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To understand better the growth mechanisms in the economically important fish Pagellus

bogaraveo, in terms of muscle fibre hyperplasia v. hypertrophy, the lateral muscle of this fish

was studied morphometrically from hatching to juvenile comparing rostral and caudal

locations. Fish were sampled at 0, 5, 23, 40, 70, 100, 140 and 180 days. Fibre types were

first identified by succinate dehydrogenase (SDH) and immunostaining with a polyclonal

antibody against fish slow myosin (4–96). Morphometric variables were then measured in

transverse body sections, at both post-opercular and post-anal locations, to estimate the

following variables: total muscle area [A (muscle)], total fibre number [N (fibres)], fibre number

per unit area of muscle [NA (fibres, muscle)] and cross-sectional fibre area [a (fibres)] of the two

main muscle fibre types (white and red). Overall, growth throughout the various stages

resulted from increases both in the number and in the size of muscle fibres, paralleled by an

expansion of the [A (muscle)]. Nonetheless, that increase was not significant between 0–5 days

on one hand and 100–140 days, on the other hand. On the contrary, the [NA (fibres, muscle)]

declined as the body length increased. Analysis of the muscle growth kinetics suggested that,

within the important time frame studied, hyperplasia gave the main relative contribution to

the increase of white muscle [A (white muscle)], whereas red muscle [A (red muscle)] mainly

grew by hypertrophy, with both phenomena occurring at a faster pace posteriorly in the body.

Finally, when comparing rostral and caudal locations, a greater [N (fibres)] and [A (muscle)] of

the posterior white and red fibres were the consistent features. It was also observed that the

proportion of the cross-sectional area of the myotomal muscle comprised of white muscle was

greater in the anterior part of the fish. # 2009 The Authors
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INTRODUCTION

The swimming muscle of fishes comprise c. 60% of the total body mass consist-
ing of a number of almost identical units, the myotomes. In most species, the
myotomal organization of the axial musculature is commonly stratified in three
layers. One located superficially (red muscle), another deeply and responsible for
most of the muscle mass (white muscle) and a third between the two former
layers (intermediate or pink), which varies with species as regards to extent
and histochemical properties (Rowlerson et al., 1985; Scapolo et al., 1988; Hig-
gins & Thorpe, 1990; Veggetti et al., 1993; Mascarello et al., 1995).
Muscle growth in fishes, including early myotome expansion, is a plastic pro-

cess involving a combination of enlargement of previously formed muscle fibres
(hypertrophy) as well as recruitment of new ones (hyperplasia) (Rowlerson &
Veggetti, 2001). Previous work has shown that muscle hyperplasia and hyper-
trophy require distinct populations of myogenic stem cells (Koumans &
Akster, 1995). These cells may add new fibres to the myotome (hyperplasia)
by apposition within peripheral proliferation zones (‘stratified’ type of growth)
and by insertion between the already existing fibres (‘mosaic’ type growth)
(growth terminology after Rowlerson & Veggetti, 2001). Stem cells may also
enlarge existing fibres (hypertrophy) by fusion with them (Johnston, 1999).
The relative importance of hypertrophy and hyperplasia of muscle growth
varies both with fibre types and growth rate and ultimate body size of the
species (Weatherley et al., 1988). Because the largest tissue fraction in most
fishes comprise myotomal muscle (Weatherley et al., 1979), the plasticity of fish
growth implies a corresponding effect in the muscle growth dynamics (Weath-
erley et al., 1988).
The muscular differentiation, development and growth of Pagellus bogaraveo

(Brünnich), a new fish species under consideration for intensive aquaculture in
Southern Europe, is currently under study. The understanding of the effects of
key rearing conditions on P. bogaraveo growth depends on the knowledge of
its muscular growth mechanisms and dynamics during ontogeny. Hence, the
muscle growth of P. bogaraveo was measured using a morphometric approach
in order to: (1) determine the relative contributions of hyperplasia and hypertro-
phy for muscle growth from hatching (0 days) until the juvenile stage (180 days)
and (2) compare the relative contributions in the anterior and posterior body re-
gions, an aspect for which very few data are available for fishes in general.

