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Resumo

O objectivo deste trabalho consiste no desenvolvimento de um sistema de di-
agnóstico assistido por computador para a classificação de nódulos pulmonares
em benigno ou maligno. O cancro do pulmão é o cancro mais letal do mundo com
uma taxa global de sobrevivência a 5 anos de apenas 10 a 15 %. Um relativamente
pobre diagnóstico numa fase precoce é a principal causa de morte quando se de-
finem as probabilidades da taxa de sucesso na sobrevivência do paciente. A razão
por trás disto reside na dificuldade que existe no processo de diagnóstico, onde para
haver uma detecção e caracterização precoce destas patologias, os radiologistas têm
ser capazes de fazer uma busca exaustiva em todos os exames. Este procedimento
é muito demorado e muitas vezes fisicamente exigente, o que pode levar a erros.
Engenheiros biomédicos têm, portanto, o objectivo de proporcionar sistemas de
diagnóstico assistido por computador, a fim de ajudar e assistir os radiologistas
no processo de diagnóstico. Os sistemas CAD envolvem algoritmos baseados em
computador desenvolvidos com o objectivo de processar imagens usando a análise
de imagem e técnicas de machine learning.

Neste trabalho, é apresentado um sistema de diagnóstico assistido por com-
putador para a classificação de nódulos pulmonares em imagens de tomografia
computorizada. Este sistema determina a malignidade de um nódulo usando uni-
camente informação recolhida a partir da região em torno dos nódulos e foi de-
senvolvido em dois tipos: 1) Um sistema que proporciona uma classificação de
nódulos pulmonares semelhante a uma classificação feita por radiologistas. 2) Um
sistema que proporciona uma classificação de nódulos pulmonares semelhante a
uma biopsia, cirurgia ou acompanhamento durante alguns anos.

Para esse efeito, alguns estudos foram realizados para otimizar o sistema, in-
cluindo uma análise do banco de dados Lung Image Database Consortium and
Image Database Resource Initiative (LIDC-IDRI) no que diz respeito ao acordo
nas segmentações dos nódulos feitas pelos radiologistas e na análise da gama de
intensidades das imagens. Foi também desenvolvido um novo algoritmo de seg-
mentação de nódulos pulmonares.

O estudo mostrou que existe um baixo acordo entre radiologistas no que toca
às segmentações e que a gama de intensidades entre nódulos é semelhante. O
novo algoritmo de segmentação de nódulos pulmonares apresentou bons resultados
quando comparado com as segmentações dos radiologistas.
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Finalmente, os dois sistemas foram implementadas e optimizados por meio de
um conjunto ideal de caracteŕısticas e usando diferentes classificadores. Os resul-
tados mostraram bom desempenho dos sistemas quando utilizados na classificação
de dados semelhantes.
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Abstract

The aim of the present work is the development of a computer-assisted diagnosis
system for lung nodule classification into benign or malignant. Lung cancer is the
world’s deadliest type of cancer with a 5-year overall survival rate of only 10 to 15
%. A relatively poor early stage diagnosis is the main cause of dead when defining
the odds for the success of the patient’s survival rate and the primary reason for
this lies on the difficulty in the diagnosis process, where for early detecting and
characterizing these pathologies, the radiologists must be capable of performing an
exhaustive search throughout the scans. This procedure is very time consuming
and often physically demanding, that may lead to errors. Biomedical engineers
have, therefore, the objective of providing Computer-aided Diagnosis (CAD) sys-
tems in order to aid and assist radiologists in the diagnostic process. CAD systems
involve computer based algorithms designed to process images using image analysis
and machine learning techniques.

In the present work, an automatic CAD system for lung nodule classification in
CT images is presented. This system determines the malignancy of a nodule using
information retrieved solely from the region around the nodules and was designed
in two ways: 1) A system that provides a lung nodule classification similar to the
radiologists. 2) A system that provides a lung nodule classification similar to a
real biopsy, surgery exam or follow up during several years.

For this purpose, some studies were performed to optimize the system, namely,
an analysis of the Lung Image Database Consortium and Image Database Resource
Initiative (LIDC-IDRI) database, in what concerns the agreement of the radiol-
ogists’ segmentations and intensity ranges of the images and the development of
a novel lung nodule segmentation algorithm. The agreement study showed that
the segmentations of radiologists differ greatly from each other, indicating a low
agreement, and the range of intensities between nodules is similar. The novel lung
nodule segmentation algorithm presented good results when compared with the
radiologists’ segmentations.

Finally, the two systems were implemented and optimized by using a set of
optimal features and different classifiers. The results showed good performance
for both when used for classification in similar data.
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Chapter 1

Introduction

1.1 Motivation

Lung cancer is the world’s deadliest type of cancer with a 5-year overall survival
rate of only 10 to 15 % [1]. According to the International Agency for Research on
Cancer [2], in 2012, approximately 1.8 million new cases (13% of all diagnosed can-
cers) and 1.6 million related deaths (19.4% of all cases) were accounted all over the
world. This represents approximately 20% of all medical cases with lung nodules,
as a relatively poor early stage diagnosis is the main cause of dead when defining
the odds for the success of the patient’s survival rate [1]. This is a consequence of
two factors:

• Poor screening programs using computerized tomography (CT) - unlike, for
example, in prevention of breast cancer, where a mammography exam is
performed frequently, chest CT screening is not viable (in fact 20%-30% of
the detections come from X-ray exams [3]) because of the patient’s radiation
uptake and overall cost. Also, to date, there is no conclusive study that
demonstrates the advantage in performing a screening program for any risk
group regarding neoplasms 1 of the lung [4].

• Difficulty in the diagnosis process - for early detection and characterization
of these pathologies, the radiologists must be capable of performing an ex-
haustive search throughout the scans. This procedure is very time consuming
and often physically demanding, that may lead to errors [5].

Currently, chest CT imaging has shown to be a more sensitive exam for detect-
ing and characterizing lung nodules when compared to projectional radiography,
even more so with the advancements in medical imaging technology, namely, in
an ever growing number of slices per scan for interpretation and the increase of
image quality without further radiation uptake. It has the potential to detect and

1Abnormal growth of tissue in the lung
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evaluate malignant structures in an earlier and potentially more treatable stage.
However, with the continuous increase of spatial resolution, more information is
available for analysis by the radiologists, increasing fatigue and poor analysis.
This includes nodule detection, malignancy assessment and nodule follow-up and
management [5] [6].

Biomedical image analysis in chest CT imaging

Biomedical image analysis can prove to be very important in chest CT image
diagnosis, namely, in neoplasms of the lung. In this field, biomedical engineers
have the objective of providing Computer-aided Diagnosis (CAD) systems in order
to aid and assist radiologists in the diagnostic process. CAD systems involve
computer based algorithms designed to process images using image analysis and
machine learning techniques. A typical CAD system has the block diagram in
figure 1.1.

Figure 1.1: General scheme of an automatic pulmonary nodule classification system using CAD.

In the pre-processing stage the images are generally processed for a more ef-
ficient computation, noise removal, contrast enhancement for better visualization
or normalization.

Though being separated from pre-processing, organ segmentation is also a pro-
cessing stage and is done to increase computation efficiency, particularly when
using a big amount of data. In this stage, the image is reduced to a region of
interest (ROI) where all main computation is performed.

The region of interest gives a volume or window around the objects that will
be in fact computed and analysed, but the CAD system does not know where
they are or which of them are important. It is therefore important to identify the
structures to be analysed, process performed in the lesion detection stage.

After detecting the objects the next stage is feature measurement. It is re-
sponsible for measuring different features whose objective is to differentiate two or
more objects, for example, between nodule regions from non-nodule regions. The
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number of possibilities is wide, although all features can be grouped into gray-level
properties, gradient information, texture and shape.

Feature selection is an important part of a CAD system when the feature space
is large and there are redundant and irrelevant features. It aims to reduce that
space without compromising class separability and saving computation time [7],
selecting the ones that best represent two or more different objects.

In the next stage, a classifier uses the selected features to build a model that
can compute the probability of a certain object of belonging to a certain class.
The objective is to correspond, as best as possible, those objects to their correct
class with low error, or a low number of incorrect classifications. If the objective is
to distinguish between nodule regions from non-nodule regions, for example, than
the classifier must be able to save the nodule regions as best as possible without
including many non-nodule regions.

Validation is the stage where an evaluation of the system is performed. There
are several aspects that can be examined, though the most important is the per-
formance of the classification. This performance is characterized by different mea-
sures that include sensitivity and specificity, which give the correct classification
rate of true-positives and true-negatives, or accuracy, that presents the overall
performance of the algorithm in what concerns correct decisions.

CAD systems proved to benefit the radiologists’ performance when used as
second readers. In lung nodule classification, for example, one study, [8], compared
the radiologists’ performance with and without the assistance of a CAD system to
assess nodule’s malignancy. The results showed that there was an increase of 2%
in classification accuracy when using a CAD system. Although the results do not
seem to be very significant, they show that these systems can already make some
difference in cancer diagnosis.

As the reliability of the CAD systems increases, their demand for clinical appli-
cation also increases. That is because radiologists seem to be increasingly comfort-
able using these second readers, which in turn will improve diagnostic performance.
Companies like Philips, Siemens or General Electric (GE) introduced some image
software tools in the market to perform several functionalities including image
analysis and segmentation. Philips [9] developed a visualization software which
has the capability of performing lung emphysema quantification, lung nodule de-
tection to improve sensitivity and lung nodule characterization with respect to
growth rates and shape. It also performs nodule segmentation. In Siemens [10],
the Syngo Lung CAD can perform lung nodule detection, volume and diameter
calculation, can measure the average and standard deviation of the nodule’s den-
sity in Hounsfield (HU) values, the nodule’s histogram also in HU and can perform
nodule segmentation. GE Healthcare [11] developed a software called Lung VCAR
that makes an automatic nodule segmentation and analysis, acquiring the nodule’s
volume doubling time and the relative growth between two consecutive chest CT
images.

Providing these tools to health professionals is important, however, these par-
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ticular software packages cannot perform any conclusive analysis for the malig-
nancy of the nodules. The first two perform a CAD analysis, but only for nodule
detection, and the third is only a visualization tool with few options for nod-
ule characterization and only provides information for the radiologists’ assessment
and not an assisted diagnosis. Also, there is no performance specification, like
sensitivity versus number of false positives or any type of validation.

It is concluded that CAD systems can be very important to increase the radi-
ologists’ accuracy and consistency in nodule detection and characterization. Iden-
tifying malignant nodules by image analysis and machine learning can bring new
advantages to lung cancer medicine, as the number of invasive procedures per-
formed on benign lesions and the overall health costs are minimized.

The construction of a CAD system for lung nodule classification follows the
block diagram seen in figure 1.1, however, it does not have necessarily all those
stages. The main problem resides mainly on the segmentation, feature measure-
ment and classification stages, as will be explained further.

1.2 Objectives and contributions of the dissertation

Objectives
The main objective for this dissertation is to develop a robust and accurate

automatic CAD system for nodule classification into benign or malignant. This
purpose requires a methodology that:

• Identifies all possible nodules in the scene.

• Analyses and performs different strategies for nodule segmentation.

• Extracts and selects the features that best discriminate the nodules.

• Performs classification to distinguish between malignant and benign nodules
and analyse the results concerning nodule characteristics.

Contributions
The main contributions of this dissertation are the following:

• Extensive analysis of the Lung Image Database Consortium and Image Database
Resource Initiative (LIDC-IDRI) database to reliably build the CAD system.

• Novel lung nodule segmentation approach using an adaptation of Murphy et
al. [12] and the work from Krissian et al. [13].

• Measure and select a complete and extensive group of features that can
accurately describe lung nodules.

• A system that performs two different classifications, one similar to the radi-
ologists assessment and another, more reliable, similar to a biopsy, surgery
or follow up exam.
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1.3 Resulted publications

Conference:
37th Annual International Conference of the IEEE Engineering in Medicine

and Biology Society, Milan, Italy

• Title: Computer Aided Diagnostic for the Classification of Lung Nodules

MVA 2015 IAPR International Conference on Machine Vision Applications,
Tokyo, Japan

• Title: 3D lung nodule candidate detection in multiple scales

1.4 Dissertation Overview

The report is divided in six chapters. The motivation and objectives have already
been described in this first chapter.

Chapter 2 describes the anatomy of lung nodules, the radiologic features used
by radiologists for nodule characterization and the state of the art in CAD systems
for nodule classification.

Chapter 3 describes the LIDC-IDRI which is used in this work. It includes the
definition of a typical Computed Tomography (CT) image, the properties of the
database, an analysis on the agreement between radiologists and an analysis on
the intensity ranges of the images.

Chapter 4 presents the methodology for lung nodule classification. It includes
the details of all main stages including: the method used for nodule segmenta-
tion, the measured features, the method used for feature selection, the proposed
classifiers and the evaluation strategy.

Chapter 5 presents the experimental results for nodule segmentation and an
analysis on the agreement between that segmentation and the radiologists’ seg-
mentations, the analysis on the nodule classification in benign or malignant using
different classifiers and sets of features and an evaluation of the system.

Chapter 6 summarizes the conclusions of the research reported in this disser-
tation and discusses future work.
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Chapter 2

Methods for Lung Nodule
Characterization

This chapter presents the methods for lung nodule characterization in what con-
cerns the visual analysis of the images to perform a classification based on mor-
phological properties, internal characteristics and the location of the nodules in
section 2.1. The current methodologies using CAD systems are also presented in
section 2.2.

2.1 Lung nodules. Classification and characteristics

This section presents the description of the pulmonary nodule and the visual prop-
erties of the nodules, defined has Radiologic Features, used by radiologists to clas-
sify the nodules in benign and malignant.

2.1.1 The pulmonary nodule

The pulmonary nodule is a radiologic anomaly, commonly detected incidentally.
It is defined as focal, with a round or oval shape, with increased opacity in the
lung and a size less than 3 centimetres. Although many of these structures are of
benign causes (60%-70%), the ones which represent stage I lung cancers (see table
2.1) must be distinguished by an inexpensive and effective manner [3], using non-
invasive imaging techniques and image analysis and pattern recognition methods.

SPNs can be classified into three different groups: solid nodules, which are
structures with high-contrast; partially solid or mixed, which are nodules that
are both solid and sub-solid; and sub-solid or ground glass opacity (GGO), which
have faint contrast and fuzzy margins [14]. Figure 2.1 shows three nodules for each
group.
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Table 2.1: Tumor stages of the lung nodules.

Stage Description

I
Tumor ≤ 3 cm diameter without invasion, more proximal that
lobar bronchus.

II
Tumor > 3 cm diameter or tumor of any size with any of the
following: Visceral pleural invasion, Atelectasis of less that entire
lung, Proximal extent at least 2 cm from carina.

III

Tumor of any size that invades any of the following: chest
wall, diaphragm, mediastinal pleura, parietal pericardium.

Tumor < 2 cm distal to carina.

IV

Tumor of any size that invades any of the following: mediastinum,
heart or great vessels, trachea, esophagus, vertebral body, carina.

Tumor with malignant pleural or pericardial effusion.

Separate tumor nodules in same lobe.

(a) (b) (c)

Figure 2.1: a) Example of a solid nodule. b) Example of a sub-solid nodule. c) Example of a
Ground-Glass-Opacity nodule [15].

Furthermore, the nodules have different characteristics which help radiologists
perform an early diagnostic when assessing if a nodule is benign or malignant.
These characteristics will be discussed in the following section.

2.1.2 Radiologic features of the pulmonary nodule

The most common and used properties in lung nodule classification are the shape
of the nodule, the volume, its density and calcification. Others may include the
central opacity, which happens when the nodule has high intensity in the cen-
ter when compared to the borders, air component, that is associated with black
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Table 2.2: Radiologic features of the nodules.

Feature Sub-type

Shape [16]

Round
Oval

Polygonal
Complex

Volume [3] [17]
Baseline Volume

Baseline Diameter

Density [3]
Homogeneous
Heterogeneous

Calcification [3]
Present (Central, Diffuse Solid,

Laminated, Popcorn like, Amorphous)
Absent

Central Opacity [16]
Present
Absent

Air Component [3] [16]
Present
Absent

Margin [3] [16]

Smooth
Somewhat Smooth

Lobulated [17]
Slightly Irregular with spiculation

Irregular with spiculation

Location [17]

Intraparenchymal
Juxtavascular

Fissure Attached
Pleural Based

Intra-nodular Fat [3]
Present
Absent

Cavitation [3]
Present
Absent

regions inside the nodule, the margin of the nodule, location, intra-nodular fat,
represented in the image by low intensities, and cavitation, which are small, focus,
low-attenuation regions within or surrounding the periphery of the nodule [3] [16].

Nevertheless, there are some literature differences between authors in respect
to what visual radiologic properties should be used to characterize the nodules and
some are more detailed than others. Li et al [16] only describes four features and
does not include the presence of lobulation in the sub-types features for margin,
contrary to Xu et al [17]. The study of Xu et al [17] also makes reference to
location and volume and Erasmus et al [3] gives no description about the shape
or location. Table 2.2 presents all characteristics addressed by each author for a
more comprehensive overview of the nodules’ radiologic properties.

