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Abstract

Concurrent C0 is an imperative programming language in the C family with session-
typed message-passing concurrency. The previously proposed semantics implements
asynchronous (non-blocking) output; here, we extend it with non-blocking input. Our
framework relies on one key idea: to postpone message reception as much as possible
by interpreting receive commands as a request for a message. We also extend the
semantics to include a cost, named work and span, on each operation. We implemented
our ideas as a translation from a blocking intermediate language to a non-blocking
language. Using the cost semantics and assuming correctness, we prove some important
properties of the non-blocking model:

• The span in the non-blocking semantics is less or equal than the span in the
blocking semantics.

• The work is unchanged across both semantics.

Finally, we evaluate our techniques with several benchmark programs and show the
results obtained.

Keywords: Session Types, Concurrency, Asynchronous Communication, Message
Passing, Work, Span.
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Resumo

Concurrent C0 é uma linguagem de programação imperativa na família do C, com
concurrência através da passagem de mensagens, usando session types como sistema de
tipos. A semântica previamente proposta implementa output assíncrono não-bloqueante;
neste trabalho, extendemos a semântica com input não-bloqueante. A nossa framework
assenta numa ideia chave: adiar a recepção da mensagem o mais possível, interpretando
uma acção de receber como um pedido de uma mensagem. Também extendemos
a semântica para atribuir um custo, a que chamamos work e profundidade, a cada
operação. Implementamos as nossas ideias como uma tradução de uma linguagem
intermédia bloqueante para uma linguagem não-bloqueante. Usando a semântica
de custo e assumindo correção, demonstramos algumas propriedades importantes,
provenientes do modelo não-bloqueante:

• A profundidade calculada usando a semântica não-bloqueante é sempre menor
ou igual à profundidade calculada usando a semântica bloqueante.

• O work é igual em ambas as semânticas.

Finalmente, avaliamos as nossas técnicas com um conjunto de programas referência e
mostramos os resultados obtidos.

Palavras-chave: Session Types, Concurrência, Comunicação Assíncrona, Passagem
de Mensagens, Work, Profundidade.
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Chapter 1

Introduction

This dissertation presents a non-blocking model for receiving messages, implemented
as an extension to an existing imperative programming language, which improves the
performance of the previous model of reception in some examples. Our model is based
on the premise that we want to halt execution to wait for a message only when the
data contained in that message is necessary to continue computation.

Our work is based on session types [16, 17], a typing system for π-calculus [24, 20],
that defines communication between processes over communication channels.

In recent work, session types have been linked with linear logic via a Curry-Howard
interpretation of linear propositions as types, proofs as processes, and cut reduction as
communication. Variations apply for both intuitionistic [5, 6] and classical [29] linear
logic.

The intuitionistic variant culminated in SILL, a functional language with session-
typed concurrency [27]. The adaptation of SILL to imperative programming gave
rise to Concurrent C0 [30], a session-based extension to an imperative language.
This dissertation describes our modifications to Concurrent C0 to accomplish our
non-blocking model.

Concurrent C0’s model for message reception, which we refer to as blocking, relies on
fetching messages from a queue, a usual construct in asynchronous communication
using linear channels [14, 22]. Upon performing a receiving action, if the message is
not in the queue, the execution of the program blocks, until it can retrieve the message

1



2 CHAPTER 1. INTRODUCTION

from the queue. On the other hand, our non-blocking model, by interpreting receives
as requests, will only try to fetch the message when a synchronization is undergoing,
which is only performed when the execution requires that message to proceed.

As an illustrative example of the difference between these two models, consider the
following simple example: x = receive(c); P; y = x+1. We are trying to receive
a value, x, from channel c, then execute a sequence of instructions, P, which do not
use the variable x, and, finally, execute an operation using that variable. Under the
blocking semantics, we need to stop execution until the value is ready, in spite of
not needing it immediately. Under the non-blocking model, this value would only be
synchronized before the instruction y = x+1.

We also present a compilation function from the original version of Concurrent C0 to our
non-blocking one and introduce a cost semantics that computes the span and work [9],
providing an abstract analytical measure of latent parallelism in the computation.
Assuming correctness, we then prove that the span always improves or remains the
same under the non-blocking semantics. We also prove that work, on the other hand,
is constant in both semantics.

In related work, Guenot [15] has given a pure and elegant computational interpretation
of classical linear logic with non-blocking input based on the solos calculus [19]. The
primary notion of a process as a thread of control that pervades our work is no longer
visible there and it does not immediately suggest an implementation strategy. Our
work generalizes the functional notions of futures and promises [2, 13] by supporting
more complex bidirectional communication [26].

The main results presented in this dissertation were previously reported in [25].

1.1 Dissertation Outline

This dissertation is structured as follows:

Chapter 2 - Background - presents the fundamental concepts that are the basis of
this thesis.
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Chapter 3 - Imperative Programming with Session Types - introduces the
main concepts to programming with Concurrent C0, including compilation and target
language, and proposes a cost semantics for the language.

Chapter 4 - Non-Blocking Receive - describes an extension to CC0, by changing
how input is handled by each process. Introduces an intermediate language, new
operational and cost semantics, a translation from CC0’s target language to this
intermediate language and some theoretical results.

Chapter 5 - Implementation and Experimental Evaluation - details how the
concepts from Chapters 3 and 4 are implemented and presents some experimental
comparison between the two receiving models.

Chapter 6 - Conclusion - concludes the dissertation and presents some hints for
further work.





Chapter 2

Background

In this chapter, we present the theoretical background of this thesis. We give a brief
overview of session types and link them with linear logic through a Curry-Howard
correspondence. We also describe the operational semantics of the programming
languages present in this thesis. Finally, we discuss some performance metrics for
parallel algorithms.

2.1 Session Types

Message-passing concurrency is a model for concurrency where the concurrent entities
communicate through message exchange, which may occur synchronously or asyn-
chronously. Process calculi [7, 24] is the most prominent technique to reason about
this model. It is a family of formal languages that use the abstract concept of channels
to model communication between concurrent systems, named processes. The arguably
standard process calculus is π-calculus [24, 20], whose main feature are channels that
can be generated dynamically and passed in communication. Many type systems were
developed over the years for this language, but session types are possibly the most
important for dealing with one-to-one communication.

A session describes the collective conduct of the components of a concurrent system.
Binary sessions focus on the interactions between two of these components, with an
inherent concept of duality: when a component sends, the other receives. A session

5



6 CHAPTER 2. BACKGROUND

A,B,C ::= 1 terminate
| A⊗B send channel of type A and continue as B
| A⊕B provide either A or B
| τ ∧B send value of type τ and continue as B
| A( B receive channel of type A and continue as B
| ANB offer choice between A or B
| τ ⊃ B receive value of type τ and continue as B
| !A provide replicable session of type A

Figure 2.1: Session Types syntax

type [16, 17] defines the communication between processes using this notion. Session
types enforce conformance to a communication protocol, organizing a session to occur
over a communication channel.

Session types commonly capture input and output, choice and selection, replication and
recursive behaviour. They also provide session delegation, assigning a session to another
process through communication, and additional guarantees of system behaviour, such
as deadlock freedom and liveness [12]. Figure 2.1 presents a possible syntax, matching
the syntax of propositions in intuitionistic linear logic, to express some different session
types.

Throughout this thesis, we use as a recurring example queues and binary search trees,
to illustrate the discussed concepts. The latter also uses another data structure, linked
lists, and both focus solely on integers. For now, we show only the session type
definition of these two data structures (Figure 2.2). Note that these types are recursive,
although we did not explicitly mention recursive session types in Figure 2.1.

queue = N{enq : int ⊃ queue, deq : ⊕{none : 1, some : int ∧ queue}}
list = ⊕{cons : int ∧ list, nil : 1}
tree = N{insert : key ⊃ tree,

find : key ⊃ bool ∧ tree,

reduce : int ⊃ A( int ∧ 1,

tolist : list⊗ 1}

Figure 2.2: Queue, list and tree interface definition.
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2.2 Curry-Howard Isomorphism

The relationship between typed λ-calculus and intuitionistic logic or, more generally,
type systems for models of computation and formal proof calculi, is commonly known as
the Curry-Howard Isomorphism. Haskell Curry [10] connected Hilbert-style deduction
systems for implication with the types of the combinators of combinatory logic. William
Howard [18] noted that the proof system referred to as natural deduction in its
intuitionistic version can be interpreted as a typed branch of λ-calculus.

In recent work [5, 6], the Curry-Howard isomorphism has been extended to link typed
π-calculus, through session types, with intuitionistic linear logic. It uses linear logic
propositions as session types, proofs as concurrent programs, and cut elimination as
computation. A variant also applies for classical [29] linear logic.

This correspondence uses linear channels with exactly two endpoints, dubbed provider
and client. We omit the discussion of shared channels which are necessary to model
replication (!A in linear logic and !P in π-calculus). A process may be the client of
various channels, but will only provide along a sole channel. As a consequence of this,
and bearing in mind that a channel is provided by a single process, a channel may be
seen as a unique process identifier. A basic typing judgement is of the following form:

$c1:A1, . . . , $cn:An ` P :: ($c : A)

The session types A and Ai dictate the communication behaviour along channels $c1

and $ci. P is a process providing along $c and using $c1, . . . , $cn.

Under the Curry-Howard correspondence, we can assign process expressions to the
session types mentioned in Figure 2.1, using syntactic constructs for processes, instead
of π-calculus, to emphasize the interpretation of proofs as programs. Figure 2.3 shows
this relationship, with the addition of cut and id expressions, used to spawn a new
process and forward between a client and the process that uses it.

This extension to the Curry-Howard isomorphism was concretized in SILL [27], a
functional programming language extended with session-typed concurrency. This
language includes recursive types and uses a contextual monad to create higher-

1We refer to a channel variable with a $ before, such as $c, to differentiate from a value, x.
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P,Q,R ::= $c← P$c ; Q$c cut (spawn)
| $c← $d id (forward)
| close $c | wait $c ; Q 1

| send $c ($d← P$d) ; Q | $e← recv $c ; R$e A⊗B,A( B

| send $c $d ; Q derived form A⊗B, A( B

| send $c M ; P | x← recv $c ; Qx A ∧B,A ⊃ B

| $c.lab ; P | case $c {labi → Qi}i N{labi : Ai}i,⊕{labi : Ai}i

Figure 2.3: Linear process expressions

order processes. Using a similar theoretical basis as SILL, Concurrent Linear Object-
Orientation [3] is an object-oriented language that types objects and channels with
session types and Concurrent C0 (CC0) [30] is a type-safe C-like language with contracts,
implementing session-typed communication over channels.

Inspired by linear functional languages using session types proposed by Gay and
Vasconcelos [14], Wadler’s GV [28] is a session-typed functional language, using simply
typed, linear λ-calculus extended with session-typed communication. It differs from
SILL in the point that the language itself is linear, whereas SILL is based on a
traditional λ-calculus augmented with a linear contextual monad.

2.2.1 Asynchronous Communication

Introduced by DeYoung et al. [11], and later refined by Pfenning and Griffith [22], the
previous concepts were extended to include asynchronous communication, linking it
with polarized logic.

Asynchronous communication requires that each linear channel has a message queue [14],
associating it with the proof system via continuation channels [11]. Session typing
guarantees that there is no send/receive conflict: when a process executes a send
followed by a receive, it will not receive its own message. This requires that the
message queue controls its direction, which can be achieved by setting a flag when
enqueueing a message. We write q when the direction does not matter,

←−
q when the

direction is from a provider to its client and
−→
q when going from a client to the provider.
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The direction of communication is shaped by the polarity of each connective. Simply
put, from the provider’s perspective, a positive type is a sending action and a negative
type coincides with a receiving action. As such, we can split the propositions in negative
or positive, with a shift operator linking them. Figure 2.4 depicts the syntax for this
polarized logic.

Positive propositions A+, B+ ::= 1 terminate
| A+ ⊗B+ send channel of type A+

| A+ ⊕B+ provide either A+ or B+

| τ ∧B+ send value of type τ
| ↓A− send shift, then receive

Negative propositions A−, B− ::= A+ ( B− receive channel of type A+

| A− NB− offer choice between A− or B−

| τ ⊃ B− receive value of type τ
| ↑A+ receive shift, then send

Figure 2.4: Polarized Session Types

2.3 Substructural Operational Semantics

This documents presents operational semantics in the form of a Substructural Oper-
ational Semantics (SSOS) [23], based on linear logic programming. It consists of a
compositional specification of the operational semantics by defining a predicate on the
expressions of the language, using rules analogous to those of multiset rewriting [8].
These rules use linear implication (() to express a transition, where the pattern
on the left represents a state that is consumed and converted to the one on the
right. The patterns may be composed by multiple predicates, clustered together by
the multiplicative conjunction (⊗). Existential quantification is used to bound fresh
variables.

As an example, let us consider the SSOS for the untyped λ-calculus. Expressions are
represented by the syntax x, λx.e x and app e1 e2. We also have frames, which are
either app1 e2, that contain the argument part of the application while the function
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part is being evaluated, app2 v1, which contains the evaluated function and waits
for the argument to be evaluated, or call, a frame without arguments that is not
operationally meaningful, but used to mark a point where a function returns. Each
state is represented by a context carrying linear propositions: comp(f), where f is a
frame, followed by either a eval(e), representing an expression to be evaluated, return(v),
which represents a value being returned, and bind X Y , that can either be used to
associate the parameter X with argument Y or to look up the associated value of
a parameter in the course of an evaluation. These linear propositions can be made
persistent by prefixing the proposition with a !. Figure 2.5 presents the rules for this
case. More comprehensive examples are presented by Pfenning and Simmons [23], in
their original formulation.

eval(X D) ⊗ !bind X V ( {return(V D)}
eval((λx.e x) D) ( {return((λx.e x) D)}
eval((app e1 e2) D) ( {∃d1.comp((app1 e2) D d1)⊗ eval(e1 d1)}
comp((app1 e2) D D1)⊗ return(v1 D1) ( {∃d2.comp((app2 v1) D d2)⊗ eval(e2 d2)}
comp((app2 (λx.e x)) D D2 ⊗ return(v2 D2) ( {∃y.∃d0. comp(call D d0) ⊗

eval((e y) d0) ⊗ !bind y v2}
comp(call D D0)⊗ return(V0 D0) ( {return(V0 D)}

Figure 2.5: SSOS rules for the untyped λ-calculus.

We use Ω→ Ω′ to refer to a single rewrite, from state Ω to state Ω′. We write →n to
denote a sequence of n steps and →+ as the transitive closure of →.

2.4 Performance Measures in Parallel Algorithms

Throughout this document we analyze the time complexity of implemented algorithms
using the work-span model [9]. As the name suggests, this model uses the concepts
of work and span, also dubbed depth [4] in some literature, to characterize the time
complexity of an algorithm as a function of the number of processes used to run it.
In simple terms, work measures the time used to run the computation on a single
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processor, whereas span is defined as the time required to run the program on a
theoretical machine with an unbounded number of processors.

In a more detailed explanation of this model, we can view a multithreaded computation
as a directed acyclic graph, called a computational dag. The vertices of the dag represent
instructions and the edges encode dependencies between instructions. Chains of one or
more instructions without parallel control are grouped in strands. Parallel control is
represented in the structure of the graph, for example, a strand with multiple successors
indicates that new threads have been spawned.

Taking this definition of computation, we can describe work as the sum of the time
taken by each strand and span as the longest time to execute the strands along any
path in the graph. In other words, span can be seen as the critical path in graph.

During the experimental evaluation of the algorithms, we also use the speedup measure.
Although usually defined as the ratio between the running time using 1 processor and
P processors, we use it as a comparison between the two implemented models, blocking
and non-blocking.





Chapter 3

Imperative Programming with

Sessions Types

3.1 Introduction

This chapter introduces the main concepts of programming with Concurrent C0 (CC0).
For a more in-depth description of CC0, we refer the reader to the original paper [30].

