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Abstract

Natural Language Generation (NLG) is a task of Natural Language Processing (NLP) that, from
some non-linguistic representation of information, is able to construct understandable text in nat-
ural language automatically. In this dissertation, we provide a bibliographical review of the NLG
area with a particular focus on the applications of NLG in the area of Journalism. We describe the
tasks that usually compose an NLG system as well as the methodologies and approaches applied
to perform those tasks. We provide a list of the most relevant tools and resources in this field and
discuss the evaluation methodologies performed when it comes the time to evaluate the quality of
an NLG system.

We present the GameRecapper, a data-to-text template-based system that generates Portuguese
summaries of football games from structured input data. GameRecapper has a basic generation al-
gorithm for creating the news pieces and makes use of domain data, linguistic functions, grammat-
ical functions and a collection of sentence templates. Domain data provides additional information
about the teams in order to achieve more variation in the output text. Linguistic functions translate
numerical data into words and grammatical functions ensure the coherence and concordance of
the text. The collection of sentence templates was built manually from an initial corpus written by
actual journalists from a newsroom. Each template contains open slots for variable information.
These sentence templates were divided into groups according to goal events of the game and to
the characteristics of the game. GameRecapper’s ability of knowing the impact of a goal event
allowed us to achieve a significant amount of variation on the generated summaries.

We discuss and present an evaluation methodology to evaluate and analyze GameRecapper. In
the evaluation of GameRecapper, our focus was to evaluate the quality of the produced text and
to compare how users perceive a GameRecapper summary versus a human-authored summary.
The results showed that GameRecapper is able to produce a grammatically correct and easy to
read summary, given the average scores of intelligibility and fluidity criteria on our output text
evaluation. On our evaluation of GameRecapper vs human-authored summaries, results show
that, even though our generated summaries are not ready to be published online, GameRecapper
is able to produce a complete and accurate match summary.
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Resumo

A Geração de Linguagem Natural (GLN) é uma tarefa na área do Processamento de Linguagem
Natural (PLN) que, a partir de representações de informação não linguísticas, tem como objetivo
criar sistemas informáticos capazes de produzir texto automaticamente, em linguagem natural.
Nesta dissertação é feita uma revisão bibliográfica da área de GLN, com um destaque particular
nas suas aplicações na área do Jornalismo. São descritas as tarefas que normalmente compõem
um sistema GLN, assim como as metodologias e abordagens aplicadas para executar essas tarefas.
É fornecida uma lista das ferramentas e dos recursos mais relevantes nesta área e são discutidas as
metodologias de avaliação utilizadas para avaliar a qualidade de um sistema GLN.

Nesta dissertação, é apresentado o GameRecapper, um sistema de dados-para-texto, baseado
em modelos, que gera sumários em português de jogos de futebol, a partir de dados estruturados.
O GameRecapper tem um algoritmo de geração para criar as notícias, que faz uso de dados de
domínio, funções gramaticais, funções linguísticas e um conjunto de modelos de frase. Os dados
de domínio fornecem dados adicionais sobre as equipas, de forma a atingir uma maior variação no
texto gerado. As funções linguísticas traduzem dados numéricos em palavras e/ou expressões e
as funções gramaticais garantem a coerência e concordância do texto. O conjunto de modelos de
frase foi construído manualmente, a partir de um corpus escrito por jornalistas de uma redação, e
divididos de acordo com as caraterísticas dos golos e com as caraterísticas do jogo. Cada modelo
de frase tem espaços para preencher com informação variável. A capacidade do GameRecapper
conhecer o impacto de um golo no resultado permite atingir um grau de variação considerável nos
sumários gerados.

Também é discutida e apresentada uma metodologia de avaliação que foi usada para avaliar
e analisar o GameRecapper. Os objetivos principais da avaliação do nosso sistema são avaliar
a qualidade do texto produzido e comparar a perceção dos leitores ao lerem um sumário gerado
pelo GameRecapper a um sumário gerado por um jornalista. Os resultados demonstram que o
GameRecapper é capaz de produzir um texto gramaticalmente correto e fácil de ler, dado os resul-
tados médios obtidos nos critérios de inteligibilidade e de fluídez. Quanto à avaliação dos sumários
gerados pelo GameRecapper, e em contraste com as noticias geradas por humanos, os resultados
demonstram que, apesar das notícias ainda não estarem preparadas para serem lançadas online, o
GameRecapper é capaz de produzir um sumário preciso e correto do jogo.
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Chapter 1

Introduction

In the first chapter, the context and motivation that originated the interest for the study as well as

the proposed objectives are presented.

1.1 Context and Motivation

Natural Language Generation (NLG) is a task of Natural Language Processing (NLP) that, from

some non-linguistic representation of information, is able to construct understandable text in natu-

ral language automatically [1]. Over the last years, with the popularization of the internet and the

explosion of social media, the number of data increased significantly which led to the need to store,

manipulate and quickly analyze very big data collections. Computer systems use representations

which are easy for them to manipulate, however, in many cases, some of these representations of

information require a considerable amount of expertise to interpret. This means that there is a need

for systems which can present such information in an understandable form to every user. Natural

language technology can be used when the best presentation of the data is in natural language. An

example is to generate textual weather forecasts from graphical weather maps representations [8].

Natural Language Generation systems can also be used to help in the creation of routine docu-

ments, also known as Authoring Aids systems [1]. Many professionals that do not see document

production as their main responsibility, spend a lot of their working time producing documents.

For example, as Ehud Reiter and Robert Dale wrote "[a] doctor, for example, may spend a sig-

nificant part of her day writing referral letters, discharge summaries and other routine documents.

Tools which help such people quickly produce good documents may considerably enhance both

productivity and morale." [1].

NLG is becoming popular among researchers in the area of Computational Journalism (appli-

cation of computation’s concepts and techniques in journalism). As Arjen van Dalen said "[due] to

commercial pressures and higher profit expectations, there is a broader trend in journalism to lower

the variable costs involved in news production by using more short-term contracts, freelance work,

outsourcing and impersonal relations between writers or low-paid news work in content farms."

[9]. Nowadays, it is possible to create algorithms that generate news stories automatically based
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2 Introduction

on NLG techniques, without human interference. These "robot journalists" can produce thousands

of articles with virtually no variable costs. Aspects like personality, analytic skills and creativity

become more important, if professional routine tasks can be automated [10]. Sports reporting is

described as ideal to apply NLG techniques due to the abundant availability of statistics and the

formulaic templates and stock phrases which can be used for game reports [9].

The main purpose of this dissertation is to implement automatic generation of sports news

pieces. Today, there is a need to report on a lot of football matches and, many of them, are played

at the same time. A significant amount of human resources and working time would be needed for

journalists to watch every match that they have to make a report. Due to the abundant availability

of information that is stored in databases, journalists are able to make a report based just on

that information. However, if this process was automated it would save a lot of working time of

journalists. As a result, journalists would have more time for in-depth reporting. This dissertation

had the collaboration of ZOS, Lda., creator of the project zerozero.pt which has one of the biggest

football database of the world. This project was performed as part of a dissertation thesis of the

Integrated Master in Electrical and Computers Engineering from the Faculty of Engineering of the

University of Porto.

1.2 Objectives

The idea of this dissertation is to generate journalistic pieces using information from structured

databases. Our focus is to produce a system able to make a coherent and well-written summary of

a football match. Since our collaborators’ project zerozero.pt has mainly a Portuguese audience,

for this dissertation we will focus on generating Portuguese summaries.

We also intended to review the state of the art of Natural Language Generation in order to un-

derstand what tasks usually compose an NLG system and what methodologies are used to perform

those tasks. Another main objective of this dissertation is to discuss the possibilities of evaluation

methodologies of an NLG system so we can perform a meaningful evaluation since our generated

news have to go through a validation process in order to analyze and document the results of the

algorithm.

1.3 Organization

This dissertation is divided in five chapters. Chapter two presents a bibliographic review on Natu-

ral Language Generation. In the first section, an historical review is made where the evolution of

the area since the first experiments until now is shown. Section two presents the classification of

NLG systems adopted. Section three discusses the design and tasks of an NLG system. Section

four demonstrates the most used generic methods implemented in NLG systems. Section five is

focused on the current evaluation methodologies for the NLG applications. Section six lists tools

used to approach the task of NLG. Section seven specifies the scientific conferences and events in

NLG. Finally, Section 8 addresses the impact of NLG in the field of Journalism.



1.3 Organization 3

Chapter three presents the GameRecapper system. In the first section, we discuss why gen-

erating a news piece that makes a game summary is difficult. Section two discusses in detail the

different aspects of the system such as the general architecture, the document plan, the sentence

templates and the Generation Module algorithm.

Chapter four presents the methodology followed to evaluate GameRecapper and the corre-

sponding results and Chapter five summarizes the present dissertation, provides our conclusions

and presents future work perspectives in order to improve the quality of the GameRecapper sys-

tem.
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Chapter 2

Natural Language Generation

Chapter two presents a bibliographic review on Natural Language Generation. In the first section,

an historical review is made where the evolution of the area since the first experiments until now

is shown. Section two presents the classification of NLG systems adopted. Section three discusses

the design and tasks of an NLG system. Section four demonstrates the most used generic methods

implemented in NLG systems. Section five is focused on the current evaluation methodologies

for the NLG applications. Section six lists tools used to approach the task of NLG. Section seven

specifies the scientific conferences and events in NLG. Finally, Section 8 addresses the impact of

NLG in the field of Journalism.

2.1 Historical Review

In the 1970, one of the main focuses in Natural Language Processing research was trying to iden-

tify user’s opinions, objectives and plans in order to achieve a proactive and extended interaction

between users and expert systems for consultation and command, where the system’s responses

should be collaborative [11]. This motivated an increase of research on discourse, especially

dialogue, and on generation, mainly on multi-sentence text generation. These were connected

because collaborative response, e.g. in advice giving systems, depends on modeling the user’s

opinions, goals and plans, and can naturally lead to paragraph-length outputs, for instance in pro-

viding explanations [12]. The NLG field has been in development ever since and it is not surprising

that the first NLG systems which translated data into very simple texts with little or no variation

started to appear, such as advice giving systems or synthesized weather forecasts [13, 14]. Over

the years, the conceived NLG systems became even more complex, more linguistic insights were

included and several methodologies were developed for generating more varied text.

Nowadays, we can state that NLG is a consolidated research field, given how many systems

were implemented and the range of application-domains in which they were utilized [15]. There

is an increasing need for text in natural language which handles all types of information. The

methodologies and approaches used in the NLG field try to answer real life demands and that

is why most of the NLG systems came up with a practical application. Some of these practical
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6 Natural Language Generation

applications include generating weather reports from meteorological data in multiple languages

[8] or even generating custom letters to provide answers for users’ questions [16]. The biggest

drawback of NLG has to do with the lack of standardization of methodologies and approaches to

build an NLG system. Usually the techniques used to develop an NLG system are determined

by the application in hand (domain of application and communicative goal) and by the level of

complexity and variation desired in the output text.

Major providers of natural language generation technology in the US, Automated Insights

and Narrative Science, began by developing algorithms to automatically write recaps of baseball

games. Sports served as an ideal starting point due to the availability of data, statistics, and pre-

dictive models that are able to, for example, continuously recalculate a team’s chance of winning

as a game progresses.

2.2 Classification of NLG Systems

A NLG system can be classified according to multiple criteria. We adopted the classification

developed by M. Vicente et al. which concluded that there are two main elements to distinguish

NLG systems [3]:

• The input of the system

• The communicative goal of the system

2.2.1 Classification According to the Input of the System

In NLG, it is possible to distinguish two types of systems depending on their input: data-to-text

(D2T) systems and text-to-text (T2T) systems. While the input of D2T is a collection of data that

does not make up a text (e.g. numerical data representing meteorological information), in T2T

systems the output is obtained by extracting the key information from a text.

Data-to-text Usually, the input type of a D2T system is structured data whether it is numerical

data, labeled corpus, databases, knowledge bases or log archives. Some authors use the word

concept when referring to this type of non-linguistic representation of information, therefore these

systems can also be named as concept-to-text. Some examples of D2T system are: SumTime

[17], a system that generates weather forecast texts from numerical weather prediction data, and

GoalGetter [5], which generates reports of football matches in Dutch.

Text-to-text The input data of T2T can be texts or isolated sentences. There are a lot of NLG

applications that use T2T systems such as generating textual summaries or simplified texts. Barzi-

lay and Sauper created a system that automatically generates Wikipedia articles from a collection

of internet documents [18].
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2.2.2 Classification According to the Communicative Goal of the System

NLG systems can also be distinguished according to the communicative goal of their construction.

The most relevant are:

Informative Texts The purpose of the system is to generate informative texts from factual data.

