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Abstract

This thesis addresses the Irregular Piece Placement problem, also known as Nesting problem,
while focusing on the resolution of real world instances with continuous rotations. The real world
instances are considered very large instances containing many pieces with very complex outlines,
where continuous rotations may be desired. The Nesting problem is presented, with a description
of its characteristics, identifying the main challenges, and related problems. This is done through a
literature review, considering the geometric representations and common solution approaches that
are normally used, in order to identify possible paths to explore, and confirm its inherent difficulty
in being efficiently tackled, specially when dealing with continuous rotations.

The geometric component of the Nesting problems is addressed by using a novel algorithm
that generates Circle Covering representations based on the Medial Axis skeleton of a piece. This
iterative algorithm enables control over the approximation error, which allows managing the trade-
off between the quality of circle covering representation and the total number of circles. This
algorithm allows producing coverings with different levels of quality, and with different types of
covering, depending on the characteristics of the Nesting problem where they will be used, which
have a significant impact on the feasibility of the final solution and in the tightness of the layout.

The solution approach is based on Non-Linear Programming models, from which several for-
mulations were made, taking into account the size of the problem being addressed. These models
fully support continuous rotations, and can produce feasible solutions with an acceptable com-
putational cost. In order to tackle large instances, extensions to the NLP models are done, by
aggregating constraints by type, and implementing other tweaks to reduce computational cost.

In order to address issues with high computational cost, layout solutions with insufficient qual-
ity, and very large instances, three approaches are proposed. The first uses a two-step compaction
process, where the NLP model uses low resolution in the first step, and high resolution in the
second. The second approach uses a two-phase compaction process, where in the first phase big
pieces are compacted, considering certain parameters, and holes are created between the pieces,
and in the second phase, the small pieces remaining are assigned and placed in the holes created
in the first phase, and all compacted together. The last approach uses a multi-step approach, where
pieces are separated in groups, and compacted into the layout in a sequential order, forming layers
of pieces. These approaches show very promising results, being able to address the Nesting prob-
lem with continuous rotations, considering their purpose. If these approaches are combined they
can be used to improve results of currently existing approaches.
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Resumo

Esta tese aborda o problema de Posicionamento de Peças Irregulares, também conhecido como
problema de Nesting, focado na resolução de instâncias reais destes problemas, considerando
rotações contínuas. O problema de Nesting é apresentado com uma descrição das suas caracterís-
ticas, identificando os desafios principais e problemas relacionados. Isto é feito através de uma
revisão da literatura actual, considerando representações geométricas e métodos de resolução mais
utilizados, com o objectivo de identificar possíveis oportunidades que possam ser exploradas de
forma a abordar o problema de Nesting com rotações livres de forma mais eficiente.

A componente geométrica do problema de Nesting é abordado com recurso a um novo algo-
ritmo que cria uma representação baseada em cobertura por círculos, feita a partir de um esqueleto
topológico de cada peça. Este algoritmo iterativo permite ter controlo sobre o erro de aproximação
da peça, permitindo lidar com o compromisso entre a qualidade de representação e o número total
de círculos produzido. Este algoritmo permite também produzir coberturas com níveis de qual-
idade distintos, assim como tipos de cobertura de círculos diferentes, orientados para problemas
específicos de Nesting, produzindo um impacto significativo na admissibilidade da solução final e
na qualidade de compactação.

O método de resolução utiliza modelos de programação não-linear, que foram obtidos através
de diferentes formulações matemáticas do problema, tendo em conta o tamanho do problema a ser
abordado. Estes modelos matemáticos suportam rotações livres, conseguindo produzir soluções
admissíveis com um custo computacional razoável. De forma a poder lidar com instâncias de
Nesting de grande tamanho, foram feitas extensões aos modelos matemáticos para reduzir o custo
computacional, através da agregação de restrições.

Para poder lidar com vários problemas relacionados com alto custo computacional, soluções
com qualidade insuficiente e instâncias de tamanho muito grande, foram propostas três aborda-
gens. A primeira utiliza um processo de compactação baseado em duas etapas, que utiliza res-
olução baixa na primeira etapa, e uma resolução alta na segunda, de forma a compactar depressa,
e ajustar as peças com qualidade. A segunda abordagem usa duas fases, compactando as peças
grandes na primeira fase, criando buracos no espaço entre as peças grandes. Na segunda fase,
as peças pequenas são atribuídas e colocadas nos buracos, sendo todas as peças compactadas de
seguida. A terceira, e última abordagem utiliza várias etapas, separando inicialmente as peças
em grupos distintos, e compactando-as numa ordem sequencial, formando camadas de peças, per-
mitindo compactar grandes problemas, com custo computacional reduzido.

Estas abordagens apresentam resultados muito promissores, conseguindo abordar problemas
de Nesting com rotações contínuas, tendo em conta as suas vantagens individuais. Combinando
estas abordagens, ou aplicando-as de uma forma específica, pode melhorar os resultados de abor-
dagens existentes.
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Chapter 1

Introduction

The Nesting problem is a common problem that arises in industries where a set of small pieces
needs to be placed inside a larger container, without overlaps, with the objective of minimizing
wasted space, or pieces need to be cut from raw material, with the objective of minimizing waste.
This is a 2D problem, nearly identical to the Cutting and Packing (C&P) problem, except that the
pieces are irregular. The efficient cutting of raw material in small pieces is a complex task with
strong impact in industrial production costs. This problem is also known as the Irregular Piece
Packing problem. It is commonly found in garment, footwear, metalworking and other industries.
Each of these distinct industrial applications has its own defining characteristics, considering the
type and shape of container (closed or with open dimension), the diversity, shape and size of
the pieces, admissible orientations (fixed, discrete or continuous), existence of defects, preferable
placement regions, among others. Each one of these constraints limits the types of approaches that
can be used to address them.

The main characteristics of the Nesting problem are defined by its geometrical and combina-
torial components. Taking into account the specific requirements for this problem, a good geomet-
rical representation must be able to deal efficiently with overlap computation, support continuous
translations and rotations, and have high quality piece representation with low approximation er-
ror. The limitations derived from the geometrical component impose additional constraints in the
resolution of this problem, by preventing the use, or development, of approaches that can lead
to high quality solutions. The difficulties that arise from the geometrical component are strongly
correlated to the complexity of the pieces and their geometric representation. Since overlap de-
tection is one of the most computationally expensive tasks that use computational resources, an
efficient method can allow more computational resources to be better used for improving Nesting
solutions. Additionally, due to the low computational efficiency of current geometric approaches,
when dealing with continuous rotations, the piece placement orientations are usually restricted to
a discrete set of admissible rotations. The current geometric approaches are also unable to use
the piece representation directly, when the pieces outline contains non-straight edges, and usually
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simplify the outline by approximating it by a set of straight lines. Without overcoming the ge-
ometric challenges, the combinatorial challenges cannot be tackled properly, and more efficient
approaches cannot be developed and used.

The combinatorial component deals with the selection of which and in what order pieces are
to be placed in the container. Due to the nearly infinite combinations that exist by combining
the different sequences of the pieces, the arbitrary piece orientation and piece placement rule,
achieving the optimal solution is an extremely difficult task.

