermoscopy 
image shown in Figure 4a, and (b) to the macroscopic image shown in Figure 4b.  

 

Abbas, et al. [28] proposed an improved, perceptually-oriented region-based active contour (RAC) 

scheme [98], where the segmentation concept is based on Chan-Vese’s model [82] to determine the edges 

of the lesion to be segmented. The authors suggested this model due to its ability to simultaneously define 

multiple regions, separate heterogeneous objects, successfully deal with image noise, and because of the 

automatic convergence of the modelled curve. 

 

3 Discussion 

In general, the segmentation results are post-processed, in order to improve the accuracy of the obtained 

lesion edges. In many cases, morphological filters are used to smooth the edges, to remove the isolated 

regions and/or even to fill the interior of the segmented lesion regions [12, 26, 27, 40, 47, 59]. The final 

contours obtained for the lesions may be compared with ground truths defined by one or more specialists. 

Additionally, the accuracy of the edge detection results may be measured using statistical metrics, in order 
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to estimate the associated precision and recall, sensitivity and specificity, error probability and operation 

exclusive disjunction (XOR) [29, 48, 99]. The accuracy of the segmentation depends on the model and 

techniques used to solve the problem. Figure 9 illustrates the distribution of the methods reviewed in this 

article, according to the applied principle, which have been developed to segment pigmented skin lesions 

in images. 

Threshold-based techniques have been widely used, mainly because of their simplicity, computational 

efficiency and good performance. The wide use of techniques based on AI is justified by the advantages it 

offers, such as the possibility of learning from sample cases provided by the ANNs, the search and 

optimization for the best segmentation results provided by algorithms based on GAs, and the capability to 

deal with imprecise values that are provided by fuzzy logic. Algorithms based on the active contour model 

have also been frequently proposed for the segmentation of skin lesions. Nevertheless, parametric models 

have difficulty in dealing with topological changes and large curvatures. On the other hand, geometric 

models do not present such problems, but their computational complexity may be prohibitive. Region-

based methods have also been used, since such methods have shown successful performance even in the 

presence of several obstacles, such as illumination and colour variation. Usually, edge-based segmentation 

techniques are not applied independently, since these techniques may not completely identify the edges of 

the lesions, which is imperative in the analysis of skin lesions in images.  

 

Figure 9 - Distribution of the reviewed methods for the segmentation of skin lesions according to the 
applied principle. 

 

3%

37%

14%

23%

18%
5%

Edge-based

Thresholding-based

Region-based

AI-based

Active contour-based

Other methods



22 
 

  

Clustering algorithms have also been applied to segment skin lesion images [43, 69, 70]. For example, 

the k-means clustering algorithm is used by Castillejos, et al. [69]. The authors present a novel approach 

to segment the images based on the wavelet transform for k-means, FCM and CPSFCM algorithms. The 

proposed methods achieved superior results when compared with techniques that did not apply the 

wavelet transform. The hill-climbing algorithm (HCA) is a technique based on the clustering of points on 

an image, which is also applied to detect the ROIs of skin lesion images [29]. This algorithm takes an 

image and the number of histogram bins in each dimension as input parameters, and returns a labelled 

image, whereas in the traditional k-means algorithm, the numbers of clusters (k) are specified manually by 

the users. Image segmentation based on such a technique relies on a simple, fast and non-parametric 

algorithm. In Abbas, et al. [74] and Abbas, et al. [73], a new segmentation method based on dynamic 

programming was proposed, in order to overcome the limitation of thresholding, region-growing and 

clustering, as well as level set-based segmentation methods. This method is a general optimization 

solution, with good edge-based segmentation capabilities, its ability to solve for local minima or 

overlapping problems, its computational efficiency, and its excellent performance in detecting lesion 

borders in dermoscopy images. The combination of different methods have also been adopted to improve 

the final result of the image segmentation process, such as finding the approximate location of lesion, and 

automatically defining the initial contours, mainly to be used with the active contour model[7, 63, 67].  

Table 3 allows the performance comparison of the methods reviewed to segment both macroscopic and 

dermoscopy images of skin lesions, which are mostly performed automatically. The segmentation results 

are compared against the ground-truth defined by one or more specialists, or their quality has been 

visually assessed. The table indicates the number and type of image used, the colour spaces and channels 

employed in the pre-processing and segmentation steps, and the values of the evaluation measures. 

In order to obtain enhanced segmentation results, both from dermoscopy and macroscopic images, pre-

processing methods, such as colour space transformation, illumination correction, contrast enhancement 

and artefact removal, have been used. The median filter [46] and anisotropic diffusion filter [50] are 

usually applied to smooth images, in order to reduce the noise. Nonetheless, these filters cannot deal with 

some obstacles, such as illumination variation and very thick dark hair. Algorithms based on hair detection 

and repair, for example, based on inpainting techniques, have been used for hair removal [42].These 

enhance the lesions, which can lead to important improvements, and, therefore, favorably affect the 

diagnosis. 
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Table 3 – Comparison of the reviewed segmentation methods for skin lesions, both in macroscopic 
and dermoscopy images. 

