
A real-time distributed software infrastructure for
cooperating mobile autonomous robots

Frederico Santos1,3

1 DEE - ISEC
I. P. Coimbra, Portugal

Luı́s Almeida2,3

2 DEEC - FEUP
Univ. Porto, Portugal

Paulo Pedreiras3, Luı́s Seabra Lopes3

3 IEETA - DETI
Univ. Aveiro, Portugal

Abstract— Cooperating mobile autonomous robots have been
generating a growing interest in fields such as rescue, demining
and security. These applications require a real time middleware
and wireless communication protocol that can effecient and
timely support the fusion of the distributed perception and
the development of coordinated behaviors. This paper proposes
an affordable middleware, based on low-cost and open-source
COTS technologies, which relies on a real-time database par-
tially replicated in all team members, containing both local and
remote state variables, in a distributed shared memory style.
This provides seamless access to the complete team state, with
fast non-blocking local operations. The remote data is updated
autonomously in the background by a WiFi-based wireless
communication protocol, at an adequate refresh rate. The
software infrastruture is complemented with a task manager
that provides scheduling and synchronization services to the
application processes on top of the Linux operating system.
Such infrastructure has been successfully used for four years
in one RoboCup middle-size soccer team, and it has proved to
be dependable in the presence of uncontrolled spurious traffic
in the communication channel, using an adaptive technique to
synchronizating the robots in the team and reconfiguring the
communications dynamically and automatically according to
the number of currently active team members.

I. INTRODUCTION

Coordinating several autonomous mobile robotic agents in
order to achieve a common goal has been an active topic of
research for more than a decade [1][2]. This problem can
be found in many robotic applications, either for military or
civil purposes, such as search and rescue in catastrophic sit-
uations, demining or maneuvers in contaminated areas. The
technical problem of building an infrastructure to supportthe
perception integration for a team of robots and subsequent
coordinated action is common to the above applications. One
initiative that was created to promote research in this fieldis
RoboCup [3] Middle Size League where several autonomous
robots have to play soccer together as a team, to win a match
against another team of autonomous robots.

Currently, the requirements posed on such teams of au-
tonomous robotic agents have evolved in two directions.
On one hand, robots must move faster and with accurate
trajectories to close the gap with the dynamics of the
processes they interact with, e.g., a ball can move very fast.
On the other hand, robots must interact more in order to
develop coordinated actions more efficiently, e.g., only the
robot closer to the ball should try to get it while other
robots should move to appropriate positions. The former
requirement demands for tight closed-loop motion control
while the latter demands for an appropriate communication

system that allows building a global knowledge base to
support cooperation.

Different middleware layers have been developed to help
the task of programming teams of autonomous agents,
providing logical abstractions to support cooperation [2].
Unfortunately, the actual use of communication and syn-
chronization by the specific middleware layer may impose
different delays and, in the end, may cause the middleware
to fail supporting the requirements referred above.

Therefore, to support such requirements efficiently, a spe-
cific software infrastructure was developed for the CAM-
BADA (Cooperative Autonomous Mobile Robots with Ad-
vanced Distributed Architecture) middle-size robotic soccer
team of the University of Aveiro, Portugal, which is com-
posed by three main components: a middleware based on
a Real-Time Database (RTDB); a wireless communication
protocol based on WiFi and implementing a Reconfigurable
and Adaptive TDMA (RA-TDMA), and; a process manager
(PMAN) to provide enhanced synchronization (real-time)
services to the general purpose Linux Operating System.

The former was initially proposed in [4] and follows a dis-
tributed shared memory model that provides each agent with
a local copy of the state variables of the other agents. These
local copies are updated transparently and autonomously in
the background by the communication protocol, which has
several adaptive and reconfigurable properties that reducein-
tra team collisions and grant it higher robustness with respect
to external interferences [5]. Particularly, the communication
protocol is fully distributed, using minimal configuration
parameters, thus being very easy to deploy. Finally, the
PMAN [6] provides services for the Linux OS that are typical
of Real-Time Operating Systems (RTOS) namely support for
automatic activation of recurrent tasks with good precision,
phase control and precedence constrains.

