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Abstract

Multi-core architectures, in which multiple processors (cores) communicate directly through shared
hardware to performs parallel tasks and that way increasing the execution performance, are becom-
ing very present in computer systems, and are increasingly relevant in Real-Time (RT) applica-
tions, from data-centers to embedded-systems, not to mention desktops. Clock synchronization is
a critical service on many of these systems.

This dissertation focuses on clocks in synchronous digital systems, in particular Intel architec-
tures, from the distribution and analysis of the clock signal in order to coordinate data paths, to
software methods and hardware interactions to maintain a time base accurately across a plurality
of interconnected processors with possibly different notions of time.

In addition, a clock synchronization algorithm in a shared-memory multi-core architectures
is proposed, as if it’s a distributed system, applying a model to filter outlet samples, resulting in
a random process that achieves a null offset after a couple of corrections. Some experimental
measures were made as well to characterize the speed reading the clock and the communication
methods used between different cores.
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Resumo

As arquiteturas multi-core, em que múltiplos processadores (cores) cooperam entre si através de
hardware partilhado para realizar tarefas paralelas e assim aumentar a performance de execução,
são cada vez mais presentes nos sistemas computacionais, e cada vez mais relevantes em apli-
cações de tempo real, desde em centros de dados a sistemas embarcados, para não falar dos desk-
tops. A sincronização de relógios é um serviço crucial em muitos destes sistemas.

Esta dissertação concentra-se em relógios de sistemas digitais síncronos, em particular arquite-
turas multi-core, desde a distribuição e análise do sinal de relógio para coordenar as interfaces de
dados, a métodos de software e interações com o hardware para manter uma base de tempo precisa
e síncrona numa pluralidade de processadores interligados com possivelmente diferentes noções
de tempo.

Para além disso, é proposto um algoritmo de sincronização de relógios em sistemas multi-core
com memória partilhada, como se de um sistema distribuído se tratasse, aplicando um modelo de
filtragem de falsas amostras de tempo, resultando num processo aleatorio que coloca o offset nulo
após algumas correções. Foram também feitas algumas medidas experimentais para caracterizar a
velocidade de leitura do relógio e os mecanismos usados de comunicação entre diferentes cores.
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”A man with a watch knows what time it is.
A man with two watches is never sure”

Segal’s law

vii



viii



Contents

Abstract i

Resumo iii

Acknowledgments v

Abbreviations xv

1 Introduction 1
1.1 Contextualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The problem, Motivation and Goals . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the art 5
2.1 Clock Source Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Synchronous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Clock Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Clock Distribution Network Topologies . . . . . . . . . . . . . . . . . . 8
2.1.5 Multiclock Domain and Parallel Circuits . . . . . . . . . . . . . . . . . 12

2.2 Software Time Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Clock and Timer Circuits in the PC . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Kernel Timers and Software Time Management . . . . . . . . . . . . . . 17

2.3 Clock synchronization algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Network Time Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 The Berkeley Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.3 Precision Time Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.4 Distributed clock synchronization . . . . . . . . . . . . . . . . . . . . . 31

3 Per-core high resolution clock 33
3.1 Clock definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Clock implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 CPUID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 The choice of the local clock source . . . . . . . . . . . . . . . . . . . . 35
3.2.3 Characterization of the chosen clock source . . . . . . . . . . . . . . . . 38

ix



x CONTENTS

4 Clock Synchronization 43
4.1 The synchronization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 The communication mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Inter-Processor Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Multiprocessor Cache Coherency . . . . . . . . . . . . . . . . . . . . . 46
4.2.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Delay Asymmetry Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Kernel Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Evaluation of the synchronization 53
5.1 Data Export to User-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Conclusions and Future Work 59
6.1 Work carried out and Assessments . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A Kernel module source code 61
A.1 Multiprocessor Cache Coherency Method . . . . . . . . . . . . . . . . . . . . . 61
A.2 Inter-Processor Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

References 81



List of Figures

2.1 Local Data Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Positive and Negative clock Skew . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Variations on the balanced tree topology . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Central clock spine distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Clock grid with 2-dimensional clock drivers . . . . . . . . . . . . . . . . . . . . 11
2.6 Asymmetric clock tree distribution . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Globally synchronous and locally synchronous architecture . . . . . . . . . . . . 13
2.8 Data structures for managing timers . . . . . . . . . . . . . . . . . . . . . . . . 19
2.9 Overview of the generic time subsystem . . . . . . . . . . . . . . . . . . . . . . 20
2.10 The relation between clock time and UT when clocks tick at different rates . . . . 27
2.11 Getting the current time from a time server. . . . . . . . . . . . . . . . . . . . . 28
2.12 The Berkeley Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.13 PTP message exchange diagram [tutorial] . . . . . . . . . . . . . . . . . . . . . 30

3.1 CPUID raw output data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Initial available clock sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Make menuconfig interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Results from experiments on read latency . . . . . . . . . . . . . . . . . . . . . 40

4.1 Synchronization method with IPIs . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Synchronization method with cache coherency . . . . . . . . . . . . . . . . . . 47
4.3 IPI latency experiment results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Cache Coherence latency experiment results . . . . . . . . . . . . . . . . . . . . 48
4.5 Flowchart of DAC model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Cache Coherence synchronization method results . . . . . . . . . . . . . . . . . 57

xi



xii LIST OF FIGURES



List of Tables

2.1 Clock distribution topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Clock distribution characteristics of commercial processors. . . . . . . . . . . . 12
2.3 Clock synchronization categories . . . . . . . . . . . . . . . . . . . . . . . . . . 12

xiii



xiv LIST OF TABLES



Abbreviations and Symbols

ACPI Advanced Configuration and Power Interface
API Application Programming Interface
APIC Advanced Programmable Interrupt Controller
CMOS Complementary Metal Oxide Semiconductor
CPU Central Processing Unit
DAC Delay Asymmetry Correction
EOI End-Of-Interrupt
FLOPS FLoating-point Operations Per Second
FTA Fault-Tolerant Average
GALS Globally Asynchronous Locally Synchronous
HPET High Precision Event Timer
HRT High Resolution Timer
IC Integrated circuit
ICR Interrupt Command Register
IPI Inter-Processor Interrupt
IRQ Interrupt Request
IRR Interrupt Request Register
ISR In-Service Register
KILL Kill If Less than Linear
LKM Loadable Kernel Module
LVT Local Vector Table
MIC Many Integrated Core
MPCP Multiprocessor Priority Ceiling Protocol
MSR Model Specific Register
NOC Network On Chip
NTP Network Time Protocol
PC Personal Computer
PIT Programmable Interrupt Timer
PLL Phase-Locked Loop
PM Power Management
PTP Precision Time Protocol
POD Point-Of-Divergence
RBS Reference Broadcast Synchronization
RT Real-Time
RTC Real Time Clock
RTL Register-Transfer Level
SCA Synchronous Clocking Area
SMP Symmetric Multiprocessor System

xv



xvi ABBREVIATIONS AND SYMBOLS

SOC System On Chip
SRP Stack-based Resource Policy
TAI International Atomic Time
TSC Time Stamp Counter
UTC Universal Time Coordinated
VLSI Very Large Scale Integration



Chapter 1

Introduction

1.1 Contextualisation

The use of computer systems is greatly increasing in real-time applications. In these systems, the

operations performed must deliver results on time, otherwise we may have effects of quality re-

duction, or even disastrous. So the time that operations take to run need to be controlled effectively

in the design of real-time systems.

In order to introduce parallelism in performing tasks, the concept of multicore/multiprocessor

was born, a computer system that contains two or more processing units that share memory and

peripherals to process simultaneously. These systems are increasingly relevant in real-time (RT)

applications and clock synchronization is a critical service on many of these systems, as the lack of

synchronization between the multiple cores can for example degrade the quality of the scheduling

algorithms that rely on cooperation.

1.2 The problem, Motivation and Goals

Clock synchronization is commonly assumed as a given or even to be perfect in multiprocessor

platforms. In reality, even in systems with a shared clock source, there is an upper bound on the

precision with which clocks can be read on different processors. If we are to take advantage of a

clock service in a real-time system on a multi-processor platform, it is critical to be able to quantify

the quality of that service.

This dissertation has the main purpose of estimating the quality of a clock service provided by

Linux on common-of-the-shelf multi-core processors such as those of the x64 architectures, and

if possible to design and implement a clock synchronization algorithm that would minimize the

clock differences, characterizing its implications and limitations.

As an example of the advantage of having access to a synchronized clock in a multi-core

system, we describe next its application to a hard real-time semi-partitioned scheduling algorithm

for multiprocessors.
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2 Introduction

In hard real-time systems, application processes, usually referred to as tasks in the literature,

can be analysed as if they were periodic. The execution of such processes in each period is often

denoted as a job. A critical aspect in a hard-real time system is to ensure that each job of a process

is executed before its deadline, which is assumed to be known at design time. Therefore it is

essential that the system uses an appropriate scheduling algorithm, allocating cores to each job.

A class of hard real-time scheduling algorithms is known as semi-partitioned. In these algo-

rithms, some jobs may migrate from one core to another to improve core utilization. Therefore,

the execution of a migrating job may be described as a sequence of sub-jobs executing in different

cores. This means that a sub-job, which is allocated to one core, may not execute before the pre-

vious sub-job, which executes on another core, terminates. These precedence constraints can be

satisfied by releasing a sub-job only after the previous sub-job has completed.

A straightforward way to do that is to use some inter-processor communication mechanism,

such as the inter-processor interrupt (IPI) on the Intel 64 and IA-32 architectures. I.e. when a sub-

job terminates, the scheduler running on the same core may generate an IPI to the core that will run

the next sub-job. The handling of this IPI will release the next sub-job, which will eventually be

scheduled. The problem with this approach is that this communication is on the critical path, with

respect to the response time, and, because IPIs are sent via shared bus, the delays incurred may

be rather large. Because in hard-real time one must ensure that deadlines are satisfied, usually by

carrying out a timing analysis, this implementation may lead to an overly pessimistic estimation

of the job response time and therefore to a low CPU utilization.

By relying on high-resolution timers, i.e. timers that are able to measure time with a resolution

of 1 microsecond or better, one can reduce the overhead caused by all IPIs but the first. The idea

is as follows. Through a timing analysis it is possible to determine the latest time, relative to

its release, at which each sub-job will complete. Therefore, one way to ensure the precedence

constraints of the different jobs is to schedule the release of each sub-job to the earliest time one

can ensure the previous sub-job will be completed. One possible implementation of this approach

is as follows: upon release of a migrating job, the scheduler on the core where this happens, will

send an IPI to each of the cores that execute the other sub-jobs of that job. The handler of this IPI

in each of the cores will then program a high-resolution timer to release the sub-job to a time by

which the previous sub-job has terminated. The value with which each high-resolution timer is

programmed, must take into account the variability of response time to IPIs. As mentioned earlier,

IPIs are sent via a shared bus, which may delay the sending of the IPI. In addition, at each core,

received IPIs may be queued behind other interrupts. So, again, this may lead to some pessimism.

One way to reduce further this pessimism is to use synchronized clocks. If each core has access

to a global high-resolution clock, the core where the first sub-job is released may timestamp that

event, and send an IPI to all cores where the other sub-jobs will be executed. Upon receiving

this IPI, the release time of the first sub-job can be read rather than estimated. Therefore in the

programming of the high resolution timers used to release the different sub-jobs, rather than using

the maximum IPI delay, one can use the actual delay in the delivery of the IPI. In terms of the

timing analysis, the IPI delay and its jitter is not in the critical path anymore. Instead, we need to
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take into account the accuracy of the clock readings at the different cores.

This algorithm has triggered this research work, but we believe that clock synchronization can

be used in other scheduling algorithms, as well as in other resource management algorithms.

1.3 Document Structure

In addition to the introduction, this dissertation has 5 more chapters. Chapter 2 presents a review of

the state of the art, focusing on the theoretical background necessary to understand the concepts in

the scope of this dissertation. Chapter 3 states the description of the clock to be later synchronized

as well as its implications, and chapter 4 shows how to synchronize these clocks. Chapter 5

describes the data export mechanism and an analysis on the results of the experiments carried

out, and finally chapter 6 presents the final appreciations on the work as well as improvement

suggestions to be made in the future.
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Chapter 2

State of the art

This chapter presents some relevant state-of-art information related to the hardware trends in clock

distribution networks in integrated circuits, the operating system time services that keep track of

time, and some clock synchronization algorithms present in today’s distributed systems.

2.1 Clock Source Distribution

In this section, a review on the clock signal distribution technologies is presented, in order to

understand the relevant parameters in a characterization of the clocks.

2.1.1 Introduction

The clock signal is used to define a time reference for the movement of data within a synchronous

digital system, hence it is a vital signal to its operation [1].

Utilized like a metronome to coordinate actions, this signal oscillates between a high and a

low state, typically loaded with the greatest fanout, travel over the longest distances, and operate

at the highest speeds of any signal.

The data signals are provided and sampled with a temporal reference by the clock signals, so

the clock waveforms must be particularly clean and sharp, and any differences in the delay of these

signals must be controlled in order to limit as little as possible the maximum performance as well

as to not create catastrophic race condition in which an incorrect data signal propagates within a

register (latch or flip-flop).

In order to address these design challenges successfully, it is necessary to understand the fun-

damental clocking requirements, key design parameters that affect clock performance, different

clock distribution topologies and their trade-offs, and design techniques needed to overcome cer-

tain limitations.
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6 State of the art

Figure 2.1: Local Data Path

2.1.2 Synchronous Systems

A digital synchronous circuit is composed of a network of functional logic elements and globally

clocked registers.

If an arbitrary pair of registers are connected by at least one sequence of logic elements, a

switch event at the output of R1 will propagate to the input of R2. In this case, (R1,R2) is called a

sequentially-adjacent pair of registers which make up a local data path.

An example of a local data path Ri - R f is shown in figure 2.1. The clock signals Cki and Ck f

synchronize the sequentially-adjacent pair of registers Ri and R f , respectively. Signal switching at

the output of Ri is triggered by the arrival of the clock signal Cki, and after propagating through

the Logic block, this signal will appear at the input of R f .

In order to the switch of the output of Ri to be sampled properly in the input of R f in the

next clock period, data path has to have time to stabilize the result of the combinational logic in

the input of R f , so the minimum allowable clock period TCP(min) between any two registers in a

sequential data path is given by equation 2.1.

1
fclkMAX

= TPD(max)+TSkewi f (2.1)

where fclkMAX is the maximum clock frequency, and TPD(max) = TC−Q +Td +Tint +Tsetup.

The total path delay of the data path TPD(max) is the sum of the maximum propagation delay of

the flip-flop, TC−Q, the time necessary to propagate through the logic and interconnect, Td + Tint ,

and the setup time of the output flip-flop, Tsetup, which is the time that the data to be latched must

be stable before the clock transition.

The clock skew TSkewi f can be positive or negative depending on whether Cki lags or leads Ck f ,

respectively, as shown in figure 2.2.
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Figure 2.2: Positive and Negative clock Skew

2.1.3 Clock Skew

The propagation delay from the clock source to the jth clocked register is the clock delay, Ck j.

The clock delays of the initial clock signal Cki and the final clock signal Ck f define the time

reference when the data signals begin to leave their respective registers.

The difference in clock signal arrival time (clock delay from the clock source) between two

sequentially-adjacent registers Ri and R f is called Clock Skew.

The temporal skew between different clock signal arrival times is only relevant to sequentially-

adjacent registers making up a single data path, as shown in figure 2.1. Thus, system-wide (or

chip-wide) clock skew between non-sequentially connected registers, from an analysis viewpoint,

has no effect on the performance and reliability of the synchronous system.

Synchronous circuits may be simplified to have two timing limitations: setup (MAX delay)

and hold (MIN delay) [2].

Setup specifies whether the digital signal from one stage of the sequential structure has suffi-

cient time to travel and set up before being captured by the next stage of the sequential structure.