Ref. Year 
Image number 

(Type) 
Pre-processing  
(Colour space) 

Segmentation 
(Colour space) 

Mean result 
(Evaluation measure) 

[64] 2015 
90 (DB1) / 160 

(DB2) 
(Dermoscopy) 

Smoothing 
(RGB) 

Thresholding + Active contour 
(CIE L*a*b* and CIE L*u*v*) 

DB1: 10.82% (XOR); 
DB2: 13.92% (XOR) 

[71] 2013 
100 

(Dermoscopy)  
- 

Active contour 
(Grey-levels) 

0.86 (SE), 0.99 (SP) 

[65] 2013 
152 

(Macroscopic) 
Illumination correction 

(HSV) 
Thresholding + Active contour 

(𝐼,oand 𝐼	X channels) 
15.60% (XOR), 90.07% 
(SE), 99.11% (SP) 

[24] 2013 
90 

(Dermoscopy) 
- 

Thresholding + fusion 
(Blue-channel - RGB) 

8.31 (XOR) 

[29] 2013 
100 

(Dermoscopy) 
Contrast enhancement 

(CIE L*a*b*) 

Hill-climbing algorithm + 
thresholding 

(CIE L*a*b*) 

94.25% (TP), 3.56% (FP), 
4% (EP)  

[73] 2012 
100 

(Dermoscopy) 
Artefact removal 

(CIE L*a*b*) 
Dynamic programming 

(CIE L*a*b* and Grey-levels) 
94.64% (SE), 98.14% 
(SP), 5.23% (EP) 

[28] 2012 
175 

(Dermoscopy) 

Illumination 
correction, contrast 
enhancement, hair 

removal 
(JCh and CIECAM02) 

Active contour 
(JCh and CIECAM02) 

Single contour 
initialization: 8.38% (EP);  
Multi-contour 
initialization: 4.10% (EP)  

[26] 2012 
426 

(Dermoscopy) 

Smoothing, 
Illumination correction 

(Grey-levels, RGB) 

Thresholding 
(RGB) 

NoMSLs: 84.5% (Prec.), 
88.5% (Rec.);  
MSLs: 93.9% (Prec.), 
93.8% (Rec.)  

[69] 2012 
50 

(Dermoscopy) 
- 

AI-based 
(RGB)  

Non-reported 
SE, SP, AUC 

[39] 2012 
100 

(Macroscopic) 

Mathematical 
morphology 

(HSI) 

Thresholding 
(Grey-levels) 

Ben.: 95.22% (FM), 4.79 
(NRM); 
Mal.: 94.65% (FM), 
5.56% (NRM) 

[74] 2011 
240  

(Dermoscopy) 
Artefact removal 

(HSV) 
Dynamic programming 

(Grey-levels) 

Ben. Mel.: 8.6% (EP);  
Melan.: 5.04% (EP); 
BCC: 9.0% (EP); 
MCC: 7.02% (EP); 
Seb. Kerat.: 2.01% (EP); 
Nevus: 3.24% (EP)  

[16] 2011 
320 

(Dermoscopy)  
Artefact removal 

(RGB) 
Active contour 
(Grey-levels) 

4.58 (EP) 

[72] 2011 
100 

(Dermoscopy) 
- Active contour 

(Grey-levels) 
0.81 (SE), 0.99 (SP) 

[13] 2011 
60 

(Macroscopic) 
- 

Region-based 
(RGB) 

9.16% (EP)  

[33] 2011 
100 

(Dermoscopy) 

Colour and contrast 
enhancement 

(RGB) 

AI-based 
(RGB and Grey-levels) 

RGB: 0.24, 0.16, 0.17 
(XOR);  
Grey-levels: 0.16 (XOR)  
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Ref. Year 
Image number 

(Type) 
Pre-processing  
(Colour space) 

Segmentation 
(Colour space) 

Mean result 
(Evaluation measure) 

[48] 2011 
85 

(Dermoscopy) 

Hair removal, 
Smoothing, 

Contrast enhancement 
(RGB 

and Grey-levels) 

Thresholding + AI-based 
(XYZ, RGB 

and Grey-levels) 
89.64% (SE), 99.43 (SP)  

[61] 2010 
300 

(Dermoscopy)  
- 

Thresholding 
(Grey-levels) 

Visual  

[15] 2010 
100 

Dermoscopy 
- Active contour 

(Grey-levels) 
0.99 (SP), 0.81 (SE) 

[12] 2009 
100 

(Dermoscopy) 

Mathematical 
morphology, 
smoothing 

(HSV) 

Active contour 
(CIEL*a*b*) 

12.63% (HM), 95.47% 
(TDR), 36.90% (HD) 

[34] 2009 
367 

(Dermoscopy) 
Contrast enhancement 

Thresholding 
(Grey-levels) 

16.56% (XOR) 

[14] 2009 
Non-reported 
(Dermoscopy) 