Considering these difficulties, most of the approaches for Nesting problems are based on
heuristics, which are capable of achieving good results, although they are not able to efficiently
solve real world problems. Other approaches based on meta-heuristics or mathematical models
can also be used efficiently to address Nesting problems, but only with discrete orientations. All
these methods still cannot deal with the Nesting problem using continuous orientations. The diffi-
culty increases enormously when using a continuous range, since the discrete set (which is usually
small) can be searched quite efficiently. Approaches based on exact methods still require much
development to be able to achieve good solutions in a reasonable time interval, but they are also
the most promising approaches.

1.1 Research Questions

Considering the requirements of the Nesting problem with continuous rotations, the selection of
the approaches used to tackle it is based on their promising characteristics. In order to achieve suc-
cess, several aspects require being determined. The main questions that require being successfully
answered are:

Can Circle Covering representations be used to represent irregular pieces with
the required quality in order to solve the Nesting problem with continuous rota-
tions?

The accurate representation of irregular pieces, using Circle Covering representation, is ex-
pected to enable overlap verifications with a low computation cost, due to the simple comparison
between circles. The main difficulty is how to produce a circle covering where its outline closely
resembles the outline of the pieces, with the minimum possible approximation error.

Can the Circle Covering representation be used to successfully control the trade-
off between approximation quality and total number of circles of the represen-
tation?

Generating a very high quality circle covering is useless if it cannot be used in practical terms.
Since the overlap computation is based on comparing pairs of circles from different pieces, the
computational cost increases exponentially with an increase in the number of circles. Having an
approach that can generate high quality circle coverings, but allowing controlling the number of
circles produced is very important.
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Can Non-Linear Programming models, based on Circle Covering representa-
tion, be formulated to successfully tackle the Nesting problem with continuous
rotations?

A good solution approach must be able to deal with the requirements of the problem, such
as full support for free-rotations, while being able to produce high quality layouts. Since the
circle covering representation has a mathematical description that contains non-linear equations,
using Non-Linear Programming models is a natural choice. Several NLP formulations might be
required in order to obtain a NLP model that is able to successfully achieve a feasible layout, with
acceptable quality.

Can the Non-Linear Programming models be used with Circle Covering rep-
resentation to produce high quality layouts with high computational efficiency,
when addressing the Nesting problem with continuous rotations?

The Non-Linear Programming formulations may be able to produce feasible, high quality, so-
lutions but with a prohibitive computational cost. Formulating a Non-Linear Programming model
that is able to solve problems efficiently, with different sizes and characteristics, while being able
to manage the trade-off between layout quality and computational cost, is required to be able to
employ different strategies in order to achieve the best solutions.

Can the developed approaches, based on the combination of Circle Covering and
Non-Linear Programming models, be used to solve real world Nesting problems
with continuous rotations?

The most difficult types of problems to be solved are real world problems. These problems
have specific characteristics and requirements that must be taken into account, and usually have a
very large size, with many pieces, and pieces with very complex geometry. Being able to tackle
efficiently these difficult problems is the desired outcome, not being severely limited by the com-
plexity of an instance.

1.2 Objectives and Contributions

The main objective of this work is to develop an approach to solve the Nesting problem with
continuous rotations, for real world instances. To do this, one aim of this work, considering the
characteristics of the problem, will be tackling its geometrical challenges. An efficient Circle
Covering representation is to be developed with low approximation error that supports admissi-
ble continuous placement positions and orientations of the pieces, with low computational cost.
Furthermore, this work also aims to explore new paths that allow solving Nesting problems with
continuous rotations in a more efficient way, through the use of Non-Linear Programming mod-
els. These improvements are expected to offer similar or better packing results, competitive with
current literature results, with an acceptable computational cost.
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The Nesting problem is usually addressed through heuristics which usually follow pre-defined
placement rules, dealing with either discrete or continuous translations and also discrete or fixed
orientations. This combination is usually solved to address problems in the garment industry,
where large continuous sheets of tissue have items cut from them, with great precision, while
placed in a limited set of discrete orientations, and allowing small adjustments (around 5o). This
problem also arises in the metalworking industry, where pieces are cut from sheets of metal, while
placed into arbitrary orientations. The pieces may require to be separated by a small distance,
due to technological constraints from the cutting process. Another application arises when dealing
with leathers, using the hides of animals to produce items. Their shapes are highly irregular,
and may have defects, which limit the available placement positions. The pieces can also be
placed in arbitrary orientations, although the hides usually have preferred regions to place certain
pieces. Addressing this problem, with a broad support for the different requirements of each type
of problem that arise in many industries, requires an adequate geometrical representation and an
appropriate solution approach, that finds the best placement positions and orientations for each
piece, with the minimum waste. Since many of these problems deal with mass-produced items,
even small reductions in waste can produce a significant reduction in the economic cost.

This work focuses into two distinct scientific areas, Operational Research and Computational
Geometry. While the main focus will be on the area of Operational Research, one cannot discard
the development effort in the area of Computational Geometry since without it, improvements
cannot be achieved. While this work is aimed solving problems on the field of Cutting and Pack-
ing, considering irregular pieces and continuous rotations, these approaches can be used in any
other areas where similar problems appear. This work is expected to address currently existing
limitations, and providing contributions in the form of an adequate geometrical representation for
the Nesting problem (which enables controllable approximation to the piece, low overlap verifi-
cation cost and support for continuous rotations) and contributing also a solution approach that
produces feasible layouts (which uses the developed geometrical representation, with support for
continuous rotations). These contributions will provide an approach that can have a significant
impact in many industrial areas, for problems such as the ones presented before.

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 describes the State of the Art where the most
relevant concepts are presented allowing for a greater understanding of the proposed approach. It
includes a description about Cutting and Packing problems with focus on Nesting problems. It also
presents Geometric Representations and Solution Approaches used with this problem. Chapter 3
addresses the Geometrical Component of the problem, presenting the developed Circle Covering
Representation and comparing it to existing solutions from the literature. Chapter 4 focuses on
the solution approach using the previously developed Circle Covering together with a Non-Linear
Programming model to solve the Nesting problem. Several model formulations are described, with
possible improvements to enhance their efficiency. Chapter 5 presents additional methods that
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allow tackling problems of higher difficulty, with greater number of pieces, layouts with defects,
and more efficiently. Chapter 6 concludes the document with a discussion about the problem and
the developed methods used to address it, comments about the results and mentions the remaining
challenges for future work.





Chapter 2

The Problem of Nesting Irregular
Shapes with Continuous Rotations

Cutting and Packing (C&P) problems can be described as the problem of cutting small items
from a larger object, or placing small items into larger objects. C&P problems are classified as
Nesting problems when they deal with irregular shaped pieces. These types of problems arise in
many industries (such as industries that deal with garment, furniture, metalworking and footwear)
where objects are required to be cut from larger objects of raw material, or required to be packed
into an enclosed space. The garment industry deals with fabrics that are usually in the format
of a strip. The fabric has a specific orientation, due to the patterns imprinted in it, which limits
the possible orientations for the pieces. The pieces can be rotated by 180o, and suffer small
adjustments by about 5o without noticeable effects on the final product. The cutting process is very
precise, thus enabling the pieces to be packed with a very small separating distance between them.
The production of wood components for the construction of furniture (and other components)
also requires specific orientations, due to the characteristics of the wood (strength, color, among
others) that depend on the orientation. There is also the possibility of forbidden placement regions
due to imperfections on the wood. The separating distance between the pieces is larger than the
one used in fabric since the cutting process deals with saws and drills that cause higher amount
of waste. Considering footwear, the raw material might be natural or synthetic, which impose
different constraints. The natural raw material consists in hides, which have all different outlines,
with preferable placement positions (due to the variable quality in some parts of the hide) and
also imperfections. When the raw material is a synthetic product, it is usually presented in a
strip format, with uniform quality, and no defects. In this application, any orientation is allowed,
and there is also a separating distance requirement. The problems dealing with the cutting of
pieces from metal sheets also deal with some technological constraints. While the sheets can be
described by strips or rectangular containers, with no limitations on orientation, the separating
distance varies, depending on the tool used to cut the pieces. The requirement is based on the
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precision of the tool, if the cutting process uses cold temperature, or the separating distance may
take into account the expansion of the metal when cutting the pieces at high temperature, such
when using laser or torch. The development of approaches to deal with real-world applications,
such as these ones, must take into account their specific technological constraints.

