
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Pre-trained Convolutional Networks
and generative statistical models: a
study in semi-supervised learning

John Michael Salgado Cebola

MSC DISSERTATION

Master in Electrical and Computers Engineering

Supervisor: Luís Filipe Pinto de Almeida Teixeira

July, 2016

c© John Cebola, 2016

Resumo

Este estudo explorou a viabilidade de modelos pré-treinados de redes convolucionais e métodos
generativos (nomeadamente Latent Semantic Analysis, Latent Dirichlet Allocation, Sparse Cod-
ing e Fisher Vectors) num contexto de aprendizagem semi-supervisionada aplicado a tarefas de
classificação de imagem. Este objetivo foi conseguido de duas maneiras distintas: primeiro, uti-
lizando métodos generativos na criação de um vocabulário visual aplicado a um algoritmo de
Spatial Pyramid Matching, a ser utilizado por Support Vector Machines para classificação de ima-
gens e em segundo, através do estudo do comportamento de ConvNets pré-treinadas para estimar
a classificação de imagens não categorizadas. Todos os testes foram realizados em dois conjuntos
de dados, um binário constituído por 25000 imagens de cães e gatos obtidos do Kaggle, que foi
posteriormente expandido para ter 5 categorias, adicionando as classes de peixe, baleia e galáxia
(dados obtidos também do Kaggle e do conjunto de imagens ImageNet). Os modelos pré-treinados
foram obtidos do Model Zoo da toolbox Caffe, tendo sido previamente treinados para o conjunto
de dados Imagenet.
Foi realizado um estudo comparativo e qualitativo destes métodos generativos para os conjuntos
de dados descritos. Os modelos pré-treinados das ConvNets foram também utilizados para guiar
o processo de treino semi-supervisionado, estimando provisoriamente as categorias das imagens
sem etiqueta. As classificações atribuídas a cada imagem pela ConvNet foram também utilizadas
como estimadores da confiança para cada etiqueta provisória.
Mostrou-se que os Fisher Vectors atingiram os melhores resultados dos métodos generativos
(0.83216 para os dados binários 0.91 para os dados de 5 categorias), apesar de se terem obser-
vado precisão comparável nos outros métodos. Para os dados do conjunto binário, a ConvNet
atingiu a melhor performance. No conjunto de dados de 5 categorias, as soluções que utilizaram
os modelos generativos conseguiram inicialmente atingir melhores resultados, apesar de se ter
mostrado que com um aumento dos dados etiquetados e maior tempo de treino, o modelo da rede
pode eventualmente voltar a ter melhor performance. Além disto, mostrou-se que kernels lineares,
quando utilizados com os mencionados métodos generativos, conseguem atingir melhor perfor-
mance com menos tempo de treino e utilizando menos recursos computacionais. Este resultado
reveste-se de importância adicional quando comparado com as necessidades intensivas de tempo
e recursos computacionais das ConvNets, que requerem computação em GPUs e vários Gigabytes
de memória RAM.
Os resultados do estudo esclarecem a viabilidade de métodos generativos como uma forma de re-
dução de dimensionalidade de dados, e como os modelos estatísticos fornecem informação mais
rica que, ao ser combinada com modelos de ConvNets pré-treinados, conseguem atingir resultados
aceitáveis em tarefas de classificação. Estes resultados abrem caminho para continuar a exploração
destas soluções para encontrar bons resultados em conjuntos de dados onde imagens etiquetadas
são escassas.

i

ii

Abstract

This study explored the viability of out-the-box, pre-trained ConvNet models and multiple genera-
tive methods (namely probabilistic Latent Semantic Analysis, Latent Dirichlet Allocation, Sparse
Coding and Fisher Vectors) in a semi-supervised learning context for image classification tasks.
This is done in two distinct manners: first, by utilizing semi-supervised generative models in the
creation of a visual vocabulary in a Spatial Pyramid Matching formulation, to be used by a Sup-
port Vector Machine for image classification and secondly by studying if a pre-trained ConvNet
model can be used to estimate category labels of unlabelled images. All experiments pertaining to
this study were carried out over two distinct datasets, a two-class set comprised of 25000 images
of cats and dogs obtained from Kaggle, which was later expanded into a 5-category dataset with
additional fish, whale and galaxy classes (this additional data being again obtained from Kaggle,
but also from the ImageNet dataset). The pre-trained models used were obtained from the Caffe
Model Zoo, and were trained for the ImageNet dataset challenge.
A comparative and qualitative study of all generative methods was realized through multiple trials
over each dataset. Furthermore, the pre-trained ConvNet was utilized to guide the semi-supervised
training by estimating the class of each unlabelled image. The class score attributed by the Con-
vNet to each unlabelled image was also used as an estimator of the confidence of the tentative
labels.
It was shown that Fisher Vectors were able to achieve the best accuracy scores out of all gener-
ative methods (0.83216 for the binary dataset and 0.91 for the 5-category dataset), although all
tested methods achieved comparable results. For the binary case, none of the generative ensem-
bles managed to match the accuracy of the pre-trained ConvNet model. For the 5-category dataset,
the ensembles showed competitive results when compared to the ConvNet model, although after a
more intensive training schedule using a surplus of labelled data, the ConvNet once again topped
all results. Additionally, it was shown that linear kernels perform competitively when utilized
in conjunction with these generative models, allowing for faster training times for the classifiers,
while also utilizing less computational resources, requiring only ROM and usage of the processor.
This was seen as especially relevant when compared to the ConvNets, which require some days of
training even when utilizing 16 Gigabytes of RAM and multiple Nvidia graphic cards for compu-
tations.
The results of this study lend insight on the viability of these generative methods as a form of
feature reduction, and how the rich statistical modelling they provide can be combined with pre-
trained models to quickly achieve acceptable accuracies in classification tasks, paving the way for
future exploration using these methods to allow convergence to well-performing solutions quickly
with datasets scarce in labelled data.

iii

iv

Agradecimentos

I’d like to thank professor Luís for sharing his knowledge and insight, guiding this project through
its rockiest stages all the way to its destination. I’d also like to thank my brother, whose assistance
in numerous matters- from struggles with installing software, to lending me his personal computer
to gather further computing power for the numerous tests, to helping me write and polish this
document- proved invaluable. He was the stallion that often carried this project to its fruitful
destination. Furthermore, I’d like to thank my good friend Meira, whose humour and advice over
a pleasant cup of alcohol helped keep my mind intact. To everyone who was there to give me
that extra push as the iron bar weighted on my shoulders at the gym- to you all, I’d like to thank
you for motivating me to take care of my body and helping me put my mind off work when the
stress became crushing. And, lastly, I’d like to Ria for patiently and diligently helping me with
innumerable tasks as my soul was slowly sucked dry by many a institution as I worked. Truly the
work of a perfect and elegant maid.

John Michael

v

vi

“Congratulations.
You managed to complete this absolutely meaningless test.”

GLaDOS

vii

viii

Contents

Abbreviations and symbols xviii

1 Introduction 1
1.1 Problem contextualization and motivation . 1
1.2 Main Objectives . 2
1.3 Document Structure . 3

2 Background and literature review 5
2.1 Image model and overview of classification tasks 5
2.2 Preprocessing . 6

2.2.1 Filters . 6
2.2.2 Gradient calculation and edge detection 7
2.2.3 Hough transform . 9

2.3 Feature learning, feature descriptors and feature extraction 9
2.3.1 Corner Detection . 10
2.3.2 Blob detectors . 11
2.3.3 Principal Component Analysis . 12
2.3.4 Detectors based on histogram representations of gradients and orientations 14
2.3.5 Colour histograms . 16
2.3.6 Colour Coherence Vector . 17

2.4 Intermediate feature models for classification 17
2.4.1 Bag of Visual Words . 17
2.4.2 Spacial Pyramid Matching . 18
2.4.3 Bag of Colours . 20
2.4.4 Fisher Vectors . 20

2.5 Classification and learning . 21
2.5.1 Generative vs non-generative models 22
2.5.2 MLE and MAP estimation . 23
2.5.3 EM algorithm . 23
2.5.4 Naive Bayes hypothesis . 24
2.5.5 Mixture Models . 25
2.5.6 Hidden Markov Models . 25
2.5.7 Latent Dirichlet Allocation . 26
2.5.8 Sparse Coding . 28
2.5.9 Clustering . 28
2.5.10 Linear and Logistic regression . 30
2.5.11 Support Vector Machines . 31
2.5.12 Deep Convolutional Networks . 34

ix

x CONTENTS

2.6 Recent research trends . 38
2.7 Computer Vision and Machine Learning toolboxes 38
2.8 Additional mathematical concepts . 39

2.8.1 Distance metrics . 39
2.8.2 Accuracy measures and performance metrics 40
2.8.3 Singular Value Decomposition . 41
2.8.4 Gradient Descent . 41

3 Methodology and experimental design 45
3.1 Introduction and project overview . 45

3.1.1 Similar studies and previous work . 46
3.2 Dataset overview and preprocessing . 47

3.2.1 Preprocessing . 48
3.3 Deep Convolution Networks . 49

3.3.1 Backpropagation and stochastic gradient descent: Nesterov’s Accelerated
Gradient . 52

3.3.2 Overfitting and parameter sharing . 52
3.4 Feature descriptors and feature extraction . 53
3.5 Creation of the visual vocabulary for classification and feature reduction through

semi-supervised generative methods . 54
3.5.1 Original SPM implementation with vector quantization 55
3.5.2 SPM with sparse coding . 56
3.5.3 Topical representations through LDA and pLSA 57
3.5.4 GMMs and Fisher Vectors . 59

3.6 Classifier modelling and training . 61
3.6.1 Cross-validation scheme and testing . 63

3.7 Hardware resources . 63

4 Results and discussion 65
4.1 Feature descriptor results . 65
4.2 Binary dataset results . 66

4.2.1 TSVM regularization parameters . 66
4.2.2 Pre-trained ConvNet . 66
4.2.3 SPM with VQ . 67
4.2.4 SPM with SC . 68
4.2.5 SPM with pLSA . 72
4.2.6 SPM with LDA . 74
4.2.7 GMM and FV . 74
4.2.8 Comparative discussion of the overall results for the binary dataset 76

4.3 5-category dataset results . 77
4.3.1 Pre-trained ConvNet and SPM+VQ baseline 78
4.3.2 SPM with SC . 78
4.3.3 SPM with pLSA . 81
4.3.4 GMM and FV . 84
4.3.5 Comparative discussion of the overall results for 5-category dataset . . . 85

4.4 Computational costs and training time . 86
4.5 Closing Considerations . 87

CONTENTS xi

5 Conclusions and Future Work 89
5.1 Conclusions . 89
5.2 Future Work . 90

xii CONTENTS

List of Figures

2.1 Result of the application of a Gaussian filter (middle) and median filter (right).
Original image on the left [1] . 7

2.2 Result of the application of the Canny edge detector [1] 9
2.3 Graphic representation of the accumulators for the multiple line objects which

attempt to represent the two lines on the left. Note how two white points stand out
(the objects which resemble the original lines the most). Image from [55] 10

2.4 Blob detector applied to different resolutions of the same picture. The maxima of
the LoG operator shifts with the parameter σ for different scale space representa-
tions of the same image . 12

2.5 Result of the application of a LoG blob detector. Blue circles and ellipses represent
the output blobs . 13

2.7 Features captured using the SIFT descriptor and matching made with the same
scene on a modified picture . 16

2.8 Visual representation of the SPM model for 3 pyramid layers with three features,
represented by crosses, circumferences and circles 20

2.9 Subpopulations captured through a Gaussian mixture model utilizing the EM al-
gorithm . 25

2.10 Visual representation of a chain modelled by a HMM 26
2.11 Visual representation of a three hidden layer auto-encoder and decoder. Note the

resemblance to a multi-layer perceptron net . 28
2.12 Visual representation of the popular AlexNet architecture for a deep ConvNet [48] 37

3.1 Schematic representing the overall ensemble for image classification 46
3.2 Example images of the 5-category dataset. From top to bottom, a pair of images

with the galaxy, cat, dog, fish and whale labels are presented, respectively 49
3.3 Image belonging to the whale category. The hue channel can be visualized on the

right . 50
3.4 Illustration of the preprocessing steps used to create multiple artificial training

images. Note that this rendition was done by hand and is less accurate than the
actual process . 51

3.5 Schematic illustrating how both types of features are combined into a single k+D-
dimensional vector . 54

3.6 Schematic representing the semi-supervised process through which the final fea-
ture vectors are generated . 55

3.7 Schematic representing the SC-max pooling ensemble 57
3.8 Plate diagram for visualization of the pLSA problem described as a matrix decom-

position operation . 59

xiii

xiv LIST OF FIGURES

3.9 Visualization of the relation between the parameters of the GMM and the grouping
of different keypoints into visual words . 60

3.10 Visualization of the effect of adding sample weights in SVM training. A larger
circle represents a greater weight . 62

4.1 Results of the parameter sweep over W for the TSVM implementation, with U = 1 67
4.2 Results of the parameter sweep over U for the TSVM implementation, with W = 1 67
4.3 Results of the parameter sweep over λ for the SPM+SC method for the binary

dataset, with K = 1000 . 71
4.4 Results of the parameter sweep over K for the SPM+SC method for the binary

dataset, with λ = 0.81704 . 71
4.5 Results of the parameter sweep over z for the SPM+pLSA method for the binary

dataset, with K = 1000 . 73
4.6 Results of the parameter sweep over K for the SPM+SC method for the binary

dataset, with z = 23 . 73
4.7 Results of the parameter sweep over z for the SPM+SC method for the binary

dataset, with K = 1000 . 75
4.8 Results of the parameter sweep over K for the SPM+SC method for the binary

dataset, with z = 16 . 75
4.9 Results of the parameter sweep over the number of Gaussian functions for the

GMM for the binary dataset, considering the µ and σ FV components 77
4.10 Results of the parameter sweep over λ for the SPM+SC method for the 5-category

dataset, with K = 1000 . 80
4.11 Results of the parameter sweep over K for the SPM+SC method for the 5-category

dataset, with λ = 0.36 . 81
4.12 Results of the parameter sweep over z for the SPM+pLSA method for the 5-

category dataset, with K = 1000 . 82
4.13 Results of the parameter sweep over K for the SPM+pLSA method for the 5-

category dataset, with z = 24 . 83
4.14 Results of utilizing generated feature vectors on the SPM+pLSA method for the

5-category dataset, with z = 24 and K = 1000 83
4.15 Results of the parameter sweep over the number of Gaussian functions for the

GMM for the 5-category dataset dataset, considering the µ and σ FV components 85

List of Tables

4.1 Comparison between different combinations of feature descriptors. Tested on a
SPM+VQ formulation . 65

4.2 Comparison between different number of colour bins for the BC descriptor. Tested
on a SPM+VQ formulation in conjunction with SIFT descriptors 66

4.3 ConvNet confusion matrix for the binary dataset, accuracy of 0.94472 68
4.4 SPM+VQ confusion matrix for training with 1000 labelled samples for the binary

dataset, accuracy of 0.7872 . 68
4.5 SPM+SC confusion matrix for training with 1000 labelled examples for the binary

dataset, accuracy of 0.81704 . 69
4.6 SPM+SC confusion matrix for training with 750 labelled and 250 unlabelled ex-

amples for the binary dataset (strong scores), accuracy of 0.80928 69
4.7 SPM+SC confusion matrix for training with 750 labelled and 250 unlabelled ex-

amples for the binary dataset (weak scores), accuracy of 0.806 70
4.8 SPM+SC confusion matrix for training with 750 labelled and 250 unlabelled ex-

amples for the binary dataset (absolute scores), accuracy of 0.81816 70
4.9 SPM+SC confusion matrix for training with 500 labelled and 500 unlabelled ex-

amples for the binary dataset (strong scores), accuracy of 0.80928 70
4.10 SPM+SC confusion matrix for training with 500 labelled and 500 unlabelled ex-

amples for the binary dataset (absolute scores), accuracy of 0.81816 70
4.11 SPM+SC confusion matrix for training with 250 labelled and 750 unlabelled ex-

amples for the binary dataset (strong scores), accuracy of 0.70904 70
4.12 SPM+SC confusion matrix for training with 250 labelled and 750 unlabelled ex-

amples for the binary dataset (absolute scores), accuracy of 0.79296 70
4.13 SPM+pLSA confusion matrix for training with 1000 labelled examples for the

binary dataset, accuracy of 0.82696 . 72
4.14 SPM+pLSA confusion matrix for training with 750 labelled and 250 unlabelled

examples for the binary dataset (strong scores), accuracy of 0.82496 72
4.15 SPM+pLSA confusion matrix for training with 500 labelled and 500 unlabelled

examples for the binary dataset (strong scores), accuracy of 0.81 72
4.16 SPM+LDA confusion matrix for training with 1000 labelled examples for the bi-

nary dataset, accuracy of 0.80328 . 74
4.17 SPM+LDA confusion matrix for training with 500 labelled and 500 unlabelled

examples for the binary dataset (strong scores), accuracy of 0.80784 74
4.18 FV confusion matrix for training with 1000 labelled examples for the binary dataset,

accuracy of 0.83216 . 76
4.19 FV confusion matrix for training with 500 labelled and 500 unlabelled examples

(strong scores) for the binary dataset, accuracy of 0.82784 76
4.20 Accuracy variation with the number of FV components considered 76

xv

xvi LIST OF TABLES

4.21 ConvNet confusion matrix for the 5-category dataset, accuracy of 0.86144 78
4.22 SPM+SC confusion matrix for training with 1000 labelled examples for the 5-

category dataset, accuracy of 0.904 . 79
4.23 SPM+SC confusion matrix for training with 500 labelled and 500 unlabelled ex-

amples for the 5-category dataset, accuracy of 0.90096 79
4.24 SPM+SC confusion matrix for training with 250 labelled and 750 unlabelled ex-

amples for the 5-category dataset, accuracy of 0.81776 80
4.25 SPM+pLSA confusion matrix for training with 1000 labelled examples for the

5-category dataset, accuracy of 0.8848 . 82
4.26 SPM+pLSA confusion matrix for training with 500 labelled and 500 unlabelled

examples for the 5-category dataset, accuracy of 0.87648 82
4.27 FV confusion matrix for training with 1000 labelled examples for the 5-category

dataset, accuracy of 0.91 . 84
4.28 FV confusion matrix for training with 500 labelled and 500 unlabelled examples

for the 5-category dataset, accuracy of 0.90344 84
4.29 Table with typical runtime for visual vocabulary generation and ConvNet training

for the 5-category dataset . 87
4.30 Table with typical training time for the two used SVM kernels for the 5-category

dataset . 87
4.31 Summary table of the best accuracy of each model in each dataset 88

xvii

xviii ABREVIATIONS AND SYMBOLS

Abbreviations

BoC Bag of Colours
BoF Bag of Features
BoW Bag of Words
CCV Colour Coherence Vector
ConvNet Convolutional Network
CVPR Computer Vision and Pattern Recognition conference
CUDA Compute Unified Device Architecture
DoG Difference of Gaussians
EM Expectation-Maximization
FLANN Fast Library for Approximated Nearest Neighbour search
FV Fisher Vector
GB Gigabyte
GMM Gaussian Mixture Model
GHz GigaHertz
GPU Graphic Processor Unit
HMM Hidden Markov Model
HoG Histogram of Gradients
Hr Hours
HSV Hue, Saturation, Value
I/O Input/Output
ILSVRC ImageNet Large Scale Visual Recognition Competition
K-NN K Nearest Neighbours
LDA Latent Dirichlet Allocation
LoG Laplacian of Gaussian
LSA Latent Semantic Analysis
LSE Least-Squares Error
MAP Maximum A Posteriori
MLE Maximum Likelihood Estimation
PCA Principal Component Analysis
PDF Probability Density Function
RAM Random Access Memory
RGB Red Green Blue
SC Sparse Coding
SIFT Scale-Invariant Feature Transform
SGD Stochastic Gradient Descent
SPM Spatial Pyramid Matching
SURF Speeded Up Robust Features
SVD Singular Value Decomposition
SVM Support Vector Machine
TSVM Transductive Support Vector Machine
VQ Vector Quantization

Chapter 1

Introduction

1.1 Problem contextualization and motivation

Image classification is a central problem of Computer Vision and Machine Learning, which has

been the focus of much research in recent years. It’s a vital task in numerous applications of

either field, allowing for automation of multiple tasks in engineering, identification of patterns or

analysis of visual data. With the boon of the Internet, vast amounts of data from multiple fields

and for multiple applications have become readily available. Thus, it’s of crucial importance to

design robust algorithms and methods that allow identification and classification of this wealth of

data, enabling its use, considering the value of both properly classified data and common unsorted

data.

One of the greatest obstacles faced when handling these large volumes of images and video is tied

to the fact that, more often than not, the visual data is unlabelled. Whilst unlabelled data is readily

available and easy to extract, labelled data is scarce and quite costly to obtain. The labelling

process is often an onerous, manual task, done by human inspection. It’s therefore of utmost

importance to find reliable methods which minimize the need for labelled data. Unfortunately,

most state-of-the-art methods rely heavily on labelled data and methods to artificially expand this

labelled dataset (for instance, the ubiquitous convolution networks require hundreds of thousands

of labelled training examples to achieve their unmatched performance). Indeed, most popular

and successful methods for image classification are supervised methods, that is, algorithms which

require labelled training sets. Since information captured within a visual medium is often rich and

complex, it’s easy to understand the need for this guided training.

Sadly, completely unsupervised learning- that is, methods focused on using solely unlabelled data

- has very limited applications and success. Very few such methods exist, most being forms of

clustering or Gaussian mixture models, and neither has, to date, achieve comparable performance

to their supervised counterparts. A possible compromise arises in the form of semi-supervised

learning; that is, ensembles of classifiers which utilize a set of labelled and unlabelled data. Such

methods could tap into the "best of both worlds", making use of the large volume of easy to obtain

unlabelled data and a small subset of labelled data. It’s been shown that, in various applications

1

2 Introduction

(especially in environments where the amount of labelled data available is limited), augmenting the

dataset with unlabelled data results in increased performance when compared to utilizing only the

labelled dataset. A similar argument could be drawn towards using labelled data from categories

or applications which are sufficiently similar to the desired one, albeit not exactly the same. This

sort of "sufficiently similar" dataset can, ultimately, be interpreted as a form of "noisy data" from

another dataset. This can be done indirectly by utilizing pre-trained models as estimators for the

class of images from the target dataset. Such a usage effectively represents a form of transfer

learning, where learning by a model from a given dataset is applied to another different dataset.

Exploring these various options and comparing their performance on multiple datasets can help

understand how the hurdles posed by the scarcity of labelled data can be overcome.

1.2 Main Objectives

The primary goal for this project is to explore the viability of a number of semi-supervised en-

sembles in the task of image classification. The most relevant questions this investigation aims to

answer can be summarized as follows:

1. how viable are pre-trained, out-the-box ConvNet models in assisting semi-supervised learn-

ing?

2. how accurate are class scores from these models as estimators for the confidence of classes

from different datasets if they are sufficiently similar? How to gauge such similarity?

3. how viable are generative, probabilistic models in assisting semi-supervised learning?

4. does the usage of artificial data generated from the aforementioned models increase the

overall performance of the model?

5. how can these different approaches be combined in a single architecture? Is there any in-

crease in performance?

Initially, after some theoretical considerations, an overall scheme for the ensemble was drafted

and implemented. This includes the feature descriptors, the feature clustering and extraction pro-

cesses, the different variations of the final image representation and the classification algorithms.

Various parameters pertaining to multiple parts of this pipeline were tested and optimized to both

highlight their influence on the overall behaviour of the model and achieve acceptable results. Two

primary datasets were used- an initial binary dataset (which acts as a form of "corner case", exem-

plifying the type of classes and datasets which provide the greatest challenge in terms of accuracy)

and a larger, five class dataset. The pictures for either case were obtained from multiple Kaggle

competitions.

The ultimate goal for this project was to both carry out a comparative study of some prominent

available options and achieve an ensemble which utilizes these that’s capable of producing com-

petitive results using as little labelled data as possible for both datasets.

1.3 Document Structure 3

1.3 Document Structure

The subsequent document is divided into three main chapters. Firstly, an overview of both the

existing literary work, current investigation trends and theoretical groundwork is presented in sec-

tion 2. This section is divided in three subsections; the first, which is also divided in multiple

segments, lays theoretical details regarding various topics regarding features, feature extraction

and description, distance and accuracy metrics and brief mathematical foundations for the differ-

ent classifiers. The second explores in greater detail the various algorithms used, highlighting their

merits and demerits in the context of this investigation and contextualizing them in light of recent

trends and state-of-the-art benchmarks. Lastly, the third section will enumerate some of the most

recent methods and their results, to be further explored and used as comparison in succeeding

sections.

The second main chapter (3) will illustrate and more thoroughly explain the methodology used

over the course of this investigation. This includes both a description of the algorithms and en-

sembles implemented, going into detail about their inner workings, but also a thorough explanation

about how their performance is evaluated, and the more relevant hyperparameters which were op-

timized. This chapter shall also expand upon particular properties of the dataset and how they

potentially relate to the aforementioned parameters and overall performance of each model. Pre-

processing and multiple techniques used to expand the dataset shall also be covered here.

The final chapter (4) brings it all together by presenting results from the multiple tests, justifying

variations in performance (both between different models and/or ensembles, but also within each

individual model through variation of the multiple parameters). A comparison to several state-of-

the-art solutions is drawn, highlighting any positives or negatives of the achieved solution in this

context.