Malignant and benign nodules share many of the properties seen in table 2.2 [3].
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Nevertheless, some studies [3, 16–18], show that some characteristics are more
prominent in malignant nodules than in benign ones and vice versa. For example,
Li et al [16] performed some statistics based on Fisher exact tests, where, for each
feature, it was determined whether there were any significant differences in the
proportion of malignant lesions and benign. Xu et al [17] used univariate logistic
regression analysis to test the relation of each feature to malignancy and benignity.

The results showed that in the GGO type, nodules with a round shape were
probably malignant. In the partially solid type, round shaped nodules or with
central opacity were more likely to be malignant. In solid, nodules with a com-
plex shape or irregular margins, purely intra-parenchymal, were more likely to be
malignant. The presence of small cavitation, air components, or cavitation but
with thick, irregular walls, will likely be related to malignancy, such as diffuse and
amorphous calcification, when present (attenuation of 200 HU [3]). A big base-
line size and a short time required for a nodule to double its volume are also two
significant predictors of malignancy.

On the other hand, nodules with a polygonal shape or with a smooth or some-
what smooth margin are more likely to be benign. The presence of intra-nodular
fat, with an attenuation of −40 to −120 HU, cavitation, but with thin and smooth
walls, and calcification is also a predictor for benignity.

Apart of assessing if a nodule is benign or malignant, it is important to find
out what is the nodule’s position in the lungs. This is important since lung nod-
ules that are intra-parenchymal are more likely to be malignant than those who
have attached structures like vessels or pleura [17] [19]. Regarding the nodule’s
position, the most popular classification is based on Diciotti et al [20], which de-
fines the nodules into four types, presented in figure 2.2. Figure 2.2a shows a
well-circumscribed nodule, which is located centrally in the lung without any con-
nection to vasculature. An example of a vascularized nodule is presented in figure
2.2b. It is found in the center of the lung but connected to neighbouring vessels.
Figure 2.2c presents a pleural-tail nodule, and the name is due to a portion of the
nodule being connected to the pleura surface by a thin tail. Finally, a justa-pleural
nodule is given in 2.2d. This type of nodules have a large portion of the volume
connected to the pleural surface.

(a) (b) (c) (d)

Figure 2.2: a) Well-circunscribed nodule. b) Vascularized nodule. c) Pleural-tail nodule. d)
Justa-pleural nodule.
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With this type of characterization we will be able to label a nodule by analysing
its position and connections, which is somehow more straightforward and conclu-
sive than to analyse multiple features that are common to both malignant and
benign. Nevertheless, there are still problems to overcome in Classification by
Location, because some nodules belong to different types and have similar char-
acteristics. For example, some nodules present shapes that lie between the well-
circumscribed and vascularized types (the nodule can have very few vessel connec-
tion) or between juxta-pleural and pleural-tailed types (some do not have nor small
nor large connection to the pleural wall) [21]. These nodules with intermediate
structures complicate the labelling process and increase the overall classification
error.

2.2 CAD systems for lung nodule classification

The main objective of Lung Nodule Classification using CAD systems is to differ-
entiate benign from malignant lesions as accurately as possible. Many works have
been developed in this area, however, the results have not been fully satisfactory.
In this dissertation, only recent publications will be discussed.

Methodologies

A CAD system that is used for differentiating benign from malignant nodules
is normally structured in five main steps: pre-processing, feature measurement,
feature selection, classification and validation. Figure 2.3 shows the block diagram
representing all of these stages.

Figure 2.3: General scheme of an automatic pulmonary nodule classification system using CAD.

The following sections describe each one of these stages and the corresponding
revised strategies for nodule classification, employed in the recent years.

2.2.1 Pre-processing

In the pre-processing stage the images are prepared for computation in the fol-
lowing stages. The common processing steps in this stage include resizing of the
images (reducing or increasing the size of the images), image enhancement, noise
removal, segmentation of the ROI, among others. In nodule classification, the pre-
processing stage is composed almost entirely by the segmentation of the nodule.
Nodule segmentation is important since the objective is to accurately define the
region where to measure the best information using an adequate set of features [22].
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There are many different ways to perform nodule segmentation. While some
authors [23–26] use simple approaches like successive thresholds until the optimal
nodule segmentation is achieved, others, [27–29], use region growing or 3D active
contours [30]. These techniques can also be combined to refine the segmentation
and achieve better results. Yanjie et al [27] and Lee et al [28] combine region
growing with a snake technique and distance transformations, respectively. Ted
et al. [30], uses a 3D active contour based on k-means clustering with a morpho-
logical opening operation. Although nodule segmentation is no trivial task, the
ultimate goal must be to achieve an acceptable result that allows a good feature
measurement with minimum error.

2.2.2 Feature measurement

The next step is feature measurement. This stage is important because good char-
acteristics lead to good nodule differentiation. In literature we find different sets
of features that can be grouped into major categories. The most common are tex-
ture, gradient, shape and gray-level or intensity. Some authors, [23] [24] [28], also
include radiological and demographic information to analyse their discrimination
strength. Information about the nodule’s location is also reviewed in the following
paragraphs.

The objective when measuring features is to match, as closely as possible,
the radiological characteristics, listed in subsection 2.1.2, with the image analysis
characteristics or, in other words, all information that can be acquired using a
computer.

In nodule classification, internal characteristics (air component, intra-nodular
fat, cavitation, calcification) are very important as many help distinguish benign
from malignant nodules. For this purpose, the most helpful and differentiating
features are texture features [30] [31]. Gray Level Co-occurrence Matrix (GLCM)
is often used [23] [24] [32], as it provides several properties from the spacial de-
pendence of the gray values. Run-length statistics are used in Ted et al [30], to
analyse the number of runs of a gray level in an image.

Gradient features are also important since the obtained gradient vector and its
momentum can help describing the nodule’s boundary sharpness, overall smooth-
ness [33] and density.

Many authors, [25] [30] [32]Yeh, use geometric features as they provide an
overall spacial description of the nodules. Some of the most common are volume,
diameter and circularity. Many others can be derived from these ones to measure
shape and margin properties. This can be achieved by computing the sphericity,
second central moment, [25], or performing a Principal Component Analysis to
measure the main orientation of the nodules in the image space.

Armato et al [35] uses gray-level information to compute the overall intensity
of the nodule. This feature is important to detect the presence of central opacity
in the nodule, for example.
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Haifeng, Wang, and Lee et al. [23] [24] [28] included radiological features, for
distinguishing between benign and malignant nodules. They use them as binary
values to indicate if they are present or absent. For example, if there is lobula-
tion then the feature has the value 1, otherwise 0. In their work we are able to
find features like: nodule diameter, lymph node status (positive or negative), den-
sity (homogeneous or not), solidity (yes or no), ground-glass opacity (yes or no),
margin (smooth or speculated), lobulation (present or absent), air inside of the
nodule (present or absent), calcification (present or absent), cavitations (present
or absent), pleural indentation (present or absent), and pleural effusion (present
or absent). The problem when using this information in a CAD system is that the
nodules must be previously analysed by a radiologist, thus the measured features
obtained by the review are subjective to an erroneous analysis which can mislead
the system in classifying the nodules.

Ted et al [33] and Huan et al [24] used demographic features to assess their
effect in the classification. For this, two features were used: age and smoking
history in number of cigarette packs per year. However, after analysing the results,
the conclusion was that these features did not significantly affect the performance
of the CAD system, thus being unhelpful for the differentiation problem.

Another type of feature is location. In the reviewed articles there is no record
of this information being used in malignant versus benign classification. However,
as stated before, it could prove to be very important in nodule characterization
as some nodules seem more likely to be malignant if they are located in the intra-
parenchymal region and are well-circumscribed. At this point there are two ways
this information can be acquired and used. The procedure can be to use the
position of the nodules in the image, or use the information usually computed
for determining the nodule’s location as features for the malignant versus benign
problem. Both have downsides. The first relies on the ability of determining
the position of the nodules, thus giving wrong information to the classifier if the
nodule is labelled incorrectly. The second can provide redundant information as
other features, like texture or gray-level features, can give the same information.

Some work has been done in order to determine the position of the nodules. In
the following paragraphs there is a description of the most relevant methodologies
in what concerns the construction of the ROI, that is the volume containing the
nodule, the methods used for feature measurement and the performance of the
systems.

Methods for estimating nodule’s location

One of the first to address the estimation of the nodule’s location was Faraq
et al [19] which obtained an average 78.57% correct classification using the Scale
Invariant Feature Transform (SIFT). The SIFT descriptor uses several Gaussian
filters to identify different scales and locations that can, in a repeatability way, be
assigned under different views of the same object. After applying the Gaussian
filters, the maximum and minimum values of the filtered image are obtained by
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comparing each pixel to its neighbourhood. Gradient orientation and magnitude
are calculated for each pixel around the SIFT keypoint location, and stored in a
vector. These vectors are then concatenated into oriented histograms representing
the final Keypoint descriptor, which is the sum of all gradient magnitudes in that
direction and location. The resultant vector has the overall intensity, texture and
gradient information of the ROI, being invariant to image translation, scaling,
rotation and illumination changes [36].

Because this type of characterization focus on the nodule’s position, Zhang et
al [37] concludes that including the information from the nodule’s neighbourhood
into the classification was vital to capture a more comprehensive description of
the lung image. To attain this, a patch-based approach was used, which is per-
formed in order to obtain several square or circular sectors from an initial image.
By doing this, much more local detail can be measured as each segment is anal-
ysed individually. However, because the information concerns one sub-window,
it unavoidably groups unrelated objects. This problem becomes apparent when
two or more sub-windows include the nodule and its information is mixed with
the surroundings. The approach used by Zhang et al [37] solves this due to its
adaptive nature. The patches are separated into different levels according to their
distance to the nodule’s centroid, being the nodule at the level 0 and the remain
neighbourhood at the level 1. This result is achieved by applying the quick shift
algorithm [38], which, by mode seeking, constructs a tree of links between a set of
superpixels and its neighbours increasing an estimate of the density. Then, using
the nodule’s centroid as the center of the image, a circular partition is obtained
starting at that position where all pixels, in a given distance, are grouped together.
This is done for several distances, K, until the end of the image is reached. The
measured feature, for each section, was the foreground ratio which is calculated
by counting the pixels belonging to the foreground and dividing it by the total
number of pixels in that section. The final result is then concatenated to build the
context curve, which is a histogram representing the number of pixels for every
section. A SVM classifier was used to conduct the classification and the result had
an average classification rate close to 90%, using data ranging from 10 to 90% of
the data as training sets.

In 2014, Zhang et al [31] used tree different strategies for feature measurement
and performed a context (nodule’s neighbourhood) analysis classification.

The same image partition found in Zhang et al [37] is used here, however, level
0 is representative of the nodule, level 1 is the nearest neighbourhood and level 2
is the remain neighbourhood.

For feature measurement, density, gradient and intensity information are mea-
sured by the use of three methods: a SIFT descriptor; a filter based technique
applied to the original image, combined with a rotation-invariant local binary pat-
tern (LBP) analysis, which is applied to the filtered image. The applied filter
corresponds to the maximum response 8 (MR8) filter, that uses two anisotropic
filters for each of three different scales and two isotropic filters to help discriminate
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textures that looks very similar and to achieve rotation invariance; a multiorien-
tation histogram of oriented gradients (MHOG) descriptor, which is a rotation-
invariant HOG. This version is able to represent objects by occurrences of gradient
orientation, compiled in several histograms for different local proportions in eight
different directions. The resultant histograms are concatenated.

This information is then used in two different classification steps. In the first,
a classifier is used to estimate the probability of a nodule being of some type.
For this, only the information retrieved from level 0 (nodule’s patch) is employed.
In the second step, a context analysis information is performed, where levels 1
and 2 give the information. Here, a probabilistic latent semantic analysis, which
measured the implicit latent information hidden in the relationship between the
images and their categories, with contextual voting is employed. The final stage is
designed to combine those two resultant probabilities, thus combining context and
nodule analysis. A variable λ (ranging from 0 to 1) is deployed to give more or less
weight to nodule probability estimate. With a λ = 0.7, a 89% correct classification
was achieved in Zhang et al [37].

2.2.3 Feature selection

Feature selection is an important component of a CAD system when the feature
space is large and there are redundant and irrelevant features. Its aim is to reduce
that space from a set of N features to a subset of m features, with m�N, keeping
the ones that best characterize the target classification, without compromising
class separability and saving computation time [7].

The goal of a selection algorithm is, therefore, to select the features which give
a large distance between classes and a small variance within classes. There are
numerous processes that perform this selection and each one has its own strategy
and use several separability measures.

We encounter three different model searches, each one working in different
levels of proximity to the classifiers.

The Filter based approach examines the intrinsic properties of the data and
calculates the feature relevance score, eliminating the ones who present the lowest
results. Although this is a fast computing model, even for high number of features,
the main problem is that it is independent from the classifier, thus not working in
the hypothesis space.

Wrapper methods work in the hypothesis space searching for the best subset
of features. These subsets, obtained from the initial set, are defined by a search
procedure and evaluated by training and testing a specific classification model,
adapting the approach to a specific classification algorithm [39] [40]. Ideally, the
best process would be to analyse every subset obtained by combining all features in
the feature set N. That means that for a desired number of features d, from a sub-
set with cardinality j, the procedure would be to examine all

(
j
d

)
possible subsets

of the feature set N. This would lead to a very large number of possibilities that
would not be practical for a CAD application [41]. Two methods that analyse all
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possible subsets are the Exhaustive Search and Branch and Bound Search. Though
they are computationally heavy, the Branch and Bound Search uses implicit enu-
meration to search all subset of features, meaning that it does not searches for
every combination of features (branches), but instead ignores branches that have
features with low discriminant capacity, making it much faster.

Several, faster, sub-optimal algorithms have been developed to find the best
subset of features without searching all subsets. In this group are included deter-
ministic methods like Best Individual and Stepwise Feature Selection algorithms,
and non-deterministic or stochastic like the Genetic Algorithms (GA) [41].

Embedded techniques search for optimal subset of features that are included
into the classifier, being specific to a given learning algorithm [40] [39]. Like
the Wrapper methods, they interact with the classification model but are less
computationally intensive.

Table 2.3 compiles all feature selection algorithms used by the most cited au-
thors that worked in lung nodule classification. In the reviewed methods, Wrapper
based are the most used, nowadays.

In the following sections there will be a description of four feature selection
methods being used in lung nodule classification. They are two filter based and
two wrapper based approaches. The first two were successfully used in recent
works and should be further tested to analyse their performance, and the last two
are commonly used in research papers.

Table 2.3: Comparison of feature selection methods and classifiers of the most relevant lung
nodule classification works, taking into account the number of citations.

Feature Selection
Algorithms

Classifier
Cites

(December 2014)

Armato, 2003 [35]
Random Selection and

experimentation

Rule-based
Classifier and

LDA
61

Ted, 2006 [30]
Sequential Forward

Selection
LDA 102

Iwano, 2008 [25] Not used LDA 24

Ted, 2009 [33] Stepwise Feature Selection LDA 38

Lee, 2010 [28] Genetic Algorithm LDA 31

Yanjie, 2010 [27] Genetic Algorithm SVM 28

Chen, 2010 [32] Kruskal-Wallis test 3 ANNs 14

Krewer, 2013 [42]
Correlation-based Feature

Selection
k-NN 2

Haifeng, 2013 [23]
Penalized logistic regression

framework via the
lasso-type regularization

ANN 8
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Filter based methods

Correlation-based attribute subset evaluator The Correlation-based At-
tribute Subset evaluator or CFS [43], analyses the strength of a feature in pre-
dicting the class of the object, but tends to give little importance to the inter-
correlation of the features. It adds features that have high correlation with the
class, but only if the set does not have a corresponding high correlated attribute.
The CFS’s feature subset evaluation function is given by the following equation:

Mb =
nrcf√

n+ n(n− 1)rff
(2.1)

where Mb is an heuristic merit of a feature subset b containing n features, rcf is
the mean feature-class correlation (f ∈ b), and rff is the average feature-to-feature
inter-correlation. The numerator of the equation can be seen as how predictive of
the class a set of features are, as the denominator gives information of how much
redundant are the features. This equation attributes a ranking on feature subsets
in the search space of all feature subsets. [43].

Usually, CFS does not analyse all possible feature subsets in the search space as
it is computationally expensive. However, several search strategies can be used to
guide the CFS. Some include Sequential Backward Selection or Sequential Forward
Selection. These strategies can also be used as wrapper based methods if coupled
with classifiers. They are described in the section 2.2.3.