Despite having been developed for a robotic soccer team,
this middleware is equally suited to situations in which a
team of robots must interact tightly to achieve a comon
goal, from search and rescue, to surveillance and pursuit.
We will also show that it is an affordable and dependable
middleware in the sense that it is based on COTS hardware
and open source software and it is robust to spurious trans-
missions in the channel using an adaptive phase rotation-
based mechanism to keep the team robots synchronized
and reconfiguring the communications cycle dynamically
according to the number of currently active robots.

This paper presents the three middleware components in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143400397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


an integrated way, with a focus on the RTDB middleware,
its current implementation, which has evolved considerably
since its initial version in [4], and its relationship with
other similar infrastructures. This relationship is discussed in
Section II, with the RTDB being presented in Section III. The
communication protocol is briefly described in Section IV
and the PMAN in Section V. Section VI addresses timing
issues, namely the age of the data within the RTDB. This
Section also includes an analysis of the communication
delays. Finally, Section VII concludes the paper.

II. RELATED WORK

Similarly to other RoboCup middle-size league teams
[7][8], our team software architecture emphasizes coopera-
tive sensing as a key capability to support the behavioral and
decision-making processes in the robotic players. A common
technique to achieve cooperative sensing is by means of
a blackboard [9], which is a database where each agent
publishes the information that is generated internally andthat
may be fetched by others.

Blackboard-based middlewares are frequently built in-
house, resulting in many flavors. Nevertheless, one typical
approach is based on the client-server (CS) cooperation
model and thus, when a robot needs a datum, it has to
communicate with the server holding the blackboard. This
introduces an undesirable delay at the time the datum is
required, which depends on the current network availability
and utilization level as well as the interval between when
the datum was written and when it is requested. This model
does not necessarily consider synchronization between the
data producers that write in the blackboard and the clients
that access it, which can increase the age of the data.

These CS approaches are frequently built on top of the
Common Object Request Broker Architecture (CORBA)
distribution middleware, which provides independence with
respect to the data actual physical location. Examples of
such include Miro [10][11], RT-Middleware [12] and RSCA
[13]. These and other middlewares have been compared
in [2] according to a list of relevant objectives, namely
simplification of the development process, reusability, inte-
gration, flexibility, self-discovery, self-configurationand QoS
support. Such work also concludes that it is difficult for a
unique middleware to fulfil all the enumerated objectives and
that the provided characteristics are a balance between the
application domains and the robotic systems. In general all
middlewares accelerate the development process providing
distribution abstractions that simplify the development of
coordinated behaviours. The other objectives referred arealso
commonly met by the analysed middlewares, with the excep-
tion of QoS support, which is only provided by RSCA that
makes use of RT-CORBA approach for the communication.

A different cooperation model is the publisher-subscriber
(PS) [14] in which the entities associated with a given datum
register in a group. The producers of such datum are the
publishers and those needing the datum are the subscribers.
The middleware layer takes care of the data dissemination,
sending the data generated by the publishers to the respective

subscribers in a multicast fashion. PS middlewares are also
well suited to implement blackboards. In this case, publishers
place data directly in the blackboard and the middleware
automatically sends it to the registered subscribers with a
small latency, thus being better suited to meet real-time
requirements than client-server models. A well known PS
middleware is the Data Distribution Service (DDS) [15]. A
key aspect of this middleware is the use of QoS parameters
to configure the system and establish contracts between pub-
lishers and subscribers specifying exactly how information
should flow between the nodes. QoS contracts provide the
performance predictability and resource control requiredby
real-time systems while preserving the modularity, scalabil-
ity and robustness inherent to the anonymous PS model.
OpenRDK [16] is an open source middleware, that aims
at extending the Quality of Service with the inclusion of
additional features inspired in the DDS specification.

Another model that is rather similar to the PS one is the
producer-consumer (PC) [17]. The main difference is that it
is based on broadcast, thus involving all nodes at a time.
Whenever a producer generates data, it is made available to
all potential consumers. Those that are the actual consumers
of a given datum identify it and retrieve the datum from the
network interface. Both PS and PC middlewares are well
suited to implement the distributed shared memory model
[18] in which each node has local access to all the process
state variables that it requires. Those variables that are remote
have a local image that is updated automatically by an
autonomous communication system.