FoG [8] and SumTime [17] create weather forecasts taking as input numerical information from

simulation systems that represent parameters like temperature, precipitation level and wind speed

from different places and different hours of the day. Another example is SkillSum [19], a system

that generates basic skills reports to help people with poor basic numeracy and literacy skills.

Textual Summaries This type of systems produce textual summaries from one or more data

sources. This summaries can be associated to different fields: medical summaries [20], engineer-

ing [21], financial [22], sports [23], patents [24], among others.

Simplified Texts Systems that aim to help people with oral or writing problems, derived from

cognitive difficulties or language barriers. Some examples are: systems that produce text to help

aphasic people [25] or systems that allow visually impaired people to examine graphics [26].

Persuasive Texts Systems that try to persuade or take advantage of the user emotional state.

Examples of these systems are: STOP [27], a system that generates tailored smoking cessation

letters; systems that aim to decrease anxiety from cancer’s patients by giving them personalized

health information [28].

Dialogue Systems Dialogue system’s main purpose is to improve human-machine communica-

tion. Users interact directly with the system that creates sentences conditioned by the previous

context. There are lots of applications such as: automatic question generator system for academic

writing support [29] or adaptable tutorial dialogue system to improve knowledge on certain sub-

jects [30].

Explanations The output of this system is an explanation of the steps that the system went

through to execute an algorithm, process a transaction or solve a mathematical problem. P.Rex

[31] is an example of natural language proof explanation system.

Recommendations Systems which create recommendations by processing information related

to users’ preferences and opinions. Shed [32] is an online diet counseling system that provides

personalized diets based on the user profile.
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2.3 Design of an NLG System

In the previous section, we distinguished NLG systems according to their input data and their

communicative goal. We can describe an NLG system as a group of tasks that transmit information

to a certain audience to achieve a specific goal, in natural language. Therefore, characterizing

the input, the tasks and the output of the system is as important as specifying its context and

communicative goal. In order to the system successfully achieve its purpose each task should

overview those aspects.

The design of NLG systems is an open field where a broad consensus does not exist [15].

There is a diversity of architectures and implementations which depend on the problem for which

the NLG system is created. It’s hard to identify common elements and to provide a complete

abstraction which is applicable to most NLG systems. However, a lot of effort has been made

in trying to define a general architecture for the context of NLG. As our interest is to have a

starting point that help us to determine what tasks compose an NLG system in order to build a

system that generates summaries of football matches, after reviewing the literature we came to the

conclusion that the most consensual architecture is the one proposed by Ehud Reiter and Robert

Dale. According to them, an NLG system performs seven tasks and the interaction between them

can be represented by a three module architecture (Figure 2.1):

Figure 2.1: NLG system architecture and associated activities proposed by Reiter and Dale
(Source: [1])

.

• Text Planning

– Content Determination

– Discourse Planning

• Sentence Planning

– Sentence Aggregation

– Lexicalization
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– Referring Expression Generation

• Linguistic Realization

2.3.1 Text Planning

Text planning stage, also known as Macroplanification stage [3], is responsible for organizing the

available information in order to choose which information should appear in the system’s output

(Content Determination); and determine a structure for the text (Discourse Planning).

In Section 2.2.1 systems were distinguished according to their type of input. In this sense,

we established a difference between systems that take as input text and those that take as input

structured data. If the system is going to transmit conclusions from an inquiry, the system input

should be the users’ answers to each question (STOP system [27]). If the system is going to make

recommendations, the input should have descriptions of the elements that are going to be recom-

mended, the user search history, user preferences or a concrete question about what the system

is going to do, as in the MATCH system [33] solicitation "Compare restaurants in Manhattan".

Another example, the SUMGEN-W [2] system makes monthly weather reports and is backed up

by a database with accumulated information. In this system, the information enters the database

as daily weather reports (Figure 2.2).

Figure 2.2: Input for the system SUMGEN-W. Daily weather report (Source: [2]).

These examples show that within the task of choosing the system input and in the text planning

stage we should maintain a broad perspective. In this way, we should consider:

• Knowledge base –> Information about the domain

• Communicative goal –> Purpose of the text to be produced (explain, define, compare, etc.).
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• User model –> Characterization of the intended audience (novice, expert).

• Discourse history –> Record of what has been communicated so far.

All of these aspects won’t only affect the output of the system but also the intermediate stages as

well.

Some authors refer a preprocessing stage before text planning. This stage is required when

the data needs to be analyzed and interpreted. The analysis is responsible to find data patterns and

the interpretation is responsible to insert relevant sentences to expand the application domain. For

example, the SUMGEN-W daily weather report (Figure 2.2) could be the result of processing a

data collection like the one shown in Figure 2.3.

Figure 2.3: Initial data from SUMGEN-W before preprocessing stage (Source: [2]).

Content Determination - Content Determination is responsible for choosing which information

from the input data must be displayed in the final output. This task analyzes and filters the input

data in order to select the most important information.

Discourse Planning - In order to achieve a coherent text it is necessary to properly structure

their elements. Cohesion and coherence are the most important factors to make a collection of

messages become a discourse [3]. A. Ramos-Soto et al. define Discourse Planning as “the process

by which the set of messages to be verbalized is given an order and structure. A good structuring

can make a text much easier to read.” [15]. Again, as in all NLG activities, it is important to

take into account extra-linguistic aspects. A text that explains a procedure will have a different

structure than a text that compares two procedures. If the context is considered, there shall be a

connection between previous structures so the users don’t get confused.

2.3.2 Sentence Planning

Sentence planning, also known as Microplanification stage [3], takes as input the discourse plan

where the messages that should appear in the final text are specified. Sentence planning consists

in selecting which information is placed in any sentence and choosing the right words to express

the information in the right way. This stage usually combines aggregation, lexicalization and

referring expression generation described below. The output of this stage is the specification of
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the text contained at the discourse plan. The final text should be completely characterized after

this specification.

2.3.2.1 Sentence Aggregation

This activity groups several messages together in a sentence. The sentence aggregation process

takes as input a tree-structured plan whose leaf nodes are messages. The aggregation system must

decide both what messages to aggregate to form each sentence, and also what syntactic mechanism

should be used to combine the messages. A good aggregation significantly improves the fluidity

and readability of a text. The result must prevail the concision and the simplicity to produce a

coherent text.

Dale and Reiter proposed several mechanisms to perform sentence aggregation, including the

following [1]:

• Simple Conjunction: Doesn’t change the lexical and syntactical content of the components.

"John is from Manchester. Steven is from London."

"John is from Manchester and Steven is from London."

• Ellipsis: If the two messages being aggregated have a common constituent, it may be possi-

ble to elude the repeated constituent.

"John bought a ball. Steven bought a ball."

"John and Steven bought a ball."

• Embedding: This involves embedding one clause as a constituent of another.

"The next game is the Manchester game. It starts at 2pm."

"The next game is the Manchester game, which starts at 2pm."

• Set Formation: If the messages being grouped together are identical except for a single

constituent it may be possible to replace these with a single sentence plan that contains a

conjunctive constituent.

"John bought a ball. John bought a pen. John bought a pencil."

"John bought a ball, a pen and a pencil."

Sometimes there are alternative, usually domain-dependent, ways of describing sets. For

example, instead of explicitly saying: "John is afraid of bees, mosquitoes and flies.", the set

of elements could be replaced by a single concept "John is afraid of insects."

In an NLG system the adequate mechanisms to perform this tasks should be selected. As in

other stages, we should take into account the user model (can require less complicated texts), the

system’s requirements (providing a limited space favors the concision of the text), etc.
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2.3.2.2 Lexicalization

Lexicalization is the task responsible for choosing specific words or concrete syntactical structures

to refer to the content selected in the previous tasks. When lexicalization can choose from a variety

of options, we should consider aspects like user’s knowledge and preferences, the consistence of

the lexical components and the relation with the tasks of aggregation and referring expression

generation of each phrase.

Consider the message presented in Figure 2.4. This message mentions one domain relation,

GAMESTART, and four domain entities: the home team Manchester United, the away team

Liverpool, the stadium Old Trafford and the time 1400. Lexicalization involves finding a word

or phrase that can communicate a concept such as GAME to the reader (e.g. "starts" or "begins").

For example, "Manchester United vs Liverpool starts at 1400 at Old Trafford.".

Figure 2.4: Message providing the type of relation and the arguments of the sentence.

2.3.2.3 Referring Expression Generation

Referring expression generation function is to determine the appropriate way to refer to the con-

cepts and objects contemplated in the document plan in order to avoid ambiguity. A discourse

must be able to distinguish entities by finding the particular characteristics of each one. Defining

the problem of referring expression generation is one of the most consensual tasks in the NLG

field.

In the example shown in Figure 2.4, the generation of referring expression is responsible for

finding a noun phrase that identifies an entity. For example, we could use 2pm for 1400, or we

could use the expression The Red Devils for Manchester United. The amount of information

needed to do this will depend on the current discourse context. For example consider the italicized

words in the following context:
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1. The next game is Manchester United vs Liverpool. It starts at 2pm. Many TV channels will

broadcast this game.

Here the entity GAME is initially referred to by the names of the teams competing against each

other, which is a standard way of introducing into a discourse. The second reference to GAME
uses the pronoun it because this is a standard way of referring to an object that was mentioned

recently. The final reference is a definite description (this game), which is a standard way of

referring to an entity when it has already been introduced, but where the context rules excludes the

use of a pronoun. Generating each form of reference provokes different issues according to Reiter

and Dale:

• Initial Introduction : The generation of initial references to objects hasn’t had much focus

among NLG researchers. The two common strategies used are to simply give the name of

the object (if it has a name) or to describe the physical location of the object.

• Pronouns : Pronoun use and pronoun interpretation have been significantly studied in the

NLG literature. However, pronoun generation has not had the same amount of focus. In

many cases, a simple algorithm that works surprisingly well is to use a pronoun to refer to

an entity if the entity was mentioned in the previous clause, and there is no other entity that

the pronoun could possibly refer to [1]. In spite of being a fairly conservative algorithm,

since it will not generate a pronoun in many circumstances where one could be used, it has

the advantage that it does not often inappropriately insert a pronoun.

• Definite Descriptions : From a practical perspective, a simple but useful algorithm is to

begin by including in the description a base noun describing the object (for example, game),

and, if necessary, add adjectives or other modifiers to distinguish the target object from all

other objects mentioned in the discourse [1]. For example, if the discourse has just discussed

the Manchester United vs Liverpool game and no other games, then the game can be used

to refer to Manchester United vs Liverpool. However, if the discourse also mentioned the

Everton vs Swansea game, then a definite description for Manchester United vs Liverpool

should add information to distinguish both games (e.g. the Manchester game).

2.3.3 Linguistic Realization

A. Ramos-Soto et al. defines Linguistic Realization as a "task, which directly matches the one

defined in the general architecture, applies grammatical rules to produce a text which is syntacti-

cally, morphologically and orthographically correct" [15]. We can see this module as the encoder

of syntactic and morphological knowledge. Some examples of this syntactic and morphological

knowledge are [1]:

• Rules about verb group formation : The job of the linguistic realization is to construct an

appropriate verb group based on parameters like tense specification (e.g. , past, present or

future), the tense function (e.g. , interrogative or imperative), polarity (e.g. negated). Below,
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some examples if the message to be transmitted concerns about the relationship between the

concept NEXT-GAME, and the domain entity Manchester United vs Liverpool.

– Simple Present Tense, Negated:

The next game is not Manchester United vs Liverpool.

– Future Tense, Question:

Will the next game be Manchester United vs Liverpool?

– Past tense:

The [last] game was Manchester United vs Liverpool.

• Rules about agreement : Linguistic realization should enforce words to agree in grammat-

ical number (singular or plural). For example, The next game is in singular but we say The

next games are in plural.

• Rules about syntactically required pronouns : Some syntactic rules require pronouns

to be used in sentences. For example, we say Yesterday, Peter hurt himself. instead of

Yesterday, Peter hurt Peter. if the person Peter hurt was Peter himself.

These are some examples of the particular features of the English language which the linguistic

realization task can handle. This allows the rest of the NLG system to work with a much clearer

and simpler model of the language, unaffected by these details.

2.3.3.1 Structure Realization

Some researchers add up a last step in the NLG task that is called structure realization [3]. This

task should convert the output in order to present it in a particular platform . For example, in same

cases, the output will be shown at a web page and, for that, needs HTML tags. This is one example

but there are many more possibilities. Therefore, the usual actions of this task are: including tags in

the document (HTML, LATEX, RTF, SABLE5) or creating tree-structures to include proper attributes

to the final output (punctuation, bullets, etc...). An example of one of those tree-structures which

is shown in Figure 2.5 [3].