Usually, when addressing these problems, the simpler they are, the easier is to achieve good
results. If the particular problem requires the use of a small set of discrete placement positions and
orientations, finding the optimal solution requires checking only the combinations that can be done
with the values from that set. As the set of discrete placement positions and orientations becomes
bigger (with more placement positions) the difficulty increases significantly. In its extreme case,
when it is allowed using all possible placement and orientation positions inside a given region,
the discrete set becomes a continuous. The difficulty in addressing the Nesting problem with
continuous rotation is significantly higher than solving it with a discrete set.

This chapter focuses on reviewing the current literature, by presenting the most relevant in-
formation regarding the Nesting problem with continuous rotations. The contents were selected
by taking into consideration the characteristics and requirements of the Nesting problem, describ-
ing the most used solution approaches, current focus of research, and potential unexplored and
promising paths to be developed.

The first section of this chapter contains an introduction about Nesting and other C&P prob-
lems. The second section starts with an overview of the geometrical representations, followed by
mathematical models that are used with specific types of geometrical representations. The fourth
section explores different solution approaches for Nesting problems. The fifth section contains
information about specific algorithms used with the geometrical representations in order to assist
with several aspects regarding geometry.

2.1 Nesting and Other Cutting and Packing Problems

C&P problems deal with the efficient positioning of pieces into a given region, without overlap,
with the goal of reducing waste. This type of problem is characterized by having a geometric com-
ponent whose difficulty grows exponentially with the increase in shape complexity of the items
and objects, and a combinatorial component, which also grows more difficult with the increase
in their number. The geometric component of these problems deals with the geometry of the ob-
jects, ensuring non-overlap with viable placement positions and orientations. The combinatorial
component deals with the selection of small items to be grouped and placed inside the larger ob-
jects. A popular approach to solve these problems is to organize pieces into a sequence, which
defines the order in which the pieces are placed into the large object thus separating the geomet-
rical component from the combinatorial component, reducing the difficulty of dealing with the
problem.

Some examples of different dimensionality of a C&P problem can be found in problems deal-
ing with cutting pipes, cables and steel bars, which are much less complex than problems dealing
with the production of furniture, glass or clothing pieces. The first group of examples relates to
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1D problems, in which dealing with the geometrical component is simplified, due to only using
one axis to define the cutting position. The second group relates to a 2D problem, having the
geometrical component to deal with the positioning of the items in two dimensions. A 3D prob-
lem is even more complex to solve than the previous two, and some examples can be found on
Container Loading problems and Sphere Packing problems. If the shape of the items is congruent
(i.e. same shape and size), the combinatorial component is simplified, since the order of the items
is not relevant. When their shapes are not uniform, the combinatorial component becomes harder
to solve, increasing also with a larger number of items.

Additionally, beyond the combinatorial and geometrical components, C&P problems main ob-
jective can be refined into two distinct components: maximizing output (maximizing the number
of small items that can be placed into a limited number of large objects) or minimizing input
(minimizing the number of large objects necessary to completely contain all small items). The
difficulty in solving each variety of C&P problems is directly related to their intrinsic characteris-
tics, and, moreover, the methods that can be applied to a specific problem cannot be directly and
efficiently applied to another. Some of these characteristics are the shape of the pieces (strongly
homogeneous or heterogeneous), continuous or discrete orientations, among others. Due to the
problem specific characteristics, the research is focused on each specific variation of Cutting and
Packing problems. This can only be achieved if each kind of problem can be categorized and
compartmentalized, and for that reason, typologies are developed.

The distinction and identification of standard types of problems in Cutting and Packing provide
a basis of scientific research which enable the development of models, algorithms and problem
generators. This led to the development of C&P typologies, such as the typology by Wäscher
et al. (2007). The typology organizes and classifies objects into homogeneous categories based
on given sets of characterizing criteria. As mentioned in Wäscher et al. (2007), C&P problems
have an identical structure which can be summarized into several components. Given two sets
of elements, one with large objects and another with a set of small items, group some or all of
the small items into subsets and assign them to one of the large objects, while ensuring that all
the small items remain completely inside the large object, do not overlap and at the same time,
optimizing a given single or multi-dimensional objective function. This implies that when solving
the general problem, one is simultaneously finding the solution to several sub-problems, such as
selecting the large objects, selecting and grouping the small items, how to assign the subset of
small items to large objects, and achieving a layout with valid placement positions for small items.
In some cases, when the problem is very complex due to its size, the sub-problems are addressed
separately in order to simplify the problem, and make it solvable. In Wäscher et al. (2007), the
typology organizes problems into an hierarchical structure. This can be seen on Fig. 2.1.

C&P related problem types may, or may not, be pure C&P problems. This is dependent on
the objectives that are required to meet, if they contain additional aspects than those required by
a C&P problem. As an example, a cutting problem that aimed the minimization of waste while
aiming also for the minimization of the cutting path is considered an extended problem due to its
additional aspects beyond pure C&P. If the aspects related to it are only from the C&P problem,
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Figure 2.1: Cutting and Packing overview of problem types (adapted from (Wäscher et al., 2007))
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then it is a pure C&P problem.

The pure C&P problems can be categorized by their kind of assignment (output maximization
or input minimization), dimension boundaries and by the assortment of small items. These cate-
gories divide the C&P problem into basic problem types. The Fig. 2.2 illustrates the basic types
of Cutting and Packing problems. Problems related to output maximization are known as Identi-
cal Item Packing problem, Placement problem and Knapsack problem. Some input minimization
problems are Open Dimension problem, Cutting Stock problem and Bin Packing problem.

Basic problems can be further differentiated by the assortment of large objects, leading to
the classification of intermediate problems. When the problem is differentiated by the assortment
of large objects, problems such as Bin Packing problem can be defined as Single Bin Size Bin
Packing problem or Multiple Bin Size/Residual Bin Packing problem, depending on having one
or several large objects, and on the similarity of the pieces.

Intermediate problems can be further refined by applying the dimensionality criteria including
also the criteria that indicates the shape of small items (rectangular, circular, non-regular, ...), and
if they are mixed (such as using rectangles and circles at the same time). For example, if the Bin
Packing problem is two dimensional, with several large objects and the small items are irregularly-
shaped, it is defined as a Two-Dimensional Irregular Multiple Bin Size Bin Packing problem.
When the dimensionality and shape of small items are considered, the Refined Problem Types
arise. If they have additional constraints, such as discrete admissible orientations, the problem
becomes a non-standard problem, otherwise, it becomes a standard problem.

