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Abstract 

The present thesis describes the work developed within the Dissertation course throughout an 

academic internship at Process Systems Enterprise Limited, in the context of chemical 

absorption processes for carbon dioxide (CO2) capture. Almost half of the worldwide CO2 

emissions are due to the combustion of fossil fuels for energy production, which shows that 

its capture and sequestration from power plants would represent a significant reduction in 

carbon emissions. 

The main objective of the present thesis is to model and compare the performance of 

different process configuration solutions for the removal of CO2 from flue gases employing 

piperazine as solvent. Flowsheet models were assembled for five configurations using 

gPROMS® ModelBuilder 4.1.0. The base case used for comparison is the conventional process 

for amine scrubbing, whose main components are a simple absorber and a simple stripper. 

New equipment units were incorporated in the simple flowsheet, successfully improving the 

energy requirements. In order to ensure an objective and consistent analysis of the solvent 

and each configuration studied, the models were validated with experimental data publically 

available provided by “The Rochelle Lab”, placed at the University of Texas at Austin. CO2 

capture rate presented a maximum deviation of -12 %, and the rich loading shown even lower 

deviations: between    and 5 %. 

Besides comparing heat duty and CO2 capture for all the configurations, a sensitivity analysis 

was made to understand the effect of intercooling temperature, intercooling position, 

stripping pressure, L/G ratio and piperazine concentration on the results.  

Three of the analysed processes were optimised in order to minimize the energy 

requirements, and a maximum decrease of 19 % was achieved. 
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Resumo 

O presente documento descreve o trabalho desenvolvido no âmbito da unidade curricular de 

Dissertacão ao longo de um estágio académico realizado na empresa Process Systems 

Enterprise, no contexto de processos de absorção química para captura de carbono. Quase 

metade das emissões globais de dióxido de carbono são originadas pela combustão de 

combustíveis fósseis para produção energética, pelo que a sua captura em centrais elétricas 

representaria uma redução significativa nas emissões de carbono. 

O objectivo principal desta tese é simular e comparar o desempenho de diferentes 

configurações para a remoção de CO2 a partir de gases de combustão, usando a piperazina 

como solvente. No gPROMS® ModelBuilder 4.1.0 foram construídos os flowsheets 

correspondentes a cinco configurações diferentes. O modelo usado para comparação 

corresponde ao processo convencional de captura de carbono com aminas, cujos componentes 

principais são colunas de absorção e dessorção simples. No caso mais simples foram 

incorporados novos equipamentos, cumprindo o objectivo de melhorar as necessidades 

energéticas. De forma a garantir uma análise objectiva e consistente do solvente e de cada 

configuração estudada, os modelos foram validados através da sua comparação com dados 

experimentais disponíveis publicamente, provenientes do “The Rochelle Lab”, um laboratório 

pertencente à Universidade do Texas em Austin. A captura de CO2 apresentou um desvio 

máximo de -12 % e o rich loading apresentou desvios ainda menores: entre    and 5 %. 

Além de comparar o calor necessário para a captura de CO2 em cada configuração, análises de 

sensibilidade foram efectuadas para compreender os efeitos do arrefecimento intermédio e 

da posição do mesmo na coluna de absorção, da pressão da etapa de dessorção, da razão 

entre os caudais de líquido e vapor e da concentração do solvente nos resultados finais.  

Três das configurações analisadas foram optimizadas de modo a minimizar as necessidades 

energéticas, e um diminuição máxima de 19 % foi conseguida. 
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1 Introduction 

Carbon dioxide is a naturally occurring chemical compound that exists in Earth’s atmosphere 

as a trace gas. CO2 is essential to the existence of life on Earth since it is one of the key 

compounds in photosynthesis, the process by which plants and other organisms convert solar 

energy into chemical energy. Also, being a greenhouse gas it has major influence in the 

reflection of solar radiation back to Earth, keeping the planet’s surface temperature suitable 

to the existence of life. CO2 concentration in atmosphere used to be regulated by 

photosynthetic organisms, however since the industrial revolution it has greatly increased, 

becoming the major greenhouse gas that contributes to global warming – more than 60% (Wu 

et al. 2014). Carbon dioxide is released by the combustion of fossil fuels such as coal, natural 

gas and oil, by biomass as a fuel, and by certain industrial processes. Electrical-power 

generation remains the single largest source of CO2 emissions, being responsible for 42% of 

the worldwide emissions (Agency, International Energy 2013a, Boot-Handford et al. 2014).  

According to Cuéller-Franca and Azapagic (2015) global emissions of CO2 from fossil fuels are 

now 60 % above 1990 levels. Also, according to the 2013a International Energy Agency report  

in the first ten years of the 21st century, the worldwide CO2 emissions from fossil fuel 

combustion increased by 31%, reaching a value of 31 billion tonnes per year. The IPCC special 

report, 2005, presented four technological options to reduce anthropogenic emissions of CO2: 

1. Reduce the use of fossil fuels by improving the efficiency of energy conversion, 

transport and end-use; 

2. Switch to less carbon-intensive fuels instead of more carbon-intensive fuels 

(e.g. natural gas instead of coal); 

3. Increase the use of renewable energy sources, which emits little or no net CO2; 

4.  CO2 Capture and Storage (CCS). 

Carbon capture and storage technology involves capturing CO2 produced by large industrial 

plants, compressing it for transportation and then injecting it deep into a rock formation at a 

carefully selected and safe site, where it is permanently stored. CCS technology can capture 

up to 95% of the carbon dioxide generated in power plants and some industrial processes, 

preventing its release to the atmosphere (Association, Carbon Capture and Storage, online). 

Despite major developments in the renewable energy sector, fossil fuels still represent more 

than 80 % of the world’s primary energy supply (Agency 2013b, Adegbulugbe et al. 2005, Wu 

et al. 2014) . Therefore, the implementation of CCS technology in power plants is one of the 

options that can enable the utilization of fossil fuels with lower CO2 emissions, thus 

representing a significant step towards greenhouse gas emissions reduction. 
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Carbon capture technologies have been used at large-scale for decades in the natural gas and 

fertiliser industries and have recently become operational in the power sector (Institute, 

Global CCS, online). 

At this point, despite being the most mature technology for the sequestration of CO2 from 

power plants based on post-combustion capture (PCC) processes, solvent-based solutions have 

high operating costs and represent a significant decrease in net power generation, which are 

major barriers to full-scale implementation. For this reason a lot of research is being devoted 

to find new solvents and process configurations that could improve process efficiency and 

thus reduce its costs. 

1.1 Motivation 

Process Systems Enterprise Limited (PSE) is the world leading provider of advanced process 

modelling software and model-based engineering to the process industries. PSE’s technology 

and services are applied in seven main sectors: Chemicals & Petrochemicals, Oil & Gas, Life 

Sciences, Food & Consumer Products, Fuel Cells & Batteries, Wastewater and Power & CCS.  

In July 2014, the company launched the gCCS® modelling environment, being the first 

modelling software specifically designed for the modelling of full carbon capture and storage 

chains, covering CO2 capture, compression, transport and injection (PSE 2014b). 

gCCS® is constructed on PSE’s platform for advanced modelling, gPROMS®, allowing the use of 

high-fidelity predictive models. Using the gCCS® model libraries, it is possible to simulate 

each stage of the CCS chain individually and to analyse the interoperability across different 

chain components. Shell’s Peterhead CCS project is the first commercial application of gCCS® 

in the United Kingdom, where it is being used to provide insight into the transient behaviour 

of the amine-based capture unit, and its effect on operations when integrated in the full CCS 

chain (PSE 2014a). 

The gCCS® capture library contains models for the simulation of both chemical and physical 

solvent-based pre and post-combustion capture units. For rigorous physical properties 

estimation, these models use gSAFT, a thermodynamic property package created by PSE, 

which is based on the Statistical Association of Fluid Theory (SAFT) developed at Imperial 

College London. 

The main goal of this thesis is to apply gPROMS® flowsheeting and optimisation features to 

model and compare different process configuration solutions for the removal of CO2 from flue 

gases employing Piperazine as a solvent, using the gCCS® capture library. 
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1.2 Original contributions 

Several processes and flowsheets have been previously assembled on gPROMS® regarding 

chemical solvent-based CO2 capture using the solvents available: monoethanolamine, 

methyldiethanolamine activated with piperazine, and ammonia. This work improved the 

gCCS® library adding piperazine as a solvent and testing it for different flowsheet 

configurations. 

The present thesis intends to understand and compare the effects of different flowsheet 

configurations on CO2 capture results, especially regarding energetic consumption, which is 

the main obstacle to overcome. 

1.3 Dissertation outline 

This thesis is organised in the following way: Chapter 2 presents a literature review on CO2 

capture technologies, in which chemical solvent-based post-combustion capture with amines 

is further analysed. Chapter 3 features a brief description of gPROMS® ModelBuilder, the 

required models from gCCS® capture library and their initialisation procedure, the used 

physical properties package (gSAFT), and the transport properties of piperazine that had to 

be added to the models. Chapter 4 describes the validation of the models used for 

flowsheeting, which was achieved by the comparison of simulation results with experimental 

data publically available. Chapter 5 features the results and the comparison of the piperazine 

capture plant models assembled on gPROMS®. Chapter 6 presents a sensitivity analysis 

regarding several key variables and the optimisation results of three configurations using 

gPROMS® optimisation tool. Chapter 7 contains the conclusions drawn from this thesis and 

future work suggestions. 
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2 Background 

A literature review was conducted in order to understand the basic concepts associated with 

CO2 capture, particularly the existing post-combustion chemical solvent-based technologies. 

2.1  Carbon Capture and Storage 

The CCS chain comprises three essential stages: capture, transport and safe storage of CO2. 

This technology can be applied to large-scale emission processes, including coal and gas-fired 

power generation and to some chemical industries such as cement, iron and steel, and paper 

(Institute, Global CCS, online). 

The capture stage involves the processes required for the removal of CO2 from a mixture of 

gases produced at large industrial facilities. The obtained CO2 stream is then compressed and 

readily transported to the safe storage site. The transportation can be carried out via 

pipelines, ships or road tankers. The final stage consists in the injection and storage in an 

appropriated storage location, which may be underground rock formations or the deep ocean. 

The injection technology is similar to the one employed in the oil and gas industries, and can 

be associated with enhanced oil recovery (EOR), thus constituting a possible revenue source. 

Besides storage, in the past years the captured CO2 has been considered for the production of 

other chemical, mineral fixation and the production of biofuels through the use of micro-

algae (Institute, Global Carbon Capture and Storage, online). 

The world’s first large-scale CCS project applied to the power sector started its operation in 

October 2014 at the Boundary Dam power station in Saskatchewan, Canada. Post-combustion 

amine-based CCS technology was implemented to a coal-fired power plant more than half a 

century old, being the captured CO2 used for EOR. In February 11, 2015, SaskPower released 

preliminary numbers for the operation of the station and the CCS performance is exceeding 

expectations. The power plant is generating 120 MW (10 MW over the predictions) and 1 Mt of 

CO2 per year is being captured, with 99.9 % purity. CO2 emissions were reduced from 1.1 Mt to 

100 000 t per year, which represents a CO2 capture of almost 91 % (SaskPower 2015). 

Two additional large-scale CCS projects in the power sector are planned to start operating: 

the Kemper County Energy Facility in Mississippi and the Petra Nova Carbon Capture Project 

in Texas. 

Kemper County’s predicted start-up date was May 2015 but no information has yet been 

released regarding its operation or performance. The 3.5 Mt of CO2 captured annually (65 % of 

the total produced) through pre-combustion Integrated Gasification Combined Cycle (IGCC) 

technology will be transported via pipelines and used for EOR (MIT 2015a).  
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Petra Nova Carbon Capture Project is scheduled to start at the end of 2016. The existing 

coal-fired power plant will be retrofitted to capture 1.4 Mt/year, which corresponds to 90 % 

of the produced carbon dioxide. It will use the KM-CDR  amine scrubbing process developed 

by Mitsubishi Heavy Industries and Kansai Electric Power Company (MIT 2015b). 

2.2 Carbon Capture Technologies 

The main technologies available for CO2 separation and capture are shown in Figure 2.1. 

 

Figure 2.1 – Available technologies for CO2 capture (Rao and Rubin 2002). 

There are three major approaches for Carbon Capture and Storage: post-combustion capture, 

pre-combustion capture and oxy combustion capture. 

Both post-combustion and pre-combustion carbon capture technologies are economically 

feasible under specific conditions while oxy-fuel combustion is still under demonstration. 

Currently available technology is capable of capturing about 85-95% of the CO2 processed in a 

capture plant (Adegbulugbe et al. 2005). For power plants, the technology employed in the 

capture process depends on the characteristics of the gas being treated, so it will vary with 

the fuel and technology used for energy production. 

This literature review focuses on chemical absorption associated to the post-combustion 

capture approach. The other technologies and CCS approaches are briefly described in 

Appendix 1. 

PCC involves the separation of CO2 from the flue gases produced by the combustion of fossil 

fuels – coal, oil or natural gas – in power plants with air (Institute, Global CCS 2012b)  and 

from the waste gas streams resulting from the production of ethylene oxide, cement and 

biogas sweetening (Cuéllar-Franca and Azapagic 2015).  

This technology can be divided in three categories: biological, physical and chemical 

methods. Biological method refers to CO2 fixation by photosynthesis of plants, algae and 
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photosynthetic bacteria without energy consumption. Physical methods involve CO2 

absorption and removal with organic solutions without chemical reaction. As to chemical 

method, CO2 is removed by reacting with chemical compounds. The chemical method includes 

chemical adsorption, chemical looping combustion and chemical absorption (Boot-Handford et 

al. 2014). 

In a typical power plant the fuel is combusted with air for steam generation, which is then 

used for the production of electricity in a steam turbine. A schematic representation of the 

PCC process is presented in Figure 2.2. 

 

Figure 2.2 – Schematic representation of a power plant with post-combustion CO2 capture (Institute, 

Global CCS, online). 

The flue gas exiting the boiler has high content of nitrogen and low content of carbon 

dioxide, water and oxygen, at pressure close to atmospheric. It also contains small amounts 

of impurities such as SOx, NOx and ash that must be removed before the capture process 

through electrostatic precipitation and desulphurization (Boot-Handford et al. 2014).  

The typical concentration of each specie in the flue gas obtained from the combustion of coal 

and natural gas is presented in Table 2.1. 

Table 2.1 – Typical composition of flue gas from coal and gas fired power plants (Institute January 

2012b). 

Gas constituent 
Composition (vol. %) 

Coal Natural Gas 

N2 70-75 73-76 

CO2 10-15 4-5 

H2O 8-15 8-10 

O2 3-4 12-15 

Trace gases <1 <1 
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Post-combustion CO2 capture can be accomplished by means of chemical solvents, 

membranes, solid sorbents, or by cryogenic separation, among others. Nevertheless, chemical 

absorption with amine-based solvents is currently the state-of-the-art technology for post 

combustion carbon capture (Wu et al. 2014) and according to Global CCS Institute report on 

post-combustion capture, 2012, the technologies currently tested on pilot plants are 

universally based on absorption with aqueous solvents. 

Absorption processes allow CO2 capture rates up to 95 %, and purity as high as 99.9 vol.% for 

the recovered CO2 (Adegbulugbe et al. 2005). Since the stream being treated is at nearly 

atmospheric pressure and has low CO2 content, the CO2 partial pressure is reduced. Therefore 

the chosen solvent has to be able to ensure acceptable loadings (the ratio of the number of 

mole of CO2 and amine) and kinetics in the referred conditions. Due to this, chemical 

absorption poses a better option in PCC processes, when compared with physical solvents. 

PCC offers some advantages as it can be applied to newly designed facilities or implemented 

as a retrofit option to existing power plants without radical changes on them (Wu et al. 