4 Introduction

Chapter 2

Background and literature review

2.1 Image model and overview of classification tasks

There are multiple ways to acquire digital images: digital cameras, scanners or magnetic reso-

nances, to name a few. However, when transforming an image to a digital device, what’s effec-

tively recorded are numeric values for each point in the image. These points are called pixels.

They can be defined as the smallest addressable element of the image (and, by extension, the

smallest element that can be manipulated). An image is typically comprised of many channels,

each composed of a number of pixels. Therefore, mathematically, an image can be understood as

a set of matrices of pixels. The way the information of the image is encoded in these matrices is

defined by a colour model and its representation [1]. The two most common are:

• RGB representation, in which the three matrices of an image i, (Ri,Gi,Bi) hold the intensity

value of each of the three primary colours for each pixel;

• HSV and HSL (Hue, Saturation, Value/Lightness), in which the three matrices of an image

i, (Hi,Si,Vi) result from geometric transformation of the RGB representation, separating

colour information (hue) from brightness (value).

Manipulating an image can be understood as simply as applying a number of functions to these

input matrices, producing new, altered output matrices. Image classification tasks can be described

as the process of labelling an image; that is, to assign some of many predetermined classes to each

new image on the dataset. This is ultimately a learning task. Due to the matrix representation of

images in computer vision, a number of machine learning techniques can be readily exploited in

this context. There are multiple methods to tackle problems of this nature, and solutions are often

comprised of multiple steps: initial image preprocessing, feature extraction, feature clustering and

the classification task proper.

5

6 Background and literature review

2.2 Preprocessing

Usually, in order to both remove noise and simplify the task of feature detection and extraction,

images are subjected to some initial transformations. This is called the "preprocessing step". Op-

erations at this stage mostly involve the application of filters and changing details about the image

representation (for instance, changing between a RBG space representation to HSV, or simply

turning a colour image to a grayscale image). Most of the operations used in the preprocessing

stage during this project are described below.

2.2.1 Filters

Since, as seen, an input image is represented by one or more two-dimensional matrices, most filters

are applied using multiple matrix products (a filter is, in practice, a bidimensional matrix) locally

on the image (filter matrices- or kernels- are of typically small dimension). This simplifies filtering

operations computationally and, in the case of separable filters, these matrices can be combined

by multiplication into a single matrix to be applied all at once [1]. While filtering removes noise

from an image (smooths values across a neighbourhood of pixels, toning down outliers), excessive

filtering can tamper with innate properties of the image (edges or colour), so these operations must

be used in moderation. Some common filters include:

• Gaussian filters, where each entry is drawn from some normal distribution and is naturally

symmetrical around the centre of the kernel, as seen below in equation 2.1 a 3× 3 filter

kernel example (which would need to be iteratively applied over the entire image, as exem-

plified in figure 2.1):

2 4 2

4 9 4

2 4 2

 (2.1)

• Average and median filters, each computing the average or median value on a k× k region

(k odd), and replacing the pixel at the centre by the calculated average/median value. It

should be noted that no linear mapping can be drawn for these filters. Thus, they cannot

be explicitly approximated by a matrix representation. Whilst this incurs and increased

computational cost, it should also be noted that a median filter usually results in an image

with crispier edges after noise removal, compared to other filters (an appealing quality if

one can spare the associated computational cost).

• Kuwahara and Nagao-Matsuyama filters, both searching for regions of smallest variance in

the k× k window and applying average filtering on that region.

2.2 Preprocessing 7

Figure 2.1: Result of the application of a Gaussian filter (middle) and median filter (right). Original
image on the left [1]

2.2.2 Gradient calculation and edge detection

The concept of edge comes almost inherently in simple daily life situations, associated with no-

tions of borders or boundaries between regions. However, to properly harness this potential appli-

cation in segmenting an image into parts, a more careful definition is required. Edges are struc-

tures characterized by high variation in one or more directions, and are often located and estimated

through calculations of the gradient [1]. While edges as a primary feature for both learning and

classification tasks have fallen out of favour next to more abstract feature representations which

capture richer sets of information from the input pictures, these still hold a niche and can have

merit supporting other features in some applications. Furthermore, as mentioned, edges are use-

ful in roughly segmenting a picture where distinct zones are present. This makes edge detection

important for image preprocessing, either to accentuate the edges for further feature detection or

to locate regions of interest in the image, to reduce the size of the image to compute in subsequent

steps, and at a comparably small computational cost. Edges and corners as features is a topic to be

further expanded upon on 2.3. As for estimating edges, as mentioned, computing the gradient over

the image and locating regions where it has high values is usually a straightforward and effective

solution. Thus, taking the gradient operator as:

∇I(x,y) =
∂ I
∂x

+
∂ I
∂y

(2.2)

its value is often estimated by application of a mask, similar to what’s commonplace with fil-

tering, applied locally and iteratively to the input image through matrix multiplication. The result

allows an acceptable estimation of the magnitude and orientation of the gradient and, therefore, of

edges themselves. Some of the most common edge detection kernels are:

• The Sobel operator computes the gradient estimation based on applying the following oper-

ation:

8 Background and literature review

G =
√

G2
x +G2

y (2.3)

Where G represents the gradient, and the two terms Gx,y terms are obtained by applying to

a 3×3 neighbourhood of the input image the two following masks, respectively:

−1 0 1

−2 0 2

−1 0 1

 (2.4)

and

−1 −2 −1

0 0 0

1 2 1

 (2.5)

• The Prewitt operator follows a similar calculation, but uses instead the two following masks:

−1 0 1

−1 0 1

−1 0 1

 (2.6)

and

−1 −1 −1

0 0 0

1 1 1

 (2.7)

• The Canny edge detector is a slightly more sophisticated edge detection technique [2]. This

edge detection technique first applies Gaussian filtering (for instance, as exemplified in 2.1)

and afterwards draws gradients applying masks similar to those of Sobel or Prewitt opera-

tors, rotated in one of eight directions. It then applies non-maximum suppression (that is,

entries which are not a maximum are eliminated) and thresholding below one value and

above the other (that is, values above an upper bound and below a lower bound are set to

white and black, respectively). The surviving values undergo hysteresis thresholding which,

in essence, uses information about a neighbourhood to decide whether a pixel is set to white

or black (pixels near strong edge values are set to white). Canny detectors take a number of

hyperparameters (threshold values, Gaussian parameters for the filters) and are especially

common in edge-detection tasks. An example of the output of the Canny edge detector can

be seen in figure 2.2.

2.3 Feature learning, feature descriptors and feature extraction 9

Figure 2.2: Result of the application of the Canny edge detector [1]

2.2.3 Hough transform

A feature detection technique closely related to edge extraction is the Hough transform, which

attempts to form imperfect instances of objects or regions within a certain class of shapes through

a voting system [3]. A Hough transform can, given a fragmented set of edges, reform them into

lines or curves, in particular. This is done by re-parametrizing the input edge objects into a new,

more appropriate space, and using accumulators for a multitude of potential final shapes to store

their respective votes. Voting can be done based on a number of criteria which is set appropri-

ately for the shape; for instance, in the original formulation for lines, the Hough algorithm would

parametrize the input edges into the space of the parameters (Θ,ρ) and vote based on deviation

of the distance each point had towards a perpendicular line crossing the origin. The parameters

(Θ,ρ) are descriptive of the polar representation ρ = x ·cos(Θ)+y · sin(Θ) of the line object. The

shape with the most votes is the ultimate output of the Hough transform. The results of such a

process for a mock example are presented in the figure 2.3. This process is quite important be-

cause edge detectors might deliver arbitrarily fragmented edge objects which, on their own, might

not have any particular significance and might be undesirable as features. It should be noted that

more abstract regions and shapes might not be properly captured by a Hough transform (or may

be captured wrongly, due to limitations in the voting kernel).

2.3 Feature learning, feature descriptors and feature extraction

There is no universal consensus for the definition of feature in computer vision, the details being

largely dependant on the desired application [4]. However, a general notion is that a feature is

a "point of interest" of the image. In classification tasks, these points are uniquely tied to the

class of the image- they are distinct from features from another class, and appear across the vast

majority of images within the same category. A way to model and understand these desired prop-

erties of inter-class uniqueness and intra-class repeatability is linking features to latent variables.

While features can be described in a multitude of ways- as simple edges and corners or levels of

colour intensity and as complex as an histogram of the frequency of these low-level features- they

are often ultimately represented in vectorial or matrix form. Often, features may be of difficult

10 Background and literature review

Figure 2.3: Graphic representation of the accumulators for the multiple line objects which attempt
to represent the two lines on the left. Note how two white points stand out (the objects which
resemble the original lines the most). Image from [55]

interpretation when visualized on their own, and can only be understood in this mathematical for-

mulation. Selecting an appropriate number of features is crucial for any learning or classification

task- an insufficient number of features will result in information too scarce to properly model the

image class ("underfitting"), whilst an over-abundance of features results in an equally adverse

effect of "overfitting" (modelling noise or undesirable factors in a set of pictures which do not ac-

curately represent the image category) [5, 6, 7]. Proper dimensioning of the features also reduces

needless computational complexity and costs. It’s therefore crucial to identify relevant features

and to properly extract them from input images.

2.3.1 Corner Detection

Much as was the case with edges, the notion of corners is relatively intuitive. A way to look at

a corner is as the intersection between edges; a zone where two edges "meet". A more formal

definition of corner requires the introduction of a more rigorous concept [1]. Letting M be a

structure tensor for some portion of an image, I, that is, a window with some area w(u,v):

[
〈I2

x 〉 〈IxIy〉
〈IxIy〉 〈I2

y 〉

]
(2.8)

Where Ix,y represents the first order Taylor series approximation of the partial derivatives of

I(u+ x,v+ y), used in the calculation of a sum of squared differences between the patch capture

in the original (u,v) window and another patch captured in a shifted window, wshi f t(x,y). This

weighted sum is directly correlated with the M tensor- the eigenvalues of a structure tensor natu-

rally capturing variation of the gradient in a direction associated with the partial derivatives that

compose it. Therefore, a corner, which is represented by sharp variations in both directions, can

be estimated by values of high and comparatively similar value; that is:

2.3 Feature learning, feature descriptors and feature extraction 11

(λ1,λ2) :
λ1

λ2
≈ 1 (2.9)

Most corner detectors (such as the Harris corner detector) use this approach to estimate which

points do indeed represent corners. While often insufficient on their own to provide a rich enough

description of an image for proper learning or classification, corners do facilitate picture matching

and are often desirable features in many applications.

2.3.2 Blob detectors

Blobs are a form of feature which comprise a small region which differs in some properties (such

as brightness or colour) compared to its surroundings; it can be viewed as an abstraction of a

corner. Within the blob, these unique characteristics are mostly constant and uniform, that is,

within a blob all points are similar, in some sense [1] (this can be seen in 2.5). Blob detection can

be made to be scale-invariant (that is, blobs can be matched between rescaled images) using scale

hyperparameters in blob-detection techniques.

Much like corners, blobs are often insufficient as features to characterize an image, but are often

used in conjunction with other forms of features for classification tasks. There are three primary

methods of blob detection. These are:

• The Laplacian of Gaussian (LoG) is one of the most common blob detectors. Given an input

image, f (x,y), this technique first computes a convolution of said image with a Gaussian

kernel:

L(x,y|t) = g(x,y|t)∗ f (x,y) (2.10)

Where t represents the aforementioned scale hyperparameter. Afterwards it applies the

Laplacian operator, normalized to scale, resulting in:

∇
2
normL(x,y|t) = t(Lxx +Lyy) (2.11)

and detect local maxima or minima (with respect to space but also scale). Due to this nor-

malization, if one keeps track of the scale parameter, it’s possible to detect matching blobs in

multiple scales (thus achieving scale-invariant features). The result of the convolution oper-

ation can be seen as a scale-space volume L(x,y|t) which is analogous to a scale-space pyra-

mid representation. Noticing that explicit calculation of the Laplacian is computationally

expensive and that the scale-space representation L(x,y|t) necessarily satisfies a diffusion

equation such as:

12 Background and literature review

Figure 2.4: Blob detector applied to different resolutions of the same picture. The maxima of
the LoG operator shifts with the parameter σ for different scale space representations of the same
image

∇
2
normL(x,y|t) = 2∂tL (2.12)

• The Laplacian can also be approximated by a difference between to Gaussian-smoothed

images (the Difference of Gaussian operator, DoG), as:

∇
2
normL(x,y|t)≈ t

∆t
(L(x,y|t p∆t)−L(x,y|t)) (2.13)

Which is a sufficient approximation with far less restricting computational requirements.

This second technique often provides comparable results. In a scale space representation,

the parameter σ of the Gaussian functions ordinarily represents the scale factor.

• A third alternative is to utilize the determinant of the Hessian to estimate these blobs (which

has better scale selection properties than the Laplacian operator under affine and geometric

operations, compare to the Laplacian operator, even though it incurs a higher computational

cost). It should be noted that, much like corners, blobs aren’t usually a sufficiently rich fea-

ture description for learning, although they can reinforce the process and promote matching

accuracy.

2.3.3 Principal Component Analysis

Principal Component Analysis (PCA) is a method that applies an orthogonal transformation to

a set of potentially correlated variables, resulting in a set of linearly uncorrelated variables (the

2.3 Feature learning, feature descriptors and feature extraction 13

Figure 2.5: Result of the application of a LoG blob detector. Blue circles and ellipses represent
the output blobs

eponymous principal components) [8, 4, 9]. Mathematically, if X is the n× p input data matrix,

we wish to find the p-dimensional vector of weights w(k) = (w1, ...,wp)(k) such that:

tk(i) = x(i) ·w(k) (2.14)

Where x(i) represents the ith row vector of X , and t(i) the row vector of its corresponding princi-

pal scores. The method is such that the first component has the highest value, and each succeeding

component takes the largest possible value under the aforementioned restraint of orthogonality. In

practice, this means the former components express more "variance" pertaining to the input space.

It is also customary to constrain the vector w to have unitary norm. PCA can be achieved rather

simply by applying singular value decomposition to the covariance matrix of the input features

(or, if possible, eigenvalue decomposition). Letting Q represent the sample covariance between

the different principal components:

Q ∝ XT X =WΛW T (2.15)

Which, rewritten, yields:

W T QW ∝ W TWΛW TW = Λ (2.16)

Where in Λ each component is represented by a normalized eigenvalue of XT X . PCA can be

used to reduce the dimensionality of the input space (for instance, by discarding features which do

not represent the variance significantly, and are therefore unlikely to be important towards learning

14 Background and literature review

or classification), but can also be used in a preprocessing step to reinforce major features (for

instance, to enhance the colour components which are more unique to each feature). One of the

most crucial uses of PCA is to reinforce dominant colour components while discarding comparably

unimportant colour information in images. If this process is done with some randomness, it can

allow to artificially expand labelled datasets, a particularly useful technique in training ConvNets.

2.3.4 Detectors based on histogram representations of gradients and orientations

Some feature detection techniques aim to achieve invariance to scale, geometric operations (such

as rotations, translations and shearing) and/or photometric changes (such as changes in brightness,

for example). This can be partially achieved by histogram representations over a local cell of

some size (which attempt to capture local trends and relations instead). The three more common

examples of such techniques are:

• SIFT (scale-invariant feature transform, [10]);

• SURF (speeded up robust features, [11]);

• HOG (histogram of gradients, [12]);

While these differ in the nature of the cell over which the gradients on multiple orientations

are captured, or on other intermediate steps to achieve invariance to photometric modifications,

all these feature descriptors mostly utilize a similar principle: capture the gradient on multiple

directions locally, keep the most representative values and, after carrying this over a cell of some

predetermined size, compute the histogram of surviving orientations. The features generated by

these algorithms are often impossible to coherently interpret by direct human examination (as

exemplified in 2.7) but, computationally speaking, they allow for classification and learning in-

variant to the aforementioned transformations, which may be desirable. Of the three, SIFT is

both the most commonly used and the algorithm which presents the best results in the multiple

approaches used in this project. SIFT is comprised, primarily, of the following steps:

1. Scale-invariant feature detection: initially, key points are estimated by minima and max-

ima of a difference of Gaussian kernel applied in scale space to a series of smoothed and

resampled replicas of the original image. This step is a scale space analogue to what was

described for blob detection in 2.3.2;

2. Keypoint localization: the following step filters the set of previously obtained keypoints,

both discarding points poorly located along edges (which, as seen, exhibit strong response

to the DoG operator) and points which are especially susceptible to noise. By taking the

second order Taylor expansion of the DoG operator centred in each keypoint, their accurate

location and scale are estimated;

2.3 Feature learning, feature descriptors and feature extraction 15

(a) Representation of the DoG kernel applied to a se-
ries of Gaussian-smoothed images

(b) Visualization of the search for a match through the
scale space, similarly to what’s done in blob detection

3. Orientation assignment: a key step in achieving rotation invariance, this step computes at

the keypoint’s scale, σ , the magnitude and orientation of the gradient on a neighbourhood

around that keypoint’s location using pixel differences, that is:

m(x,y) =
√

(L(x+1,y)−L(x−1,y))2 +(L(x,y+1)−L(x,y−1))2

Θ(x,y) = atan2(L(x,y+1)−L(x,y−1),L(x+1,y)−L(x−1,y))
(2.17)

These are then placed in bins for an histogram representation (normally 36 bins, each rep-

resenting 10o), which are further weighted by a Gaussian of parameter 1.5σ . The highest

peaks recorded in this histogram are assigned to that specific keypoint.

4. Keypoint descriptor: Lastly, to further bolster the invariance of the keypoints and also

make them even more distinctive, histogram representations over small cells are computed

on a window around the keypoint location (originally 8 bins for 4× 4 cell regions over a

16×16 pixel window). These are then weighted by a Gaussian function of zero mean and

1.5σ . The result is a 128-dimensional descriptor (8 bins per cell, for a total of 4×4×8 =

128 bins), the typical SIFT descriptor.

PCA-SIFT introduces an additional PCA feature reduction applied on the normalized gradi-

ent patch, on the descriptor step which, as seen, can reduce computational costs and maximize

information yield in a smaller vector. It should be noted that construction of such descriptors

can be computationally expensive. Furthermore, these descriptors typically do not capture well

some overall properties of the input pictures (seeing as they apply gradients locally to generate

the histogram representation) which might be useful and desirable (for instance, the overall shape

or colour of the object). While these are obviously scale-variant or rotation-variant properties,

they might still be desirable given the context of the application (although they might naturally be

16 Background and literature review

Figure 2.7: Features captured using the SIFT descriptor and matching made with the same scene
on a modified picture

extracted by some other method and used alongside these invariant feature descriptors). It’s often

useful combining SIFT descriptors with other representations that better capture these properties.

2.3.5 Colour histograms

Colour histograms are amongst the most immediate and simple ways to extract colour informa-

tion as a features [13]. Like any histogram representation, it reflects the frequency of the various

colour components in the image. It doesn’t necessarily require any form of image segmentation,

as it can be applied to the image globally, although one can draw colour histograms for various

image patches. Colour histogram are orderless features- within the window in which they’re ap-

plied, spatial information pertaining to these features is discarded. Furthermore, colour histograms

are especially sensitive to noise (any global perturbation in the image will be captured). Colour

histograms can be applied to different colour spaces; depending on the space, given K bins, the

generated histogram representation can either be K-dimensional (HSV space) or 3K-dimensional

(RGB space). Bins usually count pixels that fall within their range, but can easily be construed in

more sophisticated way (capture median colours in small pixel ranges, for instance). While mostly

invariant to rotation and translation, and easy to match by some metric of distance (for instance,

Euclidean distance), colour histograms are quite poor features on their own (it’s common for many

completely different natural, unadulterated images to yield very similar colour histograms). That

said, they are useful and interesting complementary features to most feature descriptors which

generally discard most colour information (such as SIFT, for example).

2.4 Intermediate feature models for classification 17

2.3.6 Colour Coherence Vector

Colour Coherence Vectors (CCV) attempt to measure to which extent do pixels with certain colour

characteristics are clustered into congruent, coherent regions. The CCV algorithm assigns scores

based on the area of regions which hold pixels with similar colour [14] (or, an alternative inter-

pretation, how many pixels with similar colour characteristics exist close together- the eponymous

"coherent pixels"). To add resistance to noise and enrich the overall performance of the algorithm,

CCV utilizes a "colour resolution range" when determining whether or not a pixel is coherent.

That is, CCV checks if pixels are within a certain colour range when comparing it with its neigh-

bours (comparable, to an extent, with bins present in an histogram representation). The overall

CCV score of the image- which can be used to measure similarity or dissimilarity for matching

and classification purposes- is computed by comparing these histogram-like representation, com-

paring the coherent and incoherent pixels in each bin. CCV provide a finer set of features than

colour histograms (noting the previous claim that it’s entirely possible for two different images to

have the same colour histogram, this situation is less likely with CCV, mostly due to its enhanced

resistance to noise).

2.4 Intermediate feature models for classification

Low-level features and feature descriptors, like those previously described, are often insufficient

on their own, either due to their high dimensionality or due to their inability to capture global rela-

tion between features in an image. It becomes of interest to find models which encode additional

information about the features and their relations and frequencies that also reduce dimensionality

and overall computational costs. Some of these models will be explored in this section.

2.4.1 Bag of Visual Words

Bag of Visual Words (BoVW) or Bag of Features (BoF) approaches are characterized by the use

of an orderless collection of image features, lacking any structure or spatial information. Due

to its simplicity and performance, these approaches have become well-established in the field of

computer vision [15, 16]. The name comes from the analogy with the Bag of Words representation

used in textual information retrieval. In the text application, distinctive words (in the same sense a

visual feature is distinctive: it can be used to classify documents of the same category with some

confidence) are clustered into "bags" (using multiple clustering techniques discussed in [83]),

which are then subsequently treated as features and used for classification. The primary concept

in the visual variant is to consider that an image is composed by "visual words". A visual word is a

local segment in an image, defined either by a region (image patch or blob) or by a reference point

with its neighbourhood. Feature descriptors like those utilized in the SIFT or SURF algorithm

provide good, distinctive features which can be taken as "visual words" after clustering. Further

analysis of the frequency of different visual word allows to create a histogram representation the

content of each image. A general method for implementing this model is as follows:

18 Background and literature review

1. Computing low-level image descriptors directly from the image (such as the SIFT descrip-

tors);

2. Quantizing the descriptors into clusters, reducing the number of visual words to the cen-

troids of each cluster. These are the final visual words used to form the vocabulary;

3. Representing each image by a vector of frequencies of visual words (analogous to an his-

togram representation).

Typically, feature vectors yielded by this last step are sparse in nature (especially considering

the large dimensionality of most vocabularies). This problem can be mitigated by usage of inter-

mediary techniques as sparse coding, latent Dirichlet analysis or probability latent semantic anal-

ysis. Furthermore, overly common features may poorly represent the distinctive characteristics of

each class, and therefore it often becomes desirable to penalize these common features. A com-

mon weighting technique used in this context is "term frequency-inverse document frequency", or

tf-idf. This method applies to each element of a feature vector Fn = (f1, ..., fk)
T
n , derived from a

vocabulary of K words, the weighting term given by:

ti =
nid

nd
log

N
ni

(2.18)

Where nid represents the number of occurrences of the ith word in image d, nd the number

of features present in that same image and ni the total amount of occurrences of the ith word in

all images of the N images corpus. The BoW model has three essential hyperparameters: the

type of feature descriptor, size of the patch in which its applied and the number of visual words

present in the final vocabulary (the number of clusters estimated in the clustering step in which the

vocabulary is formed).

2.4.2 Spacial Pyramid Matching

Spacial Pyramid Matching (SPM) is an extension of the original, simpler BoW model [17]. SPM

aims at capturing spatial information about features (overall location and correlation between fea-

ture frequency and location) whilst maintaining the locally orderless architecture of the BoW

model. This is achieved by partitioning the image into increasingly fine sub-regions and comput-

ing histograms of local features found inside each subregion. In practical terms, at each resolu-

tion level, a BoW model is built for each partition. Compared to the original BoW model, SPM

achieves significantly better performance, albeit at a heavier computational cost. It should be un-

derlined that, in principle, all information contained by simple BoW model is contained in the

2.4 Intermediate feature models for classification 19

SPM extension, as the 0th level of the SPM model corresponds simply to a BoW model applied to

the image as a whole. SPM utilizes a "pyramid matching kernel" defined as:

kL(X ,Y) = IL +
L−1

∑
l=0

1
2L−l (I

l− Il+1)

=
1
2L I0 +

L

∑
l=1

1
2L−l+1 Il

(2.19)

Where l is a resolution level from the overall L resolutions and X and Y are two sets of d-

dimensional feature vectors. As stated, each level divides the original image into cells. SPM

divides the original image into 2l cells at each d resolution level, resulting in dimensionality D =

2dl when considering all feature vectors. The function Il is a histogram intersection function which

is applied to the histogram representations of vectors X and Y at resolution level l as follows:

Il = I(H l
X ,H

l
Y) =

D

∑
i=1

min(H l
X(i),H

l
Y (i)) (2.20)

Where the sum is taken across all features at resolution l (so, the overall number of features

detected across all cells), yielding the overall number of features present in both histogram repre-

sentations of the feature vectors X and Y , H l
X ,H

l
Y respectively. It’s important to understand that the

features matches detected at a level l include all matches at the finer level l+1, an argument which

can be applied recursively all the way to the finest level L (refer to the scheme in 2.8 for clarity).

