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“Research is the immersion into 

the unknown. (...) 

The “stupidity” is an existential 

fact, inherent in our efforts to push 

our way into unfamiliar 

knowledge’s. The more 

comfortable we become with 

being “stupid”, the deeper we will 

wade into the unknown and the 

more likely we are to make big 

discoveries”. 

 

Martin A. Schwartz, 2008. 
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Abstract 

 

The development in the nanochemistry over the past few years is 

overwhelming. Indeed, what was considered somewhat futuristic a few years ago is 

now a common reality in this area. 

The work that will be presented is focused on a new type of carbon-based 

nanoparticles – Carbon Dots (Cdots). This new class of nanomaterials are being 

pointed out as the solution to overcome the toxicity issues inherent to the traditional 

Cadmium-based Quantum Dots (QDs). Traditional QDs posses outstanding 

fluorescence properties that are quite helpful in the nanosensor area, however their 

core is based on heavy metals, which limits its applicability for in vivo sensing. Cdots 

posses the same interesting features of their counterparts QDs, with the great 

advantage of non-toxicity. This is one of the main reasons why Cdots are so interesting 

for bioimaging and sensing applications. In this sense several synthesis strategies are 

now being developed in an area where it is easy to become obsolete.  

In this work Cdots were produced by direct laser ablation [UV pulsed laser 

irradiation (248 nm, KrF)] of a carbon target immersed in water. The Cdots produced 

this way were functionalized initially with PEG200, since it has been proven that the 

presence of this polymer on the nanoparticles surface helps prevent cytotoxicity 

responses. Additionally they were further functionalized with different molecules, in 

order to render the Cdots a given specificity towards an analyte. As such they were 

functionalized with N-acetyl-L-cysteine and mercaptosuccinic acid, for Hg(II) and iodine 

sensing, respectively. 

The results showed that the Cdots functionalized with N-acetyl-L-cysteine are 

sensitive to Hg(II) in a micromolar range and suffer from Cu(II) interference in the same 

concentration. Additionally these Cdots are also quite sensitive to the media pH. This 

can be viewed as an advantage, indeed this sensor can be used for these three 

analytes, provided that adequate precautions are taken to guarantee that only one 

analyte is present at each time.  

On the other hand the Cdots functionalized with mercaptosuccinic acid are quite 

sensitive to milimolar concentrations of iodine. This sensitivity was measured as a 

decrease in the fluorescence intensity at the maximum emission wavelength. 
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Furthermore this Cdots are also sensitive to the pH media thereby presenting the 

double usage advantage.  

Additionally it was determined that the Hg(II) sensing Cdots could be 

immobilized in adequate matrixes, as such they were immobilized in the tip of an 

optical fiber using the sol-gel technique. The immobilization of the Cdots is quite 

difficult since the objective is to maintain the photophysical properties and sensitivity 

and the same time that the nanoparticles are now part of another solid system. In a 

common scenario the Cdots tend to be less fluorescent and less sensitive since not all 

the nanoparticles are able to interact with the analyte due to its unavailability related 

with the characteristics of the solid matrix. Indeed, when the synthesized Cdots were 

immobilized in the sol-gel matrix there was a decrease in the quenching effect by 10%, 

which was expectable. Nonetheless the Cdots remained sensitive to Hg(II), Cu(II) and 

the solution pH. Furthermore, the sensing system responded in less than a second and 

it was completely reversible. The film was quite homogenous and had a thickness of 

about 700 nm. As such, the immobilization was successful and provided interesting 

results. 

In an attempt to improve this sensing system in both time response and 

sensitivity, a new immobilization technique was applied to the same nanoparticles: the 

layer-by-layer immobilization. This technique allows the deposition of discrete layers of 

nanoparticles onto an adequate surface. In this sense, the Cdots were again 

immobilized in the tip of an optical fiber, that suffered the same pre-treatment as for the 

sol-gel immobilization, in order to establish a comparison between the two methods. 

The results obtained for this new sensing system were quite promising for the 

development of new lab-on-a-chip system based on Cdots. Indeed, it was determined 

that the quenching effect was more pronounced as the number of layers increased, 

reaching the best result at 6 mono-layers. Moreover, even with just one layer, the 

quenching effect was superior to the one observed using the sol-gel technique. This 

sensitivity with the number of layers is probably due to two main effects: the etching of 

the fiber leaves its surface quite irregular so as the number of layers increases the 

roughness of the fiber decreases and the Cdots deposition is more homogenous. On 

the other hand, this technique does not immobilized the Cdots in a solid matrix where 

its porosity needs to be adapted for both analyte and nanoparticles. In the solid matrix, 

the reaction is limited by the diffusion of the analyte through the matrix, on the contrary 

to the layer-by-layer deposition, where the Cdots are on the surface ready to interact. 

As such, it is easy to understand that by using the layer-by-layer technique the system 

response is only limited by the capacity of the acquisition equipment. 
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In all the sensing system described not all the obtained data are totally 

explored. Indeed, it is possible to use the Cdots Excitation Emission Matrixes (EEM) 

and chemometrics analysis to establish a different size population interaction with the 

analyte. As such, by using the Cdots functionalized with PEG200 and N-acetyl-L-

cysteine it was possible to distinguish between two different size populations that were 

responding to both pH and Hg(II).  

Up until now the Cdots have been used as sensors for different analytes by 

taking advantage of the quenching effect on its fluorescence intensity. However this 

sensing system is limited by the capacity of the equipment to distinguish between the 

background noise and the quenching effect. In this sense the use of fluorescence 

enhancement is quite advantageous, however it is not easy to develop nanoparticles 

that will respond this way in the presence of an analyte. In an attempt to create such a 

system the Cdots were located near a Plasmon supporting material – silver islands, 

and the enhancement effect obtained is quite remarkable. This effect can be used for 

example when the immobilization of the Cdots results in a dramatic decrease in the 

fluorescence signal that will ultimately inhibit their further application. 

There is an entire new world of applications were it is possible to use Cdots to 

improve numerous systems and create new ones. Since their discovery the interest in 

these nanoparticles has been growing and it is my believe that they will be a part of our 

daily life.  
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Resumo 

 

O desenvolvimento da nanoquímica ao longo dos últimos anos é 

impressionante. Na verdade, o que foi considerado futurista há alguns anos, agora é 

uma realidade comum. 

Este trabalho focar-se-á num novo tipo de nanopartículas à base de carbono – 

Carbon Dots (Cdots). Esta nova classe de nanomateriais está a ser apontada como a 

possibilidade para a superação dos problemas de toxicidade inerentes aos tradicionais 

Quantum Dots (QDs). Os QDs possuem excelentes propriedades de fluorescência, 

sendo portanto bastante úteis na área dos nanosensores, no entanto o seu núcleo é 

constituído por metais pesados, o que limita a sua aplicabilidade para a detecção in 

vivo. Os Cdots possuem as mesmas características interessantes dos seus homólogos 

QDs, com a grande vantagem de não-toxicidade. Esta é uma das principais razões 

pelas quais os Cdots são tão interessantes para aplicações em bioimagem. Neste 

sentido, estão a ser desenvolvidas várias estratégias de síntese numa área onde é 

fácil tornar-se obsoleto. 

Neste trabalho os Cdots foram produzidos por ablação laser directa [irradiação 

com laser pulsado de UV (248 nm, KrF)], de um alvo de carbono imerso em água. Os 

Cdots produzido desta forma foram inicialmente funcionalizados com PEG200, uma vez 

que tenha sido provado que a presença deste polímero sobre a superfície das 

nanopartículas ajuda a evitar respostas de citotoxicidade. Adicionalmente, os Cdots 

foram funcionalizadas com outras moléculas, de forma a torna-los sensores 

específicos para um determinado analito. Deste modo, os Cdots foram funcionalizados 

com a N-acetil-L-cisteína e o ácido mercaptossuccínico, para detecção do Hg (II) e do 

iodo, respectivamente. 

Os resultados mostraram que os Cdots funcionalizados com N-acetil-L-cisteína 

são sensíveis a Hg (II) numa gama micromolar e sofrem a interferência de Cu (II) na 

mesma gama de concentrações. Estes Cdots são muito sensíveis ao pH do meio, 

sendo por isso possível utilizá-los como sensor de pH. Isto pode ser visto como uma 

vantagem, na verdade, este sensor pode ser utilizado para os três analitos, desde que 

sejam tomadas as devidas precauções para garantir que apenas um analito está 

presente em cada momento. 

Por outro lado, os Cdots funcionalizados com o ácido mercaptossuccínico são 

bastante sensíveis a concentrações milimolar de iodo. Esta sensibilidade foi medida 
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como uma redução na intensidade de fluorescência no comprimento de onda de 

emissão máxima. Adicionalmente, os Cdots são também sensíveis ao pH do meio, 

apresentando assim a vantagem da dupla aplicação. 

Os Cdots funcionalizados com PEG200 e N-acetil-L-cisteína foram imobilizados 

na ponta de uma fibra óptica usando a técnica de sol-gel. A imobilização dos Cdots é 

bastante difícil, pois o objetivo é manter as propriedades fotofísicas e sensibilidade ao 

mesmo tempo que as nanopartículas são agora parte de um outro sistema sólido. Num 

cenário comum os Cdots tendem a ser menos fluorescentes e menos sensíveis, uma 

vez que nem todas as nanopartículas são capazes de interagir com o analito, alguns. 

estão indisponíveis devido às características da matriz sólida. Com efeito, quando os 

Cdots sintetizados foram imobilizados na matriz de sol-gel, ocorreu uma diminuição no 

efeito de quenching de 10%, o que era expectável. No entanto, os Cdots 

permaneceram sensíveis ao Hg (II), Cu (II) e o pH da solução. Adicionalmente, o 

sistema de detecção respondeu em menos de um segundo e foi completamente 

reversível. A película era completamente homogénea e tinha uma espessura de cerca 

de 700 nm. 

Numa tentativa de melhorar este sistema de sistema de detecção tanto no 

tempo de resposta como na sensibilidade, foi aplicada uma nova técnica de 

imobilização: imobilização camada por camada. Esta técnica permite a deposição de 

camadas distintas de nanopartículas sobre uma superfície adequada. Neste sentido, 

os Cdots foram novamente imobilizadas na ponta de uma fibra óptica, que sofreu o 

mesmo pré-tratamento usado na imobilização de sol-gel, de modo a ser possível 

estabelecer uma comparação. Os resultados obtidos para este novo sistema de 

detecção foram bastante promissores para o desenvolvimento de um sistema lab-on-

a-chip novo baseado em Cdots. De facto, determinou-se que o efeito de quenching foi 

mais pronunciado à medida que o número de camadas aumentava, atingindo o melhor 

resultado com 6 monocamadas. Além disso, mesmo com apenas uma camada, o 

efeito de quenching foi superior ao observado usando a técnica de sol-gel. Esta 

sensibilidade com o número de camadas é provavelmente devido a dois efeitos: o pré-

tratamento da fibra deixa a sua superfície bastante irregular, deste modo, à medida 

que o número de camadas aumenta a rugosidade das fibras diminui o que leva a uma 

deposição mais homogénea dos Cdots. Por outro lado, esta técnica não imobiliza os 

Cdots numa matriz sólida em que a sua porosidade deve ser adaptada tanto para o 

analito como para as nanopartículas. Na matriz sólida, a reacção é limitada pela 

difusão do analito através da matriz, ao contrário do que acontece na deposição de 

camada por camada, em que os Cdots estão na superfície prontos para interagir. 
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Como tal, é fácil compreender que, usando a técnica de deposição de camada por 

camada, a resposta do sistema é limitada apenas pela capacidade de aquisição do 

equipamento. 

Em todos os sistema de detecção descritos até agora, não são utilizados todos 

os dados disponíveis. Com efeito, é possível utilizar as Matrizes de Excitação Emissão 

(EEM) dos Cdots para estabelecer uma correlação entre as diferentes populações (em 

tamanho) com as substâncias a analisar. Deste modo, usando os Cdots 

funcionalizados com PEG200 e N-acetil-L-cisteína, foi possível distinguir entre duas 

populações de tamanhos diferentes que respondiam ao pH e Hg (II). 

Até agora os Cdots foram usados como sensores para diferentes analitos, 

usando como propriedade aproveitando o efeito de quenching. No entanto, este 

sistema de detecção é limitado pela capacidade do equipamento de distinguir entre o 

ruído de fundo e o efeito de quenching. Neste sentido, o uso do aumento de 

fluorescência em vez da diminuição é muito vantajoso, no entanto, não é fácil 

desenvolver nanopartículas que respondam dessa forma. Numa tentativa de criar um 

sistema deste tipo os Cdots foram localizados perto um material com efeito 

Plasmónico - ilhas de prata, e o aumento da fluorescência obtido é bastante notável. 

Este efeito pode ser usado, por exemplo, quando a imobilização das Cdots leva a uma 

diminuição da fluorescência e este facto é limitativo na aplicação desejada. 

Há todo um mundo de novas aplicações onde é possível usar os Cdots para 

melhorar sistemas já existentes, bem como criar novos sistemas. Desde a sua 

descoberta o interesse por essas nanopartículas tem crescido e é minha convicção 

que eles serão uma parte integrante da nossa vida diária. 
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Preface 

 

Nanoparticles are the theme of the century. Their application has expanded to 

almost all fields of research and the results are visible in daily life. In fact, nanoparticles 

are being used to change the properties of a given material, as advanced drug delivery 

systems, in therapeutics, electronics, environmental sensors, among others. As  such, 

a question arises: What makes this nanoparticles so special? One can say that the 

main difference lies in the size. Indeed as the size decreases the properties of the 

material becomes different. It is possible to see changes in colour, reactivity, strength, 

thermal properties, electronical properties, magnetic properties, optical properties, 

among others. 

The appearance of the semiconductor Quantum Dots (QDs) can be viewed as a 

changing point in the nanochemistry. These nanoparticles present outstanding 

properties, has led their application in fields, such as, environment, pharmaceutical, 

solar energy conversion, optoelectronic devices, molecular and cellular imaging and 

ultrasensitive detection. Despite the numerous QDs applications a problem arisen from 

their inherent toxicity. In fact, the traditional QDs, are heavy metal core-based, which 

for in vivo applications represents a toxicity problem. Some studies have been 

performed to evaluate their toxicity in biological media and it has been described an 

increase in Reactive Oxygen Species (ROS) due to their interaction with organelles. 

Other studies have concluded that part of the toxicity is due to bioaccumulation of the 

nanoparticles which lead to toxicity due to their heavy metal nature. Therefore the 

search for nanoparticles, that have the outstanding properties of QDs and at the same 

time do not represent a toxicological issue in biological media, began. As a solution to 

this problem silicon and carbon dots where found.  

Silicon Dots (Sidots) and Carbon Dots (Cdots) are fluorescent nanoparticles 

that possess unique light emitting properties, such as, biocompatibility, high 

photoluminescence quantum efficiency, stability against photobleaching, and the non-

blinking. Additionally the emission wavelength of these nanoparticles can be adjusted 

by size selection and/or functionalization with several molecules. In a similar manner of 

the traditional cadmium based QDs the functionalization can be performed, in theory, 

with any molecule, and this molecule can be chosen in such a way that it turns the 

nanoparticle into a sensor for a given analyte. Furthermore, both Sidots as Cdots can 

be use in Single Photon Excitation (UV: 330-400 nm), as well as, Two Photon 

Excitation (near infrared: 720-850 nm) that is considered biologically friendly. 
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Thesis Layout 

 

Throughout the three years of the PhD numerous experiments were performed, 

some gave rise to interesting results and some definitely did not work. The interesting 

results were published in international, peer review, journals and the bad results were 

considered a platform for the achievement of better ones.  

This thesis results from an organized compilation of the main papers produced 

during these three years. In this sense the thesis layout is as follow: 

Chapter 1 is an Introduction to the nanoparticles theme that is mainly focused 

on the Carbon Dots and the fluorescence mechanism by which these nanoparticles 

interact with the analyte.  

Chapter 2 is a review on Silicon Dots that was published in the Current 

Analytical Chemistry with the reference: Vol. 8, 2012, page 67.  

Chapter 3 is a compilation of results obtained for Cdots that were adequately 

functionalized for Hg(II) and pH sensing. These functionalized nanoparticles were 

extensively tested over more than three months and the results were published in 

Sensors and Actuators B with the reference: Vol. 145, 2010, page 702. 

Chapter 4 represents a system developed for iodine sensing based on Carbon 

Dots. This system resulted from the selection of the most interesting fluorescence 

nanoparticles obtained from direct laser ablation. These results were published in the 

Journal of Fluorescence with the reference: Vol. 20, 2010, page 1023. 

Chapter 5 is the follow up of the results obtained in Chapter 3. The 

nanoparticles functionalized obtained and tested in Chapter 4 were immobilized in the 

tip of an optical fiber using the sol-gel technique. The results were published in 

Biosensors and Bioelectronics with the reference: Vol. 26, 2010, page 1302. 

The results obtained in Chapter 5 were consistent with the current 

immobilization procedures, where there is a decrease in the fluorescence intensity due 

to the nanoparticles entrapment. Chapter 6 represents a new immobilization method 

was tested and the objective was achieved. The results were published in Analytica 

Chimica Acta with the reference: Vol. 26, 2010, page 1302. 
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Chapter 7 represent a compilation of the results obtained through chemometrics 

for the Cdots functionalized for Hg(II) and pH sensing. The results were published in 

the Journal of Chemometrics with the reference: Vol. 24, 2010, page 655. 

Chapter 8 represents the enhancement of the fluorescence intensity due to the 

plamonic effect of silver islands that were put in contact to the Cdots produced by laser 

ablation. The results were published in Chemical Communications with the reference: 

Vol. 47, 2011, page 5313.  

Chapter 9 is a general conclusion of all the data obtained and discussed 

throughout the thesis. 

Finally the thesis finishes with some final remarks on the work developed in the 

three years of PhD. 



 

 

CHAPTER 1 – INTRODUCTION 
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1.1. Overview 

 

Carbon Dots (Cdots) are the newest class of fluorescent nanoparticles. Ever 

since it appearance the number of papers on the theme has been rapidly increasing. 

These fluorescent nanoparticles present some outstanding properties, such as, high 

photostability, tuneable emission and excitation wavelength, ability to be functionalized 

with different molecules according to their desired application, high stability over time, 

among others. These properties have made them quite interesting in numerous areas, 

for example, biosensing, bioimaging, pharmaceuticals and fuel cells [1-4].  

Cdots are viewed as the new member of the Quantum Dots (QDs) family. 

Indeed, they share some of the physical properties that have made QDs one of the 

most relevant propellant in the nanochemistry area, however the traditional QDs have a 

heavy metal core, that prevents its application for in vivo assays [5]. In this sense some 

authors have mentioned that Cdots are the most promising alternative to these 

traditional QDs. In fact, some studies have showed that Cdots are competitive agents 

for bioimaging studies [6]. 

Ever since their serendipitously discovery in 2004 there has been a great 

interest in this new carbon-based material. Cdots present themselves as a non-toxic 

alternative to the traditional Cadmium-based QDs and, as such, the synthetic pathways 

for their production are increasing rapidly. Nowadays there are several top-down and 

bottom-up approaches [7-17] for the Cdots synthesis. Nonetheless they can be 

grouped into nine main production methods. All the synthetic methods have 

advantages and disadvantages that need to be taken into account before starting their 

production. This methods differ mainly in the starting material, as such, for top-down 

approaches (Fig.1.1) it is possible to use: Multi-walled Carbon Nanotubes (MWCNT), 

Graphite and candle soot. 
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Fig.1.1. – Synthetic pathways for Cdots production using Top-Down approaches, adapted from [18].  

 

1.1.1. Electrochemical Shocking of Multi-Walled Carbon Nanotubes 

 

The electrochemical methods are becoming popular since it allows the 

production of blue luminescent Cdots in a simple path, on the contrary of the other Top-

Down methods that requires an activation procedure for the Cdots to become 

fluorescent. This method uses as a starting material MWCNT, that are insoluble in 

water and it allows the production of highly luminescent, water stable, Cdots [11].  

Zheng L. et al., (2009) [12] reported the production of well-defined spherical 

Cdots with an average size of ∼20 nm where the smallest population has an average 

size of ∼2 nm. In order to obtain such results they used MWCNT immersed in 

acetonitrile and realized despite the solvent used there were no change into the 

effective area of the working electrode (graphite rod). This led them to the discovery 

that the Cdots produced where initially immobilized into the porous graphite electrode 

and when exposed to Phosphate Buffered Saline (PBS) and electrochemically 
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oxidized, they became water soluble and released into the water phase. The main 

disadvantage of this method is the size dispersion of the nanoparticles, however it has 

the advantage of producing blue luminescent Cdots in a single step, which allows the 

method to be faster than others and, therefore most cost effective.  

 

1.1.2. Electrochemical Exfoliation of Graphite 

 

The electrochemical exfoliation of graphite can be viewed as a process where 

small particles are removed from a graphite electrode by using an adequate current. Li 

H. et al., (2010) [17] reported the synthesis Cdots with sizes ranging from 1.2 to 3.8 

nm. This was performed using graphite rods as both anode and cathode, and 

NaOH/EtOH as electrolyte. Additionally they evaluated the necessity of having a alkali 

vs. acid media (NaOH:EtOH/H2SO4:EtOH) as an electrolyte solution for the Cdots 

production. Their results led to the discovered that for the electrochemical oxidation of 

graphite to result in Cdots it is necessary to have an alkali media.  

 

1.1.3. Arch-Discharge Soot  

 

This can be considered the original method. In fact, the discovery of Cdots were 

made by chance upon the purification of Single-Walled Carbon Nanotubes (SWCNT) 

obtained by this method [8]. The production of Cdots from this method presents a great 

challenge in the separation step. Indeed this is one of the methods that generates more 

impurities, which makes it more difficult to remove. Common techniques of separation, 

such as, dialysis, fails since the impurities rapidly bock the pores of the membranes. In 

this sense the technique that has prove to be quite good for separating Cdots from 

impurities produced upon their production is electrophoresis. In fact the use of 

Polyacrylamide gel electrophoresis (PAGE) or agarose worked quite well in two 

senses: it allowed the separation of Cdots from the impurities, as well as, the 

separation of the different size populations of Cdots. 
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1.1.4. Laser Ablation 

 

Laser ablation of carbon targets to obtain surface controlled Cdots is one of the 

most popular methods of production. However it is necessary to have specialized 

personnel operating the laser and the equipment itself is rather expensive. Nonetheless 

this method, since it allows to have a gas controlled atmosphere upon the Cdots 

production, it promotes a higher control over the chemical surface of the nanoparticles. 

Additionally it is possible to perform the laser ablation with the target immersed in an 

appropriate solvent. This has the advantage of dispersing the nanoparticles in the 

solvent of interest. When using this immersion technique is it necessary to have into 

account the absorption wavelength of the solvent, since it will be responsible for 

decreasing the energy for extracting nanoparticles from the carbon target. Moreover if 

the solvent used is not water it is probable that it will decompose and that the surface 

groups of the Cdots will affected by it. This also can be viewed as an advantage, since 

the surface groups are partially responsible for the fluorescence properties of these 

nanoparticles. One of the main disadvantages of the laser ablation is the high size 

dispersion of the Cdots, however this can be overcome using separation methods like 

dialysis and electrophoresis that allows the separation of the different size Cdots 

populations. 

 

1.1.5. Candle and Natural Gas Burner Soot 

 

Many research groups have been using this method, mainly due to the 

simplicity of acquiring the starting material [13]. In fact, this method provides a new use 

for a complicated by-product. However it has its disadvantages, namely the broad size 

dispersion, the uncontrolled chemical surface and the production of many products that 

can be dangerous to the human health. Nonetheless it is possible to separate the 

different nanoparticles using, for example, electrophoresis, but this still leaves the 

problem of dealing with the other by-products that can be dangerous to the researchers 

health. 

On the other hand for bottom-up methods the starting material can simply be 

suitable carbon-based molecules (Fig.1.2). It is on this method that the researchers 

have been focusing lately, where the biggest innovation is the possibility of using 
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biomass for the Cdots production [19]. This is in fact quite remarkable since it allows 

the possibility of using, for example, industrial waste/by-products.   

When using bottom-up approaches for producing Cdots it is possible to use 

three different physical methods: Ultrasonic treatment, Acid dehydration and Thermal 

carbonization of adequate carbon-based molecules. In this sense it is possible to use 

both acidic and alkali media, as well as, high temperatures to obtain either raw Cdots 

(that require an activation step in HNO3 reflux for them to become luminescent) or blue 

luminescent Cdots, as it is possible to observe in Fig.1.2. 

 

 

Fig.1.2. – Synthetic pathways for Cdots production using Bottom-Up approaches, adapted from [18].  

  

Despite of the Cdots production method it is possible to cover their surface with 

adequate molecules according to their intended application, this step is called 

functionalization. For this step to elapse in the best way it is of the outmost importance 

to have a well characterized Cdots surface. As long as the functional groups in the 

surface are well known, it is possible to use soft chemistry to attach different molecules 

onto the nanoparticles exterior. These procedures have consequences into the 

luminescent properties of the Cdots. In fact, any operation that results into a change 

into the nanoparticles will have an influence on its optical properties. This can be used 

as an advantage by the researcher, since by knowing the effect that the surface 

change will produce into the nanoparticle optical properties it is possible to tune them 

just by introducing such changes. Sun Y-P. et al., 2008 [20], for example, introduced a 

ZnS and a ZnO shell onto the Cdots surface in order to enhance its Quantum Yield. 

This operation is usually called doping and is quite common for the traditional 
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Cadmium-based QDs. With this procedure it is possible to overcome one of the major 

drawbacks of the Cdots, that is a relative low Quantum Yield, when compared to the 

traditional QDs. In fact their work proved that Cdots doped with ZnS and ZnO are 

competitive with the common CdSe/ZnO QDs.  

Since these surface changes have an influence on both Sidots and Cdots 

optical properties, it is safe to say that they represent a significant part in the 

fluorescence mechanism. 

 

1.2. Fluorescence Mechanism of Cdots 

 

There has been several attempts over the years to explain the fluorescence 

mechanism of the nanoparticles [21]. The most common theory is related to the 

Quantum Confinement. This theory states that all particles are confined in size 

between the band gap formed by the Highest Occupied Molecular Orbital (HOMO) and 

the Lowest Unoccupied Molecular Orbital (LUMO) [22]. In fact, as the particles get 

smaller the energy gap between these two orbitals becomes larger, hence the 

electrons in the HOMO orbital need more energy to be excited into the LUMO orbital. 

Upon excitation the electron relaxes and returns to the ground state with emission of 

light. As such, it is possible to say that the energy gap determines the emission 

wavelength of the nanoparticle [23].  

The fluorescence mechanism of these new nanoparticles is not clearly defined, 

however it seems to be dependent of two main factors: the surface state defects and 

the quantum confinement. Indeed as mentioned before, almost all modifications onto 

the surface of these nanoparticles are followed by a change in their optical properties 

(fluorescence intensity, radiative lifetime and excitation/emission wavelength). This 

seems easy to understand since the nanoparticles are constituted by only a small 

amount of atoms that are mainly on the surface, therefore any change in these atoms 

results into a modification in the nanoparticle properties.  

Since this is a quite interesting and important topic many researchers have 

attempt to prove these theories. Initially the theory was developed for Silicon Dots 

(Sidots), that are silicon-based nanoparticles. These nanoparticles were discovered 

long before Cdots, and since both nanoparticles are not intrinsic semiconductors, the 

theory for the fluorescence mechanism developed for Sidots is now accepted for 

Cdots. Some authors have concluded that the most important factor in quantum 
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confinement [22] (as their family counterparts - QDs). However these nanoparticles are 

not intrinsic semiconductors and, since this theory mainly applies to semiconductors, 

some researchers believe that the fluorescence mechanism of Sidots and Cdots is 

determined by the surface state defects [7]. In this sense there has been some 

experimental proves, as well as, theoretical calculations [24]. An example is the work of 

Yang et al. in 1999 [23], on Sidots with different surface groups. Their results led them 

to conclude that the optical differences between the Sidots are consistent with the 

quantum confinement theory, however it was not taken into account that the method of 

producing larger nanoparticles was by annealing smaller nanoparticles at different 

temperatures. The temperature itself can be responsible for changing the surface of the 

Sidots, as they proved by FT-IR, nevertheless this factor was not taken into account on 

their conclusions about the fluorescence mechanism.  

The fluorescence mechanism of these nanoparticles needs to take into account 

two main factors: surface state defects and quantum confinement. This theory of the 

two factors influencing the fluorescence mechanism was proposed, for the Sidots, by 

Putzer A. et al., in 2003 [25]. They based the theory in computational studies where 

they evaluated the difference in ionic rearrangements and electronic relaxations upon 

absorption and emission, as well as, the resulting Stokes shift, with different surface 

molecules. From this study it became clear that all these factors were extremely 

sensitive to the surface groups, thereby supporting the surface state defects influence 

on the fluorescence mechanism. In fact, a 1 nm cluster can change ± 0.9 eV depending 

on the surface oxygen configuration – double bonded or bridged. Additionally they 

studied different clusters size with the same surface groups, and again there was a 

different in the mentioned parameters, even though the surface groups were the same, 

hence supporting the quantum size dependence of the fluorescence mechanism of 

Sidots. These results can carefully be extrapolated to Cdots, even though up to know 

there are no studies performed in this sense. Nevertheless and, since they share 

luminescent properties and there are experimental data that support this two factors 

theory for the fluorescence mechanism, it seems easy to accept that Cdots and Sidots 

share the same fluorescence mechanism dependence. 

Common fluorescence sensors are based on the decrease of the fluorescence 

intensity in the presence of the analyte, this process is called quenching. The 

quenching phenomenon was first observed and its relation to fluorescence sensing 

determined in 1919 by Stern and Volmer [26]. This process occurs through a 

bimolecular reaction between an excited luminescent molecule, M*, and an external 

molecule quencher, Q. The fluorescent molecule absorbs light and passes to an 
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excited state. When this two molecules interact, the fluorescent molecule decays by 

non-radiative mechanisms (e.g.: electronic transfer, molecular rearrangements and 

others.), with a rate of kq (Fig.1.3). The passage of M* to the ground-state also happens 

in the absence of a quencher but when this molecule is present and interacts with M*, 

the fluorescence intensity decreases more rapidly. 