An example of a multi-mode output system, and for that, needs a stage like this one, is MATCH

system [33], a recommendation system that offers information about restaurants in New York. In

this system, structure realization facilitates the geopositioning of the locals within a map and

establishes the text format. For example, for a solicitation as "Show me Italian restaurants in

the West Village", first, the system will provide a map with the geographic locations of Italian

restaurants within West Village. Then, the user should decide among the options provided and, for

that, the system provides a solicitation "Compare these restaurants" if the user makes a circular

outline between the restaurants. In that case, MATCH generates another output, but this time, in

voice or text form such as the one shown by M. Johnston et al. [33]: "Compare-A: Among the

selected restaurants, the following offer exceptional overall value. Uguale’s price is 33 dollars. It

has excellent food quality and good decor. Da Andrea’s price is 28 dollars. It has very good food
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Figure 2.5: Instructions to generate the output (Source: [3])

quality and good decor. John’s Pizzeria’s price is 20 dollars. It has very good food quality and

mediocre decor.".

2.4 NLG Generic Methods

After discussing the tasks performed by an NLG system, this section provides an analysis on pre-

vious methods and approaches to Natural Language Generation and investigates their advantages

and disadvantages. Adopting the classification done by M. Vicente et al. , we can differentiate

knowledge-based methods from statistical methods [3]. On the one hand, knowledge-based meth-

ods are methods that use resources with strong linguistic influence such as dictionaries, thesaurus,

rule sets or templates. From these resources is extracted morphological, lexical, syntactic and se-

mantic information. On the other hand, when a system is build based on statistical methods, the

information is backed up by a corpus and by the probabilities associated to each sentence of that

corpus, which can be labeled or not. If the applied corpus is adequate, statistical-based methods are

less restricted to a certain domain or language compared to knowledge-based approaches because

they do not have to strictly follow rule sets or templates that usually take into account particu-

larities of the specific context domain. It is worth noting that these approaches are not exclusive

and in most situations the techniques applied to a system are associated to the specific NLG appli-

cation. Therefore, some hybrid approaches were created that combine statistical and knowledge

approaches. Furthermore, this section describes some of the techniques applied in NLG systems

according to the stages where they are applied.
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2.4.1 Knowledge-Based Methods

The common element between knowledge-based systems is their ability to explicitly represent

knowledge. For that purpose, these systems make use of tools such as ontologies, rule sets,

thesaurus or templates. NLG systems can also be template-based, i.e. utilize shallow process-

ing where base structures of the output sentences are defined as templates that are transformed

and values from the input data are filled in to generate the final output. The difference be-

tween knowledge-based and template-based approach resides in the fact that knowledge-based

approaches require detailed grammatical and linguistic information to be embedded within the

system.

M. Vicente et al. consider that the most relevant theories applied in knowledge-based or hybrid

systems are [3]:

RST: Rhetorical Structure Theory RST is one of the main theories applied in NLG systems

and is related to the cohesion of texts and the structure of sentences and paragraphs [34]. RST is

intended to describe texts, rather than the processes of creating or reading and understanding them.

It posits a range of possibilities of structure (i.e. various sorts of "building blocks" which can be

observed to occur in texts). RST underlies on the idea that is possible to recursively decompose

any text in a set of elements which establish rhetorical or discursive relations (schemas) between

them. Furthermore, the analysis of rhetorical relations consider the intentions of who originates

the communication as well as the desired effect on who receives it. The most relevant elements

are called nucleus and the elements that depend on the nucleus are called satellites.

SFG: Systemic Functional Grammar Systemic-Functional Linguistics (SFG) is a theory that

views language as "a network of systems, or interrelated sets of options for making meaning"

[35]. A central notion is ’stratification’, such that language is analyzed in terms of three levels

of abstraction: Semantics, Lexico-Grammar and Phonology-Graphology. SFG starts at social

context, and looks at how communication functions both act upon, and is constrained by, this

social context. Functions of language are referred to as metafunctions. This theory proposes three

general functions: the ideational, the interpersonal and the textual.

• Ideational metafunction (the propositional content);

• Interpersonal metafunction (concerned with speech-function, exchange structure, expres-

sion of attitude, etc.);

• Textual metafunction (how the text is structured as a message, e.g., theme-structure, given/new,

rhetorical structure)

Usually, the last two metafunctions are not covered in other linguistic theories.
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TAG: Tree-Adjoining Grammars A Tree Adjoining Grammar consists of a set of elementary

trees, divided in initial and auxiliary trees that incorporate semantic content [36]. These trees

constitute the basic building blocks of the formalism. Operations of adjunction and substitution

are defined which build derived trees from elementary trees. The string language of a TAG is

defined as the yields of all the trees derived by a TAG.

MTT: Meaning-Text Theory Linguistic models in MTT operate on the principle that language

consists in a mapping from the content or meaning (semantics) of an utterance to its form or

text (phonetics) [37]. Intermediate between these poles are additional levels of representation at

the syntactic and morphological levels. Representations at the different levels are mapped, in

sequence, from the unordered network of the semantic representation (SemR) through the depen-

dency tree-structures of the Syntactic Representation (SyntR) to a linearized chain of morphemes

of the Morphological Representation (MorphR) and, ultimately, the temporally-ordered string of

phones of the Phonetic Representation (PhonR) (not generally addressed in work in this theory).

The relationships between representations on the different levels are considered to be translations

or mappings, rather than transformations, and are mediated by sets of rules, called "components",

which ensure the appropriate, language-specific transitions between levels.

Centering Theory A theory that relates focus of attention, choice of referring expression, and

perceived coherence of utterances within a discourse segment [38, 39]. The main objective is to

provide an overall theory of discourse structure and meaning. Each discourse segment exhibits

both local coherence (i.e. coherence among the utterances in that segment) and global coherence

(i.e. coherence with other segments in the discourse). Corresponding to these two levels of coher-

ence are two components of attentional state: the local level models changes in attentional state

within a discourse segment, and the global level models attentional state properties at the interseg-

mental level. In NLG systems, the centering theory affects the selection and use of pronouns and

descriptions.

2.4.2 Statistical Methods

As mentioned before, statistical methods are based on the extracted probabilities of a base text

whether it is a corpus or a text from the web. One of the main tools for statistical methods are

Language Models (LM) [40]. A statistical LM is a probability distribution over sequences of

words. Given such a sequence, say of length n, it assigns a probability P(w1, . . . ,wn) to the whole

sequence. Having a way to estimate the relative likelihood of different phrases is useful in many

natural language processing applications. A good LM can decide if a sentence is well-constructed,

according to the associated probability of that sentence. In such cases, we say that LM accepts the

sentence. The sentence is rejected when the associated probability is low.

In the task of NLG, a good LM can predict how the input (or part of the input) is going to

be converted within the system. The main quality element of a LM is the size of the corpus or
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database because the amount of contexts and domains that a word can be used is proportional to

size of the learning corpus. In the task of NLG, three of the most used LM are:

N-Gram Models A n-gram [41] is a contiguous sequence of n items from a given sequence of

text or speech. A n-gram model is a type of probabilistic model for predicting the next item in such

a sequence in the form of a n−1 order (Markov chain order). The implementation of such models

is widely used in recognition and learning algorithms. However, one of the main limitations of

n-grams is the lack of any explicit representation of long range dependency.

Models based on Stochastic Grammar Stochastic Grammar [42] assigns a probability to each

grammatical rule. The probability of a derivation (parse) is the product of the probabilities of

the productions used in that derivation. Models based on stochastic grammar present naturally

language restrictions. They also allow model dependencies as long as desired, even though the

definition of such models and parameters can be very hard in complex tasks.

FLM: Factored Language Model Factored Language Model [43] is an extension of a conven-

tional LM. In a FLM, each word is viewed as a vector of k factors: wi = { f 1
i , ..., f k

i }. These factors

can represent morphological classes or any lexical, syntactic or semantic characteristic. A FLM

provides a probabilistic model P( f | f1, ..., fN), where the prediction of a factor f is based on N par-

ents { f1, ..., fN}. For example, if w represents a word token and t represents a grammatical class

(POS:Part-Of-Speech), the expression P(wi|wi−2,wi−1, ti−1) gives a model for predicting current

word token based on a traditional n-gram model as well as the part of speech tag of the previous

word. A major advantage of factored language models is that they allow users to specify linguistic

knowledge such as the relationship between word tokens and POS.

2.4.3 Hybrid Models

Hybrid models (e.g. Nitrogen [44] or FERGUS [45]) combine knowledge and statistical methods

to perform on the different tasks of a NLG. Other example of an hybrid system is the FLIGHTS

[46] system, that presents personalized information of flights to each user (e.g. checks is the user is

a student or if a user flies frequently). In its development, multiple knowledge bases are considered

(user models, domain models and discourse history) to perform the content selection that should

appear in the output. Then, the output is structured according to a template and the final text

is generated by the OpenCCG framework [47]. The OpenCCG framework is a tool that applies

n-grams and FLM, internally. Therefore, the selection, structure and generation of the text is

performed in different stages.

2.4.4 Techniques Applied in the Different Stages

This subsection describes some of the techniques applied in NLG systems according to the stages

where they are applied. These relations are not strictly defined and, when comes to the time
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of constructing the system, the application of such techniques is fairly flexible. This subsection

provides a general description of the techniques as well as concrete examples of systems that

applied them, pointing out their relations with the statistical methods and knowledge methods

approached discussed above.

2.4.4.1 Text Planning Techniques

Text Planning is the initial stage of a NLG system. As mentioned before, this stage performs

the content selection and document planning tasks. Some researchers allude to a possible general

classification of the techniques associated to this stage depending if the content selection is done

before or after document planning. As a result, if the system has the structure and just selects

the content to complete it, we say it is a top-down strategy. Otherwise, if we have the content

and it’s their composition that set the document planning, we say it is a bottom-up strategy [48].

McDonald and Bolc proposed a triple division of techniques [49]:

The first mechanism is called direct replacement. This mechanism is responsible to add infor-

mation to a basic scheme in order to make the document planning. It starts with a data structure

that is gradually transformed into a text. The semantic coherence of the final text comes from the

semantic coherence of the original structure. The main disadvantage of this mechanism it’s his

lack of flexibility since it is not possible to change the structure once the structure is generated.

The second mechanism is planning with rhetorical operators. Rhetorical operators or attributes

precede of RST, and they also establish rhetorical relations among the elements to be included in

the final text. The procedure starts with an analysis of the communicative goal and consists in

expanding the main objective to achieve an hierarchical tree-structure where the end nodes are the

propositions and the operators are the derivation rules.

Finally, we have the text schemes technique. This technique was originated in a system that

applied it called TEXT [50]. The author detected regularities in text generating after analyzing a

lot of examples. The author concluded that given a communicative goal, the information tends to

be transmitted in the same order. To reflect this, the author coined the concept "schematta" and

combined it with the use of rhetorical attributes. Schemattas are schemes which determine possible

combinations of attributes, forming patterns and templates. Therefore, given a communicative goal

such as describe or compare, the system is able to select a scheme that provides a plan indicating

where and what should be said.

2.4.4.2 Sentence Planning Techniques

Sentence planning phase is responsible for message aggregation, lexicalization and generation of

reference expressions. As explained before, aggregation consists in grouping several messages

together in a sentence in order to increase the coherence and fluidity of the text. Generally, this

task requires a set of composition rules that will generate multiple possible outputs. Therefore, the

system needs a selection function.
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Given a rule set and the information units, there are some systems that generate multiple output

options but there are as well systems that just produce one possible output option. AST ROGEN6

is an example of a system that just produces one possible output option [51]. On the opposite

side, SPOT is a system capable of selecting the most adequate option after generating multiple

possibilities [52]. The system incorporates learning techniques which rate the multiple aggrega-

tions from a noted corpus. There are also systems that apply evolutionary approaches which are

based in biological evolutionary techniques [53]. There is also some work based on tree-structured

dependencies and Rhetorical Structure Theory (RST) [54].

The following task in sentence planning is lexicalization. Template-based lexicalization di-

rectly associates a unique word or phrase to each concept or relationship . For example, SUMGEN-

W selects the text "very much warmer than average" when the average temperature lies within a

specific range. Other systems have developed powerful graph-rewriting algorithms which use

general dictionaries or thesaurus to select the adequate words or phrases [55]. There are also

knowledge bases as WordNet [56] and FrameNet [57] to perform more complex inferences. An-

other approach is based on stochastic methods where a stochastic generator is able to select the

adequate words corresponding to a collection of semantic representation based on classifiers [58].

The final task is referring expression generation. This task selects words or expressions which

identify entities from the domain. This tasks should be unequivocal, but some techniques have

been developed that relaxes the exigency level [59]. In this case, we call it simple referring ex-

pression generation.

One of the most used mechanisms is the incremental algorithm [60] or one of its variants as

the context-sensitive algorithm [61]. The input of this algorithm includes the entity that needs

to be acknowledge as well as an entity collection called contrast collection. Every entity have

attributes associated to them (Figure 2.6). Then, it starts to iterate a list of attributes among the

ones selected to form the final expression and it excludes entities from the contrast collection.