C0 [21] is an imperative programming language, closely resembling C, with the goal
of having fully specified semantics that avoid C’s undefined behaviour [1]. It is used
in Carnegie Mellon University to learn the basics of imperative algorithms and data
structures and compiler design. Its main features are: dynamically checked contracts
(for example, @requires, @ensures, @asserts and @loop_invariant); complete memory
distinction by separating pointers from arrays; and a garbage collector, which eliminates
the need to free memory. C0 is compiled to C, generating human-readable code that is
sent to a C compiler.

CC0 is a session-typed concurrent extension of C0. Its typing system is derived from
the Curry-Howard interpretation of linear propositions as types, proofs as processes,
and cut reduction as computation, which we mentioned in Section 2.2.

13
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3.2 Concurrent C0

A program in CC0 is a collection of processes exchanging messages through channels.
These processes are spawned by functions that return channels. The process that calls
these spawning functions is called the client. The new process at the other end of
the channel is called the provider, who is said to offer a session over the channel. A
process is the provider of only one channel, but may be the client of multiple ones.

CC0’s channels have a linear semantics: there is exactly one reference to the channel
besides the provider’s. This captures the behavior described in the previous paragraph:
the process we called the client has the unique reference to the provided channel.

Messages are sent asynchronously: processes advance in parallel without waiting for
acknowledgement of the sent message being received. Programmers must specify the
protocol of message exchange using session types and the linear type system enforces
concordance with this protocol [22].

3.2.1 Type Definition

Session type declaration in CC0 is done using the choice keyword, in a syntax inspired
by structs in C. The actual session is enclosed by <...> and we distinguish input from
output by using a ? for input and a ! for output. Internal and external choices are
also discriminated by prefixing the keyword choice with ? for external choice and ! for
internal. An empty < > indicates the end of a session.

Programs 3.1 and 3.2 illustrate how session types are defined in CC0.

In the example of the queue, the choice named queue is a choice between labels Enq,
Deq, IsEmpty and Dealloc. It is only used after an output prefix (?), which means it
always represents an external choice, made by the client and sent to the provider of
the queue interface. In contrast, the choice queue_elem is an internal choice (always
prefixed by !), which means the provider has to send label None (no element in the
queue) or Some (some element in the queue).

The example of the binary search tree is similar, the choice tree is an external choice,
expecting to receive the labels Insert, Find, Reduce and ToList. Receiving one of
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choice queue {
<?int ; ?choice queue> Enq ;
<!choice queue_elem> Deq ;
<! bool ; ?choice queue> IsEmpty ;
< > Dea l loc ;

} ;

choice queue_elem {
<?choice queue> None ;
<! int ; ?choice queue> Some ;

} ;
typedef <?choice queue> queue ;

Code 3.1: Protocol definition of a queue.

choice l i s t {
<! int ; ! choice l i s t > Cons ;
< > Ni l ;

} ;
typedef <!choice l i s t > l i s t ;

typedef int key ;
typedef int reduce_fn ( int x , key k , int y ) ;
choice t r e e {

<?key ; ?choice t ree> In s e r t ;
<?key ; ! bool ; ?choice t ree> Find ;
<?int ; ? reduce_fn ∗ ; ! int ; > Reduce ;
<! l i s t ; > ToList ;

} ;
typedef <?choice t ree> t r e e ;

Code 3.2: Protocol definition of a binary search tree.

these labels induces a sequence of actions encoded by the session: an Insert is followed
by receiving a key, which is simply an integer, and continuing as a tree; a Find is
trailed by receiving a key, sending a boolean value and continuing as a tree; a Reduce is
pursued by receiving an integer and a pointer, sending another integer and terminating;
finally, receiving the label ToList leads to sending a list and terminating. On the
other hand, the choice list is an internal choice, either sending the label Cons, if there
is an element in the list, or Nil, otherwise.

The protocols exchange messages in two directions, from the client process to the
provider process and vice-versa, resulting in each direction being conveyed independently
through an external (queue and tree) and internal choice (queue_element and list).



16 CHAPTER 3. IMPERATIVE PROGRAMMING WITH SESSIONS TYPES

The session type is given from the provider’s perspective, the client adhere’s to the dual
of the type: if the provider executes a receiving action, the client executes a sending
one. The compiler determines statically if the operations indicated in the protocol are
fulfilled in the correct order with the fitting type akin to the channel’s session type.

3.2.2 Protocol Implementation

CC0 offers two distinct categories of functions: ones that return a basic type (int , etc.)
and others that return a channel typed by a session type. The latter implements the
interfaces, which could be any session type, as explained in the previous section.
Programs 3.3 and A.1 show the functions that implement the types defined in
Programs 3.1 and 3.2. To improve readability, we only present the code for binary
search trees in Appendix A.

The function empty implements the behaviour of the process that represents the end of
the queue, which does not hold any element. The instruction switch ($q) implements
the behaviour of an external choice, making $q wait on the reception of a label. Each
label has its own case, implementing the behaviour expected of an empty queue:

• When receiving the label Enq, which adds a new element to the queue, a new
empty queue process is spawned, through the instruction queue $e = empty().
The new element to the queue is received using the instruction int y = recv($q).
The former empty queue now continues as a process holding one element, through
the instruction $q = elem(y, $e).

• If a dequeue is requested (label Deq), it sends the label None (using the instruction
$q.None), stating that the queue is empty.

• When queried if it is empty (label IsEmpty), the process returns the value true

(through the instruction send($q, true)).

• Upon receiving the label Dealloc, which requests the destruction of the queue,
it simply closes the channel (close($q)).

The function that implements a process holding an element, elem(x , $r), has similar
behaviour so we do not go into so much detail. We just point out how dequeueing
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queue $q elem ( int x , queue $r ) {
switch ( $q ) {

case Enq :
int y = recv ( $q ) ;
$r . Enq ; send ( $r , y ) ;
$q = elem (x , $r ) ;

case Deq :
$q . Some ; send ( $q , x ) ;
$q = $r ; // forward r e que s t

case IsEmpty :
send ( $q , f a l s e ) ;
$q = elem (x , $r ) ;

case Deal loc :
$r . Dea l loc ; wait ( $r ) ;
c l o s e ( $q ) ;

}
}

queue $q empty ( ) {
switch ( $q ) {

case Enq :
int y = recv ( $q ) ;
queue $e = empty ( ) ;
$q = elem (y , $e ) ;

case Deq :
$q . None ;
$q = empty ( ) ;

case IsEmpty :
send ( $q , t rue ) ;
$q = empty ( ) ;

case Deal loc :
c l o s e ( $q ) ;

}
}

Code 3.3: Implementation of a queue with constant time enqueue and dequeue operations from the
client’s perspective.
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an element works in this implementation: after receiving the label Deq, the process
sends the label Some, stating that there is at least one element in the queue, followed
by that element (instruction send($q, x)). It then executes a forward ($q = $r),
terminating the process.

Linearity ensures that a parent process cannot terminate while it has running children,
all references must be completely consumed. CC0 introduces the operation called
forwarding [30], which allows a process to terminate before its children. In cases
where a given node has exactly one child and it is offering a channel with the same
session type as its child, if this node has no more work to do, it can be terminated
and contracted in a way that the parent node and the child node can communicate
between themselves without the node in the middle.

CC0 has the usual features of an imperative programming language, such as conditionals,
loops, assignments and functions, extended by communication primitives. Figure 3.1
presents the core communication syntax.

P,Q ::= $c = spawn(P ) ; Q spawn

| $c = $d forward

| close($c) send end and terminate
| wait($c) ; Q receive end

| send($c, e) ; Q send data (including channels)
| x = recv($c) ; Q receive data (including channels)
| $c.lab ; Q send label
| switch($c) {labi → Pi}i receive label

Figure 3.1: Communication syntax of CC0

3.2.3 Target Language

CC0 is compiled to a target language and linked with a runtime system, both written
in C, responsible for implementing communication. The compiler checks if messages
are being exchanged in the correct order, in agreement with the session type, and
enforces linear use of channels.
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Recall from Section 2.2.1, the session typing from CC0 uses polarised logic to maintain
the direction of the communication. Positive polarity indicates that information is
streaming from the provider and negative to the provider. A shift is used to swap
polarities. The runtime system explicitly tracks the polarity of each channel and the
compiler infers and inserts the minimal amount of shifts into the target language. This
inference allows programmers to use CC0 without knowing about shifts at all.

The target language adds two new instructions to the communication syntax of
CC0, used to change the direction of communication. Figure 3.2 delineates the new
instructions.

P,Q ::= . . .

| send($c, shift) ; Q send a shift
| shift = recv($c) ; Q receive a shift

Figure 3.2: Additional communication syntax for CC0’s target language

3.3 Operational Semantics

The operational semantics for CC0 is expressed using a Substructural Operational
Semantics (SSOS), first presented by Pfenning and Griffith [22] for an asynchronous
version of SILL [27], a functional language. We here repurpose it for an imperative
language, which requires us to extend it with variable state, using memory cells, local
to each process. Refer to Section 2.2.1 for a very brief explanation of the theory behind
the queue concept in the configuration, as well as the original sources for this theory.

Configurations (Figure 3.3) describe executing processes, message queues connecting
processes (one for each channel), and local storage cells. In this definition, proc($c, P )

Configurations Ω ::= ·
| queue($c, q, $d),Ω

| proc($c, P ),Ω

| cell($c, x, v),Ω

Figure 3.3: Configuration definition, using multiset notation.
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is the state of a process executing program P , offering along channel $c. The message
queue is represented by queue($c, q, $d), which connects processes offering along $d

with a client using $c. The memory cell cell($c, x, v) holds the state of variable x with
value v, in the process offering along channel $c. The semantic rules we present in
Table 3.1 are only for communication, thus will not use this memory cell predicate,
only create it. The memory cell is used when evaluating an expression, details of which
we omit here.

Queues always have a defined direction, depending whether they are filled from the
provider or the client, as can be seen in Figure 3.4. They need to be initiated with the
correct direction and the operational semantics maintains its correctness afterwards.
We write m as a generalization for a message like a data value, label or channel.

Queue filled by provider
←−
q ::=

←−
· |
←−−
m · q |

←−
end |

←−−
shift

Queue filled by client
−→
q ::=

−−→
shift |

−−→
q ·m |

−→
·

Figure 3.4: Queue definition, filled by provider or client.

Table 3.1 shows the operational semantics of CC0, adapted from [22].

data_s : queue($c,
←−
q , $d)⊗ proc($d, send($d, v) ; P )

( {queue($c,
←−−
q · v, $d)⊗ proc($d, P )}

data_r : proc($e, x = recv($c) ; Q)⊗ queue($c,
←−−
v · q, $d)

( {∃x. proc($e,Q)⊗ queue($c,
←−
q , $d)⊗ cell($e, x, v)}

shift_s : queue($c,
←−
q , $d)⊗ proc($d, send($d, shift) ; P )

( {queue($c,
←−−−−
q · shift, $d)⊗ proc($d, P )}

shift_r : proc($e, shift = recv($c) ; Q)⊗ queue($c,
←−−−−
shift · q, $d)

( {proc($e,Q)⊗ queue($c,
←−
q , $d)}

label_s : queue($c,
←−
q , $d)⊗ proc($d, $d.lab ; P )

( {queue($c,
←−−−
q · lab, $d)⊗ proc($d, P )}

label_r : proc($e, switch($c){labi → Pi}, s, w)⊗ queue($c,
←−−−−
labj · q, $d)

( {proc($e, Pj)⊗ queue($c,
←−
q , $d)}

close : queue($c,
←−
q , $d)⊗ proc($d, close($d))

( {queue($c,
←−−−−
q · end, _)}

wait : proc($e,wait($c) ; Q)⊗ queue($c,
←−
end, _)

( {proc($e,Q)}
fwd_s : queue($c,

←−
q , $d)⊗ proc($d, $d = $e)

( {queue($c,
←−−−−
q · fwd, $e)}

fwd_r : proc($d, P ($c))⊗ queue($c,
←−
fwd, $e)

( {proc($d, P ($e))}
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spawn : proc($c, $d = P (args) ; Q)

( {∃$d. proc($c,Q)⊗ queue($c,
←−
· , $d)⊗ proc($d, P (args))}

Table 3.1: Operational semantics of Concurrent C0.

We can group rules under several categories. The sending ones, data_s, shift_s, label_s,
append a message, which can be some data, a label or a shift, to the end of the message
queue. We show the rules of a process sending through the channel that it is providing,
so we require the queue to be pointing to the client.

Two other rules also append a message to the queue, they are close and fwd_s. These
two are terminating rules, when a process executes one of them, it will be concluded.
Functionally, they are very similar, both decrease the number of processes in the
configuration, but the close rule changes the channel on the queue predicate to the
empty channel _, whereas fwd_s replaces it with another, already existing, one.

The receiving rules, data_r, shift_r, label_r, wait and fwd_r, all fetch a message from
the queue, blocking the execution until the message is available, but the consequent
behavior is unique to each function:

• data_r binds a new variable to receive the value contained in the message, creating
a memory cell to hold it.

• shift_r changes the direction of the queue.

• label_r branches to the correct case, depending on the label received.

• wait closes the queue of the terminating process.

• fwd_r not only closes the queue of the terminating process, but also updates the
references it had of the terminating process to point to its new provider.

We presented the rules from the perspective of a process receiving a message from one
of its providers, so all the rules require a queue pointing to the client.

The last rule, spawn, binds a new process and creates a queue connecting the new
process with its client.
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3.3.1 Cost Semantics

We now introduce a cost model for the operational semantics of CC0, using the
span-work performance metric. We assign each operation a weight, but only for
communication, ignoring internal computation. Although this may not lead to an
entirely realistic measure for the complexity of an algorithm, it still makes for a useful
abstract one. Moreover, in many of our examples communication costs dominate
performance.

In the cost semantics we maintain a span s for each executing process which represents
the earliest global time (counting only communication steps) at which the process could
have reached its current state. Because messages can only be received after they have
been sent, each message is tagged with the time at which it is sent, and the recipient
takes the maximum between its own span and the span carried by the message. Except
for operations using shifts or forwards, which are not explicit communications by the
programmer, each call to a communication function increases the span by one unit.

The work w is determined individually by each process. As with span, all operations
except the ones using shifts or forwards increase work by one unit. Although each
message also carries the work of the sending process, this work is ignored unless the
message is an end or a forward (fwd). In these two cases, the receiving process adds the
work carried by the message to its own, to propagate the work of the sending process,
which is being terminated.

To accomplish these changes, it is necessary to make a slight modification to the
definitions of configuration and how the queues are filled, which are presented in
Figures 3.5 and 3.6. The former needs to take into account that processes must track
their span and work and the latter needs to encompass span and work in the messages.

Configurations Ω ::= ·
| queue($c, q, $d),Ω

| proc($c, P, s, w),Ω

| cell($c, x, v),Ω

Figure 3.5: Configuration definition, using multiset notation, in the cost semantics.
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Queue filled by provider
←−
q ::=

←−
· |
←−−−−−−−
(m, s, w) · q |

←−−−−−−
(end, s, w) |

←−−−−−−−
(shift, s, w)

Queue filled by client
−→
q ::=

−−−−−−−→
(shift, s, w) |

−−−−−−−→
q · (m, s, w) |

−→
·

Figure 3.6: Queue definition, filled by provider or client, in the cost semantics.