Focusing on two-dimensional problems, they can be partitioned into regular packing (the
pieces to be placed are regular polygons) problems and irregular packing problems (pieces to be
placed have one or more non-regular polygons). By definition, regular polygons are all polygons
in which the sides are all the same length, and all the angles are equal (Goodman and O’Rourke,
2004). When the pieces are represented by either a single or a set of circles, the problem can
be dealt with the same difficulty as problems with regular polygons, but the characteristics of the
circles might define the problem as an irregular problem. The differences between regular and
non-regular polygons have a great influence on the approaches used to solve problems with them.
For example, when dealing only with orthogonal rectangular pieces placement, the problem can
be reduced to a discrete set of candidate positions, by defining a grid with feasible placement posi-
tions composed by the greatest common divisor of all the rectangular edges. This cannot be done
with pieces that have non-regular shapes since there is an infinite variety of sizes and shapes, and
this leads to an increased complexity of ensuring their correct placement into feasible placement
positions (Bennell and Oliveira, 2009).

A Nesting problem is a two-dimensional Cutting and Packing problem where at least one
piece with irregular shape must be placed in a configuration with other pieces, in order to optimize
a given objective. Considering Wäscher et al. (2007), if the Nesting problem is defined by its
use of non-regular pieces, to be placed into a strip, the problem is defined as 2D Irregular Open-
Dimension Piece Placement problem. Another name for this type of problem that is commonly
found on the literature is Irregular Strip Packing Problems. Although irregular shapes are usually
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Figure 2.2: Basic C&P problem types (adapted from (Wäscher et al., 2007))
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Table 2.1: Number of papers on selected problem types (table adapted from (Wäscher et al., 2007))

Problem types 1D 2D regular 2D irregular 3D Total
ODP – 46 49 7 102
SBSBPP 61 17 2 9 89
SKP 49 18 7 12 86
SLOPP 4 32 1 19 56
SSSCSP 29 2 1 6 38
Other 29 35 4 6 74
Total 172 150 64 59 445

defined as non-regular polygons, they can also be just simple polygons, have internal holes (i.e.,
multi-connected regions) or even have curved contours. Any piece that contains curved edges
usually has those edges approximated by a series of linear segments (Bennell and Oliveira, 2008).

In Wäscher et al. (2007), the Cutting and Packing literature was reviewed and categorized,
from 1995 to 2004, according to the presented typology. The literature was restricted to papers
related to Cutting and Packing problems directly. From the research done, it was revealed that
classic standard problems, such as Single Bin Size Bin Packing problem (SBSBPP), Open Dimen-
sional Regular/Irregular Strip Packing problem (ODP), Single Stock Size Cutting Stock Problem
(SSSCSP), Single Knapsack Problem (SKP), Single Large Object Packing Problem (SLOPP), and
others, were well studied for three or more decades, being the area with greatest amount of pub-
lications. Other researches from these traditional problems usually focus on extensions of these
problems on a higher dimension. Although relevant C&P problem extensions for real world ap-
plications are less commonly found in the literature, research is being continuously extended into
those applications. A table with the number of papers on selected problem types, differentiated
according to the number of problem-relevant dimensions can be seen on Table 2.1. From it, we
can conclude that, in 2D, the focus of research is on Open Dimension problems, and also, that
problems with regular polygons are preferred over the irregular ones. The difficulties in dealing
with the geometry of irregular pieces, due to their complexity, explain, in these types of problems,
the lack of appropriate tools that allow efficient solutions to be developed. With the development
of new approaches to deal with the geometry of these problems, the preference of researchers can
switch to these weakly explored problems. Only when the relevance of the geometric component
is lowered, the combinatorial component can be properly explored and developed.

The focus of this work is the Nesting problem, which is classified as a 2D Open Dimensional
Irregular Strip Packing Problem, with free-rotations that can solve real-world instances. For this
reason, the remaining literature review in this chapter will have a higher focus on these problems.

2.2 Geometrical Representations for the Nesting Problem

The first obstacle that arises when dealing with Nesting problems is the geometrical component.
To find feasible piece placement positions, the pieces have to be checked against each other for
overlaps. While this is a simple task for any person, it is a very complex task for a computer
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Figure 2.3: Binary Grid representation for irregular pieces (adapted from (Bennell and Oliveira,
2008))

program. Academic research in Nesting suffers from limitations caused by its geometrical charac-
teristics, which cannot be tackled properly due to the lack of efficient tools and methods. However,
some solutions exist, each one with its own advantages and disadvantages, not only regarding its
performance, but also its difficulty of robust implementation.

The most common approaches to represent irregular shapes in Nesting problems are Grid and
Polygonal representations. Another approach, less commonly used, is based on Circle Covering
(CC) representation. These representations can either be approximated or exact, depending on the
characteristics of the problem, for instance like the existence of curved contours or only orthogo-
nal edges. For each one of these representations, some specific methods are required to efficiently
compute overlaps, such as No-Fit-Polygons (NFP), Phi-Functions and Analytical Geometry for
Circle Covering representations and Polygonal representations. For Grid representations, over-
lapping computations are based on matrix operations. The next sub-sections will introduce Grid
representation, Polygonal representation, Phi-function representation and Circle Covering repre-
sentation.

2.2.1 Grid Representation

Grid representation methods are approaches that divide a stock sheet into a grid, represented by a
matrix, and also transforms the shapes of the pieces into an independent grid with the same block
size as the stock sheet matrix. This approximation allows reducing the geometric information of
the piece placement by only allowing discrete placement positions instead of continuous ones.
Several placement algorithms exist, each with their different grid coding schemes.

The simplest coding scheme, proposed by Oliveira and Ferreira (1993) uses binary values
where 0 refers to an empty space and 1 to a piece, as seen Fig. 2.3. The piece positions are easily
represented on the matrix, adding values for 1 unit where the pieces are placed. At any position
of the grid, the value correspond the number of pieces that exist in that position. If the number is
above 1 then there is overlap among pieces.

A different coding scheme was proposed by Sagenreich and Braga (1986) that allows detection
of contacts and overlaps among pieces, using the number 1 to represent the outline of the pieces,
and number 3 represents the interior. Pieces are placed into their corresponding places on the
matrix by adding the numbers on the matrix with the corresponding numbers of the piece. If
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Figure 2.4: Grid representation method proposed by Babu and Babu (2001)

adding the numbers returns a value equal or greater than 4 (according to the referred codification)
then the pieces are placed in infeasible positions. This means that the most recently placed pieces
are overlapping with previously placed pieces. In this case, either both interiors overlap or an
interior and a frontier of a piece overlap. Returning value 2 corresponds to contact among pieces,
indicating feasible positions, and returning 0 for an empty space.

Babu and Babu (2001) reverse the previous idea by denoting empty space with numbers greater
than or equal to 1 and the piece itself by 0. An example can be seen in Fig. 2.4. This particular
codification, assigns a number greater than zero to any block outside of the boundary of the piece,
assigning a 1 to the right most non-zero block, and adding 1 unit to each single block moving from
right to left of the first block assigned 1.

With this method the value of each cell gives the minimum number of blocks that is necessary
to move right to find a potential feasible position for the piece. This codification is particularly
effective when using a bottom-left placement approach, since many blocks will be skipped in just
one step when adjusting the pieces to a feasible position. As a downside, this codification has
higher complexity when updating the layout of the matrix, which makes it more computationally
expensive than previous approaches.