- 
Thresholding + Fuzzy logic 

(Grey-levels) 
Visual 

[17] 2009 
10 

(Macroscopic) 
Smoothing 

(RGB) 
Edge-based 

(Grey-levels) 
Visual 

[27] 2009 
100 

(Dermoscopy) 
- 

AI-based 
(RGB) 

0.78 (SE), 0.99 (SP) 

[47] 2008 
90 

(Dermoscopy) 

Black frame removal, 
smoothing 

(HSL) 

Region-based 
(RGB) 

Ground-truth 1: 11.10 
(EP); 
Ground-truth 2: 10.27 
(EP); 
Ground-truth 3: 10.53 
(EP) 

[7] 2008 
319 

(Dermoscopy) 
Smoothing 

(RGB) 
Thresholding + region-based 

(RGB) 
94.1% (Prec.), 95.3% 
(Rec.) 

[10] 2008 
50 

(Dermoscopy) 
- 

AI-based + region-based 
(CIEL*a*b*) 

Non-reported 

[100] 2005 
100 

(Dermoscopy) 
Smoothing 

(Grey-levels) 
Thresholding + Active contour 

(Grey-levels) 
Ben.: 13.77% (EP); 
Melan.: 19.76% (EP)  

[101] 2004 
Non-reported 
(Dermoscopy) 

Mathematical 
morphology 
Smoothing 

(Grey-levels) 

Thresholding + AI-based 
(RGB) 

Non-reported 

[11] 2003 
100 

(Dermoscopy) 
-	

AI-based 
(Non-reported) 

97% (SE), 81% (SP) 

Ref.: reference; Prec.: precision; Rec.: recall; Ben.: benign; Mal.: malignant; Ben. Mel.: benign melanocytic; Melan.: melanoma; 
Seb. Kerat.: seborrheic keratosis; DB: database; XOR: exclusive disjunction; SE: sensitivity; SP: specificity; EP: error probability; 
TP: true positive rate; FP: false positive rate; AUC: area under an ROC curve; ROC: receiver operating characteristics; FM: F-
measure; NRM: negative rate metric; NoMSLs: non-melanocytic skin lesions; MSLs: melanocytic skin lesions; BCC: basal cell 
carcinoma; MCC: Merkel cell carcinoma; HM: Hammoude distance; TDR: true detection rate; HD: Hausdorff distance. 
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With regards to the segmentation step, edge-based techniques are not suggested for segment skin 

lesions, since these techniques may produce segmentations with edges that are not completely closed. On 

the other hand, thresholding-, region-, and AI-based segmentation techniques may completely identify the 

lesions in the images. However, lesion boundaries with low contrast are generally not detected by such 

techniques. Moreover, these techniques are susceptible to image artefacts. Other techniques based on 

entropy or fuzzy logic [14, 39], to define the threshold value, may sometimes achieve superior 

segmentation results. The region-based approach proposed by Wong, et al. [13] has a better segmentation 

performance, even in the presence of boundaries with low contrast. In addition, such a method can tackle 

structural variations, varying illumination and colour variations. Other techniques have also been 

suggested to convert the FCM segmentation method into a more effective approach for segmenting skin 

lesions in images [27]. Using these methods, better segmentation results may be achieved, even in the 

presence of irregular lesions and image noise. Active contour models [82] are a good option for the 

segmentation of skin lesions, since these models can adequately deal with varying intensities, low contrast 

boundaries and noisy images. Nevertheless, these models also have disadvantages; for example, the 

segmentation result depends on the suitability of the initial curve. 

4 Conclusions 

Image segmentation is an important step for the effective computational diagnosis of pigmented skin 

lesions in images. Skin lesion diagnosis is an area of increased interest, due both to the importance of 

prevention and to early diagnosis of skin cancer. Although the image segmentation of skin lesions has 

been addressed in several studies and successful applications, there is the potential to develop new 

methodologies and to improve the performance of existing methods. Here, we have presented a review 

about current methods that have been proposed to segment skin lesions. Additionally, we have introduced 

techniques used to acquire and pre-process images, with a focus on their subsequent segmentation. 

From the presented review, one may conclude that dermoscopy images should be more commonly 

used in the computational diagnosis of skin lesions, since these images present less artefacts and more 

detailed features, which may lead to more adequate lesion segmentation and analysis. Nevertheless, 

techniques to remove or reduce the artefacts are usually necessary to obtain robust segmentation results.  

The reviewed segmentation techniques were classified into: edge-, thresholding-, region-, AI- and 

active contour-based, and others categories. We have presented and discussed results obtained with some 

of these techniques applied to dermoscopy and macroscopic images of skin lesions. Active contour models 

can provide good results on images with colour variation and low contrast of the lesion boundaries. 

Therefore, such models are a good option for the segmentation of skin lesions. However, other methods 

with improvements, or in combination with other techniques, may also provide good lesion detections.  
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In conclusion, the future trends regarding the image segmentation of skin lesions are to search for 

superior accuracy in terms of the detection of the lesion edges, as well as to take into account other issues 

in the development of computational solutions, such as computational performance, automaticity level, 

image noise smoothing and removal, and image enhancement. 
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