This justifies the term Il − Il+1 in 2.19, where repeated matches are removed. Furthermore, the

weight term 1
2L−l simply penalizes matches at coarser levels when compared to matches at higher

levels. Intuitively, this means that features at coarser levels are viewed as more "dissimilar" than

those at finer levels, although depending on the nature of the problem, this weighting term can be

viewed as a hyperparameter of the problem. If the assumption that only similar features can be

matched is made, by extension of the BoW model, and if the feature vectors are quantized into

one of M types (typically through clustering), the overall pyramid kernel becomes the sum of M

individual kernels for each m feature type:

KL(X ,Y) =
M

∑
m=1

kL(Xm,Ym) (2.21)

Like in the BoW model, SPM can also be combined with numerous methods for feature re-

duction and quantization at this last step, opening interesting possibilities for semi-supervised

approaches.

20 Background and literature review

Figure 2.8: Visual representation of the SPM model for 3 pyramid layers with three features,
represented by crosses, circumferences and circles

2.4.3 Bag of Colours

The Bag-of-Colors (BoC) model is similar in design to the Bag of Words model, but aims at

exploiting color information instead [13]. Instead of utilizing invariant feature descriptors like

SIFT, it creates a colour dictionary utilizing information extracted from histogram representations

of different colour component in image patches. The output is a histogram of frequency of colours,

analogous to the histogram representation of visual words on the BoW model. The model is

comprised, generically, of the following steps:

1. Convert the image to an appropriate colour space (often to take advantage of its geometric

properties);

2. Compute the most frequent colour components in each patch (16× 16 pixel patches in the

original formulation), yielding a three dimensional histogram representation;

3. Generate the colour vocabulary through the usage of clustering algorithms (such as K-

means);

4. For each image, build a histogram representation of the frequency of "colour words" from

the previous determined dictionary;

Much like in the BoW model, the primary hyperparameters are the area and number of patches

and the size of the colour vocabulary. BoC can either greatly increase performance or have min-

imal effect, depending on how valuable colour information is for the classification task, and how

regular in colour the category is.

2.4.4 Fisher Vectors

Fisher Vectors (FV) is a method for image representation based on the Fisher Kernel [18, 19].

Summarily, this method first extracts local descriptors from the images and then it fits a GMM

2.5 Classification and learning 21

to the sampled data. Lastly, it computes statistics regarding each descriptor in pertaining to the

GMM. This yields a wealth of information about the structure of the descriptors of the images. It

can be seen as a generalization of the BoW model. One of its main attractions is that the GMM

fit acts as a form of feature reduction, utilizing comparatively smaller vocabularies and reducing

computational complexity. It performs well even with simple linear classifiers. The EM algorithm

2.5.3 is used to optimize the MLE criteria 2.5.2 of the GMM fit. The number of Gaussians used,

k, is a hyperparameter of the FV model.

Additionally, FV is often paired with PCA, applied to the local descriptors. This enables

further dimensionality reduction. Compared to the BoF model, the Fisher Vector offers a more

complete representation of the dataset, as it encodes not only the count of occurrences but also

higher order statistics related to its distribution. This richer information captured by the FV model

translates into a more efficient representation, since much smaller vocabularies are required in or-

der to achieve comparable performance. Recent experiments also show an improved performance

compared to the BoF model in terms of classification accuracy.

2.5 Classification and learning

Learning tasks usually come in one of two primary flavours- supervised or unsupervised learning

[20, 7, 21, 4, 6]. These pertain to the type of dataset used for training: supervised learning makes

use of labelled data and unsupervised learning makes use of unlabelled data. Generally speaking,

the former tends to outperform the latter, primarily due to the richer nature of the learning set.

This comes at a price, however - labelling is primarily done through human action, and can be

both terribly costly and inefficient. Hence the attractiveness in unsupervised learning, shifting part

of that cost to potentially worse performance, but ultimately sparing the pricey, onerous task of

manually labelling large datasets. By nature, unsupervised learning is often associated with clus-

tering, although these are not synonymous. A third type of learning is semi-supervised learning-

standing in-between these, semi-supervised approaches tend to use a small, labelled set reinforced

with a wealth of unlabelled, cheap data. Semi-supervised approaches tend to outperform either

purely supervised or unsupervised learning (in virtue of making use of a larger dataset by usage

of unlabelled examples, but also taking advantage of the guidance provided by properly labelled

samples during the learning process), which further makes these solutions attractive. It’s com-

mon to assume labelled samples are independent and identically distributed (i.i.d.), a supposition

which holds for the majority of applications. In a Bayesian interpretation of the semi-supervised

approach, for some probability density function, we have:

fΘ(X) = argmax
Θ

log(P((Xi,Yi)
l|Θ)+λP((X j)

l+u|Θ)) (2.22)

Where λ is a parameter which represents the weight (that is, overall relevance) attributed to

the unlabelled data in the learning task, Θ the vector with the parameters of the model and (Xi,Yi)

22 Background and literature review

a feature vector with its respective label. This generic approach to generative modelling is quite

important when fitting cost functions in semi-supervised approaches.

2.5.1 Generative vs non-generative models

For a classification task, given a feature vector, Xi, there are two primary learning models: gener-

ative and discriminative models [4, 9, 22]. Generically, given Xi, we wish to estimate:

P(Ck|Xi) =
P(Xi|Ck) ·P(Ck)

P(Xi)
=

P(Xi,Ck)

P(Xi)
(2.23)

Depending on the methodology employed, one can either estimate P(Ck|Xi) directly from the

given data or attempt to infer P(Xi,Ck), the joint probability density function of latent variables

expressed by the extracted features. The former are called "discriminative methods" whilst the

latter are called "generative models". Generative models attempt to model and learn the underly-

ing density function of the class. These capture a much broader breadth of relations between the

various present variables and allow to paint a mathematically richer formulation of the categories

as a whole (indeed, "generative models" owe their name to their ability to generate samples due to

inferred knowledge about the probabilistic nature of the phenomena they model). This comes at a

cost, however, as this information is often harder to infer (due to inherent complexity and simply

due to being less readily available, especially in regards to training examples) and computationally

more expensive. Another issue which further compounds these difficulties is that in the field of

computer vision, there’s often a lack of a proper "negative sample". To exemplify, if one considers

the problem of binary classification, one would evidently need labelled training examples for each

class to effectively learn an underlying probabilistic model. But in the field of computer vision,

this concept is often blurred- if one wishes to learn a shape (for instance, human faces), the concept

of "negative sample" isn’t clear. This contrasts heavily to non-probabilistic models. In their sim-

plest interpretation, discriminative models are concerned with drawing a decision boundary which

allows them to satisfactorily classify unlabelled input feature vectors into one of many classes.

While this approach abstracts underlying statistical models, it’s been shown to be more readily

applicable and, in fact, have a comparatively higher success rate in terms of classification tasks.

However, since little additional knowledge about the classified object is drawn, these approaches

can behave poorly in other relevant aspects of computer vision, such as transfer learning (that is,

these discriminative models often are problem-specific and offer very little help to other, poten-

tially related problems, or even any form of scene-interpretation). Using both approaches together

to ultimately draw a fuller model for a scene is a challenging but interesting approach which has

seen some success in recent years, compared to purely discriminative or generative solutions.

2.5 Classification and learning 23

2.5.2 MLE and MAP estimation

Maximum Likelihood Estimation (MLE) and Maximum A Posteriori probability estimation (MAP)

are the two more common methods for estimating the parameters of a statistical model given data

[4, 9]. Given a population of (x1, ...,xn) i.i.d. elements, MLE defines a likelihood function for the

model Θ as:

L(Θ;x1, ...,xn) = f (x1, ...,xn|Θ) =
n

∏
i=1

f (xi|Θ) (2.24)

Maximization of the logarithm of this function yields a MLE estimator of the parameter Θ

as Θ̂ML. Noting that the logarithm is a monotonically increasing function, computations can be

further simplified by replacing products with sums by maximizing the logarithm:

L(Θ;X) =
n

∑
i=1

log f (xi|Θ) (2.25)

The canonical form of the likelihood function. Often, a closed-formed solution for this es-

timator can be found as an explicit function of the observed data, which is a desirable property

(though this needn’t be the case, and numerical approximations might be required). MLE is usu-

ally algebraically straightforward and computationally simple. A MLE estimator is also consistent

(arbitrary precision can be achieved through an also arbitrary increase in the number of samples),

thought it’s not necessarily unbiased. The MAP estimation runs on a similar algorithm, but further

enhances this estimation by utilizing information pertaining to the prior probabilities, g(Θ), as:

Θ̂MAP = argmax
Θ

f (x|Θ)g(Θ) (2.26)

This method is typically preferred if there’s available information about g(Θ) (which can often

be estimated if there’s a large enough sample size, assuming a i.i.d. population). A MAP estimator

is also derived from a Bayesian interpretation of the model, being specifically useful for generative

models based on a similar formulation.

2.5.3 EM algorithm

The Expectation-Maximization algorithm (EM algorithm) is a common iterative method for find-

ing both MLE and MAP estimations of parameters in statistical models [23]. Simply put, the

algorithm firstly computes an estimation of the log-likelihood function (the E-step), evaluated

using the current approximation of the parameters Θ, followed by a maximization step (M-step),

which recalculates the Θ model parameters using the previously estimated log-likelihood function.

Mathematically, taking the log-likelihood function (as defined in 2.25) L(Θ,X) =
n
∑

i=1
p(X ,Z|Θ),

24 Background and literature review

where X represents the observed data, Z the latent variables or unobserved data and Θ the model

parameters, we have:

• E-Step: Q(Θ|Θ(t)) = EZ|X ,Θt
[

logL(Θ;X ,Z)
]

• M-Step: argmaxΘ Q(Θ,Θ(t))

Where Q is some distribution that’s proportional to p(Θ;X ,Z), that is: Q ∝ p(Θ;X ,Z). This

two step process is repeated until the derivatives of the likelihood function are arbitrarily close

to zero, indicating (potentially local) maxima (this resolution parameter being used as the stop

condition for the algorithm). The EM algorithm can effectively find approximations of the MLE

and MAP parameter estimations where explicitly solving the associated equations is not possible

due to unknown latent variables or lack of a closed-form solution (for example, in a mixture

model, it’s often assumed that each data point as at least one hidden variable which associates

it with a certain class). The EM algorithm is therefore especially useful for generative learning.

The algorithm, whilst both simple and useful can return nonsense maxima (in the same example

of a mixture model, a maxima which corresponds to a case of zero covariance).This is a result of

the underlying MLE process in the EM algorith. This requires special care when deciding upon

estimators. Different initialization of the algorithm may result in convergence to different maxima,

and therefore a sweep of these hyperparameters may be conducted if desired.

2.5.4 Naive Bayes hypothesis

Naive Bayes classifiers are a family of learning algorithms which are based on applying the Bayes’

theorem assuming conditional independence between variables- the Naive Bayes hypothesis [4, 9,

21]. The Naive Bayes hypothesis ultimately approximates the probability density P(Ck;x1, ...,xn)

as:

P(Ck;x1, ...,xn) = P(Ck) ·
n

∏
i=1

P(Ck|xi) (2.27)

The Naive Bayes hypothesis can be used in conjunction with other learning methods, allowing

to group multiple variables into a joint probability distribution, abstracting it and allowing it to

be treated as one single PDF. It often simplifies intermediate calculations, allowing to reduce the

dimensionality of the problem (as a concrete example, for normal distributions, the covariance

matrix becomes merely a diagonal N ×N matrix, thus holding N elements). The conditional

independence assumption, while often useful and providing sufficient approximation, must be

used carefully; this is a powerful assumption, which, if misused, may cause important loss of

information at best, and induce errors downright at worst.

2.5 Classification and learning 25

Figure 2.9: Subpopulations captured through a Gaussian mixture model utilizing the EM algorithm

2.5.5 Mixture Models

A mixture model is a model for representing the presence of subpopulations within a large dataset,

without necessarily requiring information identifying to which of these subpopulations the data

points belong [24] (see 2.9). The nature of such a "subpopulation" can be abstracted to any type

of class within a given context. Mixture models attempt to model each of these subpopulations

to a probability density function of a given family and are therefore generative models. Common

density functions include Gaussians, multivariate Gaussians, multinomial and exponential distri-

butions. Mixture models take a large number of hyperparameters, such as (K,N), the number of

mixture components and observations, respectively, and (Θk,Φl), the parameters of each distri-

bution for each k probability density function and its respective weight. Mixture models may be

reformulated as a form of clustering, in which unsupervised learning is carried out, although this

is not necessary. While limited in the fact that mixture models cannot correctly model subpopu-

lations which follow different probability density functions, they’re still frequently used in cases

where one has some confidence about the uniformity of the nature of the subpopulations.

2.5.6 Hidden Markov Models

Hidden Markov Models (HMMs) is an extension of a Markov Model where it’s assumed a number

of hidden variables which represent the state of the system control the emission of output tokens

(a generic state diagram with the corresponding emissions can be seen in 2.10). It can be viewed

as an extension of a mixture model which does not assume variables to be independent; instead,

26 Background and literature review

Figure 2.10: Visual representation of a chain modelled by a HMM

these are related by a Markov process. HMMs require, in essence, two main matrices of hyper-

parameters, a matrix A and B, which hold in each entry the probabilities for the emission of an

output token (thus, the "emission matrix") and the probabilities of changing between states (the

"state transition matrix"). HMM learning is usually compounded with usage of the EM algorithm

to derive ML iterative estimations of the various parameters, updated with each new observation of

output tokens. HMMs are incredibly versatile; despite their original formulation in the context of

filtering, these can translate multiple relations between multiple observations (including temporal

ones) [21, 25, 26].

2.5.7 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a generative statistical model which attempts to explain sets

of similar observations through unobserved groups. It’s typically utilized in semi-supervised or

unsupervised contexts [27, 28, 29]. The input dataset is grouped in different "topics" which at-

tempt to model similarities within the observed variables. For example, applying LDA to a set of

feature vectors extracted from images of cats and dogs could cluster them into two topics, "dog

related" and "cat related". An alternative way of interpreting the model (its dual formulation) is

understanding that each topic has some probability of generating the different features (a "cat-

related" topic would be more likely to generate features associated with cats in comparison to

dogs). Topics are generally poorly defined entities, and quite similar to the "bags of words" in the

BoW model previously introduced. LDA assumes that priors follow a Dirichlet distribution. It

takes a series of parameters, such as:

1. α , parameter of the Dirichlet distribution prior on the per-document topic distributions;

2. β , parameter of the Dirichlet prior on the per-topic word distribution;

3. Θi, the topic distribution of the ith document in the corpus;

2.5 Classification and learning 27

4. φk, the word distribution of the kth topic;

5. zi, j, the topic for the jth word in the ith document;

The LDA model has the various wi, j words as observables variables- all other variables are

latent (like the topics themselves). The LDA generative process for a corpus of M documents with

length Ni, D, assumes that each document is represented as a random mixture of topics, and can

summarily be described as:

1. Choose

2. Θi Dir(α) for i ∈ 1, ...,M;

3. Choose

4. φk Dir(η) for k ∈ 1, ...,K;

5. For wi, j, with i ∈ 1, ...,M and j ∈ 1, ...,N:

• Choose a random topic zi, j Multinomial(Θi);

• Choose a random word wi, j Multinomial(φzi, j);

Lengths are considered independent variables during this process. Learning the multinomial

distributions is done through the EM algorithm and Gibbs sampling. LDA is often used as form

of intermediary feature reduction (for instance, tied with a BoW model). However, with access to

the multinomial distribution, artificial topic vectors may be generated by random draws.

2.5.7.1 Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis (pLSA) is a particular case of LDA for a uniform Dirichlet

distribution, based on latent class modelling. Like LDA, it can be used as a form of feature

reduction and also yields a multinomial topical distribution [30, 27, 31]. Considering observations

in the form of co-occurrences, (w,d), described as above, the model can be summarily presented

as:

P(w,d) = ∑
z

P(z)P(d|z)P(w|z) = P(d)∑
z

P(z|d)P(w|z) (2.28)

With the former formulation being called the symmetrical formulation ((w,d) generated by

z) and the latter the asymmetrical formulation. The asymmetrical formulation has an interesting

interpretation: for each document d, the most likely latent topic z is chosen, which in turn is

reflected on the words w generated by that topic. PLSA has been used in conjunction with Fisher’s

kernels or SPMs in semi-supervised discriminative settings to some success.

28 Background and literature review

Figure 2.11: Visual representation of a three hidden layer auto-encoder and decoder. Note the
resemblance to a multi-layer perceptron net

2.5.8 Sparse Coding

Sparse coding is an unsupervised method of feature remapping and reduction. It shares similarities

with a multi-layer perceptron net. It changes the representation of the input layer into a sparse

representation that has lower dimensionality and results in increased accuracy [32], as visualized

in 2.11. Sparse encoders try to minimize the loss function:

Lsc = ‖WH−X‖2
2 +λ‖H‖1 (2.29)

Where, with W being a matrix of bases and H a matrix of codes, the former term is called the

reconstruction term and the latter the sparsity term (which, respectively, handle optimization of the

code itself and penalize excessive sparseness). In practice, this problem can be quite challenging

to solve. However, satisfactory approximations to the solution can be obtained the auto-encoder

cost function:

Lsc = ‖Wσ (W T X)−X |2 (2.30)

Which is much cheaper to handle computationally.

2.5.9 Clustering

Clustering is a semi-supervised of unsupervised task of grouping objects from a set into smaller,

subsets in a way that objects in each of these subgroups display greater similarity compared to

all the other objects. It’s one of the most primary tasks in data mining, statistical analysis and

2.5 Classification and learning 29

machine learning [33, 34, 4, 35, 36]. Clustering isn’t an algorithm in itself, but includes a family

of methods to undertake the aforementioned clustering task, differing on how clusters are defined

and how they are formed. Popular methods include clustering data points based on proximity

using some distance metric, partitioning the input space into dense regions or section it according

to probability density functions. Some types of clustering include:

• Centroid models, such as k-means clustering;

• Connectivity models, such as hierarchical clustering;

• Distribution models, such as the previously illustrated mixture models (2.5.5);

2.5.9.1 K-means clustering

K-means clustering is a method of vector quantization that aims to partition n observations into k

clusters, each observation belonging to the cluster with the nearest mean, which ultimately iden-

tifies the cluster itself [37]. While in its original formulation, K-means is a NP-hard problem,

heuristic methods can be employed to allow quick convergence to a local optimum. GMM models

utilizing the EM algorithm are quite similar to some formulations of K-means clustering. K-means

clustering is also relevant due to its close relation to the k-nearest neighbour classifier (classifica-

tion of new points in K-means clustering can be used by searching which of the clusters is the

nearest neighbour of that same point). The algorithm is quite simple. Considering a set of ob-

servations, (x1, ...,xn), the objective function is a minimization of square error pertaining to each

cluster, that is, the within-cluster sum of squares (WCSS), defined as:

argmin
S

k

∑
i=1

∑
x∈Si

‖x−µi‖ (2.31)

Where S represents the set of k < n clusters, each identified by their mean µi, the algorithm

run two primary steps:

1. assign each data point to the nearest cluster through the WCSS as seen before. Since the

sum of squares is the squared Euclidean distance, this is the metric typically used to decide

which cluster is "nearest";

2. Update the means of each cluster based on the data points it contains:

mt+1
i =

1
|St

i |
∑

x j∈St
i

x j (2.32)

Noting that the arithmetic mean is also a least-squares estimator. The primary hyperparameter

to consider when using K-means clustering is the number of clusters, k. Initial seeding for each

cluster also warrants some study, as K-means can produce nonsense results due to convergence

into local minima.

30 Background and literature review

2.5.9.2 Hierarchical clustering

Hierarchical clustering seeks to build a hierarchy of clusters using one of two approaches:

• Agglomerative: a "bottom-up" approach, where multiple clusters are paired up and merged

as one moves up the hierarchy;

• Divise: a "top-down" approach, where all observations start in one single cluster which is

successfully divided into smaller clusters;

In order to decide which clusters are merged or split, their dissimilarity is measured. This is

done by properly selecting a metric (as seen in), and using one of multiple criteria for linkage,

such as maxima, minima or average of linkage clusterings.

2.5.9.3 Nearest Neighbour Search

Nearest neighbour search is an optimization problem which, as the name implies, aims at finding

the closest points to some centre. "Closeness", in this context, is expressed through some generic

dissimilarity function: for some metric space M, the dissimilarity function acts as a distance metric

(not necessarily geometric, although these are also acceptable).

Of the many implementations of nearest neighbour search, FLANN (Fast Library for Approx-

imate Nearest Neighbour) is often chosen due to its comparatively fast convergence to an accept-

able solution, being computationally light (often being considered comparable to state-of-the-art

for most applications).

2.5.10 Linear and Logistic regression

Out of all regression models, the most used in learning are linear and logistic regression models.

Linear learning attempts to model a relation of the form:

Y =W T X +W0 (2.33)

It can be shown (by computing the derivative of the LSE function applied to this decision

boundary) that the optimal solution for the least-squared error loss function is:

W = (XT X)−1XTY (2.34)

Linear regressions are rather versatile techniques [38]. They can be reformulated as a method

for ML estimation or to make usage of a Bayesian formulation, despite their simplicity (the only

costly operation being inversion of a potentially large matrix). In the case of logistic regression,

the boundary is given by:

2.5 Classification and learning 31

F(X) =
1+ exp(W 1

0 +W 1X)

1+ exp(W 0
0 +W 0X)

(2.35)

Either regression captures relations between hidden variables of varying formulations. Whilst

relatively limited in usage and effectiveness, regression models are versatile and can compliment

other, more complex model ensembles.

2.5.11 Support Vector Machines

Support Vector Machines (SVMs) are an extension of simple linear regression models by attempt-

ing to find the most noise-resistant and robust model [39, 7, 40, 6]. Let us consider a binary

classification task with labels (y0,y1) = (−1,1). Defining a generic decision boundary with some

bias term b:

γ[i] = yi(wT xi)+b (2.36)

One should notice that multiplying the boundary by the class label yi simplifies interpretation,

as a positive product reflects a properly labelled class if the coordinates are shifted as to make

boundary surface the line y = 0. SVM achieves robustness by optimizing a margin between the

decision boundary and the data points. The concept of "margin" is fairly intuitive, but carefully

defining it with proper mathematically formulation is of utmost importance. Let us assume, for

the sake of brevity and with no loss of generality, that the bias term b = 0. We can identify a

functional margin as:

γ̂
i = yi(wT xi) (2.37)

It’s obvious that to achieve a large margin we need wT xi to have large magnitude and the same

sign as yi. A problem with this formulation arises that prevents it from accurately representing the

distance of each xi to the decision hyperplane: the distance metric is poorly defined. One could

arbitrarily change the magnitude ‖w‖ without influence on the classification itself. Therefore,

to obtain a metric that’s invariant to these multiplicative factors, we move away from functional

margins towards a "geometric margin", defined as:

γ̂
i = yi(

w
‖w‖

T
xi) (2.38)

Furthermore, we’re interested in finding the smallest geometric margin for the whole dataset

(intuitively, this smallest margin is the limit to th noise resistance of the model):

32 Background and literature review

γ = min γ̃
i (2.39)

We can now tackle the maximization problem of finding the decision hyperplane which yields

the maximum geometric margin. What is actually done, however, is converting this maximization

problem to its dual (if the set is convex, although this is common in the usually binary features

obtained from visual vocabularies), resulting in a minimization problem:

γ := min
γ̃,w

‖w2‖
2

Sub ject to :

yi(wT xi)≥ 1

(2.40)

This can be formulated as a minimization quadratic program problem with linear constraints.

Since it’s a minimization problem over a surface, the method of Lagrange multipliers can be used

to derive a solution. This yields the Lagrangian function:

minL(w,b,α) = ‖w2‖−
n

∑
i=1

αi(yi(wT xi +b)−1) (2.41)

For a bias b, where αi are the Lagrange multipliers. This is the classic linear SVM cost func-

tion, in dual formulation. Recent years brought slight variations to this formulation; particularly

the sub-gradient descent SVM works directly with the formulation:

f (w,b) = ‖w2‖+
n

∑
i=1

[1
n

max(0,1−
n

∑
i=1

αi(yi(wT xi +b)))
]

(2.42)

Which utilizes gradient descent algorithms to speed up convergence towards a solution. Solv-

ing the SVM cost function requires calculations and inversions of large matrices, a potentially

computationally costly process. Furthermore, implementing on-line learning with SVMs, whilst

possible, is a complex affair. Despite these limitations, models using SVMs can achieve outstand-

ing performances, having also the advantage of requiring only a small number of parameters to be

stored (the so called "support vectors"). Classifying a data point is also a trivial affair, requiring

only usage of said support vectors.

2.5.11.1 Slack variables and non-linearly separable datasets

SVMs can only achieve a solution in the previous formulation if the data is linearly separable (that

is, if all points in the dataset can be classified correctly). Evidently, this is often impossible in

practice. A method to overcome this is to introduce slack variables, εi, which attempt to quantify

2.5 Classification and learning 33

the cost of misclassifying a point compared to the overall robustness of the margin [41] (that is,

how much is a larger margin worth versus a smaller number of misclassified points). Introducing

these in the previous formulation yields:

γ := min
γ̃,w
‖w2‖−C

n

∑
i=1

εi

Sub ject to :

εi > 1

yi(wT xi)≥ 1− εi

(2.43)

With C representing a multiplicative cost factor, reliant on the overall problem. This ultimately

results in the following cost function:

minL(w,β ,α) = max
n

∑
i=1

αi−
n

∑
i=1

n

∑
i=1

αiα jyiy jxT
i x j

Sub ject to :

0≤ αi ≤C
n

∑
i=1

αiyi = 0

(2.44)

In complex models with multiple different methods, this cost parameter can be used to reflect

estimations and certainties from different tiers of the overall model.

2.5.11.2 Non-linear classification and the "kernel trick"

More difficult datasets may result in very unsatisfactory solutions even with the introduction of

slack variables. This often indicates that the dataset may not be well-modelled by a linear model.