In our target application, i.e., the coordination of a team
of mobile robots, the network must necessarily be wireless.
When comparing with wired networks, wireless ones present
higher and asymmetric bit error rates, leading to more packet
drops and to connectivity and network availability losses.It is
thus important that the middleware handles these limitations.
The unicast nature of CS middlewares allows them to use
acknowledges and automatic retransmissions, which tend to
improve the reliability of the communications. However,
retransmissions can also cause data to become old beyond
its validity, thus becoming useless. On the other hand, PS or
PC middlewares typically use one to many unacknowledged
communications, thus without retransmissions. Packet drops
are ignored and compensated with subsequent transmissions
that are normally periodic. The absence of retranmissions
keeps the network load generated by the team always at the
same level, which has a stabilizing effect in the network.
Conversely, retransmissions imply an increase in the network
load, possibly leading to thrashing. In this sense, PS and
PC middlewares can be considered more robust, thus more
adequate to wireless communication than CS ones. Never-
theless, the recovery from a packet loss is typically faster
with retransmissions as long as the network load is not too
high, which might favor CS approaches.

Common robotics middleware does not take care of the
wireless communication problems or even tries to share the
medium with traffic from other sources, but focus mostly
on the interaction between modules, using CORBA imple-



mentations that are heavy-weight and introduce additional
complexity in the network. SPICA [19] is an example of a
middleware that tries to solve the problem using a simple,
lean and fast communication infrastructure, but for usage in
ad-hoc communications.

In this paper we propose a PC middleware that shares the
features of that class but goes a step further presenting a few
novel features that are particularly adapted to the coordina-
tion of teams of mobile robots. Particularly, it implementsthe
distributed shared memory model giving each node seamless
access to remote variables as if they were local, abstracting
away both distribution and communication, it includes a
specific communications protocol based on a reconfigurable
and adaptive TDMA approach that minimizes the collisions
among team members and further contributes to the network
stability in a shared medium with other sources of traffic.
It also includes a task manager that provides enhanced
synchronization services to tasks executing on a general
purpose operating system within each node. Overall, the
proposed middleware is affordable since it is based on
COTS hardware technologies and open source software, it
is dependable in the sense that it is robust to transmission
errors and to spurious transmissions and it meets most of
the objectives referred in [2] namely, simplification of the
development process, reusability, integration and QoS.

III. THE RTDB

Similarly to the concept presented in [20], we developed
a replicated blackboard called Real-Time Database (RTDB),
which holds the state data of each agent together with local
images of the state data shared by other team members.
A specialized communication system triggers the required
transactions in the background at an adequate rate to guar-
antee the refresh of those local images.

In the robotic soccer case, the information within the
RTDB holds the absolute positions and postures of all team
members, as well as the position of the ball, among other
less relevant data. This approach allows a robot to easily use
the other robots sensing capabilities to complement its own.
For example, if a robot temporarily loses track of the ball
it might use the position of the ball as detected by another
robot. This is done without explicit use of communication,
abstracting away the data distribution itself.

A. RTDB Implementation

The RTDB is fully implemented inANSI C over several
blocks of shared memory. One of the blocks is a private
area for local information, only, i.e., which is not to be
disseminated to the other robots; and the other blocks (one
corresponding to each team member) are the shared area with
global information (see Fig. 1). One of the shared blocks
is written by the agent itself (read-write), whose data is
sent to the others and could also be used for interprocess
communication, while the remaining blocks (read-only) are
used to store the information received from the other agents.

The allocation of shared memory is carried out by means
of a specific function call,DB_init(), called once by

Fig. 1. Each agent transmits periodically its subset of statedata that might
be required by other agents

every process that needs access to the RTDB. The memory
allocation is executed by the first process to use such call,
only. Subsequent calls just return the shared memory block
handler and increment a process count. Conversely, the
memory space used by the RTDB is freed using the function
call DB_free() that decreases the process count and, when
zero, releases the shared memory block.