MATERIALS AND METHODS

FISH

Eggs of P. bogaraveo were obtained from an adult stock adapted to life in captivity in
a flow-through seawater system at Instituto Español de Oceanografı́a (IEO), Centro
Oceanográfico de Vigo, Spain. Eggs were incubated at ambient temperature (c. 14°
C) and hatching occurred 54 h thereafter. One day prior to mouth opening (115 h after
hatching), larvae were transferred to culture tanks where temperature was gradually
increased to 18° C, range �1° C. Fish were fed rotifers Brachionus plicatilis (fish age:
5–35 days), Artemia sp. naupli (fish age: 30–35 days), Artemia sp. metanaupli (fish
age: 35–45 days) and Gemma Micro diet (fish age: 45–60 days) (rotifers, Artemia sp.
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naupli and metanaupli were raised by IEO; Gemma Micro diet was supplied by INVE
Animal Health, SA, San Francisco, CA, U.S.A.). Pagellus bogaraveo were sampled at
the following ages: 0, 5, 23, 40, 70, 100, 140 and 180 days. At each age, six fish were
individually killed by over-anaesthesia in a 400 mgl�1 solution of MS-222 (Sigma-Al-
drich, St Louis, MO, U.S.A.) (400 mgl�1) and measured to estimate an instantaneous
relative growth rate G ¼ 100ðlnS2 � lnS1Þðt2 � t1Þ�1, where S1 and S2 are initial and
final mean total length (LT) expressed in mm, and t1 and t2 are the times (days) of mea-
surement (Forsythe & Van Heukelen, 1987).

For morphometric analysis, fish were fixed in 4% paraformaldehyde (Sigma-Aldrich)
(0–5 days: 6 h; 23–40 days: 12 h; 100–180 days: 24 h) in phosphate buffer. Prior to fixa-
tion, larger individuals (140 and 180 days) were sliced, and the body cross-sections of
interest were processed. The samples were then dehydrated in a graded ethanol series,
cleared in xylol and finally embedded in paraffin. Perfect (i.e. without wrinkles, knife
strikes or other potential defects) 10 mm-thick sections were cut transversely to the body
axis at the point of the post-opercular and the post-anal levels, mounted in slides coated
with aminopropyltriethoxysilane (APES) (Sigma-Aldrich), for improving section adhesion
and then stained with haematoxylin–eosin before placing a cover slip.

For histochemistry and immunohistochemistry, whole fish (n ¼ 3 per age) were snap
frozen in isopentane (Sigma-Aldrich) at �80° C. Before freezing, small individuals were
combined with each other in composite blocks and sandwiched with two slices of pig
liver. Using this method, it was possible to obtain a solid block, easy to cut, and larvae
could be orientated to provide transverse sections. Also, identical treatment of samples
with regards to staining was ensured. Sections were cut at 10 mm, mounted on slides
treated with APES to improve section adhesion. Sections were then histochemically
stained for succinic dehydrogenase (SDH) activity, which is a marker for mitochondrial
content and oxidative metabolism or immunostained with 4–96: polyclonal anti-fish
(Sparus aurata L.) slow myosin (Veggetti et al., 1999). A sensitive streptavidin-biotin-
peroxidase immunohistochemistry kit was used (Histostain Plus; Zymed, San Francisco,
CA, U.S.A.), following the maker’s instructions with minor adaptations. The endoge-
nous avidin–biotin-binding activity was blocked (Avidin–Biotin Blocking Kit; Zymed).
The peroxidase activity was developed using 0�05% 3,39-diaminobenzidine (DAB)
(Sigma-Aldrich), in phosphate buffered saline (PBS) and 0�03% H2O2, generating
a brown end product. Once rinsed in tap water, sections were mounted in DPX
(Sigma-Aldrich). Sections, for which the primary antibodies were omitted, showed no
immunomarking (negative controls). Histochemistry of SDH activity was based on
incubation of sections in a solution of sodium succinate at pH 7�4 in 0�2 M phosphate
buffer. Nitroblue tetrazolium (Sigma-Aldrich) (1 mg ml�1) was added to the solution
prior to incubation; made in the dark until the stain developed (usually 120–180
min). Sections were mounted in glycerol gelatine (Sigma-Aldrich).

MORPHOMETRICAL ANALYSIS

The study was carried out using an interactive image analysis system (CAST-Grid ver-
sion 1.6; Olympus, Tokyo, Japan), working with a live image captured by a CCD-video
camera (Sony, Tokyo, Japan). The light microscope (BX50; Olympus) used was equipped
with a fully motorized stage (Prior Scientific Inc., Rockland, MA, U.S.A.), thus allowing
meander sampling with an (x–y axis) accuracy of 1 mm. For practical purposes, the mus-
cle tissue was operationally divided into two morphologically well-differentiated zones:
a main (and innermost) white fibre area and a thinner (and outermost) red fibre-rich area.
Relative and absolute morphometric variables of the fish body section and components
of interest were estimated as described below.