Another technique that is widely used and applied is graph-based algorithm [4]. The edges of

the graph are labeled with properties and attributes. The idea is that is possible to systematically

generate all the sub-graphs from a directed graph. Starting from the sub-graph that only has the

vertix, representing the object to reference, the algorithm starts to perform a recursive expansion

by adding the adjacent edges to the sub-graph that is active in that moment.

2.4.4.3 Linguistic Realization Techniques

The first work that presented corpus-based statistical techniques to perform linguistic realization

techniques was developed by Langkilde and Knight in 1998 [44]. This method applies a n-gram

model that decides which word transformations should be applied (whether to use the plural, if is

a question or not). The method chooses the output which probability is higher.

Other approach is the application of the spanning tree algorithm [62]. The procedure starts

with a word collection that forms a graph. This technique is able to convert it in an acyclic graph.

The sibling nodes are ordered by a n-gram LM. In this way, we obtain several distinctive possible
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Figure 2.6: Graph of a scene of a dog close to a doghouse. Graph-based algorithm for referring
expression generation (Source: [4]).

tree-structures. To complete the process, it is applied an argument satisfaction model that select

the best structure to grammatically order the words, enabling the generation of the final text.

2.5 Evaluation Methodologies

There are multiple possibilities when comes to evaluate an NLG system [63]. On the one hand, it is

possible to evaluate the effect of a system on something that is external to it, for example, the effect

on human performance or the value added to an application. This is called an extrinsic evaluation.

On the other hand, intrinsic evaluation focus on the quality of the produced text. We can also

distinguish manual evaluation from automatic evaluation. In the NLG field, it is usual to perform

manually the extrinsic evaluation and perform automatically the intrinsic evaluation [63]. Usually,

manual evaluation produces good results. Especially, if the criteria used are the adequacy and

fluency. However, this type of evaluation is very expensive, time consuming, and can be difficult

to carry out [64]. An example of manual evaluation was the evaluation performed in the STOP

system. They performed inquiries to evaluate the task effectiveness (e.g. how many users actually

stopped smoking, how much time it took, etc.). STOP’s evaluation needed 20 months and costed

75 thousand pounds to complete [27]. Regarding intrinsic evaluation which values the properties

of the system without taking into accord external effects usually requires comparing the system’s

output with some reference text or corpus, using metrics or ratings. In the task of evaluating NLG

systems, it is possible to take into account aspects related to the system’s complete functioning or

with the system’s modules functioning [65]. Regarding system’s evaluation, we should take into

account if the output is appropriate according to the communicative goal, the discourse structure,

coherence, ambiguity and vocabulary quality.
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Both evaluations might seem linked since a system able to produce a high quality text, should

successfully accomplish its communicative goal. But intrinsic evaluations tend to favor natural

generation system that do not diverge much, while users often prefer output with more variation.

Below, are some examples where intrinsic and extrinsic evaluations produced divergent results:

1. A. S. Law et al. [66] - Graphical representations of medical data were compared with textual

descriptions of same data. In intrinsic assessments doctor rated higher the graphs but in

extrinsic diagnostic text performed better.

2. A. S. Lennox et al. [67] - The STOP system generated tailored smoking-cessation advice

based on the user’s response to a questionnaire. Despite the intrinsic evaluation rated high

the quality and the intelligibility of the produced texts, extrinsic evaluation showed that the

system was not able to make their patients to stop smoking.

Most NLG systems’ evaluation is done using one of 3 basic techniques [68]:

1. Trained assessors evaluate the quality of system outputs according to different criteria, typ-

ically using rating scales [9].

2. Automatic measurements of similarity between reference and system outputs, for example

BLEU [69] and METEOR [70].

3. Human assessment of the degree of similarity between reference and system outputs [71].

BLEU and METEOR, are metrics that perform automatic evaluation. BLEU (BiLingual Eval-

uation Understudy) is a metric that evaluates how close is an automatically generated text from a

reference text, previously generated by a human. The closer they are the greater the text quality

in evaluation. METEOR (Metric for Evaluation of Translation with Explicit Ordering) uses sen-

tences as unit element for the evaluations. The metric creates an alignment between components

(words) from the sentence under test and a reference test. The content of this metric is obtained

by calculating the harmonic mean of the accuracy of alignments, along with the number of most

significant alignments. These algorithms allow faster and cheaper evaluation of NLG systems.

However, when the sample is small, these metrics have proved to be inaccurate. Therefore, a sub-

ject that is open for debate within the NLG area is how to perform a good evaluation [15]. The

majority of evaluation methods are quantitative [72]. This means that they try to have numerical

ratings to evaluate how well the system is performing according to different criteria. Other kind

of approaches is qualitative evaluations in which experts are asked to share their opinion about

the system’s output. A. Ramos-Soto et al. described as an ideal evaluation scenario one that could

conjugate "[a] quantitative evaluation together with a qualitative one and, after the system has

been deployed in its target domain, an extrinsic evaluation" [15]. That is because, according to

them, the intrinsic evaluation would tell how ready the NLG system is to produce an high quality

text in a real environment. After correcting the flaws exposed in the results of the intrinsic evalu-

ation, the extrinsic evaluation would check on the success level of the NLG system to achieve its

communicative goal.
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2.6 NLG Tools

This section presents a series of tools applied in the NLG stages (Table 2.1). There are a lot of

web tools and free applications, especially oriented to the realization stage. A lot of system and

resources are available in the web [73].

2.6.1 Natural Language Toolkit (NLTK)

NLTK is a Python library for building programs to work with human language data [74]. It pro-

vides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet. NLTK

was originally created in 2001 as part of a computational linguistics course in the Department of

Computer and Information Science at the University of Pennsylvania. Since then it has been de-

veloped and expanded with the help of dozens of contributors. It has now been adopted in courses

in dozens of universities, and serves as the basis of many research projects. NLTK provides sev-

eral modules for several NLP tasks, such as: accessing corpora, string processing, part-of-speech

tagging and parsing.

The creators of NLTK wrote a book called Natural Language Processing with Python. It

guides the reader through the fundamentals of writing Python programs, working with corpora,

categorizing text, analyzing linguistic structure, and more. The book is being updated for Python

3 and NLTK 3. NLTK is open source software. The source code is distributed under the terms of

the Apache License Version 2.0. The documentation is distributed under the terms of the Creative

Commons Attribution-Noncommercial-No Derivative Works 3.0 United States license.

2.6.2 RealPRO

RealPRO is a tool that performs the realization stage [75]. The system’s input must have an ASCII,

HTML or RTF format, therefore is considered a D2T system. It involves a linguistic knowledge-

based procedure, initially just in English language. After it is possible to upgrade to other idioms.

The input data is a dependency tree-structured diagram. This diagram has two components:

• Syntactic relations which are represented by labeling the bows that relates the nodes.

• Lexemes that are represented by the labeling each node. The lexemes that are stored are the

ones which have meaning. RealPRO is not able to perform syntactic analysis, therefore all

the lexemes that add meaning must be specified.

Once the diagram is generated, the tool adds functional words which generate a second tree-

structured diagram. Linear precedence rules are performed in the second diagram based on the

bow’s labels. Afterwards, the elements of the sentences are conjugated. Finally, the tool adds

the punctuation marks and generates the required instructions to adapt the output to the desired

format.
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2.6.3 SimpleNLG

SimpleNLG is a tool focused in the realization stage developed exclusively for English language

[76]. The tool is formatted as a java library. The main objective is giving help to write grammati-

cally correct sentences.

The tool was constructed based on three basic principles:

• Flexibility. SimpleNLG is a combination of a scheme-based system and a sophisticated

system. Through the combination of both, it is possible a more comprehensive syntactic

coverage.

• Robustness. When an input is incomplete or incorrect, the tool is able to produce an output,

even though it is probable that the output is not as intended.

• Independence. Morphological and syntactic operations are clearly distinguished.

The library provides an interface with which is possible to interact via java coding. Starting

from a base element, equivalent to the main verb of the sentence, are performed concatenations to

the other elements participating in the main action. Once the elements are aggregated, we need

to indicate the tense function (past, present, future) and specification (interrogative, affirmative..).

Finally the tool generates a sentence based on the given parameters. SimpleNLG is licensed under

the terms and conditions of the Mozilla Public License (MPL).

2.6.4 PyNLPl

PyNLPl (pronounced as ’pineapple’), is a Python library for Natural Language Processing. It can

be used for basic tasks such as the extraction of n-grams and frequency lists, and to build simple

language models. It contains parsers for file formats common in NLP (e. g. FoLiA/Giza/Moses).

The most notable feature of PyNLPl is a very extensive library for working with FoLiA XML

(Format for Linguistic Annotation). The library is divided into several packages and modules

and works both on Python 2.7 , as well as on Python 3. PyNLPl is licensed under the terms and

conditions of GPL (General Public License).

2.6.5 NaturalOWL

NaturalOWL is a D2T tool that generates text with information from linguistically annotated OWL

ontologies [77]. OWL is a standard to specify ontologies into the Semantic Web. NaturalOWL

uses all three stages that were approached in section 2.3 to generate the text.

For text planning stage, NaturalOWL selects from the ontology all the logical facts that are

directly relevant to that instance. The tool may be instructed to include facts that are further away

in a graph representation of the ontology, up to a maximum (configurable) distance. The selected

facts of distance one are then ordered by consulting ordering annotations which specify a partial

order of properties. Second distance facts are always placed right after the corresponding directly
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relevant facts. In the application domains, this ordering scheme was adequate, although in other

domains more elaborate text planning approaches may be needed.

In the sentence planning stage, NaturalOWL lets the user to configure the maximum number

of sentences that can be aggregated. Generally, NLG systems aggregate the maximum possible

sentences in order to achieve better legibility. Finally, in realization stage, NaturalOWL takes the

sentence planning output and represents it by adding punctuation symbols and capital letters where

necessary.

2.6.6 OpenCCG

OpenCCG [47], the OpenNLP CCG Library, is a collection of natural language processing com-

ponents and tools which provide support for parsing and realization with Combinatory Categorial

Grammar (CCG). [78]. Combinatory Categorial Grammar (CCG) is a form of lexicalized grammar

in which the application of syntactic rules is entirely conditioned on the syntactic type, or category,

of their inputs. No rule is structure or derivation dependent. The OpenCCG realizer takes as input

a logical form specifying the propositional meaning of a sentence, and returns one or more surface

strings that express this meaning according to the lexicon and grammar. OpenCCG is a tool that

applies n-grams and FLM described in section 2.4, internally.

Tools Progr.
Language License Last Update

NLTK 1 Python
Apache License
Version 2.0

June 2016

RealPro2 Java Unkown Unknown

SimpleNLG3 Java
Mozilla Public
License

May 2016

PyNLPl4 Python
GNU Library
Public License

June 2016

NaturalOWL5 Java
GNU Library
Public License

April 2013

OpenCCG6 Java
GNU Library
Public License

May 2016

Table 2.1: Additional information on the NLG Tools described in Subsection 2.6

1http://www.nltk.org/
2http://www.cogentex.com/technology/realpro
3https://github.com/simplenlg/simplenlg
4https://pypi.python.org/pypi/PyNLPl/
5https://sourceforge.net/projects/naturalowl/
6http://openccg.sourceforge.net/

http://www.nltk.org/
http://www.cogentex.com/technology/realpro
https://github.com/simplenlg/simplenlg
https://pypi.python.org/pypi/PyNLPl/
https://sourceforge.net/projects/naturalowl/
http://openccg.sourceforge.net/
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2.7 Resources: Scientific Conferences and Events

Documentation related to techniques, associated theories, evaluation and new challenges can be

found in the records of International NLG Conference (INLG) as well as in European Workshop

on Natural Language Generation (ENLG):

• INLG - The International Natural Language Generation conference is the biennial confer-

ence of the Special Interest Group on Natural Language Generation (SIGGEN). It is held

since 2000. The 9th INLG conference will be held in Edinburgh, Scotland in September

2016.

• ENLG - The European Natural Language Generation workshop is a biennial series of work-

shops on natural language generation that has been running since 1987. The last edition was

the 15th ENLG held in Brighton, UK in September 2015.

NLG papers can be found at:

• ACL - The Association for Computational Linguistics is the premier international scientific

and professional society for people working on computational problems involving human

language, a field often referred to as either computational linguistics or natural language

processing (NLP). The association was founded in 1962, originally named the Association

for Machine Translation and Computational Linguistics (AMTCL), and became the ACL

in 1968. Activities of the ACL include the holding of an annual meeting each summer

and the sponsoring of the journal Computational Linguistics, published by MIT Press; this

conference and journal are the leading publications of the field.

• EACL - The European Chapter of the ACL (EACL) is the primary professional association

for computational linguistics in Europe. It provides a number of services to its members and

the community:

– The conference. EACL 2014 was held at the University of Gothenburg’s Centre for

Language Technology from April 26 to April 30, 2014. From 2014 the EACL confer-

ence will take place every three years. In addition, the ACL conference is hosted in

Europe every third year.