2014). 

 

2.3 Chemical solvent-based Carbon Capture Processes 

Chemical absorption, also known as gas scrubbing, is based on the reaction of CO2 with an 

alkaline solvent to form a weakly bonded intermediate compound which may be regenerated 

with the application of heat or the decrease of pressure, producing the original solvent and a 

CO2 stream. The selectivity of this form of separation is relatively high, particularly when 

using amines as solvent. In addition, a relatively pure CO2 stream could be produced. These 

factors make chemical absorption well suited for CO2 capture of industrial flue gases (Wang et 

al. 2011). 

Chemical absorption/stripping for CO2 separation is a mature technology that was first 

patented in the 1930s (Dugas and Rochelle 2011b) and has been widely used in the chemical 

industry, being currently considered the most viable option and the technology of choice for 

carbon capture from coal-fired power plants (Rochelle et al. 2011). Post and pre-combustion 

capture at lower CO2 partial pressures are mainly based on this technology.  

The selection of the solvent depends on the conditions of the gas being treated: its pressure, 

temperature, CO2 composition and impurities present. Gas characteristics also determine 

process variables as temperature, pressure and flow rates, construction materials, use of 

inhibitors and equipment design and configuration (Plaza 2012). A good solvent for CO2 
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capture has high CO2 absorption rate, CO2 capacity and resistance to degradation, and low 

volatility and corrosiveness (Singh, Swaaij, and Brilman 2013b, Salazar et al. 2013). 

Higher solvent concentrations lead to a reduction of the equipment size and process thermal 

and pumping requirements due to the solvent flow rate reduction so it is important to keep it 

as elevated as possible. Nevertheless, due to amines reactivity they are highly prone to 

oxidative and thermal degradation, which limits its concentration (Singh, Swaaij, and Brilman 

2013a). 

Most representative solvents that are being considered for chemical-based carbon capture are 

alkanolamines, ammonia, amino-acid salts and hot potassium carbonate. 

A conventional flowsheet for a PCC plant operating with chemical absorption is shown in 

Figure 2.3.  

 

Figure 2.3 – Process flow diagram for CO2 capture by chemical absorption (EPRI November 2005). 

Prior to absorption, other acid gases such as SO2 and NO2 must be removed since they affect 

the performance of the system by forming heat stable salts with the solvent. SO2 required 

concentration lower than 10 ppm can be achieved through flue gas desulphurization; NOx 

concentration is reduced by selective catalytic reduction, selective non-catalytic reduction or 

low NOx burners. Particulate matter such as fly ash can be eliminated in electrostatic 

precipitators (Cousins, Wardhaugh, and Feron 2011). 

Flue gases from a combustion power plant are usually above 100 oC, thus in order to minimize 

solvent degradation and improve CO2 absorption they must be cooled to a temperature lower 

than 65 oC (EPRI November 2005) in a direct contact cooler, and are then sent to the 

absorber. 
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During the chemical absorption process the cooled flue gas enters a packed bed absorber 

which is at temperatures typically between 40 and 60 oC from the bottom and 

counter-currently contacts with the aqueous solvent. The lean solvent gradually heats up as 

CO2 diffuses from the gas into the liquid film. The scrubbed gas may be water washed or 

directly vented to the atmosphere, depending on the amount of solvent on that stream.  

After leaving the absorber, the rich solvent is heated in a cross exchanger by regenerated 

hot-lean solvent from the stripper’s reboiler. It then flows into the top of the stripper where 

it is regenerated at elevated temperatures (100-150 oC) and at pressures in the range of 

1.5-2 atm. Heat is supplied by the reboiler, which is the major energy penalty of the process. 

After solvent regeneration the CO2 lean solvent is pumped back to the absorber via the cross 

heat exchanger to reduce the temperature (Wang et al. 2011). The pure CO2 released from 

the top of stripper is then compressed for the subsequent transportation and storage. 

The industry standard for chemical solvent-based carbon capture is monoethanolamine (MEA) 

due to its low cost and high capacity, heat of absorption and rates of reaction. However, in 

order to reduce energy penalty and improve process performance, other options have been 

studied in the past few years, such as the alkanolamines diethanolamine (DEA), 

diisopropanolamine (DIPA), methyldiethanolamine (MDEA) and piperazine (PZ), ammonia and 

potassium carbonate. More recently, there has been growing interest in using improved and 

activated solvents, mixing amines to capitalize the advantages of each one of them: combine 

the higher reaction rate of primary/secondary amines with the higher equilibrium capacity of 

the tertiary/sterically hindered amines, leading to significant saving in process costs. This 

blends present enhanced absorption performance due to the presence of the 

primary/secondary amine and low energy consumption for the solvent regeneration due to 

the tertiary/hindered amine (Closmann, Nguyen, and Rochelle 2009). 

 

2.3.1  Amine-based capture processes 

Aqueous alkanolamine solutions are widely used for the removal of acid gas impurities such as 

carbon dioxide and hydrogen sulphide from natural gas, hydrogen and synthesis gas for 

ammonia production (Samanta and Bandyopadhyay 2007, Fu, Li, and Liu 2014).  

Amine nomenclature is based on the number of carbon atoms in the amine group. Primary 

(e.g. MEA), secondary (e.g. DEA, DIPA) and tertiary (e.g. MDEA) amines have one, two and 

three carbon groups connected to the amine group, respectively, as can be seen in Figure 2.4. 
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Figure 2.4 – Schematic representation of a) primary, b) secondary and c) tertiary amines. 

Due to the presence of at least one hydrogen atom, primary and secondary amines react 

strongly and at elevated reaction rates with CO2, even at low partial pressures. However they 

have high volatility and require oxidation inhibitors due to corrosion and degradation 

problems (Dubois and Thomas 2013). 

Tertiary and hindered amines provide higher CO2 loadings and have lower energy 

requirements. Nevertheless, they have considerably slower kinetics, thus requiring the use of 

promoters (Dubois and Thomas 2013). 

Sterically hindered amines are primary or secondary amines that were modified so that the 

carbon atom bounded to the amine group is secondary or tertiary, thus reducing its reactivity. 

Examples of these amines are 2-amino-2-methyl-1-propanol and 2-piperidineethanol (Vaidya 

and Kenig 2007). 

Primary and secondary amines (     ) react with CO2 producing a compound called 

carbamate (        ) through the formation of an intermediate zwitterion (          ), 

which correspons to the mechanism’s slow step (Thee et al. 2012). The mechanism can be 

represented by equations 2.1 and 2.2. 

Besides these reactions, CO2 is also converted into bicarbonate through the reaction 

described in equation 2.3. Nevertheless, for loadings below 0.5 molCO2/molalk, the bicarbonate 

formation can be considered insignificant when compared to the carbamate formation (Khan, 

Krishnamoorthi, and Mahmud 2011). 

                                                                                                               

                                
                                                      

                  
          

                                                                    

Hindered amines form a carbamate of low stability due to the large group connected to the 

amine group. This unstable carbamate is hydrolysed originating a bicarbonate ion (Vaidya and 

Kenig 2007). 

                 
                                                                                   

Combining equations 2.1, 2.2 and 2.4 it can be observed that for hindered amines the global 

reaction is equivalent to the reaction described in equation 2.3, being the reaction 

a) b) c) 
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stoichiometry of 1:1 between CO2 and the amine. In the case of un-hindered amines, the 

global stoichiometry is 1:2. This difference in the global stoichiometry leads to a maximum 

loading of 0.5 molCO2/molalk for unhindered amines, while hindered amines present a 

maximum loading of 1 molCO2/molalk (Vaidya and Kenig 2007). 

Tertiary amines (       ) do not have hydrogen atoms bounded to the amine group, so they 

are not able to react directly with CO2. Relevant reactions for this type of amines are 

presented in equations 2.5 and 2.6. 

            
                                                                                                              

                                                                                                       

The limiting step for this mechanism is the CO2 hydrolysis, therefrom the reduced reaction 

rate. 

2.3.2  Piperazine as the new benchmark solvent 

Piperazine is a cyclic diamine with two secondary amine nitrogen atoms, which provide large 

reactivity and CO2 capacity (Bishnoi and Rochelle 2000). Its cyclic structure exposes the 

nitrogen groups and results in very fast reaction with CO2. The ring structure also provides 

increased resistance against thermal degradation allowing for stripping at higher 

temperatures. 

PZ has been used as an effective promoter to increase absorption rates and capacity in 

solvents such as K2CO3, MEA and with MDEA for over almost 30 years (Plaza and Rochelle 2011, 

Freeman et al. 2010, Muhammad et al. 2009). PZ has been found to be a good promoter 

compared to other amines because it leads to higher rates of absorption while maintaining a 

low heat of regeneration in the stripper section (Moioli and Pellegrini 2015b). As a promoter, 

PZ concentration is low due to its low solubility: between 0.5 and 2.5 molal (m). 

PZ is used as an activator in the BASF’s activated MDEA (aMDEA) technology for natural gas 

sweetening and it is reported to be more effective than the conventional rate accelerators 

(Samanta and Bandyopadhyay 2007). The blend MDEA/PZ takes advantage of the relatively 

high heat of reaction of CO2 with the activating agent combined with the benefits of high 

loading capacity of MDEA and relatively low cost of regeneration of the activated solvent. 

Piperazine is nearly ten times more reactive than any of the other presented amines. Due to 

these characteristics, PZ reacts rapidly with CO2 as soon as the gas dissolves into the liquid. It 

then shuttles the CO2 (as carbamate) into the interior of the liquid where it dissociates back 

into the free amine and transfers the CO2 to the activated solvent. The promoter diffuses 

back to the interface for more CO2 (Contactor 2008). 
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Regarding the piperazine system, the relevant reactions are described in equations 2.7-2.10 

(Sachde and Rochelle 2014). 

                                                                                                              

                     
  

                                                                    

                   
                                                                      

                                                                                                    

The second order reaction rate constants at 25 oC for the amines previously mentioned are 

listed in Table 2.2.  

Table 2.2 – Reaction Rate Constants of commonly used amines with CO2 (Contactor 2008). 

Amine Reaction rate constant               

MEA 6000 

DEA 1300 

DIPA 100 

PZ 59000 

MDEA 4 

 

30 wt. % (7 molal) MEA has been the standard solvent for the evaluation of processes for 

post-combustion CO2 capture. However in the past few years, concentrated aqueous PZ has 

been investigated as a novel amine solvent for CO2 capture and has shown good potential, so 

it is now being proposed as the new benchmark by the research community (Rochelle et al. 

2011). 

Although pure PZ boiling point (146 oC) is lower than that for MEA (171 oC), the volatility of 

high concentration PZ (>5 m) is similar to MEA’s because of its low activity coefficient in 

water (Rochelle et al. 2011, Hilliard 2008). Nevertheless, PZ provides CO2 absorption rate 2-3 

times faster (Dugas and Rochelle 2009, Freeman et al. 2010) and better capacity – near 

double of that of 7 m MEA (Chen et al. 2014). PZ also has moderately high heat of absorption 

(≈70 kJ/mol) (Kim and Svendsen 2011) and very good resistance to oxidative and thermal 

degradation so it can be used up to 150 oC (Mazari et al. 2014), which should provide 10-20 % 

better energy performance (Plaza and Rochelle 2011, Freeman et al. 2010). Also, studies 

indicate that 8 m PZ decreases the total equivalent work requirement of the simple stripper 

and two-stage flash configurations by 7.8 and 4.2%, respectively, when used instead of 9 m 

MEA (Van Wagener and Rochelle 2011, Van Wagener, Rochelle, and Chen 2013). 
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8 m PZ process limitations are related to the solubility issues encountered at both lean and 

rich CO2 loadings, since its melting point is very high (106 oC), leading to a limited operating 

range (Chen et al. 2014, Dugas and Rochelle 2011a, Moioli and Pellegrini 2015a).  

 

2.3.3  Pilot plant studies with piperazine 

Most studies related to post-combustion CO2 capture with piperazine are being conducted at 

the University of Texas at Austin (Seibert et al. 2011). Since 2008, five pilot plant campaigns 

were carried out, being their conditions summarized on Table 2.3. 

Table 2.3 – Pilot plant campaigns conditions (Sachde, Chen, and Rochelle 2013). 

Pilot plant 

campaigns 

November 

2008 

September 

2010 

December 

2010 

October 

2011 

November 

2013 

Piperazine 

concentration 
5 – 9 m 8 m 8 m 8 m 3.6-3.75 m 

Packing 
Structured 

2X 
Hybrid 250 Hybrid 250 

Structured 

350 Z 
Hybrid 250Y 

Gas rate 

(ftact
3
/min) 

350 250-750 350-650 360-675 360 

Liquid rate 

(gallon/min) 
12-18 8-26 8-26 11-22 12 

Intercooling No Yes/No Yes 
Yes (with 

spray) 
Yes/No 

 

In November 2008 the simple absorber and simple stripper configuration shown in Figure 2.5 

was implemented. Inlet temperatures on the absorber were kept at 40 oC, for both flue gas 

and lean solvent. The stripping process occurred at 1.38 bar and 128 oC, throughout fifteen 

non-equal runs, resulting in capture rates between 48.7 and 93.2 % (Plaza and Rochelle 2011). 

 

Figure 2.5 – November 2008 Pilot Plant Campaign (Plaza 2012). 
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In September and December 2010 intercooling was retrofitted to the existing absorber 

column, as shown in Figure 2.6 (Van Wagener, Rochelle, and Chen 2013). For this 

configuration, stripper temperature was slightly decreased to 120 oC. 

 

Figure 2.6 – September and December 2010 Pilot Plant Campaign (Plaza 2012). 

In October 2011 the simple stripper was replaced for a two-stage flash that can be seen in 

Figure 2.7. It allowed to evaluate CO2 regeneration at higher temperature and pressure 

(150 oC and 14 bar) (Walters et al. 2013, Madan et al. 2013, Chen et al. 2013, Sachde, Chen, 

and Rochelle 2013). 

 

Figure 2.7 – October 2011 Pilot Plant Campaign (Plaza 2012). 

In this configuration the rich solvent exiting the main cross-exchanger is delivered to a 

second, high-pressure, heat exchanger to attain the temperature on the flash vessels, higher 

than the typical campaigns with the simple stripper. 

In December 2011, a cold rich bypass was added to the low pressure flash vessel. Bypass 

flowrate was 10 % of the total volumetric flow leaving the absorber column (Figure 2.8) 

(Madan et al. 2013). 
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Figure 2.8 – December 2011 Pilot Plant Campaign (Madan et al. 2013). 

5 runs were carried out on December 2013 campaign with the goal of developing methods for 

generating, measuring and capturing PZ aerosols (Chen et al. 2014). 

3.7 m PZ was used in order to eliminate the solubility limitation on the rich CO2 loading end 

and expand the lean solubility window relatively to 8 m PZ. 

The configuration that is shown in Figure 2.9 comprises an intercooled absorber and a 

single-stage high temperature flash with cold rich bypass, operated at 140 oC and 4.5 bar. 

 

Figure 2.9 – November 2013 Pilot Plant Campaign (Chen et al. 2014).
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3 Materials, Methods and Properties 

3.1 gPROMS® ModelBuilder 

gPROMS® ModelBuilder 4.1.0 is the simulation platform used for flowsheet model simulation 

and optimisation throughout the present thesis. This advanced modelling tool can be used for 

the development, validation, execution and deployment of models, using fast and robust 

numerical solvers (PSE 2015a). 