 

Fig.1.3- Simplified diagram illustrating the bimolecular process between the luminescent molecule, M*, and an 

external molecule - quencher, Q, adapted from [27]. 

 

Quenching mechanisms are photophysical, i.e., after all the deactivation 

processes the fluorophore returns to the ground-state unaltered, M. Depending on the 

type of interaction between the quencher and the luminescent molecule it is possible to 

establish different models to better understand the kinetics of these processes. In fact, 

the analysis of this phenomena gives important quantitative information on the 

surroundings of a fluorescent molecule (if a kinetic analysis is possible in the sequence 

of a kinetic competitive model), or at least qualitative information [27]. 

 

1.2.1. Dynamic Quenching 

 

Quenching occurs when an excited fluorophore reacts with a quencher 

molecule. In order for these two molecules to react it is necessary for them to meet. 

These diffusion controlled reactions are time dependent. Indeed, when the excited 

fluorophores, M*, are at a shorter distance from a quencher, Q, the decay to the ground 

state, on average, occurs at shorter times than those that are more distant. These 

transient effects are not significant for moderate concentrations of quenchers in fluid 

solvents but they are quite relevant in viscous media.  

M + Q

M* + Q
kq

1/h

"products"

= kM 
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This diffusion controlled mechanism affects the beginning of the fluorescence 

decay curves. In steady-state experiments, for example, it is responsible for deviations 

from the well known and widely used Stern–Volmer equation. 

 

  

 
          (Equation 1.1) 

 

where     is the Stern-Volmer constant, I0 and I are the steady-state 

fluorescence intensities in the absence and in the presence of a quencher, 

respectively. Generally the ratio I0 /I are plotted against the quencher concentration 

(Stern-Volmer plot). If the variation is found to be linear, the slope gives the Stern-

Volmer constant [26]. 

 

1.2.2. Static Quenching 

 

Static quenching is not dependent from the diffusion processes and occurs in 

two different situations: when there the formation of a sphere of effective quenching or 

when the formation of a ground-state non-fluorescence complex occurs. 

The quenching mechanism that passes through the formation of an sphere of 

effective quenching was proposed by Perrin in 1924 [28]. The model describes the 

quencher as being inside a sphere around the fluorophore, and its effect on the dye is 

only when the quencher is inside this sphere. Additionally it is proposed that both M* 

and Q cannot change their positions in space, relative to one another, during the 

excited-state lifetime of M*. An example of this is when the quenching occurs in viscous 

media or rigid matrixes. In this sense, it is necessary to introduce some changes in the 

Stern-Volmer equation for it to properly represent the phenomena that is occurring is 

these cases.  

 

  

 
              (Equation 1.2) 

 

where    is the Avogadro’s number and    represent the volume of the sphere. 

In contrast to the linear trend found in Equation 1.1, the static quenching by the 
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formation of a sphere plot can have an upward curvature when the quencher 

concentration is high or a linear trend for low quencher concentrations. 

On the other hand the static quenching can also occur through the formation of 

a ground-state non-fluorescent complex. The formation of this non-fluorescent complex 

leads to the typical decay in the fluorescence intensity, however in this case, the 

excited-state lifetime of the uncomplexed fluorophore is not affected. Considering that 

the Stern-Volmer Equation shows a linear dependence between the fluorescence 

intensities and the quencher concentration, this equation is valid for this static 

quenching mechanism [26]. 

 

1.3. Sensing Applications of Cdots 

 

1.3.1. Chemical and Bioanalytical sensing 

 

Ever since the appearance of nanoparticles the interest in producing specific 

nanosensors has not stopped and, as such, there are actually numerous applications 

of different nanoparticles [29]. But the question remains: “Why the interest in 

nanoparticles for specific sensing?”. This question can be answered with two different 

answers: (i) There are now available numerous possibilities to functionalize different 

nanoparticles [30-33], which makes it possible to turn them into a specific sensor to a 

given analyte. (ii) The use of nanoparticles allows the miniaturization of the complex 

sensing systems, thereby it is possible to produce the so called – lab-on-a-chip [34]. 

This seemed futuristic a couple of years ago, however due to the development to the 

informatics technology and the incorporation of nanosensors, this is now a reality. In 

fact, there are some of these new miniaturized sensing systems already in the market. 

Despite the simple explanation of the functionalization of the nanoparticle to 

become sensitive to a given target, in practice this is not easy to accomplish. There are 

several drawbacks that need to be overcome in order to say that the nanosensor is 

actually useful in comparison to others already in the market. First it is necessary to 

choose a molecule that is sensitive to a given analyte in order to functionalize the 

nanoparticle with it. Then some precautions must be made in the soft chemistry of 

functionalization so it will not affect the ability of the molecule to be sensitive to the 

analyte. If all this turns up well, there is still necessary that when the surface molecule 

interacts with the analyte it does so in a way that the fluorescence properties of the 
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nanoparticle changes (Emission shift, Lifetime and Fluorescence intensity 

decrease/increase). After all these steps are overcome it reaches the tricky part of the 

specific sensing, that is: functionalized nanoparticles must only interact with the desired 

analyte, therefore it must become inert to all other possible interferents. This is not 

easy to perform, since generally the chemical mechanism of interaction is trough 

affinity and there are some analyte that share the same affinity. One example of this is 

mercury sensing. It is quite difficult to get a Hg(II) sensor that does not react with Cu(II), 

therefore Cu(II) is a common interferent on mercury sensing [35].  

Here it will be discussed some of the sensing applications were Sidots and 

Cdots have demonstrated an outstanding performance. Researchers in biomedicine 

area have been paying much attention to nanosensing and, as such, they are 

responsible for developing some sensors for important biomedical substances, like for 

example: dopamine and glucose. Developing sensors for in vivo and in vitro sensing it 

quite difficult, since, among other characteristics, these sensors need to be non-toxic, 

biocompatible and there are a number of parameters that can act as interferents.  

 

1.3.2. Sensors based on Cdots 

 

The use of Cdots is fairly recent, nevertheless there are some sensors 

developed based on these carbon nanomaterials. One example of a Cdots-based 

sensing is the Hg(II) sensor based on Cdots functionalized with Polyethylenoglicol 200 

(PEG200) and N-acetyl-L-cysteine (NAC) [35]. This sensor was used in a suspension 

form and also immobilized into different solid matrixes. In every case it showed a good 

response to Hg(II) and also the solution pH. Even though this Cdots-based sensor was 

tested in solution and after immobilization it was found that in all cases the main 

interferent for the system was Cu(II). The immobilized sensor showed a good 

reversibility. Additionally when the sensor was immobilized with poly(ethyleneimine), 

using the layer-by-layer technique, the sensitivity also increased, thereby allowing the 

detection of Hg(II) in a concentration range of (0.01–2.69)×10−6M. 

Another sensor based on Cdots functionalized with PEG200 and 

tetraethylenepentamine pentahydrochloride (TEPA) is for Fe(II). This sensor when in 

presence of a concentration range of (5.00x10-7-1.00x10-4)M of Fe(II) suffers a 

decrease in fluorescence (quenching) of about 55%. Additionally from all the known 

interferents of this type of sensor, only Fe(III) and Cu(II) had a measurable effect (50% 

and 35%). 
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1.3.3. In-vivo sensing and Tags using Cdots 

 

Nowadays there are numerous organic dyes used for in vivo sensing and as 

fluorescence tags. Most of these molecules are synthetic mimics of natural occurring 

proteins that are involved in a process of interest. However these fluorescent dyes 

present some disadvantages, such as, photobleaching, blinking, short fluorescence 

lifetime, among others, that lead researchers to search for new alternatives.  

Cdots are the new class of nanoparticles that present themselves as 

alternatives to the traditional organic dyes. These nanoparticles overcome the major 

drawbacks of the organic dyes and present the advantage of functionalization of 

specific targeting, are non-toxic and have a higher quantum yield and photostability. As 

such, it is without surprise the number of imaging applications that are now using these 

nanoparticles.  

The number of assays in bioimaging using Cdots has been increasing, mainly 

due to three factors: (i) their non-toxicity nature, (ii) the easiness of functionalization for 

specific targeting and, (iii) their competitive fluorescence properties.  

One of the main areas that is currently being explored is the specific targeting to 

cancer cells. Nevertheless before studying its internalization process and specific 

targeting of interesting biomolecules it is necessary to better understand how they act 

without any functionalization. In this sense studies like the one performed by Ray S.C. 

et al. in 2009 [36] is important. They determined that when Cdots are incubated with 

cells they are internalized by natural occurring mechanisms even without 

functionalization. This means that it is possible to track this nanoparticles using a 

conventional fluorescence microscope.  

When the objective is specific targeting the functionalization is required. One 

interesting work of this matter is the one performed by Li Q. et al., in 2010 [37]. This 

research groups focused on the study of the internalization process and the specific 

targeting of Cdots functionalized initially with polyethylene glycol (PEG) chains, 

polyethylenimide-co-polyethyleneglycol-co-polyethylenimide copolymer, and 4-armed 

PEG molecules and, then with human transferring (Tf). Tf has been used before in 

targeting assays, since it was proven that cancer cell membranes over express the TF 

receptors. Therefore the use of this glycoprotein on the Cdots surface should be a 

guarantee of specific targeting. Lin Q. et al., found that Cdots functionalized with 

polyethylenimide-co-polyethyleneglycol-co-polyethylenimide copolymer and Tf had a 

higher passive cellular uptake when compared to the other functionalized and non-
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functionalized Cdots. The authors indicate that this may be due to the charge on the 

Cdots surface, that in the case of this Cdots is positive, thereby allowing a higher 

binding ability with the cell membrane through electrostatic interactions. 

When the fluorescence intensity is not adequate for the study or even if the 

excitation wavelength is too low, it is also possible to functionalize the Cdots with a 

shell of ZnO or ZnS. A study on these functionalized nanoparticles using bioimaging 

was performed by Yang S-T in 2009 [20]. The main conclusions of this work were: (i) 

despite the place where the Cdots were injected into the mouse, they remained 

strongly fluorescence throughout the experimental assay, (ii) upon the 3h of the 

intravenous injection of 440 μg in 200 μL, the urine exhibit strong fluorescence, thereby 

indicating that the pathway of excretion of these nanoparticles is through urine.  

However when the particle size is critical, it may not be possible to use a shell 

just to increase the fluorescence intensity or to change the excitation wavelength, then 

it is necessary to use a new imaging technique: Two-Photon Excitation technique 

(TPE). In fact, ever since its appearance their application on Cdots has grown. The 

TPE technique allows the possibility of exciting the nanoparticle with two photons and, 

as such, it is possible to use a fluorophore that absorbs (is excited) in the UV with two 

photons of NIR. What happens is that it is possible to excite a fluorophore that typically 

is excited in the UV (i.e., 400 nm) with two photons of NIR (800 nm). By doing this the 

main advantage is to excite the fluorophore with a non-harmful energy for cells at the 

same time that emission wavelength remains the same. This system has two main 

advantages: it allows the possibility of studying cellular phenomena for longer times 

(since the cells will not be exposed to damaging wavelengths) and a higher penetration 

depth when compared to the traditional Single-Photon Excitation technique (SPE), 

since NIR is less absorbed by the tissue (Fig. 1.4). 
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Fig. 1.4. – Schematic representation the penetration depth of Two-Photon Excitation (TPE) vs. Single-Photon 

Excitation (SPE) [18]. 

 

1.4. Toxicity assays of Cdots 

 

Due to the interest that these nanoparticles raise in the in vitro and in vivo area 

the need for toxicity assays was imperious. The traditional Cadmium-based QDs were 

a landmark in nanochemistry and they found numerous applications in bioimaging due 

to their outstanding fluorescence properties. However the inherent toxicity of using 

such materials rise and was proven by several studies [38,39]. There are two main 

toxicity issues in QDs: (i) their heavy metal core, that upon contact with cells are known 

to produce ROS that will eventually lead to cell death, and (ii) the fact that they suffer 

bioaccumulation, i.e., on lymphatic nodules. Some solutions have been proposed to 

deal with this problem, namely the use of a shell that completely covers the QDs 

surface. This shell can even be though in such a way that it increases the fluorescence 

intensity or shifts the emission wavelength to a more desirable one. However this 

solution only deals with the problem of exposing cells to the heavy metal-based core. In 

order to try to resolve the bioaccumulation problem it has been proposed the 

functionalization of the QDs with biocompatible molecules (i.e., PEG) that are 

recognized by the cell as innocuous, thereby allowing the cell to dispose the QDs using 

its natural methods [40,41]. This in fact can avoid tissue inflammation due to 

recognition of a foreign material, nevertheless the possibility of bioaccumulation of 

heavy metals is still a issue to be concerned. 

In order to overcome this toxicity issues the search for new nanomaterials that 

have the same outstanding fluorescence properties of QDs but are biocompatible and 
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non-toxic, lead to the appearance of Sidots and Cdots. Cdots have been presented as 

the non-toxic alternative to traditional Cadmium-based QDs. This is only possible due 

to the toxicity assays that have been performed so far by different investigation groups 

[4, 42]. 

One of the first toxicological assays performed in Cdots was the one presented 

by Yang S.T. in 2009 [20]. In this assay they intended to see if the presence of a ZnS 

shell on the Cdots surface had a toxicological difference from the raw Cdots (non-

functionalized). The mice were injected subcutaneously with a solution of Cdots 

functionalized with PEG1500N (30μg carbon-core equivalent in 30μL) or a solution of 

Cdots/ZnS with PEG1500N (65μg in 30μL) (Fig.1.5). It was found that after 24h the 

fluorescence was only residual. Additionally after the 24h pos-injection the axillary 

lymph nodes were harvested and dissected and it was observed no fluorescence. This 

results is quite important since nanoparticles, like carbon nanotubes, have a tendency 

to suffer bioaccumulation, which is readily seen in the lymph nodes.  

On another set of experiences this investigation group injected a Cdots solution 

of 440μg in 200μL intravenously. After 4h of the injection the organs were harvested 

and dissected to detect fluorescence. It was observed that only the kidneys and the 

liver presented a fluorescence intensity compatible to the Cdots, however this intensity 

was larger in the case of the kidneys. These results suggest not only that the main way 

of excretion of the nanoparticles is the urine, but also that they do not suffer 

bioaccumulation. Additionally the fluorescence detected in the liver is consistent to the 

results observed for other nanoparticles, nonetheless the presence of Cdots was in a 

lower concentration of the other nanoparticles. The authors suggest that this result may 

be related to the PEG functionalization that reduced the protein affinity and made the 

Cdots stealthy with respect to hepatic uptake. 

 Another interesting toxicity assay was performed by Li Q. et al., in 2010 [37] that 

points out an interesting feature, the relationship between the nanoparticle size and the 

degradation/excretion process. Indeed it is difficult for the organism to excrete trough 

the kidneys nanoparticles larger them 10nm. Additionally particles over this size are 

hardly degraded by normal biological mechanisms, which can then lead to 

bioaccumulation. The study performed by Li Q. et al., resorted the use of Cdots in a 

size range of 1.5-3nm. These Cdots were functionalized with polyethylene glycol (PEG) 

chains, polyethylenimide-co-polyethyleneglycol-co-polyethylenimide copolymer, and 4-

armed PEG molecules, thereby producing CD2, 3 and 4, respectively. These Cdots 

were further functionalized with human transferrin and exposed to HeLa cell cultures. 

Their cytotoxicity was evaluated using twice the concentration necessary for imaging 
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studies. The results clearly demonstrate that the Cdots present low cytotoxicity when 

compared to the traditional imaging agents.  

In order to safely use the nanoparticles in biological media for applications like 

drug delivery systems, pharmaceuticals, among others, it is necessary to completely 

understand the biological path and responses that these nanoparticles produce once in 

contact with live biological organelles and tissues. Despite the toxicity assays already 

performed, mechanism beneath the cytotoxicity mechanism and the inflammatory 

response is still to be uncovered, as such, it is still necessary to perform additional 

studies focusing of these subjects. 

 

1.5. Conclusions and Future Perspectives 

 

The Era of the nanoparticles is upon us and their application in almost all areas 

of science is a clear evidence of this. One can say that this nanoparticle revolution had 

as star participants the traditional Cadmium-based QDs. These nanoparticle present 

outstanding optical properties that has lead to their success in micro-electronics, 

fluorescence sensors for a wide analyte application, bioimaging, among others. One of 

the most interesting features of QDs was precisely the imaging ability, without blinking 

and photobleaching problems that are common to the imaging agents mostly used – 

organic dyes. However, despite this clear advantages, there is a major problem in the 

use of QDs for in vivo and in vitro applications: the inherent toxicity due to the heavy 

metal core.  

In order to overcome this drawback of QDs the rush for other imaging agents 

began. Sidots and Cdots appeared in this context. Nowadays it was already proven 

that not only they have a contrast imaging ability competitive with QDs, but also the 

non-toxicity feature that was so necessary. 

Since their appearance the interest in Sidots and Cdots has grown and, as 

such, now they can be produced by several synthetic pathways. Additionally, and by 

using soft chemistry, it is possible to functionalize them with different molecules in 

order to increase their fluorescence, change the emission wavelength and also for 

targeting applications. In this sense these nanoparticles have found numerous 

applications in sensing/biosensing of specific analytes. However all these steps must 

be considered carefully for the intended application, since their toxicity can increase 

due to the presence of certain functional groups on the dots surface. 
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The toxicity of the nanoparticles is a current line of investigation, mainly due to 

the possibility of applying them into live organisms for in vivo imaging and as advanced 

drug delivery systems. From the studies performed so far it was found that both Sidots 

and Cdots have a toxicity level lower than the traditional QDs. Additionally it was found 

that the use of PEG as a functionalization molecule helps to reduce their toxicity. 

Nevertheless it is still necessary to perform more studies in order to completely 

understand the mechanism beneath their toxicity. 
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2.1. State of the Art 

 

Silicon porous nanoparticles were first prepared in the 1950s by electrochemical 

etching in hydrofluoric acid and ultraviolet irradiation [1], however its red luminescence 

was only discovered by Canham in 1990 [2]. This red shift was considered quite 

interesting, but porous silicon is very fragile and highly reactive, which limits their 

applications. Silicon Dots were the solution to this problem and ever since then their 

application range has grown. Nowadays they can be found in electronics (as low power 

nanomemory and transistors) [3], photonics (photodetectors in the UV), photovoltaic 

and lighting technologies (solar cells and light emitting diodes) [4], substance sensors 

(e.g., glucose, dopamine and Anthrax®) [5], catalyst and fuel cells [6], biomedical 

fluorescent tags (has an alternative to the highly toxic cadmium based QDs), cosmetics 

that can penetrate skin [7], integration in the silicon industry as Green Technology [8], 

among others. 

A key issue to control their photo-physical properties is to control their size, and 

this has been a great challenge over the years. In order to overcome this question 

numerous synthetic pathways have appeared but the solution was still not achieved [9].  
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2.3. Personal Contribution to this Paper 

 

My personal contribution to this work includes the following: the complete 

research on the Silicon Dots topic in order to ascertain the state of the art. After the 

complete overview on the most innovative synthesis and purification methods, along 

with the most recent applications, it was necessary to write a review on the subject for 

publication in an international scientific research journal. Additionally, it was necessary 

to create images that correctly reflected and simplified the text, so it would allow, a new 

researcher on the topic, to have a resume of the necessary data. After the submission 

of the paper it was required some adjustments to comply with the reviewers 

suggestions. 
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1. INTRODUCTION 

The era of nanoparticles is installed and the continuous 

search for new and improved particles is unstoppable. At 

the end of the 1980s nanochemistry blossomed when 

quantum dots made their appearance (QDs) [1]. QDs are 

nanoparticles of semiconductor material (typically between 

1 and 12 nm in diameter). Quantum confinement endows 

these materials with unique light emitting properties that 

are proving to be a powerful tool for labeling biological 

systems. In fact their nanoscale size range is compatible 

with most of the metabolic and internalization processes 

observed in cells and, unlike other nanoparticle-based 

optical imaging probes, QDs do not exceed the proteins’ 

size, which makes them very useful for biological 

applications [2-5]. However, the most useful QDs in 

analytical/bioanalytical chemistry are based on a highly 

toxic metal core that has in fact proved to be toxic in 

biological systems [6]. 

Another highly fluorescent nanomaterial that has been 

the subject of intense investigation is silicon dots. These 

nanoparticles have fluorescence characteristics similar to 

those of the traditional QDs, but their toxicity is very low 

[7, 8]. Porous silicon nanoparticles were first prepared in 

the 1950s by electrochemical etching in hydrofluoric acid 

and ultraviolet irradiation [9] but their red luminescence 

was only discovered in 1990, by Canham [10]. Further 

studies revealed that the photoluminescence (PL) emission 

was red shifted as particle size increased [11]. This red 

shift in the visible spectral range meant that the silicon 

particles could be used for optoelectronic devices, but 

since porous silicon is very fragile and highly reactive the 

possibilities of new applications were limited. Silicon dots 

were suggested as a way of overcoming these limitations. 

Over the years they have been known as silicon quantum  
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dots, silicon nanoparticles, silicon nanocrystals and, recently, 

silicon dots. In this review they are called silicon dots. Silicon 

dots are silicon-based nanoparticles, typically with a diameter 

of 1-10 nm, that can be produced by either top-down or 

bottom-up approaches. 

Several methods have been proposed for their synthesis: 

gas-phase pyrolysis of silanes [12-14]; ultrasonic dispersion of 

porous silicon in organic solvents [15]; evaporation and laser 

ablation of silicon in an inert atmosphere [16, 17]; through 

high pressure, high temperature solution phase methods [18], 

and by chemical etching of silicon powder [19]. The objective 

is to produce silicon dots with high quantum yield, emission 

wavelength red-shift and narrow size dispersion. Their 

biocompatibility, high photoluminescence quantum efficiency, 

stability against photobleaching, and the non-blinking 

behavior, size-tunable emission and the possibility of 

functionalization with several molecules to render them 

sensitive to an analyte are properties that have made these dots 

highly useful for biological applications. Furthermore, they 

can be excited by single photon (UV: 330-400 nm) and two-

photon (near infrared: 720-850 nm) absorption, which is 

considered biologically friendly. Despite all the good qualities 

irreversible bleaching does occur [20]. 

The silicon dots’ range of applications is far wider than just 

bioimaging. They are used in electronics (as low power 

nanomemory and transistors), photonics (photodetectors in the 

UV), photovoltaic and lighting technologies (solar cells and 

light emitting diodes), substance sensors (e.g., glucose, 

dopamine and Anthrax®), catalyst and fuel cells, biomedical 

fluorescent tags (as an alternative to the highly toxic cadmium-

based QDs), cosmetics that can penetrate skin, integration in 

the silicon industry as green technology, to mention some of 

their applications. A number of studies have been undertaken 

so as to better understand and control their optical properties. 

This review discusses methods of synthesizing silicon dots, 

their bioanalytical applications and toxicology assays, and 

their fluorescence mechanism. 
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2. SYNTHETIC METHODS 

The silicon dots used in biomedical and optoelectronic 

applications must have high stability, a substantial 

photoluminescence quantum yield in the visible 

wavelength range and be soluble in aqueous media. The 

need to achieve these parameters was taken into account 

when developing the various synthetic methods. Nowadays 

there are nine main ways of producing the silicon dots as 

schematically shown in Fig. (1). 

(1) Gas Phase Condensation (Pyrolysis): In this 

method a suitable molecule containing silicon 

(e.g., SiH4) is dissociated and the silicon dots are 

produced after a nucleation process. Several 

techniques use this procedure, namely, 

combustion, thermal decomposition, microwave 

plasma, gas-evaporation and chemical vapor 

deposition. The use of these techniques usually 

makes it very difficult to collect the particles, which 

leads to a low yield. In addition, the silicon dots 

produced by these techniques are non-

monodispersed and require capping to protect their 

surface [21, 22]. 

(2) Ion Condensation in a Suitable Matrix: Here, 

SiO powders are annealed at 1000°C in an ambient 

atmosphere and etched with HF at 10%. The 

resulting atoms are allowed to condense into glass. 

Silicon dots produced this way are polydispersed 

(5.1 ± 1.9 nm) and still have a significant amount of 

oxygen on their surface. The main advantage of this 

method is its relatively low cost [23, 24]. 

(3) Liquid Phase Condensation: This method is based 

on the pyrolysis of organosilanes in solvents heated 

 
Fig. (1). Methods for silicon dot production. 
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and pressurized above their critical points [25, 

26]. The nucleation takes place in a continuous 

flow reactor, in octanol at 500 ºC and 

approximately 250 bar [27]. The silicon dots 

obtained are non-monodispersed. The chemical 

decomposition is not easily controlled since 

about 50% of the nanoparticles obtained are 

alkoxy-terminated [22]. Organic capping is 

required to achieve some degree of control over 

the particle size during the synthesis step. The 

same synthetic approach can be employed to 

produce Si nanowires [28, 29]. 

(4) Solid Phase Dispersion: Over the years 

Kauzlarich and co-workers [31] have studied 

several oxidation-reduction reactions in order to 

produce silicon dots. The method is based on 

combining Si-containing precursors in solution 

under atmospheric conditions [32]. Several 

different routes were investigated (Fig. 2). The 

size of Si nanoparticles can be changed by 

adjusting the balance between growth and 

nucleation speeds through the control of factors 

such as reaction temperature, concentration of 

precursors and surface ligands. The main 

advantage of these methods is definitely their 

versatility since they can also be employed to 

produce doped Si nanoparticles (with Mn [32] or 

P [33]) or mixed Si-Ge nanoparticles [34]. Also, 

silicon dots with halogen termination (Cl, Br) 

can be obtained (allowing further functionali-

zation) using, for example, alkyllithium (R-Li) 

compounds [30, 35] and alkoxy groups - via 
reaction with alcohols [36, 37] - or hydrogen atoms 

by reduction with LiAlH4 [38]. This method has 

been claimed to actually allow partial control over 

the silicon dots’ shape, particularly when using 

sodium naphthalenide [39]. However, the silicon 

dots obtained by this method are polydispersed and 

need extensive purification, and there is the further 

disadvantage that the reactions are very time 

consuming (~72 h per reaction). 

(5) Laser Ablation: (Microscopic explosions) In this 

method silicon wafers are torn to form 

nanoparticles. Swihart and co-workers [40], for 

example, used a CO2 laser beam with a H2/He gas to 

confine the reaction zone in the laser beam and to 

further increase the temperature. Particle nucleation 

occurs after 850ºC and by controlling the flow rates 

and the laser power they have some control over the 

nanoparticle sizes. The nanoparticles can also be 

etched with HF/HNO3 in order to reduce their size. 

The silicon dots obtained by this method exhibit a 

mixture of hydrogen and oxygen termination. The 

main disadvantages are: difficulty in recovering the 

nanoparticles; they are polydispersed, need capping 

for protection and stabilization and the laser 

efficiency is hard to control, which makes it 

difficult to have real control over nanoparticle size. 

(6) Electrochemical Etching and Dispersion: 

Rogozhina and co-workers [41] used an 

electrochemical dispersion of crystalline Si wafers 

to produce carboxylic- and methylester-terminated 

 
Fig. (2). Chemical routes for obtaining halogen-terminated silicon dots using solid phase dispersion. 

+ +Glyme, diglyme or THF

N2 atm, reflux

+ octane

N2 atm, reflux +m Mg2Si 2m MgBr22.5m

+ Glyme

N2 atm, reflux +4 15 NaCl

1)

2)

3)



70     Current Analytical Chemistry, 2012, Vol. 8, No. 1 Gonçalves and Esteves da Silva 

silicon dots with diameters between 1 nm and 

1.5 nm. Hydrogen-terminated silicon dots were 

formed through HF/H2O2 anodization and 

ultrasonic fractionation of crystalline Si wafers. 

(7) Chemically Catalyzed Etching and 

Dispersion: The production of silicon dots by 

HF etching is a self-limiting process since HF 

does two things: it reduces the nanoparticles’ 

size and introduces hydrogen passivation on the 

dots surface. This process usually leads to low 

yields and high size dispersion. The 

incorporation of a catalyst, like H2O2 or HNO3, 

helps to further oxidize silicon while HF 

vigorously dissolves the oxide [42]. The 

combined effect of the two chemicals leaves no 

oxygen and also results in hydrogen passivation. 

Catalysis by H2O2 has other advantages over 

HNO3, since the hydrogen passivation in this 

case is more complete (only allowing mono-

hydride termination), and of better quality. The 

presence of H2O2 also eliminates hydrocarbons 

and other organic impurities, leading to “more 

stable” sizes and configurations. This method 

yields sizes ranging from 1nm (blue) to 3.7 nm 

(red) [43]. 

(8) Chemical Synthesis via Zintl Salts: This 

method is an aqueous route to obtaining 

significant amounts of hydrogen-terminated 

silicon dots from non-hazardous materials. But 

the yields of silicon dots are often low and 

frequently require HF etching treatment to 

acquire photoluminescence. The silicon dots are 

synthesized by a “metathesis” reaction of NaSi and 

NH4Br. The nanoparticles can then undergo 

hydrosilylation to form Si-C bonds and be further 

functionalized with an adequate amphiphilic 

polymer to retain high quantum yield along with 

water solubility [44]. 

(9) Inverse Micelles: The basis of this method is the 

dissolution of an anhydrous compound (e.g. SiX4;  

X = Cl, Br or I) in the hydrophilic interior of 

micelles. As such, the nucleation and growth of 

silicon dots are restricted to the micelle interior. 

This method has the clear advantage of size control, 

by varying micelle size, intermicellar interactions 

and reaction chemistry [45, 46]. The reaction occurs 

under inert atmosphere to prevent the oxidation of 

the silicon dots. Although the surface chemistry of 

dots obtained directly from the reaction of SiCl4 

with LiAlH4 has not yet been described, the 

reactivity of these silicon dots suggests hydride 

surface termination [47]. 