Relief F Relief samples instances randomly and checks the distance between
them and neighbour instances that have the same and different classes. It calcu-
lates the feature weight W by computing the difference between the probability of
finding one instance of a different class in the nearest neighbourhood and the prob-
ability of finding one instance of the same class in the nearest neighbourhood [43].
W is calculated as follows:

W [A] = P (diff. value of A|nearest inst. from diff. class)

−P (diff. value of A|nearest inst. from same class)
(2.2)

Relief F is an improvement from Relief and is described in detail by Kononenko
et al. [44]. Contrary to Relief, it searches for k nearest hits and misses from each
class, and averages their contributions updating W. This way it is more robust and
noise tolerant. It also modulates the probability that the predicted values of two
instances are different with the relative distance of those instances. This way, the
context sensitivity provided by the “nearest instance” condition is removed and
we can rewrite equation 2.2 by recalculating the probabilities P as:

PdiffA = (diff. value of A|nearest instances) (2.3)

PdiffC = P (different prediction|nearest instances) (2.4)
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PdiffC |PdiffA = P (different prediction|
|diff. value of A and nearest instances)

(2.5)

and applying Bayes rule, W is defined as:

W [A] =
PdiffC|diffAPdiffC|diffA

PdiffC
−

(1− PdiffC|diffA)PdiffA

1− PdiffC
(2.6)

The number of neighbours k to be checked must be defined, such as the number
of instances to be analysed [44].

Wrapper based methods

Stepwise feature selection The basic principle of this type of methods is be-
ginning with a single solution and add or remove one feature at a time until the
number of desired features is reached. In the forward methodology, it is added, in
each iteration, the feature that improves the model the most. The process ends
when the desired number of features is reached. The backward methodology is the
opposite, as it starts with all features and, at each iteration, deletes the least sig-
nificant feature. Although this type of algorithms are very fast, the main problem
is that they don not examine all possible subsets, thus is not guaranteed to give
the optimal result. As a wrapper based method, the Stepwise Feature Selection is
coupled with a classifier which calculates the merit of the feature subset.

The genetic algorithm The GA approach mimics the evolution process in
biology by representing an arrangement of characteristics as the genotype of an
individual that gives it an advantage to survive when competing with other indi-
viduals [27]. A feature subset is represented by a binary string of a chromosome of
length n (total number of available features), with a zero or one in the position of
the features being suppressed in a particular evaluation. For each chromosome, is
determined its fitness, which is estimated by some weight function. If the fitness is
high, then the chromosome will survive and breed, thus creating a new generation.
This new generation of chromosomes is created by means of two combinatorial
processes:

• crossover - two surviving chromosomes are mixed, with the goal of providing
better results.

• mutations - the features index of a single chromosome are randomly altered,
depending on a certain probability of mutation, which allows exploring the
feature solution space.

After a number of predefined generations, the algorithm yields an acceptable
number of solutions to be used in classification [41].
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2.2.4 Classification

The next stage in a CAD system is classification. In this work, the purpose of the
classification is to distinguish malignant from benign nodules as best as possible
using a classifier. It outputs the probability of a certain object, in this case, a
benign or malignant nodule, of belonging to a certain class. A classifier uses input
data to train a set of rules that are evaluated in the output test data using machine-
learning methods [5] [45]. In lung nodule classification, all features obtained from
the Feature Selection stage are used as representatives of the nodules and serve as
inputs to the classifiers. The purpose is to build a classifier that can be generalized
to different data concerning the same problem.

In table 2.3, we identify the classification methods used more recently in lung
nodule classification. The most frequently used are the Linear Discriminant Anal-
ysis (LDA) or the Artificial Neural Network (ANN), but the one that is showing
more promising results is SVM [31] [27] [46]. In [42], the k-nearest neighbours al-
gorithm (k-NN) with k=5 was also used with good performance. In the following
sections we will present a brief description of two classifiers, the SVM classifier
and the k-NN classifier, that are used in our lung nodule classification systems.

Support vector machines
The SVM constructs an hyperplane that best separates two data classes, thus

creating a margin that is in both sides of that hyperplane. That margin is the
distance between the data points and the hyperplane. Finding the optimal hy-
perplane that maximizes this margin, is finding the largest distance between each
class (figure 2.4), thus increasing the classification accuracy.

The data is linearly separable when a pair (w,b) exists in the form of

w.xi + b ≥ +1, for i = 1, ..., N ; xi ∈ Class1 (2.7)

w.xi + b ≤ −1, for i = 1, ..., N ; xi ∈ Class2 (2.8)

with a decision rule

fw,b(xi) = sign(w.xi + b) (2.9)

where w is the weight normal vector to the hyperplane, b the bias or offset
value and N the number of data points in the dataset. To find an optimum
separating hyperplane, its squared norm must be minimized by a convex quadratic
programming problem, where

argmin Φ(w) = argmin
(w,b)

1

2
‖w‖2 (2.10)

subject to

yi(w.xi + b) ≥ 1, i = 1, ..., N (2.11)
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Figure 2.4: A classification example taken from [47] and [45].

When the optimal hyperplane is encountered, data points that lie on its margin
are known as support vector points which define a linear solution to the training
classifier.

When data contains misclassification instances, the SVM may not be able to
find any separating hyperplane. To deal with this problem it is included some
level of acceptance on misclassifications of the training instances. This is done by
introducing some slack variables ξi, i=1,...,N in the constrains, thus equations 2.7
and 2.8 become:

w.xi + b ≥ +1− ξi for yi = +1 and ξi ≥ 0 (2.12)

w.xi + b ≤ −1 + ξi for yi = −1 and ξi ≥ 0 (2.13)

and equation 2.10 becomes:

argmin Φ(w) =
1

2
‖w‖2 + C

N∑
i=1

ξi (2.14)

subject to

yi(w.xi + b) ≥ 1− ξi, i = 1, ..., l, ξi ≥ 0 (2.15)

where C>0 is a parameter chosen by the user to penalize decision errors. In
reality, the ability of separating data does not always exists, which means that
an hyperplane cannot be found. To address this problem, the data is mapped
into a higher dimension H (see figure 2.5) and try to find a hyperplane there.
This higher-dimension is called Transformed Feature Space, to distinguish from
the original Input Feature Space. A linear separation in this transformed space
corresponds to a non-linear separation in the Input Feature Space. This would
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mean that the training algorithm would only depend on dot products in the form
K (xi,xj)=Φ(xi).Φ(xj). This kernel K is used to map new points into the fea-
ture space for classification. Because there are several kernel functions that give
different Feature Spaces, where the training sets will be classified, it is important
to select the most appropriate one. An example is presented in figure 2.5, where
different kernels K, as the ones in equations 2.16, 2.17 and 2.18.

Figure 2.5: Non-linear mapping via Φ, converting a nonlinear into a linear decision boundary
[47].

K(x, y) = (x.y + 1)P (2.16)

K(x, y) = e−‖x−y‖
2/(P 2) (2.17)

K(x, y) = e−(‖x−y‖)/P (2.18)

where x and y are vectors in the Input Feature Space, P is the parameter θ of
the kernel and k is a constant.

The SVM training is finished when it is solved the N th dimensional quadratic
programming problem [45] [47].

K-nearest-neighbour
The K-nearest-neighbour, or k-NN, is a non-parametric classification method

used in pattern recognition. It is a simple but effective classification method that
tries to group samples based on their proximity. Despite its simplicity, it yields
good results, mostly when there is little or no prior knowledge about the data
distribution.

This classifier is based on a rule of proximity between the starting prototypes
and the remaining. The proximity is commonly obtained by computing the Eu-
clidean distance between a test and training samples. If xi is the input sample with
p features (xi1,xi2,· · · ,xip), n the total number of input samples (i=1,2,· · · ,n) and
p the total number of features (j =1,2,· · · ,p), then the Euclidean distance between
sample xi and xl (l=1,2,· · · ,n) is defined as:

d (xi − xl) =

√
(xi1 − xl1)2 + (xi2 − xl2)2 + · · ·+ (xip − xlp)2 (2.19)
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The decision rule for the prediction of a test sample is set equal to the most
frequent class among the k nearest training samples. For instance, if one object is
close to two objects of class 1 and one of class 2, for a k value of 3, that object is
labelled as class 1 due to the majority of objects in the vicinity [48] [49].

2.2.5 Validation

Validation is the stage where the evaluation of the system is made. There are
several aspects that can be examined, and although the most important is the
performance of the classification, it is also important to understand what kind of
data is used and what is the system’s efficiency.

To evaluate the performance of the classification, there are some measures that
can be used. Table 2.4 shows the validation methods used by several authors and
the corresponding system performances in lung nodule classification. Iwano et
al. [25] used an evaluation method based on sensitivity and specificity analysis.
The accuracy of a system can also be used. Sensitivity and specificity give the
correct classification rate of true-positives and true-negatives, respectively, whereas
accuracy presents the overall performance of the algorithm in what concerns correct
decisions. They are given by the following equations:

Sensitivity =
TP

TP + FN
1 (2.20)

Specificity =
TN

TN + FP
2 (2.21)

Accuracy =
TP + TN

TP + TN + FP + FN
(2.22)

The receiver operating characteristic (ROC) curve, presented in figure 2.6 is the
trade-off between true-positives and false-positives rates, and is normally plotted
with the sensitivity in the Y-axis and 1-specificity in the X-axis. This trade-off,
however, depends on the class we want to make a priority, meaning that we can set
the classifier to save more objects from class 1 than class 2 by defining a threshold
probability. Normally, this probability is set to 0.5, but to build the ROC curve,
all probabilities from 0 to 1 are used.

Almost all of the authors use the Az or area under curve (AUC) value. For
comparison purposes, particularly when analysing two classifiers or different sys-
tems, it may be the most useful parameter, being a value that is the performance
of the classifier when using all threshold probabilities.

By using the Az value, the results can be represented by one parameter that
gives the overall discrimination achieved from the system. For comparison pur-
poses, the performance of each methodology is organized in table 2.4. We may

1TP - True Positives, FN - False Negatives.
2TN - True Negatives, FP - False Positives.
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notice that Chen et al. [50] based his work on data with ground truth from the
radiologists’ assessment on the nodule’s malignancy, contrary to the others, where
the systems were build and evaluated using biopsy or surgically diagnosed nod-
ules. The objective of Chen et al. [50] was to build a system that could classify
the nodules similarly to radiologists. He compared the system’s capacity to guest
radiologists. The system achieved an AUC value of 79%, which was higher than
the performance of the radiologists.

The remaining authors used nodules with biopsy or surgical confirmed malig-
nancy. It is difficult to say which one presents better results as the number of
nodules is different from work to work and, also, as addressed in sub-section 2.2.2,
some authors, [23] [24] [28], use clinical features, meaning that these systems de-
pend on the clinical assessment. The best performance is obtained by Haifeng et
al. [23] that uses a considerable number of nodules and presents a high AUC value.

Figure 2.6: Example of a ROC curve. The ideal operating point would be in the upper left
corner where sensitivity is 1 and 1-specificity is 0 [51].

When a system is being analysed, it is important to look for high AUC values
(ideally, equal to one). However, as seen in table 2.4, these results may be deceiving
as some authors use small databases and/or poor nodule variation that may lead
to better results. It is important to use a large database with nodules that have
different characteristics, namely, in size, opacity, shape and location. By doing
this, the authors ensure that the algorithm has good generalization capacity and
presents more confidence in classification [51].

Finally, it is also important to examine the system’s efficiency. Complex al-
gorithms tend to perform slower than simpler ones and may not translate into
better results. It all depends on the strategy employed, which also includes the
pre-processing stage. Sub-sampling the images, for example, can greatly reduce
the computation time, although decreasing the amount of information.
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Table 2.4: Comparison of methods taking into account the number of used nodules in both
benign and malignant, and system validation.

Malignant
Nodules

Benign
Nodules

Performance

Armato, 2003 [35] 69 401 Az of 79%

Ted, 2006 [30] 44 52 Az of 83%

Iwano, 2008 [25] 52 55
76.9% sensitivity

and 80% specificity

Ted, 2009 [33] 124 132 Az of 85.7%

Lee, 2010 [28] 62 63 Az of 88.9%

Yanjie, 2010 [27] 43 34 Az of 87.48%

Chen, 2010 [32] 19 13
Average of 3

classifiers: Az of 79%

Krewer, 2013 [42] 14 19 Accuracy of 90.91%

Haifeng, 2013 [23] 116 86 Az of 91%

2.3 Concluding remarks

Image analysis using CAD systems is becoming increasingly important in diag-
nosis when used as a second reader. Although their performance is not yet truly
satisfactory, it has already been shown that it can be useful to increase the overall
classification performance. As stated before, the ability of differentiating benign
from malignant nodules is very difficult due to lack of distinguishable characteris-
tics. These systems, however, have the capability of using different features, which
combined can result in a reliable classification. There are many characteristics
that can be measured and it is important to use different techniques to obtain a
good nodule representation.

Many authors consider texture as the most powerful feature for nodule classi-
fication, so it is important to consider the various approaches used to measured
it. The GLCM seems to be a good tool for this purpose. Also, it is clear that the
SIFT descriptor gives important features as it is used by many, with good results.
The combination of SIFT with LBP and HOG, increased the overall performance
in Zhang et al [31], indicating that further texture and gradient analysis is neces-
sary. Shape analysis is also necessary since it was noticed that shape features can
have good differentiation capability. Another interesting fact is that including the
analysis of the nodule’s neighbourhood also helped differentiating the nodules.

After measuring the features, it is important to eliminate the ones that are
redundant. A good wrapper or filter based algorithm for feature selection must be
employed to find a subset of features that is closely approximated to the optimal
solution.
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Finally, a good classifier must be employed to provide good class differentiation.
The SVM is a powerful classifier and, according to Zhang et al [31] and Yanjie et
al [27] is the one that shows more promising results.
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Chapter 3

The LIDC-IRDI Database

The LIDC-IDRI database contains the Computed Tomography (CT) images used
in this work. The following sections describe a typical CT image and properties
and the general properties of the database. A database analysis is also presented in
what concerns the radiologist’s annotations and the intensity ranges of the images.

3.1 Computed tomography images

The most commonly used 3D medical imaging is X-ray CT. This modality uses
X-ray beams to produce an image, taking advantages of the physical processes of
bean generation, dispersion, absorption, and scatter. However, unlike conventional
projectional radiography, the CT-image is not acquired in a single, complete form,
as it is not projected in a standard X-ray film. The CT-scanner is composed by
a moving bed to translate the patient through the scanner, a rotating X-ray tube
to emit photons, a collimator, which is a part composed by several pairs of lead
plates, to form a flat bean and an array of X-ray detectors to absorb the photons.
The simultaneous movement of rotation and translation allows the formation of
multiple slices that together compose a 3D image. This process takes usually a
few seconds (1 to 5 seconds) to complete.

The resolution plays an important role when acquiring the images. Typically,
the sampling resolution in the transaxial plane is either 256 × 256 or 512 × 512
voxels square and in the longitudinal direction is dependant on the number of
slices acquired. The sampling resolution of the voxels can also be defined and it
is dependent on the field of view and pixel dimensions. The spacial resolution
corresponds to the vertical width of the voxel and it is limited by the physical
properties of the scanner, as it is dependant on the dimensions of the collimator. In
theory, the narrower the collimation, the better. However, this requires extremely
amounts of X-ray flux to image, so the physical limit is set to 1 mm.

Thin-section CT scanning or High Resolution Computed Tomography (HRCT)
is used when the goal is to diagnose potential diseases that are difficult to assess
when using conventional CT imaging. In lung HRCT they can include pulmonary
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fibrosis, emphysema or bronchiectasis. Although this modality is performed using a
conventional CT scanner, it uses different imaging parameters to maximize spatial
resolution.

The technical features of the HRCT normally include a thin collimator of 1 mm
and the use of a high spatial frequency algorithm. Also, the spatial resolution of
modern scanners can reach up to 0.25 mm in the longitudinal direction. However,
the slices are normally acquired over broader distances (for every few centimetres
or dozens of millimetres). This is performed as HRCT delivers 10-20 times more
radiation than conventional CT screening, so it is important to reduce the patient’s
exposure [52].

A CT image has different levels of gray values along the voxels which form the
objects. These levels correspond to different number of photons arriving to the
detectors, which depends on the density of the tissues of the patient. Bones are
denser so they absorb more photons when compared to soft tissue, for example.

Figure 3.1: The histogram of a 2D CT image.

In CT imaging, the values of attenuation are measured in Hounsfield units,
named after the inventor of CT scan, Godfrey Hounsfield. The scale is calibrated
using the attenuation coefficient of the water, 0 HU. The lowest value is air, mea-
suring −1000 HU, then comes fat tissue, that ranges between −300 and −100 HU,
muscle tissue 10-70 HU, and bone above 200 HU [53]. Figure 3.1 shows the his-
togram of a chest CT image and it is visible the intensity distribution of the lungs
and region outside the body (air), body and the region without information.

As stated previously, different tissues have different levels of attenuation, so
chest CT images also present the various structures of the lung with different HU
values. The main structures of the lung are: the bronchi, parenchyma, bronchus-
associated lymphoid, vasculature, thorax, diaphragm and mediastinum [54]. Fig-
ure 3.2 shows an example of a chest CT image. The most visible structures are the
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bronchi, thorax and diaphragm because of their volume and higher attenuation
capacity. The parenchyma has low attenuation values, so, normally, some intra-
parenchymal vasculature can be seen, such as lung nodules or other pathologies.