Hold specifies whether the digital signal from the current state within a sequential structure is

immune from contamination by a signal from a future state due to a fast path.

The setup constraint specifies how data from the source sequential stage at cycle N can be

captured reliably at the destination sequential stage at cycle N+1.

The constraint for the source data to be reliably received is defined by equation 2.2.

Tper ≥ Td−slow +Tsu+ | TCk1−TCk2 | (2.2)

where Tper is the clock period, Td−slow is the slowest (maximum) data path delay, Tsu is the setup

time for the receiver flip-flop, TCk1 and TCk2 are the arrival times for clocks Ck1 and Ck2 (at cycle

N) respectively.

In this situation, the available time for data propagation is reduced by the clock uncertainty

defined as the absolute difference of the clock arrival times.



8 State of the art

In order to meet the inequality, either clock period must be extended or path delay must be

reduced. In either case, power and operating frequency may be affected.

The hold constraint specifies the situation where the data propagation delay is fast, and clock

uncertainty makes the problem even worse and the data intended to be captured at cycle N +1 is

erroneously captured at cycle N, corrupting the receiver state.

In order to ensure that the hold constraint is not violated, the design has to guarantee that the

minimum data propagation delay is sufficiently long to satisfy the inequality 2.3, where Thold is

the hold time requirement for the receive flip-flop.

Td− f ast ≥ Thold+ | TCk1−TCk2 | (2.3)

In sum, the relationship in 2.4 is expected to hold.

Td− f ast < Td−nominal < Td−slow (2.4)

Localized clock skew can be used to improve synchronous performance by providing more time

for the critical worst case data paths.

By forcing Ck1 to lead Ck2 at each critical local data path, excess time is shifted from the

neighboring less critical local data paths to the critical local data paths.

Negative clock skew subtracts from the logic path delay, thereby decreasing the minimum

clock period. Thus, applying negative clock skew, in effect, increases the total time that a given

critical data path has to accomplish its functional requirements by giving the data signal released

from Ri more time to propagate.

2.1.4 Clock Distribution Network Topologies

Distributing a tightly controlled clock signal within specific temporal bounds is difficult and prob-

lematic.

The design methodology and structural topology of the clock distribution network should be

considered in the development of a system for distributing the clock signals. Furthermore, the

trade-offs that exist among system speed, physical die area, and power dissipation are greatly af-

fected by the clock distribution network. Intentional or unintentional structural design mismatches

could lead to clock uncertainties, which can be corrected by careful pre-silicon analysis and design

or post-silicon adaptive compensation techniques. Therefore, various clock distribution strategies

have been developed over the years.

The trend nowadays is to the adoption of clock distribution topologies that are skew tolerant,

more robust design flow, and the incorporation of robust post-silicon compensation techniques,

as well as multi-clock domain distributions, with the concept of design called GALS (Globally

Asynchronous and Locally Synchronous).

Table 2.1 lists distribution topologies commonly encountered in synchronous systems.
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Table 2.1: Clock distribution topologies

Style Description
Unconstrained Tree Automated buffer placements with unconstrained trees

Balanced tree
Multiple levels of balanced tree segments
H-tree is most common

Central spine Central clock driver

Spines with matched branches
Multiple central structures with length (or delay)
matched branches

Grid Interconnected (shorted) clock structure

Hybrid distribution
Combination of multiple techniques
Common theme is tree + grid or spine + grid

2.1.4.1 Unconstrained Tree

A very common strategy for distributing clock signals used in the history of VLSI (Very Large

Scale Integration) systems was to insert buffers at the clock source and along a clock path, forming

a tree structure.

The clock source is frequently described as the root of the tree, the initial portion of the tree

as the trunk, individual paths driving each register as the branches, and the registers being driven

as the leaves. The distributed buffers serve the double function of amplifying the clock signals

degraded and isolating the local clock nets from upstream load impedances.

In the unconstrained tree clock network, there is little or none constraints imposed on the

network’s geometry, number of buffers or wire lengths. It is typically accomplished by automatic

RTL (Register Transfer Level) synthesis flow tools with a cost heuristic algorithm that minimizes

the delay differences across all clock branches.

But due to limitations regarding process parameter variations, this style is usually used for

small blocks within large designs.

2.1.4.2 Balanced Trees

Another approach is to use a structural symmetric tree with identical distributed interconnect and

buffers from the root of the distribution to all branches. This design ensures zero structural skew,

hence the delay differences among the signal paths is due to variations of the process parameters.

Figure 2.3 shows alternative balanced tree topologies: the tapered X-tree, the H-tree and the

binary tree. In a tapered H-tree, the trunk are designed to be wider towards the root of the distri-

bution network to maintain impedance matching at the T-junctions, as it can be seen in the figure.

These three topologies, called Full balanced tree topologies are designed to span the entire die

in both the horizontal and vertical dimensions. Binary tree on the other hand is intended to deliver

the clock in a balanced manner in either the vertical or horizontal dimension.

Since the buffers in a binary tree are physically closer to each other, resulting in a reduced

sensitivity to on-die variations, and H-tree and X-tree clock distribution networks are difficult to
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Figure 2.3: Variations on the balanced tree topology
(left) X-tree; (center) H-tree; (right) Binary tree;

achieve in VLSI-based systems which are irregular in nature, binary trees are often the preferred

structure over an idealized H-tree.

2.1.4.3 Central Spines

A central spine clock distribution is a specific implementation of a binary tree.

The binary tree is shown to have embedded shorting at all distribution levels and unconstrained

routing to the local loads at the final branches. In this configuration, the clock can be transported

in a balanced fashion across one dimension of the die with low structural skew. The unconstrained

branches are simple to implement although there will be residual skew due to asymmetry, as the

figure 2.4 shows.

Multiple central spines can be placed to overcome this issue, dividing the chip into several

sectors to ensure small local branch delays.

Figure 2.4: Central clock spine distribution

2.1.4.4 Grid

A processor will have a large number of individual branches to deliver the clock to the local points,

and therefore a deep distribution tree is needed, degrading the clock performance. A superior

solution can be subdividing the die into smaller clock regions and applying a grid to serve each
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region. The grid effectively shorts the output of all drivers and helps minimize delay mismatches,

resulting in a more gradual delay profile across the region.

Figure 2.5: Clock grid with 2-dimensional clock drivers

2.1.4.5 Hybrid Distribution

In a processor design, the most common design technique is the hybrid clock distribution. It

incorporates a combination of other topologies, providing more scalability. A common approach

is the tree-grid distribution, that employs a multi-level H-tree driving a common grid that includes

all local loads. Figure 2.6 shows an example of a processor clock distribution with a first level

H-tree connected to multiple secondary trees that are asymmetric but delay balanced.

Several clock distribution topologies have been presented. The primary objective is to deliver

the clock to all corners of the die with low skew. Possible improvements of the original tree

distribution system consist in providing the clock generator with a skew compensation mechanism

[3].

Even if the adaptive design may exhibit higher initial skew, the physical design resource needs

for a clock network with adaptive compensation are expected to be lower, because of the need for

accurate and exhaustive analysis for all process effects

Figure 2.6: Asymmetric clock tree distribution
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The evolution of the processor clock distribution designs eventually incorporated adaptive

clock compensation. The table 2.2 [2] summarizes clock distribution characteristics of various

commercial processors.

Table 2.2: Clock distribution characteristics of commercial processors.

Name Frequency
(MHZ)

Skew
(ps)

Technology
(nm)

Clock
Distribution style Deskew

Intel Merom 3000 18 65 Tree/Grid Yes

IBM Power6 5000 8 65
Symmetric

H-Tree/Grid
Yes

AMD Quad-Core Opteron 2800 12 65 Tree/Grid
Intel Xeon processor 3400 11 65 Tree/Grid Yes
Intel Itanium 2 processor >2000 10 90 Asymmetric tree Yes

IBM Power5 >1500 27 130
Symmetric

H-Tree/Grid
No

Intel Pentium 4 processor 3600 7 90 Recombinant tile Yes
Intel Itanium 2 processor 1500 24 130 Asymmetric tree Yes
IBM Power4 >1000 25 180 Tree/Grid No
Intel Itanium 2 processor 1000 52 180 Asymmetric tree No
Intel Pentium 4 processor >2000 16 180 Spine/Grid Yes
Intel Itanium processor 800 28 180 H-Tree/Grid Yes

2.1.5 Multiclock Domain and Parallel Circuits

As technology scaling comes closer to the fundamental laws of physics, the problems associated

with technology and frequency scaling become more and more severe. Technology and frequency

scaling alone can no longer keep up with the demand for better CPU performance [4].

In addition, the failure rate in the generation of a global clock began to raise concerns about

the dependability of the future VLSI chips [5]. To overcome this problem, VLSI chips came to

be regarded not as a monolithic block of synchronous hardware, where all state transitions occur

simultaneously, but as a large digital chip partitioned into local clock areas, each area operating

synchronously and served by independent clocks within the domain, that can be multiple copies

Table 2.3: Clock synchronization categories

Type Characteristics of distribution

Synchronous
Single distribution point-of-divergence (POD) with known static
delay offsets among all the branches and single operating frequency.

Mesochronous
Single distribution POD but with nonconstant delay offset among
the branches.

Plesiochronous
Multiple distribution PODs but with nominally identical frequency
among all the domains.

Heterochronous
Multiple distribution PODs with nominally different operating
frequencies among the domains.
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of the system clock, at different phases or frequencies. These areas are also known as isochronous

zones or synchronous clocking areas (SCAs). Dedicated on-die global interfaces are needed to

manage data transfer among the domains.

As digital designs move towards multicore and SOC (Systems-on-Chip) architectures, this

concept of multiple clock domains have become a prevalent design style, and the clock distribution

schemes will need to be enhanced to fulfill this need. Each synchronous unit will rely on any of

the conventional clock distribution topologies described before to achieve low skew and fully

synchronous operation.

This scheme provides functional flexibility for each of the domains to operate at a lower fre-

quency than a single-core processor and to minimize the complexity and power associated with

global synchronization.

The multidomain clock distribution architectures for multicore processors and SoCs belong to

a GALS class of designs. Table 2.3 summarizes synchronization categories within the GALS class

and figure 2.7 shows a generic illustration of the GALS design style.

A plesiochronous clock distribution example is the 65nm dual core Xeon processor, wich con-

sists of two domains for the two cores and the uncore and I/O domain with the interface operating

at the same frequency. It uses three independent distribution PODs for the cores and the uncore.

An example of mesochronous clocking cheme, i.e. using the same frequency but with un-

known phase [6], is the NoC (Network-on-Chip) teraFLOPS processor. [7]

The 90nm 2-core Itanium and the 65nm quad-core Itanium processors are examples of a het-

erochronous clock distribution, supporting nominally different operating frequencies across the

domains with multiple clock generators, i.e. PLLs .

Many modern multicore processors and SoCs only adopt the loosely synchronous styles of the

Figure 2.7: Globally synchronous and locally synchronous architecture
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above to avoid the significant complexity associated with truly asynchronous design, which is an

intrinsically analog system, since the time is continuous, and the risk of metastability because the

clocks of SCAs that are not really fully independent, is not negligible.

For these reasons, reliability is difficult to guarantee in truly asynchronous systems, and syn-

chronous circuits may be desirable in applications with high reliability requirement [3].

It is clear that multicore processors will be with us for the foreseeable future, trading less single

thread performance against better aggregate performance. For many years, increases in clock

frequency drove increases in microprocessor performance, but there seems to be no alternative way

to provide substantial increases of microprocessor performance in the coming years, considering

the KILL rule (Kill If Less than Linear), meaning that any architectural feature for performance

improvement should be included if and only if it gives a relative speedup that is at least as big as

the relative increase in cost (size, power or whatever is the limiting factor) of the core.

While processors with a few (2–8) cores are common today, this number is projected to grow

as we enter the era of manycore computing [8].

This category of chips — with many, but simpler cores — is usually represented by processors

targeting a specific domain. The best known representatives of this category are Tilera’s TILE-GX

family, that consists of a mesh network expected to scale up to 100 cores, picoChip’s 200-core

DSP as well as Intel’s Many Integrated Core (MIC) architecture, that have broken the petaFLOPS

barrier (FLoating-point Operations Per Second) [9] [10].

In this section, the fundamental clocking requirements and key design parameters that affect

clock performance were understood, as well as different clock distribution topologies, their trade-

off, and design techniques needed to overcome their limitations. In conclusion, it became clear

that the tendency relies on the parallelism of the resources usage, namely the clock signal source,

or even the clock frequency.

2.2 Software Time Management

In this section, we review the time services provided by the Linux kernel.

Many computer activities are driven by timing measurements, that provide keeping the correct

time and date for timestamps, and timers to notify the kernel or a software application that a certain

interval of time has passed.

2.2.1 Clock and Timer Circuits in the PC

Depending on the architecture, the kernel must interact with some programmable hardware circuits

based on oscillators and counters. These circuits provide a free-running counter that issues an

interrupt at a fixed frequency, which the kernel handles with an appropriate interrupt handler,

implementing the software timers to manage the passing of time [11] [12].

A typical system has several devices that can serve as clocks. Which hardware is available

depends on the particular architecture, but the Linux kernel provides a generic interface to all
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hardware clock chips, with the clocksource software abstraction. Essentially, read access to

the current value of the running counter provided by a clock chip is granted [13], as can be seen in

section 2.2.2.2.

2.2.1.1 Real Time Clock (RTC)

Present in all PCs (Personal Computers), the RTC is a battery-backed CMOS chip that is always

running, keeping track of the time even when the system is turned off, storing counters of the

year, month, day, hour, minute and the seconds. Some technologies have these counters with

respect to the Epoch, i.e. January 1st , 1970, 00:00:00 +00 (UTC) [14], and other maintain certain

independent counters time units, like seconds, minutes, hours, months or years [15].

The RTC is capable of issuing periodic interrupts at frequencies between 2 and 8,192 Hz,

and can also be programmed to trigger an interrupt when the RTC reaches a specific value, thus

working as an alarm clock.

At boot time, the Linux kernel calculates the system clock time from the RTC, using the system

administration command hwclock and from that point the software clock runs independently of

the RTC, keeping track of time by counting timer interrupts monotonically, until the reboot or

shutdown of the system, when the hardware clock is set from the system clock [16] [17].

But there is no such thing as a perfect clock. Every clock keeps imperfect time with respect to

the real time, although quartz-based electronic clocks maintain a consistent inaccuracy, gaining or

losing time each second.

The RTC and the system clock will drift at different rates, and this drift value can be estimated

using the difference of their values when setting the hardware clock upon boot, written to the file

/etc/adjtime making possible to apply a correction factor in software with hwclock(8). The system

clock is corrected by adjusting the rate at which the system time is advanced with each timer

interrupt, using adjtimex(8) [18].

This time source is intended to monitor human timescale units. At a process level timescale,

in order to synchronize processes for example, other time sources must be used.

2.2.1.2 Programmable Interval Timer (PIT)

Generically, a programmable interval timer (PIT) is a counter that issues a special interrupt when

it reaches a programmed count. The Intel 8253 and 8254 CMOS devices go on issuing timer

interrupts forever at a fixed frequency, notifying the kernel that more time intervals have elapsed.

The time interval is called a tick, and its length is controlled by the HZ macro in the ker-

nel code, explained in section 2.2.2.1. The periodic interrupt used to keep the "wall clock" is

commonly generated by PIT.
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2.2.1.3 Time Stamp Counter (TSC)

Starting with the Pentium, every x86 processors support a counter representing the number of

positive edge triggers of the clock signal pin. This counter is available through the 64-bit Time

Stamp Counter (TSC) register, that can be read with the assembly instruction RDTSC.