MUSCLE CROSS-SECTIONAL AREA

The cross-sectional (half) white muscle area [A (white muscle)] and red muscle area [A
(red muscle)] were computed by the software after the operator interactively traced the
physical limits of interest in the section. An estimate of the total area [A (muscle)] was
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made by doubling the computed value (as pilot tests showed no left–right asymmetry
differing >1%).

RELATIVE NUMBER (DENSITY) OF MUSCLE FIBRES

In larvae aged 0 and 5 days, all white fibres were directly counted, and the number of
white muscle fibres per unit area within the respective muscle zone [NA (white, muscle)]
was then estimated as follows:

NAðwhite;muscleÞ ¼ Nðwhite fibresÞ½Aðwhite muscleÞ��1 ð1Þ

In older fish, a direct count was no longer possible due to the larger number of fibres.
The number of white muscle fibres per unit area of fish aged 23–180, within the respec-
tive muscle zone [NA (white, muscle)] was unbiasedly estimated as follows:

NAðwhite;muscleÞ ¼ +Nðwhite fibresÞ½a�+Pðwhite muscleÞ��1 ð2Þ

where +N(white fibres) is the total number of white fibres counted over all systemati-
cally sampled fields in a section, ‘a’ is the area of the counting frame used (23–40 days:
4,02E þ 3 mm2 and 70–180 days: 1,63E þ 04 mm2) when counting white fibres, and
+P(white muscle) is the sum of the (one) frame associated point hitting the reference
space (i.e. white muscle) across all sampled fields. In order to avoid the bias due to edge
effects, an unbiased counting frame bearing forbidden lines was used (Gundersen,
1977); in accordance, fibres were counted only when they were within the counting
frame or touching the inclusion lines, but in both cases not touching the forbidden lines
or their extensions.

Except for the older fish, all red fibres were actually counted and the relative num-
ber of red muscle fibres was estimated as described above for the white muscle (equa-
tion 1). A sampling scheme similar to that defined for the white muscle (equation 2)
was made for fish aged 180 days, using an adequate counting frame with an area of
1,63E þ 04 mm2.

When sampling was required for cell counting, such was made in systematically sam-
pled fields and working either with the �40 (23–40 days) or the �20 (40–180 days) lens,
according to the fish size, the respective final working magnification of the live image in
the screen was �1608 and �799. Pilot approaches showed that, for the variables mea-
sured, the use of �40 and �20 lenses on all the fish produced equal results, therefore,
the �20 lens was selected for the sake of practical purposes and high sampling effi-
ciency. After pilot trials, the stepwise stage x–y movement was defined according to
the fish size in order to count the maximum number of fibres per section; the adopted
steps varied from 50 to 1000 mm, for sampling white fibres and from 250 to 400 mm, for
red fibres.

TOTAL NUMBER OF MUSCLE FIBRES

Except for the fish where all fibres were counted, the total number of (red or white)
muscle fibres per cross-section (N) was estimated according to general principles for
handling ratios and absolute values (Howard & Reed, 1998), namely by combining
two previously estimated variable, and by using the following unbiased equation:

Nð fibresÞ ¼ NAð fibres;muscleÞ�AðmuscleÞ ð3Þ
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MEAN CROSS-SECTION FIBRE AREA

The mean individual, white and red, muscle fibre area [a (fibres)] was derived from A
(muscle) and N (fibres), using an unbiased variable combination, as follows:

�að fibresÞ ¼ AðmuscleÞNð fibresÞ�1 ð4Þ

HYPERPLASIA V. HYPERTROPHY

The relative contribution of hypertrophy and hyperplasia to the increase of the cross-
sectional area was estimated as follows (Valente et al., 1999):

DAðmm2Þ ¼ NmD�aðmm2Þ þ �amðmm2ÞDN ð5Þ

where D was calculated between two sampling times (t and t þ 1) and Nm and am refer
to the mean total number of fibres and fibre area at t.

STATISTICS

Data were analysed using the software Statistica (version 6; StatSoft, Tulsa, OK,
U.S.A.). The significance level was set at a ¼ 0�05. All variables were checked for nor-
mality and homogeneity of variance, by using the Kolmogorov–Smirnoff and the Lev-
ene tests, respectively. Data were submitted to one-way ANOVA. After a significant
ANOVA, pairs of means were compared by the Tukey honest significant difference test.
For a particular age, and for each variable, the significance of the differences between
rostral and caudal values was compared by the t-test for dependent samples, after
checking the test assumptions as above. Each variable was plotted against LT. Pair-wise
t-tests were used to compare slopes of regression lines (Zar, 1996).