The RTDB is accessed concurrently by processes that cap-
ture and process images and implement complex behaviors,
and by the periodic task that manages the communication
with the other robots through the wireless interface. All
processes access the RTDB with local non-blocking function
calls, DB_put() and DB_get() that allow writing and
reading records, respectively (Fig. 2 shows the prototypes
of the RTDB related function calls).DB_get() further
requires the specification of the agent from which the item
to be read belongs to, in order to identify the respective area
in the database.

int DB_init (void)
void DB_free (void)
int DB_put (int _id, void *_value)
int DB_get (int _agent, int _id, void *_value)

Fig. 2. The RTDB related function calls

B. Internal Structure

The RTDB is organized in a set of records plus a set of
associated data blocks. The records contain the fields referred
in Fig. 3, namely an identifier, a pointer to the respective data
block, the size of that block, a timestamp for computing the
age of the data, the update period reflecting the dynamism of
the respective item, and a control field for data consistency.

To enforce data consistency during concurrent accesses a
double data block is used for each record. With this scheme
any write operation on that item is made on the block that
is free at that instant. This method ensures consistent data
retrieval, as long as there is only one process updating the
same item.



typedef struct {
int id;
int offset;
int size;
timeval timestamp;
int period;
int read_bank;

} TRec;

Fig. 3. The fields of a generic RTDB record

C. Interface with the communication protocol

The RTDB is like a dual-port memory in which the
application, either producer or consumer, uses one side and
the communication protocol uses the other side. On the
application side, the accesses to the RTDB are carried out on
an item basis, independently from each other. However, the
communication protocol works in cycles that are approxi-
mately periodic and in each cycle each robot in the team
transmits once, only (see section IV). Therefore, to reduce
communication overhead, when the time comes for a robot
to transmit, the process that manages the communication
protocol piggybacks all items that are to be transmitted at
that point and assembles them in the required number of
packets, typically just one, which are then dispatched to the
wireless medium.

D. Age of the data

A time stamping mechanism allows the application to
estimate the age of the data and thus detect situations of loss
of temporal validity. However, for the sake of simplicity, this
middleware does not include a global clock service and thus,
the clock in each robot is not correlated. To circumvent such
difficulty, the middleware computes time intervals, only.

When a producer writes a datum in the RTDB its local
time t1 is saved in thetimestamp field (see Fig. 4).
Later on, when the communication protocol fetches the
datum to transmit it over the wireless interface, it computes
the difference between the current local timet2 and the
saved timestamp, which is the age of the datum at the time
of transmission (producer side). The calculated datum age
t2−t1 is attached to the datum itself and transmitted together
in the same packet.

Fig. 4. Datum age calculation

When a packet is received by the communciation system at
the consumer side, each datum is written in the RTDB and
the corresponding data age, from the producer, subtracted
from the current local timet3 − (t2 − t1) and saved in
timestamp. When a consumer process retrieves an item

from the RTDB, the difference from the current time to the
time stamp saved intimestamp is computed, which is an
estimate of the age of the data, from the moment it was
produced to the moment in which it was consumed.

This estimation, however, does not account for the trans-
mission time, which depends on the actual bit rate, on the
latency to access the channel and on possible retransmissions.
However, as shown further on in section VI, the commu-
nication protocol used together with this middleware has
a positive impact on the transmission time, leading to a
relatively constant latency that can be easily added to the
age estimation to improve its accuracy.

E. Configuration

The configuration of the RTDB is done automatically by a
parser, based on a text description file that specifies the team
definition and the RTDB composition (Fig. 5). It identifies
eachAGENT (robot) in the team by a name and each data
ITEM is defined with anid. To compute the data size, the
user must introduce the name of the item,dataname, and
the headerfile where it is defined. Also, an optional
period value can be specified, which sets the data refresh
period of the respective item in number of communication
cycles (see section IV). TheSCHEMA allows indicating for
each data itemid whether it is shared or local, the shared
ones being disseminated by the communication protocol. The
ASSIGMENT clause associates one or moreSCHEMA to one
or moreAGENTS.

AGENTS = ag1, ag2;
ITEM id1 { dataname; headerfile; period; }
SCHEMA sh1 { shared = id1, id2;

local = id3, id4; }
ASSIGNMENT { schema = sh1; agents = ag2; }

Fig. 5. The RTDB configuration file

The RTDB middleware easily accommodates the cohex-
istence of heterogeneous robots. However, the team compo-
sition as well as the RTDB configuration must currently be
known before run time. The dynamic configuration of the
RTDB will be addressed in future work.