Being the clock signal the most basic notion of time of every computational system, the TSC

is usually the finest grained, most accurate and convenient device to access on the architectures

that provide it [19]. To use it, Linux determines the clock signal frequency at boot time with the

calibrate_tsc() function, that counts the number of clock signals that occur in a time interval

of approximately 5 milliseconds, which is measured with the aid of another clock source, the PIT

or the RTC timer.

2.2.1.4 Advanced Programmable Interrupt Controller (APIC) Timer

The local Advanced Programmable Interrupt Controller (APIC) provides yet another time-measuring

device, the APIC timer or "CPU Local Timer".

The great benefit of Local APIC is that it’s hardwired to each CPU core in Symmetric Multi-

processor (SMP) systems [20]. It provides two primary functions [21] : 1) It receives interrupts

from the processor’s interrupt pins, from internal sources or from an external I/O APIC and sends

these to the processor core for handling; and 2) It sends and receives Inter-Processor Interrupt (IPI)

messages to and from other logical processors on the system bus.

Out of all the interrupts the local APIC can generate and handle, the APIC timer is one of

them and it consists of a 32 bits long programmable counter that is available to software to time

events or operations. Note that the local APIC timer only interrupts its local processor, while the

PIT raises a global interrupt, which may be handled by any CPU in the system.

The time base for the local APIC timer is derived from the processor’s bus clock, divided

by the value specified in a memory-mapped divide configuration register. Since the oscillating

frequency varies from machine to machine, the number of interrupts per second it is capable of

must be determined with another, CPU bus frequency independent, clock source during APIC

initialization, measuring the number of ticks from the APIC timer counter in a specific amount of

time measured by that clock.

This timer relies on the speed of the front-side bus clock, i.e. the CPU operating frequency

divided by the CPU clock multiplier, or bus/core ratio.

2.2.1.5 High Precision Event Timer (HPET)

The High Precision Event Timer (HPET) is a hardware timer incorporated in PC chipsets, devel-

oped by Intel and Microsoft. It consists of one central 32 or 64 bit counter that runs continuously at

a frequency of at least 10 MHz, typically 15 or 18 MHz, and multiple timeout registers associated

with different comparators, to compare with the central counter. This HPET circuit is considered

to be slow to read.
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When a timeout value matches, the corresponding timer fires, generating a hardware interrupt.

If the timer is set to be periodic, the HPET hardware automatically adds its period to the compare

register, thereby computing the next time for this timer to fire.

Comparators can be driven by the operating system, for example to provide a timer per CPU

for scheduling, or applications.

2.2.1.6 Advanced Configuration and Power Interface (ACPI) Power Management Timer

The ACPI Power Management Timer is another device that can be used as a clock source, included

in almost all ACPI-based motherboards, that is required as part of the ACPI specification.

This device is actually a simple counter increased at a fixed rate of 3.579545 MHz that always

roll over (that is, when the counter reaches the maximum, 24-bit binary value, it goes back to zero

and continues counting from there) and can be programmed to generate an interrupt when its most

significant bit changes value.

Its main advantage is that it continues running at a fixed frequency in some power-saving

modes in which other timers are stopped or slowed, but has a relatively low frequency and is very

slow to read (1 to 2 µs).

2.2.2 Kernel Timers and Software Time Management

With the several hardware time devices understood, how the Linux kernel takes advantage of them

will be discussed.

2.2.2.1 Classical Timers

Classical timers have been available since the initial versions of the kernel. Their implementation

is located in kernel/timer.c. These timers are also called timer wheel and nowadays known as

low-resolution timers [13].

Essentially, the time base for low-resolution is centered around a periodic tick generated by

a suitable periodic source, which happens at regular intervals. Events can be scheduled to be

activated at one of these ticks.

With these timers, the software abstraction in the kernel called the "timer wheel", provides the

fundamental timeline for the system, measureing time in jiffies, a kernel-internal value incremented

every timer interrupt. The timer interrupt rate, and so the size of a jiffy is defined by the value

of a compile-time kernel constant HZ, and the kernel’s entire notion of time derives from it [22]

[23], assuming that the kernel is defined to work with periodic ticks, situation that change with the

creation of High resolution timers as discussed later in this section.

Different kernel versions use different values of HZ. In fact, on some supported architectures,

it even differs between machine types, so HZ can never be assumed as any given value. The i386

architecture has had a timer interrupt frequency of 100 Hz, value raised to 1000 Hz during the 2.5

kernel’s development series.
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Although higher tick rate means finer resolution, increased accuracy in all timed events, and

more accurately task preemption, decreasing scheduling latency, it implies higher overhead be-

cause of more frequent timer interrupts whose handler must be executed, resulting in not just less

processor time for other work, but also more frequent trashing of the processor’s cache [12].

Given these issues, since 2.6.13 the kernel changed HZ for i386 to 250, yielding a jiffy interval

of 4 ms.

The tick timer interrupt handler is divided into two parts: an architecture-dependent and an

architecture-independent routine.

The architecture-dependent routine is an interrupt handler registered in the allocated interrupt

handler list, and its job generically (as the job to be done depends on the given architecture), is to

obtain the xtime_lock to protect the write access to the jiffies counter register (jiffies_64)

and the wall time value, resetting the system’s timer, and call the timer routine that does not depend

on the architecture.

This routine, called do_timer() performs much more work:

• Increment the jiffies_64 register count by one, safely;

• Update consumed system and user time, for the currently running process;

• Execute scheduler_tick(), the kernel function to verify if the current task must be

interrupted or not;

• Update the wall time, stored in xtime struct, defined in kernel/timer.c;

• Calculate the CPU load average;

In some situations, timer interrupts can be missed and ticks fail to be incremented, for example

if interrupts are off for a long time, so in each timer interrupt algorithm the ticks value is calculated

to be the change in ticks since the last update.

do_timer() then returns to the original architecture-dependent interrupt handler, which per-

forms any needed cleanup, releases the xtime_lock, and finally returns. All this occurs every

1/HZ of a second.

The details differ for different architectures, but the principle is nevertheless the same. How

a particular architecture proceeds is usually set up in time_init which is called at boot time to

initialize the fundamental low-resolution timekeeping.
Jiffies provide a simple form of low-resolution time management in the kernel. Timers are

represented by timer_list struct, defined in linux/timer.h.

struct timer_list {

struct list_head entry; // list head in list of timers.

unsigned long expires; // expiration value, in jiffies.

void (*function)(unsigned long); // pointer to function upon time-out.

unsigned long data; // argument to the callback function.

struct tvec_base *base;

};
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Figure 2.8: Data structures for managing timers

base is a pointer to a central structure in which the timers are sorted on their expiry time. This

tvec_base structure exists for each processor of the system; consequently, the CPU upon which

the timer runs can be determined using base.

After the creation of the timer and the initial setup, one must specify the fields of the timer_list

structure, and activate it with the add_timer function (timer.h), adding it to a linked list where

all the timers are stored. But because simply stringing together all timer_list instances is not

satisfactory in terms of performance, the kernel needs data structures to manage all timers regis-

tered in the system to permit rapid and efficient checking for expired timers at periodic intervals

and not consume too much CPU time.

The kernel creates 5 different groups within the tvec_base structure, into which the timers

are classified according to their expiry time, expires. The basis for grouping is the main array

with five entries whose elements are again made up of arrays. The five positions of the main array

sort the existing timers roughly according to expiry times, so the kernel can limit itself to checking

a single array position in the first group because this includes all timers due to expire shortly.

Figure 2.8 shows how timers are managed by the kernel.

The first group is a collection of all timers whose expiry time is between 0 and 255 (or 28) ticks.

The second group includes all timers with an expiry time between 256 and 28+6−1= 214−1 ticks.

The range for the third group is from 214 to 28+2∗6−1, and so on.

Typically, timers are run fairly close to their expiration, however they might be delayed until

the first timer tick after their expiration. Consequently, timers cannot be used to implement any

sort of real-time processing, so timers with accuracy better than 1 jiffy are needed. However low-

resolution timers are useful for a wide range of situations and deal well with many possible use

cases.

2.2.2.2 High-resolution Timers

For many applications, a timer resolution of several milliseconds, typical of low resolution timers,

is not good enough. The hardware presented in the previous section provides means of much more

precise timing, achieving nominally resolutions in the nanosecond range. During the development
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Figure 2.9: Overview of the generic time subsystem

of kernel 2.6, an additional timer subsystem was added allowing the use of such timer sources. The

timers provided by the new subsystem are conventionally referred to as high-resolution timers.

The mature and robust structure of the old timer subsystem did not make it particularly easy

to improve while still being efficient, and without creating new problems. As we’ve seen before,

to program a timer chip to interrupt the kernel at higher frequencies is not feasible due to the

tremendous overhead [24]. The core of the high-resolution timer subsystem of the kernel can be

found in kernel/time/hrtimer.c.

First, some concepts of the generic time subsystem, how does high-precision timekeeping is

achieved in the kernel must be understood. The generic time framework provides the founda-

tions for high-resolution timers, and is reused by low-resolution timers. In fact, in recent kernels

low-resolution timers are implemented on top of the high-resolution mechanism. The generic

timekeeping code that forms the basis for high-resolution timers is located in several files in ker-

nel/time. Figure 2.9 [13] provides an overview of the generic time system.

There are three mechanisms that form the foundation of any kernel task related with time, each

of them represented by a special data structure [25]:

• Clock Sources (defined by struct clocksource) - Provides a basic timeline for the

system that tells where it is in time. Each clock source offers a monotonically increasing

counter that ideally never stops ticking as long as the system is running, with a variable

accuracy depending on the capabilities of the underlying hardware.

• Clock event devices (defined by struct clock_event_device) - Allow for register-

ing an event to happen at a defined point in time in the future. They take a desired time

specification value and calculate the values to poke into hardware timer registers.

• Tick Devices (defined by struct tick_device) - A wrapper around struct clock

_event_device with an additional feature that provide a continuous stream of tick events

that happen at regular time intervals.
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The kernel declares the clocksource abstraction, in the linux/clocksource.h file, as a mean
to interact with one of the hardware counter possibilities present in the machine [26].

struct clocksource {

const char *name;

struct list_head list;

int rating;

cycle_t (*read)(struct clocksource *cs);

int (*enable)(struct clocksource *cs);

void (*disable)(struct clocksource *cs);

u32 mult;

u32 shift;

unsigned long flags;

...

};

name establishes a human-readable name for the source, and list is a standard list element

that connect all available clock sources on a standard kernel list.

rating specifies the quality of the clock, between 0 and 499 to allow the kernel to select the

best possible one. On modern Intel and AMD architectures, usually the TSC is the most accurate

device, with a rating of 300, but the best clock sources can be found on the PowerPC architecture

where two clocks with a rating of 400 are available.

read is a pointer to the function to read the current cycle value of the clock. The timing basis

of this returned value is not the same for all clocks, so the kernel shall provide means to translate

the provided counter into a nanosecond value. Since this operation may be invoked very often,

doing this in a strict mathematical sense is not desirable: instead the number is taken as close as

possible to a nanosecond value using only the arithmetic operations multiply and shift with the

value of mult and shift field members.

The field flags of struct clocksource specifies a number of flags that characterizes

the clock with more detail.

Finally, enable and disable, as the name suggests, are function pointers to allow the ker-

nel to make the clock source available, or not. The machine’s clock sources made available by

the kernel can be seen in the /sys/devices/system/clocksource/clocksource0/available_clocksource

Linux file.
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The clock_event_device structure deals with the time at which it is supposed to generate
an interrupt. It is defined in the include/linux/clockchips.h file:

struct clock_event_device {

void (*event_handler)(struct clock_event_device *);

int (*set_next_event)(unsigned long evt,

struct clock_event_device *);

int (*set_next_ktime)(ktime_t expires,

struct clock_event_device *);

ktime_t next_event;

u64 max_delta_ns;

u64 min_delta_ns;

u32 mult;

u32 shift;

enum clock_event_mode mode;

unsigned int features;

void (*broadcast)(const struct cpumask *mask);

void (*set_mode)(enum clock_event_mode mode,

struct clock_event_device *);

const char *name;

int rating;

int irq;

const struct cpumask *cpumask;

struct list_head list;

...

};

The meaning of each field is described in the kernel code, but some key elements are to be

highlighted.

max_delta_ns and min_delta_ns specify a range of values in nanoseconds in which the

event shall take place with respect to the current time, characterizing the delay at each the event

can be generated.

event_handler points to the function that is called by the hardware interface code to pass

clock events on to the generic layer.

cpumask specifies for which CPU’s the event device works. A simple bitmask is employed

for this purpose. Local devices are usually only responsible for a single CPU.

next_event stores the absolute time of the next event. This type of variable, ktime_t, is

the data type used by the generic time framework to represent time values. This time representation

consists of a 64-bit quantity independently of the architecture, and the manipulation of this objects,

as well as the conversion to other time formats, must be made by auxiliary functions defined by

the kernel in ktime.h file.

features characterizes the event device, as a bit string. For example, CLOCK_EVT_FEAT

_PERIODIC identifies a clock event device that supports periodic events, as well as CLOCK_EVT

_FEAT_ONESHOT marks a clock capable of issuing one-shot events, that happen exactly once.
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Most clocks allow both possibilities, but it can only be in one of them at a time, defined in mode,

and the set_mode function pointer is used to set the current mode of operation.

The next event in which event_handler is called to be triggered is configured in the

set_next_event function, which in turn sets next_event using a clocksource delta, or with

set_next_ktime that uses a direct ktime_t value.
But there is no need to call these functions directly to set the mode and next event, as the kernel

offers auxiliary functions for these tasks, defined in kernel/time/clockevents.c:

void clockevents_set_mode( struct clock_event_device *dev,

enum clock_event_mode mode)

int clockevents_program_event( struct clock_event_device *dev,

ktime_t expires, bool force)

Note that each clock event device only has one event programmed, so to manage multiple

events, after the execution of the handler of one event, the kernel calculates how much time is

left to the next event, and program the clock event device to generate an interrupt at that time.

This is analogous to a situation where a family uses only one alarm clock to wake up all people

at different times: the person that wakes up first needs to re-program the alarm clock to the next

person’s wake up time.

Although clock devices and clock event devices are formally unconnected at the data structure

level, some time hardware chips support both interfaces.

Besides these two concepts, the kernel distinguishes between two types of clocks, as we can

see in figure 2.9:

• A global clock, that is responsible to update the jiffies value, the wall time and the system

load statistics.

• One local clock per CPU, that allows process accounting, profiling and most importantly,

high-resolution timers.

Note that high-resolution timers only work on systems that provide per-CPU clock sources. The

extensive communication required between processors would otherwise degrade system perfor-

mance too much as compared to the benefit of having high-resolution timers.

After discussing the generic time framework, the implementation of high-resolution timers can

be reviewed. These timers are distinguished from low-resolution timers in two aspects: first, the

HR (High-Resolution) timers are time-ordered on a red-black tree, and second they are indepen-

dent of periodic ticks, employing nanosecond time stamps instead of a time specification based on

jiffies.

Since low-resolution timers are implemented on top of the high-resolution mechanism, the

generic part of the high-resolution timers framework will always be built into the kernel even if

support for them is not explicitly enabled. Nevertheless the supported resolution is not any better.

This means that even kernels that only support low resolution contain parts of the high-resolution

framework, which can sometimes lead to confusion.
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HR timers must be bound to one of two clock bases:

• CLOCK_MONOTONIC, maintained by the operating system from the system’s boot timer,

it resembles the tick count and it is guaranteed to always run monotonously in time. It is the

preferred clock for calculating the time difference between events [27].

• CLOCK_REALTIME can jump forward and backwards. It represents the system’s best

guess of the real time-of-day and it can be modified by a user with the right privileges.

Currently there are two more clock bases in the kernel: the CLOCK_BOOTTIME that is idential to

CLOCK_MONOTONIC, except it also includes any time spent in suspend [28], and CLOCK_TAI,

since 3.10, which was managed by the NTP code before, and was moved into the timekeeping core

to provide a TAI (International Atomic Time) based clock [29].