RESULTS

The distinction between white and red muscle was evident at very early
stages (Fig. 1). At hatching, a superficial monolayer, lying just beneath the skin
and along the lateral line, was clearly demarcated from the underlying white
muscle mass. Subsequent growth led to the proliferation of the red monolayer
fibres at the region of the lateral line. Pink muscle fibres were first apparent at
40 days, but only at 140 days a distinct muscle layer that would be suitable for
morphometric analysis was formed. Because it was not always possible to dis-
tinguish between all muscle fibre types, the morphometric variable analysis was
carried out for the fast white muscle (including pink muscle fibres) and for slow
red muscle (including superficial monolayer fibres).
The mean LT and the G of the fish during the trial are presented in Table I. The

LT increased linearly with age (r2 ¼ 0�95). The larger growth rate was observed in
the end of larvae life (between 5 and 23 days), and the smaller one was observed
in the middle of juvenile life between 100 and 140 days of age (Table I).

FAST WHITE MUSCLE

At both locations, the NA (white, muscle) was exponentially and negatively
correlated with LT, while all other morphometric variables measured were
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linearly and positively correlated with it. Only for N (white fibres) and A (white
muscle) were differences between the slopes of the respective regression lines de-
tected, with the post-anal level displaying the fastest growth (Table II).
The A (white muscle) increased over the larval period (anteriorly and poste-

riorly), but only significantly (P < 0�05) from 5 to 23 days (Table III), a period
in which the variable increased >10-fold. This increase was mainly due to the
hyperplastic mechanism (Table IV). In postlarval life, there was a progressive

FIG. 1. Transverse sections of lateral muscle of Pagellus bogaraveo aged 23 days. (a) Immunostaining with

4–96 (polyclonal anti-fish, slow myosin) and (b) succinate dehydrogenase (SDH). The superficial

monolayer fibres showed a strong reaction with 4–96 antibody and displayed strong SDH activities.

A small group of red fibres appeared adjacent to the lateral line nerve with a particularly strong

reaction with anti-fish slow myosin and SDH activity. Li, liver (used as support tissue when the

larvae were snap frozen). Scale bar ¼ 75 mm.

TABLE I. Water temperature, total length [LT; mean (C.V.), n ¼ 6] and instantaneous
relative growth rate (G), Pagellus bogaraveo during the experiment over 180 days

Time (days) Water temperature (° C) LT (mm) G

0 14�0 3�6 (0�02)a —
5 16�7 6�0 (0�04)ab 10�3
23 19�4 7�9 (0�002)ab 1�5
40 19�6 12�0 (0�20)b 2�5
70 19�2 23�7 (<0�01)c 2�3
100 21�5 51�0 (0�11)d 2�6
140 19�6 71�2 (0�06)e 0�8
180 19�1 114�5 (0�07)f 1�2

Means without a common superscript lower case letter differ significantly (P < 0�05).
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increase in A (white muscle), cranially and caudally, as the age increased (Table
III). The A (white muscle) increased rapidly from 23 to 100 days (P < 0�05), the
40 to 70 days period being the time where that increase was greater (c. 10-fold)
(Table III). Such A (white muscle) increase then slowed down from 100 to 140
days (P > 0�05), and rose again rapidly afterwards (three-fold rise from 140 to
180 days) (P < 0�05) (Table III). At these stages, and at both body locations,
with the exception of the period from 40 to 70 days, the main postlarval mech-
anism underlying the enlargement of A (white muscle) was hyperplasia (Table IV).
As to the NA (white, muscle), no significant differences (P > 0�05) were found

between 0 and 5 days. The NA (white, muscle) decreased 2�3-fold from 5 to 23
days (P < 0�05) (Table III). In general, in postlarval life the NA (white, muscle)
decreased with age (Table III). No significant NA (white, muscle) decrease (P >
0�05), however, was observed from 23 to 40 and from 100 to 140 day periods,
at the post-opercular location, and from 23 to 40 and 70 to 180 day periods at
post-anal location (Table III).
The N (white fibres) did not increase (P > 0�05) in the first 5 days post-hatch.

By contrast, from 5 to 23 days the N (white fibres) increased rapidly (P < 0�05),
from 117 to 563 fibres and from 181 to 1146 fibres, at post-opercular and post-
anal positions, respectively (Table III). There was a progressive increase in the
N (white fibres) from 23 to 100 days (P < 0�05), which slowed down from 100
to 140 days (P > 0�05) and rapidly rose again (two-fold) from 140 to 180 days
(P < 0�05) (Table III).
The a (white fibres), reflecting hypertrophic growth, increased gradually over

the larval period from 82 to 194 mm2 at the post-opercular level and from 56 to
152 mm2 at post-anal level. The a (white fibres) increased only modestly (P >
0�05) from hatching to 5 days and doubled between 5 and 23 days (P <
0�05) (Table III). During the postlarval life, the a (white fibres) rose from c.
194 to c. 3015 mm2 at post-opercular level and from c. 152 to c. 2795 mm2 at
post-anal level (Table III). No significant increase, however, was observed in
a (white fibres) in the beginning (23–40 days) and in the middle (100–140 days)
of postlarval life (P > 0�05) (Table III).
When comparing both muscle locations, at hatching, a larger N (white fibres)