Table 3.2 instruments the operational semantics from Table 3.1, to include the costs
discussed above.

data_s : queue($c,
←−
q , $d)⊗ proc($d, send($d, v) ; P, s, w)

( {queue($c,
←−−−−−−−−−−−−−
q · (v, s+ 1, w + 1), $d)⊗ proc($d, P, s+ 1, w + 1)}

data_r : proc($e, x = recv($c) ; Q, s, w)⊗ queue($c,
←−−−−−−−−−
(v, s1, w1) · q, $d)

( {∃x. proc($e,Q,max(s, s1) + 1, w + 1)⊗ queue($c,
←−
q , $d)⊗ cell($e, x, v)}

shift_s : queue($c,
←−
q , $d)⊗ proc($d, send($d, shift) ; P, s, w)

( {queue($c,
←−−−−−−−−−
q · (shift, s, w), $d)⊗ proc($d, P, s, w)}

shift_r : proc($e, shift = recv($c) ; Q, s, w)⊗ queue($c,
←−−−−−−−−−−−
(shift, s1, w1) · q, $d)

( {proc($e,Q,max(s, s1), w)⊗ queue($c,
←−
q , $d)}

label_s : queue($c,
←−
q , $d)⊗ proc($d, $d.lab ; P, s, w)

( {queue($c,
←−−−−−−−−−−−−−−−
q · (lab, s+ 1, w + 1), $d)⊗ proc($d, P, s+ 1, w + 1)}

label_r : proc($e, switch($c){labi → Pi}, s, w)⊗ queue($c,
←−−−−−−−−−−−
(labj , s1, w1) · q, $d)

( {proc($e, Pj ,max(s, s1) + 1, w + 1)⊗ queue($c,
←−
q , $d)}

close : queue($c,
←−
q , $d)⊗ proc($d, close($d), s, w)

( {queue($c,
←−−−−−−−−−−−−−−−
q · (end, s+ 1, w + 1),_)}

wait : proc($e,wait($c) ; Q, s, w)⊗ queue($c,
←−−−−−−−−
(end, s1, w1),_)

( {proc($e,Q,max(s, s1) + 1, w + w1 + 1)}
fwd_s : queue($c,

←−
q , $d)⊗ proc($d, $d = $e, s, w)

( {queue($c,
←−−−−−−−−−
q · (fwd, s, w), $e)}

fwd_r : proc($d, P ($c), s, w)⊗ queue($c,
←−−−−−−−−
(fwd, s1, w1), $e)

( {proc($d, P ($e),max(s, s1), w + w1)}
spawn : proc($c, $d = P (args) ; Q, s, w)

( {∃$d. proc($c,Q, s, w)⊗ queue($c,
←−
· , $d)⊗ proc($d, P (args), s, 0)}

Table 3.2: Cost Semantics for Concurrent C0.

Sending rules, except shift_s, increase span and work the process by one unit and
create a message with span and work equal to their new values.

A process executing a receiving function must synchronize its span, so it takes the
maximum of its current span and the one carried by the received message. In addition
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to this, wait and fwd_r, also add the work carried by the received message to the work
of the process.

When a process is being spawned, it starts with 0 work and span equal to the process
that spawned it. This rule does not count as communication, so the span and work of
the original process remain unaltered.



Chapter 4

Non-blocking Receive

4.1 Introduction

In this chapter, we present the main contribution of this thesis, a new model for
message reception whose goal is to block the execution of the process to wait for a
message only when the data contained in this message is necessary to continue the
execution. We propose a change to the cost semantics, a modified target language for
CC0, as well as a translation from the original target language to the non-blocking
one, and some theoretical results regarding this model.

4.2 Non-blocking Receive

Receiving a message in CC0 blocks the execution of the program, a behavior matching
the operational semantics. A receiving function (recv or wait) only succeeds when
it is possible to retrieve the corresponding message from the queue of the associated
channel.

This model for message reception may not be the optimal choice for some algorithms,
where an arbitrary imposed order on messages received on two different channels might
prevent other computation to proceed. An extreme case is when a received value is
not actually ever needed.

25
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Our alternative follows two principles. One, the difference should be invisible to the
programmer who should not need to know exactly when a message is received. Second,
the implementation still needs to adhere to the protocol defined by the session type,
which forces the order of sends and receives.

Our model involves postponing reception as much as possible, by interpreting receives
as a request for a message. The request is saved on the channel until a synchronization
is necessary. A synchronization is triggered when some data contained on any of the
requests is required to continue execution. For example, if a process requested a shift
from a channel, a synchronization is required to correct the polarity of the channel,
that is, drain the message queue in order to change the direction of communication
using the same queue.

The requests are handled in the order they were made, which guarantees that the
session type is still being respected. Furthermore, all these changes only occur in an
intermediate language, allowing CC0 to keep the same source-level syntax. Figure 4.1
presents the new constructs used to introduce this non-blocking model into the target
language.

P,Q ::= . . .

| async_wait($c); Q request an end

| x = async_recv($c); Q request data
| shift = async_recv($c); Q request a shift

| sync($c, x); Q synchronize variable
| sync($c, shift); Q synchronize shift

| sync($c, end); Q synchronize end

Figure 4.1: Non-blocking syntax for CC0’s target language

Programs 4.1 and A.2 present the non-blocking versions of a queue and a binary search
tree (in appendix A), respectively. They are presented in a simplified version target
language, where shifts are included but without the heavy syntax introduced by the
compilation to C. More details on this difference can be found in Chapter 5, where
we present the implementation of this system, using the actual low level syntax of the
target language.
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queue $q elem ( int x , queue $r ) {
switch ( $q ) {

case Enq :
int y = async_recv ( $q ) ;
$r . Enq ;
sync ( $q , y ) ; send ( $r , y ) ;
$q = elem (x , $r ) ;

case Deq :
s h i f t = async_recv ( $q ) ;
sync ( $q , s h i f t ) ;
$q . Some ; send ( $q , x ) ; send ( $q , s h i f t ) ;
$q = $r ; // forward reque s t

case IsEmpty :
s h i f t = async_recv ( $q ) ;
sync ( $q , s h i f t ) ;
send ( $q , f a l s e ) ; send ( $q , s h i f t ) ;
$q = elem (x , $r ) ;

case Deal loc :
s h i f t = async_recv ( $q ) ;
$r . Dea l loc ; send ( $r , s h i f t ) ;
async_wait ( $r ) ;
sync ( $r , end ) ; sync ( $q , s h i f t ) ;
c l o s e ( $q ) ;

}
}

queue $q empty ( ) {
switch ( $q ) {

case Enq :
int y = async_recv ( $q ) ;
queue $e = empty ( ) ;
sync ( $q , y ) ;
$q = elem (y , $e ) ;

case Deq :
s h i f t = async_recv ( $q ) ;
sync ( $q , s h i f t ) ;
$q . None ; send ( $q , s h i f t ) ;
$q = empty ( ) ;

case IsEmpty :
s h i f t = async_recv ( $q ) ;
sync ( $q , s h i f t ) ;
send ( $q , t rue ) ; send ( $q , s h i f t ) ;
$q = empty ( ) ;

case Deal loc :
s h i f t = async_recv ( $q ) ;
sync ( $q , s h i f t ) ;
c l o s e ( $q ) ;

}
}

Code 4.1: Non-blocking implementation of a queue, in CC0’s simplified target language.
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4.3 Cost Semantics

The new non-blocking model introduces changes in both operational semantics and
cost semantics. We present only the latter, which includes the changes to the former.

Recall from Section 3.3.1, our definition of configuration has three predicates: proc($c, P, s, w)

represents a process offering along channel $c, executing program P , with span s and
work w; queue represents the message queue, connecting two processes; and cell($c, x, v)

holds the state of variable x with value v, in the process offering along channel $c.

This definition of configuration needs to be updated, modifying the queue predicate to
include the queue of requests. The new configuration and the definition of queue of
requests are shown in Figure 4.2.

Configurations Ω ::= ·
| queue($c, q, $d, r),Ω

| proc($c, P, s, w),Ω

| cell($c, x, v),Ω

Request queue r ::= · | x · r | end | shift

Figure 4.2: Definitions of configuration in a non-blocking environment and the request queue.

We define a receive request to increase both span and work by one unit. Upon
synchronising any request, the span must also be synchronized with the value carried
by the message. As before, during the synchronization, any end or fwd message requires
the addition of the work contained in the message to the work of the receiving process.
Table 4.1 presents the rules for the new instructions added with the non-blocking
receive model. The rules for the other instructions remain unchanged.

label_r : proc($e, switch($c){labi → Pi}, s, w)⊗ queue($c,
←−−−−−−−−−−−
(labj , s1, w1) · q, $d, ·)

( {proc($e, Pj ,max(s, s1) + 1, w + 1)⊗ queue($c,
←−
q , $d, ·)}

data_async_r : proc($e, x = async_recv($c) ; Q, s, w)⊗ queue($c,
←−
q , $d, r)

( {∃x. proc($e,Q, s+ 1, w + 1)⊗ queue($c,
←−
q , $d, r · x)}

shift_async_r : proc($e, shift = async_recv($c) ; Q, s, w)⊗ queue($c,
←−
q , $d, r)

( {proc($e,Q, s, w)⊗ queue($c,
←−
q , $d, r · shift)}

wait_async : proc($e, async_wait($c) ; Q, s, w)⊗ queue($c,
←−
q , $d, r)

( {proc($e,Q, s+ 1, w + 1)⊗ queue($c,
←−
q , $d, r · end)}
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sync_data 1 : proc($e, sync($c, x) ; Q, s, w)⊗ queue($c,
←−−−−−−−−−
(v, s1, w1) · q, $d, y · r)

( {proc($e, sync($c, x) ; Q,max(s, s1), w)⊗ queue($c,
←−
q , $d, r)⊗ cell($e, y, v)}

sync_data 2 : proc($e, sync($c, x) ; Q, s, w)⊗ queue($c,
←−−−−−−−−−
(v, s1, w1) · q, $d, x · r)

( {proc($e,Q,max(s, s1), w)⊗ queue($c,
←−
q , $d, r)⊗ cell($e, x, v))}

sync_shift 1 : proc($e, sync($c, shift) ; Q, s, w)⊗ queue($c,
←−−−−−−−−−
(v, s1, w1) · q, $d, y · r)

( {proc($e, sync($c, shift) ; Q,max(s, s1), w)⊗ queue($c,
←−
q , $d, r)⊗ cell($e, y, v)}

sync_shift 2 : proc($e, sync($c, shift) ; Q, s, w)⊗ queue($c,
←−−−−−−−−−
(shift, s1, w1), $d, shift)

( {proc($e,Q,max(s, s1), w)⊗ queue($c,
−→
· , $d, ·)}

sync_wait 1 : proc($e, sync($c, end) ; Q, s, w)⊗ queue($c,
←−−−−−−−−−
(v, s1, w1) · q, $d, y · r)

( {proc($e, sync($c, end) ; Q,max(s, s1), w)⊗ queue($c,
←−
q , $d, r)⊗ cell($e, y, v)}

sync_wait 2 : proc($e, sync($c, end) ; Q, s, w)⊗ queue($c,
←−−−−−−−−
(end, s1, w1), $d, end)

( {proc($e,Q,max(s, s1), w + w1)}
sync_fwd : proc($e, sync($c, X) ; Q($c), s, w)⊗ queue($c,

←−−−−−−−−
(fwd, s1, w1), $d, r)⊗ queue($d,

←−
q , $f, ·)

( {proc($e, sync($d, X) ; Q($d),max(s, s1), w + w1)⊗ queue($d,
←−
q , $f, r)}

Table 4.1: Operational and cost semantics rules for the non-blocking receive model.

The non-blocking receiving rules, data_async_r, shift_async_r and wait_async, simply
add a new request to the request queue, independently of what is currently in the
message queue. The rule data_async_r, which is receiving data on a variable, also
needs to bind this variable, through the existential quantifier ∃.

From a cost point of view, these rules only induce an increase of one unit in both
span and work, except shift_async_r who deals with a shift so does not change these
metrics, as discussed previously.

The synchronization rules possess two cases each. Since the requests are stored in
the queue, and to preserve the order of messages, if we are synchronizing a variable
but there are other requests before that variable, these need to be handled first. A
synchronization is only successful when the message is present in the message queue,
and the type of this message must match the type of the request. This means that, if,
for example, we are synchronizing a variable, we cannot get a message with a shift, end

or a label. Synchronizing a shift or end empties the request queue completely, due to
the nature of these operation: if we synchronize a shift, then we will start sending; if
we synchronize a end, then we will close that client channel. This matches the behavior
of the rules shift_r and wait from Table 3.1.
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Looking at synchronization from the perspective of the cost semantics, synchronizing
always requires us to also synchronize the span of the process with the one from
message. If a process is synchronizing a end request, the work carried by the message
is added to the process’ work, otherwise the work of the process is unchanged.

When synchronizing, it is possible that a fwd message is received from the queue. When
this happens, the queue of requests is moved to the queue predicate of the new client
channel. The cost of this operation is equal, in both work and span, to the cost of
synchronizing a end.

We also repeated the rule to receive a label, which, operationally, does not suffer any
change, but we want to emphasize that this rule requires an empty queue of requests to
be successful. Receiving a label induces a change in the instructions to be executed, so
we opted to keep it as a blocking function. Alternatively, we could have changed it to a
non-blocking functions, but it would need to always follow this sequence of instructions:
label = async_recv($c); sync($c, label). As a consequence of receiving a label
using a blocking function, to preserve the order of messages received, we need to
completely synchronize the channel before receiving a label.

4.4 Translation

Previously in this chapter, we have mentioned that, to accomplish our non-blocking
model, we introduced a new set of instructions. To establish the connection between
CC0’s target language and our modified one, we developed a translation from the former
to the latter. We represent this translation using the [[]] notation. The translation is
applied independently to each function in the whole program.

Our translation uses an auxiliary table of requests, σ, to determine where to include
the synchronization functions. This table is local to each process, it is a list of pairs,
[(X, $d)], where $d is the channel to which the request was done and X is either a
variable, shift or end. The way this table is built is clarified by the rules in Table 4.2, but
consider the example of the non-blocking reception of a value, through the instruction
x = async_recv($d). This instruction would add the pair (x, $d) to the end of the
table of requests, which conceptually works as a queue, similar to the request queue of
the operational semantics.
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Our translation function, [[]], takes as an argument a pair, (Instruction, σ), and returns a
new sequence of instructions and a new table of requests. Instruction represents not only
communication syntax but also flow control directives and an artificial no operation
instruction, which is simply skipped by the runtime environment. The rules for the
translation are included in Table 4.2. The definitions of all the auxiliary functions are
presented in Appendix B.

We use the operator ∪, borrowed from set notation, to represent union of two lists of
requests. The list on the right side of the operator is appended to the list on left and
repeated tuples are removed. We also use the set difference operator, \, to remove the
pairs of the list of requests on the right from the list on left.

receive-shift: [[(shift = recv($d), σ)]]=(shift = async_recv($d), σ ∪ [(shift, $d)])

receive-value: [[(x = recv($d), σ)]]=(x = async_recv($d), σ ∪ [(x, $d)])

wait: [[(wait($d), σ)]]=(async_wait($d), σ ∪ [(end, $d)])

receive-label: [[(switch($d){labi → Pi}, σ)]]=(sync_instructions ; switch($d){labi → P ′
i},
⋃
i∈I

σi)

where l = check_shift σ $d

(sync_instructions, σ′) = generate_sync l σ

(P ′
i , σi) = [[(Pi, σ

′)]]

spawn: [[($d = f(args), σ)]]=(sync_instructions ; $d = f(args), σ′)

where li = check_arg σ argi

(sync_instructions, σ′) = generate_sync (
⋃
i∈I

li) σ

close: [[(close($d), σ)]]=(sync_instructions ; close($d), [])
where l = sync_all σ

(sync_instructions, σ′) = generate_sync l σ

send-exp: [[(send($d, e), σ)]]=(sync_instructions ; send($d, e), σ′)

where l1 = check_shift σ $d

l2 = check_exp σ e

(sync_instructions, σ′) = generate_sync (l1 ∪ l2) σ
send-shift: [[(send($d, shift), σ)]]=(sync_instructions ; send($d, shift), σ′)

where l = check_shift σ $d

(sync_instructions, σ′) = generate_sync l σ

send-label: [[($d.lab, σ)]]=(sync_instructions ; $d.lab, σ′)

where l = check_shift σ $d

(sync_instructions, σ′) = generate_sync l σ

forward: [[($d = $e, σ)]]=(sync_instructions ; $d = $e, [])

where l = sync_all σ

(sync_instructions, σ′) = generate_sync l σ
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sequence: [[(P ; Q, σ)]]=(P ′ ; Q′, σ′′)

where(P ′, σ′) = [[(P, σ)]]

(Q′, σ′′) = [[(Q, σ′)]]

assignment: [[(x = e, σ)]]=(sync_instructions ; x = e, σ)

where l1 = check_exp σ x

l2 = check_exp σ e

(sync_instructions, σ′) = generate_sync (l1 ∪ l2) σ
if: [[(if (b) then P else Q, σ)]]=(sync_instructions ; if (b) then P else Q, σ1 ∪ σ2)

where l = check_exp σ b

(sync_instructions, σ′) = generate_sync l σ

(P ′, σ1) = [[(P, σ′)]]

(Q′, σ2) = [[(Q, σ′)]]

while : [[(while (b) do P, σ)]]=(sync_instructions ; while (b) do P ′, σ2)

where l = check_exp σ b

(sync_instructions, σ′) = generate_sync l σ

σ1 = loop_carried_req P σ′

(P ′, σ2) = [[(P, σ′ ∪ σ1)]]
func: [[(f(args), σ)]]=(sync_instructions ; f(args), σ′)

where li = check_arg σ argi

l′ = check_waits σ

(sync_instructions, σ′) = generate_sync (
⋃
i∈I

li) ∪ l′ σ

if σ′ 6= {}
then recurse f σ′

Table 4.2: Translation scheme from blocking to non-blocking versions.