Figure 3.2: Example of a CT image [15].

3.2 Database. Overall description

The Lung Image Database Consortium and Image Database Resource Initiative
(LIDC-IDRI) consists of diagnostic and lung cancer screening thoracic CT scans
with marked-up annotated lesions. It is an international resource started by Na-
tional Cancer Institute, further advanced by the Foundation for the National In-
stitutes of Health, and accompanied by the Food and Drug Administration. It is
available via Internet for development, training, and evaluation of CAD systems
for lung cancer detection and diagnosis [15]. Specifically, the LIDC-IDRI initiative
aims are to provide:

• A reference database for the relative evaluation of image processing or CAD
algorithms.

• A flexible query system that provides researchers opportunities to evaluate a
wide range of technical parameters and identified clinical information within
this database that may be important for research applications.

Importance of LIDC-IDRI database

This database has proven to be very useful in validating system performance.
Its size, its variability in nodule type and great discrimination allied with the
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fact of being available to public, gives scientists a splendid resource and helps
improving their area of research. This database has already been used by sev-
eral authors, namely, in lung segmentation [55], nodule segmentation [46, 56–58],
nodule detection [59–61], nodule characterization [42,62–64] and nodule’s subtlety
assessment [65].

3.2.1 Construction and data

According to Armato et al. [66], seven academic institutions participated in the
database construction by providing all scans, but only five participated in the in-
terpretation process. From these institutions, a total of 12 radiologists/observers
performed the image annotation process, resorting to three different segmentation
software tools, including nodules segmentations and the nodules characteristics,
presented in a XML file, described bellow. One of the software tools used a semi-
automated process to create the outlines, while the others were fully manual.
Although the images were presented with a standard brightness/contrast, the ra-
diologists were allowed to adjust those properties and the magnification to enable
a more comprehensive interpretation of the scan.

The LIDC-IDRI contains a total of 243958 thoracic CT scan images from 1018
patients. From those 1018 cases, 311 have enhanced images with a minimum,
maximum and medium number of slices of 81, 501 and 157, respectively, 704 have
unenhanced images with a minimum, maximum and medium number of slices of
65, 764 and 279, respectively. All images have a sampling resolution of 512 × 512.
The spacial resolution, in both transaxial plane and longitudinal axis, varies from
scan to scan as the images were obtained from different machines.

Each annotation is made independently by four radiologists and each one of
them review the annotations of the others after the first assessment. Then, the
reviews are returned to the corresponding radiologists and are revised, this time
knowing the opinion of his pairs. The database has 7371 lesions marked as nodule
by at least one radiologist. 2669 of these lesions are bigger or equal to 3 mm which
is the main focus of clinical practice and CAD research. It is visible in table 3.1
the range of diameters and volumes contained in LIDC-IDRI [66].

XML file
Each LIDC-IDRI case includes an associated XML file that records the results

of a two-phase image annotation process performed by four experienced thoracic
radiologists at a time. It contains several code lines representing the radiologists’
identification, the nodule’s identification, its characteristics, the coordinates of its
position and marked contours. The annotation only starts at reading section.
A reading session consists of a set of predefined objective markings created to
homogeneously characterize all different lesions.

In a reading session, if a nodule is detected, the radiologist indicates the version
of the annotation and his identification. If the nodule is bigger than 3 mm an iden-
tification number is also assigned for that nodule. The nodules are then defined
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Table 3.1: Size of nodules presented in LIDC-IDRI database.

Mean Minimum Maximum

Diameter (mm) 7.24 2.03 68.43

Volume (mm3) 93.08 4.39 1667789.82

as in table 3.2 which presents the characteristics and corresponding degrees used
by the radiologists to describe the nodules. They include Internal Structure, Cal-
cification, Sphericity, Margin, Lobulation, Spiculation, Texture and Malignancy.
Additionally, the radiologist registers the localization, which is the central position
of the nodule, and contour, done for every slice where the nodule is represented,
and writes its file name. The coordinates are written as X and Y coordinates and
the corresponding slice Z.

Diagnosis data file
The database also presents a small number of cases with known diagnosis.

These nodules were evaluated by one of the following methods: review of radi-
ological images to show 2 years of stable nodule, biopsy, surgical resection and
progression. A .xls file containing all the information can be acquired in [67]. It
contains a total of 157 cases with the corresponding malignancy and origin (some
nodules are metastatic) for one to two nodules per case. The nodules are labelled as
Benign or Non-malignant disease, Malignant (primary lung cancer), or Malignant
(metastatic).
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Table 3.2: Different characteristics and the corresponding degree of appearance used to characterize the nodules by radiologists.

Degree

Type

1 2 3 4 5 6

Subtlety
Extremely

subtle
Very subtle Subtle

Relatively
obvious

Obvious -

Internal
Structure

Soft Tissue Fluid Fat Air - -

Calcification Popcorn Laminated Solid Non-Central Central Absent

Sphericity Linear Ovoid Round -

Margin
Poorly
Defined

Sharp -

Lobulation No lobulation Marked -

Spiculation
No

Spiculation
Marked -

Texture Non-Solid Part Solid Solid Texture -

Malignancy
Highly

Unlikely
Moderately

Unlikely
Indeterminate

Moderately
Suspicious

Highly
Suspicious

-
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3.3 Database analysis

To fully understand and to reliably use the database, the following sub-sections
present an analysis of the data concerning the inter-agreement of the radiologists’
segmentations and, additionally, the intensity ranges of the images, whose acqui-
sition process has great variability.

3.3.1 Agreement of inter-observer segmentations

The method for building this database led to several limitations, though many
of them have already been mentioned in [66]. Some include the inability to per-
form reader studies due to the continual change of the radiologists’ identification
and the fact that the annotation is not performed by all same four radiologists.
Also, the segmentations performed by the radiologists, saved in the XML file, can
diverse greatly from each other. Despite these limitations, there is still a need
to analyse the nodules segmentations created by the radiologists by performing a
inter-agreement study to determine the overall agreement of the observers. The
objective is to assess if it is important to use developed segmentation tools and
compare their efficiency to the nodule masks obtained from the segmentations
of the database. In the following section we discussed the method used for the
agreement analysis and corresponding results.

Methods for estimating the radiologists agreement
To assess the overall agreement in the database, some performance measures

are used to analyse the divergence between the segmentations created by the ra-
diologists. In several studies, [68–71], the Jaccard’s index is used to compare seg-
mentations, while in others, [72] [73], is the Dice’s index. Although these measures
are similar, others were also implemented by the authors to support their analysis
like: sensitivity, specificity, conformity, percentage of area difference, Hausdorff
distance and Williams’ index. All, but one, of these studies were conducted to
assess the performance of a particular segmentation tool, having as ground truth
a manual or semi-automatic segmentation performed by one or several specialists.
There was one study, [68], whose goal was to analyse the inter-observer variability
in segmenting the left ventricle of the heart using a given segmentation tool, but
did not have a ground truth. Two others, [69] [71], also analysed the inter-observer
segmentation variability of their ground truth, the first for pulmonary sub-solid
nodules and the other in Intravascular ultrasound.

Unlike the studies mentioned above, that assess the agreement between the
same observers, which in turn are properly identified, this study is designed in a
way so that an overall agreement analysis is obtained. Additionally, the goal is
to analyse the average difference between observers for the segmentation of small,
medium and big solid nodules (texture value of 4 and 5), and, separately, sub-solid
nodules (texture value of 1 and 2). This is done so there is an understanding of
which nodules are more difficult to outline. Only nodules that have an agreement
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between all four radiologists are accounted for analysis. Altogether, 599 nodules
are used in this study, from which 336 are small nodules, 90 are medium sized
nodules, 143 are big nodules and 30 are sub-solid.

Agreement measure

Due to the similarities between this study and the studies of Silva et al. [68],
Lassen et al. [69] and Balocco et al. [71], the agreement measure used here is
the Jaccard’s index. If the Jaccard’s index is close to 1, a good agreement is
present [68] [69]. The equation for calculating this index is given by equation 3.1,

Jaccard =
| A ∩B |
| A ∪B |

(3.1)

where, A and B represent the two areas of segmentation obtained from the
outlines traced by the radiologists.

Agreement analysis between radiologists

The masks of the nodules were first obtained by filling the region inside the
outlines. This procedure was done in 2D slices and then concatenated to build a
3D mask. Each mask was compared, individually, with the remaining 3 and an
average Jaccard value was calculated using the resulting three Jaccard values so a
single agreement value per segmentation is obtained.

To provide a better understanding of the results, all data is presented in two
ways. The graphic representation of the data is located in Apendix A in figures
A.1 to A.4. They are calculated for each of the nodules and observers. Table 3.3
presents the overall Jaccard variability, that is the mean, standard deviation and
median values for solid nodules with three different sizes and GGOs. The mean
value agreement was calculated by averaging all Jaccard values of the segmenta-
tions and the standard deviation and median values were also obtained from all
those values. The reason why the mean, standard deviation and median Jaccard
values for the radiologists segmentations are used is because the unknown identity
of the radiologists for different cases makes it impossible to link one annotation to
another, so this is the only way to compare the agreement for different nodules.

The results from solid nodules suggest that there is a low level of agreement
between observers. Looking only to figures A.1-A.4, it is visible that there is a
great dispersion, with great variation between values. It is also visible that all
values stay below 0.9 and only a few are close to that value.

Now, looking to table 3.3, it it conclusive that the agreement between observers
is low. The highest mean Jaccard’s value arises from segmentations of big nodules
and it is only 71%. The fact that this type of nodules present the highest value can
be surprising, as many are difficult to outline due to their connection to vasculature
and other structures. However, due to the fact that the majority of their volume is
clear, it can be assumed that all radiologists equally outlined most of the nodule, as
visible in figures 3.3(c)(f). The low agreement probably arises from places where
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the nodules are connected to other structures, as seen in figure 3.3(f), meaning
that some radiologists included parts of those structures and others did not.

Table 3.3: Results for the mean inter-observer agreement in terms of Jaccard’s agreement index.

Nodules
Volume
(mm3)

Mean Median

Small <500 0.64 ± 0.10 0.65

Medium ≥500-1000 0.68 ± 0.10 0.69

Big >1000 0.71 ± 0.10 0.73

Sub-
solid

all sizes 0.62 ± 0.09 0.62

The lowest mean Jaccard’s value for solid nodules is 64% and is found on the
small sized ones. The reason behind this can derive from the fact that, although
these nodules are solid, their margins are not well defined, so the segmentations can
diverge greatly between observers. Because they have a small size, what appears
to be small variations, can actually translate into segmentations that occupy a
much bigger percentage of volume, resulting in a low agreement.

For medium sized solid nodules, the mean Jaccard’s value is 68%. This result
was expected giving the results obtained for small and big nodules, as it stays
between the values of those sizes. The fact that their boundaries are relatively well
defined and have a significant size, makes the agreement between observers higher
when comparing to small nodules. However, they are still small, thus presenting
the same outlining problems as of small nodules. Figure 3.3(b) presents a good
example of outlines for medium sized nodules. It is visible that its shape is round
and its boundaries are somehow well defined. However, the outlines differ greatly
which indicates low agreement between radiologists. In another example, 3.3(e),
is it visible that there is more agreement, with only one radiologist (red outline)
veering from the others.

As expected, due to the subtle appearance in the CT images and poor defined
boundaries, the lowest agreement between observers occurs in sub-solid nodules.
Although all nodules in this group have different sizes (small, medium and big),
the mean Jaccard’s index stays at 62%. Figures 3.3(g)(h) are two examples of sub-
solid outlines, where 3.3(g) shows good agreement between observers (the outlines
are close to each other), and 3.3(h) shows poor agreement, particularly for the red
marking.

Analysing the mean Jaccard value gives good insight of what level of agreement
is present in the database, however, the standard deviation provides an instructive
understanding of the degree of variability. As visible in table 3.3, the standard
deviation in Jaccard’s varies from ±9-10%, indicating that the agreement between
observers in different nodules has a significant variation.
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(a) (b) (c)

(d) (e) (f)

(g) (h)
Figure 3.3: Outlines of the observers in red, blue, yellow and green. (a) and (d) are two small
nodules, (b) and (e) are two medium sized nodules, (c) and (f) are two big nodules, (g) and (h)
are two sub-solid nodules.
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3.3.2 Intensity ranges of the images

The LIDC-IDRI images present a variety of intensity ranges from −1024 to 32767
HU. Depending on the type of acquisition method, the ranges can be significantly
different, which is a result of using different CT scanners and KeV values that
affect the attenuation coefficient of the tissues due to the physical properties of
the X-Rays produced by one specific scanner [74]. As the HU values are obtained
using these attenuation coefficients, they also diverge from image to image.

As the objective of this work is to label nodules into benign and malignant, and
thus intensity properties give crucial information to achieve a good accuracy, it is
of the most importance to perform a study that analyses the ranges in intensity of
the images and, consequently, of the nodules. Normally, the images are normalized
to obtain a coherent and homogeneous measure of the image properties, but in this
case, as the image intensity ranges are very different, this normalization can be
harmful for the classification step. The objective is, therefore, to know if the
intensity ranges between the images and nodules are in fact significantly different
and, if so, how much.

Intensity range of the nodule
In order to perform an analysis on the images and nodule’s range of intensity,

a set of 5 different scans were chosen, each one having large nodules so more
information could be acquired. These images represent each of the type of images
in the database. The set of 5 images is divided in two main groups, enhanced and
unhenanced. The first group has two images, where the first ranges from −1024
to 4095 HU and the second from −1024 to 6916 HU. The second group has three
images, where the first ranges from −1024 to 4095 HU, the second from −2000
to 4095 HU and the third from −12209 to 32767 HU, this last one being chosen
due to its singularity in intensity range. A window of size 41×41×Z was chosen
to comprehend the nodules and an intensity normalization (0-1) was performed
for each image to better visualize the ranges discrepancy. Z is the length of the
nodule in the z direction. 2D images (an example slice with the nodule) and the
corresponding 3D histograms are represented in figures 3.4 and 3.5.

The histograms of each image are represented in the same scale so it is visible
the effect of the normalization when comparing to the other images. As visible
in figure 3.4(a), the main mode resides in the same range for every image and
is where the important information is located. All images have a high number of
counts in the lower intensity, which represents the black area where no information
is present. Images in the first, third and, less prevalent, fourth row, also have a
high counting in the upper limit. This comes from high density material inside
the body like bones. In the second row, we find an image that spreads these
high intensity values through a high intensity range instead of confining it to a
single value. The last image, fifth row, is the most intriguing. Its upper and lower
limits are way disproportional for what is common in CT scanning. Like in the
other images, it presents a high peak around −1000 HU, but lower intensity values
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continue to appear after that. The same happens as in the image of the second
row for the upper limit, but this time the limit reaches the value of 32767 HU
which is far away above any other. Naturally, the images that show broader HU
intensity ranges present a narrower normalization range and the inverse happens
to the ones presenting narrower HU intensity ranges. This is visible in figures
3.4(b). Also, the normalized ranges now depart from each other. The result of the
normalization can be visualised in figures 3.4(c), where the broader ranged images
are darker and fuzzy and the others more contrasted.

Similar comments can be given for the nodules. Their intensity values are
located inside the main peak of the images, thus the range of intensity HU values
is the same for every nodule. This similar behaviour was observed for other images
proving that the intensity of the nodules does not differ between images, thus
feature measurement, in what intensity and texture information concerns, can be
performed in the raw non-normalized images, so a good nodule presentation is
achieved.

3.4 Concluding remarks

The LIDC-IDRI database can be very useful in validating different system per-
formances. Its size, its variability in nodule type and good discrimination, allied
with the fact of being available to public, gives scientists a splendid resource to
study this medical field. However, some problems, addressed in this report, were
noticed when analysing its data, although they are also mentioned in [66] by the
creators. The study is conclusive in what concerns the overall agreement between
observers. The higher mean Jaccard’s index is obtained for big nodule. Globally
the agreement is 71%.

Some reasons may point to why the overall agreement is low. One can be the
use of three software tools to outline the nodules, one semi-automatic and two
manual. Giving the size of the database, it is natural to assume that the difficult
task of analysing every case resulted in fatigue and consequently, sometimes, in
poor accuracy. The principal reason, however, can be the fact that the database
was analysed by 12 radiologists. If it is assumed that the experience between each
of them is different, the results can also vary between each other.