Each of these clock bases is an instance of struct hrtimer_clock_base, which is

equipped with a red-black tree that sorts all pending HR timers, and specifies its type, resolu-

tion, and the function to read its current time. The function to read the CLOCK_MONOTONIC

is ktime_get() and to read the CLOCK_REALTIME, the ktime_get_real() function is

used, both returning a ktime_t time stamp value. There is a data structure with all these clock

bases for each CPU in the system, named struct hrtimer_cpu_base. Both these structures

are in hrtimer.h file.
The HR timer itself is specified by hrtimer data structure provided by the kernel, defined in

the same file:

struct hrtimer {

struct timerqueue_node node;

ktime_t _softexpires;

enum hrtimer_restart (*function)(struct hrtimer *);

struct hrtimer_clock_base *base;

unsigned long state;

#ifdef CONFIG_TIMER_STATS

int start_pid;

void *start_site;

char start_comm[16];

#endif

};

struct timerqueue_node specifies the node used to keep the timer on the red-black tree,

and also the absolute expiry time in the hrtimers internal representation. base points to the timer

base associated.

state is the currently state of the timer, that can be inactive, waiting for expiration (en-

queued), executing the callback function, pending, i.e. has expired and is waiting to be executed,

or migrated to another CPU.

start_comm and start_pid are respectively the name and the pid (processor identifica-

tion) of the task which started the timer, for timer statistics.
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The most important field is obviously the timer expiry callback function that can return two
possible values:

enum hrtimer_restart {

HRTIMER_NORESTART, /* Timer is not restarted */

HRTIMER_RESTART, /* Timer must be restarted */

};

If the callback returns HRTIMER_NORESTART, the timer will simply eliminated from the sys-
tem after expires. In order to the timer to be restarted, the callback must set the new expiration time
on the hrtimer parameter and the return value must be HRTIMER_RESTART. The kernel provides
an auxiliary function to forward the expiration time of a timer:

extern u64

hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval);

Usually now is set to the value returned by hrtimer_clock_base->get_time(), and for

that reason, hrtimer_forward_now(struct hrtimer *timer, ktime_t interval)

was created, that already does that.

The new expiration time must lie past now, so interval is added to the old expiration time

the times necessary to make that true. The functions returns the number of times that interval

had to be added to the expiration time to exceed now. This makes possible to track how many

periods were missed if periodic execution of the function is desired, and respond to the situation.

To actually set and use the timers, there is a well defined interface provided by the kernel in

hrtimer.h [30].

In order to use ktime_t time values, ktime_set(long secs, long nanosecs) is

used to declare and initialize them. Several other auxiliary functions exist to handle this kind of

variables, like to add or subtract time values and convert to other time representations.

A new struct hrtimer is initialized with hrtimer_init(struct hrtimer *timer,

clockid_t which_clock), in which clock is the clock base to bind the timer to, and mode

specifies if time values are to be interpreted as absolute or relative to the current time, with the

constants HRTIMER_MODE_ABS and HRTIMER_MODE_REL, respectively.

The next step is to define the function pointer to the callback, since this is the only field that

is not set with the API funtions, and hrtimer_start is used to set the expiration time of a timer,

declared before, and starts it. The hrtimer code implements a shortcut for situations where the

sole purpose of the timer is to wake up a process on expiration: if the function is set to NULL, the

process whose task structure is pointed to by the data will be awakened.

If periodic execution of the callback function is desired, after the application code to be ex-

ecuted in it, hrtimer_forward must be used, processing the returned overrun eventually, and

return HRTIMER_RESTART. Timers can be canceled and restarted with hrtimer_cancel and

hrtimer_restart respectively. hrtimer_try_to_cancel may also be used with the par-

ticularity that it returns -1 if the timer is currently executing and thus cannot be stopped anymore.

hrtimer_cancel waits until the handler has executed in this case.
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When an interrupt is raised by the clock event device responsible for HR timers, the event

handler that is called is hrtimer_interrupt. Assuming that the high-resolution timers will

run based on a proper clock with high-resolution capabilities that is up and running, and that

the transition to high-resolution mode is completely finished (since only low-resolution will be

available at boot), this function selects all expired timers in the tree, calls the handler function

associated with it, and reprograms the hardware for the next event depending on the return value

of the handler function, while changing dynamically the state of the timer. This is done for each

clock base, iteratively.

Concluding, in this section the high resolution timers were reviewed, as well as their imple-

mentation. In the next section, the last one of this overview of the Linux time management, shows

some top-level application interfaces to use high resolution timer in user-space.

2.2.2.3 Timer APIs

These HR timers are used for heavily clock-dependent applications. In order to support user-level

applications, such as animations, audio/video recording and playback, and motor controls, the

Linux kernel provides different APIs, i.e. system call interfaces, for using high resolution timers.

The most important are the following [31]:

• timerfd - An interface defined in fs/timerfd.c that presents POSIX timers as file descriptors

and waiting for the timer to expire consists of read from it, always returning an unsigned

64-bit value representing the number of timer events since the last read, which should be

one if all is going well. If it is more than one then some events have been missed.

• POSIX timers - Implemented in kernel/posix-timers.c, these timers generate signals indi-

cating the expiration time, and the start of the next period in case of periodic operation. One

must wait for the signal to arrive with sigwait() and the missed events can be detected

using the function timer_getoverrun(), which returns zero if none were missed.

• setitimer - A system call whose implementation rest in kernel/itimer.c that installs interval

timers similar to POSIX clocks except that it is hard coded to deliver a signal at the end

of each period. The time out is passed in a struct itimerval (time.h) which contains an

initial time out, it_value, and a periodic time out in it_interval which is reloaded

into it_value every time it expires.

When itimers are used there are three options to distinguish how elapsed time is counted or in

which time base the timer resides, specified in which parameter in setitimer:

• ITIMER_REAL fires a SIGALRM signal after a specified real time measured between acti-

vation of the timer and time-out.

• ITIMER_VIRTUAL measures only time consumed by the owner process in user mode, and

draws attention to itself by triggering a SIGVTALRM signal upon time-out.

• ITIMER_PROF calculates the time spent by the process both in user and kernel mode,and

the signal sent at time-out is SIGPROF.
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2.3 Clock synchronization algorithms

This section focus on how processes can synchronize their own clocks.

In a centralized system time , where a centralized server will dictate the system time, time is

unambiguous. It does not matter much if this clock is off by a small amount to the real time. Since

all processes will still be internally consistent.

But with multiple CPU’s, each with its own clock, it is impossible to guarantee that the crystal

oscillators don’t have a drift, and differ after some amount of time even when initially set accu-

rately. In practice, all clocks counters will run at slightly different rates. This clock skew brings

several problems that can occur and several solutions as well, some more appropriate than others

in certain contexts.

All the algorithms have the same underlying system model. Each processor is assumed to have

a timer that causes a periodic interrupt H times a second, but real timers do not interrupt exactly H

times per second [32].

Figure 2.10 show a slow, a perfect, and a clock with constant offset. The most important clock

parameters to measure a clock synchronization, are:

• Accuracy α : |Cpi(t)− t| ≤ α for all i and t

• Precision δ : |Cpi(t)−Cp j(t)| ≤ δ for all i, j, t

• Offset : Difference between Cpi(t) and t

• Drift : Difference in growing rate between Cpi(t) and t

Figure 2.10: The relation between clock time and UT when clocks tick at different rates
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2.3.1 Network Time Protocol

A common approach in many protocols, is for a client to read a server’s clock and compensate for

the error introduce by message delay.

Figure 2.11: Getting the current time from a time server.

In this protocol, (see figure 2.11), A will send a request to B, timestamped with value T1. B,

in turn, will record the time of receipt T2 (taken from its own local clock), and returns a response

timestamped with value T3, and piggybacking the previously recorded value T2. Finally, A records

the time of the response’s arrival, T4. Let us assume that the propagation delays from A to B is

roughly the same as B to A, meaning that T2−T1 ≈ T4−T3. In that case, A can estimate its offset

relative to B as stated in expression 2.5.

θ =
(T2−T1)+(T3−T4)

2
(2.5)

There are many important features about NTP, of which many relate to identifying and masking

errors, but also security attacks. NTP is known to achieve worldwide accuracy in the range of 1-50

msec. The newest version (NTPv4) was initially documented only by means of its implementation,

but a detailed description can be found in [33].

2.3.2 The Berkeley Algorithm

In contrast, in Berkeley UNIX, a time server is active, polling every machine from time to time to

ask what time it is there, computing the answers to tell the other machines to advance their clocks

to the new time or slow their clocks down until some specified reduction has been achieved, since

it is not allowed to set the clock backwards.

In figure 2.12 we can see the time server (actually, a time daemon) telling the other machines

its own time and asks for theirs. They respond with how far ahead or behind they are and the

server computes the average and tells each machine how to adjust its clock.

This algorithm is more suitable for systems that pursue only that all machines agree on the

same time, and not a correct absolute value of the clocks, i.e. internal clock synchronization rather

than external clock synchronization.
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Figure 2.12: The Berkeley Algorithm

2.3.3 Precision Time Protocol

The Precision Time Protocol (PTP) is currently defined in the IEEE 1588-2008 standard. This

standard defines a network protocol to achieve precise and accurate synchronization of real-time

clocks in devices of a distributed system that communicate using a network [34] [35].

The target of this algorithm is groups of relatively stable entities, locally networked, cooper-

ating on a set of well defined tasks. It allows multicast communication, unicast communication or

both.

The protocol enables heterogeneous systems that include clocks of various inherent precision,

resolution, and stability to synchronize to a grandmaster clock, that can be synchronized to a

source of time external to the system. It supports synchronization in the sub-microsecond range

with minimal network bandwidth and local clock computing resources.

It is intended to measurement and control systems, typical of industrial automation and test

environments. It was made to be simple and minimalist in resource requirements on networks and

host components.

The IEEE 1588 standard defines the states of a clock, their allowed state transitions, network

messages, fields, and semantics. It also describes the datasets maintained by each clock, as well

as the actions and timing for all network and internal events.

It is a master-slave protocol and the synchronization and management of the whole process is

done by a message exchange between the master and the different slaves.

During the synchronization, two main parameters are estimated:

• Offset: Represents the time difference between two clocks.

• Delay: The time that a message takes to reach its destiny.

Figure 2.13 illustrates all the message exchanges between the master and a slave that are

necessary for a correct synchronization.

Periodically, the master node sends a multicast Sync message. All the slaves that receive this

message save the time (t2) in which it received it and waits for the master to send a Follow_up

message containing the time (t1) that the first message was sent.
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Figure 2.13: PTP message exchange diagram [tutorial]

Afterwards, the slave sends to the master a Delay_Req message, recording its sent time (t3)

and then waits for the master’s response containing the time in which it received it (t4).

With all the time references acquired, the slave can estimate the offset value with expression

2.6 and the communication delay with the expression 2.7. The derivation of these expressions can

be found in [35].

o f f set =

(
t2− t1

)
−
(
t4− t3

)
2

(2.6)

delay =

(
t2− t1

)
+
(
t4− t3

)
2

(2.7)

Knowing the offset of the clocks, the slave can correct its local clock to be synchronized with the

master, but the IEEE 1588 standard says nothing about how to do this.
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2.3.4 Distributed clock synchronization

When there is no master clock, all nodes have to exchange their clock values among themselves.

A virtual reference clock can be created averaging all clocks but there is no assumption that there

is a single node with an accurate account of the actual time available.

There are two basic classes of algorithm for clock synchronization: those based on averaging

and those based on events.

Averaging works by each node measuring the skew between its clock and that of each other

node (e.g., by comparing the arrival time of each message with its expected value) then setting its

clock to some "average" value.

Event-based algorithms rely on nodes being able to sense events directly on the interconnect:

each node broadcasts a "ready" event when it is time to synchronize and sets its clock when it has

seen a certain number of events from other nodes [36].

One example of this kind of algorithm is the RBS (Reference Broadcast Synchronization),

where a sender broadcasts a timestamped reference message to adjust the receivers clocks as in

NTP, but RBS also allows the packet’s time of arrival to be used as a reference point for clock

synchronization. To do that, propagation time is measured from the moment that a message leaves

the network interface of the sender, eliminating two sources of variation on the communication

delay estimation: the time to prepare the massage to be sent, and the time to interface with the

network. What remains is the delivery time at the receiver, but this time varies considerably less

than the network-access time.

Fault-Tolerant Average algorithm (FTA) is another example, in which a node gathers all clocks

and eliminates the clocks with the k highest and k lowest skew to use the average of the remaining

clock as the virtual reference clock. This method reduces the sensitivity to clocks that diverge a

lot from others, and clocks with byzantine errors, i.e. arbitrary values.

Another example is the Interactive Consistency, where all nodes send a vector with their view

of all other clocks and locally build a local matrix with all views of all clocks, remove the byzantine

clocks and generate a virtual reference, but with the price of high over-head in the communication.

This chapter reviews the literature and the state of the art related to clock synchronization.

The approach is bottom up: we start by reviewing the clock signal distribution issues at the

level of the hardware, next we reviewed the various time management services available at the

Linux kernel and finally some clock synchronization algorithms used in distributed systems were

described.
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Chapter 3

Per-core high resolution clock

This chapter describes the clock to be later synchronized, and its implications. First a presen-

tation on the desired local clock is given. Later the clock implementation is described, where

a mechanism to evaluate the available hardware in any machine, CPUID, is presented, as well

as the process of choosing the hardware clock source to use. Finally the chosen clock source is

characterized regarding its I/O access and its native synchronization in its multiple local instances.

3.1 Clock definition

During system’s boot, the kernel interacts with the machine’s hardware to discover the available

clock sources, and selects the best one relying on their rating field on the clocksource structure

instance of each clock. In order to list the available clock sources made available by the kernel, one

must dump the content of /sys/devices/system/clocksource/clocksource0/available_clocksource file.

With a chosen per-core clocksource, this can be used to build a per-core logical clock in

software. It was agreed that this clock should be the time value provided by the clocksource,

counted since the beginning of the algorithm execution. For that, the clocksource value must

be marked to represent the initial value of each core, and a read to the local clock would return the

subtraction of the current time value and the initial value.

The clocks is to be stored globally, permitting a shared memory space for the synchronization,

and a generalization of the operations to deal with them. Each clock, CLKN , at a given point in

time, either to be used by the clock synchronization algorithm to get timestamps, or by posterior

user applications that want to read it, is given by the expression 3.1, in which N represents the

ID of the core, TimeN represents the current time of the CPU N, and Time0
N is the initial time

value, defined in the beginning of the process to be discussed later. The correction applied by the

synchronization algorithm to be presented lies in the αN and βN values. The αN is used to control

the time rate of the clock, and βN is an offset corrector.

CLKN = αN

(
TimeN−Time0

N

)
−βN (3.1)

33
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3.2 Clock implementation

3.2.1 CPUID

In this dissertation, several functions used are supported by hardware, directly or indirectly, so the

hardware features of the machine in use need to be characterized.

As architectures evolve, the hardware must provide means to enable the software to identify

the features available in the CPU. After implementing code sequences and the processor signature

identification of processor generations and models, Intel integrated all the information about the

features and features supported, creating the CPUID instruction, in a extensible way to allow evo-

lution. With this assembly instruction, software developers can create software applications that

can execute compatibly across a wide range of Intel processor generations and models. Although

it was created by Intel, other architectures often provide on-chip registers that can be read with

this same instruction to obtain the same sort of information.

Standard values in EAX are defined to generate different information to the output registers

EAX, EBX, ECX and EDX. For example, with function 01h (EAX=1), the information provided

will be with respect to feature information, like processor type or family code.

All the outputs are documented in [37]. In this document, it is used the notation found there.