To translate a receive-value, a receive-shift or a wait, there is no synchronization needed,
the first is a consequence of defining the receive rule to bind a new variable. The
functions async_recv and async_wait produce a request so we have to include a pair
in the table of requests, indicating both the variable or message type and the channel
tied to the request.

In contrast to the other receives, receiving a label requires us to check first if the
channel is ready (through check_shift), to ensure that messages arrive in the order
specified by the session type. It recursively calls the translation function to each case

and returns a request table that is the union of the tables returned by each case, which
is relevant for recursive session types that may carry requests from one iteration to the
next.
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The translations for close and forward are equal. To close a channel we need to
synchronize it and all its clients, so sync_all generates a list with a number of pairs
equal to the number of requests in σ. The auxiliary function generate_sync takes
this list and returns the minimum sequence of instructions needed to synchronize the
channel. If there is no need to perform any synchronization, generate_sync produces
the no operation instruction we mentioned as part of the definition of Instruction.

The translation of a spawn instruction simply needs to check if any argument needs to
be synchronized, by applying the auxiliary function check_arg to each argument. The
sending functions are all similar, they need to check if the channel is in the correct
direction and, in the case of send-expression, the variables in the expression are all
synchronized.

There are two cases for the translation of an assignment, we presented only the most
general one. An assignment can either be bounding or not, the rule presented in
Table 4.2 is relative to the non-bounding case. Since x may not be a new variable, it
might have a request pending on its value, thus we need to check it for requests, in
addition to the expression.

On flow control instructions, the translation is applied recursively. If it is a while loop,
we need to be mindful of loop carried requests, which requires us to go over the body
of the loop twice. The function loop_carried_req determines the table of requests after
the execution of P, which is then passed as argument for the recursive translation of P.

Recall that CC0 possesses two types of functions: one that returns a basic data type,
such as int, and others that return a channel. The translation of the former is a
special case of the assignment, the latter can also be divided in two cases. The first is
spawning a new process, which we already mentioned, and the second is changing the
context of the current process by entering a new function that returns a channel of the
same type, corresponding to the rule func in Table 4.2.

Changing the context of the function, requires that all the arguments are synchronized,
because references to variables declared locally are lost when swapping to a new
procedure. This is also the case for client channels that are waiting to be terminated.
This is handled by the auxiliary function check_waits, that sifts through the requests
to find a wait request. Any open client channels are passed on to the new function,
including ones with pending requests, which do not need to be synchronized beforehand.
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If there is any pending request, the translation is applied recursively to this new function,
with the non-empty table of requests given as argument, through the auxiliary function
recurse. This auxiliary function calls another translation function with rules very similar
to the ones presented in this section but with the difference that it only consumes
requests and does not generate them, stopping when the table of requests is empty.
The recursive call is applied to the already-translated version of the other function.

4.5 Impact of Non-Blocking Receive

In this section, we discuss some properties about our non-blocking model. We argue
that the span of any process in a blocking configuration is greater or equal than the
correspondent process in the non-blocking configuration. We also claim that the total
work of a blocking configuration is equal to the work of the non-blocking configuration.
Both these results are included in Theorem 1.

Throughout this section, we will assume that all computations are terminating,
satisfying both global and local progress.

As a general rule, when we want to note explicitly that we are referring to a process in a
non-blocking context, we use the translation notation, [[]]. So, for example, when writing
non-blocking operational semantics’ transitions, we use proc([[$c]], [[P ]], s, w) to contrast
with the blocking operational semantics, which would be written as proc($c, P, s, w).

We define the operator ∈ for processes and configurations as: $c ∈ Ω =⇒ ∃proc($d, P,

s, w) ∈ Ω. $c = $d.

Definition 1 We define a predicate, messages(Ω), which, given a configuration, returns
a list of all messages inside a queue of messages, in each queue predicate in the
configuration Ω.

Definition 2 Given a configuration Ω, we define work(Ω) as the sum of the work of
all processes in the configuration and the sum of the work carried by each message
whose data is end or fwd:
work(Ω) =

∑
proc($c,P,w$c) ∈ Ω

w$c +
∑

m ∈ messages(Ω)

{
work(m) if data(m) = end ∨ data(m) = fwd

0 otherwise
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Definition 3 Given a blocking configuration, Ω, and its non-blocking correspon-
dent, [[Ω]], we define: span([[Ω]]) ≤ span(Ω) if and only if ∀proc($c, P, s$c, w$c) ∈
Ω. ∃proc([[$c]], [[P ]], s[[$c]], w[[$c]]) ∈ [[Ω]]. s[[$c]] ≤ s$c.

We define an inverse function of the translation, called pgr_readback, that compiles
a non-blocking program to a blocking one. The rules of this inverse compilation are
presented in Table 4.3. They are, mostly, the identity function, with the exception of
requests, which are compiled to the blocking counterparts, and synchronizations, who
are replaced by a new skip rule.

We extend the blocking semantics with an artificial skip rule, used only on the following
proofs. Executing a skip changes neither the span nor the work of a process, and the
process does not interact with any message queues.

receive-shift: pgr_readback(shift = asyncrecv($d))=shift = recv($d)

receive-value: pgr_readback(x = async_recv($d))=x = recv($d)

wait: pgr_readback(async_wait($d))=wait($d)

receive-label: pgr_readback(switch($d){labi → Pi)=switch($d){labi → P ′
i}

whereP ′
i = pgr_readback(Pi)

spawn: pgr_readback($d = f(args))=$d = f(args)

close: pgr_readback(close($d))=close($d)

send-expression:pgr_readback(send($d, e))=send($d, e)

send-shift: pgr_readback(send($d, shift))=send($d, shift)

send-label: pgr_readback($d.lab)=$d.lab

forward: pgr_readback($d = $e)=$d = $e

sequence: pgr_readback(P ; Q)=P ′ ; Q′

whereP ′ = pgr_readback(P )

Q′ = pgr_readback(Q)

assignment: pgr_readback(x = e)=x = e

if: pgr_readback(if (b) then P else Q)=if (b) then P ′ else Q′

whereP ′ = pgr_readback(P )

Q′ = pgr_readback(Q)

while : pgr_readback(while (b) do P )=while (b) do P ′

whereP ′ = pgr_readback(P )

func: pgr_readback(f(args))=f(args)
sync: pgr_readback(sync($c,X))=skip

Table 4.3: Readback scheme from non-blocking to blocking programs.
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Conjecture 1 (Correctness) If [[Ω]]→ C, using the non-blocking operational seman-
tics, then ∃Ω′. Ω→ Ω′, using the blocking operational semantics, and C = [[Ω′]].

We do not have a rigorous proof for Conjecture 1. Here we give an hint based on what
we tried to do of how such a proof could be done.

Essentially we would take the blocking semantics as valid and show that any non-
blocking computation can be simulated by a blocking one. To do this, we would show
that for any given complete computation in the non-blocking semantics we can assemble
a corresponding blocking computation. This requires us to define some operation that
allows us to look ahead to obtain a value something was eventually synchronized to.
The key induction would be over the complete non-blocking computation, relating
states. This would enable us to prove by induction that each process in the non-blocking
semantics has a corresponding state in the blocking semantics. The same had to be
done for queues.

Note that this correctness includes full-value correction, every synchronized variable in
a memory cell has the same value in both semantics.

In the next theorem, we assume correctness of our non-blocking semantics and prove
that work is the same across configurations and span decreases or remains the same
when going from blocking to non-blocking configurations.

Theorem 1 Assuming that Conjecture 1 holds, [[Ω1]]→ [[Ω′1]], using the non-blocking
cost semantics, ∃Ω′2. Ω2 → Ω′2, using the blocking cost semantics, and Ω′2 = readback([[Ω′1]]).

1. If work([[Ω1]]) = work(Ω2), then work([[Ω′1]]) = work(Ω′2).

2. If span([[Ω1]]) ≤ span(Ω2), then span([[Ω′1]]) ≤ span(Ω′2).

Proof : By induction on the operational semantics.

• Case: Send-expression:

queue([[$d]],
←−
q , [[$c]], r)⊗ proc([[$c]], send([[$c]], E) ; Q, s[[$c]], w[[$c]])

( {queue([[$d]],
←−−−−
q · [[m]], [[$c]], r)⊗ proc([[$c]], Q, s[[$c]], w

′
[[$c]])}
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is the transition in the non-blocking operational semantics,

queue($d,
←−
q′ , $c)⊗ proc($c, send($c, E) ; pgr_readback(Q), s$c, w$c)

( {queue($d,
←−−−
q′ ·m, $c)⊗ proc($c, pgr_readback(Q), s′$c, w

′
$c)}

is the transition in the blocking operational semantics.

1. w′[[$c]] = w[[$c]] + 1, so work([[Ω′1]]) = work([[Ω1]]) + 1. w′$c = w$c + 1, so
work(Ω′2) = work(Ω2) + 1. By theorem hypothesis, work([[Ω1]]) = work(Ω2),
so it follows that work([[Ω′1]]) = work(Ω′2).

2. s′[[$c]] = s[[$c]]+1, s′$c = s$c+1. By theorem hypothesis, span([[Ω1]]) ≤ span(Ω2),
so s[[$c]] ≤ s$c. It follows that s′[[$c]] ≤ s′$c and span([[Ω′1]]) ≤ span(Ω′2).

Note that span([[m]]) ≤ span(m), as a consequence of s′[[$c]] ≤ s′$c.

• Case: Send-shift:

queue([[$d]],
←−
q , [[$c]], r)⊗ proc([[$c]], send([[$c]], shift) ; Q, s[[$c]], w

′
[[$c]])

( {queue([[$d]],
←−−−−
q · [[m]], [[$c]], r)⊗ proc([[$c]], Q, s′[[$c]], w

′
[[$c]])}

is the transition in the non-blocking operational semantics,

queue($d,
←−
q′ , $c)⊗ proc($c, send($c, shift) ; pgr_readback(Q), s$c, w$c)

( {queue($d,
←−−−
q′ ·m, $c)⊗ proc($c, pgr_readback(Q), s′$c, w

′
$c)}

is the transition in the blocking operational semantics.

1. w′[[$c]] = w[[$c]], so work([[Ω′1]]) = work([[Ω1]]). w′$c = w$c, so work(Ω′2) =

work(Ω2). By theorem hypothesis, work([[Ω1]]) = work(Ω2), so it follows that
work([[Ω′1]]) = work(Ω′2).

2. s′[[$c]] = s[[$c]], s′$c = s$c. By theorem hypothesis, span([[Ω1]]) ≤ span(Ω2), so
s[[$c]] ≤ s$c. It follows that s′[[$c]] ≤ s′$c and span([[Ω′1]]) ≤ span(Ω′2).

Note that span([[m]]) ≤ span(m), as a consequence of s′[[$c]] ≤ s′$c.

• Case: Send-label:

queue([[$d]],
←−
q , [[$c]], r)⊗ proc([[$c]], [[$c]].lab ; Q, s[[$c]], w[[$c]])

( {queue([[$d]],
←−−−−
q · [[m]], [[$c]], r)⊗ proc([[$c]], Q, s′[[$c]], w

′
[[$c]])}

is the transition in the non-blocking operational semantics,

queue($d,
←−
q′ , $c)⊗ proc($c, $c.lab ; pgr_readback(Q), s$c, w$c)

( {queue($d,
←−−−
q′ ·m, $c)⊗ proc($c, pgr_readback(Q), s′$c, w

′
$c)}

is the transition in the blocking operational semantics.
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1. w′[[$c]] = w[[$c]] + 1, so work([[Ω′1]]) = work([[Ω1]]) + 1. w′$c = w$c + 1, so
work(Ω′2) = work(Ω2) + 1. By theorem hypothesis, work([[Ω1]]) = work(Ω2),
so it follows that work([[Ω′1]]) = work(Ω′2).

2. s′[[$c]] = s[[$c]]+1, s′$c = s$c+1. By theorem hypothesis, span([[Ω1]]) ≤ span(Ω2),
so s[[$c]] ≤ s$c. It follows that s′[[$c]] ≤ s′$c and span([[Ω′1]]) ≤ span(Ω′2).

Note that span([[m]]) ≤ span(m), as a consequence of s′[[$c]] ≤ s′$c.

• Case: Close:

queue([[$d]],
←−
q , [[$c]], r)⊗ proc([[$c]], close([[$c]]), s[[$c]], w[[$c]])

( {queue([[$d]],
←−−−−
q · [[m]], _, r)}

is the transition in the non-blocking operational semantics,

queue($d,
←−
q′ , $c)⊗ proc($c, close($c), s$c, w$c)

( {queue($d,
←−−−
q′ ·m, _)}

is the transition in the blocking operational semantics.

1. work([[m]]) = w[[$c]] + 1 and data([[m]]) = end, so work([[Ω′1]]) = work([[Ω1]]) +

data([[m]])−w[[$c]] = work([[Ω1]])+1. work(m) = w$c+1 and data(m) = end, so
work(Ω′2) = work(Ω2)+work(m)−w$c = work(Ω2)+1. By theorem hypothesis,
work([[Ω1]]) = work(Ω2), so it follows that work([[Ω′1]]) = work(Ω′2).

2. By theorem hypothesis, span([[Ω1]]) ≤ span(Ω2), so, by removing a process,
it still follows that span([[Ω′1]]) ≤ span(Ω′2).

Note that span([[m]]) = s[[$c]] + 1 and span(m) = s$c + 1. By theorem hypothesis,
s[[$c]] ≤ s$c, so it follows that span([[m]]) ≤ span(m).

• Case: Send-Forward:

queue([[$d]],
←−
q , [[$c]], r)⊗ proc([[$c]], [[$c]] = [[$e]], s[[$c]], w[[$c]])

( {queue([[$d]],
←−−−−
q · [[m]], [[$e]], r)}

is the transition in the non-blocking operational semantics,

queue($d,
←−
q′ , $c)⊗ proc($c, $c = $e, s$c, w$c)

( {queue($d,
←−−−
q′ ·m, $e)}

is the transition in the blocking operational semantics.
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1. work([[m]]) = w[[$c]] and data([[m]]) = fwd, so work([[Ω′1]]) = work([[Ω1]]) +

data([[m]]) − w[[$c]] = work([[Ω1]]). work(m) = w$c and data(m) = end, so
work(Ω′2) = work(Ω2) + work(m)− w$c = work(Ω2). By theorem hypothesis,
work([[Ω1]]) = work(Ω2), so it follows that work([[Ω′1]]) = work(Ω′2).

2. By theorem hypothesis, span([[Ω1]]) ≤ span(Ω2), so, by removing a process,
it still follows that span([[Ω′1]]) ≤ span(Ω′2).

Note that span([[m]]) = s[[$c]] and span(m) = s$c. By theorem hypothesis, s[[$c]] ≤
s$c, so it follows that span([[m]]) ≤ span(m).

• Case: Spawn:

proc([[$c]], [[$d]] = P (args) ; Q, s[[$c]], w[[$c]])

( {proc([[$c]], Q, s[[$c]], w
′
[[$c]])⊗ queue([[$d]], ·, [[$e]], ·)⊗ proc([[$e]], P (args), s[[$e]], w[[$e]])}

is the transition in the non-blocking operational semantics,

proc($c, $d = P (args) ; pgr_readback(Q), s$c, w$c)

( {proc($c, pgr_readback(Q), s′$c, w
′
$c)⊗ queue($d, ·, $e)⊗ proc($e, pgr_readback(P ), s$e, w$e)}

is the transition in the blocking operational semantics.