(P < 0�05) was observed caudally. At 5 days, the N (white fibres) continued to
be larger (P < 0�05) at the post-anal level, but the fibres had now a smaller a
(white fibres) (P < 0�05). At this age the NA (white muscle) was higher at the
post-anal level (P < 0�05). At the end of larval life (23 days), the differences

TABLE IV. Relative contribution of hyperplasia to white and red muscle growth of
Pagellus bogaraveo at two different body locations

Hyperplasia (%) Location

Age period (days)

0–5 5–23 23–40 40–70 70–100 100–140 140–180

White muscle Post-opercular 50 76 97 33 55 100 59
Post-anal 9 80 82 15 84 100 50

Red muscle Post-opercular 29 45 98 40 23 78 35
Post-anal 97 37 96 41 30 100 37
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between locations were the same as the ones observed at 5 days, and now the A
(white muscle) was also larger (P < 0�05) caudally. Overall, from 40 to 140 days
the N (white fibres) and the A (white muscle) were the only morphometric var-
iables measured that were larger at the post-anal level (P < 0�05). No signifi-
cant differences (P > 0�05) between locations were found at the end of the
study (180 days).

SLOW RED MUSCLE

The A (red muscle) and NA (red, muscle) were exponentially correlated with LT

at both muscle locations, positively and negatively, in this order. The other two
morphometric variables measured, however, grew linearly and positively with
LT. The slope of the N (red fibres) regression line was higher at the post-anal
level (Table V).
The A (red muscle) increased with age at both locations. Nonetheless, that

increase was not significant from 0 to 5 or from 100 to 140 days (P > 0�05)
(Table VI). As shown in Table IV, the main contributor to growth, as evalu-
ated by the increase in A (red muscle), in the above time periods and from
23 to 40 days, at post-anal level, was the hyperplastic mechanism, whereas in
the other periods it was the hypertrophic one. The latter was true for the
post-opercular level, except for the endogenous feeding period (0–5 days) where
the A (red muscle) grew mainly by fibre hypertrophy.
The red slow muscle showed an exponential decrease in NA (red, muscle) with

age (Table V). Nevertheless, no significant differences (P > 0�05) were found at
both muscle locations in the following day periods: 0–5, 23–40 and 100–140.
As for the white muscle, the N (red fibres) increased with age. The N (red

fibres) remained, however, fairly stable (Table VI) (P > 0�05) in the first 5 days
of life and in the middle of postlarval life (from 100 to 140 days).
The a (red fibres) was initially 10 mm2 at both locations; gradually rising at

100 days to 454 and 531 mm2, at post-opercular and post-anal levels,

TABLE V. Relationships between total length (LT) and total muscle area [A (red muscle)],
number of fibres per unit area of muscle [NA (red, muscle)], total number of fibres [N (red
fibres)] and cross-sectional fibre area [a (red fibres)] in red muscle at post-opercular and

post-anal locations in Pagellus bogaraveo (for all lines P < 0�001)

Variable Location Line r2

A (red muscle) (mm2) Post-opercular A (red muscle) ¼ 1,6E þ 03 � e(0
�81) � L 0�80

Post-anal A (red muscle) ¼ 2,5E þ 03 � e(0
�82) � L 0�79

NA (red, muscle)
(number mm�2)

Post-opercular NA (red, muscle) ¼ 5,4E þ 04 � e(�0�42) � L 0�83
Post-anal NA (red, muscle) ¼ 4,8E þ 04 � e (�0�40) � L 0�79

N (red fibres) Post-opercular N (red fibres) ¼ �42 þ 286a � L 0�93
Post-anal N (red fibres) ¼ �288 þ 545b � L 0�91

a (red fibres) (mm2) Post-opercular a (red fibres) ¼ �63�88 þ 98�64a � L 0�90
Post-anal a (red fibres) ¼ �45�79 þ 91�44a � L 0�90

For each variable, slopes followed by the same superscript lower case letters, did not differ

significantly from each other (P > 0�05).
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respectively (Table VI). This increase, however, was not significant until fish
mouth opening (5 days). Between 100 and 140 days, the a (red fibre) did not
differ significantly (P > 0�05). In small juveniles, the a (red fibres) rose again
to reach c. 1100 mm2 at 180 days at both locations (P < 0�05) (Table VI).
At hatching, no differences between locations were found for all morphomet-

ric variables. At 5 days after hatch, a larger N (red fibres) existed caudally. In
postlarval life, a higher N (red fibres) and A (red muscle) of the caudal red fibres
were the consistent features. No differences were found, however, between both
muscle locations at 70 days.