For example "CPUID.01h.ECX[21] = 1" means that if the bit 21 of ECX output, with the EAX =

01h input, is equal to 1 then the particular feature is present in the CPU.
There is a Linux shell command "cpuid [options...]" that processes all the CPUID instruction

outputs and dumps detailed information in plain text for each CPU in the system. But to know the
value of a particular bit or set of bits, a small C program was created that calls CPUID for several
input eax values. The output of this program is shown in figure 3.1. This data will serve as a
characterization of the machine’s features used for the development of this dissertation.

void cpuid(unsigned info, unsigned *eax,

unsigned *ebx, unsigned *ecx, unsigned *edx) {

__asm__("cpuid;" :"=a" (*eax), "=b" (*ebx), "=c" (*ecx), "=d" (*edx)

:"a" (info) );

}

Figure 3.1: CPUID raw output data
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3.2.2 The choice of the local clock source

A said before, in order to list the available clock sources made available by the kernel, one must

dump the content of /sys/devices/system/clocksource/clocksource0/available_clocksource file. Fig-

ure 3.2 shows the default results in the used machine.

Figure 3.2: Initial available clock sources

The current clock source can be inspected by reading the current_clocksource file in the same

directory. In this case, HPET was automatically chosen as it is the best available, but this is not

desirable given the low resolution of this hardware chip for some tasks, as those envisioned.

3.2.2.1 Local APIC

In APIC based systems, i.e. systems with CPUID.01h:EDX[9] = 1, each CPU has a "local APIC".

This controller has a timer functionality with a periodic mode of operation, that can eventually

serve as the source for the CLOCK_MONOTONIC and CLOCK_REALTIME clock base abstrac-

tions. This led to an analysis on the APIC Timer.

As mentioned in section 2.2.1, the local APIC unit contains a 32-bit programmable timer

to time events or operations [21]. If CPUID.06h:EAX[2] = 1, this timer runs at a constant rate

regardless of P-state transitions (operational states with different frequencies and voltages) and in

deep C-states (idle states). If CPUID.06h:EAX[2] = 0 or CPUID 06h function is not supported, it

may temporarily stop, making it unreliable as a clock source.

This timer’s speed relies on a clock signal derived from the front-side bus clock, whose op-

erating frequency is determined by dividing the CPU frequency by the CPU clock multiplier, or

bus/core ratio. On top of that, the APIC implements another divide value specified in the di-

vide configuration register of the APIC’s register space. This "register bank" is memory-mapped

into a 4 KByte region of the processor’s physical adress space, with an initial starting adress of

FEE0_0000H.

Besides configuring this divide value, setting up the APIC timer consists of programming other

3 registers: the initial-count and current-count registers (adresses _0380H and _0390H), and the

LVT (Local Vector Table) timer register (adress _0320H) in which the timer mode of operation,

the interrupt vector and the delivery status of the interrupt are specified.

There are 2 or 3 modes of operation: Periodic and one-shot modes, that are supported by all

local APICs and a third mode called TSC-Deadline mode, present if CPUID.01h:ECX[24] = 1.

When the initial-count register is written, its value is copied into the current-count register and

the timer begins to count down to zero, moment at which a timer interrupt is raised. In one-shot

mode, the timer remains at 0 until reprogrammed, and in periodic mode the register is reloaded
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with the initial-count value to restart the count-down. A write of 0 to the initial-count register

effectively stops the local APIC timer, in both one-shot and periodic mode.

The TSC-Deadline mode is very different from the other 2 modes. Instead of using the CPU’s

front-side bus clock frequency to decrement a count, IA32_TSC_DEADLINE MSR (Model Spe-

cific Register) must be set to control the absolute time at which a timer interrupt should occur. The

local APIC generates a timer IRQ (Interrupt Request) when the value of the CPU’s time stamp

counter is greater than or equal to this value. Although a higher precision can be achieved with

the TSC deadline, there is an uncertainty defining the absolute values of the deadline.

To use the APIC timer, the operating system must know for sure how many interrupts per

second it is capable of, as it varies from machine to machine. To do this, after enabling the APIC

timer, the counter must be reset and read after a specified amount of time measured with a different

clock, to find the number of ticks elapsed. After adjusting it to a second, the kernel multiplies it

by the divide value used to find the true CPU bus frequency.

The kernel has the APIC’s register space completely defined in asm/apicdef.h file, as well as

all the interfaces with it in asm/apic.h. The characterization of the machines features regarding the

APIC, the initialization, setup and calibration routines are all defined in arch/x86/kernel/apic/apic.c

file.

In the calibrate_APIC_clock() function, after setup and configuration of the local APIC

timer with the __setup_APIC_LVTT() function, the Linux kernel calibrates the APIC by setting

a temporary interrupt handler lapic_cal_handler() that measures the time elapsed between

a specified number of the local APIC interrupts using the TSC (if present), the ACPI PM (Power

Management) timer, and the jiffies.

Analysing this function, one can conclude that the local APIC timer is not intended by the

kernel to be used as a clocksource for the whole system, but as a clock event device, that generates

interrupts at a given input relative time, as the local APIC’s clock_event_device structure

instance is initialized in it. The clock event devices cannot keep track of more information than

the time at which it is supposed to generate an interrupt.

3.2.2.2 Time Stamp Counter

A per-CPU clock source is preferred to the approach of this dissertation, and the clock sources

available shown in figure 3.2 are not satisfactory. Since the TSC is supported, i.e. CPUID.01h:EDX[4]

= 1, it is expected to be available. This clock source is usually the preferred when it is available,

since it has the higher resolution, and is a low-overhead way of getting CPU timing information.

However, it can only be used if it is stable. Being directly associated to the processor’s clock fre-

quency, it’s time rate will vary as the frequency varies dynamically with the power management

technology, making it unreliable to manage the passing of time. Also, the processor may lose

some cycles from the TSC when entering a halt state.

With the appearance of frequency scaling, systems with multiple CPU’s and hibernating op-

erating systems, the TSC ceased to be used as a time reference, until the architectural behaviour
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moved forward and overcame this problem [38]. With respect to the way the TSC is incremented

in current the processor families, 4 TSC types can be distinguished [39]:

• The old type, in which TSC increments with every internal processor clock cycle, so it

changes with some deep power management state transitions.

• Constant TSC: The Time Stamp Counter increments at a constant rate. That rate may be

set by the maximum core-clock to bus-clock ratio of the processor or may be set by the

maximum resolved frequency at which the processor is booted. This behavior ensures that

the duration of each clock tick is uniform and supports the use of the TSC as a wall clock

timer even if the processor core changes frequency. However it does change on certain

power management state transitions.

• Invariant. With this feature, indicated by CPUID.80000007H:EDX[8], the TSC will run at

a constant rate in all ACPI deeper states.

• Non-stop. This TSC mode combines the properties of both Constant and Invariant TSC.

The type of TSC present in a processor is identified by the flags entry in the /proc/cpuinfo file.

In the machine used, the constant_tsc flag appears in each of the cores. Making a dump of

the log messages given by the kernel with the expression "TSC" in it, the results show a message

"Marking TSC unstable due to TSC halts in idle", that gives us the reason the TSC is not available.

A kernel modification was made, as an attempt to make the TSC stable to be used as the time line

of the system.

Having a .config file along with the kernel source code, the make menuconfig command

offers the index of the kernel configuration options to select or deselect, like shown in figure 3.3.

Figure 3.3: Make menuconfig interface
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The kernel can be made lighter disabling some not needed features, and the scheduler jitter can be

decreased, increasing the performance.

To make the TSC available as clock source, it is not enough to disable the "frequency scaling"

option in Power Management and ACPI Options —> ACPI (Advanced Configuration and Power

Interface) Support, will not validate the TSC because it is a "constant TSC". It is not available

because of the idle states of the processor.

However, this issue can be worked around by setting the "idle = poll" kernel boot pa-

rameter in the /etc/default/grub file. This parameter keeps the clock from entering the idle state,

forcing a polling idle loop, and maintaining a continuous time rate on the TSC. This sacrifices low

power consumption state when the CPU isn’t needed, for reliability in the measurement of time

with the TSC.

After updating the grub, dumping the /sys/devices/system/clocksource/clocksource0/available

_clocksource file, the TSC appears in its content, and it is automatically chosen as it has a higher

rate in comparison to the others available.

3.2.3 Characterization of the chosen clock source

3.2.3.1 Read access

With TSC being used as the clocksource abstraction in the system, the fastest way to read the
current time value in expression 3.1, TimeN , is by a direct read of the TSC register with the RDTSC
assembly instruction. The code to generate the needed assembly instructions is presented next.

static __inline__ unsigned long long rdtsc(void) {

unsigned hi, lo;

__asm__ __volatile__ ("RDTSC" : "=a"(lo), "=d"(hi));

return ( (unsigned long long)lo)|( ((unsigned long long)hi)<<32 );

}

The resulting value, or a difference between two values read, may be converted to a time

value, as long as the CPU frequency is known. There may be multiple methods to get the CPU

frequency, namely getting access to the mult and shift parameters of the clocksource ab-

straction. To accelerate this process, this value can be taken from the kernel log regarding the

TSC, with the command dmesg | grep "TSC", and hard-coded in a #de f ine macro, in KHz.

So in another machine, this parameter would have to be redefined, making this approach to-

tally non-portable. Other solution to get the current time is with ktime_get(). This func-

tion is assigned by the kernel to point to the read function field of the CLOCK _MONOTONIC

clock_base structure, and returns its value in a ktime_t format. It consists of a read from a

base_mono field present in the struct timekeeper, a structure holding internal timekeep-

ing values, defined in the linux/timekeeper_internal.h file. This base_mono value is updated

with timekeeping_update() function of the time/timekeeping.c file, called in the initializa-

tion routine of the clocksource and timekeeping values, in the suspend/resume methods, and in

all functions that change components of the timekeeper or the time of day, and in each update, the

value of the clocksource is stored in the cycle_last field of the tk_read_base structure.
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The kernel does not have a consistent value of the clocksource in every instant of time,

as this is maintained by the hardware, so the ktime_get() function besides reading the up-

dated base_mono value, it gets the nanoseconds passed since the last update, with the function

timekeeping _get_ns() that compares the cycle_last value with the current clocksource

value, saved in cycle_now.

It should be expected that the resulting value of the RDTSC operation, after a conversion to a

nanosecond value given the CPU frequency, could be compared to the result of the ktime_get()

function.

A small program was made to compare absolute timestamps of these two operations. A

first execution showed an offset of approximately 14.4 seconds, meaning that the TSC and the

clock_base abstraction values don’t have the same starting point. Later in time this offset ap-

pears to have decreased a little, meaning that the TSC and the timekeeper of the system also do

not run at the same claimed frequency.

The RDTSC instruction is an instruction to fetch a register maintained by the hardware that

counts every clock cycle occurred, and the clock_base is a software abstraction which is initi-

ated later after the RESET signal and after calibration routines at the system’s boot to be able to

manage time correctly.

From this we can conclude that reading the Time Stamp Counter, or other hardware-maintained

register, only makes sense to compare multiple values and get relative time values or intervals.
To compare these two instructions, it was made a statistic study about the time it takes to read

the TSC directly and a execution of the ktime_get() function, based on [40].

(...)

for (i = 0; i < 1000000; i++) {

tsc1 = rdtsc();

tsc2 = rdtsc();

delta = ( (tsc2 - tsc1) * tsc_period_ps);

if (i == 0 || delta < min) min = delta;

if (delta > max) max = delta;

avg += delta;

} avg /= ITERATIONS;

(...)

The same approach was used with ktime_get(), except the result comes with a nanosecond

resolution. This loop was integrated in a user-space application and in a kernel module. In figure

3.4 we can see the results of these 3 experiments.
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Figure 3.4: Results from experiments on read latency
(1) RDTSC from user-space; (2) RDTSC from kernel-space; (3) Ktime_get from kernel-space

As it can be seen in the outputs of the algorithms, the values from user-space are different from

the ones in kernel space. This can be due to the scheduling policies applied to application code

and to kernel code. These 3 algorithms were not performed binded to a single processor, and a

switch of the executer core in the middle of the two consecutive reads can lead to greater values,

something that can occur more frequently in user-space.

Also, the TSC is faster to read when compared to the ktime_get() function. This is ex-

pected due to the nature of each operation. The RDTSC is an assembly instruction itself, and the

ktime_get() has some code to execute and some structures to access, like described earlier.

With the clock source access reviewed and software methods to read it compared, other issue is

to be characterized with respect to this clock source. That is the native synchronization in multiple

cores, since this is a per-core source of time manager.

3.2.3.2 Synchronization across multiple cores

In previous multi-core CPUs, each core had its own TSC that would slow down or stop according

to the frequency of the CPU itself. In order to make two accurate measurements relative to each

other, it was necessary to pin the measuring code to a single core.

On recent intel architectures, all the cores on a PC receive an external RESET signal and a

common reference clock signal from one external crystal oscillator, so all see RESET at the same

time when the motherboard is powered. The internal clocks in the processors are kept in phase

with a PLL [41].

The TSC counter is reset to zero at a RESET signal, and all cores in the same package see RE-

SET synchronously. Intel guarantees a TSC with a constant rate, as long as the constant_tsc,

invariant_tsc and nonstop_tsc flags appear on the CPU information.

As long as these assumptions hold, all TSC counters in the same package (same clock source

and same RESET signal), are synchronized as if there was only one counter in the system.

Dealing with old CPUs, modifying the TSC itself in an attempt to synchronize was never an

hypothesis, because this operation is effectively writing to a moving target, the software is never

guaranteed the value it could receive. The various software operations to update the TSC value for

a given core can be delayed indefinitely if it has to be re-performed.

In most recent CPU’s, Intel proposed in [42] the use of an uncore TSC (i.e. in the region of the

package that does not belong to any core) which is incremented on every front-side bus clock by

the value in [15:8] bits of a machine specific register called _PLATFORM_INFO. If this is set to
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25, for example, every bus clock the uncore TSC increments by 25, maintaining the illusion that

the core is running at the stamped frequency, for purposes of various software.

With this uncore TSC, a multi-core package can go into a deep power down (C6) state, and

when a core is resumed from it, its internal TSC gets initialized to the value of the uncore TSC

that didn’t go to sleep, plus an offset local to the core. Reading and writing directly to a core offset

can be performed, bypassing the need for synchronization between multiple cores of a multi-core

processor. As all cores/threads within a socket share a single hardware counter, writing directly to

an offset for a core effectively allows software to update a core’s offset at its leisure.

The synchronization among the TSC of different cores applies only to 64/ IA-32 Intel archi-

tectures, from a certain point forward in their history. Old Intel processors and processors from

other architectures may not ensure this synchronization. Besides that, in many-core systems the

trend is to adopt a GALS type of solution, where different, asynchronous time domains co-exist.

Given that, it was decided that the clock to be used should be based on the TSC, but without

assuming that the different TSCs are synchronized. Instead, the synchronization of the local clocks

is assured by the execution of an algorithm as the one described in chapter 4.

In this chapter we have described how to define a clock device per-core on top of a hard-

ware clock source to be chosen on a X86-based machine. In the next chapter we show how to

synchronize these clocks.
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Chapter 4

Clock Synchronization

In this chapter clock synchronization implementation is presented. After a presentation on the

algorithm and the adopted approach, the used communication mechanisms are showed along with

the implementation of the algorithm with each of these methods. The section that follows describes

a filtering model to deal with the delay asymmetry in the communication, and finally we present

the kernel module that was implemented to insert correction algorithm into the system.

4.1 The synchronization algorithm

To synchronize the different per-core clocks, we decided to apply an algorithm based on the PTP

algorithm, defined in the IEEE 1588 standard, and described in section 2.3.3.

As this is a master-slave algorithm, the idea is to define one of the CPUs as the master and the

rest as slaves, and the timestamp exchanging routine runs periodically between the master and each

slave. For that, it was created a high resolution timer to run in the master, with a relatively large

period. Two communication methods for the handler of this timer’s expiration were designed, to

be presented in the next section.