A flowsheet can be assembled through a drag and drop system in the topology tab of a model 

entity, starting from an existing model library, such as the gCCS® library. This way, a new 

model is built, being composed by the models retrieved from the library and the respective 

connections. Furthermore, in the gPROMS® language tab of the same model, it is possible to 

include any other auxiliary equations and custom sub models. Through the inclusion of the 

created model on a process entity, its simulation can be achieved. 

gPROMS® ModelBuilder optimisation tool can be used to optimise the steady state and/or 

dynamic behaviour of a continuous flowsheet, considering both design and operation 

properties. The optimisation procedure acts on a specified process and requires the indication 

of the unassigned variables acting as objective function or process constraints and the 

assigned variables, which work as decision/control variables. 

3.2 gCCS® Capture Library Models 

gCCS® is a tool to support the design and operating decisions across the CCS chain. The gCCS® 

libraries contain steady-state and dynamic models for all the major operations, from power 

generation through capture, compression and transmission to injection, and can be used 

either for modelling individual systems or to study the interoperability across the CCS chain 

components (Rodriguez et al. 2013). 

Absorber and stripper columns can be modelled using two different approaches: 

equilibrium-based or rate-based. Equilibrium-based is good enough for physical absorption 

models but not for chemical ones, since for this case the state of equilibrium is rarely 

attained  (Wang et al. 2011). The rate-based approach comprises chemical reactions and 

multi-component mass and heat transfer correlations, and is the one used on gCCS® models 

(Rodriguez et al. 2013).  

The absorption/desorption units are based on the two film-theory and are distributed in the 

axial direction – the vapour and liquid films are not discretized, and the reactions are treated 

implicitly and assumed to occur only in the liquid bulk (Wang et al. 2011, Kenig, Kucka, and 

Gorak 2003, Rodriguez et al. 2013). It is also assumed phase and chemical equilibrium at the 
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interface. The mass transfer coefficients for both phases, pressure drop, loading and flooding 

limits, liquid holdups and interfacial area are calculated with suitable correlations, which can 

be specified by the user (Rodriguez et al. 2013). 

Absorption systems often contain molecular and electrolyte species and thus are 

characterized by highly non-ideal behaviour. An appropriate thermodynamic model is 

necessary for the accurate calculation of thermodynamic equilibrium at the phase interface. 

Therefore, instead of using typical models for systems containing electrolytes with a chemical 

approach such as Pitzer, Electrolyte NRTL or UNIQUAC, which require knowing reaction 

products and mechanisms a priori (Kenig, Kucka, and Gorak 2003, Dowell et al. 2011), these 

models are based on rigorous gSAFT physical properties. 

The high-fidelity models utilised for the simulation of a chemical-based post-combustion 

capture unit throughout the present thesis are briefly described in Appendix 2. 

3.3 Models Initialisation 

Some models in the gCCS® libraries include an Initialisation Procedure. Briefly, this automatic 

procedure starts the calculations considering the simplest situation and assumptions for each 

model and sequentially, in a certain number of steps, increase the level of complexity until 

the final solution is obtained. 

Absorber, stripper and flash drum models are not able to initialise for every set of conditions. 

In fact, when using piperazine as a solvent, these models only initialise for a specific range of 

conditions, which are very different from the operating ones. This makes the initialisation one 

of the most time-consuming processes of the whole flowsheeting part. 

First of all the model has to be initialised using its Initialisation Procedure, with some specific 

conditions that are obtained by a trial and error process. Once it converges and a solution is 

calculated, its Variable Set, which is a file that contains all the values calculated, must be 

saved in the Saved Variable Sets folder.  

From that point onwards, the Variable Set saved must be restored and the Initialisation 

Procedure ignored. Input conditions of the model are then changed gradually until the desired 

values are reached.  

If the alterations made on the input are small enough, it is possible to obtain a solution. 

3.4 Physical Properties Package – gSAFT 

gSAFT is a physical properties package developed and commercialised by PSE that implements 

the SAFT technology to model the behaviour of the liquid and gas mixtures. This technology 

uses the Statistical Associating Fluid Theory equation of state developed at Imperial College 
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London, an advanced molecular thermodynamic method that is based on statistical mechanics 

and has a limited number of parameters with a clear physical meaning. Hence, these 

parameters can be fitted to a limited amount of experimental data and used to predict phase 

behaviour and physical properties for a wide range of conditions, being able to model 

complex mixtures of associated fluids (PSE 2015b, Rodriguez et al. 2013). SAFT equation of 

state can predict a wide variety of thermodynamic properties of mixtures accurately, based 

in physically-realistic models of molecules and their interactions with other molecules. Thus, 

the reaction products are modelled as aggregates of the reactants, without explicitly treating 

the formation of new species, by assuming chemical equilibrium everywhere across the film 

and the bulk liquid regions. 

The assumption of chemical equilibrium is only valid when the mass transfer rate is slow 

compared to the reaction kinetics (the mass transfer is limited by diffusion). This is true for 

MEA (Rodriguez et al. 2013) hence also for PZ, which has higher reaction kinetics. 

In these models it is taken into account the shape, size and specific interactions between the 

existing molecules in a mixture, which are considered as chains of spherical segments, so the 

reaction products are modelled as aggregates of the reactants. This is particularly relevant 

when considering non-spherical molecules with strong directional interactions, such as the 

hydrogen bounds in PZ-based solvent.  

gSAFT package used in the models presented in this thesis is based on the equations of state 

SAFT-VR, according to which the attraction/repulsion between segments or molecules is 

modelled using the “square-well” potential energy function. This function is characterised by 

the diameter of the segment, the range of dispersion interactions and its strength. The 

physical basis of these parameters allows its systematic use to describe similar molecules or 

predict physical properties in a wide range of conditions (PSE 2015b, Dowell et al. 2011). It 

requires the specification of some non-equilibrium physical properties such as diffusion 

coefficients, viscosities and surface tensions (Kenig, Kucka, and Gorak 2003). 

For carbon capture gSAFT presents a modelling alternative to phase and chemical equilibrium 

in the CO2-PZ-H2O system. Using the gSAFT equation of state the chemical bond between CO2 

and PZ can be incorporated as a short-range association, being included in the molecular 

model. This way, only reactants are considered and the involved reactions are treated 

implicitly, thus greatly reducing the complexity of the model and increasing its robustness.  

Throughout this thesis, the thermodynamic properties are calculated with gSAFT.  
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3.5 Transport properties of Piperazine 

Although the models previously mentioned already existed in gCCS® capture library, the only 

solvents for which there were already information regarding their transport properties were 

MEA, MDEA, activated MDEA (aMDEA) and NH3. Therefore, correlations for some transport 

properties of piperazine had to be incorporated into the existing gCCS® models. 

A sensitivity analysis was made to analyse the effect of surface tension value on the results, 

since there is limited information available regarding this parameter. According to the results 

obtained, surface tension doesn’t significantly affect the results, so the value considered was 

the same as for aMDEA, which is a blend of piperazine and MDEA. 

According to the literature, diffusivity coefficient values are greater for PZ than for MEA but 

once again there is little experimental data available. Therefore its values were adjusted so 

the results approached the experimental data. 

PZ viscosity is ten times larger than that for MEA in the operating range of temperatures. 

According to experimental data, its value depends on the solvent concentration, CO2 loading 

and temperature (Moioli and Pellegrini 2015b, Derks et al. 2008, Derks, Hogendoorn, and 

Versteeg 2005). Since PZ concentration as a solvent is always near 8 m and the loading 

doesn’t significantly affect the results (as can be seen in Figure 3.1), the correlation that has 

been built based on Freeman (Freeman 2008) data is only function of temperature and 

corresponds to a CO2 loading of 0.291, which is the middle one. 

 

Figure 3.1 – Viscosity correlation as a function of temperature. 

There is no available data for temperatures above 70 oC and as referred before, the stripping 

process can occur up to 150 oC (423 K). When using a polynomial equation and extrapolating 

values, for temperatures above 110 oC the viscosity values start increasing, which doesn’t 

make sense physically. 

For that reason, the correlation being used is the exponential equation represented in 

Figure 3.1: 

                                                                                            

Although the equation used is based on 8 m PZ data, the results are not affected in a wide 

range of concentrations, as will be seen in Section 4.1. 
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4 Models validation 

The validation of the absorber models was achieved through the comparison of the simulation 

results with experimental data publically available obtained from pilot plant campaigns 

conducted at the University of Texas at Austin. 

4.1. Absorber model validation 

Plaza and Rochelle, 2011, presented data obtained from a one month pilot plant campaign 

conducted in November 2008 at the University of Texas at Austin. The absorber model built 

on gPROMS® that is shown in Figure 4.1 was validated through the comparison of the referred 

data with the simulation results. 

The presented data consists of fifteen runs with constant volumetric gas flow (around 

            at         and        ) and CO2 content around     . The pilot scale 

absorber has a diameter of         and is packed with     m of Sulzer’s packing Mellapak 2X 

divided into two equal beds. 

Table 4.1 – Pilot plant conditions (Plaza and Rochelle 2011). 

Run 
PZ concentration 

(m) 

L/G 

(mol L/ mol G) 

Loading (mol CO2/ mol alk) Removal 

(%) Lean Rich 

1                           

2                           

3                           

4                           

5                           

6                           

7                           

8                           

9                           

10                           

11                           

12                           

13                           

14                        

15                        
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As can be seen in Figure 4.1, besides the absorber, source and sink models, the flowsheet 

includes a pump model without any specification before the absorber inlet in order to provide 

the required pressure for the liquid phase in the absorber model (A_001). 

 

Figure 4.1 – Simple absorber model used for validation. 

The lean solvent (SR_002) is introduced at the top of the column being the conditions used for 

the process simulation calculated with the inlet values presented in Table 4.1 and presented 

in Appendix 3. Amine concentration varied from 5 m to 9 m, with most data around   m. 

The pilot plant absorber is fed at the bottom with a blend of nitrogen, oxygen, water and 

recycled CO2 from the stripper, with CO2 content around 12 % at constant flow rate (SR_002). 

Throughout the simulations the gas stream composition (SR_001) was assumed to be water 

saturated, with the characteristics shown in Table 4.2. 

Table 4.2 – Flue gas composition. 

Mass flowrate (kg/s) 0.1888 

Mole fractions 

H2O       

CO2       

N2       

O2       

Temperature (oC) 40 

Pressure (bar) 1.013 

Since there is no available data regarding the packing used on the pilot plant tests, all fifteen 

runs were modelled using Sulzer’s structured packing Mellapak 250YTM. 

The parameters required to use Billet & Schultes correlation as mass transfer model with 

Sulzer’s structured packing Mellapak 250YTM already existed in the gCCS® models and can be 

found in Billet and Schultes, 1999. 
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The validation of the absorber model was based on the comparison of the CO2 removal and 

the rich solvent loading, being these variables calculated through equations 4.1 and 4.2 using 

the mass fractions    
  , mole fractions    

   and mass flow rates      of the treated gas 

(TG), flue gas (FG) and rich solvent (RS) streams . 

                   
    

      

    
      

                                                       

                             
    

  

    
  

  
    

  

     
  
                                         

The diffusivity coefficient of every solvent present in the gCCS® models is obtained by 

multiplying the value of        by a correction variable, which is different for each solvent. 

For piperazine, this variable was adjusted in order to minimise CO2 removal deviations. 

Table 4.3 shows the experimental data and simulation results along with the deviation 

between them, which is calculated through equation 4.3. 

               
  

      
   

  
   

                                                                         

Table 4.3 – Experimental and simulation results with a simple absorber. 

Run 
                                             

Experimental Simulation Deviation (%) Experimental Simulation Deviation (%) 

1 85.9 74.7 -13 0.340 0.358 5 

2 66.6 61.7 -7 0.370 0.366 -1 

3 87.9 92.5 5 0.330 0.340 3 

4 68.2 65.7 -4 0.360 0.364 1 

5 77.1 72.3 -6 0.360 0.361 0 

6 73.7 66.0 -10 0.360 0.364 1 

7 92.2 94.1 2 0.340 0.339 0 

8 48.7 47.1 -3 0.380 0.376 -1 

9 93.2 88.1 -6 0.350 0.349 0 

10 60.7 55.5 -9 0.380 0.376 -1 

11 88.6 78.0 -12 0.360 0.360 0 

12 78.3 76.0 -3 0.360 0.362 1 

13 66.8 64.7 -3 0.380 0.371 -2 

14 90.0 86.7 -4 0.360 0.348 -3 

15 87.7 83.7 -5 0.361 0.351 -3 

As can be seen in Table 4.3, the deviations are between     and    for CO2 removal and 

between    and    for the rich loading. Rich loading deviations are considerably lower than 
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that for CO2 removal; therefore, it is possible to conclude that the rich loading is less sensible 

to errors, being the CO2 removal a better measure of the model accuracy.  

It can also be noticed that CO2 capture tends to be under-calculated. Nevertheless, a 

maximum deviation of     is deemed acceptable considering that this is a predictive model. 

Furthermore, the mean squared error of prediction (MSEP in equation 4.4) has a value of 

0.003 for CO2 removal and 0.00006 for the rich loading. 

      
    

      
    

      
   

     
                                                                         

The relation between the values of CO2 removal obtained through simulation and the 

experimental ones is shown in Figure 4.2. 

 

Figure 4.2 – Parity diagram of the CO2 removal. 

Besides the deviations due to the mass transfer coefficients calculation method, it should also 

be considered the uncertainty associated with the experimental measurements and the 

composition of the flue gas, for which the only information given is the CO2 content and was 

thus assumed to be water saturated. 

Both liquid and vapour phase temperature profiles obtained through simulation for run 1 are 

represented in Figure 4.3. 

 

Figure 4.3 – Liquid and vapour phase temperature profiles for Run 1. 
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Due to the highly exothermic nature of the reaction, a lot of heat is released. The liquid 

takes up this heat and, since it has low specific heat, its temperature rises. The absorber 

exhibits a temperature bulge at the top of the column since the reaction velocity is high 

where the lean solvent enters. 

4.2. Intercooled absorber model validation 

In the same pilot plant campaign, intercooling (IC) was retrofitted to the existing absorber 

and two new experiments were conducted, being the available conditions and results 

presented in Table 4.4. 

Table 4.4 – Pilot plant conditions and results using an absorber with intercooling. 

Run 
PZ concentration 

(m) 

L/G 

(mol L/ mol G) 

Loading (mol CO2/ mol alk) 
Removal (%) 

Lean Rich 

1                      

2                        

The validation of the model built in gPROMS® that is shown in Figure 4.4 was also achieved 

through the comparison of the CO2 removal and the rich loading between the experimental 

available values and simulated results. 

 

Figure 4.4 – Intercooled absorber model used for validation. 

Table 4.5 shows the experimental data and simulation results for the intercooled absorber, 

along with the deviation between them. 
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Table 4.5 – Experimental and simulation results for CO2 removal and rich loading with an intercooled 

absorber. 

Run 
                                             

Experimental Simulation Deviation (%) Experimental Simulation Deviation (%) 

1 80 79 -2 - 0.383 - 

2 90 96 6 0.374 0.376 0 

4.3. Stripper modelling 

The only information given regarding the stripping process occurring in the pilot plant 

campaigns is its pressure, being this 1.38 kPa. Therefore, the starting point for the modelling 

of the CO2 capture plant was the pressure given and a reboiler temperature of 380 K, which is 

the one usually used on MEA’s capture plants.  

The model assembled that is presented in Figure 4.5 is difficult to initialise since it contains 

two close loops. First of all the stripper alone has to be initialised alone using the procedure 

described in section 3.3. After this, reboiler and condenser are added to the flowsheet 

leaving two open loops, i.e. using sinks and sources instead of the recycle breakers RB_001 

and RB_002. 

Then the inputs of the stripper are changed gradually, one at the time, until the outlet 

conditions verified on the condenser and reboiler are equal to the inputs on the stripper. At 

that moment it is possible to close the loop with the help of recycle breakers. 

Stripper pressure is defined through reboiler’s pump (P_003).  