The advantages of the Grid representation methods described before are their easy represen-
tations of convex, non-convex and complex pieces and their fast verification of the geometric
feasibility of the layouts on the matrix. Also, to calculate the distances that pieces must move to
achieve a feasible position can be done by counting blocks in the desired direction.

As disadvantages, while these methods can consider parts and sheets with any geometry, being
regular or irregular, and even with certain internal features like holes or defective regions (in
sheets), they cannot represent accurately pieces with non-orthogonal edges and are more memory
intensive than other methods. Increasing the accuracy involves increasing the resolution of the
matrix by changing the size of the grid units, which increases the number of matrix blocks, leads
to greater memory usage, higher running times and higher cost of feasibility checks. Alternative
representations such as quad-trees could reduce the impact of some of these issues.
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Grid representations are ill-suited to deal with rotations. The usual way to rotate pieces rep-
resented by grids is rotating the piece to the desired orientation and then coding it into the matrix
again (which is similar to adding a completely new piece). Alternatively, it is possible to rotate the
matrix itself. This is easily done for multiples of 90 degrees rotations, but for other angles it may
cause additional difficulties, and therefore it is not used.

2.2.2 Polygonal Representation

An alternative to Grid representations is to use polygons to represent the irregular shape of the
pieces directly. Comparing Polygonal representation methods with methods used with Grid repre-
sentation cannot be done directly due to feasibility checks used in grids, which increase quadrati-
cally with the number of the edges of the pieces (Bennell and Oliveira, 2009), while the ones used
with Polygonal representations increase exponentially. Polygonal representations can only be ex-
act when the real outline is defined by straight edges. One advantage of Polygonal representations
versus Grid representations is that the absolute size of the pieces does not influence the amount of
piece representation information.

A shape that is described through straight segments will take the form of a polygon, if the
real structures are correctly defined (i.e., with no self intersection edges or overlapped edges). In
this representation, curves that may exist in the real world are approximated externally by straight
segments, and particular details (which could be holes or others) are defined as other sets of straight
edges.

Every curve is approximated with some error, which is reduced as the number of rectilinear
edges used to represent it increase. With a polygonal representation of the pieces, the polygons
are composed by sets of straight edges that have an oriented direction and the details inside it are
defined with the reverse orientation. This orientation allows defining the inside and outside regions
of each object. The main advantage of using oriented edges in the geometrical representation of
shapes is the simplification of the operations to check intersections and overlaps.

The rotations using Polygonal representations are not complex to execute, neither to imple-
ment, but due to the detail of the polygonal geometry, the number of items to deal with increases
with the number of vertices of the polygons. To rotate a polygon, all of its vertices need to be fixed
relatively to other vertices of the same polygon, and rotated around the selected point.

Besides the previous mentioned operations, the simplification of the geometrical shapes by
removing some edges and vertices and adding others to reduce their total number (while containing
the original polygon inside) can also remove some of the concavities that increase the geometric
complexity of the problem.

Although it is possible to deal with the concavities of the pieces, it is very hard to do it ef-
ficiently. One method is to use the approximation to a polygon by its convex hull. This method
eliminates all concavities, and reduces the number of vertices, however, it reduces the quality
of the resulting approximation. One alternative is the decomposition into convex polygons. Its
main advantages are the computation of intersections and overlaps, but the disadvantage is the
increased number of polygons, especially when dealing with concavities from approximations to
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Figure 2.5: Visual representation of the D-function (adapted from (Bennell and Oliveira, 2008))

curved edges. The decomposition can be made in two ways, either by partition of an irregular
polygon or by its covering.

Several representations exist that allow dealing with the complexity of overlapping detection
and reducing the computational cost, such as polygons and NFP/IFP. These representations are
presented in the following subsections.

2.2.2.1 Direct Polygon Representation

The D-Function (Konopasek, 1981), as seen in Fig. 2.5, is an efficient method to detect the po-
sition of a point relative to a vector. It is a mathematical expression based on the equation of
distance between a straight line and a point. When given two vertices that represent a vector, the
mathematical expression can verify the relative position of any other vertex to the supporting line
of that segment. Assuming that the origin of the coordinate system is the bottom-left corner, and
that the pieces have clockwise orientated edges, the D-function will be able to distinguish between
inside and outside of the polygon by knowing that the outside is on the right side of the oriented
edge, and the inside is on the left side of the vector.

The formula of the D-function (Eq. 2.1) can be defined as:

Dabp = ((Xa �Xb)⇥ (Ya �Yp)� (Ya �Yb)⇥ (Xa �Xp)) (2.1)

where Xa, Ya refer to the coordinates of point a, Xb, Yb to the coordinates of point b, both belonging
to the segment, and Xp, Yp being the point whose relative position we want to determine.

Given an orientated segment, and comparing the relative position of a point to its supporting
line using D-Function, the following conclusions can be achieved:

• If the result is greater than 0, the point is on the left side of the supporting line;

• If it is 0 then the point is over the supporting line;

• If the result is less than 0, the point is on the right side of the supporting line.

This function can be used to verify if two edges intersect or touch each other, without comput-
ing their intersection point, which would be computationally more expensive. Mahadevan (1984)
described how the relative position of two oriented edges can be determined using the D-function.
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The D-function is usually modified to return only three values, 1 for positive values, -1 for nega-
tive and 0 when is zero, for convenience when dealing with models and heuristics. This method
cannot give a definite answer of intersection when the edges are touching, or are collinear, so an-
other set of tests need to be done, by testing the next adjacent edge from one polygon to check if
it is entering or exiting the other polygon. If the next adjacent edge is on the inside, then there is
overlap.

These intersection tests are done by analyzing the relative position of all oriented edges with
the help of D-functions. A further description of this method can be found on Bennell and Oliveira
(2008).

The D-functions have the advantage of allowing the use of exact geometric representation of
polygons. However, since polygons can be defined by any set of coordinates, therefore using
floating-point representation, the computational cost and numerical precision errors are higher
than the approaches that use mainly integers, such as Grid representation. To difficult things
even further, every time a position is changed, all computations need to be redone, and feasibility
of the pieces needs to be checked. This causes Nesting approaches based on iterative search
processes to be discarded, since its computational time can be greatly increased by the geometrical
computations, exceeding available time for searches, limiting the algorithm performance.

The Polygonal representations that use D-functions represent curved shapes using tangential
approximations in the form of straight lines. Although there is always an approximation error,
that error can be controlled with the number of straight lines used, but that also increases the
complexity of the polygon that is created. A higher number of edges increases computational cost,
and may lead to numerical precision errors.

This representation can be rotated in real time, but the rotations are not efficient, since it
depends on the amount of vertices contained on each piece. Due to the number of edges of the
pieces in this representation, the computational cost is very high. To compute overlap between
pieces, every edge is compared with all other edges from all the remaining pieces.

2.2.2.2 No-Fit-Polygon Representation

The NFP is a geometric construction between two polygons, with oriented edges, that allows an
easy verification if the two polygons are overlapping each other. This verification is easier com-
pared to direct polygon comparison since it transforms the comparison between two polygons into
a comparison between a point and a polygon. The NFP also has the advantage of being computed
in a pre-processing stage, but usually only for discrete orientations, since it is not efficient to do
so in real-time.