The analysis on the intensity range of the images shows that there is a great
diversity between them and that they must be treated individually. Although this
is true for the global range of the images, the intensity range of the nodules is
the same for every case indicating that the images must be used in the original
intensity values, namely when performing feature measurement.
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(a) (b) (c)

Figure 3.4: Histograms of the 3D CT images for different cases. (a)Image histograms, (b)
Normalized histograms, (c) Single slices for each case. First and second rows represent two
enhanced cases and third and fourth rows two unenhanced. Fifth row represents a singularity in
the database.
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(a) (b) (c)

Figure 3.5: Histograms of nodules included in a 3D ROI. (a) Histograms of the ROIs, (b)
Histograms of the normalized ROIs, (c) Single slices of the windows containing the nodule. First
and second rows represent nodules from enhanced images and third and fourth rows from two
unenhanced.
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Chapter 4

Methodology for Lung Nodule
Segmentation and Classification

Nodule classification is a hard and tiring task to any given radiologist. The di-
versity of nodules in size, texture and shape makes it a big challenge when trying
to define the set of characteristics useful for classifying a nodule in benign or ma-
lignant. This way, CAD systems can prove to be very important by assisting the
radiologists in the classification task.

As the database has two different types of data, one being the nodules charac-
terized by the radiologists and the other diagnosed nodules, the proposed system is
divided in two different classification processes. The first is a system that mimics
the classification of the radiologists and the second is a system that diagnosis the
nodules similarly to a real biopsy, surgery or follow up exam.

Though both parts of the system are intended for different purposes, the process
of diagnosis consists of a set of 5 steps that are common to both. They include
nodule segmentation, feature measurement, feature selection, classification and
validation. Each one of these steps is very important and determine the overall
performance of the system. This work, however, is centred in the lung nodule
segmentation and classification stages.

4.1 Lung nodule segmentation

The objective of this work is to classify the nodules into benign or malignant as
accurate as possible. In order to do that, a reliable nodule segmentation must be
used, so that a good set of nodule characteristics is obtained. Giving the results
acquired from the inter-observer segmentation analysis, it becomes clear that the
database does provide a nodule outlines’ ground truth that varies from radiologists
to radiologist. Also, there is no way of knowing what segmentation should be used
or if the combination of segmentations is the best option even if the agreement
is low. The most effective and efficient way to do lung nodule segmentation is
by using an automatic segmentation methodology, particularly when the number
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of nodules is large. Therefore, a new strategy was employed following the work
developed by Novo et al. [75]. This methodology uses the 3D Hessian matrix to
calculate the eigenvalues of the images for every voxel at different scales of σ. All
process was performed using a ROI with 100 voxel length in the x and y directions
in order to accommodate the biggest sized nodule, and for each particular nodule
the length in the z direction plus one voxel in the upper and lower limits of the
nodule to attain intensity variation in this direction.

In the following is a description of the methodology along with a graphic visu-
alization of every step in figure 4.1.

4.1.1 Nodule segmentation using Hessian matrix

The 3D Hessian matrix, presented in equation 4.2, gives information about the
gradient changes between one voxel p = (x, y, z) and its neighbours. The three
eigenvalues, λ1, λ2 and λ3, which are the magnitude of the eigenvectors of the 3D
Hessian matrix, correspond to changes in intensity in the three principal directions
or, in other words, where the local intensity change is more prominent. This means
that a drastic change in intensity produces a high positive or negative eigenvalue
in the corresponding direction depending if the change occurs from a low to a
high intensity voxel or the opposite, respectively. Because this information can
be used to enhance structures that are located inside the parenchyma and are
significantly brighter than their neighbourhood, the result is the enhancement of
vasculature and other lung structures. For this purpose, and using an approach
described in Novo et al. [75], the second order partial derivatives in Hessian matrix
H are calculated for several images I, using a Gaussian smoothing filter G with
a particular scale of σ. L is the result of the convolution between the images and
the Gaussian filter. As in Novo et al [75], a set of 7 σs was used to address the size
of nodules in the range from 0.5 to 3.5, increasing 0.5. This multiscale Gaussian
smoothing is illustrated in figure 4.1, stage A.

L (I, σ) = I(p) ∗G (p, σ) (4.1)

H (I)σ =


∂2L
∂x2

∂2L
∂x∂y

∂2L
∂x∂z

∂2L
∂y∂x

∂2L
∂y2

∂2L
∂y∂z

∂2L
∂z∂x

∂2L
∂z∂y

∂2L
∂z2

 (4.2)

After obtaining the Hessian matrix H for a particular σ, three eigenvalues (λ1,
λ2 and λ3) are computed (figure 4.1, stage B) and used in different enhancement
methods (figure 4.1, stage C), giving a response Vσ(p). To combine the responses
of different scales, the maximum response at voxel p is calculated for every voxel
in the image:

V (p) = max
σ1≤σj≤σn

Vσj (p) (4.3)
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where j is the scale of the σ and n the total number of σs. The eigenvalues
information is first employed in an adaptation from Murphy et al [12]. It uses the
maximum (λ3) and minimum (λ1) eigenvalues of the Hessian matrix to calculate
two indexes, the Shape Index and Curvedness, presented in equations 4.4 and 4.5.

SI =
2

π
arctan

(
λ3 + λ1
λ3 − λ1

)
(4.4)

CV =
√
λ23 + λ21 (4.5)

The central adaptive medialness principle is the second method, and was
adapted from Krissian et al [13]. It was firstly used to detect 3D tubular struc-
tures and, more recently, for lung vessel extraction. It uses the maximum (λ3) and
medium (λ2) eigenvalues to calculate the response V med(σ, p), in equation 4.6, and
enhances both vessels and blob like structures.

V med (σ, p)

{
0 λ1 + λ2 + λ3 ≥ 0

−λ2
λ3
· (λ2 + λ3) otherwise

(4.6)

Equation 4.3 is used to obtain the maximum response for each SI, CV and
V med, calculated for every σ. The results are illustrated in figure 4.1, stage D. It
shows that the nodule is clearly enhanced, although in the method adapted from
Murphy, particularly in the SI index, there are many small structures that also
have high responses. The construction of the mask is done by thresholding the
indexes of the methods to select the voxels which present high response values. The
threshold values are presented in table 4.1 and were set empirically by performing
various experiments in order to build a mask that would include, as precise as
possible, the region occupied by the nodule and, consequently, a segmentation
with high precision. The resultant image are two binary masks, one for each
method, that include the nodules and other lung structures like vessels, pleura or
bronchi.

As the main objective is to classify the nodules in benign and malignant, be-
cause the image mask presents many other structures, we need to obtain only the
mask of the nodules for each method. A procedure was performed to save only the
region occupied by the nodule. It consists of using the union of the radiologists
segmentations to construct a mask and then multiplying it by the ones generated
by the methods. A closing operation was conducted using a disk as a structuring
element with a radius of size 5. An example of the final output mask is visible in
figure 4.1, stage E. As the methods produce different masks, an agreement analysis
between the new masks and the masks from the radiologists must be made. This
study will be presented in the experimental results, chapter 5.
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Figure 4.1: Nodule segmentation. A - Multiscale Gaussian smoothing using σ of 0.5 to 3.5,
step 0.5. B - Eigenvalues computed from the Hessian Matrix. C - Nodule enhancement for each
method for every size of σ (we show only the response for σ = 3.5). D - Maximum response. E -
Final mask.

Table 4.1: Threshold values.

SI CV V med

Threshold 0.3 0.08 0.3

4.2 Feature measurement

Feature measurement is an important stage as we need to obtain good character-
istics that lead to good nodule differentiation. This is particularly important in
nodule classification, as malignant and benign nodules share many similar charac-
teristics. A generalized set of features were included in order to collect as many
properties as possible. They include shape, intensity and texture properties and
a descriptor that provides shape information as well as the orientation predomi-
nance.

4.2.1 Shape features

The geometric properties can provide important information about the nodule’s
margin, shape and volume. These features are obtained from the 3D mask of
the nodule that due to differences in the sampling resolution between images are
normalized using a scale factor. This scale factor is obtained by calculating the
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product between the length of the voxels in the x, y and z directions, provided in
the XML file, for a particular image. The scale factor is given by equation 4.7,
where V oxel Lengthl is the length of the voxel in direction l ∈ [x, y, z]. It is
defined as V oxel Lengthl = [V oxel Lengthx;V oxel Lengthy;V oxel Lengthz].

V oxel Unit V olume = V oxel Lengthx× V oxel Lengthy × V oxel Lengthz (4.7)

The first feature is the volume of the nodule and it is obtained by summing all
voxels of the nodule’s mask (Imask), multiplied by the V oxel Unit V olume:

V olume =
∑

(Imask × V oxel Unit V olume) (4.8)

Compactness

The compactness gives information about the 3D projection of the nodule on
the x, y and z image planes [12]. This means that the more scattered is the
nodule, the lower will be the compactness. If the nodule is somehow round, then
the compactness will be high. The compactness is given by equations 4.9 and 4.10,
where diml is the dimension of the nodule in the x, y and z directions. It is defined
as diml = [dimx; dimy; dimz] and max is the maximum value.

Compactness1 =
V olume

dimx × dimy × dimz × Scale Factor
(4.9)

Compactness2 =
V olume

max(diml × V oxel Lengthl)
(4.10)

Aspect ratios

The aspect ratios can give good insight on how elongated or flat is the nodule.
The nodule is flatter if the ratio between the maximum and minimum (min) lengths
(equation 4.11) is high and the ratio between maximum and median (med) lengths
(equation 4.12) is close to 1. If the ratio between maximum and median lengths
is also high, then the nodule is probably elongated.

Ratio1 =
max(diml × V oxel Lengthl)
min(diml × V oxel Lengthl)

(4.11)

Ratio2 =
max(diml × V oxel Lengthl)
med(diml × V oxel Lengthl)

(4.12)

These ratios do not always provide good information as some nodules are con-
siderably spiculated or lobulated. To address these properties, several properties
derived from a principal component analysis are defined.
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Principal component analysis
Similarly to Aspect Ratio features, the principal component analysis (PCA)

analyses the elongation and flatness of the nodules. It computes (equation 4.13)
three principal eigenvalues (λ1, λ2, λ3) which are the representation of the object’s
spacial projection in the three main directions. Several ratios were defined in
equation 4.14. Eigen ratio1, Eigen ratio3 and Eigen ratio4 give information
about the nodule’s flatness. Eigen ratio2 calculates the nodule’s elongation. Note
that λ1 is the main projection, λ2 the intermediate projection and λ3 the smaller
projection.

[λ1, λ2, λ3] = PCA(Nodule× V oxel Length) (4.13)

Eigen ratio(1, 2, 3, 4) =
λ3
λ1
,
λ3
λ2
,
λ2
λ1
,
(λ3)

2

(λ1)2
(4.14)

Sphericity
These properties defined below have the purpose of acquiring the nodule’s

spherical properties. If the ratios are close to 1, then the nodule presents a spherical
shape, otherwise, it is elongated or spiculated. It can give similar information
as compactness, however, compactness would be high if the nodule presents a
polygonal shape, while sphericity would be low. This is then an important feature
to obtain information about the shape of the nodule. Imask∩Sphere is the resultant
mask when multiplying the nodule’s mask with an equivalent sphere with radius
of the nodule.

Sphericity ratio1 =

∑
(Imask ∩ Sphere)∑

Sphere
(4.15)

Sphericity ratio2 =

∑
(Imask ∩ Sphere)∑

Imask
(4.16)

Calculation of the nodule’s equivalent sphere radius:

Eq Sphere Radius =
max(diml × V oxel Lengthl)

2
(4.17)

Sphericity ratio3 =
Eigen ratio3

(Eq Sphere Radius)
(4.18)

4.2.2 Intensity features

Intensity properties tend to represent the nodule’s degree of calcification. A high
presence of calcification gives rise to high HU values in the CT image. Also,
the calcification distribution varies between benign and malignant nodules. For
example, it allows to evaluate if the calcification is located in the center of the
nodule or in the periphery. For this purpose, the intensity features are obtained
using different formulas.
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Overall intensity

The overall intensity gives information about the subtlety of the nodules and
the degree of calcification. The maximum, minimum, mean, median and standard
deviation (std) of the nodule’s intensity (INodule) are computed, and INodule is
obtained by multiplying the initial image I that contains the nodule by the mask
Imask: INodule = I ∩ Imask.

Max Intensity = max(INodule) (4.19)

Min Intensity = min(INodule) (4.20)

Mean Intensity = mean(INodule) (4.21)

Median Intensity = med(INodule) (4.22)

Std Intensity = std(INodule) (4.23)

Intensity over spheres

The Intensity Over Spheres features are computed similarly to the Overall In-
tensity features, however, they are designed to acquire the degree of intensity from
the center to the periphery. Their main objective is to provide information about
the central calcification. Spheres with radius (r) of 1, 3 and Eq Sphere Radius,
centred in the nodules’ location, are used as masks to calculate different properties
of the nodule.

Max Intensity Overlap = max(INodule ∩ Spherer) (4.24)

Min Intensity Overlap = min(INodule ∩ Spherer) (4.25)

Mean Intensity Overlap = mean(INodule ∩ Spherer) (4.26)

Median Intensity Overlap = med(INodule ∩ Spherer) (4.27)

Std Intensity Overlap = std(INodule ∩ Spherer) (4.28)
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4.2.3 Texture features

Texture features are very important as they mostly measure internal characteris-
tics (air component, intra-nodular fat, cavitation, calcification), that in turn are
essential in distinguishing benign from malignant nodules. They can be defined
as first, second and higher order statistics. Each feature was measured in the slice
where the nodule was most represented (slice where the nodule has the largest
area).

First order statistics: gray-level intensity histogram

First order statistics are obtained by computing the probability of finding a
particular intensity in a random location on the image. Gray-level Intensity His-
togram (GLIH) features are computed by estimating all intensity probabilities and
then analysing the resultant histogram.

As stated previously, INodule is the segmented nodule. quant(Px,y,z) is the
function that returns the number of occurrences of a given intensity i and Px,y,z
the intensity i of V oxelx,y,z. We can then calculate the histogram of the image by
equation 4.29 [76],

h(INodule) = {quant(Px,y,z)|Px,y,z = INodule} (4.29)

After obtaining hi, we can then calculate the mean value, µ (equation 4.30),
and the variance, σ2 (equation 4.31), which is also the second angular moment of
the image I. N is the maximum intensity of the image.

µ =
N−1∑
i=0

i.hi (4.30)

σ2 =

N−1∑
i=0

(i− µ)2.hi (4.31)

Given µ and σ, we calculate the third and fourth, n=[3,4], angular moments
for each nodule:

Mn =
N−1∑
i=0

(i− µ)n.hi (4.32)

The third moment is used to compute Obliquity. The Obliquity is given by
equation 4.33 and measures the asymmetry of the histogram probability distribu-
tion. If the histogram tends to have higher occurrences in darker intensities, the
value of Obliquity tends to positive. On the other hand, if the occurrences are
higher in brighter intensities, then the Obliquity tends to negative.

Obliquity =
M3

σ3
(4.33)
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The fourth moment is used to compute Kurtosis. The Kurtosis is given by
equation 4.34 and measures the distribution of the histogram. The sharper the hi,
the higher is the value of Kurtosis.

Kurtosis =
M4

σ4
(4.34)

Other two features can be computed using hi. They are Energy and Entropy,
given by equations 4.35 and 4.36. The Energy represents the intensity variation
in the region and Entropy the distribution of the histogram.

Energy =

N−1∑
i=0

(hi)
2 (4.35)

Entropy = −
N−1∑
i=0

hi.log(hi) (4.36)

Second order statistics: gray-level co-ocurrence matrix

The Gray-Level Co-ocurrence Matrix (GLCM) [77], given by equation 4.37, is
a measure of the simultaneous occurrence of gray-levels i and j in pairs of pixels
(p1, p2) separated by a displacement vector δ = (∆x, ∆y) into a 2D histogram.

Cδ(i, j) = |{p1, p2 ∈ I : I(p1) = i; I(p2) = j; p2 = p1 ± δ}| (4.37)

Using this measure, we can calculate the probability of a particular intensity
to appear in the image using equation 4.38, which can in turn be used to compute
several features that are the representation of the relations between pixels and the
analysis of the GLCM.

pδ ij =
Cδ(i, j)∑
ij Cδ(i, j)

(4.38)

As proposed by Haralick et al. [77], Conners et al. [78], Soh et al. [79] and Clausi
et al. [80], many texture features may be extracted from the co-ocurrence matrices.
In this work 20 texture features were computed for four directions, 0◦, 45◦, 90◦

and 135◦, and distance of 2. The distance was set to 2 pixels because the database
as many small nodules, many having only 4 or 5 pixels. Increasing the distance
would not give any additional information. The gray levels were set to 10 and 20
and the symmetry to true. To avoid direction dependency, the angular mean and
standard deviation for each textural measure were calculated as proposed in [81].

Second order statistics: gabor filters

A Gabor filter is a sinusoidal plane wave (carrier), composed by a particular
frequency and orientation, modulated by a Gaussian envelope. In computer vision
and image processing it is used mainly for texture analysis. A 2-D Gabor filter
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over the image domain (x,y), with a particular frequency f and an orientation θ is
defined as:

ψ(x, y; f, θ) =
f2

πγη
.e
−f2

[
x′2
γ2

+ y′2

η2

]
.ej2πfx

′
(4.39)

for

x′ = x cos(θ) + y sin(θ)

y′ = −x sin(θ) + y cos(θ)
(4.40)

In the frequency domain (u,v) it is defined as:

ψ(u, v; f, θ) = e
−π

2

f2
[γ2(u′−f)2+η2v′2]

(4.41)

for

x′ = u cos(θ) + v sin(θ)

y′ = −u sin(θ) + v cos(θ)
(4.42)

where γ define the effective width of the filter in the frequency projection and
η is the effective width of the filter in the orientation projection.