 

Figure 4.5 – Stripper model used for validation.
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5 Piperazine Capture Plant Models 

5.1. Process configurations for CO2 capture 

Five models were assembled on gPROMS® to evaluate the effects of different process 

configurations on heat duty and on CO2 capture evaluation parameters. 

In order to be possible to compare them, lean solvent and flue-gas streams were kept 

constant, as well as the utilities used for heat exchange: cooling water (20 oC, 1 atm) and 

saturated steam (151 oC, 5 bar). Rich solvent temperature is set to be 370 K and stripper 

pressure is kept at 1.38 bar for all the configurations that include this equipment. 

Flue gas conditions are as previously presented on Table 4.2. Solvent make-up is defined to 

keep a lean solvent mass flowrate of 1.00 kg/s and a PZ mass fraction of 0.364. 

 

5.1.1  Case A: Simple absorber and simple stripper configuration 

A complete flowsheet consisting of a simple absorber and a simple stripper for CO2 capture 

was assembled with gPROMS® (see Figure 5.1) based on the available data from the November 

2008 campaign. 

Absorber and stripper models have the same configuration as the ones that were presented 

and validated in the previous section. Pump models P_001, P_002 and P_005 are required 

without any specification before the stripper, absorber and heat exchanger inlet, 

respectively, to provide the required pressure for the liquid phase in each model. P_003 

outlet pressure is 1.38 bar, which corresponds to the stripper and reboiler pressure. P_004 

outlet pressure is set to 1.21 bar so that, considering all the pressure drops, the inlet pressure 

at the absorber is 1.01 bar. 

In the heat exchanger HXU_001, the process stream is cooled using cooling water down to 

313.15 K, which corresponds to the inlet temperature in the absorber. Heat exchanger 

HX_001 input is the cold stream outlet temperature and it was set to 370 K. 

Condenser temperature was set to 310 K and reboiler’s to 380 K. These temperatures are 

achieved using a certain amount of utility, which is calculated by the program. 
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Caption: 

A_001 Absorber P_005 Rich solvent pump (before HX_001) SR_001 Flue gas source 

C_001 Condenser R_001 Reboiler SRU_001 HXU_001 cooling water source 

HX_001 Lean-rich heat exchanger RB_001 Absorber recycle breaker SRU_002 C_001 cooling water source 

HXU_001 Lean solvent cooler RB_002 Reflux recycle breaker SRU_003 R_001 steam source 

M_001 Reflux mixer RB_003 Reboiler recycle breaker ST_001 Stripper 

P_001 Rich solvent pump (after HX_001) S_001 Treated gas sink SU_001 HXU_001 cooling water sink 

P_002 Lean solvent pump (after HX_001) S_002 CO2 sink SU_002 C_001 cooling water sink 

P_003 Reboiler pump SMU_001 Solvent make-up SU_003 R_001 steam sink 

P_004 Lean solvent pump (before HX_001)     

Figure 5.1 – Flowsheet of the simple absorber and simple stripper configuration. 

5.1.2  Case B: Intercooled absorber and simple stripper 

After being validated, the intercooled absorber was integrated in a complete flowsheet, as 

can be seen in Figure 5.2. This configuration is equal to the one used on September and 

December 2010 pilot plant campaigns. 

Intercooled absorber and stripper models are equal to the ones that were validated in the 

previous section. Pump models P_003, P_004, P_005 and P_006 are required without any 

specification before the heat exchanger, stripper, absorber and intercooling, respectively, for 

the same reason of Case A. P_001 outlet pressure is also 1.38 bar, which corresponds to the 

stripper and reboiler pressure. P_002 outlet pressure is set to 1.21 bar so that, considering all 

the pressure drops, the inlet pressure at the absorber is 1.01 bar. 

In the heat exchanger HXU_001 the liquid stream from the middle of the absorber is cooled 

down to 313.15 K, which corresponds to the intercooling temperature. Heat exchanger 

HXU_002 is also set to 313.15 K, which is the inlet temperature in the absorber. The required 

inputs for HX_001 for the condenser and the reboiler are the same as for Case A.  
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Caption 

A_001 Absorber’s top P_005 Lean solvent pump (after HX_001) SR_001 Flue gas source 

A_002 Absorber’s bottom P_006 Intercooling pump SRU_001 HXU_001 cooling water source 

C_001 Condenser R_001 Reboiler SRU_002 HXU_002 cooling water source 

HX_001 Lean-rich heat exchanger RB_001 Absorber’s gas phase recycle breaker SRU_003 C_001 cooling water source  

HXU_001 Absorber cooler RB_002 Intercooled liquid recycle breaker SRU_004 R_001 steam source 

HXU_002 Lean solvent cooler RB_003 Rich solvent recycle breaker ST_001 Stripper 

M_001 Reflux mixer RB_004 Reflux recycle breaker SU_001 HXU_001 cooling water sink 

P_001 Reboiler pump  RB_005 Reboiler recycle breaker SU_002 HXU_002 cooling water sink 

P_002 Lean solvent pump (before HX_001) S_001 Treated gas sink SU_003 C_001 cooling water sink 

P_003 Rich solvent pump (before HX_001) S_002 CO2 sink SU_004 R_001 steam sink 

P_004 Rich solvent pump (after HX_001) SMU_001 Solvent make-up   

Figure 5.2 – Flowsheet of the intercooled absorber and simple stripper configuration. 

 

5.1.3  Case C: Simple absorber and stripper with lean vapour 

recompression 

A flash-drum at atmospheric pressure was added to the simple absorber and simple stripper 

system, as shown in Figure 5.3. 

Absorber and stripper models are equal to the ones that were validated in the previous 

section. Pump models P_001, P_002 and P_003 are required without any specification before 

the stripper, absorber and heat exchanger, respectively, as explained for Case A. P_004 

outlet pressure is also 1.38 bar, which corresponds to the stripper and reboiler pressure. 

P_005 outlet pressure is set to 1.11 bar and corresponds to the flash pressure. P_003 

represents the compressor utilized to increase the lean vapour pressure back to 1.38 bar. 

Heat exchangers HXU_001 and HX_001, reboiler and condenser input specifications are the 

same as for the previous case. 
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The flash model requires the specification of the initial phase and the temperature initial 

guess, which in this case are two-phase and 380 K, respectively. 

 

Caption: 

A_001 Absorber P_004 Reboiler pump SMU_001 Solvent make-up 

C_001 Condenser P_005 Flash pump SR_001 Flue gas source 

F_001 Flash P_006 Lean vapour compressor SRU_001 HXU_001 cooling water source 

HX_001 Lean-rich heat exchanger R_001 Reboiler SRU_002 C_001 cooling water source 

HXU_001 Lean solvent cooler RB_001 Rich solvent recycle breaker SRU_003 R_001 steam source 

M_001 Reflux mixer RB_002 Reflux recycle breaker ST_001 Stripper 

M_002 Reboiler and flash mixer RB_003 Reboiler recycle breaker SU_001 HXU_001 cooling water sink 

P_001 Rich solvent pump (after HX_001) S_001 Treated gas sink SU_002 C_001 cooling water sink 

P_002 Lean solvent pump (after HX_001) S_002 CO2 sink SU_003 R_001 steam sink 

P_003 Rich solvent pump (before HX_001)     

Figure 5.3 – Flowsheet of the simple absorber and stripper with lean vapour recompression 

configuration. 

With this configuration, the hot lean solvent leaving the stripper column is vaporized in a 

flash drum at low pressure, and the vapours released by this process are compressed and 

reinjected, supplying the additional steam enthalpy directly at the stripper bottom, thus 

reducing energetic needs of the reboiler. 

However, this process modification entails additional energy requirements to compress the 

flashed vapours that will not be considered in this study. Nevertheless, according to Reddy 
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et al., 2007, even considering the increase in electrical power, the net energy requirement of 

the system is decreased. 

5.1.4  Case D: Intercooled absorber and stripper with lean solvent 

recompression 

The flash drum was also integrated in the intercooled absorber and simple stripper system, 

being the model built shown in Figure 5.5. 

Absorption section specifications are the same as for Case B and stripping specifications are 

the same as for Case C. 

 

Caption: 

A_001 Absorber’s top P_004 Intercooling pump SMU_001 Solvent make-up 

A_002 Absorber’s bottom P_005 Reboiler pump SR_001 Flue gas source 

C_001 Condenser P_006 Flash pump SRU_001 HXU_001 cooling water source 

F_001 Flash R_001 Reboiler SRU_002 HXU_002 cooling water source 

HX_001 Lean-rich heat exchanger RB_001 Absorber’s gas phase recycle breaker SRU_003 C_001 cooling water source 

HXU_001 Absorber cooler RB_002 Intercooled liquid recycle breaker SRU_004 R_001 steam source 

HXU_002 Lean solvent cooler RB_003 Lean solvent recycle breaker ST_001 Stripper 

M_001 Reflux mixer RB_004 Reflux recycle breaker SU_001 HXU_001 cooling water sink 

M_002 Reboiler and flash mixer RB_005 Reboiler recycle breaker SU_002 HXU_002 cooling water sink 

P_001 Rich solvent pump (after HX_001) S_001 Treated gas sink SU_003 C_001 cooling water sink 

P_002 Condensate pump S_002 CO2 sink SU_004 R_001 steam sink 

P_003 Lean solvent pump (after HX_001)     

Figure 5.4 – Flowsheet of the intercooled absorber and stripper with integrated flash configuration. 
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5.1.5  Case E: Intercooled absorber and two flashes 

A new configuration based on the October 2011 Pilot Plant campaign conducted at the 

University of Texas was assembled with gPROMS®, as shown in Figure 5.6. 

 

Caption: 

A_001 Absorber’s top P_001 Absorber’s inlet pump S_002 CO2 sink 

A_002 Absorber’s bottom P_002 Intercooling pump SMU_001 Solvent make-up 

C_001 Condenser P_003 High-pressure flash pump SR_001 Flue gas source 

F_001 High-pressure Flash P_004 Low-pressure flash pump SRU_001 HXU_001 cooling water source 

F_002 Low-pressure Flash P_005 Lean solvent pump SRU_002 HXU_002 steam source 

HX_001 Lean-rich heat exchanger RB_001 Absorber’s gas phase recycle breaker SRU_003 C_001 cooling water source 

HXU_001 Absorber cooler RB_002 Intercooled liquid recycle breaker SU_001 HXU_001 cooling water sink 

HXU_002 Rich solvent heater RB_003 Lean solvent recycle breaker SU_002 HXU_002 steam sink 

M_001 Vapour mixer RB_004 Flash inlet recycle breaker SU_003 C_001 cooling water sink 

M_002 Condensate and rich solvent mixer S_001 Treated gas sink   

Figure 5.5 – Flowsheet of the intercooled absorber and two flash configuration. 

Pump models P_001 and P_002 are required without any specification before the absorber and 

in the intercooling, respectively, as explained for Case A. P_003 outlet pressure is 10 bar and 

corresponds to the high pressure (HP) flash. P_004 is the valve used to decrease the pressure 

inlet in the low pressure (LP) flash, and is set to the value of 5.5 bar. P_005 outlet pressure is 

set to 1.11 bar so the inlet pressure at the absorber can be 1.01 bar. 

HP and LP flash pressures used in this simulation are based on pilot data provided by Walters 

et al. 2013.  
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HXU_001 is the heat exchanger used to cool the liquid phase at the middle of the column until 

313.15 K. In the heat exchanger HX_001 the cold stream coming from the absorber is heated 

to 405 K by the rich solvent coming from the desorption section. An additional heat 

exchanger, HXU_002, uses steam as utility to heat the lean solvent until 423.15 K, which 

corresponds to the flash section temperature. 

Both flashes and the condenser require the specification of a temperature initial guess, being 

that 423.15 and 310 K, respectively. 

Since this configuration does not have a reboiler, the energy needed is provided by steam in 

heat exchanger HXU_002. 

5.2. Process configurations comparison 

The results obtained through simulation for each configuration are presented on Table 5.1. 

Table 5.1 – Performance results for every configuration analysed.  

Case 

Loading 

(mol CO2/mol alk) 

CO2 

capture 

(%) 

Deviation 

(%) 

PZ losses 

(kg/s) 

CO2 

stripped 

(kg/s) 

Heat duty 

(kJ/kg CO2) 

Deviation 

(%) 

Lean Rich 

A                  -           0.0295 5229 - 

B                                0.0330 4924 -6 

C                               0.0304 4517 -14 

D                                0.0330 4382 -16 

E                                0.0212 4372 -16 

 

For case A, which corresponds to the conventional configuration, the solvent stream fed to 

the absorber has a CO2 loading of 0.266 mol/mol, and the rich solvent leaving the column has 

a loading of 0.347 mol/mol. 88.2 % of the carbon dioxide is captured in the absorber and sent 

to the stripper. In the desorption column, 0.0295 kg/s of CO2 are stripped and           

kg/s of PZ are lost in both gaseous streams.  

The heat duty associated to this process configuration is 5229 kJ/kg CO2 stripped, and 

corresponds entirely to the energy input needed at the reboiler. Heat duty calculations are 

presented in Appendix 4. Deviations presented in Table 5.1 are calculated relatively to this 

configuration. 

Configuration B differs from the previous one in that it has intercooling placed at the middle 

of the absorber column, which can significantly improve process performance by increasing 
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solvent capacity. CO2 capture is increased by 12 % and heat duty has decreased 305 kJ/kg 

CO2.  

The inclusion of the flash model in the conventional configuration assembled in case C had 

the expected effect on heat duty. Energetic needs were reduced by 14 %, while the CO2 

capture was slightly improved. However, this configuration entails a significant increase in 

the electricity consumption and equipment costs that are not being considered in this study. 

P_006 model represents a compressor responsible for raising the pressure from near 

atmospheric   to 1.38 bar, which requires significantly more energy than any of the existing 

pumps (Reddy et al., 2008).  

The flash model was also added to the intercooled absorber and simple stripper 

configuration, which resulted on configuration D. CO2 capture did not change notably 

relatively to configuration B, which corresponds to this configuration without the lean vapour 

compression, but a significant improvement was observed on the heat duty of the reboiler. 

Configuration E is different from all the previous since it uses two sequential flashes instead 

of the stripper for CO2 desorption. For the conditions studied, CO2 capture is only 63.2 %, 28 % 

lower than that for the conventional process. However, this process reduces by 16 % the 

energy requirements per amount of CO2 stripped. Besides low carbon capture, this process 

configuration has significantly higher solvent losses, when compared to the previous one 

presented. To improve these parameters more flash models could be added to the process, 

thus improving CO2 desorption. 

A detailed description of the inputs and simulation results for every configuration is presented 

in Appendix 5. 
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6  Sensitivity analysis and Optimisation 

6.1  Sensitivity analysis 

A sensitivity analysis was carried out with regard to several variables comprised in the 

capture plant models, in order to understand their effect on the heat duty and on CO2 

capture parameters. 

6.1.1  Intercooling effect on absorber’s performance 

As mentioned in section 4.2, intercooling was placed in the middle of the absorber column 

and its temperature was set to reach a value of 40 oC, so the model could reproduce the 

experiments conducted at the University of Texas and thus be validated. 

Under the assumption that the validation results presented in the Models Validation section 

are still valid for different conditions and absorber configurations, some alterations were 

made in order to analyse the effect of intercooling temperature and position. 

6.1.1.1 Intercooling temperature effect 

The first analysis aims to identify the intercooling temperature effect on CO2 capture and rich 

loading. To accomplish this, the difference between inlet and outlet process temperatures in 

the Heat-Exchanger was varied from zero to its upper limit, using the gPROMS® model 

presented in Figure 4.4. 

The situation of      corresponds to the simple absorber case, i.e., without intercooling. 