IV. THE COMMUNICATION PROTOCOL

The basis of the communication protocol is a Time-
Division Multiple-Access (TDMA) cycle with a sequece of
slots, each allocated to a single robot. However, since the
load in the network cannot be totally controlled by the team,
the only alternative left is to adapt to the current channel
conditions and reduce access collisions among team mem-
bers. This is achieved using an adaptive TDMA transmission
control as proposed in [21], which synchonizes the transmis-
sions within the team based on the actual reception instants
of the respective packets. The TDMA round period is set
off-line and calledteam update period (Ttup), determining
the responsiveness and the temporal resolution of the global
communication. It is, thus, set according to the application
requirements.Ttup is divided equally by the number of team
members,N , generating the TDMA slot structure, with equal



slots of durationTxwin. The agents transmit at the begining
of their slots and thus their transmissions are separated as
much as possible.

When using a fixed number of team members, if some
robots are not active at a given time, e.g., because of a
crash or unavailability, the values ofTxwin will be smaller
than needed, i.e., the slots are unnecessarily short since
some of them are not used. Note that a smallerTxwin

reduces the leeway to accomodate delays caused by the
uncontrolled traffic and thus increases the probability of
loss of synchronization and of collisions within the team.
Therefore, a self-configuration capability was added to the
protocol, to cope with variable number of team members [5].
This mechanism supports the dynamic insertion / removal of
robots in the protocol in a fully distributed way. Currently,
the Ttup period is still constant but it is divided by the
number of running agents at each instant, designatedK,
with K ≤ N , maximizing the inter-transmission separation
between agents.

V. THE PMAN

The middleware presented in this work is based on
the Linux, which is a general propose operating system
(GPOS) thus having the advantage of supporting a variety of
hardware and providing several development environments.
Conversely, as any kind of GPOS, it has a limited support
to the temporal management of the applications. Therefore,
the RTDB middleware was complemented with thePMan
process manager [6], which offers a set of time-related
services to support the development of real-time applications
over Linux. The PMan services include:

• Automatic activation of recurrent tasks;
• Settling of relative phase control, allowing to establish

temporal offsets among tasks;
• Precedence constraints, conditioning the release of pro-

cesses to the conclusion of a set of predecessors;
• On-line process management and QoS adaptation, al-

lowing adding and removing processes at run-time as
well as changing dynamically the temporal properties
of the executing ones, without service disruption.

Particularly, enforcing precedence constraints and setting
relative offsets is quite helpful for the programmer. In fact,
they are applied simply by adequate tasks configuration when
they are set up, without the need to use any synchronization
primitives, thus simplying the application development, par-
ticularly in complex platforms such as multi-core processors.

VI. TIMING ISSUES

The communication system presented in section IV is not
synchronized with the control system of the robots, including
the tasks managed by the PMan, due to the adaptive nature
of the protocol that keeps changing its cycle duration. This
may lead to extra delays in the refreshing of the remote data
that the programmer must be aware. In particular, when a
robot accesses a local image of a datum from other team
member, that datum could be as old as:

max data age = min(Trcpp, Tdup ∗Ttup) + Twt + (Tdup ∗Ttup)

This worst case data age corresponds to when the com-
munication system fetches the data in the producer for trans-
mission just before that data being updated by the control
process in the respective robot. Thus, at that point, that
data can be as old as one period of the respective producer
(Trcpp). However, this latency cannot be larger than the data
update period configured in the RTDB (Tdup ∗ Ttup) thus,
the minimum of the two must be considered. Note thatTdup

is the refresh period in integer number of communication
cycles, i.e., team update periods (Ttup). The transmission
of the data over the air takes some time that must also be
accounted for (Twt). Finally, when the consumer accesses
the data on its side, the data can be waiting in the respective
buffer for at most another data update period (Tdup × Ttup).