SVMs overcome this limitation by implementing the "kernel trick". that is, transforming the input

feature space utilizing some form of non-linear kernel (such as a Gaussian kernel). This can easily

improve performance on non-linearly separable datasets. Applying transforms the original linear

discriminant function through the aforementioned kernel function:

maxg(x) = wT xi +b (2.45)

Becoming:

maxg(x) = wT
Φ(xi)+b (2.46)

34 Background and literature review

Most common kernel functions include polynomial functions, Gaussian functions and χ2 ker-

nels.

2.5.11.3 Semi-supervised variations of SVMs

SVMs can be further reformulated to endorse a semi-supervised approach, typically called "S3VM",

standing for Semi-Supervised Vector Machines. One of the more popular options is TSVM, Trans-

ductive Support Vector Machines [42, 43]. TSVMs utilize the same formulation and cost functions

as normal, supervised SVMs, but apply transduction to an additional, unlabelled dataset together

with the primary, labelled training set, D∗:

D∗ = (x∗i ‖x∗i ∈ Rp)k
i=1 (2.47)

2.5.12 Deep Convolutional Networks

Currently the state of the art in many image recognition and classification tasks [44, 45, 46], deep

Convolution Networks (ConvNets) implement a complex ensemble of linked perceptron layers

built on top of a structure which learns abstract local features by applying convolution filters to

windows of the input matrix (the so-called "receptive field" of the convolutional neuron). Con-

vNets are capable of learning a number of abstract features and even relations between features in

their successive convolution layers, completely automating the feature description and extraction

process. The final, dense layers apply successive transformations to the input feature space as to

make it as linearly separable as possible, allowing for incredible accuracy [47] (the most recent

architectures are on-par with human manual classification). Some of the more relevant ConvNet

architectures include:

• LeNet, the first deep ConvNet successfully applied to vision and classification tasks;

• AlexNet [48], a 2012 architecture which built upon the original LeNet. It popularized Con-

vNets by reaching record performances in the ImageNet challenge (under 15% error rates),

as present in the scheme in 2.12;

• ZFNet [47], a 2013 extension of AlexNet which optimized various hyperparameters to

achieve superior accuracy;

• GoogLeNet [49], a 2014 ConvNet built on a computational budget, reaching competitive

performance with limited computational resources by using a comparatively smaller model

(less than one tenth of the parameters present original AlexNet) and a longer training sched-

ule;

• VGGNet, another architecture starred in 2014 which explored the importance of the depth

of the network as a hyperparameter. This large, very deep 100 million parameter featured

2.5 Classification and learning 35

impressive performance, but required hefty computational resources and a comparatively

long time to achieve accurate results;

• ResNet, a recent, 2015 architecture, which introduced skip connections and heavy use of

batch normalization. Despite impressive results, very few public implementations of this

architecture are available at the time of writing;

These models can ultimately be reduced to four main components (visual reference in 2.13a):

• Conv layers, which apply filters to the input layer, computing the output of the neurons

connected to the images in the dataset. This layer tends to have the most tiers;

• ReLu layers, applying a non-linear activation function of the form max(0,x). This does not

change the volume of the layers, and is typically used in-between Conv layers;

• Pooling layers, which apply downsampling to a previous layer. These reduce a k× k layer

to a (k−n)× (k−n), for n < k;

• Fully-connected (or dense) layer, comprised of fully linked perceptrons which transform

feature vectors output from the Convolutional portion of the networks into proper classes;

While unchallenged in respect to performance, ConvNets have a large number of associated,

heavy costs [50]. Training ConvNets is an onerous and extremely expensive task- often requiring

a number of high-end GPUs working in parallel and a very high amount of RAM memory (dozens

of gigabytes). ConvNets are also massive models, with millions of parameters, requiring a large

amount of resources to be stored and used. And lastly (and perhaps more worryingly), ConvNets

are easily prone to overfitting, requiring extremely large datasets to be fully trained, or complex

data-boosting techniques [51]. To mitigate these limitations, it’s often a common approach to use

one of various available, pre-trained models to accelerate the learning process and relax the high

dataset requirements. It should be noted, however, that utilizing pre-trained models as a starting

point incurs some risk. It can be shown, through statistical methods, that the more dissimilar

the categories for the pre-trained and desired tasks are, the more likely is the ConvNet to under-

perform. Furthermore, utilizing pre-trained models often instils constraints upon the ConvNet

architecture. At the moment of writing, of all discriminative models, ConvNets present the best

potential accuracy.

2.5.12.1 Backpropagation

Backpropagation is a gradient descent method utilized in most types of neural networks. Exploring

a generic network with some number of hidden, intermediary layers and considering the LSE loss

function:

E(ω) =
1
2
(t− y)2 (2.48)

36 Background and literature review

Where t is a value or label for the training point and y the corresponding output of the network

(stressing that this value y is the actual output of the network, i.e.: a Real number, and not a label of

any sort). Computation of the derivative of this cost function is necessary to estimate the gradient

and update the weights given a learning rate η . Taking the output of a neuron L in a layer k to be

z(x,ω) = z
(

∑
N
j=1 ω jh j(x)

)
= z(φ j), for weight ω j and neuron output h j(x), the derivative can be

obtained by applying the chain rule twofold:

∂E(ω)

∂ωi j
=

∂E(ω)

∂ z j

∂ z j

∂φ j

∂φ j

∂ωi j
(2.49)

Remembering that the derivative of the sigmoid kernel can be easily reduced to:

∂ z(ωx)
∂φ j

= z · (1− z) (2.50)

And letting, for the jth neuron, δ j be:

δ j =
∂ z j

∂φ j
·∑

i∈L
ωiδ i (2.51)

The following expressions are obtained:

∂E(ω)

∂ωi j
= ∑

i∈L
δlωil · zi(1− zi) · ẑi (2.52)

And:

∂E(ω)

∂ωi j
=−(t− y) · ẑi = δout put · ẑi (2.53)

For the hidden and output layers, respectively, where ẑi represents simultaneously the input of

the neuron in the current layer and the output of the neurons in the preceding layer (equivalent to

xi if the layer in question is the hidden layer immediately succeeding the input layer). It should

be noted that the derivative ∂E(ω)
∂ z j

cannot be trivially calculated for a neuron in an arbitrary hidden

layer; it can, however, be iteratively calculated using the total derivative with respect to z j if one

notes that:

2.5 Classification and learning 37

Figure 2.12: Visual representation of the popular AlexNet architecture for a deep ConvNet [48]

∂E(z j)

∂ z j
=

∂E(φu, ...,φw)

∂ z j
=

∑
i∈L

∂E(φ i)
∂φ i

· ∂φi

∂ z j

(2.54)

Which yields the aforementioned results of ∑i∈L δlωil , by noting that ∂φi
∂ z j

yields the weight wi

for that connection since, as already mentioned, the output of a layer is the input of the succeeding

layer. Likewise, the term ∂E(φ i)
∂φ i is simply the error factor δi for a neuron of the succeeding layer

and the summation is merely across all neurons connected to the output of the current on the mesh

L. It should noted that the partial derivative above described will evolve as to eventually collapse

onto the aforementioned case which yields, simply, (t − y), acting as a "stop condition" for the

iterative method (even though this calculation is never explicitly made, as in actual implementa-

tions of backpropagation, the error factors δi of an immediately previous layer are always stored

in memory). Backpropagtion, on its own, has limitations in very deep networks, as the multiple

multiplicative factors "dillute" the primary sources of error through the network in the first layers.

This forces longer, more extensive training which, in turn, can result in noticeable overfitting.

2.5.12.2 Dropout

In order to mitigate the issue of overfitting and the limitations of backpropagation mentioned

above, it’s customary to apply dropout during the training of the ConvNet. Dropout entails "shut-

ting off" neurons during backpropagation with some probability, effectively ensuring no weight

update is carried out [52, 51] (and, by extension, no learning). This means that, in each iteration,

not all weights are simultaneously updated, reducing the threat of overfitting. How aggressive the

dropout rate must be depends primarily on the size and nature of the dataset. Dropout is a crucial

tool to combat overfitting, and it’s required in any learning for typical ConvNet architectures.

38 Background and literature review

(a) Visual representation of the layers for a generic
deep ConvNet. Notice the ReLu and Pooling non-
linearities between the convolution layers [50]

(b) Matrix representation of the filters for a generic
deep ConvNet [50]

2.6 Recent research trends

Even superficial analysis of the proceedings of the most recent editions of the CPVR conference

should unequivocally portray the dominance of applications related to ConvNets [53, 54]. Recent

publications include the architectures which dominated the Imagenet challenge in the past three

years, such as the AlexNet, the GoogLeNet, the ZFnet, the ResNet and the VGGNet. Other recent

work relating to ConvNets has been about numerous layer optimizations (refer to 2.5.12) or at-

tempting to achieve competitive performance on a computational budget. That said, the two great-

est shortcomings of ConvNet approaches yet remain to be surpassed: their reliance on massive

labelled datasets, and their vast computational requirements. In terms of generative applications,

these have fallen out of favour ever since ConvNets have monopolized the limelight. However,

some recent attempts have been made at increasing performance on scene classification tasks uti-

lizing LDA and GMMs. A brief study on the usage of sparse coding in the vector quantization

step of SPM approaches has also shown much promise, not only by improving accuracy, but also

by allowing the computational costs associated with this expensive step to scale linearly, instead

of exponentially. Fisher Vector approaches have seen some recent applications (such as [18] and

[19]), but have predominantly been relegated towards assisting the train of ConvNet by applying

feature reduction between layers [46]. Recent works have attempted to improve the performance

of ConvNets by utilizing semi-supervised approaches, but no conclusive architecture has been

developed as of the time of writing. Other works have argued against the usage of generative mod-

els as a form of feature reductions, claiming it results in loss of valuable information (as seen in

[17]). These contradictory results can be interpreted as hints towards the fact that the appropriate

methodology largely depends upon the context of the problem to which it’s applied.

2.7 Computer Vision and Machine Learning toolboxes

This section presents the main computer vision and toolboxes used within the implementation of

the project. These are:

• OpenCV 2.4, a computer vision toolbox compatible with C++ and Python with many state-

of-the-art implementations of multiple algorithms, including functions for filtering, edge-

detection, feature extraction and description and some classifiers, including SVMs [55];

2.8 Additional mathematical concepts 39

• Caffe, a machine learning toolbox primarily used for ConvNets, including a number of pre-

trained models in a "Model Zoo" package, utilized with C++ and Python [56];

• Theano, a Python machine learning toolbox which can be used in conjunction with Caffe

pre-trained models, providing numerous classes to abstract lower-level implementation de-

tails [57];

• Pylearn2 and Scikit, two machine learning and computer vision toolboxes required due to

Theano dependencies [58, 59];

• VLFeat, a machine learning toolbox written in C with implementations of numerous gener-

ative models like LDA, FV, GMMs and sparse coding [60];

• The matrix calculation and operation software Matlab, with all machine learning packages

[61].

2.8 Additional mathematical concepts

This last section illustrates some simple, yet useful mathematical concepts applied throughout the

project.

2.8.1 Distance metrics

Distance metrics are a number of proximity measures which gauge similarity (or dissimilarity)

between two elements in a dataset. Letting d represent the distance and xi,yi elements of vectors

X and Y , respectively, we have:

1. Euclidean distance:

de(X ,Y) =

√
n

∑
i=1

(xi− yi)2 (2.55)

2. Weighted euclidean distance:

dwe(X ,Y) =

√
n

∑
i=1

wi(xi− yi)2 (2.56)

3. Manhattan distance:

dM(X ,Y) =
n

∑
i=1

(xi− yi)
2 (2.57)

4. Chebyshev distance:

d∞(X ,Y) = max |xi− yi| (2.58)

40 Background and literature review

5. Mahalanobis distance (for a within class variance matrix B, which approximates the covari-

ance of that same class):

dm(X ,Y) =
√
(X−Y)T B(X−Y) (2.59)

(It should be noted that the Mahalanobis distance can be reduced to a special case of the

weighted Euclidean distance if the matrix B is diagonal, normalized by a scale factor per-

taining to the class. This is especially useful in applications involving PCA.

6. Pearson’s correlation coefficient:

sPearson′s(X ,Y) =
XT

d Yd

‖Xd‖ · ‖Yd‖
(2.60)

Where Xd = (x1− µX , ...,xn− µX) (and similarly for Yd). Pearson’s correlation coefficient

captures information about the orientation of the two vectors centred around their means

(that is, a normalized measure of dissimilarity between the orientation of both vectors).

Appropriate choice of a distance metric can heavily influence analysis and judgement of the

output of various learning and clustering algorithms.

2.8.2 Accuracy measures and performance metrics

Generically speaking, accuracy is a measure of the degree of closeness between a set of measure-

ments or experimental values and their true value. In machine learning and classification tasks,

there’s a number of possible metrics to measure the performance of a system. Considering the

self-explanatory True-Positive (TP), True-Negative (TN), False-Positive (FP) and False-Negative

(FN) rates, we can define:

• Sensitivity: T PR = T P
T P+FN

• Specificity: T NR = T N
FP+T N

• Precision: PPV = T P
T P+FP

• Negative Prediction Value: NPV = T N
T N+FN

• Miss rate: FNR = FN
T P+FN

• Accuracy: ACC = T P+T N
T P+T N+FP+FN

In addition, a convenient way to condense this information is in the form of a confusion matrix.

A confusion matrix (or error table) is a matrix CM which contains in its entries cm(i, j) the fraction

of elements of class i classified as belonging to class j. Evidently, in entries cm(i, j); i = j we

have the rate of correctly labelled data points for that class. Furthermore, it’s also obvious that

∑i 6= j c(i, j) yields the rate of incorrectly labelled examples for the same class. A confusion matrix

2.8 Additional mathematical concepts 41

is a convenient and summary method to present information about the misclassification rates of all

points for all classes.

2.8.2.1 Typical cost functions

Cost or risk functions are measures of the deviation between actual measurements and their real

value. They typically represent the goal functions of most learning algorithms. A few of the more

common ones include:

• Mean Squared Error: MSE = 1
n ∑

n
i=1(Ŷi−Yi)

2, one of the easiest cost functions to calcu-

late, frequently used in regression, representing also an unbiased estimator which minimizes

variance;

• Root-mean-squared Deviation: RMSE =
√

MSE(Θ̂), also unbiased and an extension of

the MSE, minimizing the standard deviation;

• Mean Squared Weighted Deviation: MSWD = 1
n−1 ∑

n
i=1

(Ŷi−Ȳ)2

σ2
Yi

, derived from χ2 distribu-

tion, which attempts to account for both internal and external reproducibility pertaining to

the model;

2.8.3 Singular Value Decomposition

Singular value decomposition (SVD) is the factorization of a real or complex matrix which origi-

nated as an extension of the eigendecomposition of a positive semidefinite normal matrix. Letting

M be a n×m matrix, SVD yields a decomposition of the form UΣV ∗ where:

• U is a m×m unitary matrix;

• V is a n×n unitary matrix;

• Σ is a m×n rectangular diagonal matrix;

The entries of Σ are the eponymous singular values of M, which are related to its eigenvectors

through si = λ 2
i . Furthermore, the left-singular vectors of M are a set of orthonormal eigenvectors

of MM∗ and the right-singular ones a set of orthonormal eigenvectors of M∗M.

Computationally, SVD has a number of uses: speeding up computation of pseudo-inverses,

solving systems of homogeneous linear equations, solving least-square optimization problems and

in separable and mixture models, to name a few.

2.8.4 Gradient Descent

Gradient descent is a first order optimization algorithm used to find minima and maxima of a

function (typically a goal function) by using the gradient to estimate the direction of maximum

variation in each step. Assuming the multivariate function F(X) is defined and differentiable, in

the neighbourhood of point xa, F(X) decreases the fastest if one travels in the direction of the

42 Background and literature review

(a) Visualization of the gradient descent algorithm in
a level curve representation of the cost function. With
each iteration, the algorithm "zig-zags" towards the
minima of the goal function. Note how with each step
the variation becomes progressively smaller

(b) 3D visualization of the SGD algorithm over the
surface of some goal function. This particular rep-
resentation is of gradient ascent, the formulation that
works towards maxima

gradient, −∇F(xa). It follows that if xb = xa−η∇F(xa), for some learning rate η , then F(xb)≥
F(xa). Applying this calculation iteratively, the algorithm should successfully approximate the

minima xm, until the difference between steps is smaller than some desired resolution (which

can be seen in both figures 2.14a and 2.14b). For some properties of F (namely convexity) and

particular choices for the rate η , convergence can be guaranteed [62]. In practice, to speed up

gradient descent, approximations of the gradient are used. Gradient descent is almost omnipresent

in machine learning, being used to approximate solutions to the various goal functions and being

applied to learning tasks due to its simplicity and the small computational requirements of most

approximated solutions.

2.8.4.1 Stochastic gradient descent and gradient descent with moments

Stochastic gradient descent (SGD) is an approximation to the original gradient descent formulation

that uses stochastic methods to estimate the direction of the gradient [63]. It provides a sufficient

approximation that can be computed much faster and is overall much lighter computationally. In

order to diminish the chance of converging to a local minima, it’s often customary moment term

(in analogy to the moment in Newtonian mechanics) to "resist" quick variations in direction. This

sort of method is often paired with many forms of gradient descent, including the aforementioned

backpropagation algorithm in deep neural networks.

2.8.4.2 Nesterov’s stochastic gradient descent

Nesterov’s stochastic gradient descent is a variation of stochastic gradient descent using moments.

In its original formulation, it requires evaluation at points other than those held in the current

model values. However, it’s been shown by Nicolas Boulanger [64] that it can be reformulated as:

2.8 Additional mathematical concepts 43

vt+1 = µvt +η∇(Θt +µvt)

Θt+1 = Θt + vt+1
(2.61)

Where µ,η are the momentum and learning rate parameters and v, f ,Θ represent the update,

the gradient and the model, respectively. This formulaton is completely analogous to SGD with

classical momentum with the sole addition of a perturbation parameter on the gradient calculation.

This approach was tested against other SGD implementations such as AdaDelta and AdaWing,

marginally outperforming both.

44 Background and literature review

Chapter 3

Methodology and experimental design

3.1 Introduction and project overview

The task of image classification through the multiple variations of SPM used- extensions of the

BoW model- can often be broken down into a few key steps, these being:

1. Image preprocessing;

2. Feature extraction and description;

3. Intermediary feature processing (creation of vocabulary representations, feature reduction,

feature encoding);

4. Classifier training and testing;

5. Cross-validation and acquisition of a final model ensemble;

This chapter is divided in sections which delve into further detail about these various steps,

relating them to the overall design of the project. Summarily, the main topics covered in this

section are:

1. Initially, the nature and properties of the datasets utilized in the different trials are high-

lighted. An initial discussion of methods used to manipulate and pre-process this data is

also presented;

2. Secondly, a section describing the architecture of the pre-trained networks is presented. This

includes the method to adapt this model to the training and test datasets, as well as multiple

methods to manipulate the data in such a way that it does not harm the performance of the

ConvNet, but increase the amount of data available for training;

3. The first of the remaining three sections- all pertaining to the overall SPM ensembles- ex-

plores low-level image descriptors used to extract features for the intermediary generative

methods, and how these were combined to generate the final feature descriptor;

45

46 Methodology and experimental design

Figure 3.1: Schematic representing the overall ensemble for image classification

4. The fourth section explores generative and statistical methods built on top of or in place of

K-NN clustering vector quantization: LDA, pLSA and sparse coding. It also explores the

usage of Fisher Vectors;

5. The fifth section, pertaining to the classification step, explores how the typical soft-margin

SVM formulation can be adapted to make use of the ConvNet class scores as an estimation

for the cost penalty during non-linearly separable classification. It also delves onto the novel

idea of "generated topic vectors" for the pLSA model;

6. The last section has a brief hardware overview, exploring what computational resources

were available for the different tests;

Figure 3.1 presents a visualization of the overall architecture of the proposed solutions, high-

lighting the usage of both generative methods as a form of intermediary feature reduction, the

usage of the high-accuracy ConvNets as a form to guide training using unlabelled examples and

the usage of fictitious, generated topic vectors.

3.1.1 Similar studies and previous work

Previous work has been made in an attempt to utilize generative methods in image classification

tasks. Firstly, a follow-up study to the original SPM study utilized sparse coding as a method of

feature reduction [65]. The results of this study showed that sparse coding can be quite successful

3.2 Dataset overview and preprocessing 47

as a form to generate a distinct visual vocabulary. A second study utilized LDA purely as an

intermediate means of feature reduction for a scene classification task [66]. Both of these, however,

only tested the methodology on comparatively small datasets (for instance, the Caltech dataset

utilized in only has, at most 120 images per category). These studies did not delve deeply onto the

applications of either method in larger datasets, with a wealth of unlabelled data (comparatively,

this study aims to apply them to thousands of images per class). Another study on the use of Fisher

Vectors yielded encouraging results, showing their versatility and competitive accuracy even for

large-scale image classification tasks [18]. These results were taken as a starting point for the

application of Fisher Vectors in the context of this study. Overall, application of these generative

methods in large-scale datasets remains comparatively uncommon and unexplored.

3.2 Dataset overview and preprocessing

Three primary datasets were used to test and compare the different methods. The first dataset is

comprised of 25000 images, labelled as "cats" and "dogs". The data was extracted from a Kaggle

competition [67, 68]. This binary dataset was chosen for a variety of reasons. Firstly, the classes

are quite irregular, with elements of each class having multiple inconsistent characteristics (which

may even overlap, such as similar colours or overall shapes), partly due to the variable backgrounds

and positions for each cat or dog (as seen in 3.2). Secondly, these two classes are quite similar

to other classes present in the Imagenet dataset, which was used to train the various ConvNet

models acquired form Caffe’s model zoo. Lastly, the classes are not only irregular but share some

similarities between each other. This binary, simpler case served to test and validate the various

proposed approaches. This original dataset was then expanded to hold five classes- adding the

"whale", "fish" and "galaxy" classes. Images for these were obtained from Kaggle competitions

and the ImageNet dataset [69, 70]. The galaxy and whale classes present the solutions with a

more regular dataset (especially in terms of the background); however, it should be noted that

edge information is quite poor in the galaxy and whale classes, and that colour information is

quite similar between the fish and whale classes in some examples (predominant shades of blue

in the background, for instance). Furthermore, the galaxy class has no direct analogue in the

Imagenet dataset which was used to train the pre-trained ConvNet models [56]. This provides

the opportunity to test the performance of these pre-trained models (both on their own and as a

tool to assist training using unlabelled data) in tasks which are somewhat different from those

for which the deep networks were originally trained for. The 5-category dataset was designed to

both test the methods on a wider, more complex dataset, but also to compare these methods with

the performance of the pre-trained ConvNet on more of an "even field", with a few classes for

which the ConvNet did not have tens of thousands of labelled examples to be trained upon. The

last dataset, not used directly, is the Imagenet dataset. This is the dataset on which the ConvNet

models were trained. The Imagenet dataset spans over a million images across a thousand classes.

It has, furthermore, an hierarchical tree structure for assigning subclasses, meaning the ConvNet is

trained to pick up very distinctive, finer features even for irregular classes (for example, in the case

48 Methodology and experimental design

of the "cat" class, the Imagenet dataset presents categories for different species of cat, meaning

the ConvNet was trained to pick up distinctive features for multiple types and races of cat). It

should be noted that despite the relatively large number of labelled images available for each

dataset, only one thousand labelled examples were used for each category, at most, to simulate

scarcity of this type of data. Both tests and validation sets were also comprised of these labelled

examples, allowing the collection of numerous results, such as precise accuracy measures and

confusion matrices for each algorithm. In vocabulary generation and encoding, methods utilized

the aforementioned one thousand labelled images in conjunction with one thousand unlabelled

images (for all methods permitting the usage of unlabelled data). The SVM training schedule

utilized one thousand training examples, initially all labelled and then progressively replacing

labelled data with unlabelled data.

3.2.1 Preprocessing

Images in all datasets were, if necessary, resized down to a 400× 400 pixel area, to reduce com-

putational costs. Initially, mean-colour corrections were used, but these proved to have either

minimal or slightly adverse effects when local colour histogram descriptors were added as fea-

tures. Due to the nature of the images from the whale and galaxy categories- the former populated

by very large, high-resolution images, and the latter dominated by dark areas without information

of interest- it became important to edit these images beyond simply resizing them. The main idea

was to locate the regions of interest and cut down the excessive blue and black portions of each

picture (in the case of the whale and galaxy categories, respectively). As seen in figure 3.3, edge

information for these two specific categories is quite poor. The initial approach at edge detection

followed by Hough transform proved ineffective in locating regions of interest in each picture.

Instead, alluding to the colour properties of the pictures, each image was split into its three HSV

channels. Sweeps over the Hue and Saturation channel were carried out- first, median and average

Hue and Saturation over a small sample of ten images were computed. These were used to define

a "typical background pixel", possible due to the regularity of the images in the dataset. Then, it-

eratively, each pixel that deviated from these values was considered as being potentially part of an

"interest patch". Its neighbouring pixels were sampled and, if they were sufficiently similar (and,

by extension, also dissimilar to the typical background pixels), were added to a congruent region.

After iterating over the entire image, an approximate centre of the largest anomalous region was

chosen as the centre of the region of interest. A 400×400 pixel area around it was extracted as the

trimmed, final image. This was crucial due to computational costs, but also so features of inter-

est weren’t located in a small image region, thus making a large portion of the image essentially

noise, beyond potentially useful colour information contained in the aforementioned predictable

background.