The upper limit is set by the minimum temperature difference in the Heat-Exchanger of 5 oC 

between the process and utility streams, considering that the last one is cooling water at 

20 oC. 

Using the data from Run 1 that is presented in Table 4.5 as input to a simple absorber, a CO2 

capture of 64 % can be achieved. When decreasing the temperature of the middle column 

intercooling while keeping the lean solvent and flue gas input constants, a proportional 

increase is verified in the CO2 capture rate, as can be seen in Figure 6.1. 

 

Figure 6.1 – Intercooling temperature effect. 

60% 

70% 

80% 

90% 

100% 

0 5 10 15 20 25 

C
O

2 
ca

p
tu

re
 (%

) 

ΔT Intercooling 



Modelling and Validation of CO2 Capture Processes with Piperazine  

Sensitivity analysis and Optimisation 35 

The intercooled absorber set to the maximum decrease of temperature presents a CO2 

capture of 92 %, which represents an increase of 44 % relatively to the simple absorber. The 

effects on the rich loading are not as significant, showing an increase of 9%, for this case. 

Relatively to the pilot plant case, where the intercooling temperature was 40 oC, it is possible 

to increase CO2 capture rate by 17 % when using the lower intercooling temperature allowed 

(298.15 K). However, this would represent an increase of 82 % of the utility mass flowrate. 

An in depth analysis should be made in order to verify whether it would be economically 

advantageous to use lower intercooling temperatures for this CO2 capture configuration. 

This analysis demonstrates that CO2 capture can be enhanced by integrating intercooling 

within the absorption column. According to Jung et al., 2015 and Frailie et al., 2013, 

intercooling can provide thermodynamically driven mass transfer in the lower stages of the 

absorber by maintaining a higher loading of CO2 in the solvent, which can increase the 

solvent’s absorption capacity. 

According to Cousins et al., 2015, the benefits of intercooling depend on the operating 

conditions of the plant: higher L/G ratios can present more pronounced effect. 

6.1.1.2  Intercooling position effect 

A further analysis was made to verify if the intercooling position affects the results obtained. 

Table 6.1 shows simulation results for three intercooling positions: middle top (        ), 

middle (        ) and middle bottom (        ) for three intercooling temperatures. 

Rich loading results are not affected by the intercooling position.  

Table 6.1 – Intercooling position effect at different temperatures. 

     (K) 320 313 298 

     CO2 capt. (%) Deviation (%) CO2 capt. (%) Deviation (%) CO2 capt. (%) Deviation (%) 

1/3 72.7 -1.44 78.5 -1.46 91.1 -1.07 

1/2 73.8 - 79.7 - 92.1 - 

2/3 73.8 -0.03 79.7 0.02 92.2 0.08 

 

Deviations shown in Table 6.1 are calculated relatively to middle column intercooling results, 

which is the configuration that has been validated with experimental data. Middle top 

intercooling presents slightly lower CO2 capture rates and middle bottom results are similar to 

the ones for middle column intercooling. 

CO2 absorption is an exothermic process and the heat produced leads to an increase in the 

temperature of the solvent, which will limit the driving force for absorption and hence lower 
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the absorption capacity of the solvent system. Thermodynamically, CO2 absorption reactions 

are favoured by lower temperature, whilst reaction kinetics, viscosities and diffusion 

coefficients are more favourable at higher temperature. Since the absorber model is operated 

adiabatically, these two effects will be competing with each other (Cousins, Wardhaugh, and 

Feron 2011). 

As can be seen in Figure 6.2, there are two different zones in the absorber column: the rate 

limited section and the equilibrium limited one. The first one is located at the top of the 

column and presents the higher CO2 capture rate. In this zone the temperature is high, which 

disfavours CO2 loading but increases reaction rate; moreover it is near lean loading input, 

meaning that the loading driving force is high enough to counterbalance the effects of high 

temperature on it.  

The equilibrium limited section comprises the middle and middle bottom region of the 

column, where CO2 capture has minor alterations. In this zone, operational line is closer to 

the equilibrium one and thus the driving force is smaller, which leads to smaller capture 

rates.  

 

Figure 6.2 – Intercooling position effect on CO2 capture profile (             . 

There is no advantage in placing intercooling at the top, since it is a rate based zone, 

enhanced by higher temperatures and the driving force is already high enough, as can be seen 

in Figure 6.3. 

When decreasing temperature in the equilibrium limited section, there is a momentary 

increase of the driving force, which is the difference between equilibrium and operating 

lines, leading to an increase in the capture rate at the same point, as shown in Figure 6.2 and 

Table 6.2. 

As can be seen in Figure 6.3, intercooling improves solvent capacity. 
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Figure 6.3 – Operating and equilibrium lines with and without intercooling. 

Equilibrium line determination process and the values presented on Table 6.2 for the other 

intercooling locations are presented in Appendix 6. 

Table 6.2 – Operating, equilibrium and driving force values for CO2 loading with intercooling at 

middle. 

Z/ZT Tliq (K) 

CO2 loading  (mol CO2/mol alk) 

Driving force 

operating equilibrium 

0.00 313.15 0.289 0.467 0.177 

0.05 324.38 0.309 0.446 0.137 

0.10 330.14 0.319 0.433 0.114 

0.15 332.36 0.324 0.428 0.104 

0.20 333.04 0.326 0.426 0.100 

0.30 332.73 0.329 0.427 0.098 

0.40 331.11 0.335 0.431 0.096 

0.50 313.15 0.347 0.467 0.120 

0.55 320.04 0.365 0.455 0.090 

0.60 322.48 0.371 0.450 0.079 

0.65 323.30 0.374 0.448 0.075 

0.70 323.54 0.374 0.448 0.073 

0.80 323.47 0.375 0.448 0.073 

0.90 322.77 0.377 0.449 0.072 

1.00 319.86 0.383 0.455 0.072 
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Temperature profiles for different intercooling positions are shown in Figure 6.4. 

 

 

Figure 6.4 – Temperature profiles for intercooling at T=313.15 K. 

Both intercooling temperature and position analyses results would have been different if 

other parameters were changed. According to Walters et al., 2013 the intercooling effect is 

more pronounced at higher solvent flowrate due to the higher sensible heat, and hence higher 

cooling capacity, of the higher solvent flowrates. 

6.1.2  Intercooling effect on a complete plant performance 

As for the intercooled absorber model, intercooling effect was analysed for the complete 

capture plant presented in Figure 5.2. 

As can be seen in Figure 6.5, for these conditions there is no advantage on cooling the stream 

at temperatures below 53 oC since capture rate remains unaltered from that point on.  

 

 

Figure 6.5 – Intercooling temperature effect on CO2 capture. 

This simulation and optimisation analysis can improve the process efficiency. For this case, 

with lower cooling water flowrate same results can be obtained. 

However, it should be noted that these conclusions are only valid for these specific operating 

conditions. Each case can be easily evaluated using this model built on gPROMS®, simply 

running it with the desired conditions. 
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6.1.3  Stripper pressure effect on the conventional plant 

performance 

Using the conventional configuration for chemical-based CO2 capture presented in section 

5.1.1, a further analysis was made in order to verify the effect of stripper pressure on the 

energy requirements of the reboiler. To accomplish this, CO2 stripped variable was assigned to 

the value obtained with the model presented in Figure 5.1, replacing reboiler temperature as 

assigned variable. Therefore the assigned variables changed but the degrees of freedom of 

the system were kept constant. 

The reboiler pressure increase is accompanied by an increase in the temperature. As the 

temperature increases the conditions become favourable for mass transfer of CO2 to the gas 

phase and hence, less steam is required to maintain the driving force for the carbon dioxide 

desorption. Thus, it is favourable to operate the stripper at as high pressures and hence 

temperature as possible. Also, as the reboiler pressure increases, the power required for 

compressing the CO2 stream for discharge conditions decrease. 

The operating conditions of the reboiler are limited by solvent degradation. For PZ, a 

temperature higher than 150 oC is not recommended, so the stripper needs to be operated at 

a pressure that corresponds to a temperature of 150 oC or lower.  

High desorption pressure entails higher equipment costs, which is its only disadvantage and 

must be considered. 

Stripper pressure was varied between          and         Pa, resulting on an increase of 

reboiler temperature from 380.0 to 396.5 K. The increase of pressure and temperature led to 

a heat duty reduction of 2.2 %. Results are presented in Appendix 7. 

6.1.4  L/G ratio effect on the conventional plant performance 

A sensitivity analysis was made in order to understand the effect of L/G ratio on the 

performance of the system, also considering the conventional process configuration. Liquid 

flowrate was varied between 0.850 and 1.018 kg/s, which correspond to a molar flowrate of 

20.85 and 25.00 mol/s, respectively. Flue gas flowrate was kept constant and equal to the 

one used in the other simulations.  

The increase on the L/G ratio from 3.2 to 3.9 resulted on a CO2 capture increase of 9.1 %. On 

the other hand, rich loading decreased 2 %. The energy requirements per amount of CO2 

stripped increased 2.1 % for higher ratios, from 4650 to 4746 kJ/kg CO2, meaning that energy 

requirements are lower for lower L/G ratios.  

Further results are presented in Appendix 8.  
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6.1.5  Piperazine concentration effect on the conventional plant 

performance 

An analysis on the effect of piperazine concentration was also performed using the simple 

absorber and simple stripper configuration. To achieve this, the lean solvent PZ mass fraction 

defined in the solvent make-up model was varied between 0.150 and 0.375. 

As can be seen in Figures 6.6 - 6.8, the increase of piperazine concentration has positive 

effects on heat duty and CO2 capture but the rich loading is disadvantaged. 

Piperazine concentration increase resulted on a heat duty and rich loading reduction of 15 

and 10 %, respectively, and on an increase of 38 % on CO2 capture. 

 

Figure 6.6 – Piperazine concentration effect on heat duty. 

Piperazine concentration has an upper limit, since this solvent is known to have solubility 

problems encountered at both lean and rich CO2 loadings, which leads to a limited operating 

range (Chen et al. 2014, Dugas and Rochelle 2011a). 

The values obtained through simulation are presented in Appendix 9. 
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Figure 6.8 – Piperazine concentration effect on rich 

loading. 
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6.2 Optimisation 

6.2.1 Case A 

The conventional plant operating conditions were optimised using gPROMS® platform standard 

mathematical optimisation capabilities, so as to minimise the energy requirements at the 

reboiler.  

Four variables were used as controls: stripper pressure (through P_003 outlet pressure), 

reboiler temperature, liquid flowrate and solvent concentration on the lean stream. As 

constrained variable this optimisation considers a CO2 capture higher than 90 %. 

The results and inputs of this optimisation are presented in Table 6.3. 

Table 6.3 – Optimisation inputs and results for Case A. 

Variable Optimised value Initial value Lower bound Upper bound 

           (Pa)                                   

           (K) 397.78 380.00 379.00 423.00 

    (kg/s) 0.5488 1.0000 0.3000 1.1000 

   
   (g/g) 0.400 0.364 0.360 0.400 

CO2 capture (%) 90.5 88.8 90.0 100 

  (kJ/kg CO2) 4230 5229 - - 

Before the optimisation the plant was capturing 88.8 % of the CO2, with a heat duty of 

5229 kJ/kg CO2. Using the optimal values calculated through optimisation it is possible to 

increase CO2 capture up to 90.5 % and have an energy consumption of 4230 kJ/kg CO2, which 

is 19 % lower than the non-optimised one. 

As can be seen in Table 6.3, the piperazine mass fraction optimized value is the upper bound 

previously defined. It is known that this solvent has solubility issues and cannot be used at 

very high concentrations. However, the limit is still being studied and has not been disclosed 

yet. Through these optimisation results it can be concluded that the optimal concentration 

corresponds to the maximum one allowed. 

6.2.2 Case B 

The intercooled absorber and simple stripper configuration was also optimised. Besides the 

control variables used for the previous case, intercooling temperature was changed in order 

to minimise the energy requirements.  

Optimum intercooling temperature corresponds to the minimum allowed, as was previously 

shown on the sensitivity analysis. 
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As can be seen in Table 6.4, optimisation led to a decrease of 13 % on the energy 

requirements for this configuration. Before the optimisation the CO2 capture was 98.6 % and 

after that it was reduced to 90.4 %. 

90 % is an acceptable number when it comes to chemical solvent-based post-combustion CO2 

capture and most of the comparative and optimisation studies are made considering this 

value as the one to reach. In this case it is worth to sacrifice CO2 capture, since it will still be 

high enough, to have lower energy requirements. 

Table 6.4 - Optimisation inputs and results for Case B. 

Variable Optimised value Initial value Lower bound Upper bound 

    (K) 298.15 313.15 298.15 314.15 

           (Pa)                                     

           (K) 375.83 380.00 370.00 423.00 

    (kg/s) 0.9465 1.0000 0.3000 1.1000 

   
   (g/g) 0.400 0.364 0.360 0.400 

CO2 capture (%) 90.4 98.6 90.0 100 

  (kJ/kg CO2) 4239 4924 - - 

6.2.3 Cases C and D 

Cases C and D have improved performance since they have incorporated lean vapour 

recompression that can provide external energy to the system, thus reducing the heat duty in 

the reboiler. If these processes were optimised with the same objective function, flash 

pressure optimum value would be the correspondent lower bound (since for that case more 

vapour is produced) and stripper pressure would increase significantly, as verified for the 

previous optimised cases. However, the increase on the difference between these two 

variables would represent a significant increase on the electricity consumption in the 

compressor placed before the stripper.  

For these cases, the objective function should be changed to comprise reboiler heat duty and 

compressor electricity, which can represent a large part of the total energetic consumption. 

Therefore, the optimisation procedure was not carried out for these configurations. 

6.2.4 Case E 

Unlike other configurations, Case E presented significantly worse performance regarding 

capture parameters. For that reason, its optimisation focused on maximizing the CO2 capture. 

The optimisation results and inputs are presented in Table 6.5.  
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Table 6.5 - Optimisation inputs and results for Case E. 

Variable Optimised value Initial value Lower bound Upper bound 

    (K) 307.27 313.15 298.15 314.15 

           (Pa)                                     

           (Pa)                                     

    (kg/s) 1.0423 1.0000 0.4000 1.6000 

CO2 capture (%) 76.8 63.2 - - 

  (kJ/kg CO2) 4119 4372 - - 

As can be seen in Table 6.5, through the optimisation of both flash models pressure and liquid 

flowrate, it is possible to increase CO2 capture by 22 %, until a maximum value of 76.8 %. At 

the same time, even though it is not being considered in the objective function, heat duty 

value is reduced by 6 %. 

Even operating at the optimum pressures and flowrate, this process is not able to achieve the 

proposed CO2 capture of 90 %. Further improvements would have to be made, such as 

increase the number of flash models or change the dimensions of the capture models.  

Flash temperature was not considered on optimisation since it is already using the optimum 

and maximum allowed: 423 K. Since it was already verified that optimum PZ concentration is 

the higher one allowed, this variable was not considered in this optimisation procedure to 

keep its complexity as low as possible, thus reducing the running time. 

6.2.5 Cases A and B comparison  

Having the same absorber performance, it becomes easier to compare Case A and Case B 

results. Table 6.6 comprises the optimisation results for the conventional flowsheet (Case A) 

and for the intercooled absorber and simple stripper configuration (Case B). This study 

indicates that the inclusion of intercooling can improve energy requirements by 8 %, when all 

control variables presented in sections 6.2.1 and 6.2.2 are operated at their optimum 

conditions. 

Table 6.6 – Optimised processes comparison.  