After the raw silicon dots are produced their surface can be 

functionalized with a number of molecules according to the 

desired application. The functionalization process is quite 

important since it is responsible for giving a higher stability 

against oxidation and Ostwald ripening (the growth of larger 

nanoparticles by merging smaller, poorly passivated ones), and 

for reducing defect states on the silicon dots’ surfaces caused 

by dangling bonds [48]. The nanoparticle surface can be 

modified by removing hydrogen terminations and replacing 

them with a mono-linker or bi-linker, without compromising 

 
Fig. (3). Silicon dots’ surface changes: introducing functional groups or bi-linkers. 
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the optical activity of the particles, using soft chemistry. It 

is thus possible to introduce different functional groups 

onto the silicon dots surface (Fig. 3).  

When functionalizing silicon dots there is a major 

factor to take into account, which is that this process 

should occur without breaking any Si-Si bond, since 

silicon dots are nanoparticles that have only 100-200 

atoms. As such, any path leading to Si-Si bond cleavage 

will have an adverse impact on the dots’ optical properties 

and could potentially dissolve the nanoparticles completely 

[41]. This effect was mainly observed in two 

circumstances: (i) in the reaction with alcohols, where the 

alkoxylation results in the cleavage of Si-Si bonds and the 

formation of Si-H and Si-O-C species [49]; (ii) in the 

alkylation with Grignard or alkyl lithium reagents, where 

there is a nucleophilic attack by a carbanion on an electron-

deficient Si atom, thereby cleaving Si-Si bonds to form Si-

C bonds and silyl anion (Si
-
) species [50, 51]. With this in 

mind it was necessary to further investigate alternative 

paths for silicon dots functionalization. The solution may 

be hydrosilylation reactions. These are usually performed 

by halogen- or hydrogen- terminated silicon dots’ reacting 

with alkyl-lithium salts [35] or terminal alkenes [31], and 

the result is very stable Si-C linkages. The reaction with 

terminal alkenes is performed by using light, [52] heat, 

[41] or a variety of platinum [47] and triphenylcarbenium-

based catalysts [53]. 

The methods described above give a very broad range 

of compounds that can be used to functionalize the silicon 

dots for the intended purpose. It has been demonstrated 

that replacing the hydrogen terminations by –COOH [41] 

or –NH2 groups [47, 54] makes the silicon dots water 

soluble. The carboxylation results in highly luminescent 

nanoparticles that are very stable in water, relatively easy 

to separate by electrophoresis [55] and, since carboxyl is 

quite a versatile bi-linker (Fig. 3), this functionalization is 

a good option for many researchers [41]. However it has 

the disadvantage of side products like free radical cross-

linking. Amines are also versatile bi-linkers - their use has 

proved helpful in attaching proteins such as Streptavidin 
[54] onto the silicon dots surface (Fig. 3). Thiolation 

(introduction of a –SH group) has also proved useful to 

attach a molecule (e.g. a protein) or two silicon dots with 

an alkyl chain as spacer, through an S-S bond.  

On the other hand the use of non-polar groups such as 

alkyl chains makes them soluble in non-polar solvents. It 

has been reported that silicon dots functionalized with non-

polar dienes, for example, exhibit a higher energy emission 

than those capped with polar groups like epoxides, diols 

and amines [56]. This is interesting since not only the 

emission wavelength can be controlled by the particle size 

but it is also related to the polarity of the functionalization 

group. 

Purification must be performed before starting any 

analytical test. The silicon dots may be purified before and 

after functionalization to achieve homogeneous size 

dispersion, regardless of the synthesis process. The number 

of papers reporting separation of the nanoparticles by size 

and/or zeta potential has been growing in recent years [57, 

58]. Capillary electromigration separation techniques have 

been used to separate nanoparticles and nanoparticles 

functionalized with biomolecules. These may be valid methods 

to purify silicon dots. 

All the optical changes described so far have helped the 

understanding of the fluorescence mechanism of these 

nanoparticles. 

3. FLUORESCENCE MECHANISM 

The fluorescence mechanism of nanoparticles has been 

explained by several theories [59]. The aspect common to all 

of them is the attempt to correlate the difference between the 

fluorescence properties of the bulk and nanomaterials with 

their size. The theory that is now most widely accepted is that 

of quantum confinement [60]. This states that there is a finite 

number of quantum states available to the valence electrons in 

nanoparticles. The smaller the particles, the larger the energy 

gap between the highest occupied molecular orbital (HOMO) 

and the lowest unoccupied molecular orbital (LUMO). 

Therefore electrons in the HOMO level need more energy to 

be excited to the LUMO level. After excitation the electrons 

relax to the lowest energy level of the first excited state and 

finally back to their ground state with the emission of light, i.e. 

photoluminescence (PL) [60, 61]. The wavelength of the 

emitted light is determined by the energy gap of the 

nanoparticles (Fig. 4). 

For smaller silicon nanoparticles, however, the percentage 

of surface atoms may predominate and so surface 

imperfections become predominant in the overall nanomaterial 

properties. Indeed, the termination of the lattice periodicity on 

the surface of the smaller nanoparticles creates a potential 

boundary and the coordination number of the surface atoms is 

reduced (dangling bonds), which gives rise to electronic defect 

states on the silicon dots [62-64]. Therefore the optical 

properties of semiconductor nanoparticles can only be fully 

understood by considering surface effects. 

The PL mechanism for silicon nanoparticles has yet to be 

determined, although there have been several attempts using 

both experimental results and theoretical calculations [56, 65]. 

Almost all these attempts relate either to the theory of quantum 

confinement or surface state effects. With respect to the 

quantum confinement theory for silicon dots it can be said that 

there is a shift of the band gap (HOMO-LUMO gap) from 1.1 

eV in bulk Si to 3.0 eV for 2 nm structures [22, 66]. On the 

other hand, the surface state mechanism claims that surface 

localized states, such as, an Si-oxide or Si-hydrogen interface 

are likely to serve as radiative recombination centers. 

Gole et al. [67], for example, proposed a model which 

suggested that the PL of silicon dots was due to a silanone 

(Si=O) group on the particle surface, and Wolkin et al. [66], 

suggested that the quantum confinement effect and surface 

states contribute simultaneously to the Si PL. However, they 

both used porous silicon nanoparticles and careful 

consideration is required when extrapolating these results to 

silicon dots. Brus et al. [68] synthesized surface-oxidized 

silicon nanoparticles to investigate the origin of PL for silicon 

dots. Their silicon dots have hydroxyl and oxide groups on the 

surface, as indicated by IR spectroscopy, but they simply 

attribute PL to the quantum size effect. Yang et al. [69, 70], 

prepared silicon dots with surface groups terminated with 

organic alkyl groups, such as, methyl, ethyl, n-butyl, and n-

octil. Their results suggest that the observed UV-blue PL 
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emission is consistent with optical transitions in quantum-

confined silicon nanoparticles. They prepared larger 

nanoparticles by annealing of the smaller particles at 

different temperatures [70]. This resulted in surface 

changes, as revealed by the FT-IR spectrum, but they were 

not accounted for the explanation of the PL mechanism. It 

is now clear that the chemical processes used determine the 

surface groups of the silicon dots and are responsible for 

changing the internal electronic structure. These methods 

therefore play an important role in the fluorescence 

properties of the nanoparticles, i.e. the emission 

wavelength and radiative lifetime, and they ultimately 

define the solubility. Indirect band gap materials such as 

silicon generally have slow recombination rates with PL 

lifetimes ranging from tens of microseconds to 

milliseconds [71]. Direct band gap materials, however, 

such as the traditional QDs, have fast recombination rates 

with PL lifetimes of the order of 1–10 ns [72]. Taking this 

into account and considering that it was found that silicon 

dots with a hydrogen or carbon surface passivation display 

rapid recombination rates (1–10 ns), it is possible to say 

that this offers strong evidence that the observed emission 

results from electric-dipole-allowed direct band gap 

transitions [73, 45]. Alternatively, silicon dots with an 

oxide surface group typically display a dipole-forbidden 

yellow-red emission with radiative lifetimes of 10
3
–10

6
 ns 

[73, 65]. This slow recombination rate is a limitation to 

their use in biological imaging. 

Nevertheless the PL mechanism of the silicon dots, 

prepared by any of the existing methods, cannot be 

complete if we consider only one or two of these factors. 

The theory developed by A. Putzer et al. [65] is the most 

complete up to now. According to this model the PL 

mechanism can be explained using these effects: quantum size, 

surface states, and/or defects on the surface. Their theory is 

based on computational studies which have led them to 

conclude that ionic rearrangements and electronic relaxations 

occurring upon absorption and emission, and the resulting 

Stokes shift, are extremely sensitive to the presence of surface 

passivants such as oxygen and to their bonding configuration. 

For example, a 1 nm cluster has a Stokes shift sensitivity of ± 

0.9 eV, depending on the surface oxygen configuration - 

double bonded or bridged. In fact they have determined that 

nanoclusters with oxygen double bonded on the surface 

display the largest Stokes shifts and that a cluster with bridged 

oxygen on the surface, or reconstructed hydrogenated surfaces, 

exhibits the smallest Stokes shifts. This theory is also 

supported by experimental data [56, 74]. J. H. Warner et al. 
[74], for example, showed that the optical properties of silicon 

dots with identical size distributions are remarkably different. 

This indicates that it is not just the functional groups present 

on the surface that affect the PL, but also their configuration 

and ultimately the silicon dots’ size. 

4. ANALYTICAL APPLICATIONS 

Several technological applications are known for silicon 

dots and many others are under investigation. The major 

applications within analytical chemistry are described below, 

and Fig. (5) shows the major areas of research and 

development.  

4.1. Chemical and Bioanalytical Sensing 

In general, we can say that sensors/biosensors consist of 

two major components: a highly specific recognition element, 

 
Fig. (4). Comparing the electronic energy states of a bulk semiconductor, silicon dots and a single molecule.  
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and a transducer that converts the molecular recognition 

event into a quantifiable signal [75]. Due to their unique 

characteristics, silicon dots have been used in several 

applications. The chemical and bioanalytical applications 

are discussed in this section. Good examples of chemical 

sensors are those for important biomedical substances, like 

dopamine, hydrogen peroxide, and glucose. Gang Wang et 
al  [76], for example, demonstrated the exclusive detection 

of glucose in the presence of interfering species, within the 

physiological concentration ranges of these substances. 

Their amperometric sensor based on silicon dots showed 

high reversibility, which is an indication that there was no 

electrode poisoning due to adsorption of reaction 

intermediates. Comparing this electrode with an 

immobilized glucose oxidase one [74], it is possible to say 

that the silicon dots sensor has an enhanced amperometric 

response. Their results revealed that the use of silicon dots 

offers great advantages as an inexpensive material in 

bioelectronics, including effective signal transduction and 

energy harvest and device miniaturization [78, 79].  

In terms of biosensing, the use of silicon dots together 

with iron oxide has been reported to be a proficient 

tracking and drug delivery system [80]. Here the use of 

luminescent non-toxic nanoparticles with supermagnetic 

abilities means they can be visualized and manipulated 

externally through a magnetic field. It has also been shown 

that silicon dots are efficient photosensitizers of singlet 

oxygen [81]. This characteristic was used by researchers to 

suppress the division of cancer cells. Analysis of the DNA 

cells shows that they die through the apoptosis 

(programmed cell death) mechanism [82] after irradiation 

in the presence of silicon dots with a concentration of more 

than 0.1–0.5 g. V.Y. Timoshenko et al. [81] suggest that 

the death of the cancer cells occurs is probably due to the 

action of photosensitized active oxygen, in particular to the 

oxidation of cell material by singlet oxygen. In addition, 

the effect of other active forms of oxygen is also possible, 

e.g., superoxide ions (O2

-
), whose formation was observed 

by M. Fujii et al. [83]. The mechanism by which the active 

oxygen species are formed needs further study, but silicon 

dots appear promising for use in the photodynamic therapy 

of cancer.

4.2. In vivo Sensing 

Silicon dots have been used more and more in 

bioanalytical applications over the years, and today 

applications ranging from devices for in vivo drug delivery 

systems [80], labs-on-chips [78, 79], bioanalysis [76-79] and 

new catalytic materials [84] are widespread. In all these 

applications the silicon dots’ surface properties need to be 

tailored and controlled. Regarding the sensing applications, 

there is a need to introduce specificity through the 

functionalization with recognition elements. For molecular 

electronics, it is necessary to introduce molecules with specific 

electronic properties in such a way that it is fluid or open to 

electrons and electronic information. This reasoning is valid 

for all applications, and the possibility of tailoring the surface 

of the silicon dots, and thus their fluorescence and solubility 

properties, is one of the most appealing characteristics of these 

nanomaterials. 

4.2.1. Bioimaging 

Fluorescence tags and biosensors are of the utmost 

importance in areas like medicine and biology. Today they are 

used in everything from HIV tests to cell imaging. The 

molecular fluorescent dyes available have some serious 

drawbacks, however, these range from periodical dimming 

(blinking) to the absence of photostability and are responsible 

for introducing uncertainty in measurements [44]. The 

ambitious goal of developing treatment procedures that only 

need a minimal number of cells from living patients and smart 

drug delivery systems requires the development of a new 

generation of greatly improved fluorescent markers. The 

appearance of semiconductor QDs was revolutionary in this 

respect. However, the traditional QDs have toxicity issues that 

are difficult to surmount so that broader applications are 

possible, such as in vivo bioimaging and drug delivery systems 

[6]. The use of silicon dots has been gaining more and more 

support given their low toxicity and, since these nanoparticles 

do not require coating to achieve low toxicity it is possible to 

use even smaller nanoparticles than when using QDs. In fact it 

has been reported that silicon dots are better than the 

traditional QDs for in vivo applications [31, 85]. Also, silicon 

dots can be excited using two-photon excitation and this makes 

it possible to detect a single particle in a focal volume of 1 

pcm
3 

[83]. It has been proved that the efficiency under two-

photon excitation is about three times higher than fluorescein. 

This intrinsic characteristic paves the way for their use in 

bioimaging and several studies have been performed relating 

to this aspect. 

Silicon dots functionalized with carboxyl groups [86], 

allylamine [56] and poly(acrylic acid) (PAAc) [85] have been 

reported as efficient staining labels in both cancer and healthy 

cells, and three-dimensional sectioning has demonstrated that 

 
Fig. (5). Analytical chemistry applications of silicon dots.  
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the nanoparticles do indeed penetrate into cells. The PAAc 

capped silicon dots were used as fluorescent labels in 

Chinese hamster ovary cells (CHO) and their efficiency 

was compared with that of organic dyes, viz. Alexa 488, 

Cy5, fluorescein isothiocyanate (FITC), and laser dye 

styryl (LDS751). It was found that the cells with silicon 

dots remained fluorescent and no loss of intensity was 

observed during the measurement period (2h), which 

indicates high PL stability. This PL stability was further 

assessed under 24 h of UV exposure and it was observed 

that the nanoparticles kept 95% of their initial PL. On the 

other hand, all the organic dyes tested lost their PL 

completely after 30 min UV exposure. This clearly 

demonstrates that silicon dots can compete with organic 

dyes, and have much higher photostability [85]. 

4.2.2. Toxicity Assays 

Hand in hand with the increasing interest in 

nanomaterials and their applications there has been an 

increase in the number of studies on the adverse biological 

responses to them [87-89]. Nevertheless, many questions 

remain unanswered and further studies are needed. They 

should focus particularly on cytotoxicity and the 

inflammatory responses of cells when exposed to 

nanoparticles, and on a correlation between their chemical 

constitution and the cells’ responses. For example, it has 

been proved that different surface modifications can induce 

different levels of toxicity and there are some toxicity 

studies on various capping molecules, but no correlation 

has yet been established between these results and the 

inflammatory responses [90]. When talking about silicon 

dots it is also necessary to stress the difference between 

toxicity assays performed on porous silicon and silicon 

dots. Porous silicon can entrap particles within it and the 

functionalization may not be concentrated just on the 

nanoparticle surface, but in its interior, too. These 

processes cannot happen with silicon dots, and since the 

surface and its functionalizations seems to exhibit different 

toxicity indexes, the extrapolation should not be made that 

since porous silicon has been proved non-toxic the same 

will be true for silicon dots. A study on the variation of 

toxicity according to the capping molecules was performed 

by [56]. Here, the silicon dots obtained by the inverse 

micelles route were either epoxy- or diol-terminated. The 

toxicity was evaluated in two cell lines: Human skin 

fibroblasts (WS1) and lung epithelial cells (A549). It was 

found that cytotoxicity for the epoxide-terminated silicon 

dots appears at a concentration of 112 μg/mL and for the 

diol-terminated silicon dots it appears at 448 μg/mL. These 

authors suggest that this toxicity difference between silicon 

dots may be related to the fact that the epoxide group is a 

highly reactive specie and known to have oxidative toxicity 

[89]. As shown earlier, the effect of the surface chemistry 

on the silicon dots is very important, and so it is possible to 

say that different functional groups may have different 

toxicity values. The study by K. Fujioka et al. bears this 

out [90]. They used passive-oxidized silicon dots and 

evaluated their cytotoxicity response. In this assay the 

silicon dots were incubated with human cervical carcinoma 

cells (HeLa). The silicon dots’ toxicity was not observed at 

112 μg/ml. Furthermore, these authors prove that the 

passive-oxidized silicon dots are less toxic than CdSe QDs 

at high concentration, in both mitochondrial and lactate 

dehydrogenase (LDH) assays. This is particularly true under 

UV exposure, where silicon dots are more than ten times safer 

than CdSe QDs [92]. 

It is known that macrophages play an important role in the 

inflammatory process as a result of the presence of 

nanoparticles [91, 92] and that nanoparticle size is of the 

utmost importance. J. Choi et al. [89], studied cultured murine 

macrophages’ (RAW 264.7) biological response to silicon dots 

of 3 nm and 100-3000 nm diameter. The silicon dots were 

exposed to macrophages with and without addition of 

endotoxin lipopolysaccharide (LPS), which is a positive 

inducer of NO and cytokines. It is known that in the presence 

of LPS particles may exhibit a synergistic or additive effect on 

the production of NO, tumor necrosis factor-alpha (TNF-a), 

interleukin 6 (IL-6), and NO. The cytotoxicity was assayed 

using the dye exclusion and the 3-(4,5-Dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide reduction (MTT) assays. It 

was found that 3–5 nm diameter endotoxin-free silicon dots 

can reduce cell survival and cell viability in RAW 264.7 

macrophages when incubated at concentrations above 20 

mg/mL. No inflammatory response was found, however, i.e. 

production of NO, TNF-a  and IL-6, in macrophages incubated 

at 200 mg/ml. These authors suggest that the difference 

between the inflammatory responses of the two particle size 

distributions may be related to a higher molar concentration 

and relative surface area, as well as enhanced intracellular 

access. All these factors combined may have resulted in the 

macrophages’ failure to identify the bigger silicon dots as 

“foreign” materials. The effect of the silicon dots’ size and 

exposure time was also tested on human lung epithelial cells 

(A30) and on mouse fibroblasts (L929). The toxicity was 

evaluated after 6 and 24 h exposure and the nanoparticle size 

ranged from 200 to 367 nm. It was found that longer exposure 

time and larger the nanoparticle size affect the reduction of the 

toxicity level. 

Regardless of the overall effect, toxicity or non-toxicity, 

there is still much to learn about the kinetics and intracellular 

localization of the silicon dots. A better understanding of these 

processes may be the well key to unlocking the mystery of the 

cytotoxicity mechanism and inflammatory process of the 

nanoparticles. The result will be the greater and safer use of 

nanoparticles in biological applications.  

5. CONCLUSIONS AND PROSPECTS 

Silicon dots can be produced by a number of methods and, 

depending on the one used, it is possible to achieve some 

degree of control over the nanoparticle size and surface 

defects. This control is very important since it has been proved 

that these two factors, together with the surface 

functionalization, are responsible for the fluorescence 

properties of the silicon dots. Moreover, the functionalization 

needs to be carefully designed for the intended purpose, 

because it is responsible for given the silicon dot a specific 

sensitivity and also a certain degree of toxicity.  

In the past few years a number of toxicity assays have been 

performed and the cells’ viability has been assessed and, even 

though the silicon dots exhibit a toxicity level below that of the 

traditional QDs, further studies are needed in order to 

understand the toxicity mechanism. The studies reviewed here 

have found that the functional groups have different potential 
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toxicity. However, these studies are only a small number of 

the papers published on silicon dots, and there are other 

molecules that should be studied, too, such as polyethylene 

glycol (PEG), which is relatively inert in biological media 

and can act, for example, as a good spacer between the 

dots’ surface and a protein of interest. 
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Chapter 3 – Hg(II) Sensing Based on Carbon Dots 

Obtained by Direct Laser Ablation 

 

3.1. State of the Art 

 

Mercury occurs naturally, predominantly in the form of cinnabar ore – HgS. It is 

present in minerals, rocks and fossil fuels in low concentrations and, as such, it causes 

no problem to human health. However one of the main ways that the industrialized 

world has to create energy is through the combustion of fossil fuels [1].  

Ever since its discovery and insight on its properties the use of mercury grew. 

Over the years its toxicological effects on human and animal life were known and there 

has been an attempt to replace this element for something less harmful. Indeed 

mercury can be applied in numerous activities, some of the most known are: 

thermometers, light bulbs and gold mining. The use of mercury in thermometers is 

limited and in most countries it has been discontinued. A big campaign on recycling 

mercury containing bulbs is going worldwide, however the most problematic seems to 

be the gold extraction. Gold is a highly valuable metal and its price is increasing 

continually over the past years. One of the methods for extracting gold from its natural 

sources is by adding mercury. This element forms amalgam with gold that when 

exposed to high temperatures leads to the evaporation of mercury and the separation 

of gold from the debris of the mining procedure. This process is illegal in countries like 

Indonesia and United States [2], however in the Brazilian Amazon it is limited but 

allowed and it is estimated that the number of miners now surpasses the 200 thousand 

people [3]. Indeed this is an alarming number that can account for the growing 

contamination of the air and water in areas, such as, the Brazilian Amazon. The limit 

accepted for mercury in fishes for human consumption is 0.4ppm, however studies like 

the one published by Lembo, (1999) [4] reports values two hundred times higher than 

the legal value. This is quite troubling since it presents a huge health risk, not only for 

the local citizens but also to the entire world. 

The most common anthropogenic causes for mercury release into the 

atmosphere are gold mining, power plants, combustion of municipal and medical waste 

and smelting plants. Nevertheless it is important to say that industries are not 

responsible for creating mercury, in fact their contribute to the increase of this element 



FCUP 
Analytical Applications of Fluorescent Carbon Dots 

40 

 

pollution is mainly through combustion. Upon their release they enter the somewhat 

known and commonly accepted mercury cycle. A simple representation of this complex 

mercury cycle can be seen in Fig.3.1. 

 

 

Fig.3.1. – Representation of the mercury cycle upon its release into the atmosphere 

 

Upon the mercury released into the atmosphere, regardless of the process that 

lead there, it is scattered over large distances due to air currents. Eventually these 

particles fall, most often in rain drops, and are deposited in soils, oceans, lakes and 

rivers. Despite the place where the mercury fall it is only very problematic when it 

suffers chemical changes, because until then it just forms different layers that do not 

present a problem to human health. Problems seem to arise when mercury is 

deposited in water, where due to microbial activity it can be converted into methyl 

mercury. This is quite problematic since the conversion to methyl mercury is the way 

that mercury enters the food chain. Methyl mercury is a fat-soluble molecule and, as 

such, it is prone to bioaccumulation. The path until mercury reaches humans is quite 

simple. Mercury enters the food chain initially through plankton, making its way through 

little and big fishes, until it reaches larger organisms, such as, humans. This way it is 

possible to say that methyl mercury never leaves the body, it is accumulated in fatty 

tissue upon the ingestion of contaminated food [3]. 

Indeed, mercury has quite adverse effects on human and animal life, which has 

lead some countries like the United States to issue regulatory limits for fish 

consumption. In fact, even though the United States did not report any cases of mass 
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poisoning due to the ingestion of contaminated fish, in 1999 forty one states had issued 

advisories limits [5]. In this sense the states of Pennsylvania and New Jersey, in an 

attempt to decrease the industrial contaminations, implemented a strict Maximum 

Achievable Control Technologies (MACT), that requires mercury-emitting plants to 

meet the highest level of emissions control that is presently available in the market. 

This measure has lead to a considerable decrease in mercury emission from power 

plants in both states, however the energy demand has increased and states like Illinois 

and Detroit (Michigan) have increased significantly the mercury emission. In fact, in this 

last state, it was determined that the mercury level in rain is sixty five times higher that 

the safety limit for humans. This increase in pollution is carried to the Pennsylvania and 

New Jersey states by the prevailing winds, therefore making their attempt to limit the 

mercury release unsuccessful. 

Recent studies have estimated the annual global mercury in the atmosphere to 

be 5000 tons and the mercury in water as high as 10800 tons. According to the pre-

industrial data, the global mercury in atmosphere was 1600 tons and in water 3600 

tons. This leads to the conclusion that ever since the begging of industrialization, the 

level of mercury is about three times higher in both media [6]. 

Despite the fact that human activities represent the largest share of mercury 

pollution this is not the only way. Indeed mercury can be released from its naturally 

occurring sources, by phenomena, such as, erosion and volcanoes. However the 

increase of mercury concentrations is mainly assigned to the industrialized world. In 

fact, some researchers of the Canadian Government have proven that total annual 

mercury emissions have increased two to five times over the last century. Moreover in 

remote areas where the industry world has not yet arrived, such as, Alaskan Arctic, the 

difference between mercury concentration in the pre-industrial and present day layers 

in core samples of lake sediment, is almost irrelevant [7]. 

The human risk of mercury exposure has been extensively studied over the 

years, particularly since one of the biggest mercury disasters known to Men: the 

Minamata Bay-Japan. This disaster was caused by an acetaldehyde factory that 

between the years of 1932 to 1968 dumped approximately twenty seven tons of 

mercury compounds into the Minamata Bay. The Bay was the main source of food for 

thousands of fisherman’s and farmers that lived in its vicinity. It was only in 1956 that 

the first human case of methyl mercury poisoning was described and ever since then 

the number grew. Methyl mercury mostly affects the nervous system, so symptoms like 

numbness of limbs and lips, slurred speech, constricted vision and involuntary 

movements, began to occur. The effect of mercury poisoning appeared not only on 
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humans but also on wild life. Indeed birds were actually falling from the sky and cats 

were “committing suicide”. In 1997 a complete study was performed and it was 

estimated that at least 10 353 people were directly or indirectly affected by mercury 

poisoning [8]. This disaster was so severe that the methyl mercury poisoning was 

known as “Minamata disease”.  

The effects that elemental mercury, mercuric chloride and methyl mercury have 

on biological systems has been studied, as it is possible to see from the analysis of 

Fig.3.2.  

 

 

Fig.3.2. – Biological pathways of elemental mercury, mercuric chloride and methyl mercury. 

 

Elemental mercury in the vapour form is rapidly absorbed by the lungs and 

readily distributed throughout the body. It can pass membrane barriers like the placenta 

and blood-brain, thereby affecting unborn children. Once inside the tissues the 

elemental mercury is oxidized by hydrogen peroxide-catalase pathway to mercuric ion, 

which is good since this specie cannot pass through barriers thereby limiting its 

distribution. However the same is true once elemental mercury pass the barriers and 

become oxidize afterwards. This can lead to the retention of mercury in brain tissue.  
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On the other hand mercuric chloride is mainly absorbed in the gastrointestinal 

tract, due to an electrostatic interaction with the brush border membrane and limited 

passive diffusion. Furthermore, this absorption can be increased by the intestinal pH 

that is dependent on the person diet and cause corrosion. However on the contrary to 

elemental mercury, mercuric chloride has a limited capacity to pass through placental 

or blood-brain barriers. There has been some cases describing the oral ingestion of 

mercury chloride, however since it is poorly absorbed, the majority is excreted through 

the faeces.  

The other predominant form of mercury poisoning is methyl mercury. This 

specie is readily absorbed in the gastrointestinal tract and, in a similar manner of the 

elemental mercury, it can pass through barriers. The transport of this molecule in the 

human body seems to be mediated by cysteine residues, in fact it was described the 

formation of methyl mercury-cysteine complexes in both humans and animals. This 

mercury specie is quite stable in biological media and it has a relatively long half-life. 

Three human studies were performed in order to attempt to establish a relationship 

between this methyl mercury and cancer, however the results are limited by the small 

population in the study. There has also some limited evidence of carcinogenicity in 

animal studies. For example, male ICR and B6C3F1 mice were orally exposed to 

methyl mercury and the results showed that these mice had an increase of renal 

adenomas, adenocarcinomas and carcinomas. When the concentration of methyl 

mercury was increased into extreme values, renal epithelial cell hyperplasia and 

tumours appeared. Additionally some studies in mammalian germ cells have lead to 

the conclusion that the presence of methyl mercury can be responsible for 

chromosomal aberrations, as such, it seems that this mercury specie can be 

clastogenic, but it is not a potent mutagen. The main effect of methyl mercury is on the 

nervous system and since it passes through the placental barrier, and even though the 

mother has no poisoning symptoms, developing fetus may exhibit delayed onset of 

walking and talking, cerebral palsy, altered muscle tone and deep tendon reflexes, and 

reduced neurological test scores.  

The importance of mercury in biological media has lead to the development of 

new and specific sensing systems. One example are the two acridine derivatives 

described by Lee H.N. et al. (2008) [9]. These sensors were successfully tested in 

mammalian cells and the major interferent was cadmium. Despite these good results 

there are two main disadvantages of this system for in vivo sensing: the disadvantages 

inherent to organic dyes, namely blinking, photobleaching, among others, and the 

excitation/emission wavelength, that is approximately 356 and 450nm, respectively.  



FCUP 
Analytical Applications of Fluorescent Carbon Dots 

44 

 

Another example for Hg(II) sensing is the system developed by Guo L. et al. 