– Twice-yearly newsletter carrying news about activities organised or supported by EACL,

and major European happenings and events.

– Support for educational initiatives in the field – for example, EACL-sponsored in-

troductory courses in CL at ESSLLI summer schools and studentships at specialist

workshops.

• ANLP - The Association for Neuro Linguistic Programming is a UK organization to pro-

mote NLP. ANLP publishes Rapport magazine quarterly, which is available to non-members

by subscription. ANLP has also published the proceeding of a NLP Research Conference

held at the University of Surrey in 2008.
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• IJCAI - The International Joint Conference on Artificial Intelligence, the main gathering of

researchers in AI. IJCAI has been held biennially in odd-numbered years from 1969 until

2015.

• AAAI - The Association for the Advancement of Artificial Intelligence is a nonprofit scien-

tific society devoted to advancing the scientific understanding of the mechanisms underlying

thought and intelligent behavior and their embodiment in machines. Major AAAI activities

include organizing and sponsoring conferences, symposia, workshops and publishing books,

proceeding and reports.

2.8 Applications of NLG in the Area of Journalism

Now that we discussed the classification, the tasks and the approaches of a NLG system, now we

will focus on the problem in hand. This section will focus on the applications of NLG in the area

of Journalism and will provide some related work in generation of sports matches summaries.

Over time journalists were assisted by computer systems in several phases of news production.

Computer systems helped at collecting, analyzing and organizing data but journalists always had

the last word to say when it comes to create and publish the news. Nowadays, advances in the area

of NLG allowed the creation of algorithms to automatically generate news stories without human

interference, aside of programming the algorithm. Andreas Graefe named this phenomenon as

“Automated Journalism” [79]. Automated news started in the 1980s from the domain of weather

forecasting but rapidly spread over to other areas such as financial reporting, where the speed in

which the information is provided is the key value. NLG also made had an impact on sports re-

porting, due to the abundant availability of statistics and the formulaic templates and stock phrases

which can be used for game reports [9]. Diversification of individual interests has aroused the de-

mand for the individual media in place of mass media. In order to satisfy the needs, media has to

cover a huge amount of data. Algorithms can use the same data to tell stories from different an-

gles, in multiple languages, and personalized to the needs and preferences of the individual reader.

Also, software providers have started to release tools that allow users to automatically create sto-

ries from their own data. In fact, algorithms work very well on fact-based stories for which clean,

structured and reliable data are available. In such situations, NLG algorithms may be preferred

over manual document creation because they increase accuracy and reduce updating time.

Since Associated Press, one of the world’s largest and well-established news organizations, has

started to automate the production of its quarterly corporate earnings reports, the use of algorithms

to automatically generate news has shaken up the journalism industry [80]. Due to higher profit

expectations there is a broader trend in journalism to lower the variable costs involved in news

production. This, allied to the fact of the increasing availability of structured data and the demand

for individual media, means automated journalism is likely to stay. One main concern is how

automation of news will affect journalists and the way they work. First of all, it’s important to

emphasize that automated journalism cannot be used in domains where no data is available and
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difficult when the quality of data is poor. Algorithms apply predefined rules and statistical methods

but cannot provide deeper interpretations of the information like explaining new phenomena or

establishing causality. Thus, whether or not technology will replace or complement journalists

will depend on the task and skills of the journalist. It is obvious that algorithms can save a lot of

routine work. As a result, journalists will be able to focus on tasks that algorithms cannot do such

as in-depth reporting, interviews, and investigating. Aspects like personality, analytic skills and

creativity become more important, while professional routine tasks can be automated.

A lot of recent studies have focused on the credibility of automated journalism. Hille Van der

Kaa and Emiel Kramer created four dutch robot written news items based on algorithms outlined

in the data-to-speech system (D2S) and created by Theune [71, 5]. Two of those articles reported

on a result of a football match and the other two articles reported on stock prices. The contents and

sentences were the exact same for both topics and only the sources of the article was manipulated.

One of them showed "This article is written by a computer" and the other "This article is written

by a journalist". Each participant was randomly presented with one of the four texts and was

asked to evaluate the perceived expertise and trustworthiness of the news writer and of the content

of the new story. They found that news consumers perceive the trustworthiness and expertise

of the computer writer and journalist equally. Arjen Van Dalen tried to analyze the reactions of

the journalists to the launch of a network of machine-written sport websites [9]. He came to the

conclusion that contrary to previous studies "the journalists do no reject the new development". In

fact, "journalists see this new technology as a relevant development that leads them to reconsider

their own professional skills".

Generation of sports match reports has been repeatedly a subject of investigation in the area of

Natural Language Generation. We have multiple examples such as, GoalGetter [5], or Multilingual

Cricket Summaries Generator [81] which will be described below. Bouayead-Agha et al. states

that this is not by chance: "[such] commentaries constitute a popular genre and there is thus a

demand for automation of their production" [7].

2.8.1 GoalGetter

GoalGetter is a Data-to-Speech (combines speech and language generation techniques) system

that was created based on an existing one, the DYD (Dial Your Disk) system in order to show that

the original system is easily portable regardless of the domain, the language and the speech output.

GoalGetter system generates spoken summaries of football matches from texts stored in a Teletext

page that contain data on one or more football matches. The database contains information about

the teams and their players. The output of the system is a correctly pronounced text in Dutch which

conveys the information on one of the matches of the Teletext page. GoalGetter has two main

modules: the text generation module (TGM) and the speech output module. The major difference

of GoalGetter with most other NLG systems is that it does not use a pipelined architecture. The

general architecture of the TGM consists of two modules: Generation and Prosody, and three data

resources: 1) a set of syntactic enriched templates; 2) the Knowledge State; and 3) the Context

state (Figure 2.7).
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Figure 2.7: System architecture of GoalGetter (Source:[5])

The data concerning the results of a particular of a particular football match and the data on

the teams and their players (the domain data) are one part of the input for Generation. Genera-

tion also uses a collection of syntactic templates internal to the system. Syntactic templates are

tree structures that contain slots to be filled with the appropriate information from the input data.

Some of these conditions are formulated as conditions on the Knowledge State. The Knowledge

State acknowledges which data have been transmitted to the user, and which data have not yet

been transmitted. The Context State records the parts of the text already generated. It includes

a Discourse Model which keeps a record of the already mentioned discourse objects to be used

for referring expression generation. A sample output and the respective English translation of

GoalGetter is displayed in Figure 2.8.

2.8.2 Multilingual Cricket Summary Generator

Multilingual Cricket Summary Generator is a data-to-text NLG system created to assess the suit-

ability of template-based approaches to language-independent NLG systems [6]. Multilingual

Cricket Summary Generator generates summaries of cricket games in English and Bangla from

cricket match scorecards that are saved as plain text files. The author followed Reiter and Dale

architecture to design the system (Figure 2.9).

The text planning stage is formed by a pre-processor and a content selection task. The text
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Figure 2.8: Output and English translation of the GoalGetter system (Source:[5])

planning stage selects which content of the input data should appear in the summary and deter-

mines the structure of the selected content (document plan). The document plan is the input of the

sentence planning stage, which is only composed by the aggregator module (referring expression

generation was not implemented). The aggregator module selects which items of the document

plan can be realized in the same sentence. The output of the aggregator module is supplied to the

surface realizer, which makes use of a set of sentence and phrase templates to create the natural

language sentences. Then, the post-processor applies the rules specified in the lexicon of the lan-

guage to be generated, and produces the summary in natural language. The presented system is

based on two levels of templates, i. e. sentence and phrase templates that are easily extensible for

creating variation in the output.



2.8 Applications of NLG in the Area of Journalism 31

Figure 2.9: System architecture of Multilingual Cricket Summary Generator (Source:[6])
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Chapter 3

The GameRecapper System

3.1 Introduction

As stated in Chapter 1, the main purpose of this dissertation is to generate journalistic pieces

using information from structured databases. Today, there is a need to report on a lot of football

matches and, many of them, are played at the same time. A significant amount of human resources

and working time would be needed for journalists to watch every match that they have to make a

report. Due to the abundant availability of information that is stored in databases, journalists are

able to make a report based just on that information. However, if this process was automated it

would save a lot of working time of journalists. As a result, journalists would have more time for

in-depth reporting.

First, we start with an example of the match information input and the corresponding journalist

match report. The match information is available in the www.zerozero.pt project and Figure 3.1

presents how the characteristics of a particular football match are displayed on the website.

The first 2 paragraphs of the corresponding journalist authored match report to the input data

of Figure 3.1 are:

• Portuguese - "Em Arouca, a equipa de Lito Vidigal continua com o sonho da Europa bem

presente, depois da vitória por 3x2 sobre a Académica, este sábado à tarde. Por sua vez, os

estudantes, deram mais um passo atrás na corrida pela salvação.

E as coisas nem começaram mal para a formação de Coimbra, que marcou primeiro, aos

10 minutos, por Pedro Nuno, após cruzamento de Rafa Soares. A vantagem era justa, até

porque a primeira dezena de minutos tinha sido de domínio da Académica."

• Translation - "In Arouca, Lito Vidigal’s team keeps the Europe dream well alive, after the

3x2 victory against Académica, this saturday afternoon. On the other hand, the students

took a step backwards in the fight to avoid relegation.

The game did not start badly for Coimbra’s formation as they scored first, at the tenth minute,

thanks to Pedro Nuno’s goal, after a cross by Rafa Soares. Académica deserved the lead

because they were controlling the game in the first ten minutes."

33
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Figure 3.1: Match information of www.zerozero.pt.
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Figure 3.2: Architecture of GameRecapper.

After analyzing the match report, we can understand why automatically generating such a news

piece is difficult without background knowledge that journalists have access to. For example, in

the last sentence, the journalist stated that Académica deserved the lead at the tenth minute because

they were controlling the game. It is impossible to deduce that from the input information since

scoring the first goal does not mean that the team is controlling the game. The same observation

holds for the first sentence in the first paragraph where the author mentions that Arouca keeps the

Europe dream well alive. If on the one hand, we can observe that Arouca maintained the fifth

position that gives access to the Europa League, we cannot say for a fact that this is a dream for

Arouca’s team. Based on this argument, we focused on utilizing the available data in the input to

extract the key events and realize them into proper natural language sentences.

3.2 Description of GameRecapper

In order to make summaries of game reports, our solution was a D2T template-based system

similar to the text generation module of the GoalGetter [5] system (described in Subsection 2.8.1).

The GameRecapper system generates Portuguese summaries of football matches. The data which

forms the input of GameRecapper is retrieved from an API developed by www.zerozero.pt that

transforms the information of a certain game on their webpage into a JSON tree structure. We

chose to convert into a JSON tree structure since it allows a logical hierarchy and ordering of

information. JSON was chosen over XML since JSON doesn’t require templates such as XSLT

for transformation and it is more readable. Our domain of application will be the Liga NOS

2015/2016.
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Figure 3.2 provides a demonstration of the GameRecapper general architecture. The Gen-

eration module is the basic algorithm that creates the game summaries. It takes the JSON tree

structure as input with data concerning the characteristics of a particular football match. As in

GoalGetter, the GameRecapper makes use of domain data with information about the teams. For

each team of the Liga NOS 2015/2016, the domain data module has information about the city

of the team, their home stadium, and their nickname. This will allow us to achieve more varia-

tion in the generated news pieces since it will provide additional information about the teams that

are mentioned. Let us take as example the output text describing the match of Figure 3.1, given

below. We can find an example of the use of domain data in the sentence that describes the final

goal, where Académica is referred to as "the students team" (Académica’s nickname).

• Output:

O Arouca bateu a Académica por 3-2, este sábado à tarde, no Estádio Municipal de Arouca.

Pedro Nuno, aos 11 minutos, abriu o ativo para a equipa visitante.

Aos 18 minutos, Jubal Júnior devolveu a igualdade ao encontro.

Aos 39 minutos, o Arouca confirmou a reviravolta no marcador, com Lucas Lima a ser o

marcador de serviço.

O Arouca ampliou a vantagem aos 43 minutos, quando Artur Moreira colocou o resultado

em 3-1, após passe de Adílson Tavares.

A equipa dos estudantes fixaria o resultado final em 3-2 com um golo de Gonçalo Paciência,

depois de uma assistência de Rafa Soares, aos 62 minutos.

Com este resultado, o Arouca mantém o 5o lugar e passa a somar 44 pontos. Já a equipa

de Filipe Gouveia continua com 23 pontos e mantém o 17o lugar.

• Translation:

Arouca beat Académica with a 3-2 victory, this saturday afternoon, in the Estádio Municipal

de Arouca.

Pedro Nuno, at the 11th minute, opened the score for the away team.