Case CO2 capture (%) F CO2 stripped (kg/s) Heat duty (kJ/kg CO2) Deviation (%) 

A      0.0304 4630 - 

B      0.0303 4276 -8 
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7 Conclusions and Future Work 

7.1 Conclusions 

The comparison performed between experimental and simulated results demonstrated that 

the correlations and assumptions added to the existent gCCS® models are capable of 

predicting CO2 capture parameters accurately, for both simple and intercooled absorber. CO2 

capture rate presented a maximum deviation of -12 %, which is deemed acceptable 

considering that these are predictive models. Rich loading presented even lower deviations: 

between    and 5 %. 

Employing piperazine as solvent, besides the conventional flowsheet, four alternative process 

configurations were assembled on gPROMS® in order to understand the effects of each 

modification made to the base case on energy requirements and CO2 capture evaluation 

parameters. Inputs were kept constant to ease the comparison between models. 

At the conditions analysed, the conventional flowsheet allowed a CO2 capture of 88 %, 

corresponding to a heat duty of 5229 kJ/kg CO2 stripped. The inclusion of intercooling 

improved significantly both CO2 capture and heat duty, by a percentage of +12 and -6, 

respectively. The decrease of temperature provided by the intercooling allows the absorber 

to operate at higher loading values resulting in a reduction in stripper energy requirements.  

The incorporation of lean vapour recompression in the conventional configuration resulted on 

an increase of 3 % on CO2 capture and a significant decrease of 14 % on heat duty. The flash 

model was also added to the intercooled absorber configuration, resulting on an increase of 

12 % on CO2 capture and a reduction of 16 % on reboiler duty, compared to the first case 

presented. The lean vapour leaving the flash placed outside the reboiler in these two 

configurations can supply additional steam enthalpy directly at the stripper bottom, thus 

reducing energetic needs of the reboiler. 

In the last configuration, the stripper was replaced by two flash models. Although the CO2 

capture obtained is significantly lower than that for the conventional configuration, its energy 

requirements presented reductions compared to Case A. 

Being the models validated, modelling becomes a powerful and useful tool in understanding 

the effects of several parameters on the overall performance of the capture plant. 

An analysis on intercooling temperature has shown that this variable has a significant effect 

on CO2 capture. Regarding the case analysed, the sensitivity analysis has proved that is 

possible to increase the referred parameter by 44 %, incorporating intercooling at the lower 

temperature possible. 
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Intercooling position also has effects on CO2 capture, although not as pronounced. Due to the 

existence of a rate limited section and an equilibrium one, the place where the intercooling is 

integrated can slightly change its performance. The results obtained through simulation 

confirm the theoretical assumptions found on literature that claim middle and middle bottom 

as the best places to integrate the intercooling. 

Stripper pressure increase accompanied by an increase of temperature has shown to be 

capable of reducing heat duty. L/G ratio was also analysed, by changing the lean solvent 

recirculation flowrate. The increase of this variable resulted on an improvement of 9 % of the 

capture rate. Energy requirements have shown to be lower for lower L/G ratios. 

PZ concentration was also varied to understand its effects on the conventional configuration 

performance. Its increase has shown positive effects on both heat duty and CO2 capture. 

After the sensitivity analysis, three processes were optimised using gPROMS® optimisation 

features. Optimisation focused on minimising the energy requirements at the reboiler for 

cases A and B, and on maximizing CO2 capture for Case E. After the procedure, Case A 

presented an improvement of 19 % on the heat duty. Case B also presented good results 

compared to the non-optimal solution since the energetic needs of the reboiler decreased 

13 %. The optimal solution for Case E is capable of increasing CO2 capture by 22 %, 

consequently reducing energetic needs by 6 %. 

7.2 Future Work 

Increasing desorption unit configuration complexity has shown to improve process 

performance, but in some instances the improvements may not outweigh the added capital 

cost. For that reason, an economical optimisation should be made, considering the 

minimisation of not only the energy requirements but the equipment and operating cost as 

well. 

Amine scrubbing for CO2 capture is a new technology that is still in development, therefore 

new solvents and process configurations are continuously being suggested. Other 

configurations can be assembled and optimised on gPROMS®, and thus further complete the 

comparison presented in this work. The models presented on this thesis can also be used with 

other solvents, in order to compare its characteristics and find the best configuration and 

optimal operating values for each one of them.  

The optimisation processes carried out focused on the alteration of only some key operating 

variables that were previously studied throughout the sensitivity analysis. Other parameters 

could be added as controls of the optimisation, such as absorber and stripper dimensions. 
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Appendix 1  Technologies for CO2 capture 

As referred on Section 2.2, the main technologies available for CO2 separation and capture 

are absorption, adsorption, cryogenics and membranes. 

Adsorption is a physical process that involves the attachment of a gas or liquid to a solid 

surface and can occur on adsorber beds. This process requires flue gas streams with high CO2 

content because of the generally low capacity of most adsorbents. After the capture step, the 

adsorbent can be regenerated through the application of heat (temperature swing adsorption) 

or by the reduction of pressure (pressure swing adsorption). The most common adsorbents are 

activated carbon, alumina, metallic oxides and zeolites (Wang et al. 2011). 

The absorption process can be either physical or chemical. The first one refers to the physical 

absorption of CO2 into a solvent based on Henry’s law. The flue gas stream fed to the 

absorber must have CO2 partial pressures higher than 15 vol. % in order for the process to be 

economically feasible. The regeneration step can be achieved using heat, pressure reduction 

or the combination of both. Typical processes that use physical absorption are Selexol and 

Rectisol (Wang et al. 2011). 

A representative scheme of the physical processes above mentioned is shown in Figure A1.1. 

 

Figure A1. 1 - General scheme for separation with sorbents/solvents (Wang et al. 2011). 

Cryogenic process achieves CO2 separation from the flue gas by condensation as depicted in 

Figure A1.2, knowing that at atmospheric pressure, CO2 condensates at -56.6 oC. This physical 

process is suitable for treating flue gas streams with high CO2 concentrations considering the 

costs of refrigeration. This is typically used for CO2 capture for oxy-fuel process (Wang et al. 

2011). 

 

Figure A1. 2 – General scheme for cryogenics separation(Wang et al. 2011). 
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As illustrated in Figure A1.3, membranes processes are based on special materials that allow 

the selective permeation of gases through them. Their selectivity is related to the nature of 

the material, which usually consist of thin polymeric, metallic or ceramic films and separate 

mixtures based on the relative rates at which constituent species permeate. The driving force 

for the permeation is the difference in partial pressure of the components at either side of 

the membrane. Therefore, high pressure streams are usually preferred for membrane 

separation (Institute). 

 

Figure A1. 3 – General scheme for membrane separation (Wang et al. 2011). 

Besides post-combustion capture, which was described on Section 2, there are two other 

approaches for CCS: pre-combustion capture and oxy-combustion capture. 

A1.1. Pre-combustion capture 

Pre-combustion capture technology is mostly related to power plants based on the 

gasification of a fossil fuel, particularly IGCC. 

Pre-combustion technology involves reacting the primary fuel with steam and/or air or 

oxygen. The gasification process is achieved through partial oxidation in the referred 

conditions and produces a mixture mainly composed of carbon monoxide and hydrogen, 

known as synthesis gas (syngas). Additional hydrogen, together with CO2, is produced by 

reacting the carbon monoxide with steam in a water gas shift reactor. The resulting mixture 

is typically at a total pressure in the range of 20-70 bar and has a total CO2 content between 

15 and 60 vol. % on a dry basis. Carbon dioxide is removed from the syngas stream prior to the 

combustion of the hydrogen rich gas in the turbine for electricity generation purposes, as 

shown in Figure A1.4. 
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Figure A1. 4 – Schematic representation of a power plant with pre-combustion CO2 capture (Institute). 

The CO2 removal technology used in pre-combustion capture is similar to the one used for 

natural gas purification and reforming, being based on the acid gas (i.e. CO2, H2S, COS) 

removal (AGR) process of absorption in a solvent followed by regenerative stripping of the 

rich solvent to release the CO2 (Institute 2012). 

Unlike PCC these processes are conducted at elevated pressure and/or high CO2 content, 

allowing the absorption to be carried out not only with chemical solvents, but also with 

physical solvents (Institute 2012). Physical absorbents present a major advantage over 

chemical solvents since they can be regenerated through pressure reduction instead of 

thermal stripping, which significantly reduces the steam-heat requirements for solvent 

regeneration. 

The inclusion of a pre-combustion capture unit in a IGCC plant leads to an increase in the 

energy penalty of around 21 % for a 90 % CO2 absorption rate (Rubin et al. 2012). 

A1.2. Oxy-fuel combustion capture 

As can be seen in Figure A1.5, in oxy-fuel combustion plants the nitrogen is removed from the 

air in an Air Separation Unit (ASU) before the combustion, meaning that the primary fuel is 

burned under the presence of nearly pure oxygen (O2 purity of 95-99 %). The absence of 

nitrogen leads to the production of a flue gas that is mainly water vapour and CO2 – 70 to 90 % 

(dry basis) – of which around 80 % must be recycled to the boiler for temperature control 

(Institute January 2012a). 

Depending on the local regulations, the non-recycled flue gas can be readily stored or may 

have to be purified first. If regulations allow, the raw gas can be dehydrated and directly 

compressed and stored, without any emissions. Otherwise, the flue gas impurities such as N2, 

O2 and Ar may have to be removed from the flue gas. In that case, the flue gas is partially 
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condensed at moderate pressure and a temperature of about -50 oC, at which the CO2 

condenses and the impurities do not. The liquefied CO2 may further be purified in a 

distillation process, before being flashed and sent to storage. The non-condensed gases still 

have a CO2 content of up to 35%, which can be removed through absorption or a membrane 

process, before being vented (Institute January 2012a). 

As a method of CO2 capture, oxy-fuel combustion systems are in the demonstration phase 

(Adegbulugbe et al. 2005). 

 

Figure A1. 5 – Schematic representation of a power plant with oxy-fuel combustion CO2 capture 

(Institute).
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Appendix 2  gCCS® library models 

A2.1. Chemical Absorber (A) 

 

Figure A2. 1 – Chemical absorber/stripper icon used in the gCCS® capture library. 

One dimensional column based on the gPROMS® Advanced Model Library for Gas-Liquid 

Contactors (AML:GLC). This rate-based model is based on the two-film theory, according to 

which the liquid and gas bulk phases transfer heat and mass across the liquid and gas films, 

separated by an infinitesimally thin interface. It is considered chemical equilibrium in both 

bulk and films phases, as well as at the interface, where it is also assumed phase equilibrium. 

The heat and mass transfer in the two films are modelled according to Fick’s law and the 

gSAFT thermodynamic model (see section 3.3) is used for the prediction of physical properties 

in each phase. 

For the pressure drop correlation the model can apply the dry bed factor or Billet & Schultes 

correlations. For the calculation of mass transfer coefficients, this model considers Onda or 

Billet & Schultes correlations. 

The absorber model requires the indication of the columns height and diameter, and the type 

of packing used. 

A2.2. Chemical Stripper (ST) 

Chemical stripper model is similar to the chemical absorber model except by the change in 

the thermodynamic model for physical properties prediction. gSAFT is also used, but modified 

in order to be more suited for the typical stripping operating conditions. 

A2.3. Condenser (C) 

 

Figure A2. 2 – Condenser icon used in the gCCS® capture library. 
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This model is used for the simulation of a dynamic partial condenser, considering the use of a 

utility. It is assumed equilibrium between liquid and vapour phases, perfect mixture and that 

the cooling utility inlet and outlet is exclusively liquid. 

The model requires the specification of the utility stream pressure drop and temperature 

increment and, if working in calibration mode, the operating temperature. Although vessel 

volume and diameter have to be specified, they are not relevant if operating in a steady state 

flowsheet. 

A2.4. Flash drum (F) 

 

Figure A2. 3 – Flash drum icon used in the gCCS® capture library. 

This vapour-liquid separator specification’s requirements depend on the heat input chosen: 

manual, controlled or temperature specified. Regardless of the mode chosen, the initial 

phase (liquid, vapour or two-phase), volume and diameter must be specified.  

When working in manual mode, the rate of energy input and the temperature initial guess 

must be defined as well. If the dynamic model is activated, pressure and initial conditions 

specifications are also required. For initial conditions specifications it can be set to be steady 

state and no values are required or the user can specify the pressure, mass fractions and 

either temperature or liquid level. If the controlled mode is chosen the rate of energy input 

doesn’t have to be specified and the required variables are the same as for manual mode. 

When working in temperature specified mode, flash temperature must be specified instead of 

the temperature initial guess. This mode cannot be used with dynamics. 

A2.5. Heat Exchanger (HX) 

 

Figure A2. 4 – Heat Exchanger icon used in the gCCS® capture library. 

This is a steady state model that simulates the heat exchange between two process streams, 

which may present a co-current or counter-current configuration. It is assumed a fixed heat 

transfer coefficient and pressure drop, which must be specified. No heat losses to the 

exterior or fouling are assumed. 
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In calibration mode, the outlet temperature of either the cold or the hot stream must be 

specified, or alternatively the temperature approach in one of the heat exchanger sides. For 

operational mode, the heat exchange area has to be specified. 

A2.6. Heat Exchanger Process/Utility (HXU) 

This model is similar to the heat exchanger presented previously, being one of the contact 

streams a utility. It requires the specification of the heat exchange applied to the process 

stream, if it is being cooled or heated.  

In operational mode, besides the outlet temperature for the process stream, the temperature 

difference for the utility stream must also be specified, if its flow rate is set as calculated. 

A2.7. Junction (M) 

 

Figure A2. 5 – Junction icon used in the gCCS® capture library. 

Steady state model applied to the mixing and/or splitting of a variable number of streams. In 

this model it is assumed no heat losses or pressure drop, ideal mixing and equal temperature, 

pressure and composition for the outlet streams. 

The outlet pressures must be equalised or set to be equal to the minimum inlet pressure. The 

outlet flow rates may be set to be calculated by the downstream units, or calculated by 

specifying all but one split fraction/percentage. The system phase also has to be specified for 

initialisation purposes. 

A2.8. Process sink (S) 

 

Figure A2. 6 – Process sink icon used in the gCCS® capture library. 

Model applied for the definition of a process stream leaving the flowsheet. It may be used for 

the calculation of a cumulative flow rate, in dynamic operation. Both the pressure and the 

flow rate may be calculated by upstream units or specified. 

A2.9. Process source (SR) 

 

Figure A2. 7 – Process source icon used in the gCCS® capture library. 
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This model provides the introduction of a material flow into the flowsheet. It is assumed to 

have infinite capacity, being able to calculate the cumulative solvent consumption in dynamic 

operation. The property estimation method is defined by the solvent choice.  

As inputs, this model requires the specification of the temperature, composition and phase. 

The flowrate and the pressure can be chosen as specified or calculated by a downstream unit. 

A2.10. Pump simple (P) 

 

Figure A2. 8 – Pump simple icon used in the gCCS® capture library. 

Isothermal and isenthalpic steady state model, used for the specification of a stream flow 

rate (manual mode) or its inlet/outlet pressures (advanced mode). The flow rate specification 

can be either done manually (through a value input) or set through the models control signal 

port, using a controller model. Due to the model simplicity, it can be used for the simulation 

of the pressure increase or decrease of both liquid and gas streams. 

A2.11. Reboiler (R) 

 

Figure A2. 9 – Reboiler icon used in the gCCS® capture library. 

Dynamic model with energy and mass holdup for simulation of a boiling PZ solution. In this 

model it is assumed equilibrium between liquid and vapour phase, perfect mixing and the 

total condensation of the stream used as utility. 

This model requires the specification of the stream pressure drop, initial phase, volume and 

diameter. In calibration mode the operating temperature must also be specified. For 

operational mode it is only required a temperature initial guess. 

If the dynamic model is activated, the reboiler pressure must be specified, as well as the 

initial conditions. If heat losses are activated, the overall heat transfer coefficients must be 

specified for both liquid and vapour phases, as well as the ambient temperature. 