3.3 Deep Convolution Networks 49

Figure 3.2: Example images of the 5-category dataset. From top to bottom, a pair of images with
the galaxy, cat, dog, fish and whale labels are presented, respectively

3.3 Deep Convolution Networks

The pre-trained ConvNet was trained on the full Imagenet dataset, and follows a slightly modified

AlexNet architecture, similar to the one proposed for the ZFNet ConvNet [56]. Seeing as the pre-

trained model was designed for the Imagenet dataset, the last dense layer reflects this by having

1000 terminal neurons which generate the class labels for the 1000 categories on the original

Imagenet challenge. In order to adapt the ConvNet to either of the experimental datasets, this last

layer had to be rectified. This was done by "cutting off" the last 1000 units comprising the final

50 Methodology and experimental design

Figure 3.3: Image belonging to the whale category. The hue channel can be visualized on the right

layer and replacing them with an appropriate number of neurons for each dataset (in this case,

two and five, respectively). This obviously requires an additional training step to prepare these

new units with appropriate weights for the classification task. This training step was implemented

utilizing the Theano, Scikit and Pylearn2 toolboxes, over Nvidia CUDA and anaconda packages

to allow GPU computation [71, 72]. The hardware utilized for this specific portion of testing was

comprised of two GTX970 Nvidia video cards, an i7 quadcore Intel processor (up to 2.3 GHz per

core) and 16 GB of RAM memory. It should be underlined how indispensable GPU computation

is to carry any training in a practical length of time. These results will be further highlighted

in chapter 4. Due to their need for vast labelled datasets, techniques to artificially expand the

available data were used in training the ConvNet. These manipulations and an overview of multiple

considerations related to the training schedule, as well as some architecture details, are presented

and discussed below.

3.3.0.1 Training data augmentation

In the original ImageNet ILSVRC challenge, Alex Krizhevsky [48, 73] applied a number of trans-

formations to manipulate the original training data and create modified copies with similar prop-

erties and features, thus artificially augmenting the original set and increasing its size. A similar

scheme was used to train the deep ConvNet, seeing as the amount of training images available was

much too limited to allow proper training without overfitting. The images were further downsam-

pled to a more manageable 250× 250 pixel size. Afterwards, much like in the original AlexNet

training schedule, portions of the initial images were cropped out. Again, mirroring the origi-

nal methods employed in the first AlexNet, vertically mirrored copies of the image were added.

Colour perturbations which involve altering the intensities of the RBG channel values were also

employed. These consist of running PCA over the three colour channels and adding multiples of

the principal components on each pixel (thus, on average, reinforcing the pixel values proportion-

ately to their relevance in a feature interpretation). The operation can be seen as adding to each

pixel Ix,y = [IR
x,y, I

R
x,y, I

R
x,y] the following quantity:

[p1, p2, p3] = [α1λ1,α2λ2,α3λ3]
T (3.1)

3.3 Deep Convolution Networks 51

Where pi,λi are, respectively, the ith eigenvector and eigenvalue and αi a parameter that was

set to follow a normal distribution, N(0,0.1), mirroring what was done in the original research.

Lastly, shearing was applied to the training images, on the input layer of the ConvNet. This op-

eration, which deforms the overall shape of the images, was used on only very slight degrees

(coefficient m ≤ 0.2), as to not overly distort discriminant properties of the image. The overall

process is partially exemplified in the scheme in figure 3.4 for an image of the "galaxy" category,

with the exception of the colour perturbation and shearing steps, for ease of interpretation (al-

though a colour-perturbed, sheared image would undergo this process exactly). Note the creation

of various images through affine operations.

Figure 3.4: Illustration of the preprocessing steps used to create multiple artificial training images.
Note that this rendition was done by hand and is less accurate than the actual process

Training images were loaded onto the RAM memory in batches- the original image accompa-

nied by seven altered versions, obtained through the aforementioned process, in order to speed up

the training.

52 Methodology and experimental design

3.3.1 Backpropagation and stochastic gradient descent: Nesterov’s Accelerated
Gradient

In order to train the new dense layer, backpropagation based on gradient descent methods was nec-

essary. The toolboxes used for this process (Theano and Pylearn2) have multiple gradient descent

algorithms available. Choosing an appropriate algorithm becomes necessary. It should be noted

that iterative stochastic gradient descent typically performs as well as batch algorithms, whilst

being far lighter computationally [74, 63]. As such, no such batch algorithms were considered

for any layer. Of the available options, as seen, AdaDelta and SGD algorithms with momentum

present the fastest and most reliable solutions. The final choice ultimately weighted whether to

value the robustness of AdaDelta over the faster convergence of Nesterov’s Accelerated Gradient

or not [74, 75, 76, 64, 44, 77, 64]. Fortunately, earlier works utilizing deep ConvNets with similar

architectures ([78, 49]) provided a good initial seedings for the choice of the momentum param-

eter. Weight-normalization in the dense layers had to be relaxed in the initial iterations to allow

convergence (otherwise, the model could potentially diverge). As stated in section 2, Nesterov’s

stochastic gradient descent would typically require evaluation at points other than those held in

current model value but can, however, be reformulated as:

vt+1 = µvt +η∇(Θt +µvt)

Θt+1 = Θt + vt+1
(3.2)

Where µ,η are the momentum and learning rate parameters and v, f ,Θ represent the update,

the gradient and the model, respectively. This formulation is completely analogous to SGD with

classical momentum with the sole addition of a perturbation parameter on the gradient calculation.

This approach was tested against the Theano implementation of AdaDelta, marginally outperform-

ing it in the initial 150 training iterations (by about 2%). A fixed learning schedule which decays

over the 500 iterations was implemented. The initial value was empirically picked as to allow

the SGD method to converge (that is, to effectively improve the model). Due to time limitations,

testing on SGD variants and learning rate was extremely limited. Further improvements can likely

be drawn by further experimenting with the SGD form and its related hyperparameters, as well as

further optimizing the learning schedule.

3.3.2 Overfitting and parameter sharing

Overfitting is a primary concern when training large networks, which is the case for the final

model, with over 60 million parameters [6, 48, 52, 51, 79, 44]. In the data augmentation section,

methods to artificially increase the training dataset were explored with some detail. However, even

with this extension of the dataset accounted for, the overall amount of data is far too small to con-

duct a full reconditioning of the ConvNet for the new datasets, even with the pre-trained weights

as a starting seeding (which, effectively, allows for much faster convergence). To overcome this is-

sue, aggressive dropout rates of 0.9 and 0.99 were applied to the first and second dense layers, thus

3.4 Feature descriptors and feature extraction 53

limiting the overall effect of this smaller dataset during the training of the pre-trained dense layers

and hopefully mitigating overfitting (dropout entails "turning off" learning for a given neuron on

any iteration with a given rate, in this case, of 90% and 99%). This is absolutely crucial, as the

dense layers hold over half the overall parameters of the network, and seem to be the most suscep-

tible to overfitting. The convolutional layers were not trained upon. This is essentially equivalent

to the assumption that features extracted in the context of the original problem for which the Con-

vNet was trained are also useful for the datasets in this study. It should be underlined that if this

assumption is shown false, the limited available data for the training schedule in the comparative

study and the design of the final ensembles would not be enough to fully train the entire network.

This means that, in the event that the two applications are not similar enough for the ConvNet to

have acceptable performance, full training of the convolutional and dense layers is not be possi-

ble with the proposed artificial limitations imposed on the training schedule. Even if it were, this

training procedure is onerous and requires high-end GPUs to be carried in any practical form.

3.4 Feature descriptors and feature extraction

As mentioned, SPM is an extension of the BoW model for image classification. As such, initially,

image descriptors for salient and invariant keypoints for each image are obtained. While not a

focal part of this study, brief experiments were carried out to find a well-performing and easy to

manipulate set of features obtained from these descriptors. It’s been shown [66, 34, 80] that the

SIFT-type descriptors perform particularly well in most classification tasks. Therefore, most of

the tests utilized SIFT descriptors (either the normal SIFT formulation or the PCA-SIFT variant),

although, for some initial trials, a similar type of descriptor, SURF, was also tested. The SURF

features, however, resulted in comparatively worse results and were ultimately dropped in favour

of SIFT implementations. Both of these were combined with colour information encoded through

histogram quantification of image patches over which the SIFT descriptor was applied, effectively

creating a BoC representation of the image. Generically speaking, for a trial, two distinct feature

vectors were created, a D-dimensional vectors from the visual vocabulary and a K-dimensional

colour vectors, which were combined into a final (D+K)-dimensional feature vectors, as seen

in figure 3.5. The PCA applied to the SIFT descriptors kept 64 dimensions (of the original 128)

which expressed over 99% of the variance from the initial feature vectors. Implementation of

this step utilized the OpenCV 2.4 toolbox, the VLFeat library, Matlab and the PCA-SIFT imple-

mentation found in [81]. Descriptor matching made use of the FLANN nearest neighbour search

library, embedded in the OpenCV toolbox. The code was mostly written in the C++ programming

language which was called externally by the smaller, top-level Matlab program.

54 Methodology and experimental design

Figure 3.5: Schematic illustrating how both types of features are combined into a single k+D-
dimensional vector

3.5 Creation of the visual vocabulary for classification and feature
reduction through semi-supervised generative methods

After obtaining a vector of feature descriptors, generation of the vocabulary codebook is necessary.

As stated, a SPM scheme was utilized. In practical terms, relating to the implementation, a visual

vocabulary is initially created and utilized to generate a BoW model for different sections of the

image (the "pyramid" levels), which are then brought together into a single, final feature vector

through some kernel (in its original formulation, the pyramid matching kernel described in 2.4.2).

The number of pyramid levels, L, is a hyperparameter that influences the performance regardless

of the visual vocabulary is generated, and is therefore present throughout the experimental design

for all methods. Sadly, due to time and computational constraints, this parameter could not be

thoroughly tested. Instead, after obtaining experimentally optimal values for other parameters

for some number L, these were kept and pyramid levels of L = (2,3) were tested. It should be

noted that the original authors reported no gain in levels beyond the third [17, 82] and due to the

aforementioned limitations, no higher values were tested upon. It should be noted that none of

the methods for visual vocabulary generation and reduction influenced the colour features. So if a

method generates a K-dimensional feature vectors for a section of the image at pyramid level l, the

actual number of features is K+D, with D being the features pertaining to this colour information.

3.5 Creation of the visual vocabulary for classification and feature reduction through
semi-supervised generative methods 55

Figure 3.6: Schematic representing the semi-supervised process through which the final feature
vectors are generated

3.5.1 Original SPM implementation with vector quantization

The original SPM design was implemented, which utilizes K-NN clustering to group the features

obtained by the SIFT descriptors into K clusters, the visual words, thus forming a K-dimensional

feature vector for each pyramid patch, obtaining a final histogram representation of the original

features obtained through the SIFT descriptor. This is a form of Vector Quantization (VQ). Math-

ematically, VQ for a histogram representation can be viewed as:

z =
1
K

K

∑
k=1

uk (3.3)

With uk a descriptor matched to the kth cluster. The main hyperparameter to consider, beyond

the aforementioned L parameter, is the number of clusters K, which represents the vocabulary

size. The total dimensionality of the feature data is, therefore, ∑
L
l=0 22lK, for all pyramid levels.

Through the pyramid matching kernel, this matrix is reduced to a single K-element vector. The

vocabulary obtained through SPM with VQ tends to achieve better classification results when

paired to SVMs which utilize χ or Gaussian kernels [65], so this non-linear kernel was used for

this formulation (a disadvantage, as these non-linear kernels are typically slower during training).

Implementation of the original SPM model was also done in C++ using the OpenCV and VLfeat

toolboxes. SIFT descriptors were obtained through either the SIFT implementation in the VLfeat

toolbox or the previously mentioned PCA-SIFT implementation. The results of the descriptors

56 Methodology and experimental design

were exported to text files, and then used with conjunction with OpenCV to obtain vocabulary

through K-NN clustering. Matching was also done in C++ using OpenCV (using the FLANN

library, as mentioned in the previous section).

3.5.2 SPM with sparse coding

Following the previous model, one can now modify the process through which the visual vocabu-

lary is generated. The K-NN clustering algorithm, as seen, tries to solve the problem:

min
V

M

∑
m=1

mink=1,...,K‖xm− vk‖ (3.4)

Where V represents the codebook of K clusters (vk representing the kth cluster centre). This

goal function can be rewritten as a matrix factorization problem [65], with the cluster-membership

now represented by a matrix U ; that is, a matrix which illustrates to which cluster is each point

assigned. This problem imposes a cardinality constraint Card(um) = 1; that is, the descriptor

represented by line um can only be matched to one cluster (which was previously achieved in the

OpenCV implementation by using the FLANN library to match each descriptor on a test image

to one of the clusters in the visual vocabulary). Sparse coding relaxes this cardinality constraint

by proposing an alternative method for assigning collected keypoints to visual words- instead of

matching a point to a single cluster, we can assign scores for the different visual words, forcing a

normalization constraint of ‖um‖= 1. With these new constraints, the sparse coding goal function

(as seen in 2.29) can be derived from the original VQ goal function:

min
U,V

M

∑
m=1
‖xm−umV‖2 +λ‖um‖ (3.5)

With codebook V representing an overcomplete basis set (that is, the number of visual words

typically exceeds the number of features to be mapped to those visual words). In terms of im-

plementation, solving this new goal function involves a training and a coding phase, similarly to

what’s done with VQ. Initially, a descriptor set X from a random collection of image patches is

used to solve equation 3.5 with respect to U and V . Afterwards, in the coding phase, for some (or

all) images represented in the descriptor set X , the SC codes are obtained optimization of 3.5 with

respect to U only. The first step (the training step) supports semi-supervised training by including

patches from unlabelled images, which enriches the overall code. The coding scheme by SC fea-

tures a much lower reconstruction error than VQ [65]. The sparsity of the vectors makes it so only

the most salient features are stored (making file I/O operations much faster). This can be seen by

analysing the matrix U (the output feature matrix, where each of the initial, input descriptors has

been remapped through application of the SC codebook V , their individual responses to this matrix

3.5 Creation of the visual vocabulary for classification and feature reduction through
semi-supervised generative methods 57

represented in column u j). Following the original study in [65], the remapped feature matrix U

was subjected to max-pooling, that is:

z j = max |u1, j|, ..., |uM, j| (3.6)

With M representing the number of local descriptors. This means that, for each feature de-

scriptor, only the strongest response to the SC matrix V is kept. This is analogous to considering

V a neural network, and only the strongest neural response is considered in the output (as explored

in 2.5.8). The matrix V stores the SC model to be used in the feature encoding and reduction

step. This scheme for vocabulary generation was then applied to the previously explored SPM

formulation. The main parameter to study is λ , which controls the sparsity obtained in the SC

representation. Sweeps over this parameter were carried out to determine the influence of this

parameter. Implementation of this methodology was achieved by adapting code provided publicly

by Jianchao Yang ([83]), written in Matlab with calls to external implementations of the conjugate

gradient descent method, written in C.

Figure 3.7: Schematic representing the SC-max pooling ensemble

3.5.3 Topical representations through LDA and pLSA

Both the LDA and the pLSA methods were originally designed for text categorization. In applying

them with conjunction with BoW models, the extension of an image as document and an object

category as a topic is made. As underlined in 2.5.7, pLSA is a particular case of LDA. In terms

of theoretical considerations and implementation details, the only distinction is that LDA requires

maximization over two additional parameters, (α,β). This subsection will address both methods

generically, highlighting any difference between either algorithm only when necessary, seeing as

the bulk of the considerations are applicable to both methods. The pLSA/LDA model is built on

top of the VQ step, as described in 3.5.1. Assuming we have a collection D = (d1, ...,dN) of N

images and a visual vocabulary W = (w1, ...,wK) of K words, the model assigns a latent variable

58 Methodology and experimental design

z ∈ Z = (zi, ...,zZ) to an observation n(wi,d j) of the N×K occurrence table. In practical terms,

the model goes through the following steps:

• Select image d j with probability P(d j);

• For that document, pick topic zk with probability P(zk|d j);

• Generate word wi with probability P(wi|zk);

Taking the equation shown in 2.28, this can be marginalized over the latent variable z, yielding:

P(w,d) = P(d)∑
z∈Z

P(w|z)P(z|d) (3.7)

Noting that P(w,d) = P(d)P(w|d), we can extract from the previous equation the form of

P(w|d):

P(w|d) = ∑
z∈Z

P(w|z)P(z|d) (3.8)

This problem can reformulated as being equivalent to a matrix decomposition, as evidenced

on the plate diagram in figure 3.8, with the normalization constraint over P(z|d) and P(w|z) to

make them probability distributions. Determining P(z|d) and P(w|z) requires maximization of

the log-likelihood, as seen in 2.25. This is achieved through usage of the EM-algorithm (2.5.3).

Resolution of this problem for the LDA formulation requires maximization over the additional

parameter α of the Dirichlet distribution, also through the EM-algorithm. This requires additional

computation time and resources compared to the simpler pLSA model (which assumes a uniform

Dirichlet prior). Training of this model involves two steps. First, the distributions P(z|dtrain) and

P(w|z) are learned from the available data- both labelled and unlabelled. There are two hyperpa-

rameters worth consideration on this step: the number of visual words resulting from the VQ step,

K, and the overall number of topics Z in the LDA/pLSA model. As stated, once these parameters

are set, the VQ representations of the training set are fed to the model, which finds the relevant

probability distributions using the EM-algorithm. After these distributions are learned, which rep-

resent the statisticial model, classification also requires usage of the EM-algorithm to compute the

coefficients P(zk|dtest), updating these iteratively in the M-step, but skipping the E-step (utilizing,

instead, the parameters from the model each iteration). As stated, sweeps over the parameters K

and Z were carried out to study the variation of the performance of the model with the number of

visual words and the number of topics. Implementation of these methods were done primarily in

C++ ([84]), utilizing the VLFeat toolbox ([60]), exporting the feature vectors to a text file to be

used in Matlab.

3.5 Creation of the visual vocabulary for classification and feature reduction through
semi-supervised generative methods 59

Figure 3.8: Plate diagram for visualization of the pLSA problem described as a matrix decompo-
sition operation

3.5.3.1 Generated topic vectors

The LDA/pLSA models are generated utilizing labelled images from both categories and unla-

belled images without distinction. The interpretation of the labelled corpus of either category is

tied to the overall dataset- that is, the topical vectors generated for an image of a certain category

depends upon the corpus of images utilized when creating the LDA/pLSA model (and thus, its

topic representation varies with the corpus of other categories and the unlabelled corpus used to

create the model in the first place). Once the model is obtained, one can now generate a topic rep-

resentation for each image belonging to each category. These topic vectors can be used to generate

an overall frequency representation for topics belonging to each category. If this is done for each

class, it can subsequently be normalized to obtained a new, category-specific multinomial model

that represents each individual probability p(zi|C j), with zi the ith topic and C j the jth category.

In order to keep some form of sparsity-constraint, mirroring what the original LDA/pLSA formu-

lation aims to achieve (it’s desirable that topics are associated with a small portion of the most

salient words, as to represent the variance between different classes correctly), the median number

of topics represented in each category, ẑ j,is also computed (since the presence of each topic is

binary, the median euclidean norm of the topic feature vectors can be used on this computation).

After computing the new multinomial model, uniformly drawn random numbers are used to create

new, generated topic vectors. A topic is added to this new, fictitious vector if the random number,

r, is such that r≥ p(zi|C j). If the number of topics for this vector is greater than 1.5ẑ j, topics with

smaller probabilities (smaller p(zi|C j) factors) are set to zero until the sparsity constraint is veri-

fied. While this method has the advantage of promoting more salient topics, it also has the adverse

of being much more prone to overfitting, so the number of generated topic vectors has to be kept

conservatively small. The factor of 1.5 utilized in the sparsity constraint is purely empirical and

was set after some brief experimentation with other factors in the 1~2 range.

3.5.4 GMMs and Fisher Vectors

Fisher Vectors add a third method for generating a visual vocabulary, which fit a GMM to the data

points obtained by the feature descriptors. The GMM captures statistical information about the

distribution of the keypoints, which presents a richer formulation over which a more distinct visual

vocabulary is built. Figure 3.9 illustrates how the Gaussian parameters (µ,σ) influence the way

keypoints are grouped into visual words through the GMM; the Gaussian mean effectively having

60 Methodology and experimental design

an analogous role to the cluster mean in the K-NN VQ method, and the variance being a metric

for the "range" of each visual word. The procedure, in terms of implementations, is actually very

straightforward- keypoints are extracted through the use of the PCA-SIFT descriptors, upon which

a K-GMM model is fit through the usage of the EM-algorithm. This GMM is then essentially fed

onto a Fisher Kernel, which is a normalized form of the gradient of the log-likelihood of the fitted

GMM (essentially analogous to what was explored in 2.25, but with a normalization parameter).

Because the output feature vector from the Fisher Kernel is typically dense (sparsity under 50% in

most applications), PCA has to be applied to minimize the number of SIFT components. This has

added importance due to assumptions made on the GMM model, namely that the covariance matrix

is diagonal. This assumption is important because it both limits overfitting (matrices which aren’t

diagonal are more prone to overfitting) and reduces computational costs. PCA helps achieving

this uncorrelated nature in the keypoint features (and it’s downright required for the model to

work, as seen in [18]). Furthermore, as seen, this is highly desirable not only for speeding file

I/O operations, but also due to optimizations in most SGD algorithms when dealing with sparse

vectors (as these are quite common in most practical machine learning applications). The overall

dimensionality of the final feature vectors is tied to the number of Gaussians (which should be

evident, seeing as the gradient of a GMM will result in a sum of terms with the mean and variance

parameters). The parameters are:

1. The K weights, one for each of the K Gaussians in the GMM;

2. The KD mean terms, D for each of the K Gaussians, D being the number of keypoints;

3. Similarly, KD variance terms;

Figure 3.9: Visualization of the relation between the parameters of the GMM and the grouping of
different keypoints into visual words

The hyperparameter of interest is, evidently, K, the number of Gaussian functions present on

the GMM, to which the number of visual words are proportional and the number of FV com-

ponents (up to 2K(D+ 1) components, as can be trivially calculated from the aforementioned

parameter count). Sweeps over this parameter were performed, to explore the variation of the

performance with the number of Gaussians present on the model. Implementation of this method

is made trivial through the usage of the VLFeat toolbox, which includes a built-in Fisher Vector

3.6 Classifier modelling and training 61

and GMM method (simply load the keypoint vectors from an external file and, after loading them

onto an appropriate array, only two function calls are necessary to generate the model). VLFeat

also enables the use of l2 normalization, which was utilized due to the increase in performance

reported in [18].

3.6 Classifier modelling and training

After appropriate feature vectors were extracted through one of the various schemes described in

the previous section for all images of a given dataset, these were fed to a SVM for training and

future classification. Recalling the SVM cost function in the soft-margin formulation, as seen in

2.43:

γ := min
γ̃,w
‖w2‖−C

n

∑
i=1

εi

Sub ject to :

εi > 1

yi(wT xi)≥ 1− εi

(3.9)

We can modify the scalar term C into a diagonal matrix, where each non-zero entry c(i,i) rep-

resents the weight of the ith sample. In practical terms, this can be interpreted as assigning a

weight for each data point. Both Scikit and Matlab can use the LibSVM implementation, both of

which support class weights and individual sample weights. The SVM training schedule was im-

plemented both in Matlab (for the SPM+SC formulation) and Python (for the remaining methods).

With this in mind, we can now implement the novel approach of utilizing pre-trained ConvNets

to guide learning in a semi-supervised approach. What was done can be effectively summarized

as using the ConvNet class scores as estimators for which category an unlabelled image belongs

to. Given their high accuracy, if the classification task is sufficiently similar to the task for which

the ConvNet was originally trained, this assumption can be reasonable. The validity of this as-

sumption can be experimentally tested by running the pre-trained ConvNet on the labelled data.

If the accuracy score is satisfactory, this approach can be used. "Satisfacory", in this context, is

subjective to the application and, in essence, is an empirical quality. In the training scheme, the

sample scores were fixed to 0.5×α × cCONV,i×λ , where α represents the accuracy score of the

pre-trained ConvNet on the labelled data and cCONV,i the class score attributed to unlabelled image

i by the ConvNet. This weighting reflects both an estimation of the confidence in the ConvNet’s

tentative performance (through the parameter α) and an estimation of the tentative classification

of the image through cCONV,i. After class scores were generated for all unlabelled data, each im-

age was assigned a tentative label through max(ccat,i,cdog,i), where ccat,i,cdog,i are the normalized

scores for the cat and dog categories, respectively. Values for the average score and maximum

62 Methodology and experimental design

score for each class, cmax, j,cavg, j; j = cat,dog, were also were computed. Three methods for se-

lecting unlabelled images were developed:

1. Strong scores scheme, in which the highest scores for each class are selected, if they greater

than cavg,i. In case this is not possible, copies of the previously selected image are drawn

randomly (through a uniform pdf) until the number of required images is satisfied;

2. Weak scores scheme, in which unlabelled images are drawn if their score is greater than

cavg,i (and therefore not necessarily the highest scoring images for either class in the list).