The NFP of polygon B relative to polygon A (NFPab) is the locus of points traced by the
reference point R associated with B, when this polygon slides along the external contour of A.
This is better explained through an example where one piece (B) slides around the other piece
(A), being fixed in place, where both pieces never lose contact, and the resulting outline drawn
by the reference point of the sliding piece becomes the NFP. The relative orientations of A and B
are maintained during the sliding movement. Polygon B (the sliding polygon) must never overlap
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Figure 2.6: NFP between polygon A and polygon B (adapted from (Gomes and Oliveira, 2006))

Figure 2.7: IFR between the board A and the polygon B (adapted from (Gomes and Oliveira,
2006))

A (the static polygon) and they must always be in contact (Gomes and Oliveira, 2002). If the
operation is reversed, by using polygon B as static and A as the sliding one, the generated NFP,
NFPBA is equivalent to NFPAB rotated by 180 degrees (Fig. 2.6).

If the reference point from the sliding polygon is inside the NFPAB, then both polygons over-
lap. When the reference point is over the NFPAB outline, then the polygons are touching, and when
the reference point is outside of the NFPAB, the polygons are far apart. This method also works
if the origin of the static polygon is not placed at coordinates (0,0). However, in these situations
the reference point of B needs to be translated by (�x,�y) being x and y the coordinates of the
reference point A.

The Inner-Fit-Polygon (IFP) concept is derived from the NFP, and represents the set of points
that allow the placement of a polygon inside a hole of another polygon, usually the container. The
IFP is called Inner-Fit-Rectangle (IFR) if the outline of the IFP is a rectangle. The procedure to
obtain the IFP is very simplified if the exterior polygon is a rectangle. This usually happens when
generating the IFP from the container, since it is, most of the times, a rectangle. The IFR can be
seen on Fig. 2.7.

The NFP can create degenerate cases which may not be simple polygons. This can happen
when the polygon to be placed has a perfect fit position, or the other piece has a concavity where
the other piece fits, but cannot slide from the outside to the inside and vice-versa. Examples
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(a) First example (b) Second example

(c) Third example

Figure 2.8: Example of combinations of polygons that generate NFPs and degenerated cases
(adapted from (Bennell and Oliveira, 2009))

of degenerate cases can be seen on Fig. 2.8a. Fig. 2.8b shows a concavity where the polygon
slides perfectly, and Fig. 2.8c shows a perfect fit of polygon A in polygon B, represented by the
positioning point.

Updating the NFP due to changes in the orientations of the polygons requires generating the
NFP in real-time computation, which is slow and prone to errors. For this reason, the NFPs are
usually pre-computed before use, since it is not practical to use them with free-rotations. The dif-
ficulties in generating and using the NFP are properly described in section 2.5.4. In it, algorithms
such as Orbiting, Minkowski Sum and Polygonal Decomposition are explained, discussing their
advantages and disadvantages.

2.2.3 Phi-Function Representation

Phi-functions are basically mathematical expressions derived from the distance equation between
two objects. They were developed and applied by Stoyan et al. (2001) and (Stoyan et al., 2004).
Phi-functions have the purpose of representing all mutual positions of two objects, which is usually
confused with the NFP because they are related concepts. In fact, the NFP corresponds to the zero
level Phi-function.

Complex objects are decomposed into basic objects, as shown in Fig. 2.9, and all of these basic
elements have circles and lines as their primitives. Any shapes not among the basic objects need
to be represented as a finite combination of intersection, complement or union of basic objects,
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(a) Convex polygon (b) Circular segment

(c) Hat (d) Horn

Figure 2.9: Basic objects for Phi-Functions (adapted from (Chernov et al., 2012))

Figure 2.10: Representation of object by primary objects (adapted from (Chernov et al., 2012))

allowing for overlap among basic objects when describing more complex ones. The basis of the
derivation of the Phi-functions is analytic geometry.

Phi-functions have several degrees of representation of the pieces. At the most basic level it
uses primitive forms for geometrical comparisons, such as distance computation between a point
and a line, and a point and a circle. The operations between these primitive forms involve using
the D-function or compare the distance between two points (subtracting the radius). Sets of these
primitive forms are aggregated to define primary objects, as seen in Fig. 2.9, which are compared
against sets of the other primary objects to determine their relative position.

Combinations of primary objects are used to form composed objects that allow representing
generic shapes (2.10). Comparing the relative positions between composed objects requires com-
paring the relative positions for each pair of primary objects from the composed objects. This
increases the difficulty marginally, since the comparisons require that all pairs of primary objects
from different composed objects not overlap. However, the comparisons between the sets of the
low-level primitive forms of the primary objects have an increased difficulty, since at least one of
the comparisons between the primitives must hold true to ensure non-overlapping.

The value of a given Phi-function is positive when the objects are far apart, zero when they
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Figure 2.11: Phi-function taking into account two distinct positions (adapted from (Bennell and
Oliveira, 2008))

are touching, and are negative when there is overlap. In Fig. 2.11 two examples of Phi-function
value can be seen, where one function returns zero (since the pieces are touching), while the other
returns a positive value (since they are far apart).

For normalized Phi-functions this value is the Euclidean distance between two objects. Dif-
ficulties arise when using the normalized Phi-Functions due to radical expressions being present.
Since there expressions are computationally expensive, and using them can increase the numerical
precision errors, the solution is use radical-free expressions. This increases the performance of the
models, although the Phi-functions will not return the Euclidean distance between objects. This
approach has not been widely used due to several reasons, one being that Phi-functions require the
use of Non-Linear Programming Models which are still very complex and difficult to deal with.
They also increase exponentially in difficulty with the number of objects used to represent the
pieces, since one composed object contains one or several primary objects, which in turn, contains
several primitive forms. This growth in complexity is the primary reason that limits its widespread
adoption. Although it has many advantages, it still needs further research in order to be widely
adopted by the research community.

2.2.4 Circle Covering Representation

Covering problems are defined as minimization problems where the objective is to cover a region
with one or several objects. A particular problem of this kind is the Circle Covering problem (CC),
where the objects that cover the region are circles, and where the region being covered may also
be a circle.

The objective of the problem is dependent on the type of problem to be solved. One possible
aim is to minimize the radius of equal circles that are required to completely cover a region with
a fixed number of circles, and another is to minimize the number of circles while maintaining
a fixed radius, among other alternatives. Other problems require solving more than one single
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(a) Target covering (b) Area covering (c) Barrier covering

Figure 2.12: Circle Covering examples (adapted from (Wang, 2011))

Figure 2.13: Circle Covering of a rectangle (adapted from (Melissen and Schuur, 2000))

objective, such as minimizing the number of unequal sized circles required to cover a region,
within a specified approximation error, etc.

The C.C. problem is a fairly common problem in a wide range of scientific fields, such as
in wireless networking (cellular coverage), collision detection, and many others. In wireless net-
working problems, the challenge consists in placing sensors inside a specified region, with the
objective of covering the entire region, so that objects inside it can be monitored or tracked. They
have maximum sensing ranges, a network without fixed infrastructure and a variable topology.
The sensors are represented by circles and the circle radius represents the range of the devices.
Wang (2011) surveys the coverage problems for wireless sensor networks.