At the 18th minute, Jubal Júnior equalized the score.

At the 39th minute, Arouca completed the comeback, with a goal by Lucas Lima.

Arouca extended their lead at the 43rd minute, when Artur Moreira put the scoresheet at

3-1, after an assist by Adílson Tavares.

The students team fixed the final result in 3-2 with a goal by Gonçalo Paciência, after an

assist by Rafa Soares, at the minute 62.

With this result, Arouca keeps the 5th position and has now 44 points. On the other side,

Filipe Gouveia’s team continues with 23 points and remains at the 17th position.

The Generation module also makes use of a collection of templates that were manually anno-

tated from an initial corpus. Each template contains open slots for variable information. Templates

are divided into groups according to certain events on the game (e.g. first goal of the game and

game has more than one goal) or characteristics of the game (e.g. the home team was the winning
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team). The procedure to build the templates as well as their content and rules will be discussed in

detail below.

The Generation module also makes use of grammatical functions and linguistic functions.

Grammatical functions ensure the coherence of the text. They should enforce words to agree in

grammatical number (singular or plural) and in grammatical gender (masculine or feminine). The

linguistic functions translate some numerical data into words. For example, one linguistic function

gives the name of the weekday from a numerical date representation.

3.2.1 Document Plan and Templates

We started by analyzing all the news pieces that made a match summary of all the first 21 rounds

of Liga NOS 2015/2016 in order to create the structure of the generated news piece. We excluded

all the news pieces that reported about more than one game because we noticed that they had very

little information about each single game and were not very descriptive. In total, we collected 124

distinct match summaries. After analyzing them we made a document plan of the news piece to

generate:

1. Introduction: First, the news piece will present the teams and the corresponding game final

result. Sometimes the introduction will also make a reference to a particular player when he

has a notable performance.

2. Game Events: After the introduction, the main game events (goals) are presented.

3. Conclusion: Lastly, the news piece will indicate the changes in classification of each team.

Win Draw

Home Team Away Team With Goals Without Goals

Table 3.1: Possible outcomes of a football match that have distinct sentence templates.

After finishing the document plan, we started to build a collection of templates from the cor-

pus. Starting with the introduction, we divided into four possibilities of introduction sentences

according to the final result (Table 3.1). As we did not take user preference into account, the focus

of the news piece will always be on the winning formation. A template for each case can below:

• Away team Win:
artigo_equipa("O", away_team) + away_team + " deslocou-se ao reduto " + artigo_equipa("do",

home_team) + home_team + " para garantir a conquista dos 3 pontos com um triunfo por "

+ data["data"]["FINALRESULT"] +"."

• Home team Win:
artigo_equipa("O", home_team) + home_team + " recebeu e venceu, " + dia_jogo + ", " +
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artigo_equipa("o", away_team) + away_team +", na partida da " + stage_id + "a jornada do

campeonato."

• Draw with goals:
home_team + " e " + away_team + " empataram a " + home_goals + " " + is_plural("bola",

int(home_goals)) + ", na " + stage_id + "a jornada do campeonato, " + dia_jogo + ".",

• Draw without goals:
home_team + " e " + away_team + " encontraram-se, " + dia_jogo + ", em encontro para a "

+ stage_id + "a jornada do campeonato. O marcador manteve-se inalterado no final dos 90

minutos.",

After presenting the teams and the final result of the match, the introduction can also mention

a notable performance of one player that plays on the winning team. The information provided by

the input data is purely statistical. In football, a player can play very well without being directly

linked to the game statistics. This kind of subjective analysis cannot realistically be generated

by our system. Instead, we made a weight-based selection rule in order to find the player whose

performance made the most impact on the final score. After analyzing the corpus, we noticed that

a player that is directly linked to more than one goal is usually worth mentioning. For selecting

the player to include in the output text, the rules listed in Table 3.2 were applied.

Player Stats Added Weight

Goals GoalsScored×5
Assists AssistsMade×3

Table 3.2: Player stats and corresponding added weight to select the player with the most impact
on the final score.

This selection rule is applied to all the players in the winning side. After finding the player

who has the highest value, we will check if he is directly linked to two or more goals. If so, a

sentence mentioning his performance will be generated in the output text. Below, examples of

templates that could be generated are displayed.

• Man of the match (Just Goals):
Jogador + " foi o homem em destaque ao " + int_to_Goal(golos) + "na partida."

• Man of the match (Just Assists):
Jogador + " foi uma peça chave ao fazer " + str(assists) + " passes para golo."

• Man of the match (Goals and Assists):
Jogador + " foi o homem em destaque ao " + int_to_Goal(golos) + "e completar " + str(assists)

+ ’ ’ + is_plural("passe", assists) + ’ para golo na partida.’
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Figure 3.3: Information provided by the JSON file of a player.

Afterwards, we are going to write about the game events. GameRecapper only focuses on goal

events for now. The JSON file provides information about the players stats in that particular game.

Let us take Figure 3.3 as an example. For every player in the gamesheet we can check the player’s

name, how many goals he has scored and when they were scored.

For each goal, we collect the minute when it was scored, who scored it (game and team), who

assisted and the current result of the game. This should be enough to describe a goal event but in

order to achieve more variation of the generated news pieces we added different templates depend-

ing on additional information. We wanted GameRecapper to have distinct templates depending on

two aspects: GameRecapper must recognize first goals, intermediate goals and last goals; and has

to differentiate goal events depending on the impact of the goal event on the result. A goal can

impact the result in 5 different ways:

1. Increase an advantage - When the team that scores the goal was already winning before

that goal.

2. Decrease an advantage - When the team that scores the goal was losing by more than one

goal.

3. Draws the game - When the team that scores the goal was losing by one goal.

4. Breaks a draw - When a team that during that game was never at a disadvantage, scores a

goal that breaks a draw.

5. Comeback on the game - When a team that somewhere during the game was at a disad-

vantage, scores a goal that breaks a draw.

A first goal always breaks a draw. Therefore, GameRecapper has two distinct groups of tem-

plates for first goals: first goals that are also last goals, and those which are not last goals. The
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following goals are either intermediate goals or last goals and they can impact the result in any of

the 5 different ways described above. So, we made a group of templates for each impact on the

result for either intermediate goals and last goals. This provides 10 different groups of sentence

templates for the following goal events, since the sentence templates with the same impact on the

current result are distinct if they are talking about an intermediate goal or a last goal. An addi-

tional sentence template was made for the scoreless games. In total, GameRecapper contains 13

different groups of sentence templates for goal events. This provides much more variation for the

generated output.

Finally, the output text must specify the changes in classification for both teams. The JSON

file contains the classification of each team before and after the game. We divided the sentence

templates into three groups depending on the final score (home team win, away team win or draw).

Examples of possible outputs are shown below.

• Away team win:
Com o triunfo, a turma de Manuel Machado subiu ao 9o lugar e passa a somar 34 pontos.

Por seu lado, a equipa de Sérgio Conceição continua com os 34 pontos com que entrou para

a 27.a jornada e desceu para o 10o lugar.

• Home team win:
Com este resultado, a Académica subiu ao 16o lugar e passa a somar 22 pontos. Já a equipa

de Sérgio Conceição continua com 34 pontos e mantém o 7o lugar.

• Draw:
Com este empate, o U. Madeira soma 26 pontos e mantém o 15o lugar, enquanto o V. Setúbal

passa a ter 29 pontos e mantém o 13o lugar.

Table 3.3 shows how many sentence templates GameRecapper has and their divisions. In total,

88 distinct sentence templates were built. In order to get a better view on how much variation the

output text can achieve, a table that calculates how many news pieces can be generated depending

on the final result was made (Table 3.4), for games with four or less goals. This calculation

provides a minimum value since we did not take into account the reference to the player whose

performance make the most impact on the final result.

As we can see, with this approach, we can achieve a good amount of variation on the gen-

erated output except for the scoreless game. It is hard to add variation on a game without goals

since the information provided by the JSON tree structure is about major game events. Even if

GameRecapper provided information about other events like sent offs and penaltis awarded, this

might not increase the variation on a scoreless game.

3.2.2 Generation Module Algorithm

The Generation Module was written in Python language. We chose Python because we think it

is excellent for processing linguistic data thanks to the good string-handling functionality. The
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Introduction

Win Draw

Home Team Away Team With Goals Without Goals
12 9 4 5

First Goal

Without Goals Total Goals = 1 Total Goals > 1
1 4 10

Intermediate Goal

Increases Decreases Breaks Draw Draws Game Comeback
7 4 4 7 2

Last Goal

Increases Decreases Breaks Draw Draws Game Comeback
2 2 4 4 2

Conclusion

Home Team Win Draw Away Team Win
2 1 2

Table 3.3: GameRecapper sentence templates.

generation module starts by asking which games the user wishes to generate a summary and how

many news pieces the user wants for each game. Then, the algorithm starts reading the JSON file

and checks the final result of the game in order to begin the generation of the introduction. After

checking the final result, the generation module randomly chooses one of the sentence templates

associated to that final result and writes it in a text file. If the game ended with a victory for any of

the teams, the weight-based selection rule will be applied to all the players in the winning team.

After finding the player who has the highest value, it checks if that value is equal or greater than

8 (this means he is directly linked to two or more goals) and, if so, a sentence template will be

Away Goals

0 1 2 3

Home Goals
0 5 72 360 2520
1 96 160 10080 42840
2 480 13440 11200 -
2 480 13440 11200 -
3 3360 57120 - -

Table 3.4: Distinct news pieces that GameRecapper can generate for a specific final result.
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randomly picked and written in the text file.

After the introduction is finished, the algorithm will write about the game events. As stated

before, GameRecapper only takes into account the goal events for now. To do that, the generation

module starts reading the JSON file and creates four lists:

• A list with the name of the goalscorers.

• A list with the time when the goals were scored (in minutes).

• A list with the scoring team (1 = home team, 2 = away team).

• A list with the names of the players who assisted for the goals (if the goal was assisted by

someone writes the name of who assisted and if no one assisted does not write anything).

Figure 3.4: Procedure done by the Generation Module for each goal event.

After the lists are chronologically ordered, we can start the procedure to describe the goals

of the game. For each goal in the list, Figure 3.4 indicates the process done by the Generation

Module to describe a goal event. If the game has no goal events, the sentence template that

represents a scoreless game will be automatically picked. For games with one or more goals,

the algorithm first reads the first element on each list (information about the first goal) and will

randomly select a sentence template depending on whether the first goal is also the last goal or not.

Before progressing to the next goal event, the algorithm updates the current score of the game. For

the following elements on the list that are not the last goals, the Generation Module will assess the

impact of that goal on the current result of the game. Then, it will randomly pick an intermediate
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goal sentence template corresponding to that goal event impact on the current result and update

the current result. For the last element on the list (last goal of the game), the procedure is quite

the same, but, instead of picking an intermediate goal sentence template, it will randomly choose

a final goal sentence template depending on the impact of the last goal on the final result.

Before the match summary is completed, we need to describe the classification changes. As

stated in the previous subsection, we divided the sentence templates into three groups depending

on the final score (home team win, away team win or draw). As we already know the final result,

we just need to randomly pick an according sentence template. These sentence templates make

use of two functions to express the changes in the classification. The first one checks if the teams

ranked up, ranked down or mantained their position in order to express it in the output. The

other function expresses how the sentence must start: if Team A wins the game and ranks up or

mantains the classification the output will be: "With this victory, Team A was able to mantain

the 5th position.." but if Team A wins and goes down on the classification the output should be:

"Despite winning, Team A dropped to the sixth place...".

This procedure is repeated as many times as the selected number of match summaries to gen-

erate, for the same game. If the user selected more than one game (the algorithm can generate a

match summary for every game in a round), the Generation Module just closes the JSON file after

finalizing all the match summaries for that game and starts reading the following game JSON file.

3.2.2.1 Generation Module Algorithm Example

We will now illustrate the generation module algorithm with an example. Let us take the gamesheet

from the Académica vs Benfica game provided in Figure 3.5. For simplicity purposes, we will

not mention any data pre-processing. First, the algorithm opens the JSON file and checks the goals

scored by the home team and by the away team. The number of goals scored by the away team

(Benfica) is bigger than the home team (Académica) so, the algorithm will randomly choose an

introductory away team victory sentence template. Let us suppose that the sentence chosen was:

Introduction sentence template :
artigo_equipa("O", away_team) + away_team + " foi ao " + estadio + ", " + artigo_cidade("em",

cidade) + cidade + ", derrotar " + artigo_equipa("o", home_team) + home_team + " por " +

data["data"]["FINALRESULT"] + ", em jogo da " + stage_id + "a jornada do campeonato."