If there aren’t enough images scoring over cavg,i, images with lower scores are drawn until

enough unlabelled samples are obtained;

3. Absolute scores scheme, a variation of the strong scores scheme where each image is reas-

signed a new score, equal to the maximum score (effectively weighting them all equally and

maximally);

Figure 3.10: Visualization of the effect of adding sample weights in SVM training. A larger circle
represents a greater weight

This formulation was extended to the 5-category dataset scoring scheme. The parameter λ is a

SVM empirical parameter, optimized through model cross-validation. This parameter controls the

penalty of misclassifying a data point to maximize the margin for the remaining points. Following

what was reported in [17, 65], a χ2 kernel was used in the SVM applied to the SPM with VQ

vocabulary generation approach. All others made use of a linear SVM kernel, which has reported

comparable accuracy and much more accessible training times [18]. For the 5-category dataset,

the SVMs were trained on a one-versus-one scheme for all methods except for the SPM+SC for-

mulation, which used the multi-class SVM as formulated in [41, 35]. The TSVM implementation

utilized was an adaptation of the LibSVM library (found in [57]). For the 5-category dataset, it

was trained in a one-versus-all scheme. TSVM has two primary regularization parameters, ω and

u, and a parameter describing the ratios between the classes. The former were empirically opti-

mized, and the latter was estimated from the known training set. The discriminative portion of

3.7 Hardware resources 63

the models were trained on 1000 image for each category. The number of labelled images was

decreased in each trial, being replaced by unlabelled data (in such a way that the training samples

always totalled 1000 images per category).

3.6.1 Cross-validation scheme and testing

A stratified 4-fold cross validation scheme was used for all the experiments. The final model is

obtained by aggregating the results of all the folds through model averaging. Testing each model

for performance was done on 12500 images on both the binary and the 5-category datasets. In both

cases, the number of images belonging to each category was the same, allowing for isotropic priors

which simplify calculations without any meaningful loss of generality. Some generalizations were

made to simplify the testing scheme and due to time limitations regarding overall experimentation.

In particular, optimizations regarding the number of pyramid levels used in SPM were extrapolated

to other methods (particularly, it’s assumed that if increasing or reducing the number of levels on

the pyramid representation in the SPM+VQ and/or SPM+SC approaches yields an accuracy gain,

the same should hold true for the other SPM formulations). Whilst the overall ensembles are very

similar, this assumption is not necessarily true. However, it’s sufficiently fair, and it’s an absolute

necessity seeing as testing the number of pyramid levels for all formulations would require thrice

the number of tests. Furthermore, it’s also assumed that the set of parameters that yield the best

results for tests over only labelled data should also provide the best (or nearly the best) results

for tests over labelled and unlabelled data. The reasoning is again similar, noting that since the

labelled data holds more weight due to the training scheme described in 3.6, allowing to save time

by not re-generating the visual vocabulary with every trial. A similar assumption was made for

the regularization parameters when training TSVMs (the sweep was only carried out for one of

the ensembles), again merely to reduce the number of trials needed. It should be noted (as it will

be made evident in the next chapter) that often small variations over these parameters result in

negligible changes in accuracy.

3.7 Hardware resources

All tests were carried out on two computers, each utilizing an Intel i7 processor with four cores

(which can be overclocked up to 2.3GHz). Furthermore, each has a solid state driver to speed up

file I/O operations, 16 GB of RAM memory and a Nvidia GTX970 GPU with the relevant CUDA

drivers. As stated in 3.3, training and testing related to ConvNets utilized these GPUs for faster

computations. Furthermore, many of the required files were loaded onto the RAM memory to

accelerate any file I/O operations (ConvNet training utilized upwards of 12 GB). By contrast, the

remaining tests were carried more modestly, utilizing the i7 processors (with multicore support

whenever it was available through OpenMP) and the solid state drive.

64 Methodology and experimental design

Chapter 4

Results and discussion

In this chapter, the main result of the multiple experiments are presented. These are primarily il-

lustrated in two forms: confusion matrices, for the accuracy variations with the number of labelled

and unlabelled images used, and graphics which visualize the variation of the accuracy of each

method with the related parameter sweeps. Unless otherwise stated, parameters sweeps were car-

ried out for the labelled training dataset and the TVSM classifier was trained on the 500 labelled

+ 500 unlabelled images set.

4.1 Feature descriptor results

The initial experiment to determine whether SIFT or PCA-SIFT translated into better classification

results, and whether or not adding colour information improved performance are capture in tables

4.1 and 4.2. These were performed for SPM with VQ on the binary dataset. It’s shown that colour

information indeed enriches the features captured by the SIFT descriptors, leading to a slight

improvement in accuracy. Furthermore. PCA-SIFT marginally outperformed the original SIFT

implementation, likely due to discarding noisier, less relevant keypoints. A last, small test was

conducted on the influence of the number of colour bins in the histogram representation generated

by the BoC descriptor, as shown in 4.2. The 32-bin feature representation yielded the best results,

capturing richer colour information without excessive fine details to promote overfitting (and this

lowering the accuracy of the final ensemble). Following these results, all remaining experiments

utilize PCA-SIFT with information extracted from colour patches.

Table 4.1: Comparison between different combinations of feature descriptors. Tested on a
SPM+VQ formulation

Feature Descriptor Accuracy
SIFT 0.76

PCA-SIFT 0.76808
Sift+BoC 0.78016

PCA-SIFT+BoC 0.78824

65

66 Results and discussion

Table 4.2: Comparison between different number of colour bins for the BC descriptor. Tested on
a SPM+VQ formulation in conjunction with SIFT descriptors

Number of colour bins Accuracy
8 0.7672
16 0.7704
32 0.78016

4.2 Binary dataset results

The following sections contains all results pertaining to tests done on the binary dataset. This

dataset, as stated in 3.2, is comprised of images belonging to two categories, "cat" and "dog". This

was expected to be the most challenging set for all methods other than the ConvNet (which was

indeed verified). Of the 25000 labelled images, half were used for testing purposes (6250 for each

category) and the remaining for training and model validation. Testing with labelled examples

only is meant to provide a "control case" which is utilized to compare the different generative

formulations in terms of their effect regarding vocabulary generation and feature reduction.

4.2.1 TSVM regularization parameters

The two plots 4.2 and 4.1 represent the variation of the TSVM classifier for 500 labelled and un-

labelled training examples, with a visual vocabulary obtained through SPM+VQ. An assumption

was made that the regularization parameters which held the best accuracy result (of 0.71) for these

feature vectors would perform comparably well for those resulting from other methods. This was

required to reduce the number of tests (which would increase tenfold if these were optimized for

each method and dataset). This assumption seems fair given the comparable nature of the feature

vectors generated by most methods. The TSVM semi-supervised algorithm will provide results

which shall be compared to the ConvNet-assisted semi-supervised learning.

4.2.2 Pre-trained ConvNet

The results for the pre-trained ConvNet highlight its strength for this dataset. Even though only

500 training epochs were carried out to optimize the new, last dense layer for the binary output with

1000 labelled examples for each category, it achieves remarkable performance, with an accuracy

of 0.94472. This can be readily justified by the fact that, as stated in 3.2, the Imagenet has a

wealth of labelled examples to categories related to the "cat" and "dog" classes. Furthermore, the

ConvNet model was trained to distinguish between multiple races, having filters trained to capture

features for multiple types of cats and dogs. This further validates its use to guide training on other

approaches, following the scheme explored in 3.6.

4.2 Binary dataset results 67

Figure 4.1: Results of the parameter sweep over W for the TSVM implementation, with U = 1

Figure 4.2: Results of the parameter sweep over U for the TSVM implementation, with W = 1

4.2.3 SPM with VQ

The results obtained for a SPM implementation which utilizes VQ for visual vocabulary genera-

tion achieved a top accuracy of 0.7872, for a visual vocabulary size of 1000 and 3 pyramid levels.

An experiment with two pyramid levels was also carried out, resulting in a maximum accuracy

68 Results and discussion

Table 4.3: ConvNet confusion matrix for the binary dataset, accuracy of 0.94472
`````````````̀Labelled

Predicted Cat Dog

Cat 5897 353
Dog 338 5912

of 0.77608, slightly lower than the accuracy obtained for three pyramid levels. Analysing the

confusion matrix highlights how the dataset is challenging- the relatively balanced rate of mis-

classfication between the two classes seems to reveal that some features might not be sufficiently

distinctive between the two categories or, perhaps, that the VQ method for generation of the visual

vocabulary induces too much quantization error or groups the keypoints obtained through lower

level feature descriptors in suboptimal fashion (namely, creating clusters which bundle features

from both classes and result in detection by the SVM classifier in examples of either category).

The results for SPM with VQ serve as a baseline, to which the usage of generative methods as a

form of feature reduction is compared.

Table 4.4: SPM+VQ confusion matrix for training with 1000 labelled samples for the binary
dataset, accuracy of 0.7872

`````````````̀Labelled
Predicted Cat Dog

Cat 4907 1343
Dog 1317 4933

4.2.4 SPM with SC

For the Sparse Coding method of encoding keypoints and generate the visual vocabulary resulted

in considerably increased performance compared to the VQ baseline, achieving an accuracy score

of 0.81704. The confusion matrix still exhibits a high level of symmetry, reinforcing the notion

that the binary dataset proves considerable challenge due to both the irregularity of classes and due

to the possibility that some salient features captured by the feature descriptors may overlap in both

classes. This point is furthered validate if one considers the multiple different backgrounds for the

images of dogs and cats (that is, it’s unlikely that some sort of salient keypoint is present in the

majority of backgrounds). The increased performance seems to also validate the SC method with

max pooling to generate salient, distinctive features, seeing as the model trained only with labelled

data outperformed the VQ formulation in accuracy by 4%. Following the scheme elaborated in

3.6, results were obtained for experiments with unlabelled data. The three variations performed

comparatively for the case with 750 labelled examples and 250 unlabelled ones, achieving a top

score of 0.81816 for the absolute scores scheme. Due to its slightly lower performance, and to

save time (each test requires training a new SVM), the worst performing method, weak scores,

was abandoned. It should be underlined that, given the large testing dataset, there are enough

images with high enough scores so that oversampling the highest scoring data isn’t required. This

4.2 Binary dataset results 69

training scheme with the pre-trained ConvNet used in conjunction with unlabelled data kept rela-

tively constant performance (accuracy of 0.81816) until the amount of labelled data went down to

250 labelled examples for the strong scores scheme, where performance dipped to 0.70904. This

can be understood by the fact that, due to the soft-margin training of the SVM, some unlabelled

examples were misclassified in order to maximize the margin for the labelled examples (that is, the

scarcer, labelled data is over-represented during training). This is equivalent to an overfitting prob-

lem. The fact that the absolute scores scheme does not share this sharp decrease in performance,

remaining at a comparable 0.79296 accuracy rate, seems to support this interpretation (justified by

the fact absolute scores, in virtue of the maximization of sample weights, penalizes misclassifica-

tion of unlabelled data more harshly). That said, although the absolute score scheme outperforms

the strong score scheme in this particular instance, this stems from the fact that the pre-trained

ConvNet has an exceptionally high accuracy for this dataset. This isn’t generically true, and the

strong score scheme is preferred as it reflects some level of uncertainty regarding the ConvNet’s

tentative labelling of the unlabelled data. Parameter sweeps for the dictionary size, K, and the

sparsity parameter, λ , resulted in a maximum for K = 1000 and λ = 0.34. Regarding K, these

are unsurprising results. It’s expected that an insufficient dictionary size does not capture enough

salient features to fully characterize a class (further aggravated by the feature reduction resulting

from application of a generative method), resulting in underfitting. Likewise, an excessively large

dictionary brings the opposite problem, capturing noisy features which do not promote salience

on the feature vectors, a problem of overfitting. Initial testing had granted some empirical intu-

ition that optimal dictionary sizes were around 1000, so this was the first value tested upon (and it

indeed yelded the best results). As for λ , an accuracy maximum was found for λ = 0.34. While

it could be possible that other maximum points exist, no other values were tested upon both due

to time limitations, and due to the findings in [65], where optimal values for the parameter λ were

found between 0.3 and 0.4. The highest TSVM accuracy result obtained for this vocabulary was

of 0.77.

Table 4.5: SPM+SC confusion matrix for training with 1000 labelled examples for the binary
dataset, accuracy of 0.81704

`````````````̀Labelled
Predicted Cat Dog

Cat 5097 1153
Dog 1134 5116

Table 4.6: SPM+SC confusion matrix for training with 750 labelled and 250 unlabelled examples
for the binary dataset (strong scores), accuracy of 0.80928

`````````````̀Labelled
Predicted Cat Dog

Cat 5058 1192
Dog 1220 5030

70 Results and discussion

Table 4.7: SPM+SC confusion matrix for training with 750 labelled and 250 unlabelled examples
for the binary dataset (weak scores), accuracy of 0.806

`````````````̀Labelled
Predicted Cat Dog

Cat 5077 1173
Dog 1252 4998

Table 4.8: SPM+SC confusion matrix for training with 750 labelled and 250 unlabelled examples
for the binary dataset (absolute scores), accuracy of 0.81816

`````````````̀Labelled
Predicted Cat Dog

Cat 5102 1148
Dog 1125 5125

Table 4.9: SPM+SC confusion matrix for training with 500 labelled and 500 unlabelled examples
for the binary dataset (strong scores), accuracy of 0.80928

`````````````̀Labelled
Predicted Cat Dog

Cat 5058 1192
Dog 1220 5030

Table 4.10: SPM+SC confusion matrix for training with 500 labelled and 500 unlabelled examples
for the binary dataset (absolute scores), accuracy of 0.81816

`````````````̀Labelled
Predicted Cat Dog

Cat 5102 1148
Dog 1125 5125

Table 4.11: SPM+SC confusion matrix for training with 250 labelled and 750 unlabelled examples
for the binary dataset (strong scores), accuracy of 0.70904

`````````````̀Labelled
Predicted Cat Dog

Cat 4462 1788
Dog 1849 4401

Table 4.12: SPM+SC confusion matrix for training with 250 labelled and 750 unlabelled examples
for the binary dataset (absolute scores), accuracy of 0.79296

`````````````̀Labelled
Predicted Cat Dog

Cat 4960 1290
Dog 1298 4952

4.2 Binary dataset results 71

Figure 4.3: Results of the parameter sweep over λ for the SPM+SC method for the binary dataset,
with K = 1000

Figure 4.4: Results of the parameter sweep over K for the SPM+SC method for the binary dataset,
with λ = 0.81704

72 Results and discussion

4.2.5 SPM with pLSA

The pLSA ensemble results, again, show how the richer probabilistic description of the proper-

ties of the keypoints allied to the feature salience and distinctiveness provided by the generative

method upon creating the visual vocabulary can improve performance compared to the regular

BoW approach, with an increase of over 5%, with an accuracy score of 0.82696. Similarly, as was

the case for the SPM with SC scheme, the ConvNet-assisted semi-supervised learning approach

yields favourable results, without any significant performance drop from replacing portion of the

labelled data with unlabelled data. Parameter sweeps over the K parameter again yield predictable

results. This analysis can be extended to the number of topics, z, which, in practice, share a sim-

ilar role- too few topics and the topical description isn’t rich enough to characterize the classes.

Too many, and a form of overftting is verified due to "noisy" topics that do no express sufficient

inter-class variance. The highest TSVM accuracy result obtained for this vocabulary was of 0.76.

Table 4.13: SPM+pLSA confusion matrix for training with 1000 labelled examples for the binary
dataset, accuracy of 0.82696

XXXXXXXXXXXLabel
Predicted Cat Dog

Cat 5160 1090
Dog 1073 5177

Table 4.14: SPM+pLSA confusion matrix for training with 750 labelled and 250 unlabelled ex-
amples for the binary dataset (strong scores), accuracy of 0.82496

XXXXXXXXXXXLabel
Predicted Cat Dog

Cat 5162 1094
Dog 1100 5150

Table 4.15: SPM+pLSA confusion matrix for training with 500 labelled and 500 unlabelled ex-
amples for the binary dataset (strong scores), accuracy of 0.81

XXXXXXXXXXXLabel
Predicted Cat Dog

Cat 5064 1186
Dog 1189 5061

4.2 Binary dataset results 73

Figure 4.5: Results of the parameter sweep over z for the SPM+pLSA method for the binary
dataset, with K = 1000

Figure 4.6: Results of the parameter sweep over K for the SPM+SC method for the binary dataset,
with z = 23

74 Results and discussion

4.2.6 SPM with LDA

The LDA method is a generalization of the pLSA method. Therefore, it comes as a surprise that,

whilst it still improvd performance compared to the SPM+VQ ensemble, the obtained accuracy

value of 0.80328 is actually lower than that of the pLSA method for topical representation (one

would expect, at worse, that both methods would perform evenly, seeing as one includes the other).

It should be noted that, firstly, due to the extra α parameter, LDA might be more likely to find local

maxima during computation of the EM-algorithm, which might explain its comparatively worse

performance for both labelled and labelled+unlabelled datasets. Secondly, due to th aforemen-

tioned extra parameter, LDA is more likely to overfit the model [35]. Both these reasons and

the fact that LDA presents slower convergence lead to dropping this method in favour of more

tests with the better-performing and faster pLSA model. Parameter sweeps over z and K exhibit,

as expected, analogous behaviour to the pLSA case, with the highest accuracy value of 0.80328

obtained for z = 16 and k = 1000. It’s interesting to note how a change in the number of topics

from 24 to 25 yields a noticeable gain in accuracy. This can be due to multiple reasons, such as

the 24th topic erroneously capturing some noisy or irrelevant trend in the data that the 25-topic

model does not (what information is captured per topic as the total number of topic changes can

be quite unpredictable and, as such, fluctuations like these are, whilst unlikely, not impossible).

The highest TSVM accuracy result obtained for this vocabulary was of 0.76.

Table 4.16: SPM+LDA confusion matrix for training with 1000 labelled examples for the binary
dataset, accuracy of 0.80328

XXXXXXXXXXXLabel
Predicted Cat Dog

Cat 5015 1235
Dog 1224 5026

Table 4.17: SPM+LDA confusion matrix for training with 500 labelled and 500 unlabelled exam-
ples for the binary dataset (strong scores), accuracy of 0.80784

XXXXXXXXXXXLabel
Predicted Cat Dog

Cat 5055 1195
Dog 1207 5043

4.2.7 GMM and FV

Achieving an impressive accuracy rating of 0.83216, the FV method scores the highest amongst

all generative methods in terms of performance. This, however, comes at a cost, as the necessary

125 Gaussian components for the optimal model are sadly computationally costly when compared

to the other methods. Parameter studies on the FV method focus on two primary variables- the

number of Gaussian functions on the GMM and the number of FV components used. Pertaining to

4.2 Binary dataset results 75

Figure 4.7: Results of the parameter sweep over z for the SPM+SC method for the binary dataset,
with K = 1000

Figure 4.8: Results of the parameter sweep over K for the SPM+SC method for the binary dataset,
with z = 16

the former, which, as stated, are analogous to the number of clusters in a VQ formulation, graphic

4.9 shows an expected evolution between underfitting and overfitting, with an increase in perfor-

mance as a greater number of Gaussian functions capture all the meaningful idiosyncrasies of the

76 Results and discussion

dataset until a maximum is achieved, past which the new clusters capture nonsense relations and

noise instead, resulting in loss of performance. The number of Gaussian functions was quite high

even for the binary dataset, which was quite unexpected, but perhaps mirroring the complexity

in modelling the two categories due to disparity not only in background, but also high variance

within the classes themselves (various races of cats and dogs, for instance). Regarding the compo-

nents of the FV, as explored in (REF) and as noted in (REF), the µ and σ components present the

highest performance. These first and second order statistics seem to express the highest variance

pertaining to the categories. Interestingly, the accuracy between using all three FV components

and only the µ and σ components seems to be the same. It’s likely that the 0th, 1st and 2nd order

statistics captured by the GMM weights, means and variances have some overlapping informa-

tion. In particular, the latter two seem to encapsulate the gross majority held in the former. This

result appears to be frequent, as seen in (REF) and (REF). For these reason, in all other ensembles

utilizing the FV methodology, only the µ and σ components were considered. Comparing the

ConvNet assisted results to the TSVM performance again gives the advantage to the ConvNet,

with the highest TSVM being of 0.77904.

Table 4.18: FV confusion matrix for training with 1000 labelled examples for the binary dataset,
accuracy of 0.83216

XXXXXXXXXXXLabel
Predicted Cat Dog

Cat 5220 1030
Dog 1068 5182

Table 4.19: FV confusion matrix for training with 500 labelled and 500 unlabelled examples
(strong scores) for the binary dataset, accuracy of 0.82784

XXXXXXXXXXXLabel
Predicted Cat Dog

Cat 5180 1070
Dog 1082 5168

Table 4.20: Accuracy variation with the number of FV components considered

Parameters W µ S W µ Wσ µσ Wσ µ

Accuracy 0.71008 0.7792 0.79192 0.83216 0.8 0.81504 0.83216

4.2.8 Comparative discussion of the overall results for the binary dataset

All four methods improved the performance of the original SPM formulation with VQ, lending

credence to the hypothesis that a statistical formulation of the low-level features extracted from the

SIFT and BoC descriptors enriches their information content. Furthermore, the feature reduction

4.3 5-category dataset results 77

Figure 4.9: Results of the parameter sweep over the number of Gaussian functions for the GMM
for the binary dataset, considering the µ and σ FV components

which these generative methods bring results in more distinctive features, allowing for more accu-

rate classification using feature vectors of lower dimensionality and linear classifiers. The pLSA,

SC and FV formulations all achieved comparable performance, with a slight edge to the pLSA and

FV methods. Surprisingly, LDA underperformed comparatively to pLSA, which led to dropping

this method in favour of pLSA for future tests in the 5-category dataset. The ConvNet-assisted

training was also shown to outperform the classical TSVM semi-supervised options, validating

the viability of pre-trained models as estimators of the class for unlabelled images for sufficiently

similar tasks. It should be noted, however, that most TSVM applications are related to text, which

typically feature even sparser vectors with a smaller number of features and comparatively less

complex patterns. This may reflect on their practical implementations, which may be ill-suited for

computer vision tasks. This said, the ConvNet model still outperformed all other approaches. The

very same similarity between the classification task for which the ConvNet was originally trained

and the one pertaining to this dataset, which allows its use in a semi-supervised approach, also

allows for the out-the-box pre-trained ConvNet to outperform all other models. The 5-category

dataset will further explore these properties, exposing the ConvNet’s weaknesses which were not

featured during tests over this dataset.

4.3 5-category dataset results

The results for the extended, 5-category dataset are presented in this secton. This was designed to

expose the limitations of the pre-trained ConvNet model, in conrast to the previous binary dataset.

78 Results and discussion

One thousand images were used in each training step. The models were tested on 2500 images of

each category, for a total of 12500 images in the testing set. All conditions and assumptions for

the binary dataset remained unchanged for these tests.

4.3.1 Pre-trained ConvNet and SPM+VQ baseline

The 5-category dataset exposes the one limitation of ConvNets- with only 1k labelled examples

and 500 training epochs, the initial layers of the ConvNet cannot efficiently learn how to pick up

distinct features for the new, galaxy class, which has no close analogue in the original ImageNet

dataset. This is evident in the confusion matrix- the large volume of misclassified galaxy images

across all classes illustrates how distinct features for this classes aren’t effectively being picked up

by the receptive fields in the convolutional layers. As a result, any noise can cause the neurons to

fire erroneously, resulting in the gross misclassification rate for this specific category. This will

have consequences in terms of utilizing the ConvNet in assisting the semi-supervised learning.

Due to this poor class score, the galaxy classes uses a weak scores approach, instead of the strong

scores employed for the remaining categories. However, due to its high accuracy in the other fur

categories, the pre-trained ConvNet, with an accuracy of 0.86144, still pulls ahead of the SPM+VQ

baseline, with an accuracy of 0.84944.

Table 4.21: ConvNet confusion matrix for the 5-category dataset, accuracy of 0.86144
`````````````̀Labelled

Predicted Cat Dog Fish Whale Galaxy

Cat 2245 - - - -
Dog - 2421 - - -
Fish - - 2433 - -

Whale - - - 2368 -
Galaxy 345 366 488 200 1101

4.3.2 SPM with SC

By contrast, the SPM+SC method demonstrates an impressive accuracy of 0.904 for labelled train-

ing. The performance for the cat and dog categories remains, as expected, mostly the same, with

the comparable misclassification symmetry and rate to the binary case. A similar performance

is verified for the whale and fish classes- the bulk of the misclassified examples in either cate-

gory being attributed to the other. Curiously, the most likely explanation for this is actually the

opposite of the justification for the symmetry in the cat and dog classes; due to the similarity

in backgrounds between these two classes, and the very comparable colour information (mostly

oceanic scenery), it’s likely that features captured in the backgrounds (which are quite regular for

these classes) are causing this misclassification phenomena. The galaxy class achieves a very high

class accuracy of 0.9212. The distinct colour information of elements of this class and its high

regularity, both in the objects of interest and the (completely black) backgrounds promotes highly



4.3 5-category dataset results 79

distinct features for this class (it’s a class that has very little in common with the others). Training

of this class benefited very little from the ConvNet, as most class scores attributed to elements of

the galaxy category were comparatively low. As seen before, as the numbered of labelled exam-

ples starts to become progressively smaller, overfitting starts to degrade the results. Interestingly,

because of the high class regularity for galaxy-type objects, these don’t suffer as sharp a decay

in class accuracy. For this reason, and due to the fact that the few misclassified galaxy images

appear irregularly across classes, the confusion matrix does not include information about galaxy-

as-another and another-as-galaxy misclassification. Rather than representing a systemic error or

some property of the dataset, these errors generally reflect the presence of dark backgrounds, im-

ages with poorer quality or simple an erroneous point with a low class score from the ConvNet’s

tentative labelling process. Parameter sweeps were again carried out for λ and K, yielding, similar

to the binary case, a parameter pair (λ ,K) = (0.36,1500) that yields the maximum accuracy, as

seen in 4.11 and 4.10. The same curve, which illustrates under and overfitting on the two extremes

was obtained, as expected. The highest TSVM accuracy result obtained for this vocabulary was of

0.85.

Table 4.22: SPM+SC confusion matrix for training with 1000 labelled examples for the 5-category
dataset, accuracy of 0.904

`````````````̀Labelled
Predicted Cat Dog Fish Whale Galaxy

Cat 2018 474 - - -
Dog 460 2032 - - -
Fish - - 2366 126 -

Whale - - 83 2412 -
Galaxy - - - - 2472

Table 4.23: SPM+SC confusion matrix for training with 500 labelled and 500 unlabelled examples
for the 5-category dataset, accuracy of 0.90096

`````````````̀Labelled
Predicted Cat Dog Fish Whale Galaxy

Cat 2010 479 - - -
Dog 463 2015 - - -
Fish - - 2356 111 -

Whale - - 82 2401 -
Galaxy - - - - 2480



80 Results and discussion

Table 4.24: SPM+SC confusion matrix for training with 250 labelled and 750 unlabelled examples
for the 5-category dataset, accuracy of 0.81776

`````````````̀Labelled
Predicted Cat Dog Fish Whale Galaxy

Cat 2008 453 - - -
Dog 466 2001 - - -
Fish - - 2011 437 -

Whale - - 442 1999 -
Galaxy - - - - 2303

Figure 4.10: Results of the parameter sweep over λ for the SPM+SC method for the 5-category
dataset, with K = 1000

4.3 5-category dataset results 81

Figure 4.11: Results of the parameter sweep over K for the SPM+SC method for the 5-category
dataset, with λ = 0.36

4.3.3 SPM with pLSA

The SPM+pLSA formulation achieves an acceptable accuracy of 0.8848 on labelled training,

which decreases to 0.87648 as unlabelled data is introduced. The simpler multinomial model

of the pLSA formulation is more prone to overfit compared to the remaining generative models

[84]. Furthermore, the topical representation of the feature space may also be losing an excessive

amount of information in the feature reduction step, justifying this slightly lower accuracy score.