Three examples of distinct covering objectives are presented in Fig. 2.12. In 2.12a the problem
requires that all the targets inside a region be covered, while in 2.12b the whole area must be
covered. The example in 2.12c presents an example that requires building a covering barrier or
detecting penetration paths (paths from one point of the layout to another without coverage). Other
covering problems can be found in Heppes and Melissen (1997), Melissen and Schuur (2000)
which completely cover squares and rectangles with circles. One example of the covering of a
rectangle with circles can be seen in Fig. 2.13

Using C.C. to represent a specific shape usually requires the complete enclosure of the shape
inside the set of circles. However, for some problems, completely containing the covering circles
inside the shape may provide better opportunities. A polygon (or any other shape) can be "covered"
by circles in distinct ways, being one when the outline generated by the circles completely contains
the outline of the polygon. The circles can also fill the polygon from the inside without crossing the
outline of the polygon to its exterior, or they may approximate the polygon shape while exceeding
the polygon outline in some regions, and being contained inside the polygon outline in other
regions. Examples of C.C. without exceeding the outline of the polygons (and others that do
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Figure 2.14: Grid based Circle Covering.

exceed it) can be found in (Matisziw and Murray, 2009). In (Matisziw and Murray, 2009), the
problem requires dealing with the placement of facilities to maximize service coverage of regional
demand.

When using C.C. to achieve a representation that can be used in Nesting problems, it is re-
quired that certain characteristics are satisfied. This requires dealing with a trade off of achieving
total coverage of the region with a certain degree of approximation error to its outline but with
the minimum number of circles. Geometrical form representations through circles have great ad-
vantages compared to other representation methods. As one example, this approximation allows
reducing the geometric information of a piece outline by using only a set of circles of equal or
unequal radius which their coverage outline approximates the outline of the piece. The circles
have the advantage of being able to easily adjust to geometrical shapes composed by non-linear
segments, straight edges and others. They are placed in a fixed position relatively to the reference
point of the piece, with either equal or unequal circle radius between them, and the set of circles
is considered a single piece. This set of circles can then be translated, rotated around a point, and
placed in a feasible placement position. Rotations are trivial, since to rotate the representation
of the piece only the centers of the circles need to be rotated. The computation of the overlap is
easily and quickly done, since they only involve comparing the distances between circle centers
and their radius. The circles from the same set are allowed to overlap, since they have to cover all
the region of the piece, but they are not allowed to overlap other circles belonging to other sets.

For the problem of achieving a good representation through C.C., some approaches have been
proposed. Imamichi and Nagamochi (2007) and Imamichi and Nagamochi (2008) proposed an al-
gorithm which approximates an object by a set of circles/spheres and then computes a layout that
positions all those sets of circles/spheres minimizing a penalty function that is based on the pene-
tration depth between circles/spheres. His approach approximates the polygons by circles/spheres
using an approach that requires creating a bounding box of the polygon and then making a grid
with squares of a specific size D. Circles/spheres with the maximum size possible are then placed
into all grid points that exist inside the polygon, while also removing any redundant circles. This
method contains the set of circles that represent a piece inside the polygon that defines the piece
outline. An example can be seen in Fig. 2.14.
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(a) Contour approximation (b) Complete Circle Covering (c) Covering with gap

Figure 2.15: Outline and Three-Step(+Gap) Circle Coverings (adapted from (Zhang and Zhang,
2009))

Figure 2.16: Greedy Inner Circle Covering (adapted from Jones (2013))

Several algorithms have also been proposed by Zhang and Zhang (2009). In one algorithm,
they approximate the contour of the piece by circles (2.15a), and in another, the piece is covered
completely by circles using a threshold value and placing the circles starting from the convex ver-
tices (2.15b), which is called the Three-Step Algorithm. The threshold value is used to control the
approximation error to the outline of the piece. A greater threshold allows for a greater approx-
imation error. Zhang and Zhang (2009) also proposes a variation of the second algorithm with a
gap (Three-Step Algorithm+Gap) that allows regions in the contour not to be covered by circles
(2.15c). This is valid while there is a guarantee that any circle from other piece cannot cover
that gap. Although this method does not technically completely cover the piece, since it is only
a variation that reduces the required number of circles to "cover it", it can still be considered as
such.

Another possible approach can be seen in Jones (2013) where a greedy heuristic starts by
iteratively finding the largest circle that can be inscribed in the polygon, without overlapping the
previous one, until a specified number of circles is reached. Each generated circle, that touches the
outline of the polygon only once, is expanded until it becomes the largest circle where its center is
on a line starting on the contact point and perpendicular to the contacted edge of the outline.
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(a) Quad-tree (b) Circular Quad-tree

Figure 2.17: Quad-tree and circular quad-tree (adapted from (Moore, 2002))

The representation of a piece by circles (2D) or spheres (3D) can also be done with the assis-
tance of a tree structure. Focusing in 2D, a simple approach is to divide a region into a quad-tree
data structure and assign circles to each block, dividing each block into other four, until the de-
sired level has been reached. Several authors have done this mainly for collision detection in 3D,
such as Bradshaw (2002), but their idea is easily translated to 2D. Moore (2002) propose using
a circle-tree (Fig.2.17b) , which is the equivalent of a quad-tree (Fig.2.17a) but using circles, to
store and access efficiently spatial data. This approach can be used to represent pieces by circles
but it produces a large number of them.

Bradshaw and O’Sullivan (2002) proposes a method to construct sphere-trees (circular hier-
archical octree) for collision detection, using Voronoi diagram to approximate the Medial Axis.
Objects (convex and non-convex) are iteratively divided into regions which are then approximated
by enclosing circles. The algorithm tries to balance the size of the regions when dividing, in order
to balance the size of the spheres. After placing the initial spheres, the algorithm tries to cover the
rest of the uncovered points of the object, changing the structure of Voronoi diagram so that cir-
cles can better approximate the object, and also increasing the approximation to the Medial Axis,
constructing it as necessary. An example of this can be seen in Fig. 2.18a (before changes) and
Fig. 2.18b (after changes) where point q is the dividing point in the region and point c is the center
of the circle to be eliminated. With every division, the collection of inner points will increasingly
resemble the Medial Axis.

The usage of circles for geometrical representations has great advantages, such as the sim-
plicity of the definition of a circle, which only needs a point and a radius. This feature is what
makes so simple the computation of overlaps between circles, and their rotation. C.C. representa-
tion also has some disadvantages, mainly the difficulty in generating a covering due to numerical
precision errors and the problem of finding the smallest number and positions of circles that cover
a piece, within a maximum specified approximation error. If the method used to generate a C.C.
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(a) M.A. approximation before division (b) M.A. approximation after division

Figure 2.18: Reconstruction of Medial Axis approximation through Voronoi diagram (adapted
from (Bradshaw and O’Sullivan, 2002))

representation does not return a low amount of circles for a given approximation error, the C.C.
representation might be unusable due to the computational cost of overlap computation.

2.3 Modeling the Nesting Problem

A wide variety of different strategies were developed with the objective of producing good quality
solutions to Nesting problems. In order to achieve an admissible solution, several methods can be
categorized into two distinct approaches, methods that work with partial solutions and methods
that work with complete solutions (Bennell and Oliveira, 2009). In the methods such as the for-
mer, the layout is constructed one piece at the time, and each piece is positioned into a feasible
position, and not moved. The quality of the solution in this approach depends particularly on the
placement order of the pieces, and the chosen placement rule. Some improvements to this ap-
proach allow changing the sequence of pieces dynamically and/or backtracking. For any method
that chooses the latter approach, working with complete solutions, it is based on iteratively mak-
ing small changes to a complete solution. These changes are based on searches over a sequence
(changing sequence and/or orientation of pieces) and searches over a layout (allowing overlaps,
compacting and separating pieces, and others).