A2.12. Recycle breaker (RB) 

 

Figure A2. 10 – Recycle breaker icon used in the gCCS® capture library. 
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This is a model without physical meaning, which helps the initialisation of a recycle loop. 

Considering the initial state open, the inlet or outlet pressure and/or flow rate must be 

specified, as well as the temperature, composition and phase. The final state can be 

specified as open, acting as a source/sink; closed, and thus connecting the inlet and outlet 

streams; or make-up, being able to replace the solvent make-up model. 

A2.13. Solvent make-up 

 

Figure A2. 11 – Solvent make-up icon used in the gCCS® capture library. 

This model can be used instead of the recycle-breaker for solvent make-up purposes. It is 

able to calculate the amount of a specified solvent required to fulfil the respective mass 

fraction and total flowrate. The model requires the specification of the component not-closed 

and the solvents with make-up. In the present thesis, these are H2O and PZ, respectively. 

A2.14. Utility sink (SU) 

 

Figure A2. 12 – Utility sink icon used in the gCCS® capture library. 

Similar to the process sink, this model is used to define a utility stream leaving the flowsheet. 

A2.15. Utility source (SRU) 

 

Figure A2. 13 – Utility source icon used in the gCCS® capture library. 

Model applied to the introduction of a water-based utility flow in the flowsheet. As in the 

source capture model, the temperature and phase must be specified, while the flowrate and 

pressure can be indicated or calculated by a downstream unit. 
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Appendix 3  Inputs for model validation 

The data provided by Plaza and Rochelle, 2011,  that was used for model validation was 

presented in Section 4.1, Table 4.1. The results provided regarding the pilot plant campaign 

conducted in November 2008 at the University of Texas at Austin had to be processed before 

being used for model validation.  

The actual volumetric gas flow that was used throughout all fifteen runs was kept constant 

and equal to around             (        and        ). 

The composition of the flue gas was also presented in Section 4.1. However, molar fractions 

were converted to mass fractions in order to facilitate consequent calculations. 

First of all, using a one mole basis, the mass of each component was calculated. For H2O: 

                                                                            

Same calculation was repeated for each component and the results were summed, resulting in 

a total value of 29.39 g. To obtain the mass fractions, each component’s mass was divided by 

the sum of all values. Results are presented in Table A3.1. 

Table A3. 1 – Flue gas molar and mass composition. 

Component Molar mass (g/mol) Mole fraction Mass (g) Mass fraction 

H2O 18       1.31 0.045 

CO2 44       5.28 0.180 

N2 28       21.20 0.721 

O2 32       1.60 0.054 

The gas molar flowrate,  , is calculated through equation A3.1. 

   
     
   

                                                                                             

Where   is the pressure (Pa),    is the volumetric flow (      ),   is the ideal gas constant 

                  and   is the temperature (K).  

The gas molar flowrate throughout the runs is 6.425 mol/s. 

   
                

                 
             

The liquid molar flowrate presented in Table A3.2 was obtained using this value and the L/G 

ratio provided on the paper. 
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The unit used for PZ concentration, molal, represents the molar amount of piperazine per 

mass of water. Thus, the molar fraction ratio between piperazine and water is given by 

equation A3.2. 

   
    

  
                    

                       
                                                                     

Using as a basis one mole of PZ, CO2 molar quantity can be calculated using the lean loading 

and H2O molar quantity using the ratio previously presented. As way of example, for Run 1: 

   
    

  
              

 

                  
 

                  
  

                                                                             

                   
        

   
    

           
 

 
 

     
          

Mole fractions are obtained by dividing the molar quantity of each component by the sum of 

all three, which corresponds in this case to 9.013 mol. Mass fractions are calculated as 

described before, for the flue gas composition. Its values are presented in Table A3.2. 

Table A3. 2 – Inputs for model validation of the simple absorber. 

Run 
PZ conc. 

(m) 

L/G 

(mol L/ mol G) 
L (mol/s) L (kg/s) 

Lean loading 

(molCO2/ molalk) 

Mass fraction 

PZ CO2 H2O 

1          35.34                    0.102 0.546 

2          35.34              0.351 0.111 0.517 

3          31.48              0.359 0.093 0.454 

4          27.63              0.275 0.080 0.407 

5          38.55              0.368 0.113 0.519 

6          35.98              0.363 0.113 0.523 

7          43.04              0.431 0.118 0.637 

8          36.62              0.354 0.120 0.536 

9          45.61              0.268 0.086 0.646 

10          43.69              0.276 0.077 0.647 

11          35.34              0.275 0.072 0.653 

12          30.84              0.265 0.071 0.664 

13          43.69              0.356 0.102 0.543 

14       31.48              0.390 0.106 0.503 

15       34.69              0.367 0.102 0.532 
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Using the total molar flowrate and the mole fractions calculated, the molar flowrate for each 

component was calculated. This molar flowrate was converted to mass flowrate for each 

component using the respective molar mass. The total mas flowrate presented in Table A3.2 

is the sum of the flowrate for each component. 

As mentioned in Section 4.2, intercooling was retrofitted to the existing absorber and two 

new experiments were conducted, being the available conditions and results presented in 

Table 4.5. Calculations made to obtain the input values presented in Table A3.3 were the 

same as for the simple absorber model. 

Table A3. 3 – Inputs for model validation of the intercooled absorber. 

Run 
PZ conc. 

(m) 

L/G 

(mol L/ mol G) 
L (mol/s) L (kg/s) 

Lean loading 

(molCO2/ molalk) 

Mass fraction 

PZ CO2 H2O 

1         28.91 0.7882 0.290 0.352 0.104 0.544 

2         37.91 1.0531 0.297 0.364 0.109 0.527 
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Appendix 4  Heat duty calculation 

Heat duty for each reboiler and heat exchanger was calculated as the energy provided by its 

utility stream through equation A4.1. 

                                                                                                        

Where   is the utility mass flowrate (kg/s),     is the specific heat of saturated steam at 

specific conditions of temperature and pressure (kJ/(kg.K)),    is the difference between 

inlet and outlet utility temperatures (K) and   is the latent heat of vaporization (kJ/kg).  

The utility used as hot stream throughout the processes and equipment analysed is saturated 

steam at 151 oC and 5 bar. Utility physical properties contained in equation A4.1 are 

presented in Table A4.1. 

Table A4. 1 - Physical properties of saturated steam at 151.85 oC and 5 bar (Box). 

λ (kJ/kg) 2107.42 

CP at 150 oC and 5 bar (kJ/(kg.K)) 2.3289 

 

In order to ease process comparison, heat duty was also calculated relatively to the amount 

of CO2 being stripped, dividing the energy requirement per time by the CO2 stripped flowrate.  

Results and deviations relatively to the first case are presented in Table A4.2. 

Table A4. 2 - Heat duty results. 

Case Futility (kg/s) ΔT FCO2 stripped (kg/s) HT (kJ/h) Dev. (%) HT (kJ/kg CO2) Dev. (%) 

A 0.0680 3.8 0.0295 9245 - 5229 - 

B 0.0717 3.8 0.0330 9748 +5 4924 -6 

C 0.0607 3.8 0.0304 8252 -11 4517 -14 

D 0.0638 3.8 0.0330 8674 -6 4382 -16 

E 0.0407 10.0 0.0212 5568 -40 2480 -16 
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Appendix 5  Inputs and results for process comparison 

Table A5. 1 – Results for each source and sink model present on configuration A.  

Unit S_001 S_002 SR_001 SRU_001 SRU_002 SRU_003 SU_001 SU_002 SU_003 

  (K) 324.6 310.0 313.2 298.2 298.2 424.0 308.1 308.1 420.2 

  (bar) 1.00 1.38 1.01 1.01 1.01 4.50 0.91 0.91 4.40 

   (kg/h) 

H2O 0.85 0.03 0.51 0.00 0.00 0.00 0.00 0.00 0.00 

PZ 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CO2 0.02 1.77 2.04 0.00 0.00 0.00 0.00 0.00 0.00 

N2 8.15 0.00 8.18 0.00 0.00 0.00 0.00 0.00 0.00 

O2 0.61 0.00 0.62 0.00 0.00 0.00 0.00 0.00 0.00 

Cooling water 0.00 0.00 0.00 123.00 60.00 0.00 123.00 60.00 0.00 

Steam 0.00 0.00 0.00 0.00 0.00 4.04 0.00 0.00 4.04 

   (kg/h) 9.90 1.81 11.34 123.00 60.00 4.04 123.00 60.00 4.04 

Mass fraction 

H2O 0.086 0.018 0.045 0.000 0.000 0.000 0.000 0.000 0.000 

PZ 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

CO2 0.002 0.979 0.180 0.000 0.000 0.000 0.000 0.000 0.000 

N2 0.823 0.001 0.721 0.000 0.000 0.000 0.000 0.000 0.000 

O2 0.062 0.000 0.054 0.000 0.000 0.000 0.000 0.000 0.000 

Cooling water 0.000 0.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 

Steam 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 

% Liquid 0 0 0 1 1 0 1 1 1 
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Table A5. 2 – Results for each source and sink model present on configuration B. 

Unit S_001 S_002 SR_001 SRU_001 SRU_002 SRU_003 SRU_004 SU_001 SU_002 SU_003 SU_004 

  (K) 313.2 310.0 313.2 298.2 298.2 298.1 242.0 308.1 308.1 308.1 420.2 

  (bar) 1.00 1.38 1.01 1.01 1.01 1.01 4.50 0.91 0.91 0.91 4.40 

   (kg/h) 

H2O 0.39 0.04 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PZ 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CO2 0.03 1.98 2.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

N2 8.20 0.00 8.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

O2 0.62 0.00 0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cooling water 0.00 0.00 0.00 55.62 102.00 62.40 0.00 55.62 102.00 62.40 0.00 

Steam 0.00 0.00 0.00 0.00 0.00 0.00 4.30 0.00 0.00 0.00 4.30 

   (kg/h) 9.24 2.02 11.34 55.62 102.00 62.40 4.30 55.62 102.00 62.40 4.30 

Mass fraction 

H2O 0.042 0.018 0.045 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

PZ 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

CO2 0.003 0.979 0.180 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

N2 0.887 0.001 0.721 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

O2 0.067 0.000 0.054 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Cooling water 0.000 0.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000 

Steam 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 

% Liquid 0 0 0 1 1 1 0 1 1 1 1 
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Table A5. 3 – Results for each source and sink model present on configuration C. 

Unit S_001 S_002 SR_001 SRU_001 SRU_002 SRU_003 SU_001 SU_002 SU_003 

  (K) 324.7 310.0 313.2 298.2 298.2 424.0 308.1 308.1 420.2 

  (bar) 1.00 1.38 1.01 1.01 1.01 4.50 0.91 0.91 4.40 

   (kg/h) 

H2O 0.86 0.03 0.51 0.00 0.00 0.00 0.00 0.00 0.00 

PZ 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CO2 0.19 1.83 2.04 0.00 0.00 0.00 0.00 0.00 0.00 

N2 8.15 0.00 8.18 0.00 0.00 0.00 0.00 0.00 0.00 

O2 0.61 0.00 0.62 0.00 0.00 0.00 0.00 0.00 0.00 

Cooling water 0.00 0.00 0.00 100.80 64.20 0.00 100.80 64.20 0.00 

Steam 0.00 0.00 0.00 0.00 0.00 3.64 0.00 0.00 3.64 

   (kg/h) 9.84 1.87 11.34 100.80 64.20 3.64 100.80 64.20 3.64 

Mass fraction 

H2O 0.088 0.019 0.045 0.000 0.000 0.000 0.000 0.000 0.000 

PZ 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

CO2 0.019 0.979 0.180 0.000 0.000 0.000 0.000 0.000 0.000 

N2 0.828 0.001 0.721 0.000 0.000 0.000 0.000 0.000 0.000 

O2 0.062 0.000 0.054 0.000 0.000 0.000 0.000 0.000 0.000 

Cooling water 0.000 0.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 

Steam 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 

% Liquid 0 0 0 1 1 0 1 1 1 
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Table A5. 4 – Results for each source and sink model present on configuration D. 

Unit S_001 S_002 SR_001 SRU_001 SRU_002 SRU_003 SRU_004 SU_001 SU_002 SU_003 SU_004 

  (K) 313.1 310.0 313.2 298.2 298.2 298.2 424.0 303.1 308.1 308.1 420.2 

  (bar) 1.00 1.38 1.01 1.01 1.01 1.01 4.50 0.91 0.91 0.91 4.40 

   (kg/h) 

H2O 0.39 0.04 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

PZ 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CO2 0.02 1.99 2.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

N2 8.14 0.00 8.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

O2 0.61 0.00 0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cooling water 0.00 0.00 0.00 50.10 82.80 66.00 0.00 50.10 82.80 66.00 0.00 

Steam 0.00 0.00 0.00 0.00 0.00 0.00 3.83 0.00 0.00 0.00 3.83 

   (kg/h) 9.18 2.03 11.34 50.10 82.80 66.00 3.83 50.10 82.80 66.00 3.83 

Mass fraction 

H2O 0.042 0.018 0.045 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

PZ 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

CO2 0.003 0.979 0.180 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

N2 0.887 0.001 0.721 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

O2 0.067 0.000 0.054 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Cooling water 0.000 0.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000 

Steam 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000 

% Liquid 0 0 0 1 1 1 0 1 1 1 1 
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Table A5. 5 – Results for each source and sink model present on configuration E. 

Unit S_001 S_002 SR_001 SRU_001 SRU_002 SRU_003 SU_001 SU_002 SU_003 

  (K) 335.0 310.0 313.2 293.2 424.0 298.1 303.1 414.0 308.1 

  (bar) 1.00 5.40 1.01 1.01 4.50 1.00 0.91 4.40 0.90 

   (kg/h) 

H2O 1.41 0.01 0.51 0.00 0.00 0.00 0.00 0.00 0.00 

PZ 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CO2 0.75 1.27 2.04 0.00 0.00 0.00 0.00 0.00 0.00 

N2 8.17 0.00 8.18 0.00 0.00 0.00 0.00 0.00 0.00 

O2 0.62 0.00 0.62 0.00 0.00 0.00 0.00 0.00 0.00 

Cooling water 0.00 0.00 0.00 69.60 0.00 45.36 69.60 2.44 45.36 

Steam 0.00 0.00 0.00 0.00 2.44 0.00 0.00 0.00 0.00 

   (kg/h) 11.04 1.28 11.34 69.60 2.44 45.36 69.60 2.44 45.36 

Mass fraction 

H2O 0.128 0.005 0.045 0.000 0.000 0.000 0.000 0.000 0.000 

PZ 0.008 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

CO2 0.068 0.992 0.180 0.000 0.000 0.000 0.000 0.000 0.000 

N2 0.740 0.002 0.721 0.000 0.000 0.000 0.000 0.000 0.000 

O2 0.056 0.000 0.054 0.000 0.000 0.000 0.000 0.000 0.000 

Cooling water 0.000 0.000 0.000 1.000 0.000 1.000 1.000 1.000 1.000 

Steam 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 

% Liquid 0 0 0 1 0 0 1 1 1 
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Table A5. 6 – Design parameters and operating conditions for Case A. 

Unit Parameter Value 

Absorber 
Diameter (m) 0.427 

Height (m) 6.10 

Stripper 
Diameter (m) 0.427 

Height (m) 6.10 

Heat exchanger Cold stream outlet temperature (K) 370 

Lean solvent cooler Process stream outlet temperature (K) 313.15 

Reboiler 
Temperature (K) 380 

Pressure (Pa)          

Condenser Temperature (K) 310 

Lean solvent 
  (kg/s) 1.000 

PZ mass fraction 0.364 

Pump 

P_001 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.02 

P_002 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.00 

P_003 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.05 

P_004 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 0.99 

P_005 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.02 
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Table A5. 7 – Design parameters and operating conditions for Case B. 