DISCUSSION

Changes in muscle fibre number during growth have only been determined in
a relatively few species including: Oncorhynchus mykiss (Walbaum) (Stickland,
1983; Valente et al., 1999), Cyprinus carpio L. (Koumans et al., 1994), S. aurata
(Rowlerson et al., 1995) and Clupea harengus L. (Johnston et al., 1998). Thus,
this study is one of the few aimed at investigating the muscle recruitment
between the hatching and beginning of the juvenile fish life. The application
of this research lies in the understanding of the growth process of P. bogaraveo,
a species new for aquaculture.

GROWTH MECHANISMS IN LARVAE

The morphometric data of both fibre types indicated that during the larval
period P. bogaraveo muscle grew mainly by recruitment of new muscle fibres
(hyperplasia). A different situation was found in C. harengus larva in which
growth from 8 to 16 mm LT involved a three-fold increase in muscle cross-
sectional area largely due to the hypertrophy of the embryonic red and white
muscle fibres (Johnston et al., 1998). Five days after hatching, at the end of
the endogenous feeding period, slow growth occurring by hyperplasia and
hypertrophy of both fibre types was observed. A pause in hyperplasia also
occurred in the first few days after hatching in some other species (Johnston,
1993; Gibson & Johnston, 1995; Johnston et al., 1998; Galloway et al., 1999;
Veggetti et al., 1999). The differences found among species in the duration of
that pause, however, are not similar and may be related to variations in egg
quality including the amount of yolk, the amino acid content and the concen-
tration of maternal growth factors (Johnston et al., 1998). Between the end of
the endogenous feeding period (5 days) and the end of the larval period
(23 days), both a gradual hypertrophy, of red and white fibres already present
at hatching and an intense hyperplastic phase, mainly of the white fibres were
detected. It is believed that the observed increase of the number of fibres cor-
responded to the stratified hyperplastic growth, also observed in S. aurata
(Rowlerson et al., 1995).

POSTLARVAL GROWTH MECHANISMS

In the juvenile stages, white muscle growth occurred simultaneously by
hypertrophy, and by marked hyperplasia in both muscle locations. Also in
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Salmo salar L. juveniles, Higgins & Thorpe (1990) reported a higher proportion
of small diameter muscle fibres during the late summer when fish were growing
at their fastest rate, consistent with increased muscle fibre recruitment. Between
70 and 100 days, a distinct hyperplastic process started up in the fast white
muscle, resulting in a three-fold increase in the total number of fibres over that
period. This was reflected in a wide range of fibre diameters displaying the
mosaic appearance shown in transverse sections. This hyperplastic mosaic
growth confirmed the result obtained with P. bogaraveo, in a previous histo-
chemical and immunostaining study (Rowlerson et al., 2004; Silva et al.,
2008) in which, at this age, new small fibres in the white muscle, which differed
from the large diameter ones only in their ATPase reactivity, were observed.
The relative timing of the mosaic hyperplastic processes in relation to the life
cycle varies amongst species (Romanello et al., 1987; Veggetti et al., 1990;
Brooks & Johnston, 1993; Mascarello et al., 1995; Stoiber & Sänger, 1996;
Johnston et al., 1998; Veggetti et al., 1999). Mosaic hyperplasia resulted in
a large increase in the total fibre number during juvenile growth, being, there-
fore, very important for commercial aquaculture. According to the mathemat-
ical formula used to obtain a general idea of the contributions of hyperplasia
and hypertrophy to the muscle area (Valente et al., 1999), in the middle of the
juvenile life, the white muscle area grew mainly by hyperplasia being the one
and only mechanism between 100 and 140 days. The hyperplasia, however,
was not enough to produce statistically significant differences in the fibre num-
ber in the above-mentioned period. This fact seems to be related to the thermal
environment experienced by P. bogaraveo, during ontogeny. Seasonal changes
in growth rate are apparent in many fishes, with water temperature the major
factor. At temperatures below the optimum range, metabolic rate slows down.
Lower metabolism means reduced feed intake and slower growth (Jobling,
1997). In the present study, it was verified that growth rate slowed down
between 100 and 140 days when rearing temperatures fell from 21�5 to 19�6°
C. The growth rate decrease observed in this period could explain the pro-
nounced negative influence of the lower temperature on muscular growth
and the consequent absence of significant differences in the number and the
size of muscle fibres between those ages.
As a result of the hyperplastic growth, at the juvenile stages, the mean white

