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ABSTRACT 

Wood damaged beams submitted to bending loads were repaired using carbon-epoxy patches. 

The effect of patch thickness as well as adhesive filleting were both studied experimentally 

and numerically. The objective was to verify the influence of these aspects on the strength and 

failure of the repaired structural components. Cohesive zone modeling considering mixed-

mode (I+II) loading was carried out to simulate the observed experimental behavior. It was 

concluded that repair can successful recover the original bearing capacity, although patch 

thickness and adhesive filleting did not reveal a significant gain on strength. 

 

INTRODUCTION 

Structural applications of wood have recently been increasing owing to its ecological and 

economical advantages. In fact, wood is a renewable and very efficient material in which 

concerns its production, processing and use. Therefore, the development of appropriate repair 

methodologies arises as a fundamental research topic. Effectively, under service conditions 

wood damage can be induced by overloading, moisture fluctuations, fire, decay fungi, insects 

attack or even the strengthening motivated by alteration of functioning or security norms.  

A contemporary procedure for wood repair consists in using artificial composite patches, as is 

the case of glass-epoxy (Triantafillou 1988, Radford 2002) or carbon-epoxy laminates 

(Triantafillou 1988, Premrov 2004, Pirvu 2004). Different strategies of repair and 

strengthening have been executed, depending on the accessibility of the structural component, 

structural requests, esthetical aspects and costs. In the case of tensile or compression 

reinforcement of beams these strategies consist of bonding laminate plates directly applied on 

beam surfaces or embedded on surfaces (Pirvu 2004), or bonding of strips or rods inserted on 

the beam (Radford 2002). In the case of shear reinforcement of beams two techniques have 

been used: bonding of plates on the lateral surfaces (Triantafillou 1988) or the insertion of 

bonding rods on the beam transversal direction (Radford 2002, Lorenzis 2005). 

The focus of this work is to investigate the influence of bonded repairs of wood damaged 

structures using carbon-epoxy composites. Wood damaged beams were submitted to four-

point bending (Fig. 1) in order to access the influence of different types of repair on the 

stiffness and strength.  

 

EXPERIMENTS 

Fig. 1 shows a schematic representation of the experimental setup used in the mechanical test. 

The chosen dimensions were defined as being representative of typical characterization 

studies   involving   wood  (de Moura 2008,  Silva 2007). Pinus pinaster  Ait. was used in this  
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Fig. 1. Repaired beam under four-point bending. 

Wood axis: L – Longitudinal; R – Radial; T – Tangential. 

 

work as the testing material. Wood moisture content was found in the interval 11-13% once 

conditioned at 20C and 65 RH until equilibrium has been reached. Wood was machined 

sufficiently far from the stem pith in order to get specimens of mature wood and less affected 

by annual rings curvature. A total number of 25 specimens were machined from a single 

wood log and stabilised at laboratory conditions before the experiments. The selected pre-

crack angle (15º) intends to simulate severe grain misalignment in wood beams, which 

defines natural paths prone to crack propagation and it was executed using a circular band saw 

(1 mm thick).  

Unidirectional composite laminates (Texipreg HS 160 RM from SEAL
®

) were produced from 

high strength carbon pre-preg according to the manufacturer recommendations, using a hot-

plate press. Patches were cut from laminated plates with two different thicknesses (0.6 and 2.0 

mm) and bonded onto the beam damaged region, using SIKADUR 30 adhesive from Sika
®
. 

This adhesive presents a glass transition temperature of 62°C which is adequate for typical 

timber applications. Surfaces were methodically cleaned and sandpapered (180-grit) to 

improve bonding quality, preventing spurious failure at the interfaces (adhesive/composite 

and adhesive/wood).  

The four-point-bending tests were performed using a mechanical spindle-driven tension-

compression machine (INSTRON 1125) under displacement control. A 5 kN load-cell was 

installed and the crosshead displacement rate was set to 0.3 mm/min. A Spider
®
 8 (HBM) 

data acquisition system was used to register the load displacement curve (i.e., the P-curve), 

with a frequency of 5 Hz. A two-point assembly device with rotating cylindrical contact 

surfaces was used in the mechanical tests, inducing equal reactions in the beam supports. 