Unit Parameter Value 

Absorber 
Diameter (m) 0.427 

Height (m) 6.10 (IC at the middle) 

Stripper 
Diameter (m) 0.427 

Height (m) 6.10 

Heat exchanger Cold stream outlet temperature (K) 370 

Lean solvent cooler Process stream outlet temperature (K) 313.15 

Reboiler 
Temperature (K) 380 

Pressure (Pa)          

Condenser Temperature (K) 310 

Lean solvent 
  (kg/s) 1.000 

PZ mass fraction 0.364 

Pump 

P_001 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.07 

P_002 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.00 

P_003 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.03 

P_004 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.03 

P_005 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.00 

 

P_006 

Inlet pressure (Pa)          

 Outlet pressure (Pa)          

   (kg/h) 1.02 
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Table A5. 8 – Design parameters and operating conditions for Case C. 

Unit Parameter Value 

Absorber 
Diameter (m) 0.427 

Height (m) 6.10 

Stripper 
Diameter (m) 0.427 

Height (m) 6.10 

Heat exchanger Cold stream outlet temperature (K) 370 

Lean solvent cooler Process stream outlet temperature (K) 313.15 

Reboiler 
Temperature (K) 380 

Pressure (Pa)          

Condenser Temperature (K) 310 

Lean solvent 
  (kg/s) 1.000 

PZ mass fraction 0.364 

Pump 

P_001 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.02 

P_002 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.00 

P_003 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.02 

P_004 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.06 

P_005 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.00 

 

P_006 

Inlet pressure (Pa)          

 Outlet pressure (Pa)          

   (kg/h) 0.009 

Flash Temperature initial guess (K) 380 
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Table A5. 9 – Design parameters and operating conditions for Case D. 

Unit Parameter Value 

Absorber 
Diameter (m) 0.427 

Height (m) 6.10 

Stripper 
Diameter (m) 0.427 

Height (m) 6.10 (IC at the middle) 

Heat exchanger Cold stream outlet temperature (K) 370 

Lean solvent cooler Process stream outlet temperature (K) 313.15 

Reboiler 
Temperature (K) 380 

Pressure (Pa)          

Condenser Temperature (K) 310 

Lean solvent 
  (kg/s) 1.000 

PZ mass fraction 0.364 

Pump 

P_001 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.03 

P_002 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 0.009 

P_003 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.00 

P_004 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.01 

P_005 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.07 

 

P_006 

Inlet pressure (Pa)          

 Outlet pressure (Pa)          

   (kg/h) 1.01 

Flash Temperature initial guess (K) 380 
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Table A5. 10 – Design parameters and operating conditions for Case E. 

Unit Parameter Value 

Absorber 
Diameter (m) 0.427 

Height (m) 6.10 

Stripper 
Diameter (m) 0.427 

Height (m) 6.10  

Heat exchanger Cold stream outlet temperature (K) 370 

Lean solvent cooler Process stream outlet temperature (K) 313.15 

HP Flash Heater Process stream outlet temperature (K) 423 

Condenser Temperature (K) 310 

Lean solvent 
  (kg/s) 1.000 

PZ mass fraction 0.364 

Pump 

P_001 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.00 

P_002 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.00 

P_003 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.01 

P_004 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.00 

P_005 

Inlet pressure (Pa)          

Outlet pressure (Pa)          

  (kg/h) 1.07 

Flash Temperature initial guess (K) 380 
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Appendix 6  Equilibrium line calculation 

Since there is no publically available information regarding the equilibrium between CO2 and 

aqueous piperazine at these specific conditions, the equilibrium line had to be determined. 

For this purpose, the model presented in Figure A3.1 was assembled on gPROMS®. The flash 

drum is fed with lean solvent at the conditions used in the absorber columns for intercooling 

effect studies, and with a CO2 stream, both presented in Table A6.1. 

The outlet liquid stream is CO2 saturated, therefore representing the equilibrium. 

Table A6. 1 – Input conditions. 

Stream SR_001 SR_002  

  (kg/s) 1 2  

  (Pa)                    

  (K) 313.15 370.00  

wH2O 0.544 0.100  

wPZ 0.352 0.000  

wCO2 0.104 0.900  

 

Figure A6. 1 – Model used for equilibrium line determination. 

Flash model was operated in the “Temperature Specified” mode and its temperature was 

varied between 295 and 350 K to obtain the equilibrium line shown in Figure A6.2, whose 

equation is presented below (A6.1). 
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Figure A6. 2 – Equilibrium line between CO2 and aqueous piperazine. 

A comparison between operating and equilibrium values along the column is presented in 

Tables A6.2, A6.3 and A6.4 for an absorber with middle bottom intercooling, middle top 

intercooling and without intercooling, respectively. 

Table A6. 2 – Operating, equilibrium and driving force values along an absorber with middle bottom 

intercooling. 

Z/ZT Tliq (K) 
CO2 loading  (mol CO2 / mol alk) 

Driving force 
Operating Equilibrium 

0.00 313.15 0.289 0.467 0.177 

0.10 319.40 0.300 0.456 0.156 

0.20 330.14 0.319 0.433 0.114 

0.30 332.82 0.325 0.427 0.102 

0.40 333.06 0.328 0.426 0.098 

0.50 332.46 0.330 0.428 0.097 

0.60 331.11 0.335 0.431 0.096 

0.66 329.44 0.339 0.435 0.096 

0.70 313.15 0.347 0.467 0.120 

0.75 321.58 0.369 0.452 0.083 

0.80 323.30 0.374 0.448 0.075 

0.85 323.57 0.375 0.448 0.073 

0.90 323.47 0.375 0.448 0.073 

0.95 323.04 0.376 0.449 0.072 

1.00 321.83 0.379 0.451 0.072 
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Table A6. 3 - Operating, equilibrium and driving force values along an absorber with middle top 

intercooling. 

Z/ZT Tliq (K) 
CO2 loading  (mol CO2 / mol alk) 

Driving force 
Operating Equilibrium 

0.00 313.15 0.289 0.467 0.177 

0.05 325.94 0.312 0.443 0.131 

0.10 331.11 0.322 0.431 0.109 

0.15 332.40 0.327 0.428 0.101 

0.20 332.17 0.330 0.428 0.099 

0.25 331.09 0.334 0.431 0.097 

0.30 328.98 0.339 0.436 0.097 

0.34 313.15 0.346 0.467 0.121 

0.37 318.12 0.359 0.458 0.099 

0.40 320.84 0.366 0.453 0.087 

0.45 322.29 0.370 0.450 0.080 

0.50 323.44 0.373 0.448 0.075 

0.60 323.79 0.374 0.447 0.073 

0.70 323.75 0.374 0.447 0.073 

0.80 323.49 0.375 0.448 0.073 

0.90 322.68 0.377 0.450 0.072 

1.00 319.94 0.383 0.455 0.072 
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Table A6. 4 – Operating, equilibrium and driving force values along an absorber without intercooling. 

Z/ZT Tliq (K) 
CO2 loading  (mol CO2 / mol alk) 

Driving force 
Operating Equilibrium 

0.00 313.15 0.289 0.467 0.177 

0.05 324.38 0.311 0.446 0.135 

0.10 330.44 0.323 0.433 0.109 

0.15 333.26 0.329 0.426 0.097 

0.20 334.48 0.332 0.423 0.091 

0.25 334.96 0.333 0.422 0.088 

0.30 335.12 0.334 0.421 0.087 

0.35 335.12 0.335 0.421 0.086 

0.40 335.04 0.335 0.421 0.086 

0.45 334.91 0.336 0.422 0.086 

0.50 334.73 0.336 0.422 0.086 

0.55 334.51 0.337 0.423 0.085 

0.60 334.24 0.338 0.423 0.085 

0.65 333.89 0.339 0.424 0.085 

0.70 333.45 0.341 0.425 0.085 

0.75 332.90 0.343 0.427 0.084 

0.80 332.17 0.345 0.428 0.084 

0.85 331.20 0.348 0.431 0.083 

0.90 329.88 0.352 0.434 0.082 

0.95 327.96 0.357 0.438 0.081 

1.00 325.02 0.365 0.445 0.080 
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Appendix 7  Stripper pressure and temperature effect 

Table A7. 1 – Stripper pressure and temperature effect. 

Stripper P 

(Pa) 

Reboiler 

T (K) 

FSteam 

(kg/s) 

F CO2 

stripped 

(kg/s) 

Heat duty reboiler 

(kJ/s) 

Heat duty 

(kJ/kg CO2 

stripped) 

Deviation 

heat duty 

(%) 

CO2 

capture 

(%) 

Loading (mol CO2/ mol alk) 

Lean Rich 

1.38     380.0 0.0674 2.95      152.66 5749 - 88.2 0.266 0.347 

1.40     380.4 0.0672 2.95      152.32 5745 -0.06 88.1 0.267 0.347 

1.45     381.3 0.0671 2.95      152.07 5734 -0.25 88.1 0.267 0.347 

1.50     382.2 0.0670 2.95      151.85 5729 -0.34 88.1 0.267 0.347 

1.55     383.1 0.0669 2.95      151.64 5718 -0.52 88.1 0.267 0.347 

1.60     384.0 0.0668 2.95      151.44 5711 -0.65 88.1 0.267 0.347 

1.65     384.8 0.0668 2.95      151.26 5704 -0.77 88.1 0.267 0.347 

1.70     385.6 0.0667 2.95      151.09 5695 -0.94 88.1 0.267 0.347 

1.75     386.4 0.0666 2.95      150.93 5691 -1.00 88.1 0.267 0.347 

1.80     387.2 0.0665 2.95      150.78 5682 -1.15 88.1 0.267 0.347 

1.85     388.0 0.0665 2.95      150.64 5679 -1.21 88.1 0.267 0.347 

1.90     388.7 0.0664 2.95      150.51 5670 -1.36 88.1 0.267 0.347 

1.95     389.4 0.0664 2.95      150.38 5668 -1.41 88.1 0.267 0.347 

2.00     390.1 0.0663 2.95      150.26 5661 -1.51 88.1 0.267 0.347 

2.05     390.8 0.0663 2.95      150.14 5657 -1.60 88.1 0.267 0.347 
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Table A7. 2 - Stripper pressure and temperature effect (continued). 

Stripper P 

(Pa) 

Reboiler 

T (K) 

FSteam 

(kg/s) 

F CO2 

stripped 

(kg/s) 

Heat duty reboiler 

(kJ/s) 

Heat duty 

(kJ/kg CO2 

stripped) 

Deviation 

heat duty 

(%) 

CO2 

capture 

(%) 

Loading (mol CO2/ mol alk) 

Lean Rich 

2.10     391.5 0.0662 2.95      150.03 5654 -1.64 88.1 0.267 0.347 

2.15     392.2 0.0662 2.95      149.93 5646 -1.78 88.1 0.267 0.347 

2.20     392.8 0.0661 2.95      149.83 5644 -1.82 88.1 0.267 0.347 

2.25     393.5 0.0661 2.95      149.73 5642 -1.86 88.1 0.267 0.347 

2.30     394.1 0.0660 2.95      149.64 5634 -1.99 88.1 0.267 0.347 

2.35     394.7 0.0660 2.95      149.55 5632 -2.03 88.1 0.267 0.347 

2.40     395.3 0.0660 2.95      149.47 5630 -2.06 88.1 0.267 0.347 

2.45     395.9 0.0659 2.95      149.39 5623 -2.19 88.1 0.267 0.347 

2.50     396.5 0.0659 2.95      149.31 5621 -2.22 88.1 0.267 0.347 
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Appendix 8  L/G ratio effect 

Table A8. 1 – L/G ratio effect on Case A. 

L 

(mol/s) 
L/G 

Loading (mol CO2/ mol alk) CO2 capture 

(%) 

Heat duty 

(kJ/s) 

FCO2 stripped 

(kg/s) 

Heat duty 

(kJ/kg CO2) Lean Rich 

25.000 3.9 0.266 0.346 89.0 141.579 0.030 4746 

24.902 3.9 0.266 0.346 88.8 141.239 0.030 4744 

24.779 3.9 0.266 0.346 88.6 140.813 0.030 4742 

24.656 3.8 0.266 0.346 88.4 140.386 0.030 4739 

24.534 3.8 0.266 0.347 88.2 139.958 0.030 4736 

24.411 3.8 0.266 0.347 88.0 139.529 0.029 4733 

24.166 3.8 0.266 0.347 87.6 138.667 0.029 4728 

24.043 3.7 0.266 0.347 87.3 138.235 0.029 4725 

23.920 3.7 0.266 0.348 87.1 137.802 0.029 4723 

23.675 3.7 0.266 0.348 86.7 136.933 0.029 4717 

23.552 3.7 0.266 0.348 86.5 136.497 0.029 4714 

23.430 3.6 0.266 0.349 86.3 136.060 0.029 4711 

23.307 3.6 0.266 0.349 86.1 135.622 0.029 4709 

23.160 3.6 0.266 0.349 85.8 135.095 0.029 4705 

23.013 3.6 0.266 0.349 85.5 134.568 0.029 4702 

22.841 3.6 0.266 0.350 85.2 133.950 0.029 4698 

22.669 3.5 0.266 0.350 84.9 133.331 0.028 4694 

22.497 3.5 0.266 0.350 84.6 132.710 0.028 4690 

22.350 3.5 0.266 0.351 84.3 132.177 0.028 4686 

22.203 3.5 0.266 0.351 84.1 131.642 0.028 4683 

22.031 3.4 0.266 0.351 83.8 131.016 0.028 4679 

21.884 3.4 0.266 0.351 83.5 130.479 0.028 4675 

21.712 3.4 0.266 0.352 83.2 129.850 0.028 4671 

21.516 3.3 0.266 0.352 82.8 129.129 0.028 4666 

21.320 3.3 0.266 0.353 82.5 128.406 0.028 4661 

21.099 3.3 0.266 0.353 82.0 127.590 0.027 4656 

20.878 3.2 0.266 0.354 81.6 126.770 0.027 4650 

20.854 3.2 0.266 0.354 81.6 126.679 0.027 4650 
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Appendix 9  Piperazine concentration effect 

Table A9. 1 - Piperazine concentration effect on Case A. 

wPZ 
Rich loading 

 (mol CO2/ mol alk) 
CO2 capture (%) FCO2 stripped (kg/s) 

Heat duty 

(kJ/kg CO2) 

0.375 0.346 88.4 0.0296 4720 

0.370 0.346 88.3 0.0296 4727 

0.360 0.347 88.1 0.0295 4742 

0.350 0.348 87.8 0.0294 4757 

0.340 0.349 87.4 0.0292 4773 

0.330 0.349 87.0 0.0291 4790 

0.320 0.351 86.4 0.0289 4808 

0.310 0.352 85.8 0.0287 4828 

0.300 0.353 85.1 0.0284 4849 

0.290 0.354 84.3 0.0281 4872 

0.280 0.356 83.5 0.0278 4897 

0.270 0.357 82.5 0.0275 4925 

0.260 0.359 81.4 0.0271 4954 

0.250 0.360 80.3 0.0267 4987 

0.240 0.362 79.0 0.0263 5023 

0.230 0.364 77.6 0.0258 5063 

0.220 0.366 76.1 0.0253 5106 

0.210 0.368 74.5 0.0248 5154 

0.200 0.370 72.8 0.0242 5207 

0.190 0.372 71.0 0.0236 5266 

0.180 0.375 69.0 0.0229 5331 

0.170 0.377 67.0 0.0222 5405 

0.160 0.380 64.8 0.0215 5488 

0.150 0.383 62.4 0.0207 5583 

 