(2009) [10] based on a oligodeoxyribonucleotide-fluorescein. This sensing system has 

a detection limit of 20nM and is quite selective. However fluorescein is a known organic 

dye with its inherent drawbacks. Nevertheless upon the addition of Hg(II) the 

fluorescence of the system was quenched and a red shift was observed with and 

excitation/emission wavelength of 496 to 501 and 519 to 527, respectively. These 

excitation and emission values seem more promising for in vivo applications than the 

system described by Lee H.N. et al. (2008) [9]. 

Indeed the development of sensing systems for in vivo Hg(II) tracking and 

evaluation of its bioaccumulation in different tissues is an actual theme. As such, this 

worked focused on the development of a new nanosensing system for Hg(II) for a 

possible in vivo application. Herein it will be described the synthesis of a new Carbon 

Dots (Cdots) based system. In order to make these nanoparticles sensitive to Hg(II) it 

was necessary to adapt its surface, as such, the following molecules were chosen: 

poliethileneglycol 200 (PEG200) and N-acetyl-L-cysteine (NAC). The use of NAC as a 

functionalization agent is due to its biological action. NAC is a metabolite of the 

sulphur-containing amino acid, cysteine and is produced within the human body. Its 

function, among others, is the detoxification and removal of metals, such as, lead, 

mercury and arsenic from the body [12]. Therefore it is expected that the functionalized 

Cdots should have some heavy metal sensitivity.  
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3.3. Personal Contribution to this Paper 

 

My personal contribution to this work includes the following: establishment of an 

initial objective and all the necessary research to ascertain the molecule that presented 

be best option for Hg(II) sensing. It was then required the suiting of this knowledge to 

the material and equipment available. Once this was determined all the procedures for 

the synthesis, functionalization and purification of all the nanoparticles were performed. 

Subsequently, it was studied the structural and chemical properties of the produced 

nanoparticles and with this knowledge some tests were performed, namely: pH, metal 

ion sensitivity, among others. The results were interpreted and compared to the 

existing data provided by other research groups. Once all the data were collected it 

was necessary to repeat all the functionalization, purification and sensitivity towards 

different parameters in order to ascertain if the results were reproducible. When all 

these procedures were repeated and the data were considered reproducible it was 

necessary to write a manuscript with all the necessary data for publication in an 

international scientific research journal and perform the required adjustments to comply 

with the reviewers suggestions. 
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elena Gonçalvesa, Pedro A.S. Jorgeb, J.R.A. Fernandesb,c, Joaquim C.G. Esteves da Silvaa,∗

Centro de Investigação em Química, Departamento de Química, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal
Optoelectronics Unit, INESC Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal
Universidade de Trás-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real, Portugal

r t i c l e i n f o

rticle history:
eceived 9 December 2009
eceived in revised form 13 January 2010
ccepted 15 January 2010
vailable online 25 January 2010

eywords:

a b s t r a c t

The synthesis of carbon nanoparticles obtained by direct laser ablation [UV pulsed laser irradiation
(248 nm, KrF)] of carbon targets immersed in water is described. Laser ablation features were opti-
mized to produce carbon nanoparticles with dimensions up to about 100 nm. After functionalization
with NH2–polyethylene-glycol (PEG200) and N-acetyl-l-cysteine (NAC) the carbon nanoparticles become
fluorescent with excitation and emission wavelengths at 340 and 450 nm, respectively. The fluorescence
decay time was complex and a three-component decay time model originated a good fit (� = 1.09) with
the following lifetimes: � = 0.35 ns; � = 1.8 ns; and � = 4.39 ns. The fluorescence of the carbon dots is
arbon nanoparticles
arbon dots
aser ablation
unctionalization
-acetyl-l-cysteine
ercury(II) sensing

1 2 3

sensitive to pH with an apparent pKa = 4.2. The carbon dots were characterized by 1H NMR and HSQC and
the results show an interaction between PEG200 and the carbon surface as well as a dependence of the
chemical shift with the reaction time. The fluorescence intensity of the nanoparticles is quenched by the
presence of Hg(II) and Cu(II) ions with a Stern–Volmer constant (pH = 6.8) of 1.3 × 105 and 5.6 × 104 M−1,
respectively. As such the synthesis and application of a novel biocompatible nanosensor for measuring

Hg(II) is presented.

. Introduction

Quantum dots (QDs) are nanoparticles (typically between 1
nd 12 nm in diameter) of semi-conducting material. Due to the
uantum confinement effects, these materials possess unique light
mitting properties, like a broad excitation spectra and a sharp
mission wavelength that can be tuned by controlling the reac-
ion time. In the last decade they have revealed to be a powerful
ool for labeling biological systems since their nanoscale size range
s compatible to most of the metabolic and internalization pro-
esses observed in cells [1–3] and, unlike other nanoparticle-based
ptical imaging probes, QDs do not exceed the protein’s size [4],
hich makes them highly interesting for biological applications.
arbon dots, show some common properties to QDs, but are car-
on nanoparticles that through functionalization acquire strong
hotoluminescence in both solution and solid state. In general, the
hotoluminescence has been attributed to the presence of surface

nergy traps, likely related to the abundant surface defect sites that
ecome emissive upon functionalization. In addition, the surface
missive sites of the carbon dots are likely quantum confined in
he sense that a large surface-to-volume ratio is required for the

∗ Corresponding author. Tel.: +351 220 402 569; fax: +351 220 402 659.
E-mail address: jcsilva@fc.up.pt (J.C.G. Esteves da Silva).

925-4005/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.snb.2010.01.031
© 2010 Elsevier B.V. All rights reserved.

strong photoluminescence [5–8]. With emission properties similar
to those described for the traditional cadmium based QDs, these
carbon dots represent a possibility of performing in vivo measure-
ments in a non-invasive and non-toxic manner. Moreover, carbon
dots are able to emit visible light after two-photon excitation
using near infrared light which makes them particularly interest-
ing material for the development of in vivo imaging applications
[9,10]. Since they can be functionalized with several molecules in
a number of layers accordingly with the desirable application [11],
these nanoparticles show great potential for in vivo fluorescence
sensing applications.

Herein we report a straightforward synthesis of carbon
dots by laser ablation (UV pulsed laser irradiation) of car-
bon targets immersed in water and their functionalization with
NH2–polyethylene-glycol (PEG200) and N-acetyl-l-cysteine (NAC).
It was recently shown that using QDs capped with PEG200 in
cultured keratinocytes significantly inhibited cytotoxicity and
immune responses when compared with QDs without this capping
[12]. These results suggest that PEG coating is an effective approach
for the safe use of QDs for in vivo applications [13,14]. On the other

hand NAC is a metabolite of the sulfur-containing amino acid, cys-
teine and is produced within the human body. Metals like lead,
mercury and arsenic are detoxified and removed from the body by
NAC [15]; therefore we tested the sensitivity of the synthesized
carbon dots towards metal ions.

http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
mailto:jcsilva@fc.up.pt
dx.doi.org/10.1016/j.snb.2010.01.031
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. Experimental

.1. Synthesis and functionalization of CNP

All chemicals were purchased from Sigma–Aldrich and were
sed without further purification. The ablation process was imple-
ented using UV pulsed laser irradiation (248 nm, KrF) of carbon

argets immersed in water.
The functionalization process was adapted from [16] and it is

onstituted by three steps:

(i) Activation of carbon nanoparticles – 20 mL of the water solution
with the nanoparticles dispersed plus 20 mL of HNO3 (0.1 M)
were refluxed for 12 h.

(ii) Functionalization with PEG200 – solution from (i) plus 20 mL of
PEG200 were refluxed for 28 h.

iii) Functionalization with N-acetyl-l-cysteine (NAC) – solution from
(ii) plus 2.984 g of NAC were refluxed for 31 h. The solution goes
from colorless to yellow-brown.

The obtained carbon dots solution was extracted six times with
thyl acetate in order to eliminate unreacted reagents. 1 mL of this
urified solution was diluted in a 100 mL flask which constituted
he sensing solution used throughout the work. For the 1H NMR
nd HSQC analyses the carbon dots were dried in vacuum for 1 h
efore dilution with deuterated water.

.2. pH and metal ion titrations

The pH of the sensing solution was adjusted to 5.0 ± 0.1, 6.8 ± 0.1
nd 8.0 ± 0.1 using phosphate buffer solutions and the addition of
icromolar quantities of all metal ions did not change this value.
Standard aqueous solutions of Hg(NO3)2, Pb(NO3)2, CdCl2,

u(NO3)2, NiCl2, CoCl2 and Zn(NO3)2·4H2O from Merck, were pre-
ared in water with concentrations of 5.00 × 10−4 M. Aliquots of
hese standard solutions were added to 20 mL of carbon dots
olution at pH 6.8 – 25 mL of the solution A and 25 mL of phos-
hate buffer solution at pH 6.8 – in order to obtain the following
etal ions concentrations: 1.00 × 10−7, 5.99 × 10−7, 1.30 × 10−6,

.99 × 10−6, 1.30 × 10−6, 2.69 × 10−6 M. Hg(II) was subjected to
detailed analysis and a series of solutions in the range up to

.60 × 10−6 M were prepared.

.3. Instrumentation

Excitation emission matrices of fluorescence (EEM) [excitation
etween 199.4 and 672.8 nm and emission between 349.7 and
19.7 nm] were obtained with a Spex 3D luminescence spectropho-
ometer equipped with a Xenon pulse discharge lamp (75 W) and
CCD detector, 0.25 mm slits and 1 s integration time were used.

ifetime measurements were recorded with a Horiba Jovin Yvon
luoromax 4 TCSPC using the following instrumental settings:
68 nm NanoLED; time range, 200 ns; peak preset 10,000 counts;
epetition rate at 1 MHz; synchronous delay of 50 ns; emission
etection of 550 nm. Quartz cuvettes were used.

Scanning electron microscopy (SEM) and X-ray analysis of the
hree purified carbon dots were done on a FEI Quanta 400FEG/EDAX
enesis X4M High Resolution Scanning Electronic Microscope.

NMR characterization was performed in D2O for both 1H
MR (500.13 MHz) and HSQC, on a Bruker-AMX500 spectrometer
t 298 K. PEG200, NAC and the synthesized carbon dots were

haracterized by 1H NMR spectrometry (500 MHz, D2O): PEG200:
= 3.66–3.68 (m, 36H), 3.740–3.742 (m, 110H); NAC: ı = 1.99

s, 3H), 2.89–2.91 (m, 2H), 4.53–4.56 (t, 1H); carbon nanoparti-
les + PEG200: ı = 2.91–3.02 (m, 92H), 3.51 (m, 2H), 4.61 (s, 1H);
arbon nanoparticles + PEG200 + NAC 1 h: ı = 1.82–1.88 (m, 7H),
uators B 145 (2010) 702–707 703

3.38–3.55 (m, 264H), 3.95–4.11 (m, 11H); carbon nanoparti-
cles + PEG200 + NAC 31 h: ı = 1.82–1.88 (m, 15H), 2.73 (s, 5H),
3.38–3.55 (m, 376H), 3.95–4.10 (m, 15H), 4.37–4.40 (m, 4H), 8.00
(s, 1H).

The size distribution of carbon dots in water was determined
by dynamic light scattering analysis using a Malvern Instruments
(Malvern, UK) Zeta Sizer Nano ZS, using disposable polystyrene cells
from Sigma.

2.4. Data analysis

Lifetime deconvolution analysis was done using Decay Analy-
sis Software v6.4.1 (Horiba Jovin Yvon). Fluorescence decays were
interpreted in terms of a multiexponential model:

I(t) = A +
∑

Bi exp
(

− t

�i

)

where Bi are the pre-exponential factors and �i the decay times.
The fraction contribution (percentage of photons) of each decay
time component is represented by Bi.

Although carbon dots show a polyelectrolyte behavior the vari-
ation of its fluorescence intensity resulting from the ionization
reaction can be linearized using a Henderson–Hasselbach type
equation which allows the calculation of an apparent pKa.

pH = pKa + n log
[

Imax − I

I − Imin

]

where Imax and Imin are respectively the maximum and mini-
mum of the fluorescence intensity of the acid or conjugated base
species and I is the fluorescence intensity as function of the pH.
For a polyelectrolyte the slope of the plot of pH as function of
log[(Imax − I)/(I − Imin)], n, is an empirical parameter usually greater
than unity [17].

In this study static quenching of fluorescence by metal ions
[M(II)] was described using the Stern–Volmer equation:

Io
I

= 1 + KSV[M(II)]

where Io is the fluorescence intensity without metal ion, I is the flu-
orescence intensity observed in the presence of a metal ion and KSV
is the static (conditional stability constant) Stern–Volmer constant
[18].

3. Results and discussion

3.1. Synthesis and morphological characterization

The synthesis of the carbon nanoparticles was performed in
deionized water using a similar but simplified strategy to one pre-
viously described [16]. The carbon targets were irradiated for 1 min
and no support method to expedite the movement of the generated
nanoparticles was used. Literature described synthesis of carbon
nanoparticles used ultrasounds and the carbon targets were irradi-
ated for several hours using a system apparatus far more complex
than the one used in this work [16,19].

A pulsed UV laser (Lambda Physik LPX 300i – 248 nm KrF) was
used to irradiate the carbon targets and a positive lens of +50 cm
of focal distance was used to change the area illuminated by the
laser. In all experiments the same energy (400 mJ) and repetition
rate (10 Hz) were used. It was also maintained the same distance
between the carbon target and the water surface and all experi-
ments occurred at room temperature.
To optimize the laser ablation procedure, the area of the irra-
diated carbon target was changed and the size dispersion of the
resulting nanoparticles was evaluated by SEM. When the distance
between the focusing lens and the carbon target was 107 cm, the
incidence area of the laser was of 348 mm2 resulting in a fluence of
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ig. 1. (a) SEM image in a TEM grid and (b) DLS size dispersion of the carbon particles
roduced by laser ablation.

15 mJ/cm2. In these conditions, the carbon particles obtained have
ide size dispersion – however, the most predominant are in the
undred nanometers range. On the other hand, when the distance
etween the focusing lens and the carbon target was set to 85 cm,
he laser area of incidence was 139 mm2 resulting in a fluence
f 288 mJ/cm2, smaller particles were produced with dimensions
own to about 27 nm (Fig. 1a). Fig. 1b shows the DLS of the nanopar-
icles obtained by direct laser ablation which shows two major
verage size dispersions centred at values of 63 and 373 nm – the
maller particles were probably obtained from laser ablation of the
igger particles. Since the objective is to synthesize nanosensors
hese conditions were used for further studies.

The carbon nanoparticles obtained by laser ablation are not flu-
rescent. In order to make them fluorescent it was necessary first
o activate the carbon surface by refluxing the carbon nanoparticles
n nitric acid for 12 h and, afterwards, add PEG200. After 1 h reac-
ion with PEG200 the carbon dots exhibited a pale yellow color and
uorescence with an emission wavelength of 565 nm. After 28 h
eaction, NAC was added to the reaction mixture and samples of
he reaction medium were taken over time in order to control the
avelength and intensity variation. The samples taken during the

unctionalization reaction showed an emission wavelength varia-
ion of 20 nm towards the red and an increase in fluorescence. The
eaction ended after 31 h when the fluorescence intensity started
o decrease which corresponded to the maximum nanoparticle size

nd quantum confinement.

The resulting solution contains carbon dots functionalized with
EG200 and NAC and could not be dried, limiting the possibility
f electron microscopy analysis. Alternatively, carbon dots were
haracterized by NMR.
Fig. 2. 1H NMR spectra of (a) PEG200, (b) NAC and (c) carbon nanoparti-
cles + PEG200 + NAC 31 h reaction time in D2O.

3.2. NMR analysis

NMR analysis of the carbon dots were performed in D2O.
In order to follow the reaction samples of PEG200, NAC and
samples of carbon nanoparticles + PEG200 1 h reaction, carbon
nanoparticles + PEG200 + NAC 1 h reaction, and carbon nanoparti-
cles + PEG200 + NAC 31 h reaction were analyzed by 1H NMR (Fig. 2
and Supplementary material) and HSQC (Supplementary material).
The analysis of the evolution of the chemical shifts, and respective
multiplicity, due to PEG200 and NAC during the reaction time in

the presence of the carbon nanoparticles suggests the formation of
covalent bonds among all the species.

The analysis of the NMR spectra of carbon nanoparticles with
PEG200 sample after 1 h reaction shows a chemical shift to lower
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Fig. 4. Fluorescence decay of aqueous carbon dots.

Table 1
Lifetime intensity decays of carbon dots in watera.

N � i (ns) ˛i fi

1 0.35(0.02) 0.0958(0.0006) 30.6%

dots was negligible, when compared to the signal observed at pH
6.8. Accordingly to these results the quenching effect of the metal
ions was performed in a buffered phosphate solution at pH 6.8. This
pH quenching dependence is due to the hydrolysis of the mercury
ig. 3. Fluorescence excitation (– – –) and emission (—) spectra of the carbon dots.

alues of all the signals attributed to PEG protons. This evolution of
he chemical shift indicates a stabilization of the molecule, probably
ue to the interaction between the carbon dots surface and the
EG residue. Also the multiplet that in pure PEG (Fig. 2) appeared
ell defined at 3.7 ppm is now being split into two probably due to

he proximity effect of several PEG molecules on the carbon dots
urface.

Upon addition of NAC and after 1 h reaction the signal from the
EG and NAC protons shifted to higher values. This evolution of the
hemical shift indicates an interaction between the PEG and NAC
esidues. This hypothesis is supported by the analysis of the signal
t 1.8 ppm from the R-COCH3 that typically is a singlet but, due to
he presence of other non-equivalent protons, becomes a multiplet
Fig. 2). After 31 h reaction it is still possible to see PEG protons that
emained at 3.9 ppm, indicating that the PEG200 was in excess but
lso that the residues that are interacting with the dots surface are
robably more stable, therefore appearing at lower chemical shifts.
he analysis of the HSQC data (Supplementary material) supported
he observations of 1H NMR.

.3. Fluorescent properties of the carbon dots

The excitation and emission spectra of the synthesized carbon
ots functionalized with PEG200 and NAC are shown in Fig. 3. The
aximum excitation and emission are located at 340 and 450 nm,

espectively, with a Stokes shift of about 110 nm.
This Stokes shift is superior than the one previously reported

13] of 70 nm (excitation maximum at 420 nm and emission at
90 nm) for the carbon dots functionalized only with PEG200 indi-
ating not only that the reaction time is important to obtain higher
mission and Stokes shifts values; but also that the presence of two
ifferent molecules (NAC and PEG200) on the nanoparticles sur-
ace affects the quantum yield and quantum confinement. These
ariations on the emission wavelength with the reaction time sug-
est that the carbon dots are increasing their size and that the two
unctionalization molecules interact with their surface affecting the
uantum confinement [20,21].

A typical fluorescence decay time profile of the carbon dots is
hown in Fig. 4. The preliminary analysis of the decay time indi-
ates that it is complex as it shows the presence of several lifetime
anges. Indeed, only a three-component decay time model origi-
ated a good fit (� = 1.09) with the following lifetimes: �1 = 0.35 ns;
2 = 1.8 ns; and �3 = 4.39 ns (Table 1).
.4. Effect of the pH and metal ions on the fluorescence of CNP

After functionalization with PEG200 and NAC it was observed
hat the fluorescence of the carbon dots was sensitive to pH (Fig. 5).
2 1.8(0.1) 0.0263(0.0002) 42.2%
3 4.39(0.05) 0.00673(0.00005) 27.1% � = 1.09

a Standard deviation in parenthesis.

This sensitivity is marked by a decrease of the fluorescence intensity
as the pH increases and, by fitting the fluorescence intensities with
the Henderson–Hasselbach equation, it was found an apparent pKa

of 4.2 ± 0.1 and a slope of 2.5. This pH behavior is reversible. Also,
as the slope is higher than unity it suggests that the carbon dots
follow a polyelectrolyte ionization.

This variation is due to the ionization of the acid groups of the
NAC residue of the carbon dots which may influence the confine-
ment energy of the nanoparticles resulting in a variation of the
fluorescence. Since the carbon dots presented sensitivity towards
the pH, when we passed on to the quenching assays it was nec-
essary to perform a preliminary study in order to determine the
appropriate pH to do such studies. For these assays it was studied
the quenching effect of Hg(II) on the synthesized carbon dots at pH
5.0, 6.8 and 8.0. At pH 5.0 a white precipitate was found which elim-
inated this pH for further studies. At pH 8.0 the intensity signal was
better than at pH 6.8, however the quenching effect on the carbon
Fig. 5. Variation of the fluorescence intensity of aqueous carbon dots as a function
of the pH.
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Table 2
Stern–Volmer parameters for the quenching of carbon dots by Hg(II) and Cu(II) ionsa.

Ion KSV (M−1) Intercept R Points Concentration range (M)

0.9719 17 1.00 × 10−7–2.69 × 10−6

0.9607 6 1.00 × 10−7–2.69 × 10−6

nces. R, correlation coefficient.
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Hg(II) 1.3(0.4) × 105 0.97(0.01)
Cu(II) 5.6(0.8) × 104 1.0(0.2)

a Averages and standard deviation (in parenthesis) of three independent experie

ons [22]. Indeed, although the total mercury concentration is quite
ow, at pH 8.0 the Hg(OH)2 species is quantitatively formed and the
AC is not able to complex the mercury. At pH 6.8, the [Hg(OH)]+

pecies is probably the main mercury species in aqueous solution
nd it is available to be complexed by the carbon dots.

Since the carbon dots were functionalized with NAC, it is
xpected that their fluorescence properties would change when
hey react with metal ions. Several metal ions [Hg(II), Cu(II), Cd(II),
i(II), Zn(II) and Ca(II)] were tested to check if they affect the fluo-

escence properties of the carbon dots.
As shown in Fig. 6 the carbon dots fluorescence is affected by

g(II), where it is possible to observe a marked quenching effect –
he fluorescence signal decreases 25% upon addition of micromolar
oncentration of Hg(II) (2.69 × 10−6 M). The addition of Cu(II) also
rovokes quenching of the fluorescence of the carbon dots but in

ess extent than with Hg(II) – about 13% decrease is observed. The
ther metal ions analyzed, namely Cd(II), Ni(II), Zn(II) and Ca(II),
how no measurable effect on the fluorescence of the carbon dots.

The quenching provoked by Hg(II) is described as a typical
tern–Volmer plot (Fig. 7). Table 2 presents the parameters of the
inear fitting of the quenching provoked by Hg(II) and Cu(II). The
nalysis of the Stern–Volmer plots show that they follow a linear
rend with KSV = 1.3(4) × 105 and 5.6(8) × 104 for Hg(II) and Cu(II),
espectively. This order of magnitude is compatible with the for-
ation of a quite stable complexes (static quenching) between the
AC residues on the surface of the carbon dots and Hg(II) and Cu(II)

ons.
In order to access if the quenching effect is due to the NAC or

he PEG residue, a study was performed using the nanoparticles
unctionalized only with PEG (Supplementary material) and it was
ound that there is no significant fluorescence emission or intensity
ariations upon addition of the same micromolar concentration of
g(II). As such, and as expected, the sensitivity towards Hg(II) (soft

onor) is due to the NAC residue (namely the sulfur atom – soft
cceptor) of the carbon dots.

A variety of analytical tools are commonly employed to detect
ercury in biological samples [23–27]. However while traditional

ig. 6. Fluorescence quenching of the synthesized carbon dots in aqueous solution
y 2.69 × 10−6 M of all metal ions.
Fig. 7. Stern–Volmer plot of the fluorescence quenching of carbon dots in aqueous
solution by Hg(II).

analytical detection methods allow detection limits in the nanomo-
lar range [28–30], they commonly do not allow time-dependent
or location-specific in vivo measurements. As the uptake and dis-
tribution of this heavy metal are not understood, highly sensitive
and non-invasive methods are needed for its detection in a living
organism.

Herein these carbon dots are of great importance due not only to
their nanometer size and fluorescence properties but also because
they can be specifically targeted in order to perform in vivo mea-
surements in a non-invasive way, thereby representing a novel
non-toxic nanoanalytical tool.

4. Conclusions

The use of direct laser ablation to produce carbon nanoparti-
cles in water rendered a wide variety of sizes accordingly with
the laser fluence. As such, by controlling the energy and incidence
area it is possible to produce particles in tens of nanometer range.
These nanoparticles can easily be functionalized using more than
one molecule and remain stable in an aqueous solution. Due to this
stability it is also possible to immobilize them in the optical fiber
devices using the sol–gel technique, which would render a specific
optical nanoanalytical sensor. The functionalization using PEG200
and NAC allowed us to synthesize a nanosensor sensitive to micro-
molar concentrations of Hg(II) and Cu(II) as well as the solution pH.
Since these carbon dots are biologically inert they are a promising
solution for in vivo measurements of the mercury uptake dynamics.
However, for the in vivo analysis of metal ions further research is
needed to study the effect of biological molecules on the speciation
of the metal ions (cysteine residuals, water soluble proteins, other
anionic cellular components, etc.) in the presence of the carbon
dots.
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CHAPTER 4 – CDOTS FOR IODINE SENSING 
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4.1. State of the Art 

 

The element known as iodine was first discovered in 1811 by Bernard Courtois. 

At the time France was at war and there was a great demand for sodium carbonate, 

necessary for the saltpetre production. The purification of sodium carbonate was 

through the addition of sulphuric acid. One time Courtois added an excessive amount 

of sulphuric acid and noticed that a purple cloud appeared. The vapour crystallized 

when in contact with cold surfaces and dark crystals precipitated – iodine. 

Unfortunately he did not have enough funding to try to determine what was this 

substance, therefore he gave small samples to some of his researchers friends, 

Charles Bernard Desormes, Nicolas Clément, Joseph Louis Gay-Lussac and André-

Marie Ampère. Ampère gave a small sample to Humphry Davy that also performed 

some experiments on this new element. Later Davy and Gay-Lussac argued for the 

acknowledgment of being the first to identify iodine, nevertheless both agreed that the 

first to isolate and discover the element was Courtois [1].  

Nowadays the knowledge of iodine properties is far developed. There are 37 

known isotopes of iodine, however the most stable is 127I. The iodine isotopes that are 

more commonly used are 125I, 123I and 131I. Its different applications are mainly related 

with their relative half-life. 125I has a half-life of 59 days and is used as “tag” due to its 

gamma emitting pattern, for proteins in biological assays. Additionally it is also used in 

some medicine imaging tests and in brachytherapy, where iodine is in implanted 

capsules that are put in contact with tumours, sensitive to local short-range gamma 

radiation. 123I is the isotope most used in nuclear medicine for the thyroid gland, that 

naturally accumulates all iodine isotopes. The choice of this isotope for medicine 

imaging is due to its relative low half-life (13h). Another isotope used in medicine is 131I. 

This isotope has a half-life of 8 days and it is beta emitting. This characteristic is useful 

in nuclear fission and in aggressive thyroid cancer therapies, where it is administered in 

very high dosages. Indeed, it use in therapies is quite peculiar, since it was proven that 

in low doses it is a powerful thyroid carcinogenic, however in high dosages it is less 

harmful and it helps to destroy cancer cells without a dramatic damage on healthy 

tissue. The use of 127I is performed in a preventative manner, since it is used for 

saturating the thyroid gland of this isotope, thereby preventing future toxicity from 131I 

generated by nuclear fission accidents, such as Chernobyl and Fukushima, as well as, 

the nuclear fallout from nuclear weapons [2]. 
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Iodine is, beyond tungsten, the heaviest element essential in biological media. It 

is not a very abundant element, nonetheless its annual production from natural sources 

is about 19 000 tons [3]. Iodide salts are quite soluble in water, so it is not surprising 

that the higher concentration of this element is found in seawater and brine, as such, 

some algae are very rich in iodine. Indeed, the brown algae Laminaria and Fucus that 

can be found in temperate zones of the Northern Hemisphere can contain about 

0.028–0.454 of dry weight of iodine. Additionally, it can also be found in rocks, such as 

caliche - a mineral common in Chile - and on iodine-containing brines of gas and oil 

fields mainly in Japan and United States of America.  

When iodide is in water, and in resemble to what happens to mercury, the 

activity of microorganisms is responsible for the production of the so called 

organoiodine compounds. One of the most abundant organoiodine compounds is 

methyl iodide. In fact, its annual production is about 214 kilotonnes. Methyl iodide is 

volatile and, as such, upon its production it is released into the atmosphere, thereby 

entering the global iodine cycle. Over the years there has been several attempts to 

describe the iodine global environment cycle. The first one was by Kocher in 1981 [4], 

followed by Whitehead in 1984 [5] and a revision by White and Smith in 1984 [6]. 

Iodine has important biological roles, namely it helps to regulate the metabolic 

rate, growth and development, promotes bone and protein synthesis and one of the 

most known is the production of thyroxin, an important hormone produced by the 

thyroid gland. Since its relative importance has been defined, some dietary limits where 

established for daily ingestion. These values change with the person age and it can go 

from 90 (1-3 years) to 290g (lactation women from 19-50). Additionally there are also 

upper limits for iodine consumption per day, that are also age dependent. Nevertheless 

the higher value permitted is 1100g [7].  

It is not easy to manage the amount of iodine ingested per day, particularly 

because the population is not aware of the complications that may arise from a iodine 

imbalance.  In order to better control the iodine in the dietary it is necessary to take into 

account that the major natural food sources for iodine can be found in food grown in or 

near coastal seas and in seafood. Two simple examples of this are: the iodine content 

on ¼ of a teaspoon table salt (100g) and cooked spinach (5g). 

The control over the ingestion of iodine is quite relevant. Indeed, it has 

determined that a iodine deficiency is a big risk factor for gastric, mammalian and 

thyroid cancer [8-10]. Moreover, some recent work has reported that an unbalance in 

this element may represent not only a risk factor for gastric cancer but also of atrophic 
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gastritis [11]. Its action mechanism is through antagonizing several iodine inhibitors, 

such as, nitrates, thiocyanates and salts that are well known risk factors for gastric 

carcinogenesis. Despite the carcinogenic effect, a low biological concentration of iodine 

can lead to hypothyroidism due to the decrease in hormones production and 

subsequent release to the body. On the other hand an increase of iodine can be 

responsible for hyperthyroidism. This is particularly critical in children since it can cause 

intellectual disability and abnormal growth.  