By varying f and θ, a filter bank can be build to extract different features.
The orientation θk can be uniformly defined by:

θk =
kπ

n
k = 0, ..., n− 1 (4.43)

where n is the total number of orientations.
In order to maintain homogeneity spacing between the filters, a logarithmic

relation between the frequencies f can be established by:

fc =
fmax√

2
c c = 0, ...,m− 1 (4.44)

where fc is the cth frequency, m is the total number of frequencies and fmax is
the highest frequency desired. The scaling factor was set to

√
2 for a half-octave

spacing.
For the purpose of this work, two different banks of filters were set. One with

5 scales of frequencies f (m = 5) and another with 8 (m = 8). Both have the same
number of orientations θ, set to 8 (n = 8). The maximum frequency fmax was
defined as 0.25 and γ = η =

√
2. This resulted in a total bank with 108 filters.

To obtain the features using the filter bank, each Gabor filter in the space
domain was convoluted with the image slice where the nodule is more represented
(the are is bigger). Then, the mean and standard deviation was calculated for each
of the 108 image responses resulting in 216 features [82–84].
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Higher order statistics: Laws’ texture energy measures

The Law’s Measures provide the amount of variation within a fixed-size win-
dow by using a set of convolution masks used to compute the texture energy of
each pixel in the image. These convolution masks are obtained by computing the
product of the one-dimensional Lattice Aperture Waveform Sets (LAWS) of order
3, 5 and 7. Sets of order 5 are obtained by first convolving two Sets of order 3.
The Sets of order 7 are obtained by convolving Sets of order 3 and 5. The Center-
Weighted Vector Masks, each representing a particular property of the image of
orders 3, 5 and 7 are:

L3 (Level) = [ 1 2 1 ]
E3 (Edge) = [ -1 0 1 ]
S3 (Spot) = [ -1 2 -1 ]

L5 (Level) = [ 1 4 6 4 1 ]
E5 (Edge) = [ -1 -2 0 2 1 ]
S5 (Spot) = [ -1 0 2 0 -1 ]
W5 (Wave) = [ -1 2 0 -2 1 ]
R5 (Ripple) = [ 1 -4 6 -4 1 ]

L7 (Level) = [ 1 6 15 20 15 6 1 ]
E7 (Edge) = [ -1 -4 -5 0 5 4 1 ]
S7 (Spot) = [ -1 -2 1 4 1 -2 -1 ]
W7 (Wave) = [ -1 0 3 0 -3 0 1 ]
R7 (Ripple) = [ 1 -2 -1 4 -1 -2 1 ]
O7 (Oscillation) = [ -1 6 -15 20 -15 6 -1 ]

The convolution masks obtained from LAWS of order 5 (5×5) are more appro-
priate for image analysis as they are more powerful than 3×3 masks (order 3) and
simpler than 7×7 (order 7), being also similar. In the lung nodule classification
problem, convolution masks of order 7 are also too big for small nodules giving no
precise information about the nodules texture.

As suggested in [85], we also consider only 4 LAWS of order 5. The product of
the vectors result in 16 energy maps that can, given the symmetry of certain pairs,
be combined to build 9 convolution maps, replacing each pair with its average. For
our purpose, the convolution masks obtained and used here were: L5E5\ E5L5,
L5R5\ R5L5, E5S5\ S5E5, S5S5, R5R5, L5S5\ S5L5, L5E5\ E5L5, E5E5, E5R5\
R5E5, S5R5\ R5S5. Though 3×3 convolution masks are simpler, they are also
used in this study. The convolution masks used here are: L3E3\ E3L3, L3S3\
S3L3, E3E3, S3E3\ E3S3, S3S3.

After filtering the image with the convolution masks, the resultant filtered
image must be reduced to a single feature array. To obtain this, the mean and
standard deviation for each filtered image are calculated resulting in a total of 28
features ((9 + 5)×2).
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4.3 Feature selection and classification

After obtaining all features, it is necessary to select the ones that provide the
best discrimination between classes. The following sections present the proposed
methodology to study the performance of different classifiers and assess the best
feature set/classifier combination that provides the optimal result.

4.3.1 Feature selection

The cloud of features must be reduced by eliminating the ones who give redundant
information and saving the ones who best discriminate the nodules in benign and
malignant. As stated in subsection 2.2.3, there are three types of model searches:
filter based, wrappers and embedded. The most suited for feature selection are
the wrapper methods, but are computationally expensive, specially when coupled
with SVMs, due to its great deal of computation [86]. The solution would be to
implement specially designed feature selection methods for SVM, found in [86–
90], or to use filter based methods. The choice was based on two aspects: the
complexity involved in implementing a feature selection method for the SVM; k-
NN based classifiers are used with the objective to compare both classifiers using
the same feature selection methods. Given these reasons, two filter based methods
are used to build two different sets of features. The objective is to find the best
possible performance and by using two different methods, the probability for that
to happen increases and, also, it is possible to assess what are performances of the
classifiers using different subsets.

The filter based methods used here are the Correlation-based Attribute Subset
evaluator or CFS, [43], and the Relief-F evaluator, [44]. The CFS analyses the
strength of a feature in predicting the class of the object, but tends to give little
importance to the inter-correlation of the features. It adds features that have high
correlation with the class, but only if the set does not have a corresponding high
correlated attribute. Relief-F samples instances randomly and checks the distance
between them and neighbour instances that have the same or different classes.
The number of neighbours to be checked must be defined, such as the number of
instances to be analysed. An exponential function is used to determine the weight
for a given distance, which in turn will be used to rank the features [43] [44].

4.3.2 Classification

Two different classifiers are used in this work. One is the Suport Vector Machine
(SVM) and the other is the k-Nearest Neighbour (k-NN). As both classifiers are
sensible to different settings, a study was conducted in order to achieve the best
performance. For the k-NN different sets of k values were defined and evaluated.
For the SVM, three Θ values were defined using an exponential kernel K(x,y)
defined in equation equation 4.45 [91].
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K(x, y) = exp

(
−‖x− y‖

Θ

)
(4.45)

4.4 Validation

As stated in section 2.2.5, the validation is the stage where it is made an evaluation
of the system. For this purpose, it is important to compare the performance of
both classifiers with different sets of characteristics. Several measures can be used
to calculate that performance. They are sensitivity, specificity or AUC value. The
most used, however, is the AUC value, common to many lung nodule classification
problems found in literature [23] [27] [28] [30] [33] [32] [35].

The AUC value is the area under the receiver operating characteristic (ROC)
curve, being the trade-off between true-positives and false-positives rates. By using
this measure, the results can be represented by one parameter that gives the overall
classification achieved for each classifier and a given set.

The classification is performed by 10-fold cross-validation, with 50 repetitions
to obtain a solid estimation of the classifiers’ performance. As each repetition
presents one performance value, all values are averaged to get the overall perfor-
mance.

53



54



Chapter 5

Experimental Results

This chapter presents the implementation of the methodology described in chapter
4. Section 5.1 addresses the construction of the ground truth (GT), section 5.2
nodule segmentation procedure, section 5.3 the results of feature selection and
classification, and section 5.4 some tests using the CAD system.

5.1 Construction of the ground truth framework

Before any feature selection or classification can be performed, a GT must first
be organized. The LIDC-IDRI database, as addressed in section 3.2, presents two
different types of data that can be used to form two separate datasets. One is pro-
vided by the XML file and represents the radiologists assessment. It characterizes
all the nodules in degree of malignancy using a scale from 1 (Highly Unlikely) to
5 (Highly Suspicious). From all the nodules characterized in the XML file, there
is a small set of 34 that was evaluated on one of the following grades: review of
radiological images to show 2 years of stable nodule, biopsy, surgical resection and
progression. This diagnosis is provided by a .xls file that labels the nodules as
benign or non-malignant disease, malignant - primary lung cancer, or malignant -
metastatic.

By using two datasets, it is possible to build a system that performs two classi-
fications, one similar to the assessment of radiologists and another, more reliable,
similar to a biopsy, surgery or follow up exam. However, it is visible that the two
types of data are labelled differently. The XML file contains the degrees of malig-
nancy, in a scale from 1 to 5, given by one to four radiologists, and the .xls file
distinguishes the nodules in benign or malignant, but the malignancy is defined as
primary lung cancer or metastatic. To simplify the problem, the malignancy was
set as benign and malignant for both datasets, so the GT only has two classes. To
achieve this, we developed a strategy that is described in the following paragraphs.
Sub-section 5.1.1 describes the construction of the GT for the first dataset using
the radiologists’ assessment, from this moment on referred as the Radiologists’
data, and sub-section 5.1.2 describes the construction of the GT for the second
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dataset, from this moment on referred as the Diagnostic data, provided by the .xls
file.

5.1.1 Radiologists’ data. Ground truth

To build the Radiologists’ data using the XML file, we first selected solid
nodules (Texture of 4 and 5) annotated by all four radiologists, meaning that
there must be a total agreement between radiologists to include that nodule in the
dataset. Only solid nodules were selected because the characteristics associated
to the degree of malignancy in nodules are different for solid, mixed or GGO
nodules. Given the larger amount of solid nodules compared to the other types, it
is advisable to classify each one of them independently. In this work, the focus is
only on the solid type, as it is the most common, and a dataset with 579 nodules
was created.

The GT for this dataset is the nodules’ labelling from four radiologists. Nat-
urally, the opinions among radiologists are not in agreement, so different degrees
of malignancy are often given to one nodule. Besides this, some nodules are also
labelled as Indeterminate, giving no useful information to the classifier. Because of
this relatively significant disagreement, the GT for the Radiologists’ dataset will be
organized in 3 different types, Ground Truth 1, Ground Truth 2 and Ground Truth
3, each one representing a different level of agreement, being Ground Truth 1 the
one with the highest agreement and Ground Truth 3 with the lowest agreement.
The process is illustrated in figure 5.1.

Figure 5.1: Diagram of the construction of the GT using the radiologists assessment. The input
is the classification of four radiologists and the output are three different GT, one for each degree
of agreement. m is the array of labels for the degree malignancy and p a weight value.

The first level (Ground Truth 1) consists of estimating the degree of malignancy
M i, for each nodule i, given by the expression:
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Table 5.1: Weights for the radiologists classification. m is the array of labels for the degree
malignancy and p the weight value.

m 1 2 3 4 5

p 0.15 0.15 0.20 0.25 0.25

M i = α
4∑

k=1

βki d
i
m(k) ∴ βki = p(k);α =

1∑4
k=1 β

k
i

(5.1)

where p(k) is the weight value for each radiologist k and d
i
m(k) is the deter-

mination of the assigned label m by the radiologist for a particular nodule. Table
5.1 presents the corresponding weights p for all degrees of malignancy m, and it is
visible that the weights are bigger for labels 4 and 5, as we give more importance
to the opinion of the radiologists that classify a nodule as Highly Suspicious or
Moderately Suspicious of malignancy rather than Highly Unlikely or Moderately
Unlikely of benignity. After estimating M i for one nodule, it is verified if the re-
turned label is 3 (Indeterminate). If it is different from 3, then the label is saved
in all three Ground Truths because the agreement between radiologists is high. If
the returned value is equal to 3, then that label is saved in Ground Truth 1 and
the second level (Ground Truth 2) is used.

The second level consists of verifying what is the most agreed radiologist classi-
fication. Many nodules have distinct classifications, but in some cases, two or more
radiologists can be in agreement. In those cases it is assumed that the majority of
opinions is sufficient to determine the nodule’s degree of malignancy. Sometimes,
however, there are two or more majority opinions in cases where all radiologists
assign different labels or when two radiologists agree in one opinion and the other
two agree in another. In these cases the highest value is saved, again due to the
fact that we give more importance to radiologists that suspect a nodule to be ma-
lignant. The output of this level is saved in Ground Truth 2, but, similarly to the
first level, the label is verified to see if it is equal to 3. If it is different, the label
is also saved in Ground Truth 3, if not, then the third level is used.

The third level is only used when the majority of opinions is 3 and its objective
is to find if at least one radiologist classified the nodule as not 3. In this level, the
first step is to find the maximum value of the array of opinions. However, if the
returned label is 3, then the minimum value is found. Finally, the output label of
this level is saved in Ground Truth 3.

Each GT presents a different number of nodules for each label, particularly for
label 3. To have an idea on the distribution of nodules for every label, the output
for each level was compiled in three tables, one one for each of the GT, and are
visible in appendix B. There, the number of nodules for the labels of each GT
versus the labels from radiologists are presented.

To complete the GT set up for all three Ground Truths, if the assigned label is
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equal to or higher than 4, then the nodule is considered malignant and the label
is changed to 5, if the decision is equal to or lower than 2, then the nodule is
benign and the label is changed to 1. The total number of nodules having benign,
malignant and indeterminate labels for each of the GTs is presented in table 5.2. It
is visible that the number of indeterminate nodules decreases from Ground Truth
1 to Ground Truth 3 as they are labelled as benign or malignant.

Table 5.2: Number of nodules having benign, malignant and indeterminate labels for each of
the GTs.

Benign Malignant Indeterminate

Ground Truth 1 121 179 245

Ground Truth 2 205 204 138

Ground Truth 3 255 277 13

5.1.2 Diagnostic data. Ground truth

The GT provided by the .xls file contains information about nodules with known
diagnosis. Information of a total of 157 cases is provided with the corresponding
malignancy and origin (some nodules are metastatic) for one to two nodules per
case. Although the number of cases is relatively large there are some problems
regarding the identification of the diagnosis for a particular nodule and some cases
are actually missing a diagnosis. Regarding the identification of the nodules, the
.xls file does not actually identifies the nodule or nodules that are diagnosed. This
means that when a case has 2 nodules, if they have two different diagnosis, then
it is impossible to know whose diagnosis corresponds to. Even if the diagnosis is
the same, when the case has 3 or more nodules, there is no way of knowing which
nodule was actually diagnosed.

Knowing all the restrictions that this information file presents, to manage this
dataset we selected the cases that only have one nodule, or the cases that have
two nodules and both have the same level of malignancy. This returns a total of
13 benign nodules and 21 malignant nodules. For the management of the GT for
the Diagnostic data, nodules assigned in the .xls file as benign or non-malignant
disease are labelled as benign and nodules assigned as primary lung cancer or
metastatic are labelled as malignant.

5.2 Lung nodule segmentation

Nodule segmentation was performed using the methodology proposed in section
4.1. Two methods were applied in this work and examples with all stages of the
segmentation are presented in figure 5.2. Though the whole process was performed
in 3D, the results are shown in 2D images.
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Figure 5.2: All stages of the segmentation procedure are presented for a particular σ. The
columns of Maximum Response and Masks give the result for all σs. (a) Stages for a medium,
justa-pleural nodule, using a σ = 0.5. (b) Stages for a large, justa-pleural nodule, crossed by an
airway (hole in black), using a σ = 1.5. (c) Stages for a large, lobulated nodule, using a σ = 3.5.

The first four columns of figure 5.2 show the input image, the image blurred
with a Gaussian filter, the response of the 3 eigenvalues of the Hessian matrix
and each of the methods response (V med, CV and SI ) for one σ. The remaining
columns present the maximum response after using every σ and the final mask.
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Figure 5.2a shows a good segmentation of a medium, justa-pleural nodule, using
a σ = 0.5. It is visible that by using Krissian’s method, a good segmentation is
achieved, while the adaptation from Murphy’s does not. Figure 5.2b shows a large,
justa-pleural nodule, crossed by an airway (black hole inside the nodule), using a
σ = 1.5. For this nodule, a bad segmentation is seen using both methods. This
is probably due to the fact that the nodule is strongly connected to the pleura
and there is an airway crossing its center, which has high positive eigenvalues
resulting in a low response in V med, CV and SI. Figure 5.2c presents a reasonable
segmentation of a large, lobulated nodule, using a σ = 3.5. It is visible that both
methods fail a high response in the connection between the large portion of the
nodule and its lobulated part. The outlines of several other segmentations are
presented in figure 5.3 in yellow color.