1. w′[[$c]] = w[[$c]] and w[[$e]] = 0, so work([[Ω′1]]) = work([[Ω1]]). w′$c = w$c and
w$e = 0, so work(Ω′2) = work(Ω2). By theorem hypothesis, work([[Ω1]]) =

work(Ω2), so it follows that work([[Ω′1]]) = work(Ω′2).

2. s′[[$c]] = s[[$c]] = s[[$e]], s′$c = s$c = s$e. By theorem hypothesis, span([[Ω1]]) ≤
span(Ω2), so s[[$c]] ≤ s$c. It follows that s′[[$c]] ≤ s′$c, s[[$e]] ≤ s$e and
span([[Ω′1]]) ≤ span(Ω′2).

• Case: Receive-label:

proc([[$c]], switch([[$d]]){labi → Pi}, s[[$c]], w[[$c]])⊗ queue([[$d]],
←−−−−
[[m]] · q, [[$e]], ·)

( {proc([[$c]], Pj, s
′
[[$c]], w

′
[[$c]])⊗ queue([[$d]],

←−
q , [[$e]], ·)}

is the transition in the non-blocking operational semantics,

proc($c, switch($d){labi → pgr_readback(Pi)}, s$c, w$c)⊗ queue($d,
←−−−
m · q′, $e)

( {proc($c, pgr_readback(Pj), s
′
$c, w

′
$c)⊗ queue($d,

←−
q′ , $e)}

is the transition in the blocking operational semantics.
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1. w′[[$c]] = w[[$c]] + 1, so work([[Ω′1]]) = work([[Ω1]]) + 1. w′$c = w$c + 1, so
work(Ω′2) = work(Ω2) + 1. By theorem hypothesis, work([[Ω1]]) = work(Ω2),
so it follows that work([[Ω′1]]) = work(Ω′2).

2. s′[[$c]] = max(span([[m]]), s[[$c]]) + 1, s′$c = max(span(m), s$c) + 1. By theorem
hypothesis, span([[Ω1]]) ≤ span(Ω2), so s[[$c]] ≤ s$c and span([[m]]) ≤ span(m).
It follows that s′[[$c]] ≤ s′$c and span([[Ω′1]]) ≤ span(Ω′2).

• Case: Receive-value:

proc([[$c]], x = async_recv([[$d]]) ; Q, s[[$c]], w[[$c]])⊗ queue([[$d]],
←−
q , [[$e]], r)

( {∃x.proc([[$c]], Q, s′[[$c]], w
′
[[$c]])⊗ queue([[$d]],

←−
q , [[$e]], r · x)}

is the transition in the non-blocking operational semantics,

proc($c, x = recv($d) ; pgr_readback(Q), s$c, w$c)⊗ queue($d,
←−−−
m · q′, $e)

( {∃x.proc($c, pgr_readback(Q), s′$c, w
′
$c)⊗ queue($d,

←−
q′ , $e)⊗ cell($c, x, data(m))}

is the transition in the blocking operational semantics.

1. w′[[$c]] = w[[$c]] + 1, so work([[Ω′1]]) = work([[Ω1]]) + 1. w′$c = w$c + 1, so
work(Ω′2) = work(Ω2) + 1. By theorem hypothesis, work([[Ω1]]) = work(Ω2),
so it follows that work([[Ω′1]]) = work(Ω′2).

2. s′[[$c]] = s[[$c]] + 1, s′$c = max(span(m), s$c) + 1. By theorem hypothesis,
span([[Ω1]]) ≤ span(Ω2), so s[[$c]] ≤ s$c. It follows that s′[[$c]] ≤ s′$c and
span([[Ω′1]]) ≤ span(Ω′2).

• Case: Receive-shift:

proc([[$c]], shift = async_recv([[$d]]) ; Q, s[[$c]], w[[$c]])⊗ queue([[$d]],
←−
q , [[$e]], r)

( {proc([[$c]], Q, s′[[$c]], w
′
[[$c]])⊗ queue([[$d]],

←−
q , [[$e]], r · shift)}

is the transition in the non-blocking operational semantics,

proc($c, shift = recv($d) ; pgr_readback(Q), s$c, w$c)⊗ queue($d,
←−
m, $e)

( {proc($c, pgr_readback(Q), s′$c, w
′
$c)⊗ queue($d,

−→
· , $e)}

is the transition in the blocking operational semantics.

1. w′[[$c]] = w[[$c]], so work([[Ω′1]]) = work([[Ω1]]). w′$c = w$c, so work(Ω′2) =

work(Ω2). By theorem hypothesis, work([[Ω1]]) = work(Ω2), so it follows that
work([[Ω′1]]) = work(Ω′2).
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2. s′[[$c]] = s[[$c]], s′$c = max(span(m), s$c). By theorem hypothesis, span([[Ω1]]) ≤
span(Ω2), so s[[$c]] ≤ s$c. It follows that s′[[$c]] ≤ s′$c and span([[Ω′1]]) ≤
span(Ω′2).

• Case: Wait:

proc([[$c]], async_wait([[$d]]) ; Q, s[[$c]], w[[$c]])⊗ queue([[$d]],
←−
q , [[$e]], r)

( {proc([[$c]], Q, s′[[$c]], w
′
[[$c]])⊗ queue([[$d]],

←−
q , [[$e]], r · end)}

is the transition in the non-blocking operational semantics,

proc($c,wait($d) ; pgr_readback(Q), s$c, w$c)⊗ queue($d,
←−
m, _)

( {proc($c, pgr_readback(Q), s′$c, w
′
$c)}

is the transition in the blocking operational semantics.

1. w′[[$c]] = w[[$c]] + 1, so work([[Ω′1]]) = work([[Ω1]]) + 1. w′$c = w$c + 1 + work(m)

and data(m) = end, so work(Ω′2) = work(Ω2) + 1 + work(m) − work(m) =

work(Ω2) + 1. By theorem hypothesis, work([[Ω1]]) = work(Ω2), so it follows
that work([[Ω′1]]) = work(Ω′2).

2. s′[[$c]] = s[[$c]] + 1, s′$c = max(span(m), s$c) + 1. By theorem hypothesis,
span([[Ω1]]) ≤ span(Ω2), so s[[$c]] ≤ s$c. It follows that s′[[$c]] ≤ s′$c and
span([[Ω′1]]) ≤ span(Ω′2).

• Case: Receive-Forward:

proc([[$c]], sync([[$d]], X) ; Q([[$d]]), s[[$c]], w[[$c]])⊗ queue([[$d]],
←−−
[[m]], [[$e]], r)⊗ queue([[$e]],

←−
q′ , [[$f ]], ·)

( {proc([[$c]], sync([[$e]], X) ; Q([[$e]]), s′[[$c]], w
′
[[$c]])⊗ queue([[$e]],

←−
q′ , [[$f ]], r)}

is the transition in the non-blocking operational semantics, where data([[m]]) =

fwd,

proc($c, skip ; pgr_readback(Q($d)), s$c, w$c)⊗ queue($d,
←−
m, $e)

( {proc($c, skip ; pgr_readback(Q($e)), s′$c, w
′
$c)}

is the transition in the blocking operational semantics, where data(m) = fwd.

1. w′[[$c]] = w[[$c]]+work([[m]]) and data([[m]]) = fwd, so work([[Ω′1]]) = work([[Ω1]])+

work([[m]])− work([[m]]) = work([[Ω1]]). w′$c = w$c + work(m) and data(m) =

fwd, so work(Ω′2) = work(Ω2) + work(m)−work(m) = work(Ω2). By theorem
hypothesis, work([[Ω1]]) = work(Ω2), so it follows that work([[Ω′1]]) = work(Ω′2).
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2. s′[[$c]] = max(span([[m]]), s[[$c]]), s′$c = max(span(m), s$c). By theorem hypoth-
esis, span([[Ω1]]) ≤ span(Ω2), so s[[$c]] ≤ s$c and span([[m]]) ≤ span(m). It
follows that s′[[$c]] ≤ s′$c and span([[Ω′1]]) ≤ span(Ω′2).

• Case: Synchronization-value:

proc([[$c]], sync([[$d]], x) ; Q, s[[$c]], w[[$c]])⊗ queue([[$d]],
←−−−−
[[m]] · q, [[$e]], x · r)

( {proc([[$c]], Q, s′[[$c]], w
′
[[$c]])⊗ queue([[$d]],

←−
q , [[$e]], r)⊗ cell([[$c]], x, data([[m]]))}

is the transition in the non-blocking operational semantics,

proc($c, skip ; pgr_readback(Q), s$c, w$c)⊗ queue($d, q′, $e)

( {proc($c, pgr_readback(Q), s′$c, w
′
$c)⊗ queue($d, q′, $e)}

is the transition in the blocking operational semantics.

1. w′[[$c]] = w[[$c]], so work([[Ω′1]]) = work([[Ω1]]). w′$c = w$c, so work(Ω′2) =

work(Ω2). By theorem hypothesis, work([[Ω1]]) = work(Ω2), so it follows that
work([[Ω′1]]) = work(Ω′2).

2. s′[[$c]] = max(span([[m]]), s[[$c]]), s′$c = s$c. By theorem hypothesis, span([[Ω1]]) ≤
span(Ω2), so s[[$c]] ≤ s$c, span([[m]]) ≤ span(m), m who was previously
received by a blocking function, and s$c ≥ span(m). It follows that s′[[$c]] ≤ s′$c

and span([[Ω′1]]) ≤ span(Ω′2).

• Case: Synchronization-shift:

proc([[$c]], sync([[$d]], shift) ; Q, s[[$c]], w[[$c]])⊗ queue([[$d]],
←−−
[[m]], [[$e]], shift)

( {proc([[$c]], Q, s′[[$c]], w
′
[[$c]])⊗ queue([[$d]],

−→
· , [[$e]], ·)}

is the transition in the non-blocking operational semantics,

proc($c, skip ; pgr_readback(Q), s$c, w$c)⊗ queue($d, q′, $e)

( {proc($c, pgr_readback(Q), s′$c, w
′
$c)⊗ queue($d, q′, $e)}

is the transition in the blocking operational semantics.

1. w′[[$c]] = w[[$c]], so work([[Ω′1]]) = work([[Ω1]]). w′$c = w$c, so work(Ω′2) =

work(Ω2). By theorem hypothesis, work([[Ω1]]) = work(Ω2), so it follows that
work([[Ω′1]]) = work(Ω′2).
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2. s′[[$c]] = max(span([[m]]), s[[$c]]), s′$c = s$c. By theorem hypothesis, span([[Ω1]]) ≤
span(Ω2), so s[[$c]] ≤ s$c, span([[m]]) ≤ span(m), m who was previously
received by a blocking function, and s$c ≥ span(m). It follows that s′[[$c]] ≤ s′$c

and span([[Ω′1]]) ≤ span(Ω′2).

• Case: Synchronization-wait:

proc([[$c]], sync([[$d]], end) ; Q, s[[$c]], w[[$c]])⊗ queue([[$d]],
←−−
[[m]], [[$e]], end)

( {proc([[$c]], Q, s′[[$c]], w
′
[[$c]])}

is the transition in the non-blocking operational semantics,

proc($c, skip ; pgr_readback(Q), s$c, w$c)⊗ queue($d, q′, $e)

( {proc($c, pgr_readback(Q), s′$c, w
′
$c)⊗ queue($d, q′, $e)}

is the transition in the blocking operational semantics.

1. w′[[$c]] = w[[$c]]+work([[m]]) and data([[m]]) = end, so work([[Ω′1]]) = work([[Ω1]])+

work([[m]]) − work([[m]]) = work([[Ω1]]). w′$c = w$c, so work(Ω′2) = work(Ω2).
By theorem hypothesis, work([[Ω1]]) = work(Ω2), so it follows that work([[Ω′1]]) =

work(Ω′2).

2. s′[[$c]] = max(span([[m]]), s[[$c]]), s′$c = s$c. By theorem hypothesis, span([[Ω1]]) ≤
span(Ω2), so s[[$c]] ≤ s$c, span([[m]]) ≤ span(m), m who was previously
received by a blocking function, and s$c ≥ span(m). It follows that s′[[$c]] ≤ s′$c

and span([[Ω′1]]) ≤ span(Ω′2).

• There are three missing cases, assignments, conditionals and loops, whose
operational rules we did not detail in this thesis. By assuming correctness,
the evaluation of expressions will always yield the same value, so these rules will
not change work nor span.





Chapter 5

Implementation and Experimental

Evaluation

In this chapter, we discuss the low-level implementation of the concepts we presented
in the previous chapters. Specifically, we delve into the real target language of CC0
and the runtime system that enables the session typed channels, as well as the changes
to this runtime system to allow non-blocking reception. CC0’s target language is C
and the runtime system is also written in C.

Finally, we present some experimental results with the blocking and non-blocking
semantics that were the basis for the ideas in Section 4.5.

5.1 Implementation

We divide the implementation section in two parts, one for the existing blocking runtime
and the other for our non-blocking one. In the first, we give an overview of how the
existing blocking version of CC0 is implemented, presenting code of the most crucial
functions and the ones we had to change to implement the non-blocking runtime. We
also show how span and work are calculated in the runtime environment. The second
part focuses on describing the modifications to the functions and structures on the first
part to accomplish the non-blocking model.

45
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5.1.1 Blocking Runtime

The first functional runtime environment for CC0 was called concur2 [30]. This runtime
has been optimized in more recent versions, but our work predates these newer, more
efficient, implementations. The runtime uses the pthread library to enable parallelism
in multi-core machines and each process in CC0 is mapped 1-to-1 to a pthread thread.

Each process has a channel associated to it, which is the channel they provide, their
unique identifier. This channel is represented by a struct, containing information
about the message queue’s direction, the actual message queue and a pthread mutex
and condition variable. These two are used to obtain mutual exclusivity on the queue:
only one of the processes at the two end of the channel may write to the queue at a
given time. Code 5.1 shows the declaration of this struct.

struct channel {
channel_dir_e queue_dir ;
channel_dir_e prov ider_dir ;
channel_dir_e c l i e n t_d i r ;
queue_t∗ msgs ;
pthread_mutex_t m;
pthread_cond_t c ;

} ;

Code 5.1: Channel structure.

The direction of the queue is simply an enum structure in C, with the options
TO_PROVIDER and TO_CLIENT.

Spawning a process is done in the target language, each function that returns a channel
has an associated spawning procedure that returns the reference of the channel to the
client. Code 5.2 shows how a process running the empty function that implements the
end of a queue is spawned.

This function takes an argument n_clock *c, which is a structure used to track the
span, work and number of processes spawned of a process, in this case, the client’s. We
refer to this structure as clock in the rest of this chapter. The new process initialises
the last two metrics start as 0, but span inherits the client’s span. This is done in lines
6 to 10 of Code 5.2. The function new_channel_negative is used to create a channel
with a queue with negative polarity, but it simply calls the function new_channel
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1 queue empty_spawn( n_clock ∗c ) {
2 channel_t∗ c id = new_channel_negative (−1);
3 queue_p $q = provider_handle ( c id ) ;
4 empty_args_t ∗empty_args = ( empty_args_t ∗) mal loc ( s izeof ( struct empty_args ) ) ;
5 empty_args−>$q = $q ;
6 n_clock ∗nc = ( n_clock ∗) mal loc ( s izeof ( n_clock ) ) ;
7 nc−>span = c−>span ;
8 nc−>work = 0 ;
9 nc−>nprocs_spawned = 0 ;

10 empty_args−>c = nc ;
11 spawn_process(&empty_unpack , (void ∗) empty_args ) ;
12 c−>nprocs_spawned = ( c−>nprocs_spawned )+1;
13 return c l i ent_handle ( c id ) ;
14 }

Code 5.2: Spawning a process running the empty function.

(Code 5.3) with the correct capacity. This capacity is determined by the compiler,
which calculates the type width of the session type of the channel.