The algorithm will check the JSON file and save the name of the home (Académica) and away

(Benfica) teams in separate variables, and the round number (29) is saved as the stage_id. After

that, the algorithm will check in the domain data the names of the stadium of Académica and the

city where the stadium is located. The function artigo_equipa is a linguistic function that checks

the gender (masculine/feminine) of the team provided as argument in order to choose the right

definite article. The same applies to artigo_cidade, but this function checks the gender of the city

of the home team. After filling the slots, the sentence template is transformed into:
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Figure 3.5: Match information of Académica vs Benfica provided by www.zerozero.pt.

Introduction sentence template after filling the slots :
O Benfica foi ao Estádio EFAPEL, em Coimbra, derrotar a Académica por 1-2, em jogo da 29a

jornada do campeonato.

After writing the sentence into the text file, the algorithm will apply the selection rule to all

the players of Benfica. None of the Benfica players participated in two goals, so every player will

have an added-weight lower than 8 and no sentence will be written about the player with the most

impact on the final result. Next, the generation module will start to write about the goal events.

Before writing the sentences, the algorithm creates 4 lists:

• Goalscorer list : [ Pedro Nuno; Kostas Mitroglou; Raúl Jimenez];

• Minutes list : [ 17; 39; 85];

• Scoring team list: [ 1; 2; 2];

• Assist list : [ - ; Pizzi; André Almeida]

Then, the algorithm starts a by reading the first element of each list. The current result is

initiated as 0-0 and the algorithm starts the procedure depicted in Figure 3.4. After checking that

the first goal was not the last goal, the generation module chooses randomly a sentence according

to that. The sentence chosen was:
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First goal sentence template :
"Os homens de " + TREINADOR_MARCOU + " chegaram ao golo aos " + minuto_golo + " min-

utos, numa finalização do " + POSICAO + " " + marcador + who_assisted(minuto_golo) + "."

The variable TREINADOR_MARCOU is filled by checking the coach name of the scoring

team (the scoring team is provided by the scoring team list) in the JSON file. minuto_golo is

the first element of the minutes list, marcador is the first element of goalscorer list. The JSON

file provides the position of the player and is represented by a number ( 1 - goalkeeper until 4

- striker). POSICAO calls a linguistic function that translates into a word the position of the

goalscorer (midfielder in this case), given the number provided by the JSON file (3). No one

assisted for the first goal so the function who_assisted returnes null.

First goal sentence template after filling the slots :
Os homens de Filipe Gouveia chegaram ao golo aos 17 minutos, numa finalização do médio Pedro

Nuno.

After writing the sentence in the text file, the current result is updated to 1-0. The algorithm

will continue and starts to look at the second element of the lists. Now, we are in the presence of

an intermediate goal that is not the last goal. This is the second goal of the game and the scoring

team of the second goal is different from the scoring team of the first goal. Therefore, this is a goal

that draws the game. The selected sentence is, for example:

Intermediate goal that draws the game sentence template :
"Aos " + minuto_golo + " minutos, " + marcador + who_assisted (minuto_golo) + " disparou para

o golo do empate."

This time, the assist list element is different from null, so the who_assisted function will return

", depois de uma assistência de " + assist +"," where assist is the second element of the assist

list. The sentence after filling the slots is:

Intermediate goal that draws the game sentence template after filling the gaps :
Aos 39 minutos, Kostas Mitroglou, depois de uma assistência de Pizzi disparou para o golo do

empate.

The generation module writes the sentence in the text file, updates the current score to 1-1 and

starts reading the last element of the lists (last goal). The number of goals scored until now is 2. As

the number of current goals scored by the home team is equal to the number of current goals scored

by the away team, if the third element of the scoring team list is equal to the second element, this

goal makes a comeback in the game. So the algorithm will randomly select a sentence according

to that:
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Last goal that makes a comeback sentence template :
"A cambalhota no resultado acabou mesmo por acontecer aos " + minuto_golo + " minutos, com

" + marcador + who_assisted(minuto_golo) + ", a ser o marcador de serviço e o responsável pelo

" + data["data"]["FINALRESULT"] + " final."

Last goal that makes a comeback sentence template after filling the slots :
A cambalhota no resultado acabou mesmo por acontecer aos 85 minutos, com Raúl Jiménez, de-

pois de uma assistência de André Almeida, a ser o marcador de serviço e o responsável pelo 1-2

final.

Finally, we will write about the classification changes of the teams. As mentioned before

we are in the presence of an away team victory so the generation module selected the following

sentence:

Last goal that makes a comeback sentence template :
begConclusion(CLASSIFAWAY_PRE, CLASSIFAWAY_POS) + "este resultado, " + artigo_equipa("o",

away_team) + away_team + " " + changeClassification(CLASSIFAWAY_PRE, CLASSIFAWAY_POS)

+ " e passa a somar " + POINTSAWAY + " pontos. Já a equipa de " + data["data"]["MATCHREPORT"]

["treinador_casa"]["abrev"] + " continua com " + POINTSHOME + " pontos e " + changeClassi-

fication(CLASSIFHOME _PRE, CLASSIFHOME_POS) +"."

The JSON file provides the classification of both teams before and after the game and the

total points of each team after the game. For example, for the away team we save those values

in the variables CLASSIFAWAY_PRE, CLASSIFAWAY_POS and POINTSAWAY. The function beg-

Conclusion, takes as input the classifications of the winning team before and after the game. If the

classification after the game is equal or higher than the classification before the game, the function

returns: “Com ”, otherwise the function returns: “Apesar d”. Then, the function changeClassifica-

tion lexicalizes the classification change to the reader. If the classification after the game is higher,

it returns “subiu ao ”; if the classifications are equal, it returns “mantém o ”; and if is lower, it

returns “desceu para o”. In this case, the sentence template turns into:

Last goal that makes a comeback sentence template after filling the slots :
Com este resultado, o Benfica mantém o 1o lugar e passa a somar 73 pontos. Já a equipa de Filipe

Gouveia continua com 23 pontos e mantém o 17o lugar.

After writing the sentence to the text file, the summary is complete. This process can be

repeated as many times as the number of summaries the user selected to generate. Below, the

complete summary of Académica vs Benfica is presented.
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Complete Summary of Académica vs Benfica :
Benfica foi ao Estádio EFAPEL, em Coimbra, derrotar a Académica por 1-2, em jogo da 29a

jornada do campeonato. Os homens de Filipe Gouveia chegaram ao golo aos 17 minutos, numa

finalização do médio Pedro Nuno. Aos 39 minutos, Kostas Mitroglou, depois de uma assistência

de Pizzi disparou para o golo do empate. A cambalhota no resultado acabou mesmo por acontecer

aos 85 minutos, com Raúl Jiménez, depois de uma assistência de André Almeida, a ser o marcador

de serviço e o responsável pelo 1-2 final. Com este resultado, o Benfica mantém o 1o lugar e passa

a somar 73 pontos. Já a equipa de Filipe Gouveia continua com 23 pontos e mantém o 17o lugar.
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Chapter 4

Evaluation of GameRecapper

In this chapter, we present the methodology followed to evaluate GameRecapper and discuss the

corresponding experimental results.

4.1 Methodology

As stated in Subsection 2.5, there are multiple possibilities when it comes to evaluate an NLG sys-

tem. Our focus was to evaluate the quality of the produced text and to compare how users perceive

a GameRecapper summary versus a human authored summary. For the evaluation of GameRecap-

per we opted to do a manual evaluation. The reason why we did not use an evaluation metric, such

as BLEU and ROUGE, was that we do not think it is appropriate to use a word-by-word/phrase-

by-phrase comparison on a system that uses sentence templates extracted from a corpus. This

would give high scores to our system that might be inaccurate since the output sentences would

be exactly like the ones on our corpus (our reference text). We could use the summary that was

actually published online in www.zerozero.pt as our reference text, but a significant portion of hu-

man authored summaries uses background knowledge that we do not have access in the input data.

In sports journalism, it is important to achieve variation in the output text. Our purpose is not to

generate a summary exactly like a human authored summary, but to have a system that with some

kind of variation can generate a coherent, fluid and accurate text with the same communicative

goal.

As the corpus used for creating the sentence templates was built by analyzing all the news of

the first 21 rounds of Liga NOS 2015/2016 that reported about one and only one game, we chose

to generate summaries for all the games from the round 25 until the round 29. In total, 44 match

summaries were generated. The methodology adopted to assess the quality of the produced text

was based on the evaluation methodology done by Bouayad-Agha et al. to evaluate the quality of

the text output of their system [7]. The 44 match summaries were divided between 3 surveys to

assess the quality of the produced text. The division was not random as we wanted each survey

to have as many final results as possible. Table 4.1 shows the final results and how many times

they happened in the games from the round 25 until the round 29. Those final results were divided

49
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Final Result Number of Games

Home Team Goals Away Team Goals with the same final result

0 0 3

1 0 5

0 1 10

2 0 4

1 1 2

1 2 2

3 0 1

0 3 2

3 1 2

1 3 1

2 2 4

3 2 3

4 1 2

5 1 2

2 5 1

Table 4.1: Distinct final results contained between the rounds 25 until 29 and how many times that
final result occurred.

as depicted in Table 4.4. Fifteen evaluators from the www.zerozero.pt newsroom participated in

the evaluation, such that each survey was evaluated by 5 different evaluators. The evaluators

were asked to rate the match summaries along two criteria: intelligibility (Table 4.2) and fluidity

(Table 4.3).

To compare how the users perceive a GameRecapper summary versus a human authored sum-

mary, another survey was made. The survey included ten randomly selected match summaries,

from distinct games, from which five were generated by GameRecapper and the other five were

the match summaries published online on www.zerozero.pt. The survey did not say if the match

summary was generated by an algorithm or written by a journalist. Forty-six evaluators previously

not involved in the project participated in the evaluation. The survey provided the gamesheet

of the match and the evaluators were asked to rate the match summaries according to its accu-

racy/completeness and to its readiness to be published online (Figure 4.1).



4.1 Methodology 51

Rate Meaning
1
5 The sentences are not perceivable.

2
5 The sentences have major grammatical and/or lexical errors. Only with a lot

of effort it is possible to deduce the meaning of the sentences.

3
5 The meaning of most sentences is clear, even though some parts are not as

clear because of grammatical and/or lexical choices.

4
5 The meaning of all sentences is clear, but there are minor problems in some

grammatical and/or lexical choices.

5
5 The meaning of all sentences is clear and all grammatical and/or lexical

choices are appropriate.

Table 4.2: Meaning of each intelligibility rating (Source: [7]).

Rate Meaning
1
5 The summary is unreadable.

2
5 The summary is difficult to read, but it is possible with some effort.

3
5 The summary is not too difficult to read, but there are some details

that seem unnatural.

4
5 The summary is easy to read, even though there are some boring

repetition of information.

5
5 The summary is extremely easy to read, it seems perfectly natural.

Table 4.3: Meaning of each fluidity rating (Source: [7]).
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Survey 1 Survey 2 Survey 3

0-0 0-0 0-0

0-1 0-1 0-1

0-1 0-1 0-1

0-1 0-1 0-1

0-1 1-0 1-0

1-0 1-0 1-0

2-0 2-0 2-0

2-0 1-1 1-1

1-2 1-2 3-0

2-2 0-3 0-3

2-2 2-2 2-2

1-3 3-1 3-1

3-2 3-2 3-2

4-1 4-1 2-5

5-1 5-1 -

Table 4.4: Distribution of games between the surveys according to the final result

For accuracy/completeness the users rated within a 5 point rate scale the following question:

Does the following text does a complete and accurate match summary of the game?

• Min (1/5): No, the lack of relevant and key information makes this summary really incom-

plete.

• Max (5/5): Yes, the summary is very complete and accurate. All the key information of the

game is provided by the summary.

For the readiness to be published online a simple yes or no question was provided:

Do you think this match summary is ready to be published online?

• Yes: Yes, this match summary does not need any kind of edition to be published.

• No: No, this match summary need to be edited by a journalist.
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Figure 4.1: Image of the GameRecapper summaries vs human-authored summaries survey.

4.2 Results and Discussion

4.2.1 Evaluation of GameRecapper’s Output Text

Figure 4.2: Results of text quality evaluation.
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The added-up results are shown in Figure 4.2, giving a maximum grade of 25 for each of the

44 match summaries. The intelligibility score of the summaries averages 4.645
5 , which represents

a score of 92.91%. As we can see in Table 4.5, five summaries have an average intelligibility

rating of 5
5 (100%). There are actually only 9 summaries for which the average score is below 4.5

5

(90%), and there was not a summary that scored below 4
5 (80%). The fluidity average score of the

summaries is 85.73%, quite lower than the intelligibility average score. None of the summaries

hit the maximum fluidity average score. Despite that, only 5 summaries average a score below

80% and the minimum average score was 72%. The results suggest that GameRecapper makes

few inappropriate grammatical and lexical choices, and the quality of the summaries is generally

good. The superior score of intelligibility compared with the fluidity score might indicate that,

even though the sentences are well-written, sometimes there are some unnatural details or boring

repetitions of information. A deeper analysis will be presented below, so we can correlate the

influence of multiple parameters on the intelligibility and fluidity average score.