5.2.1 Agreement analysis between methods’ segmentations and
radiologists’ segmentations

The lung nodule segmentation procedure has different performance for different
types of nodules. The results vary with size, location and texture. Examples of
segmentations for different types of nodules can be seen in figure 5.3. Figure 5.3a
shows four nodules in ROIs, figure 5.3b the corresponding outlines for both meth-
ods, and figure 5.3c the final mask combination and the union of the radiologists
outlines. It is visible that the methods have different responses for different nod-
ules. Looking at the nodules in figure 5.3b, first and fourth rows, there is no clear
conclusion of which method performs the best. However, for the nodule in sec-
ond row, Murphy’s adapted method (blue outline) clearly outperforms the method
from Krissian (red outline) and the opposite is true for the nodule in third row.
Looking at the green outline from figure 5.3c, it is clear that in any case, the best
way to segment the nodules is to combine both methods and perform the closing
operation, which smooths the margins of the mask and even corrects some poor
segmentations like the one presented in figure 5.3a, first row.
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(a) (b) (c)

Figure 5.3: a) Original ROIs with nodules. b) Outlines of the masks produced by both methods.
The red line corresponds to the approach from Krissian and blue line to the approach adapted
from Murphy. c) Comparisons between the outlines of the final masks (green line) and the outlines
of radiologists (yellow line). First row - A big size, justa-vascular nodule. Second row - A big
size, round, justa-vascular nodule. Third row - Medium sized, justa-pleural nodule. Fourth row
- A small size, intra-parenchymal nodule.
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Observing the segmentation outlines originated from the methods and the
union of the radiologists (yellow line), presented in figure 5.3c, it is visible that,
in these cases there is a better outline given by the green line than by the yellow
line. However, in order to make any conclusion regarding the performance of the
proposed lung nodule segmentation algorithm, an agreement study was conducted
between the new segmentations and the radiologists’ segmentations.

To evaluate the degree of agreement for the segmentations from the developed
methods, the Jaccard index was also obtained for the masks generated by both
methods and, additionally, the combination of both. The analysis was not extended
to GGOs as the agreement between radiologists is very low and they are not used in
this work. Each segmentation was compared with the radiologists’ segmentations.
This resulted in three Jaccard values for each one of these methods so a mean
value agreement was calculated by averaging the results. The reason why the
mean Jaccard index for the radiologists segmentations was used is because the
unknown identity of the radiologists for different cases makes it impossible to link
one annotation to another, as referred previously in section 3.3.1.

There are now available two different types of segmentations (methods and
radiologists), so it is useful to observe which one of them presents a better overall
agreement. The Bland-Altman method, [92], is used to measure the agreement
between metrics for different methods. It was applied using the Jaccard’s indexes
obtained previously, where the vertical axis is the difference between the mean
Jaccard value of the radiologists masks and the mean Jaccard value of the masks’
segmentation methods (Mean Difference). The horizontal axis is the their Mean
Value.

Figure C.1 in Appendix C presents the Bland-Altman results for small nodules,
figure C.2 for medium sized nodules and figure C.3 for big nodules. For better
comprehension, the Mean Difference for every Bland-Altman plot is presented in
table 5.3. Analysing table 5.3, it is visible that the Krissan method presents a
mean negative value for every size, indicating that it agrees more with each one
of the radiologists than between themselves. The method adapted from Murphy,
however, presents positive values indicating that it agrees less. Both results are
supported by the examples in figure 5.3, though, sometimes, as visible in figure 5.3b
second row, Murphy’s method outperforms Krissian’s method. The combination
of both, however, presents higher negative values than Krissian alone, indicating
that together they are more reliable. The results in table 5.3 also show that the
agreement is higher for small nodules. This is probably the result of the lower
agreement between radiologists for that size. In fact, the mean value tends to be
lower as the nodules grow in size.

The Bland-Altman plots also show that, for large and small nodules, the dif-
ference value between Jaccard values is farther from the Mean Difference when the
Mean Values are lower. In other words, the data is more scattered for lower Mean
Values. For medium sized nodules, it appears that the same pattern is present,
but the amount of data is insufficient to make any conclusion.
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Table 5.3: Results for the Bland-Altman study. Mean of the difference between the mean
Jaccard value of the radiologists and the mean Jaccard value of the methods segmentations.

Nodules Volume (mm3) Murphy Krissian Combination

Small <500 0.03 -0.05 -0.053

Medium ≥500-1000 0.0027 -0.033 -0.038

Big >1000 0.054 -0.007 -0.017

5.3 Feature selection and classification

A total of 293 features, presented in table 5.4, were measured for each nodule.
For both datasets we need to select a subset of features that can differentiate, as
efficiently as possible, malignant from benign nodules. Also, it must be assessed
which of the different classifiers gives the best results.

Table 5.4: Measured features. (Gabor - the features are described as Si-Ow, where S means scale,
i is the total number of scales, O means orientation and w is the total number of orientations.
Other definitions: max - Maximum; min - Minimum; std - Standard Deviation; r - Radius)

Features

Geometric

[1] - Volume
[2,3] - Compactness1; Compactness2
[4,5] - Ratio1; Ratio2
[6-9] - Eigen ratio(1, 2, 3, 4)
[10-12] - Sphericity ratio1; Sphericity ratio2; Sphericity ratio3

Intensity
[13-18] - Overall Intensity: Max; Min; Mean; Median; Std
[19-32] - Intensity Over Spheres (r = 1, 2, Eq Sphere Radius):
Max; Min; Mean; Median; Std

Texture

GLIH
[33-37] - Obliquity; Kurtosis; Energy; Mean intensity (µ)
GLCM
[33-53] - Autocorrelation; Contrast; Correlation; Cluster Prominence;
Cluster Shade; Dissimilarity; Energy; Entropy; Homogeneity;
Maximum probability; Sum of squares; Variance; Sum average;
Sum variance; Sum entropy; Difference variance; Difference entropy;
Information measure of correlation1; Informaiton measure of correlation2;
Inverse difference; Inverse difference normalized;
Inverse difference moment normalized
LAWS
[58-68] - mean Laws 3×3; std Laws 3×3 (5 convolution masks)
[59-85] - mean Laws 5×5; std Laws 5×5 (9 convolution masks)
Gabor
[86-166] - mean Gabor S5-O8; std Gabor S5 (5× 8 = 40 filters)
[167-293] - mean Gabor S8-O8; std Gabor S8 (8× 8 = 64 filters)

This section, therefore, presents the feature selection and classification proce-
dures, the results for both Radiologists’ data and Diagnostic data, as well as the
results of a classification where both datasets are crossed with each other, mean-
ing that the training of the classifier is first done on one dataset and the testing
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on the other, and vice versa. This procedure is, for now on, called Inter-datasets
validation.

5.3.1 Radiologists’ data. Procedure and results

For the Radiologists’ dataset, from the available GTs, Ground Truth 1 was used
as it is the one with the highest agreement between all three. After excluding the
indeterminate nodules, the dataset was left with 179 malignant and 121 benign
nodules. This dataset was randomly divided in two smaller datasets with similar
size, with both containing similar numbers of benign and malignant nodules. The
sets were used in different ways. One was used to select the best features and the
second to perform the classification. Feature selection was performed by 10-fold
cross validation and the results were obtained for each method. As mentioned
before, the filter based feature selection methods give the best features but not
the best subset for a particular classifier, which means that there must be set
a threshold to select the ones who have the highest rank. The CFS gives the
number of folds where a particular feature is found and this percentage can vary
from 0% to 100%. In this work, the threshold was set to include highly ranked
features, whose total would be approximately 10 times smaller than the dataset to
sufficiently represent the nodules of this dataset. To achieve this, the features that
appeared in more than 80% of the folds were selected and ranked according to the
number of times they were selected (100%-80%). The Relief-F simply presents the
ranking for each feature, so for a k value of 10, the highest ranked features were
chosen until the selected total was equal to the number of features selected by the
CFS. This was done in order to compare both feature selection algorithms. The
total number of features selected by both methods was 12 and are presented in
table 5.5, ordered according to relevance.

Six classifiers were also set, three k-NN based and three SVM based. The k-NN
classifiers were set with different k values, defined as 13, 15 and 17, and the SVM
classifiers were defined with an exponential Kernel and parameters θ of 1, 2 and
3. The classification was performed by 10-fold cross-validation on the second set
with 50 repetitions. The mean and standard deviation were calculated from the
50 values of AUC, using the selected subset of features. The results are presented
in figure 5.4 in form of a bar chart. The AUC value was calculated from the ROC
curve, obtained after varying the thresholds from 0 to 1, increasing 0.01.
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Table 5.5: Selected features using CFS and Relief F for the Radiologists’ data and Diagnostic
data. (For Gabor, the features are described as Si-j Ok, where S means scale, i is the total number
of scales, j the scale of the filter, O means orientation and k is the number of the corresponding
orientation. Other definitions: std - Standard Deviation; r - Radius).

CFS Relief F

Radiologists’
data

1 - Compactness1
2 - Difference Entropy (GLCM)

3 - Inverse Difference
Normalized (GLCM)

4 - Volume
5 - Entropy (GLIH)

6 - std Gabor S5-5 O4
7 - std Laws L3E3\E3L3

8 - mean Laws E3E3
9 - std Laws S3S3

10 - mean Laws E5S5\S5E5
11 - Cluster Shade (GLCM)
12 - Information Measure of

Correlation1 (GLCM)

1 - Cluster Shade (GLCM)
2- Information Measure of Correlation2

(GLCM)
3 - Inverse Difference Normalized

(GLCM)
4 - Information Measure of Correlation1

(GLCM)
5 - Sum Entropy (GLCM)

6 - Autocorrelation (GLCM)
7 - Entropy (GLCM)

8 - Difference Entropy (GLCM)
9 - Max Intensity Overlap (r = 1)
10 - Max Intensity Overlap (r = 3)

11 - std Laws L5E5\E5L5
12 - Max Intensity Overlap (r =

Eq Sphere Radius)

Figure 5.4: Classification results for the Radiologists’ data, presented as AUC (%) value, for 12
features selected by two model searches and six classifiers.

The left columns of figure 5.4 present the results using the features selected
by the CFS and the right columns the results using the features selected by the
Relief F. Table 5.6 presents the values for each of the columns. The lowest value is
achieved using 13-KNN and CFS with an AUC of 93.23 %. Looking at the SVMs
results with the CFS subset, there is no clear conclusion on which classifier is the
best, though the 3-SVM is slightly better, having an AUC of 96.43±0.5% versus an
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96.3±0.6% and 96.20±0.5% from the 2-SVM and 1-SVM classifiers, respectively.

Table 5.6: Classification results for the Radiologists’ data, presented as the mean and standard
deviation of 50 AUC (%) values, for 12 features selected by two model searches and six classifiers.

AUC (%) 13-KNN 15-KNN 17-KNN 1-SVM 2-SVM 3-SVM

CFS 93.2 ± 0.8 93.5 ± 0.9 94.1 ± 0.7 96.2 ± 0.5 96.3 ± 0.6 96.4 ± 0.5

Relief F 94.7± 0.7 94.4 ± 0.8 94.4 ± 0.7 96.0 ± 0.6 96.3 ± 0.6 96.2 ± 0.6

5.3.2 Diagnostic data. Procedure and results

For the Diagnostic dataset, due to the small amount of nodules, the entire dataset
served as input to select the best features and to perform the classification. Simi-
larly to the procedure when using the Radiologists’ data, feature selection was per-
formed by 10-fold cross validation and the results were obtained for each method.
For the CFS, the features that appeared in more than 50% of the folds were
selected and ranked according to the number of times they were selected (100%-
50%). Again, this threshold allowed to select highly ranked features that would
sufficiently represent the nodules in the dataset. For the Relief F, the k value was
set to 5 and the highest ranked features were chosen until the selected total was
equal to the number of features selected by the CFS. The selected features for both
methods are presented in table 5.5 and are ordered according to relevance.

Table 5.7: Selected features using CFS and Relief F for the Radiologists’ data and Diagnostic
data. (For Gabor, the features are described as Si-j Ok, where S means scale, i is the total number
of scales, j the scale of the filter, O means orientation and k is the number of the corresponding
orientation. Other definitions: std - Standard Deviation; r - Radius)

CFS Relief F

Diagnostic
data

1 - std Gabor S5-5 O4
2 - Mean Intensity Overlap (r

= 3)
3 - Compactness2

4 - std Laws S5R5\R5S5
5 - mean Laws E5R5\R5E5

1 - Sphericity ratio3
2 - Mean Intensity Overlap (r = 1)

3 - std Gabor S8-4 O8
4 - std Gabor S5-4 O8

5 - Sum Entropy (GLCM)

Again, and similarly to the subsets obtained from the Radiologists’ data, the
majority of the features chosen by both methods were texture features. Both CFS
and Relief F also selected one geometric feature and one intensity feature.

Six classifiers were set, three KNN based and three SVM based. The KNN
classifiers were set with different k values, defined as 3, 5 and 7, and the SVM
classifiers were defined with an exponential Kernel and parameters θ of 1, 2 and
3. The classification was performed by 10-fold cross-validation with 50 repetitions
and the mean and standard deviation were calculated from the 50 values of AUC
using 5 features. The results are presented in figure 5.5 in form of a bar chart.
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Figure 5.5: Classification results for the Diagnostic data, presented as AUC (%) value, for 5
features selected by two model searches and six classifiers.

The left columns of figure 5.5 present the results using the features selected
by the CFS and the right columns the results using the features selected by the
Relief F. Table 5.8 presents the values for each of the columns. The lower result
is given by the 7-KNN and CFS with an AUC of 76.6%. The best results, again,
are given by the SVM classifiers and CFS, particularly the 1-SVM, presenting an
AUC value of 90.5±4.0%.

Table 5.8: Classification results for the Diagnostic data, presented as the mean and standard
deviation of 50 AUC (%) values, for 5 features selected by two model searches and six classifiers.

AUC (%) 3-KNN 5-KNN 7-KNN 1-SVM 2-SVM 3-SVM

CFS 79.1 ± 4.0 79.5 ± 4.5 76.6 ± 4.9 90.5 ± 4.0 88.5± 5.4 88.1 ± 4.8

Relief F 82.2 ± 3.9 77.3 ± 4.3 78.6 ± 4.4 83.3 ± 5.1 82.9 ± 4.2 82,9 ± 5.7

Classification results for the best performance from all 50 repetitions are shown
in figures 5.6, 5.7 and 5.8. All 34 nodules are presented with the respective clas-
sification and the confidence of the classifier. The confidence is the amount of
certainty that a classifier has on labelling a nodule as benign or malignant. The
true labels are the columns, where the left column presents the benign nodules and
right column the malignant. The contours give the classification results, where the
red contours represent nodules classified as malignant and green contours nodules
classified as benign. It is visible that all malignant nodules and 8 in 13 benign
nodules were correctly classified, though the confidence is generally higher for the
malignant.
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Figure 5.6: Classification results for the Diagnostic dataset. The columns are the true labels of
the nodules, where the left column presents the benign nodules and right column the malignant.
The red contours represent nodules classified as malignant and green contours nodules classified
as benign.
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Figure 5.7: Classification results for the Diagnostic dataset. Classification results for the Diag-
nostic dataset. The columns are the true labels of the nodules, where the left column presents the
benign nodules and right column the malignant. The red contours represent nodules classified as
malignant and green contours nodules classified as benign.
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Figure 5.8: Classification results for the Diagnostic dataset. Classification results for the Diag-
nostic dataset. The columns are the true labels of the nodules, where the left column presents the
benign nodules and right column the malignant. The red contours represent nodules classified as
malignant and green contours nodules classified as benign.

5.3.3 Inter-datasets validation

This section presents the classification results using both datasets for cross-validation.
Here the Radiologists’ data and Diagnostic data are first used as training and test-
ing, respectively, as for now referred as test 1, and secondly as testing and training,
respectively, as for now referred as test 2. Because the origin of the GTs of both
datasets is very different, we are expecting poor results, due to the Radiologists’
data being . Either way, test 1 is mainly done to assess if there is any classifica-
tion capability on using the GT of the radiologists and the corresponding selected
features to distinguish benign from malignant nodules of the Diagnostic data. test
2 is done to assess if the Diagnostic data can be used as a training model that
would give similar classification performance as the radiologists. Also, for test 1,
only Ground Truth 1 is used to train the classifier, as it is the one who presents
the highest level of agreement between radiologists. In test 2, however, all three
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Ground Truths are used for testing. The block diagrams of the tests are presented
in figure 5.9.

Giving the classification results obtained from the Radiologists’ dataset and
Diagnostic dataset, it was concluded that the better option was to use the 1-SVM
with an exponential Kernel classifier and a CFS feature selector in both tests,
as the combination gave the best overall results for both datasets. However, the
number of features in the subsets was different. For test 1 only 5 features were
used and for test 2 12 features were used.

(a) test 1 (b) test 2

Figure 5.9: Block diagrams of test 1 and test 2.

The results are presented in form of confusion matrices for better understand-
ing. A confusion matrix simply gathers in one table the number of nodules that
were correctly classified, meaning that the Estimated Label is equal to the True
Label (TP and TN), and the number of nodules that were incorrectly classified,
meaning that the Estimated Label is different from the True Label (FP and FN).
Table 5.9 is the confusion matrix for test 1 and tables 5.10, 5.11 and 5.12 are the
confusion matrices for test 2 using Ground Truth 1, 2 and 3, respectively. The
sensitivity and specificity for both tests are also presented in table 5.13. Here, the
sensitivity is presented as correctly classified malignant nodules and specificity as
correctly classified benign nodules.

Table 5.9: Confusion matrix of test 1.

Estimated Labels
Malignant Benign Totals

True Labels
Malignant 11 10 21

Benign 4 9 13
Totals 15 19 34
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Table 5.10: Confusion matrix of test 2 using Ground Truth 1.