fibre area increased modestly from the end of larval life to 40 days; increased
intensely (c. five-fold) between 40 and 70 days, when the very small-area fibres
disappeared; and then underwent a small change after 70 days when those fi-
bres reappeared. By 180 days, at the end of this study, neither hyperplastic
nor hypertrophic growth had ceased. Further studies will be needed to confirm
the persistence of hypertrophic growth throughout juvenile life up to adult
stages, even after hyperplastic growth had ceased, as described for a variety
of fishes, including O. mykiss (Weatherley et al., 1980; Kiessling et al., 1991),
C. carpio (Koumans et al., 1993), Dicentrarchus labrax (L.) (Veggetti et al.,
1990), S. aurata (Rowlerson et al., 1995) and Anguilla anguilla (L.) (Romanello
et al., 1987).
As to the red muscle growth in P. bogaraveo juveniles, it seemed to be due to

hypertrophy rather than to hyperplasia, as shown by a progressive increase in
mean fibre area and in the proportion values of hypertrophy contribution to
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red muscle area. In O. mykiss, the proportional increase in fibre number was
also lower for red than for white fibres with recruitment stopping at signifi-
cantly shorter LT (Stickland, 1983).
Overall, it will how be possible to better understand how the factors that

influence growth mechanisms in P. bogaraveo juveniles can be exploited for
hyperplasia without detriment to hypertrophic growth.

MUSCLE LOCATION INFLUENCES

As far as is known, the present work is the first to ever investigate muscle
cellularity of fishes considering two body locations (caudal and cranial) during
growth. Another study with D. labrax also compared the cellularity in the ante-
rior and posterior part of the fish but only in commercial-sized samplings
(Abdel et al., 2005). It has been here demonstrated that muscle growth dynam-
ics were the same in the cranial and caudal parts of the fish, and that, overall,
a greater total fibre number and muscle area existed at post-anal level, for both
muscle types. Additionally, and as observed in other species (Sänger & Stoiber,
2001), the proportion of the cross-sectional area of the myotomal muscle com-
prised of white muscle was greater in the anterior part of the fish. The mech-
anistic reason for P. bogaraveo muscle displaying a different cellularity between
the two body locations is not yet clear, but the data strongly support there are
different regulatory mechanisms for establishing the total number of muscle fi-
bres, according to location.
For the first time the muscle fibre growth kinetics of larvae, fry and juvenile

of P. bogaraveo have been characterized. Growth throughout the various stages
resulted from both hypertrophy and hyperplasia of muscle fibres. The N (fibres)
and the a (fibres) of both fibre types were linearly and positively correlated with
LT. At 70–100 days, the white mosaic hyperplastic growth type was already
underway as shown by the increase in fibre number and appearance of many
very small fibres. Overall, hyperplasia provided the main relative contribution
to the increase of white muscle cross-sectional area, but the red muscle area
mainly benefited from hypertrophy, with both phenomena occurring at a faster
pace posteriorly in the body. Therefore, it was proved that cranial–caudal dif-
ferences existed in fibre cellularity, with a consistently greater number of fibres
and muscle area being found at the caudal level, for both fibre types. The exis-
tence of seasonal cycles of muscle recruitment found in this study may be
important to the design of feeding regimes and diets for optimizing production
and minimizing environmental effects and feeding costs. In fact, the chance of
using larval growth conditions to potentiate the mosaic hyperplastic growth
phase is very attractive because a higher recruitment of fibres endows the fish
with the potential to accomplish further growth by fibre enlargement. This has
immediate practical interest as it brings the fish to commercial size. The eco-
nomic goal of further research on P. bogaraveo muscle growth will be the study
of factors of potential relevance to fish farming (e.g. photoperiod, exercise, diet
composition and feeding regimes) in the fibre recruitment and hypertrophy.
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Abdel, I., López-Albors, O., Ayala, M. D., Garcı́a-Alcazar, A., Abellán, E., Latorre, R.
& Gil, F. (2005). Muscle cellularity at cranial and caudal levels of the trunk
musculature of commercial size sea bass, Dicentrarchus labrax (Linnaeus, 1758).
Anatomia, Histologia, Embryologia: Journal of Veterinary Medicine Series C 34, 280–
285. doi: 10.1111/j.1439-0264.2005.00613.x

Brooks, S. & Johnston, I. A. (1993). Influence of development and rearing temperature
on the distribution, ultrastructure and myosin sub-unit composition of myotomal
muscle-fibre types in the plaice Pleuronectes platessa. Marine Biology 117, 501–513.