Again, however, the galaxy class achieves a very high score due to its simplicity and regularity,

which makes it comparatively resistant to the adverse effects of overfitting. Again, in a perfectly

analogous situation to the experiment on the binary dataset, parameter sweeps for values of z and

K were performed, yielding the best results for the parameter pair (z,K) = (24,1000). The plots

4.13 and 4.12 illustrate the expected behaviour regarding under and overfitting. Lastly, the plot

4.14 shows how the model accuracy can be slightly improved by utilizing a few generated topic

feature vectors during training. These need to be used very sparsely since, as seen, they greatly

promote overfitting. Usage of these vectors resulted in a gain of almost 1% in terms of accu-

racy. The highest TSVM accuracy result obtained for the vocabulary obtained through the pLSA

formulation was of 0.83.

82 Results and discussion

Table 4.25: SPM+pLSA confusion matrix for training with 1000 labelled examples for the 5-
category dataset, accuracy of 0.8848

`````````````̀Labelled
Predicted Cat Dog Fish Whale Galaxy

Cat 2013 429 - - -
Dog 440 2004 - - -
Fish - - 2249 201 -

Whale - - 144 2309 -
Galaxy - - - - 2481

Table 4.26: SPM+pLSA confusion matrix for training with 500 labelled and 500 unlabelled ex-
amples for the 5-category dataset, accuracy of 0.87648

`````````````̀Labelled
Predicted Cat Dog Fish Whale Galaxy

Cat 1998 466 - - -
Dog 473 2000 - - -
Fish - - 2231 202 -

Whale - - 189 2261 -
Galaxy - - - - 2466

Figure 4.12: Results of the parameter sweep over z for the SPM+pLSA method for the 5-category
dataset, with K = 1000

4.3 5-category dataset results 83

Figure 4.13: Results of the parameter sweep over K for the SPM+pLSA method for the 5-category
dataset, with z = 24

Figure 4.14: Results of utilizing generated feature vectors on the SPM+pLSA method for the
5-category dataset, with z = 24 and K = 1000

84 Results and discussion

4.3.4 GMM and FV

The Fisher Vector demonstrates, once again, the best results out of all studied generative methods,

with a 0.91 accuracy rate. The behaviour of the individual class scores mirrors what was previ-

ously observed for other methods, which may hint towards limitations of the feature descriptors

and/or linear classifiers- the common elements across all ensembles- more so than a particular

limitation or property shared by all the algorithms utilized to create the intermediate visual vocab-

ulary. Additionally, this is also the reflex of the dataset, as previously explained, with the cat and

dog classes sharing similarities, the whale and fish classes facing a comparable situation, and the

galaxy class being highly regular and quite distinct from the other four. Parameter sweeps with

the previously justified FV components of µ and σ increased in accuracy until 200 Gaussian func-

tions were considered. Sadly, due to computational limitations and lack of time, higher number

of components could not be tested up (a 200 component GMM running in excess of 9 hours). It’s

possible that slightly higher number of components could’ve yielded a slight performance increase

(although it’s likely this value was very close to the maximum, as eventually overfitting would be

observed, as seen in the binary case). In all trials, the FV formulation edged out ahead of all other

methods, even if only marginally in some trials, attesting to the effectiveness of the Gaussian dis-

tribution at capturing the rich statistical relations in the extracted keypoints. The highest TSVM

accuracy result obtained for the FV feature vectors in the 5-category dataset was of 0.86.

Table 4.27: FV confusion matrix for training with 1000 labelled examples for the 5-category
dataset, accuracy of 0.91

`````````````̀Labelled
Predicted Cat Dog Fish Whale Galaxy

Cat 2203 260 - - -
Dog 341 2101 - - -
Fish - - 2312 172 -

Whale - - 164 2298 -
Galaxy - - - - 2461

Table 4.28: FV confusion matrix for training with 500 labelled and 500 unlabelled examples for
the 5-category dataset, accuracy of 0.90344

`````````````̀Labelled
Predicted Cat Dog Fish Whale Galaxy

Cat 2155 316 - - -
Dog 320 2112 - - -
Fish - - 2270 195 -

Whale - - 199 2281 -
Galaxy - - - - 2475

4.3 5-category dataset results 85

Figure 4.15: Results of the parameter sweep over the number of Gaussian functions for the GMM
for the 5-category dataset dataset, considering the µ and σ FV components

4.3.5 Comparative discussion of the overall results for 5-category dataset

Initial analysis of the 5-category dataset yielded surprising results, with all methods achieving

remarkable accuracy and the FV method again pulling ahead with an outstanding 0.91 accuracy

score for the labelled training. As mentioned, the ConvNet struggles to correctly classify images

from the galaxy class. The small number of labelled images and training iterations do not allow

the thousands of filters in the convolutional layers to correctly learn distinctive features which can

be used to identify and correctly classify objects of this class. Conversely, due to its regularity

and distinctiveness from the other classes, the SPM formulations achieved high class accuracy for

this particular category. PLSA performed comparatively worse to the other two tested methods,

hinting at limitations from this model at dealing with more complex problems, especially from

a statistical standpoint (multinomial models being perhaps limited in their statistical description

compared to the GMM used by the FV method). Furthermore, the similarity between all results

also hints towards limitations or certain properties of the low-level feature descriptors. The same

conclusion can be drawn about the linear SVM classifier, although this is less likely. Despite the

poor performance of the pre-trained ConvNet on the galaxy category, the TSVM solution was still

unable to surpass the performance of the ensembles which utilized it to guide the semi-supervised

learning step, the ConvNet likely assisting with classification for the two pairs of classes (cat+dog

and fish+whale) in which the SVM tends to struggle the most.

86 Results and discussion

4.3.5.1 Fully-trained ConvNet

In order to explore the true prowess of the deep ConvNet architecture when the limitation on the

number of labelled examples is lifted and to verify whether the poor class accuracy obtained for

the galaxy class is result of the limited amount of labelled data or the model itself, the ConvNet

model was trained with 80000 images from the labelled data of all classes. These were loaded onto

the RAM memory and further augmented through the transformations described in 3.2, resulting

in over 800000 training examples. This version of the ConvNet model achieved a staggering

accuracy score of 0.9752, with only 310 misclassified images over the 12500 present in the testing

set, and with no bias towards the galaxy category. It’s thus shown that the poor performance

of pre-trained ConvNet models stems from insufficient labelled data and excessively dissimilar

classification tasks.

4.4 Computational costs and training time

One last important consideration pertains to the computational costs and overall time required to

train and test the different models. Creating of the PCA-SIFT keypoints is a relatively lengthy

affair (took slightly over 3 hours for the 12500 images of the 5-category dataset), but is only

required once per dataset, even if the visual vocabulary has to be recreated or if the SVM classifier

has to be retrained. As stated, the ConvNet runs on a Nvidia GPU. Numerical computations on the

GPU are considerably faster than those on processors due to the reduced number of system calls.

This fact should be omnipresent when comparing runtime between processor and GPU operations.

Furthermore, the ConvNet used large amounts of RAM memory for file I/O operations (over 12

GB). With this in mind, tables 4.29 and 4.30 can be briefly analysed. It can be verified that

despite its superior performance in terms of accuracy, FV is the slowest of the methods, by a wide

margin. Due to the density of its feature vectors, it’s also amongst the methods that require the

most memory. By contrast, the SPM+SC solution requires the least memory and overall one of

the fastest; whilst the reported runtimes often exceeded 6 hours, this is partially due to the lack

of multi-core support in Matlab. Were this option available, the runtime would be under 2 hours.

To put in perspective the large advantage of GPU processing, training for the last layer of the

pre-trained ConvNet took slightly over 2 hours on the Nvidia GTX970, but would take in excess

of 70 on the processor. Full training of the ConvNet model took over 90 hours (and an additional

5 hours to classify all data points) with GPU computations, but would take over one month of

uninterrupted calculations if it was to be carried out on the i7 processor. The disadvantages of the

χ2 SVM kernel are also made evident in table 4.30, where it’s observed that it takes over three

times as long to complete its training when compared to the linear kernel. A general rule of thumb

for the methods tested is that better accuracy typically comes at a cost of time and computational

resources- especially when considering ConvNets.

4.5 Closing Considerations 87

Table 4.29: Table with typical runtime for visual vocabulary generation and ConvNet training for
the 5-category dataset

Method Time Multi-Core GPU SSD RAM
SPM+VQ 3hr yes no yes no
SPM+SC 6hr no no yes no

SPM+LDA 4.5hr yes no yes no
SPM+pLSA 3hr yes no yes no
GMM+FV >9hr yes no yes yes

Pre-trained ConvNet 2.5hr N/A yes no yes

Table 4.30: Table with typical training time for the two used SVM kernels for the 5-category
dataset

Method Time
χ2 >20hr

linear 6hr

4.5 Closing Considerations

As expected, ConvNets remain unparalleled in terms of performance. If sufficient computational

resources and labelled examples are available, they’ll always outperform any other of the presented

methods. However, when labelled data is limited, simpler SPM formulations paired up with gen-

erative methods offer a viable and computationally lighter solution. These can be used ether in

alternative to pre-trained ConvNet models or in conjunction with these, in an ensemble that uti-

lizes the strong points of either approach. One thing to note is that the regularity of classes (that

is, how similar elements of each class are) is correlated with accuracy. This is an obvious result,

as variance within the same class results in more features being captured in each individual image,

and also in the possibility of some of those features being similar to those present in other classes

(as is the case, for example, for the cat and dog categories). If a class is very regular, it’s also very

easily predicted as some very salient, distinct features can be found across all elements of such a

class. With this in mind, one could split a large class with high variance in its images (again, the

cat and dog class present good examples) into multiple subclasses (distinguishing between races,

for example, as is done in the Imagenet dataset). While this would result in less labelled exam-

ple per each of these new subclasses, as the presented methodology showed, a sufficient amount

of unlabelled data and pre-trained ConvNet models or generative methods can overcome this is-

sue. Sadly, such a process would initially require manually re-labelling the labelled images for

those categories, which is still very undesirable and proved simple too onerous for the time frame

available for this project. Considerations about the nature of dataset, the idiosyncrasies of the

classification task and limiting factors related to computational resources and time available can

weight in favor of some methods and detriment of others. A trade-of was ultimately shown to be

present when choosing which method better fits a specific problem.

88 Results and discussion

Table 4.31: Summary table of the best accuracy of each model in each dataset

XXXXXXXXXXXMethod
Dataset Bin 5-class

SPM+VQ 0.776 0.849
SPM+SC 0.817 0.904

SPM+pLSA 0.827 0.884
SPM+LDA 0.803 -

FV 0.832 0.91
Pre-trained ConvNet 0.945 0.861/0.975

Chapter 5

Conclusions and Future Work

5.1 Conclusions

This study was based on three fundamental questions: whether pre-trained, out-the-box ConvNet

could be used to assist semi-supervised learning, whether multiple generative models, namely

pLSA, LDA, FV and SC were also viable in increasing performance in a semi-supervised approach

and how would these both stack against one another and be potentially used in a single ensemble.

Given the limitations on available computational resources and the modest time frame in which

the project was developed, these questions were answered satisfactorily. The results validate the

hypothesis that pre-trained ConvNet models can be quite useful in providing an earlier estimation

of the class to which an unlabelled image belongs, for posterior use in other models. Furthermore,

it was shown that, through some empirical tuning of various weight parameters, the class scores

generated by these pre-trained models can offer a satisfactory estimation of the confidence for the

tentative labelling provided by the ConvNet. Through the various experiments in both datasets,

the performance of multiple SPM models with generative methods creating a visual vocabulary on

a dataset with a mixture of labelled and unlabelled data was either kept at a competitive accuracy

level or, in some cases, surpassed that obtained in a completely labelled dataset. Particularly,

pLSA and FV formulations showed slight performance increases in the labelled and unlabelled

mixed sets (of slight over 1%), whilst the remaining models showed only very minimal accuracy

losses (less than 2% in all cases). This means that the methodology proposed was able to replaced

the costly labelled data with unlabelled data, keeping acceptable performance through the usage of

a pre-trained model, as originally intended. Furthermore, the study on multiple generative models

showed how the statistical formulation of the features extracted by common descriptors like SIFT

captures richer information in smaller, sparser feature vectors, increasing both the performance and

decreasing the training time for the SVM for all methods (through the replacement of non-linear

kernels with linear kernels). The SC, pLSA and FV formulations all showed promising results, the

former two with a considerable gain in performance and reduced computational costs compared to

more common VQ discriminative approaches, and the latter achieving the best results for the more

realistic, 5-category dataset. Although with sufficient labelled data ConvNets remain unparalleled

89

90 Conclusions and Future Work

in terms of accuracy, it was shown that for limited data, solution utilizing an appropriately selected

pre-trained ConvNet model and one of various generative models for visual vocabulary generation

and feature reduction can result in a model which achieves acceptable accuracy, with the added

advantage of much shorter computational requirements and training time (in particular, without

the need for massive amounts of RAM memory and GPUs dedicated to the training process, as is

the case with ConvNets). It was also shown that a small amount of generated, fictitious feature

vectors, utilizing the generated probability distributions as estimators, can result in a small increase

in performance. While none of the ensembles were able to achieve state of the art results (with

the ConvNets remaining uncontested in performance), an alternative method which successfully

utilizes unlabelled data for applications where labelled data is scarce and computational resources

are limited was achieved. Overall, this study shows that generative methods have much promise,

both in semi-supervised approaches or as part of larger, discriminative ensembles.

5.2 Future Work

There’s a number of interesting directions in which this study could be expanded. Some notable

ones include:

• Better study of the low level descriptors and how they influence the various methods built on

top of the keypoints they extract-this includes other types of desriptors, influence of patch

sizes and relation to other, more advanced preprocessing operations;

• More thorough sweeps over the multiple parameters of the various generative models;

• Exploring the use of Canonical Cross Correlation instead of Principal Component Analysis;

• Exploring the usage of more sophisticated statistical formulations for generation of fictitious

feature vectors;

• Creating more complex ensembles to bolster the performance of ConvNets by using these

generative models- for instance, by utilizing them, potentially with deconv layers, to create

similar ensembles between each convolutional layer of the deep network;

• Following the previous point, explore the possibility of a truly semi-supervised deep Con-

vNet;

Furthermore, repeating the various tests on other, larger datasets- specifically the ImageNet

dataset- to further test and validate the various models could be carried out. At the time of writ-

ing, tests on a 20-category dataset are being carried out but, unfortunately, these results were not

agglomerated in time to be presented in this document.

Bibliography

[1] R. C. Gonzalez, R. E. Woods, and B. R. Masters, “Digital Image Processing, Third Edition.”

Journal of biomedical optics, vol. 14, no. 2, pp. 1–976, 2009.

[2] J. Canny, “A Computational Approach to Edge Detection,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679–698, 1986.

[3] R. O. Duda and P. E. Hart, “Use of the Hough Transformation To Detect Lines and Curves

in Pictures,” vol. 15, no. 1, 1972.

[4] C. M. Bishop, Neural networks for pattern recognition, 2005, vol. 92.

[5] P. Paclík, J. Novovičová, and R. P. W. Duin, “A trainable similarity measure for image clas-

sification,” Proceedings - International Conference on Pattern Recognition, vol. 3, no. c, pp.

391–394, 2006.

[6] S. Ertekin, L. Bottou, and C. L. Giles, “Fast Classification with Online Support

Vector Machines,” Unpublished Manuscript, 2010. [Online]. Available: papers2:

//publication/uuid/A70F175F-7DDF-4EE2-8C77-C357087C5753

[7] M. Guillaumin, J. Verbeek, and C. Schmid, “Multimodal Semi-Supervised Learning

for Image Classification,” Cvpr, pp. 902–909, 2010. [Online]. Available: http:

//www.computer.org/portal/web/csdl/doi/10.1109/CVPR.2010.5540120

[8] L. I. Smith, “A tutorial on Principal Components Analysis Introduction,” Statis-

tics, vol. 51, p. 52, 2002. [Online]. Available: http://www.mendeley.com/research/

computational-genome-analysis-an-introduction-statistics-for-biology-and-health/

[9] S. Theodoridis, Machine Learning A Bayesian and Optimization Perspective, 1st ed., 2015,

vol. 53.

[10] D. G. Lowe, “Distinctive image features from scale invariant keypoints,” Int’l

Journal of Computer Vision, vol. 60, pp. 91–11 020 042, 2004. [Online]. Available:

http://portal.acm.org/citation.cfm?id=996342

[11] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up robust features,” Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), vol. 3951 LNCS, pp. 404–417, 2006.

91

papers2://publication/uuid/A70F175F-7DDF-4EE2-8C77-C357087C5753
papers2://publication/uuid/A70F175F-7DDF-4EE2-8C77-C357087C5753
http://www.computer.org/portal/web/csdl/doi/10.1109/CVPR.2010.5540120
http://www.computer.org/portal/web/csdl/doi/10.1109/CVPR.2010.5540120
http://www.mendeley.com/research/computational-genome-analysis-an-introduction-statistics-for-biology-and-health/
http://www.mendeley.com/research/computational-genome-analysis-an-introduction-statistics-for-biology-and-health/
http://portal.acm.org/citation.cfm?id=996342

92 BIBLIOGRAPHY

[12] B. T. N. Dalal, “Histograms of Oriented Gradients for Human Detection.” IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2005.

[13] C. Wengert and M. Douze, “Bag-of-colors for improved image search,” 2011.

[14] G. Pass, R. Zabih, and J. Miller, “Comparing images using color coherence vectors,”

Proceedings of the fourth ACM international conference on Multimedia (MULTIMEDIA

’96), pp. 65–73, 1996. [Online]. Available: http://dl.acm.org/citation.cfm?id=244130.

244148

[15] S. O’Hara and B. B. a. Draper, “Introduction to the bag of features paradigm for image

classification and retrieval,” arXiv preprint arXiv:1101.3354, no. July, pp. 1–25, 2011.

[16] C. B. Gabriela Csurka, Chris Dance, Lixin Fan, Jutta Willamowski, “Visual

Categorization with Bags of Keypoints,” International Workshop on Statistical Learning

in Computer Vision, pp. 1–22, 2004. [Online]. Available: http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.72.604http://www.ncbi.nlm.nih.gov/pubmed/14199369http:

//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1368854

[17] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid match-

ing for recognizing natural scene categories,” Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178, 2006.

[18] J. Sanchez, F. Perronnin, T. Mensink, J. Verbeek, I. Classification, S. Jorge, P. Thomas, and

M. Jakob, “Image Classification with the Fisher Vector : Theory and Practice To cite this

version : Image Classification with the Fisher Vector : Theory and Practice,” 2013.

[19] G. Tolias, “Fisher Vectors,” no. September, 2011.

[20] X. Zhu and A. B. Goldberg, “Introduction to Semi-Supervised Learning,” Synthesis

Lectures on Artificial Intelligence and Machine Learning, vol. 3, no. 1, pp.

1–130, 2009. [Online]. Available: http://www.morganclaypool.com/doi/abs/10.2200/

S00196ED1V01Y200906AIM006

[21] S. Antipolis, “Bayesian image classification,” Image and Vision Computing, vol. 14, pp.

285–295, 1996.

[22] Z. Ghahramani, “Probabilistic Modelling, Machine Learning, and the Information

Revolution,” Department of Engineering, University of Cambridge„ Tech. Rep.,

2012. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.359.

7612{&}rep=rep1{&}type=pdf

[23] R. Sundberg, “An Iterative Method for Solution of the Likelihood Equations for Incomplete

Data From Exponential Families,” p. 10, 1976.

http://dl.acm.org/citation.cfm?id=244130.244148
http://dl.acm.org/citation.cfm?id=244130.244148
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.604 http://www.ncbi.nlm.nih.gov/pubmed/14199369 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1368854
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.604 http://www.ncbi.nlm.nih.gov/pubmed/14199369 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1368854
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.604 http://www.ncbi.nlm.nih.gov/pubmed/14199369 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1368854
http://www.morganclaypool.com/doi/abs/10.2200/S00196ED1V01Y200906AIM006
http://www.morganclaypool.com/doi/abs/10.2200/S00196ED1V01Y200906AIM006
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.359.7612{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.359.7612{&}rep=rep1{&}type=pdf

BIBLIOGRAPHY 93

[24] M. Dixit, N. Rasiwasia, and N. Vasconcelos, “Adapted Gaussian Models for Image

Classification,” Computer Vision and Pattern Recognition (CVPR), 2011. [Online].

Available: http://www.svcl.ucsd.edu/publications/conference/2011/AdaptedGMM.pdf

[25] A. Najmi and R. M. Gray, “Image classification by a Two Dimensional Hidden Markov

Model Hidden Markov Chain,” Measurement.

[26] M. Mouret, C. Solnon, and C. Wolf, “Classification of Images Based on Hidden Markov

Models,” 2009 Seventh International Workshop on Content-Based Multimedia Indexing,

2009.

[27] X. Chen, Y. Qi, B. Bai, Q. Lin, and J. G. Carbonell, “Sparse latent semantic analysis,”

Proceedings of the 11th SIAM International Conference on Data Mining, SDM 2011, pp.

474–485, 2011. [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.

0-84859173440{&}partnerID=tZOtx3y1

[28] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,” Journal

of Machine Learning Research, vol. 3, no. 4-5, pp. 993–1022, 2012. [Online].

Available: http://www.cs.princeton.edu/{~}blei/lda-c/$\delimiter"026E30F$npapers2:

//publication/doi/10.1162/jmlr.2003.3.4-5.993$\delimiter"026E30F$npapers2://publication/

uuid/4001D0D9-4F9C-4D8F-AE49-46ED6A224F4A$\delimiter"026E30F$npapers2:

//publication/uuid/7D10D5DA-B421-4D94-A3ED-028107B7F9B6$\

delimiter"026E30F$nhttp://www.crossref.org/jmlr

[29] T. Hofmann, “Probabilistic Latent Semantic Indexing,” Proceedings of the Twent y-Second

Annual International SIGIR Conference on Research and Development in Information Re-

trieval, 2010.

[30] C.-h. Lee and K.-c. Chiang, “Latent Semantic Analysis for Classifying Scene Images,” Pro-

ceedings of the International MultiConference of Engineers and Computer Scientists 2010,

vol. II, pp. 17–20, 2010.

[31] L. Hong, “A Tutorial on Probabilistic Latent Semantic Analysis,” Imagine, no. 2, pp. 1–11,

2010.

[32] A. Y. N. Honglak Lee, Alexis Battle, Rajat Raina, H. Lee, A. Battle, R. Raina,

and A. Y. Ng, “Efficient Sparse coding algorithms,” Advances in nerual infromation

processing systems, vol. 19, no. 2, pp. 801–808, 2006. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.69.2112{&}rep=rep1{&}type=

pdf$\delimiter"026E30F$nhttp://books.nips.cc/papers/txt/nips19/NIPS2006{_}0878.txt

[33] M. F. Afonso, “Exploring visual content in social networks,” 2015.