In order to have the sending time and receipt time in both directions, this algorithm doesn’t

need the Follow_up message from the IEEE 1588 standard because the sending time of the Sync

message (t1 in figure 2.13) may be stored in the shared memory, and the slave is free to read it

when it receives the message (after t2). The same applies with the Delay_resp message, whose

purpose is sending the receipt time of the previously sent Delay_req message (t4). This message is

not necessary with this system model. In fact, even if the last message of the algorithm is sent from

the slave to the master, i.e. the slave would have to wait to know the last timestamp value, there is

no need for another pseudo-message to the slave or a waiting mechanism in the slave, because the

master CPU itself can adjust the slave’s clock, modifying the respective memory value as long as

it knows the slave’s CPU ID.

43
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4.2 The communication mechanisms

In this section, the communication methods are presented. In fact, as the memory is shared among

the processors in the architectures we are considering, there is no need to send messages with

the purpose of passing information to another node. Message-based communication can be im-

plemented as follows. To send a message, a process writes the message to shared memory, and

then notifies the destination process. Upon receiving this notification, the destination process then

reads the message from the shared memory. So all we need is to implement some notification

mechanism.

4.2.1 Inter-Processor Interrupts

To notify a given processor, there is a special type of signal called IPI, which can interrupt another

processor or a group of processors that share the bus in which the IPIs are propagated. The IPI

mechanism is typically used in SMP systems to send fixed interrupts (interrupts for a specific

vector number), special-purpose interrupts, and also used for software self-interrupts, interrupt

forwarding, or preemptive scheduling [21].

At the lowest level, a processor can generate IPIs by programming the ICR (Interrupt Com-

mand Register) in its local APIC. The software must set up this register to indicate the type of IPI

message to be sent and the destination processor and its mode (physical or logical). The act of

writing to the low double-word of the ICR causes the IPI to be sent through the APIC bus.

In the P6 family processors, as it is the case of the used machine, when an IPI is received,

the receiver CPU’s APIC examines the IPI data that arrives through the bus, to determine if it is

the specified destination for the IPI. Next it examines if the interrupt request is a special-purpose

request, like a NMI or INIT, or one of the MP protocol IPI messages, i.e. a BIPI (Boot IPI),

FIPI (Final Boot IPI), or a SIPI (Startup IPI), and in case of being a special-purpose request, the

interrupt is sent directly to the processor core for handling. If not, the local APIC looks for an open

slot in one of its two pending interrupt queues: the IRR (Interrupt Request Register), that contains

the active interrupt requests that have been accepted, but not yet dispatched to the processor and

ISR (In-Service Register) registers, that as the names says, has the already dispatched interrupts.

When a fixed interrupt has been dispatched to the processor core for handling, the completion

of the handler routine is indicated with an instruction in the instruction handler code that writes

to the EOI (End-Of-Interrupt). This deletes the interrupt from its queue and (for level-triggered

interrupts) send a message on the bus indicating that the interrupt handling has been completed.
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Figure 4.1: Synchronization method with IPIs

In the Linux Kernel the sending and handling of an IPI belongs to the architecture-dependent

code, but the kernel/smp.c file defines generic helpers for SMP IPI calls, in which we highlight the

following:

• smp_call_function_single
(
int cpu, smp_call_func_t func, void *info, int wait

)
– Run a function on a specific CPU.

• smp_call_function_single_async
(
int cpu, struct call_single_data *csd

)
– Like the above, but the call is asynchronous and can thus be done from contexts with

disabled interrupts.

• smp_call_function_any
(
struct cpumask *mask, smp_call_func_t func, void *info, int wait

)
– Run a function on any of the given CPUs.

• smp_call_function_many
(
struct cpumask *mask,smp_call_func_t func,void *info,int wait

)
– Run a function on a set of other CPUs.

• smp_call_function
(
smp_call_func_t func, void *info, int wait

)
– Run a function on all other CPUs.

• on_each_cpu
(
void (*func) (void *info), void *info, int wait

)
– Call a function on all processors.

The argument void *info present in all functions is a pointer to an argument to pass information

to the handler of the IPI interrupt. One useful thing to pass is the CPU id number of the IPI

sender, for the receiver to know who called for its attention. Note that in smp_call_function

_single_async this parameter is a field of the call_single_data structure.

Since what we want is to exchange timestamps between the cores to synchronize their clocks,

the IPIs serve as a mechanism to mark synchronization instants in the two intervening nodes , and

the shared memory is used to pass information about the timestamps.

Figure 4.1 shows the implementation of the timestamp exchange part of the implemented

algorithm, based on PTP, with the use of IPIs.
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The expiration handler of the periodic high-resolution timer for synchronization, that runs on

the master CPU (CPU0), sends an IPI to a SlaveN (that corresponds to CPUN), after the read of the

IPI sending time. To get an estimate of this time, a read to the current clock, given by expression

3.1 is executed before and after the send of the IPI. This way we know that the IPI is sent in that

time interval, and this timestamp, t1, is assumed to be the average time. Note that in the case of

the master, αN is always one and βN is always zero.

To get the receipt time in the receiver CPU, the first thing done in the IPI handler is to read

its own clock. After getting this timestamp, t2 according to the standard, the slave sends another

IPI to the master (all nodes know that the master is CPU0) obtaining the clock value before and

after the sending, to get t3. All this is done with disabled preemptions in order to avoid context

switching while busy-waiting.

A second IPI handler runs in the master side, in which it gets timestamp t4. With all four

timestamps, the master can correct the slave’s clock , with the mathematical expressions in 2.6

and 2.7 of section 2.3.3, taken from PTP’s specification.

From the functions presented above to send IPIs, smp_call_function_single_async

was the chosen one because it can be called from contexts with disabled interrupts. By contrast,

smp_call_function_single, can deadlock when called with interrupts disabled. Note that

the used function has the void *info argument as a field in the csd call_single_data structure

An alternative to the use of IPIs is to also use a data communication mechanism based in the

hardware protocols for memory coherency maintenance.

4.2.2 Multiprocessor Cache Coherency

Cache coherency is intended to prevent data inconsistency arising from storing shared data on

private caches, i.e. not shared among cores,

This functionality ensures that any changes to the values of shared variables are propagated

throughout the system in a timely fashion. This can be used for message-based communication by

making the sender processor modify a given memory location, a flag, and the receiver processor

to wait for that modification, and mark a timing event when it sees the new value. The only issue

is that the receiver must poll the flag in a tight loop to ensure that, with the minimum delay, i.e. it

must be prepared to be notified.

A solution to this issue is to use an IPI to begin this process, after which the sender will wait

for the receiver to set the flag, and can further on set another flag.

To avoid delays, the flags to implement this mechanism were declared as atomic variables.

These type of variables ensure atomic, i.e. indivisible, race-free access even in the presence of

concurrent access by processes running on different processors. For reasons of code portability,

access to atomic variables in the Linux kernel uses a specific API, listed in [43].

Figure 4.2 illustrates the application of this method in the clock synchronization algorithm.

Since it is the master that takes the initiative, an IPI is used to initiate the process. Upon receiving

the IPI, the slave "sends" a message, setting the respective atomic flag, and it busy-waits for
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Figure 4.2: Synchronization method with cache coherency

the response. Note that the order of the timestamps is different from the PTP standard and the

previously showed method, so offset expression changes to 4.1.

o f f set =

(
t4− t3

)
−
(
t2− t1

)
2

(4.1)

The time stamping follows the same logic as in the previous method, that is, getting the mes-

sage’s exit time is done by reading the clock before and after sending it and calculate its average,

and to retrieve the receipt time, a timestamp is taken as soon as the handler method is executed.

After receiving the cache coherency response from the master, the slave node may correct its

own clock, based on the expressions 2.6 and 2.7, of the IEEE 1588 standard. The resulting offset

is applied to the βN of the clock. Note that this parameter is subtracted from the clock, as it can be

seen in expression 3.1. If the offset is positive and consequently the slave’s clock is ahead of the

master’s clock, the clock must be set back, and vice-versa.

4.2.3 Comparison

To have an idea on which method is better, it is possible to take advantage of the Intel’s guarantee

on the TSC’s synchronization, and measure the communication latency of each method.

So an experiment was made with timestamps before sending an IPI and after receiving it, in

both directions. The experiment consists of making an IPI transaction between the master CPU

and a single slave CPU like the implementation on figure 4.1, but with RDTSC timestamps, with

the given conversion to a nanosecond value. For each slave core, 10 000 iterations were made,

presenting the minimum, the maximum and the average latency observed, in each of the directions.

The same logic was used for the cache coherency method, like in figure 4.2.
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Figure 4.3: IPI latency experiment results

Figure 4.4: Cache Coherence latency experiment results

Figures 4.3 and 4.4 show the results of the test for each method. The "MS" notation denotes

for "Master to Slave" and "SM" stands for "Slave to Master".

As expected, the IPI mechanism is more subject to scheduling uncertainties, because the in-

terrupt callback is enqueued as we can see in generic_exec_single() function in smp.c file.

Besides that, the IPI propagation is through the APIC bus, which is shared for both IPIs between

all the processors and used by the I/O APIC to forward external interrupt requests to a local APIC

for handling. The maximum values show the significant delays that they can take due to contention

in the bus or context switching by the operating system.

The cache coherency method is expected to be more subject to context switching by the

scheduling algorithm of the operating system, as its execution blocks in a busy loop, waiting for

the atomic variable’s modification, but with the preemptions disabled this method showed much

better results, as we can see in figure 4.4. These results regarding the cache coherency method,

came from an experiment with disabled preemptions in the master’s and slave’s timestamp ex-

change routines. Without it, several samples showed very high values, some of them reaching up

to seconds of delay.

These measurements show that the IPI method has a higher propagation delay. In a way this

was to be expected, as the cache coherency is a hardware-only solution, but at the same time it

presents a lower deviation. Also, a very important issue to conclude from this experiment, is that

the IPI method shows a much less balance in the direction of the communication, becoming a

worse method to apply in the clock synchronization algorithm, as discussed next.
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4.3 Delay Asymmetry Correction

The PTP protocol assumes that the communication delay is symmetric. The presence of asymmet-

ric message latencies in the forward and reverse communication path between master and slave

clocks will limit the achievable accuracy. A way to deal with this problem is by filtering out "bad"

clock update samples. In this section, a DAC (Delay Asymmetry Correction) Model for asymmet-

ric communication links based on [44] is proposed to achieve high synchronization accuracy.

After the exchange of the basic timing messages defined in the standard, this algorithm calcu-

lates not only the offset but also an estimated delay asymmetry between the master and the slave,

called R, that consists of a ratio between the latencies from the master to the slave and from the

slave to the master. The detail flowchart of the fist stage of the DAC model is illustrated in figure

4.5 [44].

Figure 4.5: Flowchart of DAC model

Only offsets that were calculated with a set of timestamps that pass the first condition of the

algorithm (0.97 < R < 1.03) are potentially deemed good samples. Otherwise, when the calcu-

lated offset values passed the first test, are fed into a 2nd stage filter, named Update Sample Filter.

As the name suggests, the second stage filter, not shown in figure 4.5, is implemented in dis-

tributed systems to ensure that only good samples are used to update the slave clock to keep the

synchronization accuracy high. Since R is an estimate of the unknown asymmetry ratio, there is a

possibility that some clock packets may pass the first test with higher or lower offset values than

the anticipated offset value. So, those timing packets are considered as outliers and can severely
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affect the slave accuracy if applied. If the slave realizes that the latencies are highly asymmetric,

the recently calculated offset value is discarded and replaced with a previously stored offset value,

that has previously passed both filtering stages.

As the PTP is used in distributed systems, the clocks in different machines may have an un-

known drift, no matter how small it is, due to different clock sources in the different machines, and

this algorithm takes that into consideration. When it does have a successful update, it estimates

the drift per synchronization interval, based on the new calculated offset and the number of inter-

vals that passed since the last successful update, and saves this offset. This is the applied offset

in each synchronization interval when the values do not pass the filtering stages, independently

of the acquired time samples. In sum, the filtering process of the DAC model does not only filter

out bad samples, but it also saves a notion of good updates to apply a correction when the time

samples are not trustworthy.

The flowchart of this second filtering stage is illustrated in [44] but in our case that doesn’t

apply. In a multi-core system, even if it is a GALS design (see section 2.1.5), the clock domain of

the isochronous zones are fed from the same hardware clock source. This means that the clock rate

is the same in every CPU, being the offset the only source of error, therefore the second stage of the

DAC model would grow the drift instead of minimize it, and only the first step was implemented.

When R passes the condition, the returned offset is applied to the clock, or else it is discarded.

Further offsets obtained from trustworthy time samples are added to the current βN as this new

value results from lack of accuracy of previous calculated offsets. A adaptation was made to the

DAC model to never accept worst samples than the ones already applied. To do that, the initial

interval of acceptance is higher
([

90%,110%
])

but when a set of samples put the ratio within this

interval, the limits are adapted, in order to accept further values that are only better, and achieve a

convergence to an ideal null offset. Two or three iterations should be enough, and from a certain

point further only values with ratio 100% are accepted to be added to the βN correction factor of

expression 3.1.
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4.4 Kernel Module

The clock synchronization was implemented as a kernel module, given the kernel structures that

are being dealt with, and working at this level gives the developer more certainties regarding task

scheduling and the latencies of timer events.

A LKM (Loadable Kernel Module) is a way to add code to a Linux kernel while it is running,

without adding source files to the kernel tree and recompile de kernel. These modules typically are

used for three purposes: 1) Device drivers, designed for a specific piece of hardware; 2) Filesystem

drivers, that interprets the contents of files and directories, and 3) System calls, that offers services

from the kernel to user space programs.

The goal of the developed module is to create a high resolution timer in a single CPU, to

execute the synchronization periodically. This CPU acts as the master in the algorithm. Since there

is no API to create a hrtimer associated with a specific core, i.e. the timer will be associated

with the core that executes hrtimer_init(), the solution adopted was to create a kernel level

thread bound to that core, and create a timer within its execution. In addition, the master CPU

should send an IPI to every other CPU in order to mark their initial clock value.

A kernel thread, or kthread, is a process that exists only in kernel space and does not have

access to user address space. Being an integral part of a kernel and running in a kernel address

space, they have access to kernel data structures. Linux implements threads as processes that share

resources among themselves, it does not have a separate data structure to represent a thread.

Each thread is represented with task_struct and the scheduling of these is the same as that

of a process. It means the scheduler does not differentiate between a thread and a process, they

are as schedulable and pre-emptable as any other process.

Typically kthreads are lightweight processes which perform a certain task asynchronously in

background. To see these threads, the ps -ef shell command shows a full list of processes running

in memory, in which the processes between square brackets are kernel threads.

The kernel thread is created with kthread_create(), that returns a task_struct struc-

ture pointer, and then wake_up_process() (linux/sched.h) is used to run the thread function

passed as argument in kthread_create(). But first we want to bind it to a given cpu, and

that is accomplished with kthread_bind() function. These functions regarding kthreads are

defined in linux/kthread.h.

This process of creating and initiating the Kthread is executed when the compiled module is

inserted in the kernel with the insmod bash command. In the source file, a function is indicated to

run at insertion with module_init(), as well as at the removal of it (rmmod command), with

module_exit().
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The kthread function, thread_master_fn(), to be executed in the master CPU, sends a

broadcast IPI to every slave, takes its own Time0
N and registers a new hrtimer structure, initial-

izing it with a given periodic expiry time, and starts its countdown to execute a handler. Note

that this thread function is not the function to be executed periodically, so after this, the job of

the thread is done, but since we need to cancel the local hrtimer created in this function, a

mechanism was implemented to make it wait until the module is removed.
Upon removal of the module, a function is executed and eliminates all the created kthreads,

with kthread_stop(), so the thread function will wait for it, using kthread_should_stop()
call, that returns true only after kthread_stop() is called [45].