Type width is a property of certain session types that allow us to infer how many values
may be buffered at any given time. Willsey et al. [30] offers a complete explanation on
how type width is calculated in CC0. To summarize, a session type may be seen as
a colored directed graph, with receiving nodes colored differently than sending ones.
A walk in this graph is a possible sequence of sent or received types and the width
of the type is the longest walk in the graph. If the graph possesses a cycle, then the
width is infinite, represented by -1. If this succeeds, the message queue is started with
a minimum size and doubles its size every time the capacity is reached.

1 stat ic i n l i n e channel_t∗ new_channel ( channel_dir_e dir , int capac i ty ) {
2 channel_t∗ chan = mal loc ( s izeof ( channel_t ) ) ;
3 a s s e r t ( chan ) ;
4 chan−>msgs = new_queue ( capac i ty ) ;
5 a s s e r t ( chan−>msgs ) ;
6 pthread_mutex_init(&chan−>m, NULL) ;
7 pthread_cond_init(&chan−>c , NULL) ;
8 return chan ;
9 }

Code 5.3: Creating a new channel in concur2.

Messages in CC0 are also a C struct (Code 5.4), containing the type of the message,
the clock and the value carried by the message, given by a union of several possible
basic types.
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typedef struct {
msg_type_e type ;
n_clock ∗c ;

union {
int l a b e l ;
int n ;
bool b ;
void∗ p ;
channel_t∗ forward ;
c l ient_handle_t ∗ handle ;

} ;
} channel_msg_t ;

Code 5.4: Structure of a message.

The procedure of swapping messages happens in four stages: the message is sent,
packed, unpacked and, finally, received. The runtime concur2 provides a set of
functions that discriminate both the channel to which the message is being sent
or received (if it is the provider or a client) and the type of the message. These
functions are similar to each other, so we only present the example of an integer,
implemented by functions client_send_int , provider_send_int , client_recv_int and
provider_recv_int . Code 5.5 clears the similarity between provider and client functions,
so, in the rest of this chapter, we only show the examples for provider functions.

The functions from Code 5.5 simply call more generic functions with the correct message
type and update the clock. The actual sending and receiving are done by the function
provider_send_msg and provider_recv_msg . Sending a message requires packing
and enqueueing it, the implementation of which is orthogonal to our work. Receiving
a message is presented in Code 5.6, where it is also shown an extract of the function
used to unpack the message, demonstrating how span and work are synchronized.

Referring to Code 5.6, lines 7 to 9 are responsible for blocking the program if the
message we want to receive was not queued yet. The function queue_dequeue, in
line 11, fetches the message from the queue. The function unpack_msg verifies if the
expected type is equal to the type of the message and changes the return location
(ret_loc) to point to the value carried by the message.

Returning to our example of the queue, Program 5.7 presents the implementation of
this data structure in the low-level blocking target language of CC0. We omit details
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int c l i ent_recv_int ( c l ient_handle_t ∗ c l i e n t , n_clock ∗c ){
int n ;
cl ient_recv_msg ( c l i e n t , INT , (void ∗∗) &n , c ) ;
c−>work = ( c−>work )+1;
c−>span = ( c−>span )+1;
return n ;

}
int c l i ent_send_int ( int n , c l ient_handle_t ∗ c l i e n t , n_clock ∗c ){

c−>work = ( c−>work )+1;
c−>span = ( c−>span )+1;
return client_send_msg ( c l i e n t , INT , (void ∗) ( intptr_t ) n , c ) ;

}
int provider_recv_int ( provider_handle_t∗ provider , n_clock ∗c ){

int n ;
provider_recv_msg ( provider , INT , (void ∗∗) &n , c ) ;
c−>work = ( c−>work )+1;
c−>span = ( c−>span )+1;
return n ;

}
int provider_send_int ( int n , provider_handle_t∗ provider , n_clock ∗c ){

c−>work = ( c−>work )+1;
c−>span = ( c−>span )+1;
return provider_send_msg ( provider , INT , (void ∗) ( intptr_t ) n , c ) ;

}

Code 5.5: Send and receive functions of an integer, for provider and client channels.

such as the spawn functions, which are all similar to Code 5.2, and pthread specific
syntax needed to pass arguments to the functions that each process executes.

5.1.2 Non-blocking Runtime

The main object of our non-blocking model is the request. It is represented by a struct,
containing the type of the message requested, the return location and a boolean value
indicating if the request has already been processed. This structure is realized in
Code 5.8.

The queue of requests discussed in Chapter 4 is stored in the channel structure. Each
channel possesses a queue filled by the provider and another filled by the client, as well
as variables to control the capacity and the next request to be handled. The queue
of requests is not polarized like the queue of messages, so it requires this distinction
between client and provider. The reason for this is the case when a process finishes
sending and starts requesting right after. The process on the other end of the channel
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1 stat ic int provider_recv_msg ( provider_handle_t∗ handle ,
2 msg_type_e expected_type , void∗∗ ret_loc , n_clock ∗c ) {
3 channel_t∗ chan = handle−>chan ;
4 pthread_mutex_lock(&chan−>m) ;
5
6 a s s e r t ( chan−>provider_dir == TO_PROVIDER) ;
7 while ( chan−>queue_dir != TO_PROVIDER | | queue_size ( chan−>msgs ) == 0) {
8 pthread_cond_wait(&chan−>c , &chan−>m) ;
9 }

10 channel_msg_t∗ msg ;
11 a s s e r t ( queue_dequeue ( chan−>msgs , (void∗∗)&msg) == 0 ) ;
12 channel_t∗ forward = unpack_msg(msg , expected_type , ret_loc , c ) ;
13 i f ( forward ) {
14 a s s e r t ( queue_size ( chan−>msgs ) == 0 ) ;
15 pthread_mutex_unlock(&chan−>m) ;
16 free_channel ( chan ) ;
17 handle−>chan = forward ;
18 return provider_recv_msg ( handle , expected_type , ret_loc , c ) ;
19 }
20 i f ( expected_type == SHIFT) {
21 a s s e r t ( queue_size ( chan−>msgs ) == 0 ) ;
22 chan−>provider_dir = TO_CLIENT;
23 }
24 pthread_mutex_unlock(&chan−>m) ;
25 return SUCCESS;
26 }
27
28 channel_t∗ unpack_msg ( channel_msg_t∗ msg , msg_type_e expected_type ,
29 void ∗∗ ret_loc , n_clock ∗c ) {
30 a s s e r t (msg != NULL) ;
31 n_clock ∗c_recv = msg−>c ;
32 c−>span = ( c−>span ) > ( c_recv−>span )? ( c−>span ) : ( c_recv−>span ) ;
33 i f (msg−>type == FORWARD | | msg−>type == DONE) {
34 c−>work = ( c−>work ) + ( c_recv−>work ) ;
35 c−>nprocs_spawned = ( c−>nprocs_spawned ) + ( c_recv−>nprocs_spawned ) ;
36 }
37 // . . . .
38 }

Code 5.6: Receiving a message in concur2.



5.1. IMPLEMENTATION 51

void empty ( queue_p $q , n_clock ∗c ) {
switch ( prov ider_recv_labe l ( $q , c ) ) {
case Enq : {

int y = provider_recv_int ( $q , c ) ;
queue $e = empty_spawn( c ) ;
elem ($q , y , $e , c ) ;

}
case Deq : {

prov ider_recv_sh i f t ( $q , c ) ;
provider_send_label (None , $q , c ) ;
prov ider_send_shi f t ( $q , c ) ;
empty ( $q , c ) ;

}
case IsEmpty : {

prov ider_recv_sh i f t ( $q , c ) ;
provider_send_int ( true , $q , c ) ;
prov ider_send_shi f t ( $q , c ) ;
empty ( $q , c ) ;

}
case Deal loc : {

prov ider_recv_sh i f t ( $q , c ) ;
provider_send_done ( $q , c ) ;

}
}

}

void elem (queue_p $q , int x , queue $r , n_clock ∗c ) {
switch ( prov ider_recv_labe l ( $q , c ) ) {
case Enq : {

int y = provider_recv_int ( $q , c ) ;
c l i ent_send_labe l (Enq , $r , c ) ;
c l i ent_send_int (y , $r , c ) ;
elem ($q , x , $r , c ) ;

}
case Deq : {

prov ider_recv_sh i f t ( $q , c ) ;
provider_send_label (Some , $q , c ) ;
provider_send_int (x , $q , c ) ;
prov ider_send_shi f t ( $q , c ) ;
forward ( $q , $r , c ) ;

}
case IsEmpty : {

prov ider_recv_sh i f t ( $q , c ) ;
provider_send_int ( f a l s e , $q , c ) ;
prov ider_send_shi f t ( $q , c ) ;
elem ($q , x , $r , c ) ;

}
case Deal loc : {

prov ider_recv_sh i f t ( $q , c ) ;
c l i ent_send_labe l ( Deal loc , $r , c ) ;
c l i en t_send_sh i f t ( $r , c ) ;
c l ient_recv_done ( $r , c ) ;
provider_send_done ( $q , c ) ;

}
}

}

Code 5.7: Implementation of a queue, in the low-level blocking target language of CC0.
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typedef struct r eque s t {
msg_type_e expected_type ;
void ∗∗ re t_loc ;
int t r ea t ed ;

} r eque s t ;

Code 5.8: Request structure.

may not have finished synchronizing when the first process started requesting. Without
the separation, the first process would overwrite the the requests from the other process.

Code 5.9 shows the added information to the channel struct.

1 struct channel {
2 // . . .
3 reque s t ∗∗pending_reqs_provider ;
4 int nreqs_provider ;
5 int f i r s t_req_prov ide r ;
6 int reqs_cap_provider ;
7 r eque s t ∗∗ pending_reqs_cl ient ;
8 int nreqs_c l i en t ;
9 int f i r s t_ r eq_c l i e n t ;

10 int reqs_cap_cl ient ;
11 } ;

Code 5.9: Queues of requests declaration in the channel structure.

The variables pertaining to the request queue are initialized in the new_channel

function. This initialization only requires allocating memory for the queues, setting
the first requests and number of requests to zero and the capacity, which also uses the
type width to be determined. These queues behave like the message queues if the type
width is infinite: their capacity is set at an initial value and doubled each time the
queue is filled up.

Sending functions behave exactly the same way in the non-blocking model, however,
receiving ones follow a new arrangement. The functions provider_recv_int, and
similar, are now async_provider_recv_int. If it is a function that sets the value
of a variable, this family of async functions takes the pointer to this variable as an
argument, or a NULL pointer otherwise.

The receiving functions call a more general async_provider_recv_msg, who builds a
request, updates the queue of requests, increasing its size if needed. As prescribed by
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our cost semantics, this procedure of building a request increases the span and work
by one unit, unless we it is a request for a shift. Code 5.10 illustrates how the request
for an integer value is processed, in the aforementioned functions.

void async_provider_recv_int ( provider_handle_t∗ provider , int ∗n , n_clock ∗c ){
async_provider_recv_msg ( provider , INT , (void ∗∗) n ) ;
c−>work++;
c−>span++;

}
void async_provider_recv_msg ( provider_handle_t ∗provider ,

msg_type_e expected_type , void ∗∗ re t_loc ) {
channel_t∗ chan = provider−>chan ;
pthread_mutex_lock(&chan−>m) ;
r eque s t ∗ r = ( reque s t ∗) mal loc ( s izeof ( r eque s t ) ) ;
r−>expected_type = expected_type ;
r−>ret_loc = ret_loc ;
r−>trea t ed = 0 ;
chan−>pending_reqs_cl ient [ chan−>nreqs_c l i en t ] = r ;
chan−>nreqs_c l i en t++;
i f ( chan−>nreqs_c l i en t == chan−>reqs_cap_cl ient ) {

int new_cap = chan−>reqs_cap_cl ient ∗ 2 ;
r eque s t ∗∗ new_buf = ( reque s t ∗∗) mal loc ( s izeof ( r eque s t ∗)∗new_cap ) ;
int i ;
for ( i = chan−>f i r s t_ r eq_c l i e n t ; i<chan−>nreqs_c l i en t ; i++)

new_buf [ i ] = chan−>pending_reqs_cl ient [ i ] ;
chan−>reqs_cap_cl ient = new_cap ;
chan−>pending_reqs_cl ient = new_buf ;

}
pthread_mutex_unlock(&chan−>m) ;

}

Code 5.10: Functions to create a request, exemplified by a request for an integer value.

The next building block of our model are the synchronization functions, split in
provider_sync which is called by a process and an auxiliary function, whose behavior
is similar to the original provider_recv_msg. The synchronization function receives a
pointer as argument, which determines until which point the channel is synchronized. A
NULL pointer synchronizes the channel completely, whereas a pointer to a variable stops
the synchronization loop when that same pointer is seen upon processing a request.

The auxiliary functions handle fetching messages from the queue. If a message is
not available, the execution blocks, which is inevitable because this synchronization
function is only called when the program needs that message to proceed. Code 5.11
shows how these two functions are implemented.
int provider_sync_aux ( provider_handle_t ∗handle , int reqnumber ,
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void∗∗ elem , n_clock ∗c ) {
channel_t ∗chan = handle −> chan ;
pthread_mutex_lock(&chan−>m) ;
r eque s t ∗ r = chan−>pending_reqs_cl ient [ reqnumber ] ;
i f ( r−>trea t ed ) {

pthread_mutex_unlock(&chan−>m) ;
return −1;

}
a s s e r t ( chan−>provider_dir == TO_PROVIDER) ;
while ( chan−>queue_dir != TO_PROVIDER | | queue_size ( chan−>msgs ) == 0) {

pthread_cond_wait(&chan−>c , &chan−>m) ;
}
channel_msg_t∗ msg ;
a s s e r t ( queue_dequeue ( chan−>msgs , (void∗∗)&msg) == 0 ) ;
channel_t ∗ forward = unpack_msg(msg , r−>expected_type , r−>ret_loc , c ) ;
i f ( forward ) {

a s s e r t ( queue_size ( chan−>msgs ) == 0 ) ;
forward−>pending_reqs_cl ient = chan−>pending_reqs_cl ient ;
forward−>nreqs_c l i en t = chan−>nreqs_c l i en t ;
forward−>f i r s t_ r eq_c l i e n t = chan−>f i r s t_ r eq_c l i e n t ;
forward−>pending_reqs_provider = chan−>pending_reqs_provider ;
forward−>nreqs_provider = chan−>nreqs_provider ;
forward−>f i r s t_req_prov ide r = chan−>f i r s t_req_prov ide r ;
pthread_mutex_unlock(&chan−>m) ;
f ree_channel ( chan ) ;
handle−>chan = forward ;
return provider_sync_aux ( handle , reqnumber , elem , c ) ;

}
i f ( r−>expected_type == SHIFT) {

a s s e r t ( queue_size ( chan−>msgs ) == 0 ) ;
chan−>provider_dir = TO_CLIENT;

}
r−>trea t ed = 1 ;
pthread_mutex_unlock(&chan−>m) ;
return r−>ret_loc == elem ;

}
void provider_sync ( provider_handle_t ∗handle , void∗∗ elem , n_clock ∗c ) {

channel_t ∗chan = handle −> chan ;
int i = chan−>f i r s t_ r eq_c l i e n t ;
int r e s ;
while ( i<chan−>nreqs_c l i en t && ( r e s=provider_sync_aux ( handle , i , elem , c ) ) == 0)

i++;
i f ( r e s == −1) return ;
chan = handle −> chan ;
pthread_mutex_lock(&chan−>m) ;
i f ( elem == NULL) {

chan−>f i r s t_ r eq_c l i e n t = 0 ;
chan−>nreqs_c l i en t = 0 ;

}
else {

i f ( i == chan−>nreqs_c l i en t ) i−−;
chan−>f i r s t_ r eq_c l i e n t = i +1;
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}
pthread_mutex_unlock(&chan−>m) ;

}

Code 5.11: Functions to synchronize a channel.

5.2 Working Example

In this section, we explain in detail the non-blocking implementation of a queue,
presented in Program 5.12. This implementation is in CC0’s target language and
follows the same structure of the version presented in Program 4.1, which is simplified
to avoid the heavy notation of the runtime functions we showcased in this chapter.