Iodine vital role in biological processes is the main responsible for the pressing 

need for rapid, sensitive and selective iodine sensors in food, pharmaceutical products 

and biological samples, such as, urine and blood [12]. Nowadays there are numerous 

methods for iodine detection, namely gas chromatography with mass spectrometry 

detection [13], electrostatic ion chromatography [14], capillary electrophoresis [15], 

indirect atomic absorption spectrometry [16] and, fluorescence spectroscopy[17]. 

Nevertheless many of these methods require specialized personnel, multistep sample 

preparation and sophisticated instrumentation. Moreover, since the most common 

sample for iodine detection in biological sample is urine, which is a complex mixture of 

compounds, the sample preparation can be quite complex. The combination of all 

these factors is responsible for the complexity if iodine sensing. 

The use of fluorescence for iodine sensing has become quite interesting due to 

the sensitivity and simplicity of the technique [18]. Fluorescence sensors for iodine can 

be “turn-on” or probes “turn-off”. “Turn-on” sensors are based on fluorescence 

enhancement and “turn-off” on fluorescence quenching. “Turn-on” fluorescence 

sensors are quite difficult to obtain, since iodine is an intrinsic quencher due to its 

heavy atom effect [19]. This is indeed the main reason why the iodine sensors are 

mainly based on fluorescence quenching. In fact there are only a few examples of 

iodine “turn-on” sensors in the literature [12, 20-21]. An example is the sensor based 

on p-[(dimethylamino)benzylidene]thiosemicarbazide of Huang et al. [21], that has a 

detection limit of 450nm. Its two-step mechanism of action is quite peculiar since p-

[(dimethylamino)benzylidene]thiosemicarbazide is sensitive to mercury(II) and rapidly 

binds to this ion with a subsequent decrease in the fluorescence. When iodine is added 

to this complex, it binds to mercury and the initial fluorescence of the organic dye is 

recovered. Another “turn-on” sensor for iodine is described by Wang et al., [12] and is 

based on thymine-anthracene. Its action mechanism is similar to the one described by 

Huang et al., where initially the fluorescence is quenched due to the formation of a 

mercury(II) complex with the organic dye and a recovery of the fluorescence occurs 

after the addition of iodine. However it is not easy to synthesize and purify organic dyes 
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that are sensitive to iodine through fluorescence enhancement. Moreover, since there 

is a great demand for iodine sensors for biological fluids, these organic dyes should be 

soluble in complex aqueous systems. Indeed this two-step iodine sensing is complex 

and hard to perform. 

On the other hand it is simpler to develop a iodine sensor based on 

fluorescence quenching – “turn-off”. Some examples of these sensors are the bis-

imidazolium and benzimidazole derivatives [23-24], conjugated polymers [25] and, 

functionalized Quantum Dots [26].  

Here it will be reported a new “turn-off” iodine sensor based on Carbon Dots 

(Cdots). These carbon based nanoparticles will be functionalized with poliethileneglycol 

200 (PEG200) and mercaptosuccinic acid (MSS) and tested for pH and iodine sensing. 

This work was published in the Journal of Fluorescence, 20 (2010), pp. 1023. 
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4.3. Personal Contribution to this Paper 

 

My personal contribution to this work includes the following: establishment of an 

initial objective and all the necessary research to ascertain the state of the art for the 

Cdots synthesis and functionalization. It was then required the suiting of this knowledge 

to the material and equipment available. Once this was determined all the procedures 

for the synthesis, functionalization and purification of all the nanoparticles produced by 

laser ablation were performed. Afterwards, it was necessary to choose the 

nanoparticles that had the best fluorescent properties regarding to the primarily 

objective. Subsequently, it was studied the structural and chemical properties of the 

produced nanoparticles and with this knowledge some tests were performed, namely: 

solvents effect, pH, metal ion sensitivity, among others. The results were interpreted 

and compared to the existing data provided by other research groups. Once all the 

data were collected it was necessary to repeat all the functionalization, purification and 

sensitivity towards different parameters in order to ascertain if the results were 

reproducible. When all these procedures were repeated and the data were considered 

reproducible it was required the write a manuscript with all the necessary data for 

publication in an international scientific research journal and perform the necessary 

adjustments to comply with the reviewers suggestions. 
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Abstract The synthesis and functionalization of carbon
nanoparticles with PEG200 and mercaptosuccinic acid,
rendering fluorescent carbon dots, is described. Fluorescent
carbon dots (maximum excitation and emission at 320 and
430 nm, respectively) with average dimension 267 nm were
obtained. The lifetime decay of the functionalized carbon
dots is complex and a three component decay time model
originated a good fit with the following lifetimes: τ1=
2.71 ns; τ2=7.36 ns; τ3=0.38 ns. The fluorescence intensity
of the carbon dots is affected by the solvent, pH (apparent
pKa of 7.4±0.2) and iodide (Stern-Volmer constant of 78±
2 M−1).
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Introduction

Carbon dots are a new class of fluorescent nanoparticles
with a carbon based core. These carbon dots possess high
stability over time, exceptional resistance to photo and
chemical degradation, tunable fluorescence emission and
excitation, high quantum yields, large Stokes shifts and
since their synthesis is performed in water they are water
soluble. Although this new class of quantum dots (QDs)
was recently discover they are gaining a lot of attention

since they enable fluorescence imaging with both one-and
two-photon excitations on the same platform [1, 2]. They
are imaging agents with a performance competitive to the
traditional CdSe/ZnS quantum dots [2]. Furthermore, these
carbon dots have proved to be a valuable tool to overcome
the toxicity issues arising from the use of cadmium core
based quantum dots. A toxicity assay of these new
nanoparticles was performed very recently [2, 3] and it
was proved that unlike the traditional cadmium based
quantum dots and nanotubes their accumulation level in the
liver was very low.

So far, carbon dots have been produced from multi-
walled carbon nanotubes with electrochemical methods [4],
from candle soot, through thermal oxidation of suitable
molecular precursors [5, 6], from commercial lampblack,
which is a primary material of Chinese ink [7], and by laser
ablation of graphite and subsequent surface oxidation with
nitric acid [8]. Despite the different ways of obtaining
carbon dots, they have only been functionalized with NH2-
polyethylene-glycol of different molecular weights. This
may be due to the fact that it was recently shown that using
QDs capped with PEG200 in cultured keratinocytes signif-
icantly inhibited cytotoxicity and immune responses when
compared with QDs without this capping [9], thereby
suggesting that PEG coating is an effective approach for the
safe use of QDs for in vivo applications [10, 11]. However
it is known that quantum dots can be capped with selected
molecules according to the intended application, as such,
and due to the possibility that carbon dots can overcome the
toxicity limitation of the cadmium based quantum dots for
biological applications, it is important to develop and
analyze the stability of new nanosensors by further
functionalization of these PEG coated carbon dots.

Here we report the synthesis and characterization of
carbon nanoparticles obtained by direct laser ablation of
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carbon targets immersed in water and the carbon dots that
these nanoparticles originate after functionalization with
PEG200 and mercaptosuccinic acid (MSS).

Experimental section

Functionalization of the carbon dots

All chemicals were purchased from Sigma Aldrich and
were used without further purification.

The synthesis of the carbon nanoparticles was performed
by laser ablation [UV pulsed laser irradiation (248 nm,
KrF)] of carbon targets immersed in deonized water [12].
The carbon nanoparticles obtained by laser ablation are not
fluorescent and the following activation/functionalization
process is necessary to render them fluorescence [13]: (i)
20 mL of the water solution with the carbon nanoparticles
dispersed plus 20 mL of HNO3 (0.1 M) was refluxed for
12 h in order to activate the carbon nanoparticles surface;
(ii) afterwards it was added 20 mL of PEG200 and the
mixture continue refluxing for 28 h; (iii) after 28 h it was
added 2.650 g of mercaptosuccinic acid (MSS) and left
refluxing for more 31 h. The color of the solution evolves
from colorless to light brown. The obtained carbon dots
solution was extracted six times with ethyl acetate in order
to eliminate unreacted reagents. 1 mL of this purified
solution was diluted to 100 mL water which constituted the
sensing solution used throughout the work. For the solvent
analyses the carbon dots were dried in vacuum for 2 h
resulting in a viscous light brown liquid.

pH and ion titrations

The pH response was obtained through an acid-base
titration of the sensing solution with HCl 0.1 M and NaOH
0.1 M. For testing the carbon dots sensitivity towards heavy
metals the pH of the sensing solution was adjusted to 6.4±
0.1 using a phosphate buffer solution and the addition of
micromolar quantities of all metal ions did not change this
value.

Standard aqueous solutions of Hg(NO3)2, Pb(NO3)2,
CdCl2, Cu(NO3)2, NiCl2, CoCl2, KI and Zn(NO3)2·4H2O
from Merck, were prepared in water with concentrations of
5.00×10−4 M. Aliquots of these standard solutions were
added to 20 mL of a carbon dots solution at pH 6.4–25 mL
of the sensing solution and 25 mL of phosphate buffer
solution at pH 6.4. For all ion solutions, except iodide, the
range of concentrations were between 1.00×10−7 and
2.69×10−6 M. Iodide concentrations were: 9.70×10−4,
2.90×10−3, 4.83×10−3, 6.75×10−3, 8.66×10−3, 1.06×
10−2, 1.15×10−2, 1.34×10−2, 1.53×10−2, 1.72×10−2 and
1.90×10−2 M.

To perform the dynamic light scattering (DLS) analysis
the solutions of carbon dots was diluted in water and passed
through two continuous 0.2 μm Fischer Scientific RC filters.

Instrumentation

Fluorescence excitation emission matrices (EEM) [excita-
tion between 300 to 600 nm and emission between 350 to
700 nm] were recorded with a Horiba Jovin Yvon
Fluoromax 4 TCSPC using an integration time of 0.1 s
and a slit of 5 nm. The emission fluorescence measure-
ments were acquired using the Horiba Jovin Yvon
Fluoromax 4 TCSPC using an excitation of 330 nm and
an emission range of 300–650 nm, with an integration time
of 0.1 s and a slit of 5 nm.

Lifetime measurements were recorded with a Horiba Jovin
Yvon Fluoromax 4 TCSPC using the following instrumental
settings: 368 nm NanoLED; time range, 200 ns; peak preset
10,000 counts; repetition rate at 1 MHz; synchronous delay
of 50 ns. Quartz cells were used.

The size distribution of carbon dots in water was
determined by dynamic light scattering analysis using a
Malvern Instruments (Malvern, UK) Zeta Sizer Nano ZS,
using disposable polystyrene cells from Sigma.

Data analysis

Lifetime deconvolution analysis was done using Decay
Analysis Software v6.4.1 (Horiba Jovin Yvon). Fluores-
cence decays were interpreted in terms of a multiexponen-
tial model:

I tð Þ ¼ AþΣ Bi exp �t=t ið Þ
where Bi are the pre-exponential factors and τi the decay
times. The fraction contribution (percentage of photons) of
each decay time component is represented by Pi.

The variations in the fluorescence intensity of the carbon
dots resulting from the ionization reaction can be linearized
using a Henderson-Hasselbalch type equation which allows
the calculation of the pKa.

pH ¼ pKa þ log Imax : � Ið Þ= I � Imin :ð Þ½ �
where Imax. and Imin. are respectively the maximum and
minimum of the fluorescence intensity of the acid or
conjugated base species and I the fluorescence intensity as
function of the pH.

In this study quenching of fluorescence by ions [E(II)]
was described using the Stern-Volmer equation:

Io=I ¼ 1þ KSV E IIð Þ½ �

where Io is the fluorescence intensity without ion, I is the
fluorescence intensity observed in the presence of an ion
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and KSV is the (conditional stability constant) Stern-Volmer
constant [14].

Results and discussion

Functionalization and DLS characterization

The effect of functionalization was studied by taking
samples overtime. After 1 and 31 h reaction the maximum
fluorescence emission remained almost constant at about
430 nm. The resulting solution obtained at 31 h reaction
time contains fluorescent carbon dots functionalized with
PEG200 and MSS. Due to the physical characteristics of
PEG200, electron microscopy analysis could not be per-
formed because the sample could not be dried. Alternative-

ly, the size dispersion of the carbon dots was characterized
by DLS.

Figure 1 shows the size dispersion of the nanoparticles
as a function of the reaction time. The nanoparticles
obtained by direct laser ablation (Fig. 1a) have two major
size dispersions at average values of 63 and 373 nm.
Accordingly to the laser ablation method used (without
dispersing the nanoparticles) this size dispersion feature
may be due to two factors: (i) the formation of clusters in an
initial phase of the ablation and the subsequent ablation of
these clusters, thereby leading to two size dispersions; (ii)
the particles of 373 nm may be impurities since after
functionalization these particles were no longer detected.

After activation and functionalization the size distribu-
tion becomes unimodal (Fig. 2b and c). Also, the analysis
of the DLS shows that the carbon dots size grows up

Fig. 1 DLS size dispersion of
the a carbon nanoparticles
obtained by direct laser ablation,
b carbon dots functionalized
with PEG200 at 31 h reaction
time and, c carbon dots func-
tionalized with PEG200 and
MSS at 31 h reaction time
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accordingly with the reaction time: carbon dots + PEG200

31 h - 122 nm (Fig. 1b); carbon dots + PEG200 + MSS 1 h -
193 nm; and, carbon dots + PEG200 + MSS 31 h - 267 nm
(Fig. 1c).

Fluorescent properties

The emission spectra at maximum excitation (320 nm) of
the synthesized carbon dots functionalized with PEG200 and
MSS are shown in Fig. 2a. The fluorescence intensity
increased with the reaction time but the maximum emission
wavelength remained approximately the same at about
430 nm, which is an indication of a little variation of the
quantum confinement. When the fluorescence intensity
started to decrease with the reaction time, it was considered
that the maximum particle size and quantum confinement
was reached for that ligand and as such the reaction was
stopped. The emission bands are relatively broad and the
full with half maximum increases with the reaction time,

namely: 87, 89 and 122 nm, respectively. Figure 2b shows
that the decrease of the carbon dots concentration provokes
a linear decrease of the fluorescence intensity without
changing the emission wavelength.

The preliminary analysis of the decay time indicates that
it is complex as it shows the presence of several lifetime
ranges. Indeed, as shown in Table 1, only a three
component decay time model originated a good fit for
carbon dots functionalized with PEG200 (χ=1.08), and for
carbon dots with PEG200 and MSS (χ=1.25) with the
following lifetimes, respectively: τ1=2.76 ns; τ2=0.33 ns;
τ3=6.59 ns and τ1=2.71 ns; τ2=7.36 ns; τ3=0.38 ns. These
results show that the fluorescence lifetimes of the carbon
dots were not affected after MSS functionalization. The
results here obtained for carbon dots with PEG200 are
comparable with the data reported by Sun et al. [7] for
PEG1500, indicating that the lifetime is also not affected by
the length of the polymer in the dot surface.

Solvent, pH and ions effect on the carbon dots fluorescence

Figure 3 shows the effect of the solvent on the fluorescence
properties of the carbon dots. As observed only the
fluorescence intensity and not the emission wavelength is
affected by solvents. This result shows that the solvent do
not affect the quantum confinement of the carbon dots and
only provokes the quenching of the fluorescence.

After functionalization with PEG200 and MSS it was
possible to see a marked sensitivity of the fluorescence
intensity as a function of the pH. Since both MSS and
PEG200 are sensitive to the surrounding environmental pH,
the sigmoid curve represented in Fig. 4 is broad. When we
applied the Henderson-Hasselbalch equation, it was found
an apparent pKa of 7.4±0.2 and a slope of 2.1. This pH
behavior is reversible. Also, as the slope is higher than 1
showing that a polyelectrolyte ionization is occurring.

However, the variation with the pH of the fluorescence
intensity of the carbon dots was only observed when the
titration of the sensing solution was performed with strong

a. 

b. 

400 500 600
0

2x106

4x106

6x106

8x106

 carbon nanoparticles+PEG200

 carbon nanoparticles+PEG200+MSS 31h
 carbon nanoparticles+PEG200+MSS 1h

In
te

ns
it

y/
 a

.u
.

Wavelength/ nm

Wavelength/ nm
400 500 600

0

5x10 6

1x10 7

In
te

ns
it

y/
 a

.u
.

Fig. 2 a Fluorescence emission spectra of carbon dots functionalized
with PEG200 at 31 h reaction, with PEG200 and MSS at 1 h reaction
and with PEG200 and MSS at 31 h reaction time (excitation: 320 nm).
b Variation of the fluorescence emission spectrum as function of the
dilution of the aqueous carbon dots

Table 1 Lifetime intensity decays of carbon dots functionalized with
PEG200 and MSS in water

Sample N τi (ns) αi fi

Carbon dots with
PEG200 31 h

1 2.76(9) 0.0227(1) 42.9%
2 0.33(2) 0.0921(5) 20.7%

3 6.59(6) 0.00812(4) 36.4% χ=
1.08

Carbon dots with
PEG200 + MSS 31 h

1 2.71(8) 0.0227(1) 43.6%
2 7.36(9) 0.00634(4) 33.0%

3 0.38(1) 0.0870(5) 23.4% χ=
1.25
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acid and/or base. Indeed, when the same total phosphate
buffer solutions with different pH values were used the
fluorescence intensity did not change. This observation may
be due to a stabilization effect on the dots surface charge
promoted by the buffer solution.

In order to access if these carbon dots were sensitive to
ions, several ion solutions of Hg(II), Cu(II), Cd(II), Ni(II),
Zn(II), Ca(II) and iodide were tested.

Figure 5 shows the effect of iodide at milimolar
concentration levels on the carbon dots fluorescence and it
is possible to observe a marked quenching—the fluores-
cence signal decreases 55% upon addition of relatively high
concentration of iodide (1.90×10−2 M). The analysis of
typical Stern-Volmer plot of the I− quenching on the carbon
dots fluorescence shows that they follow a linear trend with
Ksv=78±2 M−1 (Intercept = 0.92; r=0.996 with 12 points).

This order of magnitude is compatible with a dynamic
quenching mechanism.

The other metal ions analyzed, namely, Hg(II), Cu(II),
Cd(II), Ni(II), Zn(II) and Ca(II) at micromolar concentra-
tion range show no measurable effect on the fluorescence
of the carbon dots. The fact that these carbon dots
remained stable in aqueous solutions and that they their
fluorescence properties were not affected by the common
interfering metals is an important step for the development
of a non-toxic and stable nanosensor for bioimaging
applications.

Conclusions

Fluorescent carbon nanoparticles (carbon dots) (with
excitation at 320 and emission at 430 nm) with 267 nm
dimension were easily synthesized in water and function-
alized with PEG200 and MSS. The fluorescence intensity of
the functionalized carbon dots remain stable in water and
are solvent and pH sensitive. The lifetime decay of the
carbon dots is complex and it is not affected by the size of
the PEG chain as well as the presence of other capping
agents. The fluorescence intensity of the carbon dots are not
affected by the presence of micromolar quantities of metal
ions but quenched (dynamic quenching) by the presence of
the milimolar quantities of iodide.
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CHAPTER 5 – OPTICAL FIBER SENSOR FOR HG(II) BASED ON 

CARBON DOTS  
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Chapter 5 – Optical Fiber Sensor for Hg(II) Based on 

Carbon Dots 

 

5.1. State of the Art 

 

Carbon dots can be targeted to a specific analyte according to the molecules on 

its surface. There are numerous applications for Cdots [1-3], one of which has been 

described in Chapter 3 – sensing of Hg(II) ion. The sensing ability described is due to 

its surface functionalization with N-acetyl-L-Cysteine (NAC). This residue has the 

biological function of capturing heavy metals, thereby helping the organism to deal with 

this potential threat.  

Nowadays there are some good fluorescence sensors based on organic dyes 

that has a low detection limit. Moon et al., [4] prepared a Hg(II) fluorescence sensor 

based upon 8-hydroxyquinoline with the detection limit of 5.00x10-6M. Youn et al., [5] 

prepared a Hg(II) fluorescent sensor based in Dimethylcyclam that proved to have a 

detection limit of 1.45×10-6 M for Hg(II).  

One of the common problems for Hg(II) sensing is the possibility of other metal 

ion interference, namely Cu(II) and Cd(II). 

In this work functionalized Cdots, that have already proven useful for Hg(II) 

sensing when suspended in water, will be immobilized using the sol-gel technique.  

The sol-gel method is a well described process that has gathered a great 

number of followers over the years. The interest in this technology began in the mid-

1800s with Ebelman [6] and Grahams’ [7] studies on silica gels. These early 

investigators observed that the hydrolysis of tetraethyl ortosilicate (TEOS), Si(OC2H5)4, 

under acidic conditions yielded SiO2 in the form of a “glass-like material” [6]. This 

material could be coupled to optical fibers to give rise to monolithic optical lenses [8] or 

composites. However, extremely long drying times of one year or more were necessary 

to avoid the silica gels fracturing into a fine powder and, consequently, there was little 

technological interest [9]. Over the years the sol-gel process was investigated by 

several noted chemists, like Ostwald [10] and Lord Rayleigh [11] and the technique 

was improved. 

Nowadays there are three main approaches to successfully produce sol-gel 

monoliths. Method 1: Gelation of a solution of colloidal powders; Method 2: Hydrolysis 
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and polycondensation of alkoxide or nitrate precursors followed by hypercritical drying 

of gels and Method 3: Hydrolysis and polycondensation of alkoxide or nitrate 

precursors followed by aging and drying under ambient precursor [12].  

Despite the production method, in order to successfully create a sol-gel matrix 

with adequate polarity and porosity it is quite important to control two variables: the 

solution pH and the drying conditions. This can be explained by the reaction that occur 

throughout the chemistry of the sol-gel process: 

Methods 2 and 3 both require liquid precursor such as Si(OR)4, where R is CH3, 

C2H5 or C3H7 and as such it passes through these three main stages: hydrolysis, 

condensation and polymerization. 

 

A. Hydrolysis 

In this stage the liquid precursor is hydrolyzed by mixing it with water according 

to the following chemical reaction: 

 

Si OCH3

OCH3

OCH3

H3CO + 4H2O(aq) (l) Si OH

OH

OH

HO (aq) + 4CH3OH (aq)

 

 

B. Condensation 

The silica hydroxide suffers a condensation reaction given rise to a dimmer: 

 

+ Si OH

OH

OH

HO (aq)Si OH

OH

OH

HO (aq) Si

OH

OH

HO (aq)O Si OH

OH

OH

+ H2O(l)

 

C. Polymerization 

The condensation reaction continues and eventually results in a SiO2 network, 

polymer. 
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(l)Si

OH

OH

HO (aq)O Si OH

OH

OH

+ 6Si(OH)4 Si O Si OH

OH

OH

OSi

OH

OH

HO

O

O

Si

OH

HO

Si OH

OH

HO

+ 6H2O

OH

 

The side products, water and methanol, remain in the network pores. The size 

of the sol-gel particles and the cross-linking within the particles depend upon the pH 

and the R ratio (R= [H2O]/ [Si(OR)4]. Usually the pH is acid, because it is generally 

more simple and allows the formation of a thin transparent film [9]. Additionally, one of 

the most used precursors is TEOS due to its commercial availability. TEOS based 

materials are normally hydrophilic which enables the immobilization of a soluble sensor 

without chemically altering it. There are other precursors and an impressive number of 

combinations so that the pore size and the chemical environment/inertness inside the 

solid matrix is adapted to a given sensor. Indeed there are numerous factors to take 

into account before selecting the adequate precursors for the sol-gel entrapment. One 

that can be considered the first factor is the intended application of the film. In this 

sense if the sensor inside the matrix is a gas sensor, the film should be permeable to 

the gas and normally hydrophobic. It is necessary to ensure that the matrix does not 

interact/ forms physical bonds with the sensor, but at the same time it should retain the 

sensor for long periods of time. This seems to be the simplest case within the 

complexity of the sol-gel technique. On the other hand if the sensor reacts to species in 

solution it is quite more difficult to obtain a good sol-gel matrix. In this case the pore 

size is dramatically relevant, since the film will be immersed in a given solvent at it is 

possible that the sensor is removed into the solvent. Moreover the porosity adjustment 

needs also to take into account the size of the analyte, since it is necessary that it can 

penetrate the matrix completely to interact with the sensor, otherwise the decrease in 

the signal could be so significant that it will be hard to distinguish between the signal 

and the background noise of the measurement equipment. Additionally, these matrixes 

will suffer several hydration and drying cycles that could be responsible for cracking the 

film. This can be overcome by adjusting the water/ethanol ratios. On top of all the 

matrix needs also to be inert towards the sensor, the analyte and all the other possible 

species present in the analyte solution. 
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Taking into account all these factors it seems that the sol-gel technique is not 

very appealing, however this is what makes the technique interesting. Indeed it is not 

possible to research for a sol-gel film used successfully with a sensor and try it with a 

new sensor, since it requires adjustments, nonetheless this is what makes each 

application unique and a step further into future applications. 
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5.3. Personal Contribution  

 

My personal contribution to this work includes the following: establishment of an 

initial objective and all the necessary research to ascertain the state of the art for the 

sol-gel immobilization. It was then required the suiting of this knowledge to the material 

and equipment available. Once this was determined all the procedures for the 

adjustment in precursors, ratios, fiber preparation and immobilization of the sensor on 

the tip of the optical fiber were performed. It was also necessary to perform numerous 

tests on the photostability and the stability against cracking by the drying and hydration 

cycles. Considering the results obtained the best protocol for the sol-gel film was 

selected. Afterwards, it was required the preparation of the fibers by chemically etching 

them. The solution was then applied and the stability of the film over time before the 

first water immersion was studied. The fibers were then tested over more than three 

months towards pH and metal ion sensing. Additionally physical tests were selected 

and performed to better ascertain the film homogeneity and thickness. The results were 

interpreted and compared to the existing data provided by other research groups. Once 

all the data were collected it was necessary to repeat all procedures in order to 

ascertain if the results were reproducible. When all these procedures were repeated 

and the data were considered reproducible it was necessary to write a manuscript with 

all the necessary data for publication in an international scientific research journal and 

perform the necessary adjustments to comply with the reviewers suggestions. 
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a b s t r a c t

An optical fiber sensor for Hg(II) in aqueous solution based on sol–gel immobilized carbon dots nanopar-
ticles functionalized with PEG200 and N-acetyl-l-cysteine is described. This sol–gel method generated a
thin (about 750 nm), homogenous and smooth (roughness of 2.7 ± 0.7 å) film that immobilizes the carbon
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dots and allows reversible sensing of Hg(II) in aqueous solution. A fast (less than 10 s), reversible and sta-
ble (the fluorescence intensity measurements oscillate less than 1% after several calibration cycles) sensor
system was obtained. The sensor allow the detection of submicron molar concentrations of Hg(II) in aque-
ous solution. The fluorescence intensity of the immobilized carbon dots is quenched by the presence of
Hg(II) with a Stern-Volmer constant (pH = 6.8) of 5.3 × 105 M−1.

© 2010 Elsevier B.V. All rights reserved.

ercury(II) sensing

. Introduction

Carbon dots are the newest member of the quantum dot series.
hey are a new class of fluorescent nanoparticles that are gain-
ng a great interest since they were first presented by Sun et
l. (2006). The possibility of using the exceptional properties of
he traditional quantum dots without the toxicity issues that
rises from the use of a heavy metal core is of the most inter-
st. As such, several studies have been made in this past years
overing the possible functionalizations/applications (Mao et al.,
009; Yang et al., 2009a; Gonçalves et al., 2010; Gonçalves and
steves da Silva, 2010) and the toxicity/bioaccumulation (Yang
t al., 2009b) of carbon dots. So far the results have demon-
trated that they enable fluorescence imaging with both one-and
wo-photon excitations on the same platform (Cao et al., 2007)
nd possess high stability over time, exceptional resistance to
hoto and chemical degradation, tunable fluorescence emission
nd excitation, high quantum yields, large Stokes shifts and they
re soluble in water (Liu et al., 2007). Furthermore, carbon dots
ave proved to be imaging agents with a performance com-
etitive to the traditional CdSe/ZnS quantum dots (Yang et al.,

009a).

The coupling of carbon dots with optical fibers to produce a spe-
ific and cheap nanosensor is highly interesting. The main issue
o overcome in order to make this task possible is the immobi-
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lization of the carbon dots in a suitable matrix in a way that it
retains all the properties that it had before and the matrix must
avoid leaching of the sensor and be permeable to water and ana-
lytes. Various immobilization techniques have been applied to fiber
optics, including adsorption to solid supports, covalent attach-
ment and entrapment in polymers, but the most promising one
is the sol–gel technique (Besanger and Brennan, 2006; Gupta and
Chaudhury, 2007; Wang et al., 2001). Due to the porous nature
of the sol–gel network, entrapped species remains accessible and
can interact with external chemical species or analytes (Flora and
Brennan, 2001). Sol–gel based sensors also suffer from some dis-
advantages, e.g., entrapment in sol–gel glass may change chemical
and biological properties of the entrapped species, due to reduced
degrees of freedom and interactions with the inner surface of
the pores (Zink et al., 1994; Lin and Brown, 1997). Nevertheless
this problem may be overcome by using a sol–gel derived matrix
accordingly to the sensor under investigation. Sol–gel derived thin
films are desired because of the basic requirement of short dif-
fusion path for quick interaction and detection of the analyte
molecule (MacCraith et al., 1995; Lev et al., 1995; Malins et al.,
2000).