(...)

set_current_state(TASK_INTERRUPTIBLE);

while(!kthread_should_stop()) {

schedule();

set_current_state(TASK_INTERRUPTIBLE);

}

set_current_state(TASK_RUNNING);

(...)

This code changes the state of the self thread from "RUNNING" to "TASK_INTERRUPTIBLE",

and then releases the CPU usage with the schedule() function. The kernel will schedule this

thread again later, making the state "RUNNING" again, hence the use of the set_current

_state(TASK_INTERRUPTIBLE) again. When the thread is stopped, the task is set to "RUN-

NING" again, and then returns, after cancelling the local hrtimer with hrtimer_cancel().

After the register of the hrtimer, its local interrupt service routine, is executed every con-

figured period. As pointed out in section 2.2.2.2, if periodic execution of this callback function

is desired, after the work to be done in it, hrtimer_forward() must be used, processing the

returned overrun eventually, and return HRTIMER_RESTART. The application code to be executed

is the synchronization routine itself, described in the previous sections of this chapter.

In this chapter the developed kernel module implementation was presented, focusing in the

communication solutions to exchange timestamps among the CPUs, a mechanism to deal with the

delay asymmetry that affects the synchronization quality and the implementation of the algorithm

itself, based on PTP.
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Evaluation of the synchronization

In this chapter a tool to export the data to user-space in order to plot the results of the algorithm is

presented, as well as an analysis on the results of the experiments carried out.

5.1 Data Export to User-space

In order to evaluate the quality of clock synchronization from a user-space application, we decided

to create a file system interface associated with the developed kernel module.

There is a special structure defined in the kernel’s file system for this purpose called file

_operations, that defines a handler for the open, read, write, and release requests from

a user-space program, the owner module, and other possibilities.

It was decided to associate this struct to a /proc file, a special kind of file input that belongs to

a virtual filesystem, which is sometimes referred to as a process information pseudo-file system. It

doesn’t contain ’real’ files but runtime system information (e.g. system memory, devices mounted,

hardware configuration, etc). For this reason it can be regarded as a control and information centre

for the kernel [46].

To create a /proc file, proc_create() is used, receiving as relevant arguments the name of

the file to be created, the file _operations struct instance and the file system’s permissions

mode. It returns an instance of the proc_dir_entry structure that defines the interface to the

/proc file abstraction.

The idea is to make the kernel module to export data values to a queue associated with the

/proc file, and to make a user-space application to read the virtual file when there are new exported

values. Since old values that were already exported don’t need to be in the queue, an efficient

solution is to create a circular queue, with the corresponding read and write item "pointers". The

user-space application does not write to the file, it only collects new values, so the write request

handler doesn’t need to be defined.

The proc_read() method is executed when the user does a read operation on the /proc/

clock_cpuN. This function dequeues an element from the circular buffer, it validates the size of the

returned data so it is not bigger than the requested size in the read() function, and it places the
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element in the buffer whose pointer is passed in the read() function as well as in proc_read().

To make that available to the read() caller process, the function copy_to_user is used and

finally the length of the data read is returned, like any other read system call.

On the kernel module side, it was decided to make the module to export the offset value when

a correction is applied. So when a sample ratio is in the permitted range, the offset is applied to

the clock and the offset id enqueued in the buffer.

Note that each access to the queue buffer, either a read or a write operation, is assured with a

spinlock, an access synchronization mechanism that makes the waiting process to busy-wait in

a polling loop for the resource that is trying to access.

To manage the data export in the kernel module, there is more than one way. We could have

a single /proc file, and therefore a single queue, the spinlock would manage the concurrency

among multiple exports, and each buffer element would have to be a structure with the cpu ID

attached as well, for the user-space application to be able to know from which clock the values

correspond. Being blocked by the queue spinlock may compromise the temporal execution

of multiple export operations, something that grows as the number of cores grow. This is not a

scalable solution.

Instead, it was decided that a /proc/clock_cpuN file for each core N should be created, as well

as a queue, parallelizing the export task to the proc file system. The problem with this solution is

that the file_operations defines the same proc_read() for every proc file, and the user-

space program can’t pass an argument in the read() system-call. The module should take care

of this, i.e. be able to, inside proc_read(), know which file was requested to be read, and fetch

the corresponding CPU’s clock value to return the to user.

The proc_dir_entry structure has a field to define a pointer to any position, called data.

Instead of proc_create(), we used proc_create_data() that has an additional argument

to define that pointer. For that, an array containing all the IDs of the cores must be created to

maintain the content of the pointers passed to all proc_create_data() calls.
To pass this data to the proc_read(), first it has to pass to the proc_open().

int proc_open(struct inode *inode, struct file *filp);

The struct file, defined in linux/fs.h, is one of the most important data structures used

in device drivers and other virtual files. It represents an open file, and is created by the kernel

on open and is passed to any function that operates on the file, until the last close [47]. This

structure has a pointer to void called private_data, than can hold some information for every

operation on the file.
The inode structure, on the other hand, is used by the kernel internally to represent files.

Therefore, it is different from the file structure that represents an open file descriptor. There can
be numerous file structures representing multiple open descriptors on a single file, but they all
point to a single inode structure. This structure contains a great deal of information about the file,
and the associated proc_dir_entry structure can be accessed from it with the function PDE().
This function is not accessible to use in the model, but on top of this function there is even a better
one, PDE_DATA() that returns the void* data of the proc_dir_entry associated with the
inode passed as argument. In sum, the proc_open() function only does one thing:
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int proc_open(struct inode *inode, struct file *filp){

filp->private_data = PDE_DATA(inode);

return 0;

}

From this point forward, every function that deals with the created /proc files has the informa-
tion of which CPU it refers to. In the proc_read function, the first thing to be done is to get the
respective CPU.

int cpu = *((int *)filp->private_data);

Also, the enqueue and dequeue routines had to be modified to receive as argument the CPU,

to know the correct circular queue to deal with, to access the respective position indexes for read

and write control, as well as to lock and unlock the right spinlock_t.

All the conditions are met to develop the user-space application. It is a very simple multi-

threaded program with a thread for each core. Each thread opens a single /proc file and creates

a .txt file for the respective core and enters an infinite loop reading the /proc/clock_cpuN file

(operation that blocks when there is no data to be read), writing the resulting content to the cor-

responding clock_cpuN.txt file. This solution was created because in a single thread reading the

files sequentially, a situation could happen where a given CPU is blocking this application when

not generating values whereas other CPUs are exporting values that would not be read. Another

solution would be to use the select() to monitor the multiple file descriptors.

In the open system-call to the /proc/clock_cpuN file, the program keeps trying to open it until

it exists. The idea is to run the user-space application before loading the kernel module, in order

to get all the values reported, and have a vision of the offset evolution since the very beginning of

the kernel insertion.

In the end, there will be a .txt file associated with each core, with one exported element per

line, containing a iteration stamp and an offset value, ready to be analysed by an external software

to graphically exhibit the evolution of the offset values calculated, in order to measure the quality

of the chosen clock synchronization algorithm.

The source code of the kernel module implementation can be seen in appendix A.

5.2 Results

The following section presents the results obtained from the produced kernel module and the

implemented clock synchronization algorithm.

To measure the quality of the clock synchronization, the ideal would be to compare the clock

values in the same real-time instant, but it is extremely difficult, if possible, for software to execute

an operation at the same time in every core.

A single CPU cannot read all the clocks as the RDTSC or the ktime_get() operations give

the clock value of the CPU requesting it.

Also, with a high resolution timer instantiated for every core, it is impossible to assure that the

interrupt upon expiration of each hrtimer would be handled at the same time, even if they are
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programmed to expire at the same absolute time value. Besides the fact that the clock event device

manages interrupts per core, there is always some delay in the service of the interrupt, with the

presence of other tasks with more priority that take the CPU’s attention.

Clock values sampled at different points in time cannot be compared to measure the quality

of the clock synchronization. So instead, it was decided that it is the offset values that should

be exported, i.e. the values that the PTP based algorithm calculates as being the offset of the

involved CPU clocks. This is done by the time the correction factor is to be applied, that is when

the communication latency ratio lies between the dynamic quality range.

But to analyse the results of the algorithm, getting the offset values applied to the βN correction

factor is not enough to have an idea on the evolution of the algorithm towards the allegedly null

offset. It is interesting to know the time elapsed since two adjacent corrections. For that, a counter

of iterations was implemented for each core to export in every successful ratio sample achieved,

and consequently associate a time value with the offset sample, as long as the synchronization

task’s period is known.

This iteration value is attached to the offset value to be exported. Since the export is done

as a string, a simple sprintf function was used to join the two values separated by a comma.

This permits an analysis on the time it takes for the algorithm to converge, given the relative small

amount of samples that get to be considered as acceptable to be applied.

With the .txt files, one for each core, containing these two-value entries, one per line, the

results of the two implemented methods can be observed in a plot.

Figure 5.1 shows the results of 5 experiences on the cache coherency method. The plot shows

that after a couple of succesfull iterations, i.e. with the latency ratio within the quality range, the

offset stabilizes in zero, or close to it.

The first successful timestamp exchange is nearly sufficient to synchronize the clocks. The

drift is null, because the same clock signal is fed to all CPUs with a PLL, so the clock difference is

constant. Iteratively, the correction factor is accumulated with subsequent samples, that are always

better as the ratio quality interval shrinks, and since the offset in further iterations is calculated

along with the correction factor of the previous corrections, the resulting offset is the residues

from the inaccuracy obtained in previous samples.

In addition, a growth in the time elapsed between applied correction can also be observed. This

is due to the increasing difficulty in getting a better balance in the communication latency of each

direction. Despite this, the evolution of the process is aleatory, something that can be concluded

by comparing different experiments with respect to the same CPU’s clock.

Note that the initial offset, achieved in the first successful iteration, is not visible in these

plots, because of the magnitude difference. It was noticed that this offset is always negative, i.e.

the slave’s clock is always behind the master’s clock, as expected, because the T SC0 of the master

is always snapshotted before the others.
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Figure 5.1: Cache Coherence synchronization method results

Besides this algorithm, an isolated test was made to characterize the randomness of the ratio

values with the cache coherency method. In a 15 hours of execution, 19,6% of the ratio samples

were between 90 and 110% in CPU 1, whereas in CPU 2 10,3% were in the range. In CPU 3, only

3,7% of the ratio calculations were in the defined interval.

Regarding the method with only the IPIs, a strange phenomenon occurred. It turns out the

latency was approximately the same in every iteration with respect to one direction, but consid-

erably different comparing one direction to the other. This resulted in a very similar latency ratio

amongst iterations, but far from the permitted range to accept the calculated offset, making it im-

possible to apply corrections for the βN of the corresponding clock. If samples with unbalanced

delay values are considered, the calculated offset values would be misleading and would produce

inaccurate correction factors, degrading the clock synchronization.
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Chapter 6

Conclusions and Future Work

In this last chapter, we present our conclusions and suggest improvements

6.1 Work carried out and Assessments

The main goal of this dissertation was to design and implement a clock synchronization algorithm

that would allow to have a consistent notion of time with high resolution across all cores in a

multiprocessor system, characterizing its implications and limitations.

A state of the art review survey is presented on the creation of a time base in a computational

system, on time management mechanisms used by the Linux Kernel in Intel architectures and

finally on synchronization methods in parallel processing systems.

Various hardware mechanisms acting as clock sources were studied and compared, as well

as how the software can interact with them, and how it is currently done in the Linux Kernel in

particular. After a careful study the TSC was chosen as the basic clock source for the kernel.

Being a per-CPU solution, its characteristics and implications were studied, and its presence in

multi-core/multi-processor environments was analysed.

Also, it was expected an implementation of a clock synchronization algorithm. This was made

in kernel-space, which required research on working at this level, the kernel modification and re-

compilation, the navigation through the kernel source files, and how to develop a kernel module

with all the limitations associated with the kernel-space development. The algorithm chosen was

based on PTP, used in distributed systems, but with the necessary adaptations, and two methods

were presented for the communication between cores: Cache coherency and IPI.

Besides the algorithm, several tests were implemented to characterize the latency of the two

communication methods, the delay in obtaining the TSC and the timekeeper of the Kernel with

the ktime_get(), and a statistical study on the relative amount of ratios that actually hits the

quality range defined by the delay asymmetry correction model.

With respect to the algorithm, with the cache coherency communication method, we achieved

good results. However, the measurement of the clock synchronization algorithm was based on the

offset values reported by the timestamp exchange protocol, not the actual clock differences, which
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are extremely difficult, if possible, to accurately measure due to the delays in the measurement.

The uncertainty of the system’s scheduling was a major limitation, because basically a real-time

application was implemented on top of a non real-time operating system.

The IPI communication method was shown unreliable. This was a surprising result, as initially

it was expected to be used. It was not possible to acquire reliable timestamps to apply trustworthy

corrections, resulting in a failed method with no results.

Finally, a method to export values from kernel-space to user-space was implemented, in order

to be able to analyse the results obtained . Personally this was a very interesting and fruitful task, as

it permitted to understand what’s behind the read/write operations on the file-system abstraction.

After a lot of research, implementation, testing, errors and corrections, it is believed that a

good review on the possibility of implementing a clock synchronization algorithm in a multi-

core system was carried out. It is important to point out that, besides the theoretical interest of this

approach, being able to perform an accurate clock synchronization with a nanosecond resolution in

a multi-core/multiprocessor system can be extremely challenging, and an important lesson learned

with this dissertation is that the limit of the software is the hardware: the software cannot do any

better than the best hardware can do.

6.2 Future Work

The major limitation of this dissertation is its portability, as we relied on architecture-dependent

kernel functionalities. Intel architectures, in particular multi-core X86-64, were used. Other ar-

chitectures like used in embedded systems, and current global-purpose architectures like AMD,

remain to be scrutinized, as well as new and future architectures - e.g. many-core architectures.

The latter is an interesting topic to be studied, as this is the tendency in parallel computing, and it

brings the topic of GALS clock distribution, that changes the assumptions made in this work.

Other future work is the study of the time management software mechanisms currently uti-

lized in other operating systems, namely real-time operating systems, that have other scheduling

guarantees, decreasing the limitations felt during this dissertation work.

Regarding the synchronization algorithm, it remains to be done a rate correction, with the αN

correction factor of expression 3.1. The drift was not a concern, but on the other hand this algo-

rithm could bring discontinuities when corrections are applied, and within the use of the clock in

possible applications this could bring fatal errors in time management. The time rate correction

would be the answer to get a monotonically increasing clock value. Also, other clock synchro-

nization algorithms, such as [48], and their shared memory implementation can be evaluated.