 

COHESIVE ZONE MODELING 

Damage initiation and propagation in repaired beams was simulated by means of a cohesive 

mixed-mode damage model. This model permits establishing a linear softening relationship 

between stresses and relative displacements (Fig. 2). 
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Fig. 2. Pure (I or II) and mixed-mode (I/II) bilinear cohesive zone model. 

 

According to pure-mode model, the local strength u,i (i=I, II) as well as the energy release 

rate Gic (area of the triangle corresponding to pure-mode model) have to be known a priori. 

Damage onset occurs when u,i  is attained, and its evolution depends on a damage parameter 

which is a function of relative displacements wi. Therefore, complete failure at a point occurs 

when the relative displacement attains wu,i, which is obtained equating the triangle area to Gic.  

Since structures under general loading usually behave under mixed-mode, an extension of 

pure-mode model is provided. The mixed-mode law (I+II) is based on a quadratic stress 

criterion to deal with damage initiation, 
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assuming that normal compressive stresses do not induce damage. A linear energetic criterion 

is used to simulate crack propagation, 
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According to this criterion, the total failure under mixed-mode occurs when the energies 

dissipated in each mode satisfy Eq. (2). Using the relationships between stresses and relative 

displacements (I = kiwi , with ki representing the interfacial stiffness) and between energies 

and stresses and relative displacements (Giiwi/2), both Eqs. (1) and (2) can be defined as a 

function of the squared equivalent relative displacement (i.e., wm
2
), which means that they are 

compatible. More details about this issue are provided in de Morais et al. 2003. 

 

NUMERICAL MODEL 

The numerical model was developed using 8-node solid plane-stress elements from 

ABAQUS
®
 software and 6-node interface finite elements (FE) previously developed 

(Gonçalves 2003) including a cohesive mixed-mode I+II damage model. The FE-mesh was 

refined in the critical regions to better simulate the non-linear phenomena due to damage 

development  (Fig. 3). The  experimental  praxis  has shown that  several different crack paths  

um, i

w

iG

om, i o, iw

Mixed mode (I/II)

um, iw u, iw

wi

Pure modes (I and II)

u, i

i

Gic
(i = I, II)

 








Porto/Portugal, 22-27 July 2012 

Editors:  J.F. Silva Gomes and Mário A.P. Vaz 4 

 
Fig. 3. Mesh used in the finite element analysis 

 

should be considered in the numerical model to simulate the reality. Bearing this in mind, 

cohesive zone elements with different properties were disposed in the model. Thus, two 

options were considered for wood failure: (a) crack parallel to wood grain and (b) crack 

perpendicular to grain. In addition, interlaminar failure in the unidirectional composite patch 

and cohesive failure in the adhesive simulating patch debonding were taken into account. 

Mechanical properties of wood (Pinus pinaster Ait.) and unidirectional (UD) carbon-epoxy 

composite used in the numerical modeling were determined in previous works (Tables 1-4). 

The elastic properties of the structural adhesive (E = 11200 MPa and = 0.3) and strength 

(Table 5) (SIKADUR 30, from Sika
®
) were provided by the manufacturer.  

 
Table 1 – Elastic properties of Pinus pinaster Ait. (Dourado 2010, de Moura 2009, Xavier 2004) 

EL  

(GPa) 

ER 

(GPa) 
LR 

GRL 

(GPa) 

12.5 1.9 0.47 1.12 

 
Table 2 – Cohesive parameters of Pinus pinaster Ait. (Silva 2007, Campilho 2010, Dourado 2008) 

Propagation 

 System 

GIc 

(N/mm) 

GIIc 

(N/mm) 

u,I 

(MPa) 

u,II 

(MPa) 

RL 0.26 0.91 5.34 9.27 

LR 25.0 1.2 97.5 16.0 

 
Table 3 – Elastic properties of UD carbon-epoxy (de Morais 2003) 

E1 

(GPa) 

E2 

(GPa) 
12 

G12 

(GPa) 

150 11 0.25 6 

 
Table 4 – Cohesive parameters of UD carbon-epoxy (de Morais 2003) 

GIc 

(N/mm) 