1 void elem (queue_p $q , int x , queue $r , n_clock ∗c ) {
2 switch ( prov ider_recv_labe l ( $q , c ) ) {
3 case Enq : {
4 int y ;
5 async_provider_recv_int ( $q , &y , c ) ;
6 c l i ent_send_labe l (Enq , $r , c ) ;
7 provider_sync ( $q , ( void∗∗)&y , c ) ;
8 c l i ent_send_int (y , $r , c ) ;
9 elem ($q , x , $r , c ) ;

10 }
11 case Deq : {
12 async_provider_recv_shi ft ( $q ) ;
13 provider_sync ( $q ,NULL, c ) ;
14 provider_send_label (Some , $q , c ) ;
15 provider_send_int (x , $q , c ) ;
16 provider_send_shi f t ( $q , c ) ;
17 forward ( $q , $r , c ) ;
18 }
19 case IsEmpty : {
20 async_provider_recv_shi ft ( $q ) ;
21 provider_sync ( $q ,NULL, c ) ;
22 provider_send_bool ( f a l s e , $q , c ) ;
23 provider_send_shi f t ( $q , c ) ;
24 elem ($q , x , $r , c ) ;
25 }
26 case Deal loc : {
27 async_provider_recv_shi ft ( $q ) ;
28 c l i ent_send_labe l ( Deal loc , $r , c ) ;
29 c l i en t_send_sh i f t ( $r , c ) ;
30 async_client_recv_done ( $r , c ) ;
31 c l i ent_sync ( $r ,NULL, c ) ;
32 provider_sync ( $q ,NULL, c ) ;
33 provider_send_done ( $q , c ) ;
34 }
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35 }
36 }
37 void empty ( queue_p $q , n_clock ∗c ) {
38 switch ( prov ider_recv_labe l ( $q , c ) ) {
39 case Enq : {
40 int y ;
41 async_provider_recv_int ( $q , &y , c ) ;
42 queue $e = empty_spawn( c ) ;
43 provider_sync ( $q , ( void∗∗)&y , c ) ;
44 elem ($q , y , $e , c ) ;
45 }
46 case Deq : {
47 async_provider_recv_shi ft ( $q ) ;
48 provider_sync ( $q ,NULL, c ) ;
49 provider_send_label (None , $q , c ) ;
50 provider_send_shi f t ( $q , c ) ;
51 empty ( $q , c ) ;
52 }
53 case IsEmpty : {
54 async_provider_recv_shi ft ( $q ) ;
55 provider_sync ( $q ,NULL, c ) ;
56 provider_send_bool ( true , $q , c ) ;
57 provider_send_shi f t ( $q , c ) ;
58 empty ( $q , c ) ;
59 }
60 case Deal loc : {
61 async_provider_recv_shi ft ( $q ) ;
62 provider_sync ( $q ,NULL, c ) ;
63 provider_send_done ( $q , c ) ;
64 }
65 }
66 }

Code 5.12: Non-blocking implementation of a queue, in CC0’s low-level target language.

We focus on explaining the elem function, which is the one carrying more changes.

Line 1 shows the declaration of the function, with the arguments, queue_p $q rep-
resenting the channel that the process is providing, int x holds the element of the
queue, queue $r is a client channel of our process, depicting the rest of the queue,
and, finally, n_clock *c is the process’ clock, measuring span, work and the number
of processes spawned.

Line 2 represents the instruction to receive a label. Note that there is no synchronization
before, which means that all requests were synchronized when this function is called.
Each different label has a different set of instructions to execute, implementing the
type explained in Code 3.1.
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The reception of the label Enq is followed by receiving an integer. We first declare the
new variable (line 4) and store the request using the address of this variable (line 5).
We do not need the value to be enqueued immediately so, first, we can propagate the
label to our client (line 6), after which we need to synchronize (line 7), by passing
the address of the variable, delegating to the runtime system the job of assigning
the variable to the adequate memory position. This synchronization was required
considering that, in line 8, we need to send the value we received to our client.

After receiving the label Deq, we start sending, so first we need to receive a shift.
Internally, our request (line 12) stores a NULL pointer, indicating that the request is
either a shift or a end. We need to synchronize the channel directly after, in order to
execute the sending functions, passing a NULL pointer to the synchronization functions,
implying that the channel must be completely synchronized. Lines 14-17 do not suffer
any change from the blocking model and simply implement the rest of the type.

The case for the label IsEmpty is equivalent to that of the label Deq. The label Dealloc
is the one that carries the most potential benefit for our system. After receiving the
label, we request a shift (line 27) and, before synchronizing this shift, we propagate
the label (line 28) and send a shift (line 29) to our client. We are expecting our client
to execute a close, so we request a end (line 30), which we synchronize (line 31)
immediately after. When all this is executed, we finally synchronize the shift (line 32)
from our provider, and we close (line 33) the channel.

5.3 Experimental Evaluation

The benchmarking suite1, with a small explanation of each file, can be found in
Table 5.1, adapted from [30]. A more detailed explanation follows.

• bitstring1 executes a sequence of 2000 increments and checks if the value is
correct.

• bitstring3 executes the equivalent of 500 increments, using internal choice, by
spawning one new process for each increment.

1available at http://www.cs.cmu.edu/~fp/misc/cc0-bench.tgz

http://www.cs.cmu.edu/~fp/misc/cc0-bench.tgz
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• bst implements an unbalanced binary search tree, used to sort an array of 7
elements.

• insert-sort sorts an array of 6 elements, using insertion sort.

• mergesort1 sorts an array of 6 elements using Fibonacci trees.

• mergesort3 sorts an array of 6 elements using a bottom up strategy and binary
trees.

• mergesort4 sorts an array of 6 elements using traditional merge sort.

• odd-even-sort1 sorts an array of 6 elements using original odd-even-sort.

• odd-even-sort4 sorts an array of 6 elements, only the tail element counts
down to 0 and each element swaps between right and left while the network is
being built.

• odd-even-sort6 sorts an array of 6 elements emphazising message swapping.

• parfib calculates the eighth number of Fibonacci, using message swapping.

• primes calculates the first 500 primes using a sequential prime sieve.

• queue-notail, a queue of 3000 elements, with looping processes instead of tail
recursion.

• queue, a queue with 3000 elements, with processes executing tail recursion.

• reduce executes a reduce operation on a tree with 1024 elements and each
element is a leaf.

• seg places 1000 elements in a segmented list and calculates their sum.

• siege-eager is the implementation of an eager sieve of Erastothenes, calculates
the 500th prime.

• sieve-lazy implements a lazy version of the sieve of Erastothenes, calculating
the 500th prime.

• stack implements a stack of 2000 elements.
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bitstring1 bitstrings with external choice parfib parallel naive Fibonacci, simulating
fork/join

bitstring3 bitstrings with internal choice primes prime sieve (sequential)
bst binary search trees, tree sort queue-notail queues without tail calls
insert-sort insertion sort using a queue queue queues written naturally
mergesort1 mergesort with Fibonacci trees reduce reduce and scan on parallel sequences
mergesort3 mergesort with binary trees seg list segments
mergesort4 mergesort with binary trees, se-

quential merge
sieve-eager eager prime sieve merge

odd-even-sort1 odd/even sort, v1 sieve-lazy lazy prime sieve
odd-even-sort4 odd/even sort, v4 stack a simple stack
odd-even-sort6 odd/even sort, v6

Table 5.1: CC0 benchmarking suite

All benchmarks were run on a 2015 Macbook Pro, with a 2.7 GHz Intel Core I5 (2 cores)
processor and 8 GB RAM. The detailed results are presented in Table 5.2. Figures 5.1
and 5.2 aggregate these results in a more friendly outlook, comparing span in the two
models and the speedup when going from the blocking to the non-blocking model.

Figure 5.1: Blocking and Non-Blocking span benchmarks on a log scale.

Figure 5.2: Execution time speedup from Blocking to Non-Blocking Version.
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Program Version Span Work
Number

of
Processes

Execution
time
(ms)

Speedup
( Blocking Execution Time
Non−Blocking Execution Time

)

bitstring1
Blocking 3096 8084 11 12.69

0.96
Non Blocking 3072 8084 11 13.17

bitstring3
Blocking 1525 4016 501 9.39

0.78
Non Blocking 1525 4016 501 12.10

bst
Blocking 109 259 37 0.76

0.80
Non Blocking 97 259 37 0.95

reduce
Blocking 8191 12282 2047 239.80

1.87
Non Blocking 56 12282 2047 128.17

insertion-sort
Blocking 54 96 7 0.24

0.89
Non Blocking 54 96 7 0.27

mergesort1
Blocking 73 215 53 0.93

0.76
Non Blocking 73 215 53 1.22

mergesort3
Blocking 46 155 15 0.33

0.83
Non Blocking 46 155 15 0.40

mergesort4
Blocking 11 30 15 0.25

0.83
Non Blocking 5 30 15 0.30

odd-even-sort1
Blocking 72 214 15 0.44

0.96
Non Blocking 70 214 15 0.46

odd-even-sort4
Blocking 76 280 15 0.46

0.96
Non Blocking 74 280 15 0.48

odd-even-sort6
Blocking 65 196 21 0.42

0.81
Non Blocking 62 196 21 0.52

parfib
Blocking 26 268 67 1.20

1.04
Non Blocking 12 268 67 1.15

stack
Blocking 14011 20012 2002 208.75

0.73
Non Blocking 14011 20012 2002 284.30

queue
Blocking 27010 18024012 3001 9021.79

0.34
Non Blocking 27007 18024012 3001 26734.11

queue-notail
Blocking 27010 18024012 3001 9161.20

0.36
Non Blocking 27007 18024012 3001 25184.28

seg
Blocking 6007 12010 3004 252.43

0.79
Non Blocking 5005 12010 3004 319.15

prime
Blocking 532192 532192 502 1376.44

0.73
Non Blocking 399144 532192 502 1894.44

sieve-lazy
Blocking 60189 909998 7137 732.68

0.74
Non Blocking 59692 909998 7137 987.29

sieve-eager
Blocking 2286 157738 26464 693.71

0.75
Non Blocking 2286 157738 26464 919.53

Table 5.2: Blocking and Non-blocking benchmarks
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Most of the examples across our benchmark suite bring about a small improvement to
span, where reduce, mergesort4, and parfib see the most noticeable ones. In the case
of reduce, some of the difference could be recovered by fine-tuning the CC0 source
program; it is interesting that our generic technique can make up for a performance bug
(when considered under the blocking semantics) introduced by the programmer. This
shows that, at the very least, our implementation can help identify some performance
issues in the given code.

As Figure 5.2 shows, the overhead of maintaining the request queue is considerable
in some examples. Only in reduce and parfib do we realize an actual performance
improvement. The queue examples show the most dire decrease in performance, which
can be partially explained by the overhead on increasing the capacity of the request
queues. Another possible explanation is the high amount of processes created for these
two examples, which, with the overhead of the heavy requests queues, may not fit in
memory, requiring data to be stored in the disk.

As expected, both the number of processes spawned and the work is constant when
going from the blocking to the non-blocking version.





Chapter 6

Conclusion

In this dissertation, we implemented a non-blocking model of receiving messages in
Concurrent C0, a language based on a Curry-Howard correspondence between session
types and linear logic.

This model led to a new semantics of the language, a non-blocking semantics, opposed
to the existing blocking one. We instrumented both these semantics to include costs on
each operation, using the span and work model, which provide an abstract analytical
measure of parallelism in the computation.

We also defined a translation function from the original Concurrent C0 to our non-
blocking extension and demonstrated some properties about our model, assuming
correctness:

• Span in a non-blocking configuration is always less or equal than the span on a
blocking configuration.

• Work is the same across both models.

Finally, we executed an experimental evaluation of both models on a set of representative
examples. We found that it is hard to reap the practical benefit of span’s improvement,
as the overhead of the implementation of the data structures that support our model
is too great to gain an increase in execution time.

63
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6.1 Future Work

We would like to point out some possible future continuation to the work presented in
this thesis:

• A rigorous proof of Conjecture 1 to confirm correctness of our non-blocking model
was not included in this thesis, although we presented a sketch of a possible
proof.

• Since recipient behavior on input is opaque to the sender, we may be able to
craft an optimization, which avoids the slowdown in the common case where no
improvement in the span is available. For this purpose, we would likely combine
our fully dynamic technique with static dependency analysis to use non-blocking
input only where promising.

• Our cost semantics could be adapted as a tool in performance debugging, which
may be helpful in particular to novice programmers with little experience in
concurrency.

• Our translation function has a working version, implemented in Haskell. However,
it was not incorporated into the CC0 compiler, which is written in ML.

• Finally, just as there is a connection between session types and intuitionistic
linear logic and asynchronous communication and polarised logic, we suspect that
there might be a connection between non-blocking asynchronous communication
and some branch of logic.
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Appendix A

Binary Search Tree Implementations

l i s t $c n i l ( ) { // implements the empty l i s t
$c . Ni l ;
c l o s e ( $c ) ;

}

l i s t $c cons ( int n , l i s t $d ) { // a process ho ld ing 1 element o f the l i s t
$c . Cons ;
send ( $c , n ) ;
$c = $d ;

}

l i s t $c append ( l i s t $d , l i s t $e ) { // appends l i s t $e to the end o f l i s t $d
switch ( $d ) {

case Ni l : {
wait ( $d ) ;
$c = $e ;

}
case Cons : {

$c . Cons ;
int x = recv ( $d ) ;
send ( $c , x ) ;
$c = append ($d , $e ) ;

}
}

}

t r e e $c node ( int x , t r e e $l , t r e e $r ) { // process implementing a node o f the t r e e
switch ( $c ) {

case I n s e r t : {
int y = recv ( $c ) ;
i f ( y < x) { // i t i s a search tree , but not balanced , order must be preserved

$ l . I n s e r t ; send ( $l , y ) ; // y i s l e s s e r than x so i t goes to the l e f t sub t r e e
$c = node (x , $l , $r ) ; // r e cu r s i v e c a l l

} else i f ( x == y) {
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$c = node (y , $l , $r ) ; // y i s the same as x , so no i n s e r t i s done
} else {

$r . I n s e r t ; send ( $r , y ) ; // y i s g r ea t e r than x so i t goes to the r i g h t sub t r e e
$c = node (x , $l , $r ) ; // r e cu r s i v e c a l l

}
}
case Find : {

int y = recv ( $c ) ;
i f ( y < x) {

$ l . Find ; send ( $l , y ) ; // va lue i s l e s s e r , search in l e f t sub t r e e
bool b = recv ( $ l ) ; send ( $c , b ) ;

} else i f ( x == y) {
send ( $c , t rue ) ; // found the va lue

} else {
$r . Find ; send ( $r , y ) ; // va lue i s greater , search in r i g h t sub t r ee
bool b = recv ( $r ) ; send ( $c , b ) ;

}
$c = node (x , $l , $r ) ; // r e cu r s i v e c a l l

}
case Reduce : {

int i n i t = recv ( $c ) ;
reduce_fn∗ f = recv ( $c ) ; // f i s the reduc t ion func t i on
$ l . Reduce ; send ( $l , i n i t ) ; send ( $l , f ) ; // propagates l a b e l and va lue s to the r i g h t sub t r ee
int y = recv ( $ l ) ; wait ( $ l ) ; // r e c e i v e s r e s u l t and c l o s e s the c l i e n t
$r . Reduce ; send ( $r , i n i t ) ; send ( $r , f ) ; // propagates l a b e l and va lue s to the l e f t sub t r e e
int z = recv ( $r ) ; wait ( $r ) ; // r e c e i v e s r e s u l t and c l o s e s the c l i e n t
send ( $c , (∗ f ) ( y , x , z ) ) ; // app l i e s the reduc t ion func t i on and sends the r e s u l t
c l o s e ( $c ) ; // c l o s e s the prov ider

}
case ToList : {

$r . ToList ; l i s t $ r i gh t = recv ( $r ) ; // r e c e i v e s the r i g h t sub t r e e as a l i s t
wait ( $r ) ;
$ r i gh t = cons (x , $ r i gh t ) ;
$ l . ToList ; l i s t $ l e f t = recv ( $ l ) ; // r e c e i v e s the l e f t sub t r e e as a l i s t
wait ( $ l ) ;
l i s t $d = append ( $ l e f t , $ r i gh t ) ; // j o i n s the whole t r e e as a l i s t
send ( $c , $d ) ;
c l o s e ( $c ) ;

}
}

}

t r e e $c l e a f ( ) { // a process implementing a l e a f o f the t r e e
switch ( $c ) {

case I n s e r t : {
int x = recv ( $c ) ;
t r e e $ l = l e a f ( ) ; // c r ea t e s new c h i l d nodes
t r e e $r = l e a f ( ) ;
$c = node (x , $l , $r ) ; // cont inues as a node

}
case Find : {

int x = recv ( $c ) ;
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send ( $c , f a l s e ) ; // did not f i nd the element
$c = l e a f ( ) ; // r e cu r s i v e c a l l

}
case Reduce : {

int i n i t = recv ( $c ) ;
reduce_fn∗ f = recv ( $c ) ;
send ( $c , i n i t ) ; // has no element so does not app ly the reduc t ion
c l o s e ( $c ) ;

}
case ToList : {

l i s t $d = n i l ( ) ; // has no element , so send the empty l i s t
send ( $c , $d ) ; c l o s e ( $c ) ;

}
}

}

Code A.1: Implementation of an unbalanced binary search tree, in CC0.