Appendix A

Kernel module source code

A.1 Multiprocessor Cache Coherency Method

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/kthread.h>

#include <linux/sched.h>

#include <linux/hrtimer.h>

#include <linux/smp.h>

#include <linux/proc_fs.h>

#include <linux/delay.h>

#include <asm/uaccess.h>

#define CORE_COUNT 4

#define MASTER_CPU 0

#define TSC_KHz 2659983

#define CNTR 0

#define TSC_0 1

#define BETA 2

#define ALPHA 3

#define PERIOD_SYNC_sec 0

#define PERIOD_SYNC_nsec 100000000

#define BUFFER_LEN 100

#define QUEUE_LEN 50

static void increment(int * item);
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static int is_full(int r, int w);

static int enqueue (char *buffer, int cpu);

struct task_struct *thread_master;

long long clock[4][CORE_COUNT];

struct call_single_data csd;

unsigned int slave_id;

unsigned long long stamp1_1, stamp1_2,

stamp2_1, stamp2_2,

stamp4;

signed long long t2_1, t4_3, offset;

long ratio;

long ratio_min[CORE_COUNT], ratio_max[CORE_COUNT];

unsigned long long cntr_iterations[CORE_COUNT];

atomic_t flag1, flag2;

struct queue{

char buffer[BUFFER_LEN];

};

struct queue queue[QUEUE_LEN][CORE_COUNT];

int write_item[CORE_COUNT];

int read_item[CORE_COUNT];

spinlock_t lock[CORE_COUNT];

struct proc_dir_entry *proc_entry[CORE_COUNT];

int cpu_data[CORE_COUNT];
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static __inline__ unsigned long long rdtsc(void){

unsigned hi=0, lo=0;

__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));

return ( (unsigned long long)lo)|( ((unsigned long long)hi)<<32 );

}

unsigned long long read_clock(int cpu){

unsigned long long TSC = rdtsc();

return clock[ALPHA][cpu] * (TSC - clock[TSC_0][cpu]) - clock[BETA][cpu];

}

void slave_sync(void *info){

char buffer[BUFFER_LEN];

preempt_disable();

stamp1_1 = read_clock(slave_id);

atomic_set(&flag1,1);

stamp1_2 = read_clock(slave_id);

while(!atomic_read(&flag2));

stamp4 = read_clock(slave_id);

////Synchronization:

t2_1 = stamp2_1 - ((stamp1_1/2) + (stamp1_2/2));

t4_3 = stamp4 - ((stamp2_1/2) + (stamp2_2/2));

offset = (t4_3 - t2_1)/2;

ratio = abs(100 * ( (double)t4_3/t2_1 ));

cntr_iterations[slave_id]++;
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if( ratio >= ratio_min[slave_id] && ratio <= ratio_max[slave_id] ){

//Correction

clock[BETA][slave_id] += offset;

//Export offset value

sprintf(buffer, "%lld,%lld", cntr_iterations[slave_id], offset);

enqueue(buffer, slave_id);

}

if ( (ratio < 100) && (ratio > ratio_min[slave_id]) ){

ratio_min[slave_id] = ratio;

ratio_max[slave_id] = 100 + (100 - ratio);

}

if ( (ratio > 100) && (ratio < ratio_max[slave_id]) ){

ratio_max[slave_id] = ratio;

ratio_min[slave_id] = 100 - (ratio - 100);

}

if(ratio == 100)

ratio_min[slave_id] = ratio_max[slave_id] = 100;

atomic_set(&flag1,0);

atomic_set(&flag2,0);

if(slave_id == (CORE_COUNT-1) ){

slave_id = 1;

}

else slave_id++;

preempt_enable();

}

enum hrtimer_restart sync(struct hrtimer *timer) {

ktime_t period_sync;

preempt_disable();

//int this_cpu = smp_processor_id();

smp_call_function_single_async(slave_id, &csd);

while(!atomic_read(&flag1));
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stamp2_1 = read_clock(MASTER_CPU);

atomic_set(&flag2,1);

stamp2_2 = read_clock(MASTER_CPU);

period_sync = ktime_set(PERIOD_SYNC_sec, PERIOD_SYNC_nsec);

hrtimer_forward_now(timer, period_sync);

preempt_enable();

return HRTIMER_RESTART;

}

void get_init(void *info){

int this_cpu = smp_processor_id();

clock[TSC_0][this_cpu] = rdtsc();

}

int thread_master_fn(void *data) {

struct hrtimer timer_sync;

ktime_t period_sync;

//Broadcast IPI to set TSC_0 for each cpu

smp_call_function(get_init, NULL, 0);

clock[TSC_0][MASTER_CPU] = rdtsc();

period_sync = ktime_set(PERIOD_SYNC_sec, PERIOD_SYNC_nsec);

hrtimer_init(&timer_sync, CLOCK_MONOTONIC, HRTIMER_MODE_REL);

timer_sync.function = &sync;

hrtimer_start(&timer_sync, period_sync, HRTIMER_MODE_REL);

set_current_state(TASK_INTERRUPTIBLE);

while (!kthread_should_stop()) {

schedule();

set_current_state(TASK_INTERRUPTIBLE);

}
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set_current_state(TASK_RUNNING);

hrtimer_cancel(&timer_sync);

return 0;

}

static void increment(int * item) {

*item = *item + 1;

if(*item >= QUEUE_LEN){

*item = 0;

}

}

static int is_empty(int r, int w) {

//empty if r == w, otherwise r != w

return !(r ^ w); //xor

}

static int is_full(int r, int w) {

int write = w;

increment(&write);

return write == r;

}

static int dequeue (int cpu, char *buffer) {

int ret = 0;

spin_lock(&lock[cpu]);

if( !is_empty(read_item[cpu],write_item[cpu]) ){

strcpy(buffer, queue[read_item[cpu]][cpu].buffer);

increment(&read_item[cpu]);

ret = 1;

}

spin_unlock(&lock[cpu]);

return ret;

}
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static int enqueue (char *buffer, int cpu) {

spin_lock(&lock[cpu]);

if(is_full(read_item[cpu], write_item[cpu]))

increment(&read_item[cpu]);

strcpy(queue[write_item[cpu]][cpu].buffer,buffer);

increment(&write_item[cpu]);

spin_unlock(&lock[cpu]);

return 1;

}

int proc_open(struct inode *inode, struct file *filp) {

//gets void* .data field of respective proc_entry

filp->private_data = PDE_DATA(inode);

return 0;

}

ssize_t proc_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)

{

char buffer[BUFFER_LEN];

int ret = 0, len = 0;

int cpu = *((int *)filp->private_data); //Get cpu from file data

if(!dequeue(cpu, buffer))

return 0;

len = strlen(buffer);

if(len <= 0)

return -EFAULT;

if(count < len)

return -EFAULT;

ret = copy_to_user(buf,buffer,len);

if(ret != 0)

return -EFAULT;

*f_pos += count - len;

return len;

}
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int proc_close(struct inode *inode, struct file *filp) {

//printk(KERN_INFO "[%d] release\n", current->pid);

return 0;

}

static const struct file_operations proc_fops = {

.owner = THIS_MODULE,

.open = proc_open,

.read = proc_read,

.release = proc_close,

};

int mod_init(void) {

char name[12];

int id, j;

slave_id=1;

csd.info = NULL;

csd.func = slave_sync;

atomic_set(&flag1,0);

atomic_set(&flag2,0);

printk(KERN_INFO " INIT \n");

for (id = 0; id < CORE_COUNT; id++) {

for(j=0; j<3; j++)

clock[j][id] = 0;

clock[ALPHA][id] = 1;

}
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for (id = 1; id < CORE_COUNT; id++) {

cntr_iterations[id] = 0;

ratio_min[id] = 80;

ratio_max[id] = 120;

// /proc entrys to export each clock rate

sprintf(name, "clock_cpu%d", id);

cpu_data[id] = id;

proc_entry[id] = proc_create_data(name, 0666,

NULL, &proc_fops,

(void*) &(cpu_data[id]) );

if(proc_entry[id] == NULL)

return -ENOMEM;

spin_lock_init(&lock[id]);

write_item[id] = 0;

read_item[id] = 0;

}

thread_master = kthread_create(thread_master_fn, NULL, "Kthread_sync");

if (thread_master) {

kthread_bind(thread_master, MASTER_CPU); //bind to the cpu Master

wake_up_process(thread_master); //start thread

}

return 0;

}

void mod_end(void) {

int id;

if(!kthread_stop(thread_master))

printk(KERN_INFO "Master Kthread TERMINATED \n");

for (id = 1; id < CORE_COUNT; id++) {

spin_unlock(&lock[id]);

proc_remove(proc_entry[id]);

}

}

MODULE_LICENSE("GPL");

module_init(mod_init);

module_exit(mod_end);
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A.2 Inter-Processor Interrupts

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/kthread.h>

#include <linux/sched.h>

#include <linux/hrtimer.h>

#include <linux/smp.h>

#include <linux/proc_fs.h>

#include <linux/delay.h>

#include <asm/uaccess.h>

#define CORE_COUNT 4

#define MASTER_CPU 0

#define TSC_KHz 2659983

#define CNTR 0

#define TSC_0 1

#define BETA 2

#define ALPHA 3

#define PERIOD_SYNC_sec 0

#define PERIOD_SYNC_nsec 100000000

#define BUFFER_LEN 100

#define QUEUE_LEN 50

static void increment(int * item);

static int is_full(int r, int w);

static int enqueue (char *buffer, int cpu);

struct task_struct *thread_master;

long long clock[4][CORE_COUNT];

struct call_single_data csd1, csd2;

unsigned int slave_id;
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unsigned long long stamp1_1, stamp1_2,

stamp2_1, stamp2_2,

stamp4;

signed long long t2_1, t4_3, offset;

long ratio;

long ratio_min[CORE_COUNT], ratio_max[CORE_COUNT];

unsigned long long cntr_iterations[CORE_COUNT];

struct queue{

char buffer[BUFFER_LEN];

};

struct queue queue[QUEUE_LEN][CORE_COUNT];

int write_item[CORE_COUNT];

int read_item[CORE_COUNT];

spinlock_t lock[CORE_COUNT];

struct proc_dir_entry *proc_entry[CORE_COUNT];

int cpu_data[CORE_COUNT];

static __inline__ unsigned long long rdtsc(void){

unsigned hi=0, lo=0;

__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));

return ( (unsigned long long)lo)|( ((unsigned long long)hi)<<32 );

}

unsigned long long read_clock(int cpu){

unsigned long long TSC = rdtsc();

return clock[ALPHA][cpu] * (TSC - clock[TSC_0][cpu]) - clock[BETA][cpu];

}
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void sync2(void *info){ //IPI handler 2 -> in master

char buffer[BUFFER_LEN];

stamp4 = read_clock(MASTER_CPU);

////Synchronization:

t2_1 = stamp2_1 - ((stamp1_1/2) + (stamp1_2/2));

t4_3 = stamp4 - ((stamp2_1/2) + (stamp2_2/2));

offset = (t2_1 - t4_3)/2;

ratio = abs(100 * ( (double)t4_3/t2_1 ));

cntr_iterations[slave_id]++;

if( ratio >= ratio_min[slave_id] && ratio <= ratio_max[slave_id] ){

//Correction

clock[BETA][slave_id] += offset;

//Export offset value

sprintf(buffer, "%lld,%lld", cntr_iterations[slave_id], offset);

enqueue(buffer, slave_id);

}

if ( (ratio < 100) && (ratio > ratio_min[slave_id]) )

ratio_min[slave_id] = ratio;

if ( (ratio > 100) && (ratio < ratio_max[slave_id]) )

ratio_max[slave_id] = ratio;

if(ratio == 100)

ratio_min[slave_id] = ratio_max[slave_id] = 100;

if(slave_id == (CORE_COUNT-1) ){

slave_id = 1;

}

else slave_id++;

}
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void sync1(void *info){ //IPI handler 1 -> in slave

stamp2_1 = read_clock(slave_id);

smp_call_function_single_async(0, &csd2);

stamp2_2 = read_clock(slave_id);

}

enum hrtimer_restart sync(struct hrtimer *timer) {

ktime_t period_sync;

//int this_cpu = smp_processor_id();

stamp1_1 = read_clock(MASTER_CPU);

smp_call_function_single_async(slave_id, &csd1);

stamp1_2 = read_clock(MASTER_CPU);

period_sync = ktime_set(PERIOD_SYNC_sec, PERIOD_SYNC_nsec);

hrtimer_forward_now(timer, period_sync);

return HRTIMER_RESTART;

}

void get_init(void *info){

int this_cpu = smp_processor_id();

clock[TSC_0][this_cpu] = rdtsc();

}

int thread_master_fn(void *data) {

struct hrtimer timer_sync;

ktime_t period_sync;

smp_call_function(get_init, NULL, 0);

clock[TSC_0][MASTER_CPU] = rdtsc();



A.2 Inter-Processor Interrupts 75

period_sync = ktime_set(PERIOD_SYNC_sec, PERIOD_SYNC_nsec);

hrtimer_init(&timer_sync, CLOCK_MONOTONIC, HRTIMER_MODE_REL);

timer_sync.function = &sync;

hrtimer_start(&timer_sync, period_sync, HRTIMER_MODE_REL);

set_current_state(TASK_INTERRUPTIBLE);

while (!kthread_should_stop()) {

schedule();

set_current_state(TASK_INTERRUPTIBLE);

}

set_current_state(TASK_RUNNING);

hrtimer_cancel(&timer_sync);

return 0;

}

static void increment(int * item) {

*item = *item + 1;

if(*item >= QUEUE_LEN){

*item = 0;

}

}

static int is_empty(int r, int w) {

//empty if r == w, otherwise r != w

return !(r ^ w); //xor

}

static int is_full(int r, int w) {

int write = w;

increment(&write);

return write == r;

}
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static int dequeue (int cpu, char *buffer) {

int ret = 0;

spin_lock(&lock[cpu]);

if( !is_empty(read_item[cpu],write_item[cpu]) ){

strcpy(buffer, queue[read_item[cpu]][cpu].buffer);

increment(&read_item[cpu]);

ret = 1;

}

spin_unlock(&lock[cpu]);

return ret;

}

static int enqueue (char *buffer, int cpu) {

spin_lock(&lock[cpu]);

if(is_full(read_item[cpu], write_item[cpu]))

increment(&read_item[cpu]);

strcpy(queue[write_item[cpu]][cpu].buffer,buffer);

increment(&write_item[cpu]);

spin_unlock(&lock[cpu]);

return 1;

}

int proc_open(struct inode *inode, struct file *filp) {

//gets void* .data field of respective proc_entry

filp->private_data = PDE_DATA(inode);

return 0;

}
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ssize_t proc_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)

{

char buffer[BUFFER_LEN];

int ret = 0, len = 0;

int cpu = *((int *)filp->private_data); //Get cpu from file data

if(!dequeue(cpu, buffer))

return 0;

len = strlen(buffer);

if(len <= 0)

return -EFAULT;

if(count < len)

return -EFAULT;

ret = copy_to_user(buf,buffer,len);

if(ret != 0)

return -EFAULT;

*f_pos += count - len;

return len;

}

int proc_close(struct inode *inode, struct file *filp) {

//printk(KERN_INFO "[%d] release\n", current->pid);

return 0;

}

static const struct file_operations proc_fops = {

.owner = THIS_MODULE,

.open = proc_open,

.read = proc_read,

.release = proc_close,

};
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int mod_init(void) {

char name[12];

int id, j;

slave_id=1;

csd1.info = NULL;

csd1.func = sync1;

csd2.info = NULL;

csd2.func = sync2;

printk(KERN_INFO " INIT \n");

for (id = 0; id < CORE_COUNT; id++) {

for(j=0; j<3; j++)

clock[j][id] = 0;

clock[ALPHA][id] = 1;

}

for (id = 1; id < CORE_COUNT; id++) {

ratio_min[id] = 90;

ratio_max[id] = 110;

// /proc entrys to export each clock rate

sprintf(name, "clock_cpu%d", id);

cpu_data[id] = id;

proc_entry[id] = proc_create_data(name, 0666,

NULL, &proc_fops,

(void*) &(cpu_data[id]) );

if(proc_entry[id] == NULL)

return -ENOMEM;

spin_lock_init(&lock[id]);

write_item[id] = 0;

read_item[id] = 0;

}

thread_master = kthread_create(thread_master_fn, NULL, "Kthread_sync");

if (thread_master) {

kthread_bind(thread_master, MASTER_CPU); //bind to the cpu Master

wake_up_process(thread_master); //start thread

}

return 0;

}
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void mod_end(void){

int id;

if(!kthread_stop(thread_master))

printk(KERN_INFO "Master Kthread TERMINATED \n");

for (id = 1; id < CORE_COUNT; id++) {

spin_unlock(&lock[id]);

proc_remove(proc_entry[id]);

}

}

MODULE_LICENSE("GPL");

module_init(mod_init);

module_exit(mod_end);
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