This paper presents, for the first time, the immobilization of the
fluorescent nanomaterials carbon dots in a sol–gel matrix in the
tip of a fiber optic. When immobilized in the optimized sol–gel

membrane the carbon dots kept their photophysical and chemical
properties. Indeed, the fiber optic system (sensing head) described
in this paper allows reversible sensing of Hg(II) in the submicron
molar concentration range in aqueous solution and remains stable
after six months of use.

dx.doi.org/10.1016/j.bios.2010.07.018
http://www.sciencedirect.com/science/journal/09565663
http://www.elsevier.com/locate/bios
mailto:jcsilva@fc.up.pt
dx.doi.org/10.1016/j.bios.2010.07.018
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. Experimental

.1. Synthesis and functionalization of the carbon dots

All chemicals were purchased from Sigma Aldrich and were
sed without further purification. The ablation process was imple-
ented using UV pulsed laser irradiation (248 nm, KrF) of carbon

argets immersed in water.
The functionalization process was the same used by (Gonçalves

t al., 2010) without further changes. The synthesis of the carbon
anoparticles was performed by laser ablation [UV pulsed laser

rradiation (248 nm, KrF)] of carbon targets immersed in deonized
ater. The carbon nanoparticles obtained by laser ablation are not
uorescent and the following activation/functionalization process
as necessary to render them fluorescence: (i) 20 mL of the water

olution with the carbon nanoparticles dispersed plus 20 mL of
NO3 (0.1 M) was refluxed for 12 h in order to activate the car-
on nanoparticles surface; (ii) afterwards it was added 20 mL of
EG200 and the mixture continue refluxing for 28 h; (iii) after 28 h
t was added 2.984 g of N-acetyl-l-cysteine (NAC) and left refluxing
or more 31 h. The obtained carbon dots solution was extracted six
imes with ethyl acetate in order to eliminate unreacted reagents.
mL of this purified solution was diluted to 100 mL water which
onstituted the sensing solution used throughout the work.

.2. Preparation of optical fibers

Silica optical fibers with core/cladding diameters of 600 �m
ere purchased from Thorlabs. The fiber tips were carefully pol-

shed and their protective coating removed with acetone followed
y rinsing with deionised water. To enhance the efficiencies of exci-
ation and collection of luminescence the fiber tips were reshaped
y chemical etching (Jorge et al., 2004). By slow and controlled

mmersion of the tip in 40% HF a tapered probe with conical shape
as obtained (in a 2-cm fiber length the diameter is reduced from

00 to approximately 200 �m) (Gonçalves et al., 2008).

.3. Preparation of sol–gel films and sensing heads

The sol–gel matrix was prepared by the addition of 400 �L
f tetraethyl orthosilicate (TEOS), 20 �L of triethoxy(octyl)silane
Oc-TriEOS), 250 �L of ethanol, 40 �L of HCl (0.1 M) and 60 �L
f Triton-X. The as prepared matrix was left stirring for 45 min.
mmediately after this process 400 �L of the sensing solution con-
aining carbon dots functionalized with poly(ethylene glycol) with

molecular weight of 190–210 g/mol (PEG200) and N-acetyl-l-
ysteine was added to the sol–gel solution and stirred for 3 min.

Sensing fibers were prepared by immersing the prepared fiber
ips in the resulting sol–gel and matrix fibers were prepared using
he sol–gel preparation without sensor. All fibers were left to dry for
ne day, immersed in water two days and left to dry for one day pre-
iously to the beginning of the experiment. All the immobilization
nd drying procedures were performed at 25 ◦C.

.4. Metal ion titrations

Standard aqueous solutions of Hg(NO3)2, Pb(NO3)2, CdCl2,
u(NO3)2, NiCl2, CoCl2, Zn(NO3)2·4H2O and N-acetyl-l-cysteine

rom Merck, were prepared in a buffer phosphate solution
pH = 6.8), in a concentration range of 1.00 × 10−7, 7.99 × 10−7,
.30 × 10−6, 1.99 × 10−6 and 2.69 × 10−6 M.
.5. Instrumentation

Fluorescence measurements were performed with an home-
ade equipment containing a stabilized light source constituted
ioelectronics 26 (2010) 1302–1306 1303

of 360 nm LEDs from Roithner Lasertechnik (Ref. NS360L-3RLQ); a
CCD detector from Ocean Optics (USB4000); a 1.0 mm glass fiber
optic was used to guide the light from the source to the sam-
pling compartment; this was a black optimized compartment with
a sampler were the different solutions could be put in contact with
the sensing fibers; the sensing fibers also served as light guides
to the detector. The integration time used was 4 s and the time
series experiments were performed using a maximum emission
wavelength of 498 nm. This system, schematically shown in Sup-
plementary Fig. A, was developed in order to minimize light losses
(Duarte and Esteves da Silva, 2010).

Scanning electron microscopy (SEM) and of the two sensing
fibers and one matrix were done on a FEI Quanta 400FEG/EDAX
Genesis X4 M High Resolution Scanning Electronic Microscope.
Atomic Force Microscopy (AFM) was performed on two sensing
fibers and one matrix on a Veeco Metrology Multimode/Nanoscope
on a tipping mode with a RTESP-Veeco cantilever.

2.6. Quenching data analysis

The quenching of fluorescence by metal ions [M(II)] was
described using the Stern-Volmer equation:

Io

I
= 1 + Ksv[M(II)]

where Io is the fluorescence intensity without metal ion, I is the
fluorescence intensity observed in the presence of a metal ion and
Ksv is the static Stern-Volmer constant (Lakowicz, 1999).

3. Results and discussion

3.1. Carbon dots immobilization on the optical fiber

Several factors need to be accounted for in the functionalized
carbon dots [Hg(II) sensor] immobilization on the optical fibers
(Gupta and Chaudhury, 2007), namely: stability of the film over-
time; uniformity and thickness of film; adhesion to the substrate
and resistance to cracking; and, designing of stable internal envi-
ronment and minimizing the potential of leaching of entrapped
species.

In order to adjust the stability of the film, its uniformity,
thickness and the design of a stable internal environment and
to minimize the leaching of entrapped species the ratio between
the precursors and ethanol was adjusted. The most promis-
ing volumetric ratios were (6.7:1:4.2:1.3), (6.7:0.33:3.7:0.67) and
(6.7:0.33:4.2:0.67) of TEOS, Oc-TriEos, ethanol and HCl (0.1 M),
respectively. It was still necessary to study the film resistance to
cracking and different amounts of the surfactant Triton-X were
added – the volumetric ratios between Triton-X and ethanol
that were studied were (3.7:1), (4.2:2) and (4.2:1). The different
films obtained by these mixtures were immersed in water and
dried at room temperature in order to evaluate the stability and
resistance to cracking. The final volumetric ratio used for film
sensing was (6.7:0.33:4.2:0.67:1) of TEOS, Oc-TriEos, ethanol, HCl
(0.1 M) and Triton-X, respectively. The volumetric ratio between
the precursors and the sensor solution was always the same
(6.7:0.33:4.2:0.67:1:6.7), however the concentration of the sensor
used in the mixtures was adjusted to obtain the highest intensity
signal but, at the same time, avoid inner filter effects. The sen-
sor solutions tested in these mixtures correspond to the following
dilutions in water of the concentrated sensor: (1:100), (5:100) and

(25:100) – the film that yields the best results was the one with a
dilution of (5:100).

The aging process of the sol–gel was also analyzed and all the
parameters were tested over six months using different fibers. The
aging process was analyzed in two different ways:
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(i) Firstly, it was tested the aging of the sol–gel matrix before
he addition of the film, in order to allow a more complete hydrol-
sis, and as such, smaller pore sizes, in the absence on the sensor.
efore the addition of the sensor the matrix was left to stabilize

n a time range between 30 min and 24 h. According to this proce-
ure it was observed that the best stabilization time was 45 min –
therwise, sensor leaching was observed. The films were left to dry
or another day and them immersed in water. This aging process
as evaluated by measuring the fluorescence intensity of the water

olution where the films were immersed.
(ii) Secondly, the aging influence of the film containing the

ensor was also tested. Some fibers were prepared under similar
onditions in the same day but their first immersion on water was
erformed in different following days corresponding to different
lm aging times. Aging times ranging from 2 h to two days were
ested and it was observed that one day the optimum aging period.
hese parameters were evaluated by microscope observation.

The morphology and analytical properties of the optimized
ensing head are described in the following sections.

.2. Morphology analysis of the sensing film in the optical fiber

SEM analysis of the tip of the fiber optic showed a highly
omogenous sensing film (Fig. 1a) with some nanometer dust par-
icles deposited on the fibers. The analysis of a broken section of the
ptical fiber showed that the film thickness above the fiber optic
lass was about 750 nm (Fig. 1b).

To better access the topography of the film it was performed an
FM analysis (Fig. 2). The analysis of Fig. 2a shows that the fiber
ptic matrix film is quite homogenous and the insertion of the sen-
or on the sol–gel matrix (Fig. 2b) did not change it – although the
lm with carbon dots become fluorescent and their fluorescence
roperties changes in contact with Hg(II) aqueous solutions. The
oughness of both films is about 2.7 ± 0.7 å. The homogeneity of the
lm was only possible after the chemical etching of the optical fiber
hat resulted in an optimized tip (in terms of optical transmission)
nd smooth.

The morphology analysis of the sensing head shows that the
ol–gel method generated a thin, homogenous and smooth film that
hould contain the immobilized sensor. The analytical performance
nd reversibility of this sensing head towards Hg(II) in aqueous
olution will be discussed in the following section.

.3. Analytical performance

Previously it has been shown that the fluorescence of carbon
ots functionalized with N-acetyl-l-cysteine is quenched by Hg(II)
Gonçalves et al., 2010). Consequently, the analytical performance
f the sensing head previously described towards Hg(II) in aqueous
olutions was assessed at constant pH = 6.8 (phosphate buffer).

In water the maximum excitation and emission wavelengths
f the carbon dots are located at 340 and 450 nm, respectively
Gonçalves et al., 2010). When immobilized in sol–gel the max-
mum of the emission wavelength shows a red shift to 495 nm.
imilar wavelength shifts have already been observed after sol–gel
mmobilization of quantum dots nanoparticles probably due to
he reduction of the confinement potential of the immobilized
anoparticles (Maule et al., 2010).

Fig. 3a shows the dynamic response of the fluorescence intensity
f the fiber probe when dry and subjected to three cycles between
ix different concentrations of Hg(II) (between 0 and 2.69 �M).

he analysis of this figure shows that the response time is fast
nd less than 10 s but a slightly fluorescence intensity decrease
s detected when the fiber probe is in contact with an aqueous
olution. Although each step of Fig. 3a shows a noisy response,
he relative standard deviation is quite small and always less than
Fig. 1. SEM images of the fiber optic with the sensing film (a) and of a cross-section
of a broken tip (b).

0.5% – for example, typical values for the zero Hg(II) concentration
the average and standard deviation of the fluorescence intensity
are: 9689 ± 28, 9671 ± 48 and 9739 ± 17; and, for the highest Hg(II)
concentration the following typical values are observed: 8210 ± 36,
8235 ± 34 and 8122 ± 31. Taking this result into consideration the
criteria for signal measurement was the average of the fluorescence
intensity readings for a 90 s interval after the sensing head being
immersed in the aqueous analyte solution. The analysis of the two
first steps of Fig. 3a shows that the hydration of the sensing sol–gel
film provokes a slight decrease of the fluorescence intensity.

The analysis of Fig. 3a also shows that the fluorescence inten-
sity of the immobilized carbon dots is a function of the Hg(II)
concentration when the tip of the optical fiber is immersed in
aqueous solution and that the responses are quite reproducible
and reversible. Indeed, the relative standard deviation of the
average fluorescence intensities for each Hg(II) concentration for
a set of several cycles is always less than 1% – for example,
the average and standard deviation of three fluorescence inten-

sities independent measurements are 9670 ± 35, 8798 ± 67 and
8189 ± 59, respectively for Hg(II) concentration of zero, 1.30 × 10−6

and 2.69 × 10−6 M. This feature was invariant for at least six months
suggesting that the immobilized sensor (carbon dots) was not being
leached from the membrane.
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Table 1
Stern-Volmer parameters for the quenching of carbon dots sol–gel immobilized in the fiber optic by Hg(II) and Cu(II) ionsa.

Ion K a M−1 Intercepta R Points Concentration range M
0.9770 6 1.00 × 10−7–2.69 × 10−6

0.9750 6 1.00 × 10−7–2.69 × 10−6

ences on three different fibers. R – correlation coefficient.

b
S
s
(
f
(
t
i

i
T
q
c
m
t
l

F
o

SV

Hg(II) (5.3 ± 0.3) × 105 1.0 ± 0.2
Cu(II) (6.3 ± 0.3) × 104 0.99 ± 0.02

a Averages and standard deviation (under parenthesis) of six independent experi

The quenching provoked by the Hg(II) in the sol–gel immo-
ilized carbon dots fluorescence is described by a typical
tern-Volmer plot (Fig. 3b). The analysis of the Stern-Volmer plots
how that they follow a linear trend with a Ksv = 5.2(3) × 105 M−1

Table 1). This constant is somewhat higher to that observed
or these carbon dots in aqueous solution [Ksv = 1.3(4) × 105 M−1]
Gonçalves et al., 2010). This result is compatible with the forma-
ion of a quite stable complexes between the carbon dots and Hg(II)
nside the hydrated sol–gel matrix.

In order to check for possible interferent species on the sens-
ng head response some common interferents were tested (Fig. 4).
he analysis of Fig. 4 shows that only Cu(II) ion has a measurable
uenching effect on the fluorescence intensity of the immobilized

arbon dots (Table 1) which agrees with the behavior of these nano-
aterials when in solution (Gonçalves et al., 2010). Consequently,

he sensing probe also responds to Cu(II) but it is about ten time
ess sensible to this ion than to Hg(II). The analysis of the Stern-

ig. 2. Three-dimensional amplification of the AFM image of the optical fiber with-
ut (a) and with the sensing film (b).

Fig. 3. (a) Steady-state fluorescence measurements (excitation 360 nm and emis-
sion 498 nm) of the dry optic fiber sensing head followed by three cycles of Hg(II)
aqueous solutions with the following concentrations: 0, 0.1, 0.799, 1.30, 1.99 and
2.69 �M. (b) Stern-Volmer plot of the quenching of the fluorescence of the sol–gel
immobilized carbon dots by Hg(II) ion.
Fig. 4. Steady-state fluorescence quenching (excitation 360 nm and emission
498 nm) of the optic sensing head with different interfering ions at 2.69 �M.

Volmer plots for the Cu(II) quenching show that they follow a linear
trend with a Ksv = 6.3(3) × 104 M−1 (Table 1) which similar to that
observed in aqueous solution [Ksv = 5.6(8) × 104M−1] (Gonçalves et
al., 2010).

4. Conclusions
An optical fiber sensor for Hg(II) in water based on carbon dots
immobilized on an optimized sol–gel matrix was obtained. The sen-
sor is reversible and stable with a fast response time. The sol–gel
matrix was successfully optimized allowing the immobilization of
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arbon dot based sensor without affecting its physico-chemical
roperties.

With the homemade instrumental setup used in this work to
ssess the analytical potential of the carbon dots based fiber opti-
al sensor, a submicron molar concentrations detection of Hg(II) in
queous solution was achieved. Probably lower Hg(II) aqueous con-
entrations can be detected if a higher system sensitivity is obtained
y using more powerful light sources and more sensible detectors.

This fiber optic sensor system has a quite interesting analytical
otential because the carbon dots nanoparticles are non-toxic and
iocompatible and fiber optics are highly flexible analytical support
ool.
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Chapter 6 – Layer by Layer Immobilization of Carbon 

Dots Fluorescent Nanomaterials on Single Optical Fiber 

 

6.1. State of the Art 

 

The layer-by-layer technique has been used extensively over the last few years 

for the deposition of discrete layers of multiple compounds. It was first introduced by 

Iler in 1966 [1] and ever since then it has been gathering numerous supporters. 

Biomedical research has taken this technique as a very good alternative to all existing 

immobilization techniques. In this sense polyelectrolyte multilayer films (PEM) have 

been described for applications, such as, implantable device coatings, drug delivery 

systems, gene therapy and 3D biomimetic cell/biomaterial constructs [2-5].  

The popularity of this technique is associated with its simplicity and versatility. 

Indeed, the concept that lies beneath this deposition method makes it possible to apply 

it to several biomolecules and nanoparticles. This technique is based on charge 

interactions, therefore it only requires that the nanoparticles have an electric charge. 

The nanoparticles are deposited in discrete layers that are spaced with an adequate 

polymer with an electric charge opposite to the nanoparticle, as it is possible to see in 

Fig. 6.1. The basic process involves dipping a charged substrate into a dilute aqueous 

solution of a polyelectrolyte (A) and allowing it to be adsorbed and reverse the charge 

of the substrate. When this process is finished the substrate with the polyelectrolyte (A) 

is carefully washed several times and then immersed in another polyelectrolyte solution 

(B). It is left there for a controlled amount of time, in order to allow the polyelectrolyte B, 

with an opposite charge of A, to adsorb. The overall charge is changed again and this 

process can be repeated numerous times to obtain discrete layers of the nanoparticles 

interspaced with an polyelectrolyte.  
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Fig.6.1– Scheme representing the layer-by-layer deposition method with all the steps required in order to obtain 

a good and homogenous film of discrete sensor layers.  

 

The layer-by-layer unique characteristics make it quite appealing. Features, 

such as, robustness and minimal setup, along with the potential to modulate surface 

chemical, physical and structural properties at the nanoscale by adjusting, for example, 

the solution composition, pH, ionic strength, number of deposited layers, dipping and 

rinsing times, film post-treatment and the relative manufacture low cost. Additionally it 

is also possible to introduce a large panoply of molecules into the multilayer in a 

programmed sequence thereby adding new functionalities [6]. 

This technique present some important advantages over others that are now 

popular in the multilayered immobilization area. Indeed, for example, the advantage of 

spontaneous adsorption allows its application independently of size, shape, topography 

or topology of the molecule/nanoparticle that needs to be immobilized. Furthermore 

since the process occurs by adsorption there it no need to develop complex reactions 

with accurate stoichiometric control to assure a good deposition [7].  

The layer-by-layer technique is still in the crib stage, there is a pressing need for 

the development of new polyelectrolytes with controlled features that are essential to 

this deposition method. Properties, such as, controlled charge density, charge location 

and functionality are very important and necessary to further develop this methodology. 

Moreover the development of polyelectrolytes that enable the adsorption from 

nonaqueous solutions, competitive adsorptions to prepare mixed layers and chemical 

reaction of adsorbed layers, are possible directions that only require advances in the 

polyelectrolytes synthesis [8].  
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The possibility of depositing thin layers of a given sensor 

(molecule/nanoparticle), without the need to adjust several parameters to avoid our 

sensor to lose its sensing properties is quite appealing. This was one of the reasons 

that pushed the following work forward. 
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6.3. Personal Contribution  

 

My personal contribution to this work includes the following: establishment of an 

initial objective and all the necessary research to ascertain the state of the art on the 

layer-by-layer technique. Afterwards it was necessary to prepare the fibers by chemical 

etching and prepare more Cdots functionalized and purified to send to Scotland, where 

Dr. Frank Davis performed the immobilization. It was then necessary to perform some 

initial analysis on the fibers and adjust the protocols in order to increase the 

fluorescence intensity signal and adapt our sensing system to correctly measure the 

Cdots fluorescence through fibers. Some new fibers and Cdots samples were sent and 

immobilized. Subsequently, the fibers were tested against photostability and leaching. 

When all these procedures produced acceptable results the fibers were tested towards 

pH and metal ion sensitivity over some months. The results were interpreted and 

compared to the existing data provided by other research groups. When all these 

procedures resulted in a reproducible method it was necessary to write a manuscript 

with all the necessary data for publication in an international scientific research journal 

and perform the necessary adjustments to comply with the reviewers suggestions. 
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Fluorescent  single  fiber  optic  sensor.
Carbon  dots  fluorescent  nanoparti-
cles.
Fiber  optic  carbon  dot  based  Hg(II)
sensor.
Sensor  immobilized  by  the  layer-by-
layer  technique.
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a  b  s  t  r  a  c  t

We  report  within  this  paper  the  development  of  a fiber-optic  based  sensor  for  Hg(II)  ions. Fluores-
cent  carbon  nanoparticles  were  synthesized  by laser  ablation  and  functionalized  with  PEG200 and
N-acetyl-l-cysteine  so  they  can be  anionic  in  nature.  This  characteristic  facilitated  their  deposition  by
the layer-by-layer  assembly  method  into  thin  alternating  films  along  with  a cationic  polyelectrolyte,
poly(ethyleneimine).  Such  films  could  be immobilized  onto  the tip  of a  glass  optical  fiber,  allowing  the
eywords:
arbon dots
anoparticles
ayer-by-layer immobilization
ingle optical fiber

construction  of  an  optical  fluorescence  sensor.  When  immobilized  on the  fiber-optic  tip,  the  resultant
sensor  was  capable  of selectively  detecting  sub-micromolar  concentrations  of  Hg(II)  with  an  increased
sensitivity  compared  to  carbon  dot  solutions.  The  fluorescence  of  the  carbon  dots  was  quenched  by  up
to 44%  by  Hg(II)  ions  and  interference  from  other  metal  ions  was  minimal.

© 2012 Elsevier B.V. All rights reserved.

ercury sensor

. Introduction

Carbon dots are recently discovered nontoxic fluorescent
anoparticles with high biocompatibility [1,2]. With fluorescence
roperties comparable with the traditional quantum dots they have

een gathering much attention over the last five years [2–4]. One of
he most interesting feature of this nanomaterial is the simplicity of
unctionalization procedures with several different molecules that

∗ Corresponding author. Tel.: +351 220 402 569; fax: +351 220 402 659.
E-mail address: jcsilva@fc.up.pt (J.C.G. Esteves da Silva).

003-2670/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.aca.2012.05.015
can impart a specific functionality [5].  In this context these systems
have found applications in bioimaging [2,6,7],  white light emitting
devices [8] and sensors [2,9–12].

The use of thin single optical fibers combined with immobilized
fluorescence sensors is a challenging analytical chemistry area.
Indeed, the fragile nature of the exposed fiber tip and the reduced
surface area for sensor immobilization of the optical fiber are some
of the problems responsible for optical fiber detection that have

been reported so far. Some of these issues can be overcome if
high quantum yield fluorescent sensors are used and carbon dot
nanomaterials possess this characteristic. However, in order to
obtain analytically useful fluorescent signals, the concentration of

dx.doi.org/10.1016/j.aca.2012.05.015
http://www.sciencedirect.com/science/journal/00032670
http://www.elsevier.com/locate/aca
mailto:jcsilva@fc.up.pt
dx.doi.org/10.1016/j.aca.2012.05.015
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he sensor in the tip of the fiber optic should be relatively high –
hich can be achieved by a suitable immobilization procedure. The

mmobilized sensing film should moreover be physically stable
nd allow fast and reversible sensor responses.

Layer-by-layer immobilization procedures allow the construc-
ion of thin films of charged materials which are stable and can
e constructed with precise control of thickness and constitution
13,14]. Basically a solid surface can be chemically modified in
rder to be electrostatically charged. Exposure to a solution of
pecies with multiple opposite charges, such as, a polyelectrolyte
r multiply charged particle leads to a spontaneous assembly of a
onolayer of this species. Further treatment with a second oppos-

ng charged polyelectrolyte causes the deposition of a second layer
n top of the first. This process can be repeated to form multilay-
rs containing a precise number of layer upon almost any substrate
13,14]. Many uses for these films are being investigated, and in this
ontext for example they can be used in the construction of biosen-
ors [15] or to build up lattices of semiconducting nanoparticles
16].

The layer-by-layer technique [13,14] has been used for a number
f applications, such as, the construction of biosensors [15] and
norganic lattices of semiconductor nanoparticles such as CdS or
nS [16]. However the use of this technique to produce optical fiber
ensors based on carbon dots has never been performed.

In this paper we report the Hg(II) sensing performed by carbon
ots immobilized in the tip of an optical fiber using the layer-
y-layer deposition method. The previously described sol–gel
echnique [11] requires that the matrix is adapted to each fluo-
ophore characteristics, since it needs to take into account the pore
ize and the affinity toward water, among other factors. Addition-
lly the sol–gel film requires more care in fabrication in order to
uarantee that the film does not break. With this technique it is
ossible to immobilize the sensing film on any substrate, regard-

ess of its size. It is also an advantage that since the analyte is not
equired to pass through any matrix before interacting with the car-
on dots, this allows an increase in the sensor availability, which

s reflected in an increase in the sensor sensitivity. Also, since it
hould not be dependent on the diffusion of the analyte across a
olid matrix, it also allows a more rapid time response.

. Experimental

.1. Synthesis of the carbon dots

The carbon dots were synthesized by laser ablation of a carbon
arget immersed in water. They were then functionalized and puri-
ed according to the procedure previously described [9] to and the
olution thereby obtained used for the immobilization procedures.

.2. Preparation of optical fibers

Silica optical fibers with core/cladding diameters of 600 �m
ere purchased from Thorlabs. The fiber tips were carefully pol-

shed and their protective coating removed with acetone followed
y rinsing with deionized water. To enhance the excitation and
ollection of luminescence efficiencies the fiber tips were reshaped
y chemical etching. By slow and controlled immersion of the tip

n 40% HF for two hours a tapered probe with conical shape was
btained (in a 2-cm fiber length the diameter is reduced from 600
o approximately 200 �m)  [17].

.3. Immobilization of the carbon dots on the optical fiber
Immediately before immobilization, the fibers were immersed
or 30 min  in a 1:1:4 mixture of 25% ammonia solution, 30% hydro-
en peroxide solution and water, thereby further cleaning and
imica Acta 735 (2012) 90– 95 91

leaving the surface covered with Si OH groups, rendering it rela-
tively anionic in nature. After rinsing with water they were then
placed in a 2 mg  mL−1 solution of poly(ethyleneimine) (Sigma,
MW = 50,000) for 30 min  to deposit a layer of the polycation. The
fibers were then rinsed in water and immersed into a concentrated
solution of carbon dots [9] for 30 min  to allow deposition of a layer
of the nanoparticles. This process could be repeated to give alter-
nating polymer/nanoparticles multilayers containing 1–6 layers of
carbon dots. Finally the samples were dried and stored at room
temperature until analysis.

2.4. pH and metal ion titrations

Standard aqueous solutions of Hg(NO3)2, Pb(NO3)2, CdCl2,
Cu(NO3)2, NiCl2, CoCl2, Zn(NO3)2·4H2O and N-acetyl-l-cysteine
(NAC) from Merck, were prepared in phosphate buffer (pH = 6.8)
with concentrations of 0.0100, 0.0500, 0.100, 0.799, 1.99 and
2.69 �M.  For the pH measurements the fibers were immersed in
phosphate buffers in a pH range of 2.0–8.0. The fibers were exposed
initially to a pH buffer solution of 2.0, then immersed in deionized
water before exposition to another pH buffer solution. This pro-
cedure was  performed in cycles where each cycle represents the
fibers response to the complete pH range.

The metal ion titrations where performed in a similar way as
reported for pH measurements. The dry fibers were initially mea-
sured to access their fluorescence intensity. They were then left in
water for 5 min  to allow a good hydration of the film – this was
found to be the optimal time for this step. Afterwards the fibers
were exposed to increasing metal sensing solutions and, in between
each metal solution they were immersed in water to remove any
analyte from the fiber surface. When an entire cycle was performed
(from dry up to metal concentrations of 2.69 �M)  the fiber was  used
consecutively for other cycles.

2.5. Instrumentation

Fluorescence measurements were performed using homemade
equipment containing a stabilized light source constituted of
380 nm LEDs from Roithner Lasertechnik (Ref. LED360-01); a cut-
off filter of 400 nm;  a CCD detector from Ocean Optics (USB4000);
a 1.0 mm glass fiber optic to guide the light from the source to the
sampling compartment; this was  a black optimized compartment
with a sampler were the different solutions could be put in contact
with the sensing fibers; the sensing fibers also served as guides until
the detector. The integration time used was  1 s and the time series
experiments were performed using a maximum emission wave-
length of 500 nm. This system was developed in order to minimize
light losses.

The carbon dots were characterized by SEM on a FEI Quanta
400FEG/EDAX Genesis X4M High Resolution Scanning Electronic
Microscope and by TEM on a Leica LEO 906E microscope. Opti-
cal fibers were characterized by Atomic Force Microscopy (AFM)
on a Veeco Metrology Multimode/Nanoscope on a tipping mode
with a RTESP-Veeco cantilever. The size distribution of carbon dots
in water was determined by dynamic light scattering (DLS) analy-
sis using a Malvern Instruments (Malvern, UK)  Zeta Sizer Nano ZS,
using disposable polystyrene cells from Sigma.

2.6. Calculation

In this study static quenching of fluorescence by metal ions

[M(II)] was  described using the Stern–Volmer equation:

Io
I

= 1 + KSV[M(II)]
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ig. 1. TEM image of the raw carbon dots produced by laser ablation (a) and DLS
epresentation of the functionalized carbon dots (b).

here Io is the fluorescence intensity without metal ion, I is the flu-
rescence intensity observed in the presence of a metal ion and KSV
s the static (conditional stability constant) Stern–Volmer constant
18].

The variations in the fluorescence intensity of carbon dots with
he solution pH can be linearized using a Henderson–Hasselbalch
ype equation which allows the calculation of an apparent pKa.

Io
I

= 1 + KSV[M(II)]

here Imax and Imin are respectively, the maximum and minimum
f the fluorescence intensity of the acid or conjugated base species
nd I is the fluorescence intensity as a function of the pH.

. Results and discussion

.1. Sensor morphological characterization

The raw carbon dots (obtained directly from the laser ablation,
efore any functionalization procedures) were characterized by
EM and TEM (Fig. 1a) where it was found that the smaller par-
icles had diameters up to about 20 nm.  After functionalization the
arbon dots were analyzed by TEM [12] and DLS and their diameter
as estimated (Fig. 1b) to be 44 nm.

The carbon dots solutions (concentrated and diluted) were
eposited on the tip of several optical fibers activated using
oly(ethyleneimine) as described above. On each fiber a different
umber of sensor layers from 1 to 6, were deposited and their

esponse was evaluated over time. All fibers were prepared with
oncentrated solutions of carbon dots.