Estimated Labels
Malignant Benign Totals

True Labels
Malignant 106 71 177

Benign 65 56 121
Totals 171 127 298

Table 5.11: Confusion matrix of test 2 using Ground Truth 2.

Estimated Labels
Malignant Benign Totals

True Labels
Malignant 183 19 202

Benign 76 129 205
Totals 259 148 407

The overall results show a low performance on both tests. The highest result
for test 2 is achieved testing in Ground Truth 2, but as seen in table 5.13, it stays
only at 51.7% for specificity and 59.4% for sensitivity, which is not significant.
Interestingly, the lowest results come from Ground Truth 1 with a specificity of
46.3% and a sensitivity of 59.9%, though sensitivity is higher than any other and
it is more important to correctly classify malignant nodules than benign. It was
expected that due to the greater agreement between radiologists for Ground Truth
1, the results would present, at least, better results when comparing to the others,
but this do not happens. For test 1, the results are also not very good, with
specificity staying at 69.2% and sensitivity at 52.2%.

Classification results for some nodules with the corresponding confidence of the
classifier are shown in figures 5.10, 5.11, 5.12 and 5.13. The columns present the
true labels, where the left column is presents the benign nodules and right col-
umn the malignant, whereas the contours give the classification results, where the
red contours represent nodules classified as malignant and green contours nodules
classified as benign.

The confidence of the classifier presents valuable and clear information of what
happens in the system and visually confirms what was stated previously. For test
1, it is visible in figures 5.10 and 5.11 that round, small nodules are labelled as
benign with a high confidence, even if they are labelled incorrectly, and the same
happens to big, spiculated/lobulated nodules. In figure 5.11, the confidence of the
benign incorrect instances tend to be lower as nodules present rounder shapes,
lower intensity and smaller sizes.

Similarly to test 1, it is visible in figure 5.12 that some round, small nodules
are labelled as benign with a high confidence and the same happens to big, spic-
ulated/lobulated nodules. However, due to the fact that the Diagnostic data as
more variation in what concerns types of malignant and benign nodules, as seen
in figure 5.11, some more standard nodules that would be classified as benign if
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Table 5.12: Confusion matrix of test 2 using Ground Truth 3.

Estimated Labels
Malignant Benign Totals

True Labels
Malignant 225 50 275

Benign 76 129 205
Totals 301 179 480

Table 5.13: Performance of the CAD system in form o Sensitivity and Specificity for test 1 and
test 2.

Performance (%)
Radiologists’ data

Diagnostic data
Ground Truth 1 Ground Truth 2 Ground Truth 3

Sensitivity 46.3 51.7 51.7 69.2
Specificity 59.9 59.4 57.8 52.2

presenting small size, high intensity and round shape, are in fact classified as ma-
lignant. This is clearly visible in figure 5.13. The same thing happens to big,
spiculated nodules.

5.4 Evaluation and discussion of results

5.4.1 Evaluation of the radiologists’ dataset classification

Before any evaluation on the performance of the classification and discussion of
the results, we must first look at the features selected by both CFS and Relief F.
The majority of features chosen by both methods were texture features, though
CFS also selected two shape features and Relief F three intensity features. In a
particular analysis, the CFS selected a great number of GLCM and Laws features.
The inclusion of Volume and Compactness1 by CFS is coherent, as radiologists tend
to consider small or round nodules as benign and big or spiculated as malignant.
The lack of intensity features can be give two indications, one is that CFS finds
intensity information similar for both malignant and benign nodules, and the other
is that the intensity features can be simply redundant to the problem if there
are already corresponding high correlated features in the set. Relief F, however,
selected features that focus on the center calcification of the nodules, which are also
good at predict the malignancy of the nodules. It also includes a lot of GLCM
features (8 in 12 features), implying that the GLCM has great discrimination
capacity.

The AUC values for the Radiologists’ dataset were already presented in section
5.3. To aid the evaluation, the ROC curves for the subset of the CFS are presented
in figure 5.14a and in figure 5.14b the ROC curves for the subset of the Relief F.

The AUC values for all classifiers and subsets for this dataset were already
concluded to be high, though there is no considerable difference between them.
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Figure 5.10: Examples of correctly classified nodules from test 1.

The lowest value is achieved using the 13-KNN and CFS with an AUC of 93.23 %.
The 3-SVM is the one who presents the best results having an AUC of 96.43%.
The SVM based classifiers outperform all the KNN classifiers using either of the
subsets, thought the results are slightly higher for the CFS subset.

(a) (b)

Figure 5.14: ROC curves of the classification performances using the Radiologists’ data for
six classifiers. a) Results presented for 12 features selected by the CFS algorithm. b) Results
presented for 12 features selected by the Relief-F algorithm.
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Figure 5.11: Examples of incorrectly classified nodules from test 1.

The ROC curves in figures 5.14 support the notion that the SVMs are better
than KNN classifiers and that their performance is very similar. Although this is
true, the subset from Relief F improves the results of the KNN and decreases the
performance of the SVMs.

The overall results show that it is possible to build a lung nodule classification
system, similar to the radiologists assessment with high performance. The results
can be improved by including a wrapper based algorithm coupled with a classifier
to select the features more efficiently. Additionally, an independent database must
be used to increase the validation of the system.

5.4.2 Evaluation of the diagnostic dataset classification

Similarly to the Radiologists’ dataset, the majority of features chosen by both
methods were texture features. Both CFS and Relief F also selected one geometric
feature and one intensity feature. The intensity features give information about
the central intensity of the nodules, which is a good indicator of the presence
of calcification in that region. Both Compactness2 and Sphericity ratio3 give
information about the roundness of the nodules, so is natural that they are selected
based on the fact that many round nodules are benign.

Again, and similarly to the classification results using the Radiologists’ data,
the SVM classifiers provide better results using the subset obtained from the CFS
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Figure 5.12: Examples of correctly classified nodules from test 2, Ground Truth 1.

than from the subset obtained from the Relief F, and the inverse happens to the
KNN classifiers. The ROC curves in figures 5.15a,b support this notionm as the
one in the left shows that the SVM classifiers using CFS are clearly better than
the KNN classifiers, and on the right, for Relief F, the curves are close to each
other and further, the 3-KNN outperforms all the other classifiers when sensitivity
is lower than 60%.

The best result is given by the 1-SVM, presenting an AUC value of 90.5%.
This result is better than most of the results provided in literature that use the
AUC value as performance measure, being only inferior to the one presented by
Haifeng et al. [23], which achieved an AUC value of 91%.

76



Figure 5.13: Examples of incorrectly classified nodules from test 2, Ground Truth 1.

(a) (b)

Figure 5.15: ROC curves of the classification performances using the Diagnostic data for six
classifiers. a) Results presented for 5 features selected by the CFS algorithm. b) Results presented
for 5 features selected by the Relief-F algorithm.

The overall results show that it is possible to build a lung nodule classification
system with performances close to a biopsy or a surgical procedure. However, the
database is small presenting a low diversity of nodules. To better validate the
system, a bigger, independent database, with a large variety of nodules, must be
used. Additionally, the results can be improved by including a wrapper based
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algorithm coupled with a classifier to select the features more efficiently. Other
classifiers can also be implemented such as the ANN, as they are being frequently
used in the last years.

5.4.3 Evaluation of the inter-datasets classification

The results from the inter-dataset classifications were not good, but, as mentioned
before, this was expected. To understand why, it is important to look at the per-
formance of the radiologists in correctly classifying the Diagnostic data. In table
5.14 are presented the radiologists’ performance versus the CAD system perfor-
mance for only 19 nodules (8 benign and 11 malignant), as 15 of the 34 nodules are
labelled as Indeterminate by radiologists. The results show that the radiologists
managed a performance of 60.0% for specificity and 55.6% for sensitivity, which
is a very low predicament, and this is not counting with the Indeterminate nod-
ules. If the performance of the radiologists is low, than it is normal that training
a classifier using a GT that is far from a true diagnose will not give any good
discriminant capacity when classifying the Diagnostic data. As the system tends
to classify the nodules as seen by radiologists, some small, round, but malignant
nodules are classified as benign by the system and the inverse happens to big,
somehow spiculated, benign nodules. Also, the Indeterminate nodules are used in
both tests 1 and 2, presenting an even further obstacle to a good classification,
because they present both common benign and malignant features. If only non-
Indeterminate nodules are considered for performance analysis, the CAD system
increases its performance achieving 87.5% for specificity and 55.0% for sensitivity
for these nodules and using the Ground Truth 1 for training, versus a specificity
of 69.2% and sensitivity of 52.2% for all nodules and using Ground Truth 1 for
training. This allows two conclusions. First, many of the benign nodules using
Ground Truth 1 are similar to the 8 benign nodules found in the Diagnostic data.
Secondly, training the classifier with different opinions and examples gave a better
performance when comparing to the majority opinion of four radiologists.

Table 5.14: Performance of the CAD system versus the performance of the radiologists. Only
19 nodules nodules were used for comparison as they were the only ones to be labelled as non-
Indeterminate (1 and 5 labels) by radiologists.

Performance %
Diagnostic data

Specificity Sensitivity Accuracy

Radiologists 60.0 55.6 57.9

CAD system 87.5 55.0 68.4

Both test 1 and test 2 are affected by this poor capacity of the radiologists
in correctly classifying the nodules, or at least in classifying the nodules of the
Diagnostic data, which is a small sample. But if we would calculate their Accuracy
(the correctly classified instances) for all 34 nodules, the performance would be
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26.47% (1 in 4 nodules are correctly classified), whereas the CAD system would
achieve 58.82%. Considering only 19 nodules, the radiologists’ Accuracy increases
to 57.9% and the CAD system’s Accuracy is 68.4%. This means that, either case,
the CAD system still performs better than radiologists.
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Chapter 6

Conclusions and Future Work

This dissertation presents an automatic CAD system for lung nodule classification
in CT images. This system determines the malignancy of a nodule using informa-
tion retrieved solely from the ROI of the nodules. It was designed following two
different learning strategies:

• A system that provides a lung nodule classification learned from radiolo-
gists/opinions.

• A system that provides a lung nodule classification learned from real biopsy,
surgery exam or follow up during several years.

For this purpose, several studies were performed to optimize the system, namely,
an analysis of the LIDC-IDRI database in what concerns the agreement of the ra-
diologists’ segmentations and intensity ranges of the images. It was based on the
development of a nodule segmentation algorithm by Novo et al. [75]. Additionally,
the CAD system was built using a set of optimal features and an exponential SVM
classifier of order 1.

Concerning the analysis of the LIDC-IDRI database, the Jaccard index was
used to determine the agreement between the segmentations of the radiologists and
assess if the segmentations could be used as ground truth. This index calculates the
rate of voxels that are common to two areas and the agreement is high if the rate
is close to 1. For our purpose, the rate of agreement between every radiologists’
segmentations was obtained and a mean value for every radiologist calculated. The
results showed a low inter-agreement between radiologists for both solid and GGO
nodules. In the solid type, the lowest agreement is verified for small nodules. The
highest agreement is seen in big nodules achieving only 71%.

Due to the low accuracy verified in the radiologists’ segmentations, a novel
method for lung nodule segmentation was developed. The work from Novo et
al. [75] was adapted here to perform nodule segmentation using two methods to
generate two different nodule masks. Additionally, an analysis on the segmenta-
tions was performed by assessing the agreement between them, and the radiolo-
gists’ segmentations using Jaccard index. The Bland-Altman method was used
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with the Jaccard Index to compare the agreement between the methods and the
radiologists’ segmentations. The results showed that the combination using both
methods gives higher agreement then when used separately or when compared with
the agreement among radiologist’s. Nevertheless, a study on the optimal thresh-
old values for both methods must be made so better segmentations are obtained.
New improvements are needed for justa-vascular nodules. Also, the method failed
in some justa-pleural nodules and nodules crossed by airways, so that must be
address as well.

Just like a good nodule segmentation is vital to perform a reliable feature
measurement, the intensity ranges of the images can in fact be a problem if there
is great variability. In fact, the database is composed by images obtained from
different hospitals and CT scanners so a study was conducted to see what were the
implications of that variability, particularly in the feature measurement stage. Five
representative images from the database with different intensity ranges were chosen
for evaluation and the histograms of the unprocessed images and the histograms
of the normalized images were obtained for comparison purposes. The results
showed different intensity ranges from scan to scan, but that was not the case for
the nodule’s ROI. Ultimately, the conclusion was that feature measurement should
be done in the raw, unprocessed images.

Regarding the system for lung nodule classification, 293 shape, intensity and
texture features were computed using both the nodules masks and the ROI of
the nodules. The features were defined in order to match and characterize the
common radiologic features described in literature. Two different datasets were
used to find the best combination of feature selection method and classifier. The
first dataset is the Ground Truth 1 of the Radiologists’ data and the other the
Diagnostic data, obtained from either biopsy, surgery or follow up. To eliminate
redundant and irrelevant information, two feature selection methods were used,
the CFS and Relief F. Six different classifiers were evaluated for both datasets.

The best performance was achieved using a first order SVM with an exponential
kernel for a subset of 12 features using the Radiologists’ data, Ground Truth 1, and
5 features for the Diagnostic data, both obtained from the CFS, respectively. Most
of the selected features were texture based, being in agreement with what is found
in literature. Using the Radiologists’ data, the system achieved an AUC value of
96.2±0.5 %, which is a good performance. Using the Diagnostic data, an AUC
value of 90.5±4.0 % was obtained being the second best result found in literature,
though the sample is very small and additional validation is necessary. In future
work, wrapper based feature selection methods should be tested, as better results
can be achieved by guiding the selection using classifiers. Also, an ANN should be
implemented for classification comparison as they have been used in the last years
with good results.

An additional classification was performed to see if one dataset had some sort
of ability on predicting the nodule’s malignancy of the other. Two tests were
designed, where a cross-validation procedure was implemented. Here the Radiolo-
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gists’ data and Diagnostic data were first used as training and testing, referred as
test 1, and secondly as testing and training, respectively, referred as test 2. The
evaluation was performed by calculating the sensitivity and specificity measures.
test 1 achieved a specificity of 69.2% and sensitivity of 52.2% and test 2 achieved
the best results for Ground Truth 2 with a specificity of 51.7% and a sensitivity of
59.4%. The results indicate that the nodules presenting common radiologic char-
acteristics of malignancy or benignity were labelled as such by the system. The
global performance was low as many nodules in the Diagnostic data have many
mixed characteristics and some that resemble as benign are in fact malignant and
vice versa. However, the performance of the CAD system surpassed the one from
the radiologists. The same low performance was observed in test 2 and the same
reasons appointed to test 1 are applied here. Because some of the nodules used for
training have uncommon visual characteristics for benign or malignant nodules,
the system incorrectly labels the nodules as seen from the radiologists.

For future work, it is of the most interest to cooperate with radiologists in
an active learning procedure to increase the performance of the system. This
means that the results from classification are reviewed by radiologists, which in
turn make their assessment, so new and improved characteristics are measured
and more accurate classifiers are implemented. Additionally, the system can be
improved to further classify partially solid and sub-solid nodules.
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Appendix A

Figure A.1: It is presented, for each case, the average Jaccard inter-observer agreement for
the segmentation of small nodules between one and the other radiologists. In order to better
distinguish the agreement between segmentations, the radiologists are observers 1, 2, 3 and 4, but
that labelling does not represent the same radiologist in every case.
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Figure A.2: It is presented, for each case, the average Jaccard inter-observer agreement for the
segmentation of medium sized nodules between one and the other radiologists. In order to better
distinguish the agreement between segmentations, the radiologists are observers 1, 2, 3 and 4, but
that labelling does not represent the same radiologist in every case.

Figure A.3: It is presented, for each case, the average Jaccard inter-observer agreement for
the segmentation of big nodules between one and the other radiologists. In order to better
distinguish the agreement between segmentations, the radiologists are observers 1, 2, 3 and 4, but
that labelling does not represent the same radiologist in every case.
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Figure A.4: It is presented, for each case, the average Jaccard inter-observer agreement for
the segmentation of sub-solig nodules between one and the other radiologists. In order to better
distinguish the agreement between segmentations, the radiologists are observers 1, 2, 3 and 4, but
that labelling does not represent the same radiologist in every case.
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Appendix B

Figure B.1: Number of nodules for each label of Ground Truth 1 versus the labels from radiol-
ogists.

Figure B.2: Number of nodules for each label of Ground Truth 2 versus the labels from radiol-
ogists.
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Figure B.3: Number of nodules for each label of Ground Truth 3 versus the labels from radiol-
ogists.
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Appendix C

Figure C.1: Bland-Altman results for small nodules. a) Murphy’s method. b) Krissian’s method.
c) Combination of both.
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Figure C.2: Bland-Altman results for medium sized nodules. a) Murphy’s method. b) Krissian’s
method. c) Combination of both.
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Figure C.3: Bland-Altman results for large nodules. a) Murphy’s method. b) Krissian’s method.
c) Combination of both.
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