Intelligibility Fluidity

Number of summaries that scored 100% 5 0
Number of summaries that scored lower than 90% 9 34
Number of summaries that scored lower than 80% 0 5
Minimum score of a summary (%) 80% 72%
Average Score (%) 92.91% 85.73%

Table 4.5: Additional information on the results of text quality evaluation.

Figure 4.3: Intelligibility and Fluidity average score for each final result.

First, we checked the average score for every final result presented in Table 4.1. The results

are shown in Figure 4.3. Despite not being crystal clear, it seems that an increasing of the number
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of goals scored in a game has a negative impact on the fluidity of the text. The intelligibility of

the summary seems to remain quite unchanged, except for the 1-3 final result that only has one

sample. Therefore, two additional charts were made: one correlating the effect of the number of

goals scored in a game with the intelligibility/fluidity average score (Figure 4.4) and another with

the final outcome of the game (Figure 4.5).

Figure 4.4: Intelligibility and Fluidity average score according to the number of goals scored in a
game.

Figure 4.5: Intelligibility and Fluidity average score according to the final outcome of the game.

Figure 4.4 shows an interesting feature. An increasing number of goals seems to increase the

Intelligibility score and to decrease the Fluidity score. The more goals are scored in a game, the

more sentence templates for goal events are used. As GameRecapper does not perform sentence
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aggregation and referring expression generation tasks, the more sentence templates used for goal

events makes the possibility of repetition of information increase as well. Therefore, it seems

reasonable that the fluidity average score tends to decrease with the number of goals scored. Rep-

etition of information is boring and makes the text seem less natural and that is why journalists try

to avoid it at all costs. This also suggests that not only the number of goals scored in a game have

a negative impact on the fluidity of the text, but also the number of similar goal event sentence

templates used. So, games that have a lot of goals with the same impact on the result might also

decrease the fluidity of the text. With respect to Figure 4.5, it seems that the final outcome does

not have an impact on the summaries’ intelligibility and fluidity. To assess the possibility of the

negative impact of similar sentence templates used for goal events a chart was made (Figure 4.6).

The easiest way of grouping together the games with more similar sentence templates used is to

check the intelligibility/fluidity score according to the goal difference between the winning team

and the losing team. As expected, the fluidity of the summary seems to linearly decrease from

the one goal difference games to the four goal difference games. A four goal difference game

makes use of a lot of “increasing the lead” sentence templates which makes the summary have

more similar information and consequently look less natural.

Figure 4.6: Intelligibility and fluidity average score according to the goal difference between the
winning and losing teams.

In conclusion, the results indicate that GameRecapper produces an acceptable text output. The

intelligibility and fluidity of the summaries is fairly high (92.91% for intelligibility and 85.73% for

fluidity). We also verified that the intelligibility average score remained quite unchanged despite

of the number of goals, final outcome and goal difference between winning and losing team of

the game. In relation to the fluidity average score, we observed a certain correlation between the

fluidity of a text and the number of goals scored in a game as well as for the goal difference between

the winning team and the losing team. The size of GameRecapper’s summaries is proportional to

the number of goals scored in a game (GameRecapper writes a sentence for each goal event) which
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makes the summary of high-scoring games more propitious to repetitions of information. The fact

that the games with bigger goal differences between the winning and losing teams scored lower in

fluidity is due to game summaries with bigger goal difference make use of more similar sentence

templates. The lack of a sentence aggregation and a referring expression generation tasks makes

the text seem less natural because it is more prone to repetition of information.

4.2.2 GameRecapper Summary versus Human-Authored Summary

The results of the evaluation of GameRecapper summaries versus the summaries written by jour-

nalists are depicted in Table 4.6.

GameRecapper Summary

Game 1 Game 2 Game 3 Game 4 Game 5

Number of words 218 125 174 115 173
Completeness 86.38% 80.00% 87.24% 68.94% 79.58%
Readiness 89.13% 65.22% 78.26% 67.39% 65.22%

Human-Authored Summary

Game 6 Game 7 Game 8 Game 9 Game 10

Number of words 125 195 310 441 185
Completeness 82.98% 85.96% 91.91% 91.91% 85.53%
Readiness 67.39% 82.61% 93.48% 71.74% 91.30%

Table 4.6: Scores of GameRecapper and human-authored summaries on completeness and readi-
ness to be published online.

The completeness of the GameRecapper summaries averages 4.021
5 , which represents a score

of 80.42% against the 4.38
5 (87.66%) average score of the summaries written by journalists (Ta-

ble 4.7). With respect to the summaries’ readiness to be published online, GameRecapper has an

average score of 73.04% and human-authored summaries of 81.30%. These results are fairly sur-

prising since GameRecapper summaries are being evaluated against news pieces that were actually

released online. Despite the evaluators recognized the human-authored summaries as more com-

plete/accurate and more ready to be uploaded online, the difference between them is considerably

low.

GameRecapper Human-Authored
Summaries Summaries

Completeness 80.42% 87.66%
Readiness 73.04% 81.30%

Table 4.7: Average scores of GameRecapper and human-authored summaries

In order to have a better perception of the results, two box plot charts comparing the GameRe-

capper and the human-authored summaries were created (Figure 4.7). Box plot is a graphic that
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identifies where 50% of the most probable values are located, the median and the extreme values

of a data set. Figure 4.7a show us that the average scores of three summaries of GameRecapper are

within a 6.38% interval and the best average score is 0.85% higher than the second best. The worst

average score is 10.7% lower than the second worst. Checking the gamesheet of the summary

which has the lowest average score, we verified that the game had a sent-off and GameRecapper

does not write about sent-off events. This assessment means that the evaluators think that a sent-

off should be referenced in the summary. All the completeness average scores of the summaries

written by journalists are within a 8.51% interval which means the degree of dispersion is low.

(a) Completeness - GameRecapper vs Human-
Authored.

(b) Readiness - GameRecapper vs Human-
Authored.

Figure 4.7: Distribution of the average scores of the summaries according to the completeness and
readiness criteria.

With respect to Figure 4.7b, we can analyze that the readiness of GameRecapper summaries is

being benefited by the readiness of Game 1 which has an average score 10,87% higher than Game

3 (the second best readiness average score). The latter also scores 10.87% higher than Game 4

(the third best). The three summaries with the lowest average scores are within a 2.17% interval

which means the readiness average score of GameRecapper (the 73.04% in Table 4.7) is not a

quite accurate value for the readiness of GameRecapper. As for human-authored summaries, the

readiness box plot indicates that the degree of dispersion is quite high since the difference between

the two quartiles (the second and fourth best average score) is almost 20%. An interesting fact is,

despite Game 9 scoring 91.91% in the completeness criteria, only 71.74% think it is ready to

be released online. Game 9 is by far the longest summary with a total of 441 words. To verify

the impact of the length of a summary in the completeness and readiness of a summary, two

more charts were made (Figure 4.8, 4.9). We can check that the length of a summary seems to

increase the completeness and readiness average score. The only exception is in human-authored

summaries with more than 200 words decrease 5% in relation to human-authored summaries with

a length between 150 and 200 words. This decrease is due to Game 9 average score in readiness

since Game 8 averages 93.48% in that criteria. Checking the news piece of Game 9 we can check

that despite the length of the summary, the news piece does not have much detail about the goals.

Below, we present the description of the first two goal events of the human-authored summary and

the description of GameRecapper for the same goals in the generated text presented in the survey
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to assess the quality of the text output:

Figure 4.8: Impact of the length of a summary in the completeness and readiness criteria (GameRe-
capper summaries).

Human-authored summary - "Jardel (10’) e Jonas (24’) fizeram os dois primeiros golos do

Benfica."

Translation - "Jardel (10’) and Jonas (24’) scored the first two goals of Benfica."

GameRecapper summary - "Os homens de Rui Vitória chegaram ao golo aos 11 minutos,

numa finalização do defesa Jardel, após passe de Nico Gaitán. O segundo golo da equipa da casa

chegaria aos 24 minutos, com Jonas a fazer o 2-0, depois de uma assistência de Nico Gaitán."

Translation - "Rui Vitoria’s team scored the first goal at the 11th minute, in a finish by the de-

fender Jardel, after a pass by Nico Gaitán. The second goal of the home team was reached at the

minute 24, with Jonas making the 2-0, after Nico Gaitán assist."

As we can assess, despite being a long summary, this human-authored summary is not really

descriptive which makes the readiness criteria average score decrease. Regardless of being a com-

plete summary, the evaluators think that with the summary may be improved with some edition. To

sum up, the GameRecapper summaries versus human-authored summaries evaluation let us know

that the evaluators think that the GameRecapper generated output makes a complete and accurate

summary of the game when the game has no sent-offs. Except for the low completeness aver-

age score of Game 4, all the other summaries have an average score above 80% and the average

score of all summaries is just 7.24% below the summaries published online at the www.zerozero.pt

website. Despite this, three of the GameRecapper summaries scored between 60% and 70% for
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Figure 4.9: Impact of the length of a summary in the completeness and readiness criteria (Human-
authored summaries).

the readiness to be released online. This suggest that GameRecapper generated output should be

reviewed and edited before being a valid news piece option.



Chapter 5

Conclusion

5.1 Summary

The main purpose of this dissertation was to implement automatic generation of sports news

pieces. Today, there is a need to report on a lot of football matches, and, many of them, are

played at the same time. A significant amount of human resources and working time would be

needed for journalists to watch every match they have to make a report. Due to the abundant avail-

ability of information that is stored in databases, journalists are able to make a report based just

on that information. However, if this process was automated, it would save a lot of working time

of journalists that they could spend it on in-depth reporting for example.

With this in mind, in this dissertation, we presented the GameRecapper, a template-based

system that generates Portuguese summaries of football games from structured input data, i.e. a

gamesheet of the www.zerozero.pt website. After reviewing the literature, we implemented the

system based on the the text generation module of a previous NLG system with the same do-

main and communicative goal, the GoalGetter system. GameRecapper has a Generation module

which is the basic algorithm that creates the news. The Generation Module makes use of domain

data, linguistic functions, grammatical functions and a collection of sentence templates. Domain

data provides additional information about the teams in order to achieve more variation in the

output text. Linguistic functions translate some numerical data into words (e.g. getting a week

day from a numerical date representation) and grammatical functions ensure the coherence of the

text. The collection of sentence templates was manually built from an initial corpus written by

actual journalists from a newsroom. Each template contains open slots for variable information.

These sentence templates were divided into groups according to goal events of the game and to

the characteristics of the game. GameRecapper’s ability of knowing the impact of a goal event on

the result allowed us to achieve a significant amount of variation on the generated summaries.

As stated in Subsection 2.5, there is not a well-defined method when it comes for evaluating

a system. In any NLG system, it is as important to evaluate the quality of the output text as how

successful we were on achieving our communicative goal. With that in mind, in the evaluation of

GameRecapper, our focus was to evaluate the quality of the produced text and to compare how
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users perceive a GameRecapper summary versus a human authored summary. The results showed

that GameRecapper is able to produce a grammatically correct and easy to read summary, with an

average intelligibility score of 92.91% and an average fluidity score of 85.73%. We came to the

conclusion that the average fluidity score linearly decreases with the goal difference between the

winning and the losing team, because of the larger amount of use of similar sentence templates.

A larger amount of use of similar sentence templates makes the summary more propitious to

repetitions of information which make the text seem less natural. These results emphasize the

importance of a sentence aggregation and a referring expression generation task since these tasks

can avoid repetitions of information or can make a text seem more natural.

According to the evaluation of GameRecapper vs human-authored summaries, we came to the

conclusion that GameRecapper is able to make an accurate and complete summary of the game,

when the game has no sent-offs. The total completeness average score was 80.42%. The results

also suggest that even though the summary is not ready for being uploaded online (73.04%), it

might be a good starting point draft for a journalist.

5.2 Future Work

The first and easier option to improve the output quality of GameRecapper is by adding additional

major events. As we could notice in our evaluation, the lack of information besides goal events,

may produce an incomplete summary. The addition of sent-offs, penaltis awarded, penaltis missed

will make an immediate impact on the completeness of the generated new.

Another possibility for future work, could be trying to provide the input data with more statis-

tics or even information of a live match commentary. This will provide the system with more

options of content selection when the match has few or no major game events.

Fluidity in the summary can be increased by providing to the generation module a sentence

aggregation or a referring generation expression task. Specially, in the cases where there are larger

goal differences, or players with a significant amount of impact in the game statistics, the ability

of aggregating two sentences with the same protagonists.

In spite of most of the module of GameRecapper being language-dependent, it would be inter-

esting trying to apply it in a different language. The algorithm for creating the news is language-

independent and apart from the addition of new sentence templates, it would not require major

transformations in the system to port it to another language.
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