Within the above expression, only the wireless transmis-
sion delay is unknown and it is certainly variable with
the traffic load in the network. To evaluate the wireless
transmission delay (Twt) we carried out a few experiments
with and without traffic interference and with and without the
Reconfigurable and Adaptive TDMA protocol, to help assess
its impact in this parameter. Fig. 6 shows the histograms
of the transmission delay using packets with 379 bytes.
The network was configured in managed mode, all the
transmissions were carried out by the Access Point (AP) and
the multicast packets were transmitted at a rate of 1Mbps.
The experiments used 4 robots with aTtup of 50 ms and logs
were extracted for about 9 minutes of continued operation.
The interference traffic was generated by an external laptop
pinging the AP using 1000 bytes packets at a rate of 5
and 10 ms in two different experiments. All robots were
started at the same time using a trigger signal generated by
the external laptop, which causes a situation of maximum
contention among the team members.

Fig. 6.a) and Fig. 6.b) show the transmission delay for
the cases of using and not using the RA-TDMA protocol,
respectively. It is clear that, in the former case, the syn-
chronization imposed by the protocol immediately sorts out
the high contention caused in the starting period and the
inteference among teams members is practically eliminated.
Without synchronization, the team members continue inter-
fering with each other, leading to a substantial increase inthe
transmission delay. Moreover, the impact of the interfering
traffic is also worse without synchronization than when using
the RA-TDMA protocol, showing the benefit of using this
middleware. Finally, it is also important to note that the high
contention provoked in the experiments represents a real
situation since when the clocks are not synchronized, the
phase drifts will cause situations of similar high contention,
which last for several minutes of operation, leading to periods
of degraded communication performance.

VII. CONCLUSIONS

This papers describes a novel middleware for teams of
mobile robots that relies on a real-time database partially
replicated, containing both local and remote state variables,
in a distributed shared memory style. The remote data is
updated autonomously in the background by a WiFi-based



0 0.005 0.01 0.015 0.02 0.025 0.03
0

2000

4000

6000

8000

10000

12000

Transmission delay (s)

a) with Adaptive TDMA

 

 
Clean channel (team only)
Interference: 1KB at 10ms
Interference: 1KB at 5ms

0 0.005 0.01 0.015 0.02 0.025 0.03
0

200

400

600

800

1000

1200

1400

Transmission delay (s)

b) without Adaptive TDMA

 

 
Clean channel (team only)
Interference: 1KB at 10ms
Interference: 1KB at 5ms

Fig. 6. Transmission delay. a) using proposed protocol; b) without protocol

wireless communication protocol, at an adequate refresh rate,
using a modified TDMA scheme, that self-adapt to the cur-
rent channel conditions and the number of team robots. The
software infrastruture is complemented with a task manager
that provides scheduling and synchronization services to the
application processes on top of the Linux operating system,
supporting offsets and precedence constraints without need
for explicit synchronization primitives.

This paper focused on the existing middlewares to support
cooperation among robots, putting the proposed middleware
in context, highlighting its advantages. It is an affordable
and dependable middleware that facilitates the programming
of the cooperative applications, not needing explicit use of
communication, thus abstracting away distribution. More-
over, a novel timestamping mechanism provides enhanced
information on the data age at the time of consumption. The
worst-case age of the remote data was also analyzed and
a bound was given. This age depends on the transmission
latency. Several experiments were then carried out to assess
such latency. The results show the positive impact of the
synchronization embedded in the middleware that avoids
interference among team members.

VIII. ACKNOWLEDGMENTS

This work was partially supported by the Euro-
pean Comission through grant ArtistDesign ICT-NoE-
214373 and Portuguese Government through grant FCT -
SFRH/BD/29839/2006.

REFERENCES

[1] G. Weiss, Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. MIT Press, 1999.

[2] N. Mohamed and J. Al-Jaroodi, “Characteristics of middleware for net-
worked collaborative robots,” inProc. of the International Symposium
on Collaborative Technologies and Systems, Irvine, USA, 2008.

[3] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa, “Robocup:
The robot world cup initiative,” inProc. of the IJCAI-95 Workshop on
Entertainment and AI/Alife, Montreal, August 1995.

[4] L. Almeida, F. Santos, T. Facchinetti, P. Pedreiras, V. Silva, and L. S.
Lopes, “Coordinating distributed autonomous agents with a real-time
database: The CAMBADA project,” inISCIS, ser. Lecture Notes in
Computer Science, C. Aykanat, T. Dayar, and I. Korpeoglu, Eds., vol.
3280. Springer, 2004, pp. 876–886.