Forsythe, J. W. & Van Heukelen, W. F. (1987). Growth. In Cephalopod Life Cycles,
Comparative Reviews (Boyle, P. R., ed.), pp. 135–156. London: Academic Press.

Galloway, T. F., Korsvik, E. & Kryvi, H. (1999). Muscle growth and development in
Atlantic cod larvae (Gadus morhua L.) related to different somatic growth rates.
Journal of Experimental Biology 202, 2111–2120.

Gibson, S. & Johnston, I. A. (1995). Scaling relationships, individual variation and the
influence of temperature on maximum swimming performance in newly settled
turbot Scophthalmus maximus. Marine Biology 121, 401–408.

Gundersen, H. J. G. (1977). Notes on the estimation of the numerical density of arbitrary
profiles: the edge effect. Journal of Microscopy 111, 21–23.

Higgins, P. J. & Thorpe, J. E. (1990). Hyperplasia and hypertrophy in the growth of
skeletal muscle in juvenile Atlantic salmon, Salmo salar L. Journal of Fish Biology
37, 505–519. doi: 10.1111/j.1095-8649.1990.tb05884.x

Howard, C. V. & Reed, M. G. (1998). Unbiased Stereology. Three-dimensional Measure-
ments in Microscopy. Oxford: Bios Scientific Publishers.

Jobling, M. (1997). Temperature and growth: modulation of growth rate via temperature
change. In Global Warming: Implications for Freshwater and Marine Fish (Wood, C.
M. & McDonald, D. G., eds), pp. 225–252. Cambridge: Cambridge University
Press.

Johnston, I. A. (1993). Temperature influences muscle differentiation and the relative
timing of organogenesis in herring (Clupea harengus) larvae. Marine Biology 116,
363–379.

Johnston, I. A. (1999). Muscle development and growth: potential implications for flesh
quality in fish. Aquaculture 177, 99–115.

Johnston, I. A., Cole, N. J., Abercromby, M. & Vieira, V. L. A. (1998). Embryonic
temperature modulates muscle growth characteristics in larval and juvenile
herring. Journal of Experimental Biology 201, 623–646.

Kiessling, A., Storebakken, T., Asgard, T. & Kiessling, K.-H. (1991). Changes in the
structure and function of the epaxial muscle of the rainbow trout (Oncorhynchus
mykiss) in relation to ration and age. I-Growth dynamics. Aquaculture 93, 335–356.

Koumans, J. T. M. & Akster, H. A. (1995). Myogenic cells in development and growth of
fish. Comparative Biochemistry Physiology A 110, 3–20.

Koumans, J. T. M., Akster, H. A., Booms, G. H. R. & Osse, J. W. M. (1993). Growth of
carp (Cyprinus carpio) white axial muscle; hyperplasia and hypertrophy in relation
to the myonucleus/sarcoplasm ratio and the occurrence of different subclasses of
myogenic cells. Journal of Fish Biology 43, 69–80. doi: 10.1111/j.1095-
8649.1993.tb00411.x

Koumans, J. T. M., Akster, H. A., Witkam, A. & Osse, J. W. M. (1994). Numbers of
muscle nuclei and myosatellite cell nuclei in red and white axial muscle during
growth of the carp (Cyprinus carpio). Journal of Fish Biology 44, 391–408. doi:
10.1111/j.1095-8649.1994.tb01220.x

MUSCLE GROWTH IN PAG E L L U S B O G A R AV E O 51

# 2009 The Authors

Journal compilation # 2009 The Fisheries Society of the British Isles, Journal of Fish Biology 2009, 74, 37–53



Mascarello, F., Rowlerson, A., Radaelli, P. & Veggetti, A. (1995). Differentiation and
growth of muscle in the fish Sparus aurata (L): I. Myosin expression and
organization of fibre types in lateral muscle from hatching to adult. Journal of
Muscle Research and Cell Motility 16, 213–222.

Romanello, M. G., Scapolo, P. A., Luprano, S. & Mascarello, F. (1987). Post-larval
growth in the lateral white muscle of the eel, Anguilla anguilla. Journal of Fish
Biology 30, 161–172. doi: 10.1111/j.1095-8649.1987.tb05742.x

Rowlerson, A. & Veggetti, A. (2001). Cellular mechanisms of post-embryonic muscle
growth in aquaculture species. In Fish Physiology, Vol. 18 (Johnston, I. A., ed.), pp.
103–140. San Diego, CA: Academic Press.

Rowlerson, A., Scapolo, P. A., Mascarello, F., Carpenè, E. & Veggetti, A. (1985).
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