1 l i s t $c n i l ( ) { // no change from the b l o c k i n g ver s ion
2 $c . Ni l ;
3 c l o s e ( $c ) ;
4 }
5
6 l i s t $c cons ( int n , l i s t $d ) { // no change from the b l o c k i n g ver s ion
7 $c . Cons ;
8 send ( $c , n ) ;
9 $c = $d ;

10 }
11
12 l i s t $c append ( l i s t $d , l i s t $e ) {
13 switch ( $d ) {
14 case Ni l : {
15 async_wait ( $d ) ;
16 c l i ent_sync ( $d , end ) ; // needs to sync immediate ly because o f forward
17 $c = $e ;
18 }
19 case Cons : {
20 $c . Cons ;
21 int x = async_recv ( $d ) ;
22 sync ( $d , x ) ; // needs to sync immediate ly to send the v a r i a b l e
23 send ( $c , x ) ;
24 $c = append ($d , $e ) ;
25 }
26 }
27 }
28
29 t r e e $c node ( int x , t r e e $l , t r e e $r ) {
30 switch ( $c ) {
31 case I n s e r t : {
32 int y = async_recv ( $c ) ;
33 sync ( $c , y ) ; // needs to sync immediate ly because o f l i n e 34
34 i f ( y < x) {
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35 $ l . I n s e r t ; send ( $l , y ) ;
36 $c = node (x , $l , $r ) ;
37 } else i f ( x == y) {
38 $c = node (y , $l , $r ) ;
39 } else {
40 $r . I n s e r t ; send ( $r , y ) ;
41 $c = node (x , $l , $r ) ;
42 }
43 }
44 case Find : {
45 int y = async_recv ( $c ) ;
46 s h i f t = async_recv ( $c ) ;
47 sync ( $c , y ) ; // only needs to sync the y because o f l i n e 48
48 i f ( y < x) {
49 c l i ent_sync ( $l , s h i f t ) ; // needs to sync s h i f t because unsync ’ ed s h i f t in l i n e 52
50 $ l . Find ; send ( $l , y ) ; send ( $l , s h i f t ) ;
51 bool b = async_recv ( $ l ) ;
52 s h i f t = async_recv ( $ l ) ;
53 sync ( $l , b ) ; // syncs b to send i t
54 sync ( $c , s h i f t ) ; // syncs s h i f t to co r r ec t p o l a r i t y
55 send ( $c , b ) ; send ( $c , s h i f t ) ;
56 } else i f ( x == y) {
57 sync ( $c , s h i f t ) ; // syncs s h i f t to be ab l e to send
58 send ( $c , t rue ) ; send ( $c , s h i f t ) ;
59 } else { // case f o r the r i g h t sub t r ee i s s im i l a r to l e f t sub t r e e
60 c l i ent_sync ( $r , s h i f t ) ;
61 $r . Find ; send ( $r , y ) ; send ( $r , s h i f t ) ;
62 bool b = async_recv ( $r ) ; s h i f t = async_recv ( $r ) ;
63 sync ( $r , b ) ; sync ( $c , s h i f t ) ;
64 send ( $c , b ) ; send ( $c , s h i f t ) ;
65 }
66 $c = node (x , $l , $r ) ;
67 }
68 case Reduce : {
69 int i n i t = async_recv ( $c ) ;
70 reduce_fn∗ f = async_recv ( $c ) ;
71 s h i f t = async_recv ( $c ) ;
72 sync ( $l , s h i f t ) ; $ l . Reduce ; // needs to sync s h i f t from l i n e 52
73 sync ( $c , i n i t ) ; // syncs i n i t to send
74 send ( $l , i n i t ) ;
75 sync ( $c , f ) ; // syncs f to send
76 send ( $l , f ) ;
77 int y = async_recv ( $ l ) ; async_wait ( $ l ) ;
78
79 sync ( $r , s h i f t ) ; $r . Reduce ; // s im i l a r to l e f t sub t r e e
80 send ( $r , i n i t ) ; send ( $r , f ) ;
81 int z = async_recv ( $r ) ; async_wait ( $r ) ;
82
83 sync ( $l , y ) ; sync ( $r , z ) ;
84 sync ( $c , s h i f t ) ; send ( $c , (∗ f ) ( y , x , z ) ) ;
85
86 sync ( $l , end ) ; // syncs r e que s t s from l i n e 77 , w i l l c l o s e a f t e r
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87 sync ( $r , end ) ;
88 c l o s e ( $c ) ;
89 }
90 case ToList : { // syncs are s im i l a r to case Reduce
91 s h i f t = async_recv ( $c ) ;
92 sync ( $r , s h i f t ) ; $r . ToList ; send ( $r , s h i f t ) ;
93 l i s t $ r i gh t = async_recv ( $r ) ;
94 async_wait ( $r ) ;
95 sync ( $r , $ r i gh t ) ;
96 $ r i gh t = cons (x , $ r i gh t ) ;
97 sync ( $l , s h i f t ) ; $ l . ToList ; send ( $l , s h i f t ) ;
98 l i s t $ l e f t = async_recv ( $ l ) ;
99 async_wait ( $ l ) ;

100 sync ( $l , $ l e f t ) ;
101 l i s t $d = append ( $ l e f t , $ r i gh t ) ;
102 send ( $c , $d ) ;
103 sync ( $r , end ) ; sync ( $l , end ) ;
104 c l o s e ( $c ) ;
105 }
106 }
107 }
108
109 t r e e $c l e a f ( ) {
110 switch ( $c ) {
111 case I n s e r t : {
112 int x = async_recv ( $c ) ;
113 t r e e $ l = l e a f ( ) ;
114 t r e e $r = l e a f ( ) ;
115 sync ( $c , x ) ; // syncs to cont inue as node
116 $c = node (x , $l , $r ) ;
117 }
118 case Find : {
119 int x = async_recv ( $c ) ;
120 s h i f t = async_recv ( $c ) ;
121 sync ( $c , s h i f t ) ; // syncs to send
122 send ( $c , f a l s e ) ; send ( $c , s h i f t ) ;
123 $c = l e a f ( ) ;
124 }
125 case Reduce : {
126 int i n i t = async_recv ( $c ) ;
127 reduce_fn∗ f = async_recv ( $c ) ;
128 s h i f t = async_recv ( $c ) ;
129 sync ( $c , s h i f t ) ; // syncs the 3 r e que s t s at once
130 send ( $c , i n i t ) ;
131 c l o s e ( $c ) ;
132 }
133 case ToList : {
134 s h i f t = async_recv ( $c ) ;
135 l i s t $d = n i l ( ) ;
136 sync ( $c , s h i f t ) ; // syncs to send
137 send ( $c , $d ) ; c l o s e ( $c ) ;
138 }
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139 }
140 }

Code A.2: Non-blocking implementation of an unbalanced binary search tree, in CC0’s simplified
target language.



Appendix B

Translation auxiliary functions

We present three set of definitions. In Table B.1, we show the definitions of the auxiliary
functions used in Table 4.2. Table B.2 showcases the rules to ascertain the loop-carried
requests in a while cycle. Finally, Table B.3 handles the rules from recursive calls or
calls to other functions.

The rules in Tables 4.2, B.2 and B.3 are very similar. Table B.2 differs from the
other two by not generating any instruction, simply updates and returns a new table.
Table B.3 differs from Table 4.2 in the receive functions, who do not add a request
to the table, and adds extra rules for synchronization functions, who remove requests
from the table.

The declaration of each function will appear with a type defined in Haskell style.
For example, the translation function in Table 4.2 would be declared as: [[]] ::

(Instruction, [(String,Channel)]) → (Instruction, [(String,Channel)]). To abbreviate, we
define Table = [(String,Channel)].

check_exp :: Table→ Exp→ Table

check_exp σ n = []

check_exp σ b = []

check_exp [] x = []

check_exp ((y, $c) : σ) x=if x = y

then [(y, $c)]

else check_exp σ x

check_exp σ e1 + e2 =(check_exp σ e1) ∪ (check_exp σ e2)
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check_shift :: Table→ Channel→ Table

check_shift [] $d = []

check_shift ((y, $c) : σ) $d=if $c = $d ∧ y = shift

then [(y, $c)]

else check_shift σ $d

check_wait :: Table→ Channel→ Table

check_wait [] $d = []

check_wait ((y, $c) : σ) $d=if $c = $d ∧ y = end

then [(y, $c)]

else check_wait σ $d

check_waits :: Table→ Table

check_waits [] = []

check_waits ((y, $c) : σ)=if y = end

then [(y, $c)] ∪ (check_waits σ)

else check_waits σ

check_arg :: Table→ Exp→ Table

check_arg σ A=check_exp σ A

check_arg :: Table→ Channel→ Table

check_arg σ $d=check_wait σ $d

sync_all :: Table→ Table

sync_all σ=σ
aggr_reqs :: Channel→ Table→ Table

aggr_reqs $c [] = []

aggr_reqs $c ((x, $d) : l)=if $c = $d

then (aggr_reqs $c l) ∪ [(x, $d)]

else (aggr_reqs $c l)

gen_instr :: Table→ Instruction

gen_instr ((x, $c) : l) =sync($c, x)

gen_instr ((shift, $c) : l)=sync($c, shift)

gen_instr ((end, $c) : l) =sync($c, end)

rem_sync :: Table→ Table→ Table
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rem_sync ((x, $c) : l) ((y, $d) : σ)=if $c 6= $d

then ((y, $d) : (rem_sync ((x, $c) : l) σ))

else if y = x

thenσ
else rem_sync ((x, $c) : l) σ

update_table :: Table→ Table→ Table

update_table [] σ =σ
update_table ((x, $c) : l) σ=σ′

wherel1 = aggr_reqs $c ((x, $c) : l)

σ1 = rem_sync l1 σ

σ′ = update_table l \ l1 σ1

generate_sync :: Table→ Table→ (Instruction,Table)

generate_sync [] σ =(NULL, σ)

generate_sync ((x, $c) : l) σ=(sync1 ; syncr, σ
′)

wherel1 = aggr_reqs $c ((x, $c) : l)

sync1 = gen_instr l1

σ1 = rem_sync l1 σ

(syncr, σ
′) = generate_sync l \ l1 σ1

Table B.1: Auxiliary functions for the translation.

In the check_exp function, we omitted the rules for every type of expression, there
would be a case for each arithmetic and boolean operator.

The generate_sync function requires some explanation. It receives as input a list of
requests to be synchronized at that point, as well as the table of requests. Each channel
in this list of requests is handled separately. First, we aggregate all the requests using
a specific channel (aggr_reqs function), putting the most recent request, which is the
last to be handled, in the front of this new list, which contains requests only from one
channel. We then generate a synchronization instruction (gen_instr) based on the first
request of this list, note that, by synchronizing on the most recent request, all other
earlier requests will also be synchronized. The table of requests is updated to remove
these synchronized requests, and generate_sync is called recursively until there are no
more requests to synchronize.
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The update_table function behaves similarly to generate_sync but does not generate
any instruction. It will be used as an auxiliary function on Table B.2.

loop_carried_req :: Instruction→ Table→ Table

loop_carried_req (shift = recv($d)) σ=σ ∪ [(shift, $d)]

loop_carried_req (x = recv($d)) σ=σ ∪ [(x, $d)]

loop_carried_req (wait($d)) σ=σ ∪ [(end, $d)]

loop_carried_req (switch($d){labi → Pi}) σ=
⋃
i∈I

σi

where l = check_shift σ $d

σ′ = update_table l σ

σi = loop_carried_req Pi σ
′

loop_carried_req ($d = f(args)) σ=σ′

where li = check_arg σ argi

σ′ = update_table (
⋃
i∈I

li) σ

loop_carried_req (close($d)) σ= []

loop_carried_req (send($d, e)) σ=σ′

where l1 = check_shift σ $d

l2 = check_exp σ e

σ′ = update_table (l1 ∪ 2) σ

loop_carried_req (send($d, shift)) σ=σ′

where l = check_shift σ $d

σ′ = update_table l σ

loop_carried_req ($d.lab) σ=σ′

where l = check_shift σ $d

σ′ = update_table l σ

loop_carried_req ($d = $e) σ= []

loop_carried_req (P ; Q) σ=σ′′

whereσ′ = loop_carried_req P σ

σ′′ = loop_carried_req Q σ′

loop_carried_req (x = e) σ=σ′

where l1 = check_exp σ x

l2 = check_exp σ e

σ′ = update_table (l1 ∪ l2) σ
loop_carried_req (if (b) then P else Q) σ=σ1 ∪ σ2

where l = check_exp σ b

σ′ = update_table l σ

σ1 = loop_carried_req P σ′

σ2 = loop_carried_req Q σ′
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loop_carried_req (while (b) do P ) σ=σ1
where l = check_exp σ b

σ′ = update_table l σ

σ1 = loop_carried_req P σ′

loop_carried_req (f(args)) σ= []

Table B.2: Definition of translation rules for while loops.

We now present the rules for the recursive call of translation to a new function. We
will only present the rules that suffer any change from their original definition.

recurse :: Instruction→ Table→ (Instruction,Table)

recurse (shift = recv($d)) σ=(shift = recv($d), σ)

recurse (x = recv($d)) σ=(x = recv($d), σ)

recurse (wait($d)) σ=(wait($d), σ)

recurse (sync($d, x)) σ =(sync($d, x), σ1)

where σ1 = rem_sync [(x, $d)] σ

recurse (sync($d, shift)) σ=(sync($d, shift), σ1)

where σ1 = rem_sync [(shift, $d)] σ

recurse (sync($d, end)) σ =(sync($d, end), σ1)

where σ1 = rem_sync [(end, $d)] σ

recurse (P ; Q) σ=(P ′ ; Q′, σ′′)

where(P ′, σ′) = recurse P σ

if σ′ = []

then (Q′, σ′′) = (Q, σ′)

else (Q′, σ′′) = recurse Q σ′

Table B.3: Definition of translation rules for function calls.


	Acknowledgements
	Abstract
	Resumo
	List of Tables
	List of Figures
	List of Code
	Introduction
	Dissertation Outline

	Background
	Session Types
	Curry-Howard Isomorphism
	Asynchronous Communication

	Substructural Operational Semantics
	Performance Measures in Parallel Algorithms

	Imperative Programming with Sessions Types
	Introduction
	Concurrent C0
	Type Definition
	Protocol Implementation
	Target Language

	Operational Semantics
	Cost Semantics


	Non-blocking Receive
	Introduction
	Non-blocking Receive
	Cost Semantics
	Translation
	Impact of Non-Blocking Receive

	Implementation and Experimental Evaluation
	Implementation
	Blocking Runtime
	Non-blocking Runtime

	Working Example
	Experimental Evaluation

	Conclusion
	Future Work

	Bibliography
	Binary Search Tree Implementations
	Translation auxiliary functions