[5] F. Santos, L. Almeida, and L. S. Lopes, “Self-configuration of an
adaptive TDMA wireless communication protocol for teams of mobile
robots,” in Proc. of the IEEE International Conference on Emerging
Technologies and Factory Automation, Hamburg, Germany, 2008.

[6] P. Pedreiras and L. Almeida, “Task management for soft real-time
applications based on general purpose operating systems,” in Proc. of
the 9th Workshop on Real-Time Systems, Belem, Brazil, May 2007.

[7] R. Hafner, S. Lange, M. Lauer, and M. Riedmiller, “Brainstormers
tribots team description,” inRoboCup 2008 - TDP.

[8] O. Zweigle, U.-P. Kappeler, T. Ruhr, K. Hussermann, R. Lafrenz,
F. Schreiber, A. Tamke, H. Rajaie, A. Burla, M. Schanz, and P. Levi,
“CoPS stuttgart team description 2007,” inRoboCup 2007 - TDP.

[9] L. D. Erman, F. Hayes-Roth, V. R. Lesser, and R. Reddy, “Thehersay-
ii speech understanding system: Integrating knowledge to resolve
uncertainty,”ACM Computing Surveys, pp. 213–253, 1980.

[10] S. Enderle, H. Utz, S. Sablatnog, S. Simon, G. Kraetzschmar, and
G. Palm, “Miro: Middleware for autonomous mobile robots,” inProc.
of the IFAC Conference on Telematics Applications in Autonomous
and Robotics, Weingarten, Germany, July 2001.

[11] H. Utz, S. Sablatnog, S. Enderle, and G. Kraetzschmar, “Miro:
Middleware for mobile robot applications,”IEEE Transactions on
Robotics and Automation, vol. 18, pp. 493–497, August 2002.

[12] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W.-K. Yoon, “Rt-
middleware: Distributed component middleware for rt (robot technol-
ogy),” in Proc. of the IEEE/RSJ International Conference on Intelligent
Robots and System, Edmonton, Alberta, Canada, August 2005.

[13] J. Yoo, S. Kim, and S. Hong, “The robot software communications
architecture (RSCA) qos-aware middleware for networked service
robots,” in Int. Joint Conf. SICE-ICASE 2006, Busan, Korea, 2006.

[14] A. Corsaro, L. Querzoni, S. Scipioni, S. T. Piergiovanni, and A. Vir-
gillito, “Quality of service in publish/subscribe middleware,” R. Bal-
doni and G. Cortese, Eds. IOS Press, 2006.

[15] “Data distribution service for real time systems, v.1.2,” OMG, 2007.
[16] D. Calisi, A. Censi, L. Iocchi, and D. Nardi, “OpenRDK: Amod-

ular framework for robotic software development,” inProc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Nice, France, September 2008.

[17] D. Miorandi and S. Vitturi, “Performance analysis of pro-
ducer/consumer protocols over ieee802.11 wireless links,”in Proc.
of the IEEE Int. Workshop on Factory Communication Systems, 2004.

[18] V. Milutinovic and P. Stenstrom, “Special issue on distributed shared
memory systems,” inProc. of the IEEE, vol. 87, no. 3, March 1999.

[19] P. Baer, R. Reichle, M. Zapf, T. Weise, and K. Geihs, “A generative
approach to the development of autonomous robot software,” inProc.
of the EASe’07 - 4th IEEE International Workshop on Engineering of
Autonomic and Autonomous Systems, Tucson, USA, March 2007.

[20] H. Kopetz, Real-Time Systems Design Principles for Distributed
Embedded Applications. Kluwer Academic Pub, 1997.

[21] F. Santos, L. Almeida, P. Pedreiras, L. S. Lopes, and T. Facchinetti,
“An adaptive TDMA protocol for soft real-time wireless communica-
tion among mobile autonomous agents,” inProc. of the WACERTS04
Workshop on Architectures for Cooperative Embedded Real-Time
Systems, Lisbon, Portugal, December 2004.