GIIc 

(N/mm)  

u,I 

(MPa) 

u,II 

(MPa) 

0.31 0.63 40 40 
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Table 5 – Damage parameters of SIKADUR 30 structural adhesive (Sika
®
) 

GIc 

 (N/mm) 

GIIc 

(N/mm) 

u,I 

(MPa) 

u,II 

(MPa) 

0.35 1.10 30 18 

 

RESULTS  

Five different cases were experimentally tested under four-point bending: unrepaired, thick 

patch (2 mm), thick patch with fillet, thin patch (0.6 mm), thin patch with fillet (Fig. 4). The 

patches were bonded to the damaged beams (Fig. 5) using the structural adhesive SIKADUR 

30 (from Sika
®

). The stiffness and strength of the different studied cases were experimentally 

evaluated (Fig. 6). Subsequently, numerical simulations considering cohesive mixed-mode 

damage model I+II (de Moura, 2010) were performed accounting for several different 

possibilities to crack growth. In these analyses the cohesive properties were determined 

previously by means of fracture tests (Table 2), applying the Double Cantilever Beam for 

pure mode I and the End Loaded Split for the mode II (de Moura 2008, Silva 2007). In all 

cases failure paths were correctly captured by the numerical simulations. 

The experiments allow observing that an increase of 62% in the ultimate load Pu is achieved 

when a thick patch is used to perform the beam repair (difference between the two first 

columns in Fig. 6). Besides, an increase of 38% (on average) was measured in the initial 

stiffness.  

In order to reduce the stress concentration effect an adhesive fillet of 30° (Fig. 4b) was chosen 

in a new series of tests for the patch thickness  tC = 2.0 mm. As observed in Fig. 6 this 

solution did not provide a visible increase in the ultimate load (3
rd

 column), when compared 

to an unfilled patch with the same thickness.  

Another approach had to do with the study of the influence of the patch thickness, considering 

tC = 0.6  mm. Though affected by scatter, the experiments revealed an increase of 13% in the 

ultimate load, compared with the thick patch, i.e., tC = 2.0 mm (see Fig. 6: 2
nd

 and 4
th

 

columns). 

                       
                          (a)                (b)           

Fig. 4. Geometry of the repaired solutions: (a) unfilleted and (b) filleted patches 

 

 
Fig. 5. Failure path of a repaired beam with thick patch  
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Fig. 6. Experimental mean values of strength 

 

In a like manner as for the thick patch, the influence of the adhesive fillet on the ultimate load 

was analyzed (tC = 0.6  mm). Once a comparison is made with the thick patch, the 

experiments have demonstrated that a more pronounced gain in strength is obtained when the 

adhesive fillet solution is implemented (fillet angle is kept at 30°).  

A possible reason for the these results is explained by the observed mismatch stiffness that 

exists between the adhesive and carbon-epoxy leading to the development of important tensile 

stresses at the boundary between the two materials.  

Additionally, the values of strength and stiffness of repaired beams were accurately predicted 

by the numerical model (Fig. 7 and 8), which reveals the good performance of the developed 

methodology. More details about the obtained results may be found in Dourado, 2012. 

 

 
Fig. 7. Repaired beams under four-point bending 
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Fig. 8. Numerical and experimental P- curves for repaired beam using thick patch 

 

CONCLUSIONS 

The repair of damaged wood beams by carbon-epoxy patch bonding was studied both 

experimentally and numerically. Four-point bending tests were chosen, since wood beams are 

typically under bending in real structural applications. The bonding repair with a thick patch 

revealed a significant increase on the ultimate load and specimen stiffness, compared with the 

non-reinforced solution. A cohesive zone modeling considering mixed-mode (I+II) loading 

was carried out to simulate the observed experimental behavior. An adhesive fillet was 

considered with the objective to reduce stress concentration effects at the bonding singularity. 

A more pronounced gain in strength has been attained when a thinner patch was used 

considering an adhesive fillet with the same geometry. This result was explained by the 

detected mismatch stiffness that exists between the adhesive and carbon-epoxy. A good 

agreement was obtained for load-displacement curves as well as for the failure paths in tested 

solutions. 
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