[34] T.-F. Wu, C.-J. Lin, and R. C. Weng, “Probability Estimates for Multi-class Classification by

Pairwise Coupling,” Proceedings of the IEEE Computer Society Conference on Computer

http://www.svcl.ucsd.edu/publications/conference/2011/AdaptedGMM.pdf
http://www.scopus.com/inward/record.url?eid=2-s2.0-84859173440{&}partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84859173440{&}partnerID=tZOtx3y1
http://www.cs.princeton.edu/{~}blei/lda-c/$\delimiter "026E30F $npapers2://publication/doi/10.1162/jmlr.2003.3.4-5.993$\delimiter "026E30F $npapers2://publication/uuid/4001D0D9-4F9C-4D8F-AE49-46ED6A224F4A$\delimiter "026E30F $npapers2://publication/uuid/7D10D5DA-B421-4D94-A3ED-028107B7F9B6$\delimiter "026E30F $nhttp://www.crossref.org/jmlr
http://www.cs.princeton.edu/{~}blei/lda-c/$\delimiter "026E30F $npapers2://publication/doi/10.1162/jmlr.2003.3.4-5.993$\delimiter "026E30F $npapers2://publication/uuid/4001D0D9-4F9C-4D8F-AE49-46ED6A224F4A$\delimiter "026E30F $npapers2://publication/uuid/7D10D5DA-B421-4D94-A3ED-028107B7F9B6$\delimiter "026E30F $nhttp://www.crossref.org/jmlr
http://www.cs.princeton.edu/{~}blei/lda-c/$\delimiter "026E30F $npapers2://publication/doi/10.1162/jmlr.2003.3.4-5.993$\delimiter "026E30F $npapers2://publication/uuid/4001D0D9-4F9C-4D8F-AE49-46ED6A224F4A$\delimiter "026E30F $npapers2://publication/uuid/7D10D5DA-B421-4D94-A3ED-028107B7F9B6$\delimiter "026E30F $nhttp://www.crossref.org/jmlr
http://www.cs.princeton.edu/{~}blei/lda-c/$\delimiter "026E30F $npapers2://publication/doi/10.1162/jmlr.2003.3.4-5.993$\delimiter "026E30F $npapers2://publication/uuid/4001D0D9-4F9C-4D8F-AE49-46ED6A224F4A$\delimiter "026E30F $npapers2://publication/uuid/7D10D5DA-B421-4D94-A3ED-028107B7F9B6$\delimiter "026E30F $nhttp://www.crossref.org/jmlr
http://www.cs.princeton.edu/{~}blei/lda-c/$\delimiter "026E30F $npapers2://publication/doi/10.1162/jmlr.2003.3.4-5.993$\delimiter "026E30F $npapers2://publication/uuid/4001D0D9-4F9C-4D8F-AE49-46ED6A224F4A$\delimiter "026E30F $npapers2://publication/uuid/7D10D5DA-B421-4D94-A3ED-028107B7F9B6$\delimiter "026E30F $nhttp://www.crossref.org/jmlr
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.69.2112{&}rep=rep1{&}type=pdf$\delimiter "026E30F $nhttp://books.nips.cc/papers/txt/nips19/NIPS2006{_}0878.txt
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.69.2112{&}rep=rep1{&}type=pdf$\delimiter "026E30F $nhttp://books.nips.cc/papers/txt/nips19/NIPS2006{_}0878.txt

94 BIBLIOGRAPHY

Vision and Pattern Recognition, vol. 2, no. 2, pp. 2301–2311, 2010. [Online]. Available:

http://link.springer.com/chapter/10.1007/3-540-45054-8{_}27$\delimiter"026E30F$nhttp:

//computer.org/tpami/tp2002/i0971abs.htm$\delimiter"026E30F$nhttp://eprints.

pascal-network.org/archive/00008315/$\delimiter"026E30F$nhttp://www.csie.ntu.edu.

tw/{~}cjlin/papers/svmprob/svmprob.pdf$\delimiter"026E30F$nciteulike-article-id:

3047126$\delimiter"026E30F$nhttp

[35] Dan Oneata, “Probabilistic latent semantic analysis,” Proceedings of the Fifteenth conference

on Uncertainty . . . , pp. 1–7, 1999. [Online]. Available: http://dl.acm.org/citation.cfm?id=

2073829

[36] X. Wu, V. Kumar, Q. J. Ross, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan,

A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg,

Top 10 algorithms in data mining, 2008, vol. 14, no. 1. [Online]. Available:

http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-37549018049{&}partnerID=

7tDmEqzL{&}rel=3.0.0{&}md5=13fa5a34a4668388a6e467930d0b397a

[37] “Cluster kernels for semi supervised learning .”

[38] F. Harrell, Regression modeling strategies: with applications to linear models, logistic

regression, and survival analysis, 2001. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S1885585711002726

[39] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp.

273–297, 1995.

[40] a. J. Smola and B. Scholkopf, “A tutorial on support vector regression,” Statistics

and Computing, vol. 14, no. 3, pp. 199–222, 2004. [Online]. Available: {\T1\

textless}GotoISI{\T1\textgreater}://WOS:000222770200003

[41] R. Batuwita and V. Palade, “Class Imbalance Learning Methods for Support Vector,” Imbal-

anced Learning: Foundations, Algorithms, Applications, pp. 83–100, 2013.

[42] T. Joachims, “Transductive Inference for Text Classification using Support Vector Ma-

chines,” 16th International Conference on Machine Learning (ICML-99), pp. 200–209, 1999.

[43] J. Wang, X. Shen, and W. Pan, “On Transductive Support Vector Ma-

chines,” Prediction and Discovery, no. 1998, 2005. [Online]. Available:

http://www.google.pt/books?hl=pt-PT{&}lr={&}id=0xK9AwAAQBAJ{&}oi=fnd{&}pg=

PA7{&}ots=sNdpzxtJOy{&}sig=UmHQIRqnQTiuh7YEoqPq5PgUtQ4{&}redir{_}esc=

y{#}v=onepage{&}q{&}f=false

[44] C. Szegedy, W. Zaremba, and I. Sutskever, “Intriguing properties of neural networks,” arXiv

preprint arXiv: . . . , pp. 1–10, 2013. [Online]. Available: http://arxiv.org/abs/1312.6199

http://link.springer.com/chapter/10.1007/3-540-45054-8{_}27$\delimiter "026E30F $nhttp://computer.org/tpami/tp2002/i0971abs.htm$\delimiter "026E30F $nhttp://eprints.pascal-network.org/archive/00008315/$\delimiter "026E30F $nhttp://www.csie.ntu.edu.tw/{~}cjlin/papers/svmprob/svmprob.pdf$\delimiter "026E30F $nciteulike-article-id:3047126$\delimiter "026E30F $nhttp
http://link.springer.com/chapter/10.1007/3-540-45054-8{_}27$\delimiter "026E30F $nhttp://computer.org/tpami/tp2002/i0971abs.htm$\delimiter "026E30F $nhttp://eprints.pascal-network.org/archive/00008315/$\delimiter "026E30F $nhttp://www.csie.ntu.edu.tw/{~}cjlin/papers/svmprob/svmprob.pdf$\delimiter "026E30F $nciteulike-article-id:3047126$\delimiter "026E30F $nhttp
http://link.springer.com/chapter/10.1007/3-540-45054-8{_}27$\delimiter "026E30F $nhttp://computer.org/tpami/tp2002/i0971abs.htm$\delimiter "026E30F $nhttp://eprints.pascal-network.org/archive/00008315/$\delimiter "026E30F $nhttp://www.csie.ntu.edu.tw/{~}cjlin/papers/svmprob/svmprob.pdf$\delimiter "026E30F $nciteulike-article-id:3047126$\delimiter "026E30F $nhttp
http://link.springer.com/chapter/10.1007/3-540-45054-8{_}27$\delimiter "026E30F $nhttp://computer.org/tpami/tp2002/i0971abs.htm$\delimiter "026E30F $nhttp://eprints.pascal-network.org/archive/00008315/$\delimiter "026E30F $nhttp://www.csie.ntu.edu.tw/{~}cjlin/papers/svmprob/svmprob.pdf$\delimiter "026E30F $nciteulike-article-id:3047126$\delimiter "026E30F $nhttp
http://link.springer.com/chapter/10.1007/3-540-45054-8{_}27$\delimiter "026E30F $nhttp://computer.org/tpami/tp2002/i0971abs.htm$\delimiter "026E30F $nhttp://eprints.pascal-network.org/archive/00008315/$\delimiter "026E30F $nhttp://www.csie.ntu.edu.tw/{~}cjlin/papers/svmprob/svmprob.pdf$\delimiter "026E30F $nciteulike-article-id:3047126$\delimiter "026E30F $nhttp
http://dl.acm.org/citation.cfm?id=2073829
http://dl.acm.org/citation.cfm?id=2073829
http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-37549018049{&}partnerID=7tDmEqzL{&}rel=3.0.0{&}md5=13fa5a34a4668388a6e467930d0b397a
http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-37549018049{&}partnerID=7tDmEqzL{&}rel=3.0.0{&}md5=13fa5a34a4668388a6e467930d0b397a
http://www.sciencedirect.com/science/article/pii/S1885585711002726
http://www.sciencedirect.com/science/article/pii/S1885585711002726
{\T1\textless }Go to ISI{\T1\textgreater }://WOS:000222770200003
{\T1\textless }Go to ISI{\T1\textgreater }://WOS:000222770200003
http://www.google.pt/books?hl=pt-PT{&}lr={&}id=0xK9AwAAQBAJ{&}oi=fnd{&}pg=PA7{&}ots=sNdpzxtJOy{&}sig=UmHQIRqnQTiuh7YEoqPq5PgUtQ4{&}redir{_}esc=y{#}v=onepage{&}q{&}f=false
http://www.google.pt/books?hl=pt-PT{&}lr={&}id=0xK9AwAAQBAJ{&}oi=fnd{&}pg=PA7{&}ots=sNdpzxtJOy{&}sig=UmHQIRqnQTiuh7YEoqPq5PgUtQ4{&}redir{_}esc=y{#}v=onepage{&}q{&}f=false
http://www.google.pt/books?hl=pt-PT{&}lr={&}id=0xK9AwAAQBAJ{&}oi=fnd{&}pg=PA7{&}ots=sNdpzxtJOy{&}sig=UmHQIRqnQTiuh7YEoqPq5PgUtQ4{&}redir{_}esc=y{#}v=onepage{&}q{&}f=false
http://arxiv.org/abs/1312.6199

BIBLIOGRAPHY 95

[45] Karpathy@cs.stanford.edu, “CS231n Convolutional Neural Networks for Visual Recogni-

tion.” [Online]. Available: http://cs231n.github.io/convolutional-networks/

[46] J. Dai, Y. Lu, and Y. N. Wu, “Generative Modeling of Convolutional Neural Networks,” Iclr

2015, pp. 1–13, 2015.

[47] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional

Networks arXiv:1311.2901v3 [cs.CV] 28 Nov 2013,” Computer Vision–ECCV 2014,

vol. 8689, pp. 818–833, 2014. [Online]. Available: http://link.springer.com/10.

1007/978-3-319-10590-1{_}53$\delimiter"026E30F$nhttp://arxiv.org/abs/1311.2901$\

delimiter"026E30F$npapers3://publication/uuid/44feb4b1-873a-4443-8baa-1730ecd16291

[48] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convo-

lutional Neural Networks,” Advances In Neural Information Processing Systems, pp. 1–9,

2012.

[49] C. Szegedy, W. Liu, Y. Jia, and P. Sermanet, “Going deeper with convolutions,”

arXiv preprint arXiv: 1409.4842, 2014. [Online]. Available: /citations?view{_}op=

view{_}citation{&}continue=/scholar?hl=ja{&}as{_}sdt=0,5{&}scilib=1{&}citilm=

1{&}citation{_}for{_}view=KtmM-dAAAAAJ:JV2RwH3{_}ST0C{&}hl=ja{&}oi=p

[50] Y. Lecun, “What’s Wrong With Deep Learning?” 2015. [Online]. Available:

http://yann.lecun.com

[51] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout :

A Simple Way to Prevent Neural Networks from Overfitting,” Journal of Machine Learning

Research (JMLR), vol. 15, pp. 1929–1958, 2014.

[52] N. Srivastava, “Improving neural networks with dropout,” Thesis, 2013. [Online]. Available:

http://www.cs.toronto.edu/{~}nitish/msc{_}thesis.pdf

[53] “CVPR 2015 open access.” [Online]. Available: http://www.cv-foundation.org/openaccess/

CVPR2015.py

[54] Pierre Chapuis, “Quora - What are the major open problems in computer vision?” [Online].

Available: https://www.quora.com/What-are-the-major-open-problems-in-computer-vision

[55] “ABOUT | OpenCV.” [Online]. Available: http://opencv.org/about.html

[56] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Dar-

rell, and U. C. B. Eecs, “Caffe: Convolutional Architecture for Fast Feature Embedding,”

2014.

[57] The Theano Development Team, R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller,

D. Bahdanau, N. Ballas, F. Bastien, J. Bayer, A. Belikov, A. Belopolsky, Y. Bengio,

A. Bergeron, J. Bergstra, V. Bisson, J. B. Snyder, N. Bouchard, N. Boulanger-Lewandowski,

http://cs231n.github.io/convolutional-networks/
http://link.springer.com/10.1007/978-3-319-10590-1{_}53$\delimiter "026E30F $nhttp://arxiv.org/abs/1311.2901$\delimiter "026E30F $npapers3://publication/uuid/44feb4b1-873a-4443-8baa-1730ecd16291
http://link.springer.com/10.1007/978-3-319-10590-1{_}53$\delimiter "026E30F $nhttp://arxiv.org/abs/1311.2901$\delimiter "026E30F $npapers3://publication/uuid/44feb4b1-873a-4443-8baa-1730ecd16291
http://link.springer.com/10.1007/978-3-319-10590-1{_}53$\delimiter "026E30F $nhttp://arxiv.org/abs/1311.2901$\delimiter "026E30F $npapers3://publication/uuid/44feb4b1-873a-4443-8baa-1730ecd16291
/citations?view{_}op=view{_}citation{&}continue=/scholar?hl=ja{&}as{_}sdt=0,5{&}scilib=1{&}citilm=1{&}citation{_}for{_}view=KtmM-dAAAAAJ:JV2RwH3{_}ST0C{&}hl=ja{&}oi=p
/citations?view{_}op=view{_}citation{&}continue=/scholar?hl=ja{&}as{_}sdt=0,5{&}scilib=1{&}citilm=1{&}citation{_}for{_}view=KtmM-dAAAAAJ:JV2RwH3{_}ST0C{&}hl=ja{&}oi=p
/citations?view{_}op=view{_}citation{&}continue=/scholar?hl=ja{&}as{_}sdt=0,5{&}scilib=1{&}citilm=1{&}citation{_}for{_}view=KtmM-dAAAAAJ:JV2RwH3{_}ST0C{&}hl=ja{&}oi=p
http://yann.lecun.com
http://www.cs.toronto.edu/{~}nitish/msc{_}thesis.pdf
http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py
https://www.quora.com/What-are-the-major-open-problems-in-computer-vision
http://opencv.org/about.html

96 BIBLIOGRAPHY

X. Bouthillier, A. de Brébisson, O. Breuleux, P.-L. Carrier, K. Cho, J. Chorowski,

P. Christiano, T. Cooijmans, M.-A. Côté, M. Côté, A. Courville, Y. N. Dauphin,

O. Delalleau, J. Demouth, G. Desjardins, S. Dieleman, L. Dinh, M. Ducoffe, V. Dumoulin,

S. E. Kahou, D. Erhan, Z. Fan, O. Firat, M. Germain, X. Glorot, I. Goodfellow, M. Graham,

C. Gulcehre, P. Hamel, I. Harlouchet, J.-P. Heng, B. Hidasi, S. Honari, A. Jain, S. Jean,

K. Jia, M. Korobov, V. Kulkarni, A. Lamb, P. Lamblin, E. Larsen, C. Laurent, S. Lee,

S. Lefrancois, S. Lemieux, N. Léonard, Z. Lin, J. A. Livezey, C. Lorenz, J. Lowin, Q. Ma,

P.-A. Manzagol, O. Mastropietro, R. T. McGibbon, R. Memisevic, B. van Merriënboer,

V. Michalski, M. Mirza, A. Orlandi, C. Pal, R. Pascanu, M. Pezeshki, C. Raffel,

D. Renshaw, M. Rocklin, A. Romero, M. Roth, P. Sadowski, J. Salvatier, F. Savard,

J. Schlüter, J. Schulman, G. Schwartz, I. V. Serban, D. Serdyuk, S. Shabanian, É. Simon,

S. Spieckermann, S. R. Subramanyam, J. Sygnowski, J. Tanguay, G. van Tulder, J. Turian,

S. Urban, P. Vincent, F. Visin, H. de Vries, D. Warde-Farley, D. J. Webb, M. Willson,

K. Xu, L. Xue, L. Yao, S. Zhang, and Y. Zhang, “Theano: A Python framework

for fast computation of mathematical expressions,” p. 19, 2016. [Online]. Available:

http://arxiv.org/abs/1605.02688

[58] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine Learning in Python,”

. . . of Machine Learning . . . , vol. 12, pp. 2825–2830, 2012. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=2078195$\delimiter"026E30F$nhttp://arxiv.org/abs/1201.0490

[59] I. Goodfellow and D. Warde-Farley, “Pylearn2: a machine learning research library,” arXiv

preprint arXiv:1308.4214, pp. 1–9, 2013. [Online]. Available: http://arxiv.org/abs/1308.4214

[60] A. Vedaldi, B. Fulkerson, K. Lenc, D. Perrone, M. Perdoch, M. Sulc, and

H. Sarbortova, “VLFeat.org: Fisher Vector and VLAD Tutorials.” [Online]. Available:

http://www.vlfeat.org/overview/encodings.html

[61] “MATLAB - The Language of Technical Computing.” [Online]. Available: http:

//www.mathworks.com/products/matlab/?s{_}tid=hp{_}fp{_}ml

[62] K. B. Petersen and M. S. Pedersen, “The Matrix CookBook,” pp. 1–25, 2006.

[63] “Pylearn2 - SGD implementations.” [Online]. Available: https://github.com/lisa-lab/

pylearn2/pull/136

[64] J. Martens and G. Hinton, “On the importance of initialization and momentum in deep learn-

ing,” no. 2010, 2012.

[65] J. Yang, K. Yu, Y. Gong and T. Huang., “Linear spatial pyra- mid matching using sparse

coding for image classification,” Cvpr’09, 2009.

http://arxiv.org/abs/1605.02688
http://dl.acm.org/citation.cfm?id=2078195$\delimiter "026E30F $nhttp://arxiv.org/abs/1201.0490
http://dl.acm.org/citation.cfm?id=2078195$\delimiter "026E30F $nhttp://arxiv.org/abs/1201.0490
http://arxiv.org/abs/1308.4214
http://www.vlfeat.org/overview/encodings.html
http://www.mathworks.com/products/matlab/?s{_}tid=hp{_}fp{_}ml
http://www.mathworks.com/products/matlab/?s{_}tid=hp{_}fp{_}ml
https://github.com/lisa-lab/pylearn2/pull/136
https://github.com/lisa-lab/pylearn2/pull/136

BIBLIOGRAPHY 97

[66] a. Bosch, A. Zisserman, and X. Munoz, “Scene classification using a hybrid generative/

discriminative approach,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 30, no. 4, pp. 712–727, 2008.

[67] A. Goldbloom and B. Hamner, “Kaggle main page.” [Online]. Available: https:

//www.kaggle.com/

[68] “Dogs vs. Cats.” [Online]. Available: https://www.kaggle.com/c/dogs-vs-cats

[69] “Galaxy Zoo - The Galaxy Challenge.” [Online]. Available: https://www.kaggle.com/c/

galaxy-zoo-the-galaxy-challenge

[70] L. Fei-Fei, K. Li, O. Russakovsky, J. Krause, J. Deng, and A. Berg, “About ImageNet.”

[Online]. Available: http://image-net.org/about-overview

[71] “Sander Dieleman - CUDA GPU acceleration for Theano.” [Online]. Available:

http://benanne.github.io/2014/04/03/faster-convolutions-in-theano.html

[72] “CUDA Convnet acceleration.” [Online]. Available: https://code.google.com/archive/p/

cuda-convnet2/

[73] A. Krizhevsky, “One weird trick for parallelizing convolutional neural networks,” arXiv

preprint, pp. 1–7, 2014. [Online]. Available: http://arxiv.org/abs/1404.5997

[74] “ConvNetJS Trainer Comparison on MNIST.” [Online]. Available: https://cs.stanford.edu/

people/karpathy/convnetjs/demo/trainers.html

[75] M. D. Zeiler, “ADADELTA: AN ADAPTIVE LEARNING RATE METHOD.”

[76] “The Zen of Gradient Descent.” [Online]. Available: s.cmu.edu/~aarti/Class/10701_

Spring14/slides/DeepLearning.pdf

[77] U. Montreal, “ADVANCES IN OPTIMIZING RECURRENT NETWORKS Yoshua Bengio,

Nicolas Boulanger-Lewandowski and Razvan Pascanu U. Montreal.”

[78] F. O. R. L. Arge and C. I. Mage, “VERY DEEP CONVOLUTIONAL NETWORKS FOR

LARGE-SCALE IMAGE RECOGNITION,” pp. 1–14, 2015.

[79] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for convolutional neural networks

applied to visual document analysis,” Document Analysis and Recognition, 2003. Proceed-

ings. Seventh International Conference on, pp. 958–963, 2003.

[80] S. Maji, “A Comparison of Feature Descriptors,” University of California, Berkeley, 2006.

[Online]. Available: http://www.cs.berkeley.edu/{~}smaji/reports/cs294-6-report.pdf

[81] Y. Ke and R. Sukthankar, “PCA-SIFT: A More Distinctive Representation for Local Image

Descriptors.” [Online]. Available: http://www.cs.cmu.edu/{~}yke/pcasift/

https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge
https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge
http://image-net.org/about-overview
http://benanne.github.io/2014/04/03/faster-convolutions-in-theano.html
https://code.google.com/archive/p/cuda-convnet2/
https://code.google.com/archive/p/cuda-convnet2/
http://arxiv.org/abs/1404.5997
https://cs.stanford.edu/people/karpathy/convnetjs/demo/trainers.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/trainers.html
s.cmu.edu/~aarti/Class/10701_Spring14/slides/DeepLearning.pdf
s.cmu.edu/~aarti/Class/10701_Spring14/slides/DeepLearning.pdf
http://www.cs.berkeley.edu/{~}smaji/reports/cs294-6-report.pdf
http://www.cs.cmu.edu/{~}yke/pcasift/

98 BIBLIOGRAPHY

[82] S. Lazebnik and C. Schmid, “Beyond Bags of Features : Spatial Pyramid Matching for

Recognizing Natural Scene Categories,” pp. 1–12, 2006.

[83] J. Yang, “Jianchao Yang webpage.” [Online]. Available: http://www.ifp.illinois.edu/

{~}jyang29/

[84] M. Palm, “latent semantic analysis experiments.” [Online]. Available: https://github.com/

matpalm/lsa

http://www.ifp.illinois.edu/{~}jyang29/
http://www.ifp.illinois.edu/{~}jyang29/
https://github.com/matpalm/lsa
https://github.com/matpalm/lsa

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations and symbols
	1 Introduction
	1.1 Problem contextualization and motivation
	1.2 Main Objectives
	1.3 Document Structure

	2 Background and literature review
	2.1 Image model and overview of classification tasks
	2.2 Preprocessing
	2.2.1 Filters
	2.2.2 Gradient calculation and edge detection
	2.2.3 Hough transform

	2.3 Feature learning, feature descriptors and feature extraction
	2.3.1 Corner Detection
	2.3.2 Blob detectors
	2.3.3 Principal Component Analysis
	2.3.4 Detectors based on histogram representations of gradients and orientations
	2.3.5 Colour histograms
	2.3.6 Colour Coherence Vector

	2.4 Intermediate feature models for classification
	2.4.1 Bag of Visual Words
	2.4.2 Spacial Pyramid Matching
	2.4.3 Bag of Colours
	2.4.4 Fisher Vectors

	2.5 Classification and learning
	2.5.1 Generative vs non-generative models
	2.5.2 MLE and MAP estimation
	2.5.3 EM algorithm
	2.5.4 Naive Bayes hypothesis
	2.5.5 Mixture Models
	2.5.6 Hidden Markov Models
	2.5.7 Latent Dirichlet Allocation
	2.5.8 Sparse Coding
	2.5.9 Clustering
	2.5.10 Linear and Logistic regression
	2.5.11 Support Vector Machines
	2.5.12 Deep Convolutional Networks

	2.6 Recent research trends
	2.7 Computer Vision and Machine Learning toolboxes
	2.8 Additional mathematical concepts
	2.8.1 Distance metrics
	2.8.2 Accuracy measures and performance metrics
	2.8.3 Singular Value Decomposition
	2.8.4 Gradient Descent

	3 Methodology and experimental design
	3.1 Introduction and project overview
	3.1.1 Similar studies and previous work

	3.2 Dataset overview and preprocessing
	3.2.1 Preprocessing

	3.3 Deep Convolution Networks
	3.3.1 Backpropagation and stochastic gradient descent: Nesterov's Accelerated Gradient
	3.3.2 Overfitting and parameter sharing

	3.4 Feature descriptors and feature extraction
	3.5 Creation of the visual vocabulary for classification and feature reduction through semi-supervised generative methods
	3.5.1 Original SPM implementation with vector quantization
	3.5.2 SPM with sparse coding
	3.5.3 Topical representations through LDA and pLSA
	3.5.4 GMMs and Fisher Vectors

	3.6 Classifier modelling and training
	3.6.1 Cross-validation scheme and testing

	3.7 Hardware resources

	4 Results and discussion
	4.1 Feature descriptor results
	4.2 Binary dataset results
	4.2.1 TSVM regularization parameters
	4.2.2 Pre-trained ConvNet
	4.2.3 SPM with VQ
	4.2.4 SPM with SC
	4.2.5 SPM with pLSA
	4.2.6 SPM with LDA
	4.2.7 GMM and FV
	4.2.8 Comparative discussion of the overall results for the binary dataset

	4.3 5-category dataset results
	4.3.1 Pre-trained ConvNet and SPM+VQ baseline
	4.3.2 SPM with SC
	4.3.3 SPM with pLSA
	4.3.4 GMM and FV
	4.3.5 Comparative discussion of the overall results for 5-category dataset

	4.4 Computational costs and training time
	4.5 Closing Considerations

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work