The fibers with and without the sensor were characterized by
FM analysis. In this analysis it was possible to observe points of
Fig. 2. Three dimensional representation of the AFM image of the optical fiber with-
out  the sensing film (a) and six layers (b).

depression on the fibers without (Fig. 2a) and with (Fig. 2b) the sen-
sor. These points are defects on the fibers most likely due to their
pre-treatment with HF and even though all fibers were prepared
at the same time using the same etching solution it is not possible
to guarantee that the defects are exactly the same. Since the par-
ticularity of each defect affects the efficiency of light transmission
of the fiber it is possible to interpret the fluctuations of the max-
imum intensity (Table 1) not as an increase – due to the increase
in carbon dots – but as a random behavior since these effects were
not controlled. Also from the analysis of AFM it was possible to find
a trend between the film roughness and the number of deposited
layers. The roughness tends to decrease with the number of layers
(7.39; 4.32; 4.09; 3.26; 2.25 nm for one, two, four and six layers,
respectively). These results are consistent to the one observed pre-
viously with a sol–gel film [8].  Since the deposition by sol–gel was
performed by dip coating and the film thickness was approximately
700 nm,  the defects on the fiber were not detected, with the film
being found to have a roughness of 2.7 ± 0.7 Å. Previous workers
[13,14] have reported on the ability of films deposited by the layer-
by-layer technique to bridge over or smooth out defects in the solid
substrates onto which they have been deposited.

3.2. Fluorescence mechanism

The fluorescence mechanism of carbon dots has yet to be
completely determined, however it is commonly accepted that it

has a component due to surface defects and quantum confinement
[19,20]. Carbon dots present several surface defects that can act
as energy traps, that along with the confinement due to its size
is responsible for its fluorescence. Upon functionalization with
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Table  1
Quenching effect and Stern–Volmer parameters of the carbon dots functionalized with PEG200 and NAC, immobilized in the tip on an optical fiber, when exposed to Hg(II)
aqueous solutions in the following concentrations: 0, 0.01, 0.05, 0.1, 0.799, 1.99 and 2.69 �M.a

Property Immobilization method

Solution [9] Sol–gel [11] 1 layer 2 layers 4 layers 6 layers

Max. Int./u.a. – – 13,319 8681 11,212 10,704
Min.  Int./u.a. – – 10,853 6847 7602 6020
%Qa (25 ± 1) (15 ± 4) (19 ± 3) (21 ± 2) (32 ± 2) (44 ± 3)
KSV

a/(× 105) M−1 Hg(II) (1.3 ± 0.4) (5.3 ± 0.3) (0.76 ± 0.09) (0.89 ± 0.01) (1.6 ± 0.1) (2.6 ± 0.2)
Intercepta (0.97 ± 0.01) (1.0 ± 0.2) (1.02 ± 0.01) (1.04 ± 0.02) (1.03 ± 0.02) (1.1 ± 0.5)
R  0.9719 0.9770 0.9860 0.9833 0.9844 0.9786
KSV

a/(× 104) M−1 Cu(II) (5.6 ± 0.8) (6.3 ± 0.3) (0.50 ± 0.07) (0.69 ± 0.09) (1.3 ± 0.2) (2.8 ± 0.3)
Detection limit/(× 10−6) M 0.1 0.1 0.1 0.07 0.05 0.01
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Concentration range/(× 10−6) M (0.1–2.69) (0.1–2.69) 

a Averages and standard deviation (under parenthesis) of six independent experi

ifferent molecules it was found that there is a shift in the emission
avelength along with an increase in the fluorescence intensity.
hen the carbon dots are exposed to different Hg(II) ion concen-

rations, its fluorescence is quenched. In order to better understand
his effect, the carbon dots in the different phases of the carbon
ots of functionalization were exposed to Hg(II). It was found that
rom, raw carbon dots, carbon dots functionalized with PEG200 and
arbon dots functionalized with PEG200 and NAC only carbon dots
unctionalized with NAC were sensitive toward the Hg(II). As such,
ince NAC treatment leads to the carbon dots surface being coated
ith SH groups it is possible to say that this sensitivity is due to

n interaction between this groups and Hg(II) ions.

.3. Analytical sensing characterization

Each fiber was tested over a period of two weeks and passed
hrough a number of hydration and drying cycles. It was  observed
hat despite the numerous drying and hydration cycles the fibers
id not present a loss in signal and the solutions where they were

mmersed had no residual fluorescence. Again this corresponds

ith previous work [13,14] reporting the high physical and chem-

cal stability of many of the different types of layer-by-layer films.
he presence of surface defects on the optical fiber has a measur-
ble influence on the background noise. Since it was  established

ig. 3. Steady-state fluorescence measurements over time (excitation 380 nm and emissi
queous  solutions with in the following concentrations: 0, 0.01, 0.05, 0.1, 0.799, 1.99 an
mmersed in Hg(II) 0.01 �M.
.01–2.69) (0.01–2.69) (0.01–2.69) (0.01–2.69)

 on three different fibers. R – correlation coefficient.

by AFM that an increasing number of layers led to a decrease in
roughness it is unsurprising that the fiber with least background
noise is that containing 6 layers of carbon dots. Fig. 3 represents
an average of the results obtained over three independent cycles
gathered over six days. In each cycle the fibers were exposed to
different Hg(II) concentrations and in between each concentration
the fiber was  immersed in water to remove any Hg(II) excess from
the fiber surface. The analysis of this figure can be performed in
two  ways: (i) within each cycle and (ii) across cycles. Upon anal-
ysis of the results obtained within the same cycle it is possible
to say that the variation of the fluorescence intensity, for each
analyte concentration is almost constant. In fact, the average flu-
orescence intensity and standard deviation, in the first cycle, e.g.,
for: 0, 0.01, 0.05, 0.1, 0.799, 1.99 and 2.69 �M of Hg(II), respec-
tively, is: (14,580 ± 41), (12,777 ± 47), (11,728 ± 25), (10,379 ± 25),
(9708 ± 82), (8685 ± 10), (7910 ± 17) and (7012 ± 13). The fibers
were first immersed in water and then immersed in different con-
centrations of Hg(II), as we can see in Fig. 3. In point (1), the fiber
was  immersed in water and left to stabilize for a few seconds, after-
wards the fiber was  removed (point 2) and immersed in a Hg(II)

sensing solution (point 3). The cycle continued by removing the
fiber from the sensing solution and immersing it in another solu-
tion of higher concentration. When analyzing the data across the
three consecutive cycles it becomes apparent that not only is the

on 500 nm)  of the dry optical fiber with six layers, followed by three cycles of Hg(II)
d 2.69 �M.  (1) The fiber was immersed in water, (2) removed from water, and (3)
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Fig. 4. Steady-state fluorescence measurements (excitation 380 nm and emission
500 nm)  of the dry optical fiber and with Hg(II) aqueous solutions in the following
concentrations: 0, 0.01, 0.05, 0.1, 0.799, 1.99 and 2.69 �M with (a) one layer and (b)
six  layers. (c) Stern–Volmer plot of the fluorescence quenching of the carbon dots
4 H.M.R. Gonç alves et al. / Analy

ensor is highly reversible – the average standard deviation for the
ame analyte concentration has a maximum of 30 and a minimum
f 2 for Hg(II) concentrations of 0.1, 0.799 �M,  respectively, while
lso demonstrating a rapid sensor response.

The use of carbon dots as fluorescent metal sensors represents
n advantage over the use of organic dyes, since among other things
hey are more photostable. However it is not easy to design a sen-
or specific to Hg(II) in small concentrations since Cu(II) ions are
ommon interferents in fluorescence measurements of mercury.
he use of carbon dots immobilized by the layer-by-layer tech-
ique allowed a lower detection limit than the one previously
emonstrated for these metals. For example, Moon et al. [21] pre-
ared a fluorescence sensor based upon 8 hydroxyquinoline as a
g(II) fluorescence sensor with the detection limit of 5 × 10−6 M.
oun and Chang [22] prepared a different Hg(II) fluorescent sen-
or that detected both Hg(II) and Cu(II), with a detection limit of
.45 × 10−6 M for Hg(II).

The sensor was shown to display pH sensitivity probably due
o the NAC groups introduced onto the carbon dots being ionized
o different extents according to the media pH and influencing
he confinement energy of the nanoparticles. A trend between
he decrease in the fluorescence intensity as the pH increases
as found for all fibers. In Fig. SI.1 is the representation of the
enderson–Hasselbach linearization of a fiber with one layer of
arbon dots. Through the analysis of this figure, it was  possible to
btain an apparent pKa of 4.4 ± 0.1 and a slope of 1.6, which is con-
istent with the results obtained for a carbon dots solution [9].  This
lope is an indication that the carbon dots undergo a polyelectrolyte
ype of ionization behavior, and since there is only one layer of car-
on dots, this is perhaps the closest we can get to understand the

onization behavior of a single carbon dot. As is was observed for the
g(II) sensing the pH behavior is reversible. In fact, in both cases,

he sensor response is only limited by the time acquisition of the
etup used (1 s).

In Fig. 4 it is possible to see the difference between the Hg(II)
uenching on the optical fiber with one (Fig. 4a) and six carbon
ot layers (Fig. 4b). The results of the fluorescence steady-state
easurements are summarized in Table 1.
From the observation of Table 1 it is possible to see an inter-

sting trend of the quenching effect (Q) with the number of layers.
n fact the quenching effect increases with the number of layers of
arbon dots on the tip of the optical fiber. Also when comparing the
esults of the sensor immobilized layer-by-layer with the ones for
olution and using the sol–gel technique, it is possible to observe
hat even with only one layer the fluorescence quenching by Hg(II)
s more pronounced than previously reported [9,11].  This is proba-
ly a consequence of the availableness of the carbon dots to interact
ith the analyte when immobilized in discrete layers within such

 thin film. Also these results demonstrate that quenching occurs
hroughout the multilayer, not just in the top layer and also that as
he layer thickness increase, the quenching actually becomes more
ronounced thereby indicating the formation of a more regular
tructure with increasing thickness and more reproducible behav-
or for the carbon dots. These results thereby demonstrate that this
mmobilization method allows three different things:

(i) The number of layers allows to overcome the irregularity of
the surface fibers upon the necessary etching procedure.

(ii) A remarkable improvement of the sensor time response.
iii) An increase in the sensitivity, since it led to a decrease in the

detection limit, from 0.1 �M (in solution/sol–gel) to 0.01 �M

(layer-by-layer deposition). Furthermore the fiber with six lay-
ers of carbon dots has the highest response to analyte and
represents an increase in quenching effect of 29% when com-
pared to the solution [9].
immobilized in the tip of the optical fiber with six layers by Hg(II).

Interference from other metal ions can be a major challenge
for any metal ion sensor and therefore the fiber-optic sensor was
exposed to solutions of a range of potential ionic interferents, the
results of which are shown in Fig. SI.2.

As previously observed for both solution and upon immobiliza-

tion in sol–gel, the major interferent is the Cu(II) ion. Nevertheless
the quenching effect of this ion for the fiber with six layers, e.g.
(Q = 12%) is much lower compared to the Hg(II) quenching (Q = 44%)
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or the same fiber. These results suggest a high selectivity of these
arbon dots toward Hg(II) ions.

. Conclusions

In summary the Hg(II) optical sensor based on carbon dots
escribed here, demonstrates a detection limit of 0.01 �M,  a rapid
esponse toward the analyte, as well as extremely high repro-
ucibility and reversibility. The use of the layer-by-layer deposition
ethod allowed the immobilization of an optimal number of layers
hich both minimized the background noise due to imperfections

n the fiber surface, as well as, leading to an increase in sensor sen-
ibility due to the availability of the carbon dots to interact with
he analyte. Since this immobilization method does not require an
djustment of the matrix porosity but only that the carbon dots can
ecome negatively charged, it is potentially possible to couple this
g(II) sensor with another sensor of interest, that has an different
mission profile, and thereby measure more than one parameter
t the same time. In addition to this the potential availability of a
ide range of organic compounds which could be used instead of
-acetyl-l-cysteine to stabilize the carbon dots allows the possibil-

ty of tailoring these nanoparticles to sense a wide range of analytes
imply by changing the stabilizer.
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Chapter 7 – Parallel Factor Analysis of EEM of the 

Fluorescence of Carbon Dots Nanoparticles 

 

7.1. State of the Art 

 

In analytical chemistry analysis, as well as in other research areas, the number 

of data gathered from a given experiment can be quite large and it is necessary to 

analyse them in a consistent statistical manner in order to obtain all the possible 

information. This is possible due to chemometrics. Chemometrics can be described as 

the science of extracting information from chemical systems by data-driven means. It 

uses multivariate statistics and computational science to better understand systems in 

numerous areas, e.g., chemistry, biochemistry, medicine, biology, among others [1-3].  

Chemometrics can be used to solve descriptive and predictive problems, 

according to the particularities of the system. In this sense the descriptive application is 

used to determine relationships and the structure of the chemical system. On the other 

hand the predictive application is required when it is intended the prediction of new 

properties or behaviors of the system.  

This science is continuously being developed by research groups, indeed even 

though it is widely used in analytical chemistry industries, there is a need to further 

develop the chemometrics theory and methods in order to improve and overcome 

some of the drawbacks of the existing methods [4, 5].  

The application of chemometrics in chemistry is relevant for many techniques, 

e.g., mass spectrometry, atomic emission/absorption, chromatography, fluorescence, 

UV/visible spectroscopy, among others, that are by nature multivariate. Thereby the 

application of this science allows to better extract the total amount of information that 

these chemical techniques provide.  
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The effect of experimental factors [pH and Hg(II)] on the fluorescence excitation emissionmatrices (EEMs) of nanosensor
carbon dots (CDs) was analyzed by multiway decomposition methods based on parallel factor (PARAFAC) analysis.
PARAFAC analysis of the EEM structures identifies three components corresponding to two different-sized CDs with the
Hg(II) and pH profiles highly correlated plus a background. Parallel profiles with Linear Dependences (PARALIND) model
with three components in the excitation–emission spectral modes and two components in the Hg(II) or pH mode gave
similar results as PARAFAC, but is more useful from a theoretical point of view because PARALIND shows that the two
different-sized CDs have similar chemical reactivity toward Hg(II) and pH. PARAFAC2was used as a trilinear confirmatory
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Laboratório de Métodos Instrumentais de Análise, Faculdade de Farmácia da
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1. INTRODUCTION

Parallel factor (PARAFAC) analysis models are a generalization of
principal component analysis (PCA) to a set of data matrices.
PARAFAC model is particularly suitable for the analysis of trilinear
(or multilinear) data structures and permits the decomposition of
three-way (or multiway) data arrays in a unique manner, thereby
allowing estimations in all modes—this property is known as
the second-order advantage [1–3]. PARAFAC2 and parallel profiles
with linear dependences (PARALIND) models, also based on a
parallel factor analysis, were developed in order to deal with data
structure specificities [4,5]. These models are a generalization of
the PARAFAC model, and in some conditions, the uniqueness
properties of the PARAFAC model are maintained with the two
models. PARAFAC2 model deals with small deviations of
trilinearity in one of the modes and with different rows (or
columns) modes of the slabs in a three-way array [6,7]. PARALIND
deals with linear dependences of the factors and consequently
rank deficiency of the component matrices [8,9].
For the threemodels, the decomposition of the Xk (I� J) slab of

a three-dimensional structure X (I� J� K) with K slabs follows the
mathematical formulation shown in Equation (1) for PARAFAC,
Equation (2) for PARAFAC2, and Equation (3) for the PARALIND
model. For all the equations, the matrix Ek holds the residuals

Xk ¼ ADkB
T þ Ek ; k ¼ 1; . . . ; K (1)

In PARAFAC model (1), the matrix A (I� F) is the first-mode
loading and B (J� F) is the loading matrix of the secondmode,Dk

is a diagonal matrix that holds the kth row of C matrix in its
diagonal, and C (K� F) is the third-mode loading.

Xk ¼ ADkBk
T þ Ek ¼ ADkðPkHÞT þ Ek ; k ¼ 1; . . . ; K (2)

In PARAFAC2 model (2), A (I� F) is the first-mode loading, Bk

(J� F) is the kth loading matrix of the second mode, Dk is a
diagonal matrix that holds the kth row of C in its diagonal, C
etrics 2010; 24: 655–664 Copyright � 20
(K� F) is the third-mode loading, H is an F� F matrix, and Pk is a
J� F orthogonal matrix (J may actually vary from 1 to K).

Xk ¼ ~ADkB
T þ Ek ¼ AHDkB

T þ Ek ; k ¼ 1; . . . ; K (3)

In PARALIND model (3), Ã (I� S) is the first-mode loading, A is
an (I� R) matrix, B (J� S) is the loading matrix of the second
mode,Dk is a diagonal matrix that holds the kth row of C (K� S) in
its diagonal, C (K� S) is the third-mode loading, and H is an R� S
interaction matrix defining the interactions between the R first
mode loadings and the S loadings in B and C.
Due to the inherent linearity of fluorescence data, PARAFAC is

becoming a well-establishedmethod for the analysis of excitation
emission matrices (EEMs) [10–22]. Even so, if any of the orders
shows nonlinearity or some linear dependences among the
factors, PARAFAC2 and PARALIND models are a good alternative
to the PARAFAC model in the three-way data structure analysis.
These two models are being increasingly incorporated in
analytical chemistry methodologies, namely in the analysis of
fluorescence data structures [7,8,13,16,20,21].
Carbon dots (CDs) are gaining a great scientific interest in

biosensing applications [23] as well as bioanalytical labeling
[24–27]. The reasons for this growing awareness are: their tunable
luminescent optical properties (absorption and emission radiation),
10 John Wiley & Sons, Ltd.
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high quantumyields, pronounced photostability, and good stability
in water with a competitive performance as imaging agents when
compared to the traditional CdSe/ZnS quantum dots (QDs) [26].
Their analytical interest results from the simple modification of
the dot surface with hydrophilic capping ligands, which leads to
selective analytical methodologies and the easy tunning of the
fluorescent properties by increasing the size of the nanoparticles.
Nevertheless, in spite of their highly remarkable fluorescence

properties, all the analytical applications involving CDs resume
to a zero- or first-order instrument. Indeed, besides the high
dimensional potential of fluorescence, CD applications are
being developed using fluorescence intensities as function of
the excitation and/or emission wavelengths. However, CDs, and
fluorescent nanoparticles in general, are mixtures of different-
sized materials that can show unequal fluorescent properties and
sensibilities toward a particular substance. Consequently, unless
mono-sized nanoparticles are being analyzed, the study of CDs or
QDs can be classified as a mixture analyses problem. The intrinsic
structure of the fluorescence EEMs of CDs has, up to the authors’
knowledge, never been subject of analysis.
The objective of this paper is to analyze, for the first time, the

intrinsic structure of EEM of CDs and evaluate the modeling
performance of different parallel factor models in the study of EEM
of CDnanoparticles. Parallel factor analysis by PARAFAC, PARAFAC2,
and PARALIND models was used for the analysis of the pH effect
and of quenching by Hg2þ and the performance of these models
was assessed. Indeed, chemistry literature shows that there is
increasing development of new fluorescent nanoparticles (nano-
sensors) and their analytical applications. The fields of application
of these nanosensors are usually characterized by quite complex
backgrounds like those found in biological systems, and a
multivariate chemometric data analysis is required to fully explore
the advantages of these new sensor nanomaterials.
2. EXPERIMENTAL SECTION

2.1. Synthesis of CDs

All chemicals were purchased from Sigma Aldrich and used
without further purification. The synthesis of the carbon
Figure 1. Typical obtained a

wileyonlinelibrary.com/journal/cem Copyright � 2010 John
nanoparticles was performed by laser ablation [UV pulsed laser
irradiation (248 nm, KrF)] of carbon targets immersed in
deionized water. The carbon nanoparticles obtained by laser
ablation are not fluorescent, and it is necessary to activate and
functionalize them with NH2-polyethylene glycol (PEG200) and
N-acetyl-L-cysteine to render fluorescence and sensibility to
experimental factors [27].

2.2. Instrumentation

A Spex 3D Spectrofluorimeter with a 75W xenon discharge lamp
and a charge-coupled device (CCD) detector was used. EEMs were
acquired in an excitation wavelength range from 200.5 to 675.1 nm
and an emission wavelength range from 200.7 to 718.7 nm, with a
resolution of 2nm, slit of 0.05mm, and integration of 3 s.

2.3. Multiway decomposition analysis

Three-way data sets of EEMs of the CDs structured as
[excitation (nm)� emission (nm)�Hg concentration (M)] and
[excitation (nm)� emission (nm)�pH] were analyzed using
PARAFAC and PARAFAC2; three-way data structures [Hg
concentration (M)� emission (nm)� excitation (nm)] and
[pH� emission (nm)� excitation (nm)] were analyzed by the
PARALIND model. The three-way data sets were structured
changing the Hg concentration and pH. For the three-way data
analysis, the raw EEMs were reduced to excitation and emission
wavelength ranges of 276.6–390.8 nm (52 wavelengths) and
427.4–583.5 nm (76 wavelengths), respectively, in order to
isolate the fluorescence band and eliminate the nonlinear first
order Rayleigh scattering. Figure 1 shows typical experimental
and analyzed EEMs.
Except for PARAFAC2 on the second mode, non-negativity

constraints are applied in all the modes of the EEMs. Also for
PARALIND, the dependence matrix is non-negativity constraint
due to slightly better results obtained in the first mode.
PARAFAC, PARAFAC2, and PARALIND estimations are found by

an iterative alternating least squares procedure. As convergence
criteria, a value of 1� 10�6 and a maximum number of 2500
iterations were used for PARAFAC; for PARAFAC2 and PARALIND a
value of 1� 10�7 and a maximum number of 2000 iterations
nd analyzed EEMs of CDs.

Wiley & Sons, Ltd. J. Chemometrics 2010; 24: 655–664
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Figure 2. Experimental excitation and emission spectra at maximum

fluorescence intensity and Hg and pH profile, respectively, of the Hg- and

pH-EEMs.

Effect of experimental factors on EEMs of CDs
were used as convergence criteria. The initial estimates used
for the three models were the estimates of a model without
constraints.
The results obtained from the PARAFAC, PARAFAC2, and

PARALIND three-way data analysis were compared using the
model fit [fit (%)]. The model fit (%) for PARAFAC, PARAFAC2, and
PARALIND models is defined by Equation (4) [2,6].

Fitð%Þ ¼ 100� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XI

i¼1

XJ

j¼1

XK
k¼1

xijk � x̂ijk
� �2

XI

i¼1

XJ

j¼1

XK
k¼1

xijk
� �2

vuuuuuuuut

0
BBBBBB@

1
CCCCCCA

(4)

In this equation, x̂ijk is the ijk element of the estimated
three-dimensional matrix and xijk is the ijk element of the
experimental three-dimensional matrix.
Also, the results obtained with PARAFACmodels were assessed

using the Corcondia or core consistency test [Corcondia (%)]
defined by Equation (5) [2,28].

Corcondiað%Þ ¼ 100� 1�

XN
d¼1

XN
e¼1

XN
f¼1

gdef � tdefð Þ2

XN
d¼1

XN
e¼1

XN
f¼1

tdefð Þ2

0
BBBB@

1
CCCCA

(5)

In this equation, gefg and tefg represent the elements of the
calculated core and of the intrinsic super-diagonal core,
respectively, and N the number of components of the model.
If they are equal, the core consistency is perfect and has a value of
unity (100%). The appropriate number of components is assessed
with the model with the highest number of components and a
valid value of core consistency diagnostic test.
2.4. Software

The chemometric analysis was done in MATLAB1 version 5.3
environment. The algorithms for implementation of PARAFAC,
PARAFAC2, and PARALIND models were obtained from Bro
available at http://www.models.kvl.dk/source/. All the graphs
were drawn in Microcal Origin1 version 7.5.
Figure 3. Singular value decomposition of the singular data matrices
and row-wise augmented data matrices in the excitation, emission, and

Hg or pH orders. 6
3. RESULTS AND DISCUSSION

3.1. PARAFAC analysis

CDs are carbon nanoparticles that, through functionalization,
acquire strong photoluminescence with a typical EEM of
fluorescence in aqueous solution as shown in Figure 1. Typical
excitation and emission spectra obtained, respectively, at
maximum emission and excitation wavelengths of the synthes-
ized CDs are shown in Figure 2—maximum excitation and
emission are located at 350 and 450 nm, respectively [27].
Figure 2 shows the effect of experimental factors on the
fluorescence emission of the CDs and an increase in the Hg(II)
concentration and the pH provokes a steady decrease in the
fluorescence (quenching). These variations are a consequence of
the change in the quantum confinement of the CDs [12,14,15,27].
J. Chemometrics 2010; 24: 655–664 Copyright � 2010 John Wil
Previous studies on the effect of the pH on the EEM of
fluorescent nanoparticles constituted by cadmium/tellurium
showed that the emission spectrum shifts as function of
the pH, initiating a marked nonlinear behavior [16]. In order to
ey & Sons, Ltd. wileyonlinelibrary.com/journal/cem
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Table I. PARAFAC model evaluation in the analysis of the Hg2þ and pH EEMs three-way data structuresa

PARAFAC

Model evaluation Number of components

One Two Three Four

[Excitation spectra (nm)� Emission spectra (nm)�Hg2þ concentration (M)]
Fit (%) 91.5 95.7 98.9 99.2
Number of Iterations 2 2 1192 1118
SSQr 1.1� 1011 2.7� 1010 1.7� 109 1.0� 109

Corcondia (%) 100.0 100.0 22.1 �2.9
[Excitation spectra (nm)� Emission spectra (nm)� pH]

Fit (%) 92.5 96.6 99.0 99.3
Number of Iterations 2 2 42 782
SSQr 6.3� 1010 1.3� 1010 1.2� 109 6.1� 108

Corcondia (%) 100.0 100.0 54.2 11.1

a SSQr—sum square of residuals.

Figure 4. Excitation spectra, emission spectra and pH profile calculated with a PARAFAC two components non-negativity constraint model respectively
in the analysis of the Hg- and pH-EEMs.

wileyonlinelibrary.com/journal/cem Copyright � 2010 John Wiley & Sons, Ltd. J. Chemometrics 2010; 24: 655–664
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Effect of experimental factors on EEMs of CDs
check for possible nonlinearity in the sets of CDs, EEM under
Singular Value Decomposition (SVD) analysis of single and
augmented row-wise matrices were performed. Figure 3 presents
the normalized singular values for the single and augmented
row-wise matrices and its analysis shows that the augmented
row-wise matrices with Hg(II) concentration and pH as the
common factors require less components than the others. This
rank difference suggests the existence of collinearity (rank
deficiency) in these orders.
In order to further analyze the structure and/or number of

fluorescent components of the experimental EEM data acquired
as function of the experimental factors, PARAFAC analysis was
done using different componentmodels (from one and up to four
components). Indeed, PARAFAC analysis is a straightforward test
of the trilinearity of a set of EEM, and allows good estimation of
the concentration profiles because it uses all the EEM data
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Figure 5. Excitation spectra, emission spectra and pH profile calculated
respectively in the analysis of the Hg- and pH-EEMs.

J. Chemometrics 2010; 24: 655–664 Copyright � 2010 John Wil
instead of only one intensity point obtained at selected excitation
and emission wavelengths. The analysis of the Corcondia tests for
the studied models (Table I) shows that the intrinsic EEM models
are constituted by at least two components. The three-
component model has a Corcondia test value of 22% [Hg(II)
experiment] or 54% (pH experiment). These Corcondia values
suggest a possible valid third component, for example
a background signal, or they may by a sign of trilinear deviation
of the EEM structure. Indeed, for both experiments, only a
three-component model allows a fit (%) of about 99%.
Consequently, the two- and three-component models deserve
further analysis.
Figure 4 shows typical results of the two-component model

PARAFAC decomposition of sets of EEM data collected in the
presence of increasing amounts of Hg(II) ion and varying pH. In
both experiments, the analysis of the extracted excitation and
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Table II. PARALIND model evaluation in the analysis of the Hg2þ and pH EEMs three-way data structuresa

PARALIND

Model evaluation Number of components

R—One; S—Two R—Two; S—Three

[Hg2þ concentration (M)� Emission spectra (nm)� Excitation spectra (nm)]
Fit (%) 95.6 98.7
Number of Iterations 47 1333
SSQr 1.8� 1010 2.4� 109

[pH� Emission spectra (nm)� Excitation spectra (nm)]
Fit (%) 96.3 98.9
Number of Iterations 42 374
SSQr 1.5� 1010 1.3� 109

a R—number of components in the first mode; S—number of components in the second and third modes; SSQr—sum square of
residuals.

Figure 6. Excitation spectra, emission spectra and pH profile calculated with a PARALIND one component in the first mode and two components in the
second and third modes non-negativity constraint model respectively in the analysis of the Hg and pH-EEMs.
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Figure 7. Excitation spectra, emission spectra and pH profile calculated with a PARALIND two components in the first mode and three components in

the second and third modes non-negativity constraint model respectively in the analysis of the Hg- and pH-EEMs.

Effect of experimental factors on EEMs of CDs

6

emission spectra shows the existence of two fluorophores
that probably correspond to two classes of CDs. Taking
into consideration that the laser ablation syntheses of CDs
can originate different sizes of nanoparticles, these two
components may correspond to two different-sized classes of
CDs [27]. The excitation/emission wavelength pairs for these two
classes are: smaller CDs 330/435 nm and bigger CDs 360/485 nm.
The experimentally observed excitation/emission wavelengths
(350/450 nm) correspond roughly to the average wavelengths of
the two classes detected by PARAFAC.
Figure 5 shows typical results of the three-component model

PARAFAC decomposition of sets of EEM data collected in the
presence of increasing amounts of Hg(II) ion and varying pH.
Two of the calculated components have similar excitation and
emission spectra as well as the Hg(II) and pH profiles as the two
components estimated using a two-component PARAFAC model.
The third component of the Hg-EEM experiments now calculated
corresponds to a background signal due to a weak fluorescence
of unreacted PEG200 used to activate the CDs, and to scattering
J. Chemometrics 2010; 24: 655–664 Copyright � 2010 John Wil
due to the existence of hydroxyl complexes of Hg(II) [27].
Supporting the existence of scattering is the corresponding
increasing trend of the Hg(II) profile with the increase in the
concentration. The third component of the pH-EEM experiments
now calculated corresponds only to a background signal due to
a weak fluorescence of unreacted PEG200.
If the two components correspond to different classes of

different-sized CDs, it is expected correlation among the Hg(II)
and pH profiles because the classes of CDs respond similarly to
the experimental factor with, probably, different sensibilities.
Different sensibilities may result from the fact that bigger
nanoparticles have higher number of functionalized molecules
(sensor on the CD surface) than smaller nanoparticles. Indeed,
the analysis of the intensity profiles in Figures 4 and 5 barely
shows that smaller CDs (first component) have a relatively
smaller variation than the second component that corresponds
to bigger CDs.
PARAFAC analysis shows the existence of at least two detectable

components corresponding to different-sized CDs with intensity
ey & Sons, Ltd. wileyonlinelibrary.com/journal/cem

6
1



Table III. PARAFAC2 model evaluation in the analysis of the Hg2þ and pH EEMs three-way data structuresa

PARAFAC2

Model evaluation Number of components

One Two Three Four

[Excitation spectra (nm)� Emission spectra (nm)�Hg2þ concentration (M)]
Fit (%) 91.6 95.8 99.1 99.3
Number of iterations 2 644 1689 2000
SSQr 1.0� 1011 2.6� 1010 1.3� 109 8.0� 108

[Excitation spectra (nm)� Emission spectra (nm)� pH]
Fit (%) 92.6 96.6 99.0 99.3
Number of iterations 2 46 2000 2000
SSQr 6.1� 1010 1.3� 1010 1.1� 109 5.5� 108

a SSQr—sum square of residuals.

Figure 8. Excitation spectra, emission spectra and pH profile calculated with a PARAFAC2 three components non-negativity constraint model

respectively in the analysis of the Hg- and pH-EEMs.

wileyonlinelibrary.com/journal/cem Copyright � 2010 John Wiley & Sons, Ltd. J. Chemometrics 2010; 24: 655–664
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profiles highly correlated plus a measurable background. In order
to assess how other PARAFAC analysis models deal with collinearity
and nonlinearity problems in one of the orders, PARALIND and
PARAFAC2 will be used as validation tools.

3.2. PARALIND analysis

As discussed above, the existence of similar Hg(II) or pH profiles in
more than one component creates a rank-deficiency problem.
PARALIND was developed to extend the use of PARAFAC to this
type of problems where it eventually could fail to provide
meaningful results [9]. According to the PARAFAC analysis, the
CDs EEMs are constituted by three components, with two of them
having the highly correlated Hg(II) concentration or pH profiles.
Table II resumes the error parameters, and Figures 6 and 7 present
the calculated spectra and profiles obtained with PARALIND
using two models: one plus two components; two plus three
components.
The analysis of Table II shows that a three-component model

(two plus three) is enough to obtain a fit (%) of about 99%, which
is similar to what was obtained with PARAFAC. However, the
spectra estimated with a two-component model by PARALIND
shown in Figure 6 are not similar to those calculated with
PARAFAC. Indeed, the PARALIND solution was not able to resolve
the spectra of the two classes of CDs because the spectra of one
of the components correspond to the background.
The results obtained with PARAFAC and PARALIND with three

components are similar (Figure 7). This result constitutes a
validation test for the collinearity of the Hg(II) and pH profiles of
two components of the EEMs of the CDs. Moreover, PARALIND
results are, from a theoretical point of view, more interesting
than those obtained with PARAFAC because they confirm the
existence of different classes of CDs with similar reactivity toward
the experimental factors under investigation.

3.3. PARAFAC2 analysis

Although a three-component PARAFAC and a two- plus
three-component PARALIND model globally fit quite well the
experimental data of CDs, PARAFAC2 was used as a diagnostic
test for the existence of nonlinearity in the emission spectral
order. Indeed, it has been reported that the position of the
emission band of fluorescent nanoparticles is sensitive to some
experimental factors, such as the pH [16]. Table III resumes the
error parameters obtained with PARAFAC2 using two-, three-, and
four-component models.
The analysis of Table III shows that a three-component model

is enough to obtain a fit (%) of about 99%, which is similar to
what was obtained with PARAFAC and PARALIND. Figure 8 shows
the spectra and Hg(II) and pH profiles calculated with the
three-component model.
The analysis of Figure 8 shows that the calculated spectra and

Hg(II) and pH profiles are similar for one component and are not
similar for the other two when compared with those estimated
with PARAFAC and PARALIND. Indeed, there is some mixture of
the estimated spectra, which probably results from the detected
rank deficiency of the sets of EEMs. Nevertheless, the analysis
of the calculated set of emission spectra shows that no shift
either with the Hg(II) concentration or with the pH is detected
(all the component spectra overlap). This result confirms that no
nonlinear behavior is induced in the EEMs of CDs when the
concentration of Hg(II) or the pH is varied.
J. Chemometrics 2010; 24: 655–664 Copyright � 2010 John Wil
4. CONCLUSIONS

A three-component PARAFAC model successfully described a CD
nanoparticle fluorescent material and the effect of the Hg(II)
concentration and pH on the EEMs. Indeed, as a consequence of
the EEM three-way decomposition, it was possible to detect the
existence of two different-sized classes of CDs as well as a
background EEM. However, in order to validate the PARAFAC
results, two confirmatory tests are proposed using PARALIND and
PARAFAC2 three-way decomposition models.
PARALIND was used to confirm that the two different-sized

classes of CDs show a similar reactivity toward Hg(II) concen-
tration and pH, which corresponds to the existence of only one
component common profile to both CDs. PARAFAC2 was used as
a confirmatory test for the existence of wavelength shifts in the
emission spectra.
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Chapter 8 – Metal Enhanced Photoluminescence from 

Carbon Nanodots 

 

8.1. State of the Art 

 

The research group lead by Guedes C.D. has been focusing their attention in 

the effect that silver nanoparticles have on fluorescence characteristics of different 

fluorophores [1]. The increase/enhancement of the fluorescence intensity is just one of 

the possibilities of putting fluorophores in contact with silver nanoparticles, as such, in 

order to ascertain if the shape of the nanoparticles is related to the effect, different 

silver formations has been tested, namely, silver Island films [1–4]; silver colloids films 

[5]; solution based silver colloids [6]; silver nanorods [7]; and fractal-like silver surfaces 

[8-10]. Indeed, different shapes can produce different effects, such as, increased 

quantum yields, decreased lifetimes, increased photostability and increased rates of 

energy transfer.  

The differences produced by the proximity of the silver nanoparticles are due to 

the interactions of the excited-state fluorophores with the surface plasmon resonances 

on the surface of the metal [11-14]. Fluorescence enhancement, for example, is due to 

an increase in the radiative decay rate of the fluorophores, that are approximately 

between 50-200 Å of the metallic surface. 

The fluorescence enhancement is an interesting feature, regardless of the 

application, since it will allow to use less expensive and complex systems for the 

fluorophore measurements. this is just one of the numerous advantages of a controlled 

increase in the fluorescence intensity.  

 



FCUP 
Analytical Applications of Fluorescent Carbon Dots 

111 

 

8.2. References 

 

[1] Malicka J., Gryczynski I., Geddes C.D., Lakowicz J.R. 2003. “Metal-enhanced 

emission from Indocyanine Green: A new approach to in vivo imaging”. J. Biomed. Opt. 

8(3), pp.472–478. 

[2] Lakowicz J.R., Shen Y., D’Auria S., Malicka J., Fang J., Gryczynski Z., Gryczynski I. 

2002. “ Effects of silver island films on fluorescence intensity, lifetimes, and resonance 

energy transfer”. Anal. Biochem. 301, pp.261–277. 

[3] Pugh V.J., Szmacinski H., Moore W. E., Geddes C.D., Lakowicz J.R. 2003. 

“Submicrometer spatial resolution of metal-enhanced fluorescence”. Appl. Spectrosc. 

57(12), pp.1592–1598. 

[4] Lakowicz J.R., Malicka J., Gryczynski Z., Huang J., Geddes C.D., Gryczynski I. 

2003. “Increased sensitivity of fluorescence detection”. Pharmagenomics 3(3), pp.38–

46. 

[5] Geddes C.D., Cao H., Gryczynski I., Gryczynski Z., Fang J., Lakowicz J.R. 2003. 

“Metal-Enhanced Fluorescence (MEF) due to silver colloids on a planar surface: 

Potential applications of indocyanine green to in vivo imaging. J. Phys. Chem. A. 107, 

pp.3443–3449. 

[6] Aslan K., Lakowicz J.R., Szmacinski H., Geddes C.D. 2004. “Metal-enhanced 

fluorescence solution based Platform”. J. Fluorescence. 14, pp.677–679. 

[7] Geddes C.D., Cao H., Lakowicz J.R. 2003. “Enhanced photostability of ICG in close 

proximity to Gold colloids”. Spectrochemica Acta A. 59(11), pp.2611–2617.  

[8] Geddes C.D., Parfenov A., Roll D., Gryczynski I., Malicka J., Lakowicz J. R. 2004. 

“Roughened silver electrodes for use in metalenhanced fluorescence”. Spectrochemica 

Acta A. 60, pp.1977–1983. 

[9] Parfenov A., Gryczynski I., Malicka J., Geddes C.D., Lakowicz J. R. 2003. 

“Enhanced fluorescence from fluorophores on fractal silver surfaces”. J. Phys. Chem. 

B. 107(34), pp.8829–8833. 

[10] Geddes C.D., Parfenov A., Roll D., Gryczynski I., Malicka J., Lakowicz J. R. 2003. 

“Silver fractal-like structures for metalenhanced fluorescence: Enhanced fluorescence 

intensities and increased probe photostabilities”. J. Fluorescence 13(3), pp.267–276. 

[11] Lakowicz J.R. 2001. “Radiative decay engineering: Biophysical and biomedical 

applications”. Anal. Biochem. 298, pp.1–24. 



FCUP 
Analytical Applications of Fluorescent Carbon Dots 

112 

 

[12] Lakowicz J.R., Malicka J., Gryczynski I., Gryczynski Z., Geddes C.D. 2003. 

“Radiative decay engineering: The role of photonic mode density in biotechnology”. J. 

Physics D. Appl. Phys. 38, pp.R240–249. 

[13] Geddes C.D., Gryczynski I., Malicka J., Gryczynski Z., Lakowicz J.R. 2003. “Metal-

Enhanced fluorescence: Potential applications in HTS”. Combinatorial Chemistry HTS. 

6(2), pp.109–117. 

[14] Geddes C.D., Lakowicz J.R. 2002. “Metal-enhanced fluorescence”. J. 

Fluorescence 12(2), 121–129. 

 



FCUP 
Analytical Applications of Fluorescent Carbon Dots 

113 

 

8.3. Personal Contribution  

 

My personal contribution to this work includes the following: the Cdots synthesis 

and functionalization and purification methods. Afterwards, it was necessary to choose 

the nanoparticles that had the best fluorescent properties regarding to the primarily 

objective and send it to Massachusetts. Subsequently, it was required the revision of 

the manuscript before its submission to an international scientific research journal and 

perform the necessary adjustments to comply with the reviewers suggestions about the 

Cdots synthesis, functionalization and purification methods. 
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In the last couple of years, carbon dots have emerged as a new

novel luminescent particle for applications in fluorescence

and microscopy in some ways analogous to quantum dots and

silicon nanocrystals/particles. As with any fluorescent label or

tag, absolute fluorescence intensity, brightness, and particle

photostability are a primary concern. In this communication

we subsequently show that similar to classical fluorophores,

carbon dots located in the near-field, near to Plasmon

supporting materials, show enhanced intensities and improved

photostabilities.

In the last several years, there has been a growing literature on

the synthesis and utility of carbon dots, also known as

carbon nanoparticles.1–3 Similar to the well-known and

commercialized semiconductor quantum dots, the carbon

nanoparticles display high quantum yields and photostability,

but conversely have low cytoxicity and excellent biocompat-

ibility. Subsequently, these new fluorescent labels have found

use in biological imaging applications.4 As with all the new

luminescent particle embodiments reported to date, absolute

brightness, photostability as well as optical tunability remain

primary concerns. In this communication we subsequently

show that Plasmon supporting materials, such as silver island

films,5 can further enhance carbon nanodot brightness,

photostability and thus potentially detectability in biological

imaging applications.

Over the last 10 years, metal-enhanced fluorescence (MEF)

has emerged as a technology which directly complements

fluorescent labels. In the near-field, within the wavelength of

light, luminescent species can interact with metallic surface

plasmons in ways which ultimately enhance particle/

fluorophore brightness and reduce the excited ‘‘system’’ decay

times, which invariably leads to enhanced photostability.

For a fluorescent species in the far-field condition, i.e. more

than 1 wavelength of light away from either a surface or

particle, the quantum yield of a fluorophore is given by:6

Q0 ¼
G

Gþ Knr
ð1Þ

where G is the fluorophores’ radiative decay rate and Knr are

the nonradiative decay rates for excited state relaxation. In the

presence of metal, i.e. near-field condition, Geddes and

Lakowicz have shown that the system quantum yield, Qm,

can readily be defined by:6

Qm ¼
Gþ Gm

Gþ Gm þ Knr
ð2Þ

where Gm is the system modified radiative rate. Similarly, both

far- and near-field lifetimes are given by:

t ¼ 1

Gþ Knr
ð3Þ

tm ¼
1

Gþ Gm þ Knr
ð4Þ

Interestingly, by increasing Gm in eqn (2) and (4), i.e. the

near-field condition, MEF readily affords for increased

system quantum yields and reduced decay times, i.e. enhanced

photostabilites. This is in contrast to the far-field condition,

where the lifetime and quantum yield change in unison. In

these equations we do not account for metal-modified

non-radiative rates, and while some authors have reported

very-close proximity quenching, Geddes et al. have recently

hypothesized that these reductions in close range luminescent

intensities are in fact due to changes in the near-field electric

field distributions, which are substrate specific.7

Polyethylene Glycol (PEG) terminated carbon dots were

synthesized as previously reported.1 Excitation of the carbon

Fig. 1 TEM image (right) of carbon dots and absorbance spectrum

(left).
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dots was undertaken using a Spectrofluorometer Fluoromax 4

for excitation dependence studies, and using 405, 473 and

532 nm laser lines for the MEF studies, where an ocean optics

HD 2000+ Spectrometer with a 600 mm fiber bundle was used

for the collection of fluorescence emission. The preparation of

SiFs has been reported previously.8 Fluorescence lifetimes of

the carbon dots from both SiFs surfaces and glass substrates

(a control sample containing no silver) were undertaken using

the Time-Correlated Single Photon Counting Technique

(TCSPC) with a 400 nm laser for excitation and a TBX-4

module for detection. Deconvolution analysis of the respective

luminescence decays was performed using DAS 6.0 software.

The calculation of the mean t and amplitude weighted life-

times hti has been reported previously.8

Fig. 1 (right) shows a typical TEM image of the carbon dots,

where the size of the dots appears to be in the range of

60–80 nm. The optical absorption of the carbon nanodots is

primarily in the UV and tails out beyond 500 nm, Fig. 1—left.

Interestingly, the dots show an excitation wavelength and

quantum yield dependence, Fig. 2, with the luminescence quite

weak when excited beyond 500 nm. The spectral width of the

emission is also very similar when normalized, Fig. 2 (bottom).

The mechanism of photoluminescence from carbon dots was

attributed to the presence of surface energy traps that

become emissive upon stabilization as a result of the surface

Fig. 2 Fluorescence emission spectra (top) and normalized emission

spectra (bottom) of carbon dots for different excitation wavelengths.

Fig. 3 (top) Fluorescence emission spectra of carbon dots with lEx =
405 nm CW laser from both a SiFs surface and also from a glass

control sample. (bottom) Fluorescence emission spectra of carbon

dots with lEx = 473 nm. Real color photographs were taken through a

473 nm razor edge filter.

Fig. 4 (top) Fluorescence emission spectra of carbon dots with lEx =
532 nm laser from both SiFs and a glass control sample. (bottom)

Enhancement factor vs. excitation wavelength: 405 nm, 473 nm and

532 nm. Enhancement factor was calculated as the ratio between the

emission from the SiFs substrate divided by that observed from an

otherwise identical control sample (glass), containing no metal.
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passivation. These findings suggest that the spectral properties

are dependent on not only the particle size but also a distribute

of different emissive sites on each passivated carbon dots.9

When solutions of the nanodots were excited on SiFs (silver

island films), significantly enhanced luminescence could be

seen, Fig. 3—top, and photograph insets. At an excitation

wavelength of 405 nm, over a 10-fold increase in luminescence

could be observed as compared to an otherwise identical

control sample, but which contained no silver. Fig. 3 (bottom)

shows the emission from carbon dots on SiFs and control glass

substrate (containing no silver nanoparticles) at the excitation

wavelength of 473 nm. Over 4-fold increase in luminescence

could be observed. Furthermore, Fig. 4 (top) shows a 1.5-fold

enhancement factor of carbon dots on SiFs with excitation

wavelength 532 nm. Similar to the free space condition, the

emission intensity is reduced with increasing wavelength, with

very little enhanced luminescence observed when excited at

532 nm, Fig. 4—bottom. Interestingly, in the MEF literature,

some authors have suggested that the enhancement factors

near to metals are proportional to the reciprocal of the free

space quantum yield, i.e. E.F p 1/Q0, where Dragon and

Geddes conversely suggest that the MEF enhancement factor

is underpinned by an excitation volumetric effect (EVE).10

Given that we in fact do not see greater enhancements for

longer wavelengths of excitation, then this enhancement trend

follows the MEF EVE hypothesis postulated by Dragon and

Geddes, where modulation in MEF efficiency is by far-field

excitation power volume dependence. The near-field volume

changes non-linearly with far-field power, in Fig. 4—bottom.

The time-resolved decay times for carbon dots in both the

far and near-field conditions were measured as shown in

Table 1. The lifetime of the dots is multiexponential in solution

with mean and amplitude weighted lifetimes of 2.09 and

5.65 ns respectively. In the near field, i.e. on SiFs, these values

significantly decrease to 1.53 and 0.26 ns, respectively, which is

consistent with current MEF thinking and eqn (2) and (4).

Subsequently, we have studied the photostability of carbon

dots from both the control sample and the SiFs surface. On

the SiFs surface one readily sees more emission vs. time, i.e.

photon flux, which is proportional to the integrated area under

the curve, Fig. 5. From the glass substrate we readily see

significantly less luminescence, which photobleaches more

rapidly than the adjusted SiFs substrate, Fig. 5. This increase

in photostability from SiFs is consistent with the reduced

lifetime on SiFs, Table 1 and eqn (4), where luminescent

species in an excited state are less prone to excited state

photophysics if the decay time is shorter.

In this communication we have shown that similar to

regular organic fluorophores, carbon dots can also show

enhanced emission intensities and photostabilities from

Plasmon supporting substrates. Given the need for highly

luminescent and photostable particles, which are both

non-toxic and biocompatible, we foresee several approaches

for carbon dots and MEF in imaging and multiplexed

immunoassays. Work is currently underway in this regard

and will be reported in due course.
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Table 1 Fluorescence intensity decay analysis. �t—mean lifetime, hti—amplitude-weighted lifetime. CD—carbon dots. Ex: 400 nm

t1/ns a1 (%) t2/ns a2 (%) t3/ns a3 (%) hti/ns �t/ns w2

CD in cuvette 1.23 23.49 0.19 50.94 6.67 25.57 5.65 2.09 1.24
CD glass/glass 0.12 76.64 0.55 21.32 5.14 2.04 0.31 1.94 1.17
CD glass/SIFs 0.14 81.83 0.56 16.81 5.81 1.36 0.26 1.53 1.30

Fig. 5 Emission intensity vs. time, photostability of carbon dots on

SiFs and glass and with the laser power adjusted to give the same

initial steady-state fluorescence intensity as observed on glass (bottom

traces). SiFs—silver island films.
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In this worked it was described the successful synthesis of Carbon dots (Cdots), 

carbon-based nanoparticles, by laser ablation of a carbon target immersed in water. 

The produced nanoparticles were activated in HNO3 and further functionalized with 

adequate molecules according to their intended application. 

Initially the Cdots were functionalized with PEG200 and mercaptosuccinic acid 

(MSS) and their fluorescence properties were accessed. It was determined that the 

maximum emission and excitation wavelengths of these Cdots are 430nm and 330nm, 

respectively. Furthermore it was accessed that the fluorescence intensity is the only 

optical property that changes upon the functionalization. Indeed, the lifetime and 

emission wavelength remained almost constant when the Cdots were functionalized 

with PEG200 and then with MSS. Additionally it was observed that the lifetime decay is 

complex, consistent with the data published by other research groups on Cdots.  

In order to determine the solvents effect on the fluorescence properties these 

Cdots were exposed to different solvents and their characteristics were evaluated. It 

was determined that the solvent has indeed a measurable effect on the fluorescence 

intensity, as well as, in the maximum emission wavelength. Nevertheless this effect is 

more pronounced in the fluorescence intensity than in the emission wavelength. These 

Cdots were also studied for a possible pH and metal ion sensitivity. In this sense it was 

obtained an apparent pKa of 7.4±0.2, which is consistent with mercaptocarboxilic acids. 

On another hand the Cdots were exposed to different concentrations of Hg(II), Cu(II), 

Cd(II), Ni(II), Zn(II), Ca(II) and it was determined that the presence of these metal ions 

had no effect on the fluorescence properties. However when the Cdots are in contact 

with micromolar concentrations of I- the fluorescence intensity remarkably decreases 

by 55%. The Stern-Volmer equation allowed the determination of a Stern-Volmer 

constant of 78±2 M-1, which is consistent with dynamic quenching.  

On another study the Cdots obtained by laser ablation were functionalized with 

PEG200 and N-acetyl-L-cysteine (NAC). The functionalized Cdots proved to be quite 

sensitive towards the solution pH. Moreover, due to the NAC molecules on the Cdots 

surface, these Cdots can be used as an effective Hg(II) sensing system. Some 

common metal ion interferents were also tested and it was determined that only the 

presence of Cu(II) had some measurable effect on the fluorescence intensity of the 

Cdots. This sensing system is quite interesting and it was developed for in vivo sensing 

of Hg(II), however the excitation and emission wavelength of these nanoparticles are 

not adequate for this purpose. Nevertheless there is an urgent need for analytical tools 

that allow time-dependent or location-specific in vivo measurements in order to study 

the uptake and distribution of this heavy metal. The possibility of using an analytical 
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tool that is highly sensitive and non-invasive for Hg(II) detection in living organisms is 

quite appealing, however it is necessary to further study the production method, in 

order to develop Cdots with adequate fluorescence properties for in vivo sensing. 

These Cdots functionalized with PEG200 and NAC were immobilized in the tip of 

an optical fiber by the sol-gel method and the layer-by-layer technique. All fibers were 

subjected to a pre-treatment with HF 40% in order to minimize the light losses, 

however this treatment caused some irregularities in the optical fiber surface. When the 

fibers were used for sol-gel immobilization the irregularities of the fibers were not 

noticed since the film had about 750nm thickness. However when the Cdots were 

deposited in discrete layers this presented a problem, since it lead to an increase in the 

background noise. Both immobilization methods were successful in the entrapment of 

the Cdots with a high reproducibility and reversibility. Nevertheless the fastest 

response time and the lowest background noise was obtained with the layer-by-layer 

method.  

The fluorescence data obtained for the immobilized Cdots and the solution were 

compared and it was found an apparent pKa of 4.4±0.1. Additionally it was determined 

that the immobilized Cdots present better results than in solution. Furthermore, the 

detection limit for Hg(II) decreased to 1.00x10-8M when the Cdots were immobilized in 

discrete layers. Moreover it was determined that the analyte interacted with the Cdots 

not only on the surface layer but also on the most inner ones. This result is quite 

interesting, since it allows the deposition of more than one fluorescence sensor, with a 

different emission profile, in the same sensing platform. In this sense it would allow the 

measurement of more than one parameter using the same optical fiber. This is not 

easy to obtain in the sol-gel method since the entrapment of each 

molecule/nanoparticle, is almost unique and requires adjustments on the matrix 

porosity and inner environment.  

Additionally it was possible to use chemometrics analysis of the Excitation 

Emission Matrixes (EEM) of the Cdots functionalized with PEG200 and NAC. This 

chemometric analysis allowed to distinguish two different size populations in solution 

that responded to the pH and metal ions in the same manner. Indeed, the size 

characterization of these nanoparticles suggested that there were more than one size 

population, however it was not possible, at this time, to separate them. By using 

chemometrics it is possible to confirm the size characterization and to perfectly 

distinguish the effect that the different factors have on their fluorescence properties. 

On another work, the produced Cdots were put in close contact to silver islands 

that are known for their plasmonic effect. These silver islands induced an interesting 
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fluorescence enhancement of about 10 times fold. These results are quite interesting, 

since most Cdots sensors are based on fluorescence quenching and, sometimes it 

may be difficult to distinguish between the fluorescence signal and the background 

noise, for high analyte concentrations. When taking advantage of this knowledge it is 

possible to increase the signals and go even further into more concentrated analyte 

solutions. This is also useful in immobilizations, since often when the Cdots and other 

fluorophores are immobilized there is a marked decrease in the fluorescence intensity. 

The described procedures allowed the attainment of carbon-based 

nanoparticles that can be functionalized in order to obtain a selective nanosensor. 

Additionally it was also possible to successfully immobilize one of the sensors 

produced using two different methodologies and with it improve de detection limit and 

the time response of the sensing system.  
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This work is focused on Carbon-based nanoparticles, known as Cdots. They 

represent an innovating theme that is very recent. Indeed, the first published work on 

these nanoparticles is from 2004, however their first application only appeared in 2006. 

Ever since then they have been proved non-toxic and competitive contrast agents for 

bioimaging when compared to the traditional heavy metal-based QDs.  

In 2009 when this PhD started the number of synthetic pathways was limited 

and the development to new ones was quite pressing, particularly “green methods”. 

The idea of synthesizing Cdots from carbon targets was not easy to implement, mainly 

due to technical and equipment issues. When it was established a partnership with the 

physical department of this university to use the laser for the ablation of the 

nanoparticles, the work began. Initially it was necessary to develop a simplified laser 

ablation method that was simpler and less expensive than the one used previously by 

other research groups. After the initial tests successfully produced nanoparticles it was 

essential to further optimize the conditions in order to purify and separate the size 

populations in all samples. Additionally it was required the development of 

functionalization procedures to cover the surface of the Cdots with adequate molecules 

for advanced nanosensing systems. This was quite common for the QDs, however for 

the Cdots the only functionalization was PEG1500N and no application was described 

besides bioimaging. It was not easy to adapt the functionalization procedure with the 

desired molecule and obtain specific sensors for different analytes so it was quite 

rewarding when it was successful. Afterwards there was the challenge to immobilize 

the Cdots nanosensors into adequate matrixes in order to establish a ground point for 

the development of advanced lab-on-a-chip systems. When the first immobilization 

method was successful, there was still some further challenge, to optimize this sensing 

system so it would be more efficient than the non-immobilized. This was accomplished 

by a partnership with the Cranfield University in the person of Dr. Frank Davis. He is a 

known specialist in the layer-by-layer immobilization technique and after an initial 

contact in a Biosensors conference he was quite willing to participate in this project. It 

was very rewarding when the system worked. 

The work develop in these three years resulted in the publication of 8 papers in 

international peer-reviewed journals: 

 

 Hg(II) sensing based on functionalized carbon dots obtained by direct 

laser ablation. Helena Gonçalves, Pedro A.S. Jorge, J.R.A. Fernandes, Joaquim C.G. 

Esteves da Silva. Sensors and Actuators B, 145 (2010) 70. 
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 Fluorescent Carbon Dots Capped with PEG200 and Mercaptosuccinic Acid. 

Helena Gonçalves, Joaquim C. G. Esteves da Silva. J. Fluorescence, 20 (2010) 1023. 

 

 Optical fiber sensor for Hg(II) based on carbon dots. Helena M.R. 

Gonçalves, Abel J. Duarte, Joaquim C.G. Esteves da Silva. Biosensors and 

Bioelectronics, 26 (2010) 1302. 

 

 Parallel factor analysis of EEM of the fluorescence of carbon dots 

nanoparticles. João M. M. Leitão, Helena Gonçalves, Joaquim C. G. Esteves da Silva. 

J. Chemometrics, 24 (2010) 655.  

 

 Analytical and bioanalytical applications of carbon dots. Joaquim C. G. 

Esteves da Silva, Helena Gonçalves. Trends in Analytical Chemistry 30 (2011) 1327.  

 

 Metal-Enhanced Photoluminescence from Carbon Nanodots. Yongxia 

Zhang, Helena Gonçalves, Joaquim C.G. Esteves da Silva, Chris D. Geddes. Chemical 

Communications 47(2011) 5313. 

 

 A New Insight on Silicon Dots. Helena M.R. Gonçalves, Joaquim C.G. 

Esteves da Silva. Current Analytical Chemistry, 8 (2012) 67.  

 

 Layer-by-layer immobilization of carbon dots fluorescent nanomaterials 

on single optical fiber. Helena Gonçalves, Abel Duarte Frank Davis, Seamus Higson, 

Joaquim C.G. Esteves da Silva. Analytica Chimica Acta (2012) : Vol. 26, 2010, page 

1302 

 

Additionally it resulted in the participation on two international conferences: 

 

 Optical fiber nanosensor for Hg(II) based on carbon dots. Poster 

Presentation in Biosensors 2010. Helena M.R. Gonçalves, Joaquim C.G. Esteves da 

Silva.  
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 Silica dots vs. Carbon dots as fluorescence nanosensors. Poster 

Presentation in 10th National Meeting on Photochemistry/ENF2010 – SPQ. Helena 

Gonçalves, Joaquim C.G. Esteves da Silva.  

 

 Synthesis of fluorescent nanomaterials as nanosensors. Oral Presentation 

in 10th National Meeting on Photochemistry/ENF2010 – SPQ. Joaquim C.G. Esteves 

da Silva, Helena Gonçalves, Abel Duarte. 

 

Furthermore there are currently two manuscripts that are being reviewed for 

publication in international journals. 

 

It was with great pleasure that I’ve worked on this theme and I hope this could 

be considered useful for other colleagues investigating in this area, along with 

enterprises that are willing to invest in the state of the art sensors. 
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