The methods used are based on mathematical models (linear and mixed-integer programming
models, and non-linear models), heuristics and improvement algorithms (greedy heuristic place-
ment methods, meta-heuristic guided search techniques and others). Some papers containing more
information about these approaches are Dowsland and Dowsland (1992) and Sweeney and Pater-
noster (1992). General positioning rules are required when working with either partial or complete
solutions. They are not able to be directly applied to Nesting problems since they have to rely on
geometric tools to deal with the geometry of the problem. The implementation of robust and
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efficient geometry tools can be laborious and can often take considerably longer than the pack-
ing strategies themselves. Even with geometric limitations, many different approaches have been
developed for Nesting problems. These approaches will be discussed on the following sections.

The geometrical representations (NFP, Circle Covering and Phi-functions) allow the conditions
of no overlapping and piece placement to be defined, and through them, mathematical models can
be derived with the objective to find a good solution to irregular piece placement problems. Each
geometric representation leads to a specific set of constraints and objective function (both can be
linear and/or non-linear) and lead to specific mathematical models. These models have in common
a set of decision variables, such as the variables that define the position for every object on each
axis, and their rotation, except when the model is derived from NFP, due to its fixed orientation.
A model in which the objective function and all of the constraint functions are linear, and also
continuous, is a linear programming model (LP).

Any model that deals with the piece placement problem of the Nesting problem has the same
basic structure. The decision variables consist of the variables that define the positions of the
pieces on the orthogonal axis, and the constraints are related to the non-overlapping between
pieces, and the containment of the pieces inside the container. Additional decision variables and
constraints are introduced depending on the specific requirements that arise due to the geometrical
representation selected.

General model structure for Nesting problems:

• Objective Function: Minimize length

• Decision Variables: Positioning variables regarding orthogonal axis

• Constraints: Overlapping and Containment constraints

Since the model structure depends on the geometrical representation used, it leads to different
types of model. The NFP produces linear constraints with binary variables, which leads to Mixed
Integer Programming models (MIP). When the model focuses on solving the relative positioning
problem, such as compaction/separation of the pieces, it uses only linear constraints which is a
linear programming model. Phi-functions and Circle Covering representations are solved through
Non-Linear Programming models since the constraints are non-linear.

A more detailed description about these models will be presented in the next subsections.

2.3.1 Models derived from No-Fit-Polygon

The model derived from the NFP has linear constraints obtained from the piece placement po-
sitions inside the large object. The non-overlapping constraints, besides being linear, also have
binary variables associated with them. While the piece placement position conditions grow lin-
early with the number of irregular polygons, non-overlapping conditions have a factorial increase.
The non-overlapping conditions lead to the use of MIP models due to the use of binary variables,
which increase with the number of pieces and with the number edges of the NFPs. Since at least
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Figure 2.19: NFP edges associated with constraints and conjunctions of constraints (edges d,e and
f ) (adapted from Gomes and Oliveira (2006))

one of the constraints is required to be satisfied, using a MIP model is necessary. The binary vari-
ables are useful for defining which non-overlapping constraints are satisfied regarding the relative
position of the point to the edge, or set of edges, belonging to the NFP. If the NFP is a convex
polygon, all edges are associated with a single constraint. If the NFP is non-convex, some edges
are associated with a conjunction of multiple constraints, composed by the constraints that bound
the concavity. In Fig. 2.19, all of the edges represent one non-overlapping constraint for that piece,
except the edges d, e and f , which define a conjunction of constraints representing the concavity.
For the pieces to ensure non-overlapping, only one of the constraints, or conjunction of constraints,
needs to be satisfied, indicating that the point is outside of the NFP. The pieces do not overlap if the
point is placed over or on the left side of at least one of the oriented edges of the NFP. In Fig. 2.19,
due to the position of point R j, the binary variable associated with the edge c signals that there is
no overlap, as also happens with the binary variable representing the conjunction of constraints for
the edges d, e and f . Models with these characteristics have reduced practical applications since
it can only be used to solve small/medium size instances due to its expensive computation cost.

Considering literature about Mixed-Integer Programming Models (MIP), a general LP model
used in layout compaction and separation has been discussed in Li and Milenkovic (1995). It
compares a formerly developed compaction algorithm based on a physical simulation approach
to a position based optimization model. The model represents the forces that act upon the pieces
as a linear objective function, allowing to compute the non-overlapping polygon positions at a
local minimum of the objective function. The position-based model is also shown to be effi-
cient for separation of overlapping polygons. Further development based on the work of Li and
Milenkovic (1995) can be found in Gomes and Oliveira (2006) and Bennell and Dowsland (2001).
Gomes and Oliveira (2006) present a global mathematical model for the Nesting problem, includ-
ing simplifications that allow to solve two positioning subproblems of compaction and separation.
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Using compaction and separation algorithms allows adjusting the placement of irregular pieces
and obtain a locally optimal feasible solution. The compaction algorithm executes a continuous
translation of the polygons in the layout, aiming to minimize the length of the container, while the
separation algorithm makes a continuous translation of the polygons in order to make the layout
feasible. Bennell and Dowsland (2001) use a bottom-left positioning heuristic and a compaction
algorithm based on a LP model while Gomes and Oliveira (2006) use a hybrid approach with the
bottom-left heuristic and the compaction and separation algorithm based on LP models assisted
by simulated annealing algorithm, which is used to guide the search over the solution space.

Although MIP models cannot be used to solve piece placement position problems, simpler
models such as compaction/separation models can be derived to solve some positioning sub-
problems or to improve solutions. The compaction and separation models are derived from the
complete MIP models from selecting, for each pair of pieces, which binary variables will be set to
0 and 1. Setting to 1 corresponds to fixing a relative position between a pair of pieces, and after
this operation, the model can be considered a linear model, since the integer or binary variables
are used as constants. The model can then be used to compact or separate the pieces on the layout,
while maintaining the relative positions of the pieces among each other. Therefore, this method
allows to simplify the MIP models, by fixing the relative positions of the pieces, thus becoming a
LP model, which can then be solved efficiently.

The compaction mathematical model aims to reduce wasted space on the stock sheet by ap-
plying a set of continuous movements to the irregular shapes. The result is a local optimal cutting
pattern. While using the set of movements on the irregular shapes, no overlaps among pieces
are allowed, neither any change in their orientation. The separation mathematical model allows
removing overlapping situations between irregular pieces, and the objective is repositioning the
pieces that are not on feasible placement positions, into admissible positions. While using the set
of continuous movements of the separation model, the number of non admissible positions cannot
increase.

A reduction in the number of constraints was achieved by Bennell and Dowsland (2001) and Li
and Milenkovic (1995), by placing bounds on the distance that any piece is allowed to move. The
bounds enabled the pieces that are over twice this distance from each other to be discarded from
the non-overlapping constraining set.

Fischetti and Luzzi (2009) introduced the concept of slices that consists in partitioning the
space outside every NFP into convex disjoint regions that do not overlap each other. This approach
is different from Gomes and Oliveira (2006) model in their use of NFP and the definition of
variables. A possible way to define slices, according to the method proposed by Fischetti and
Luzzi (2009), is shown in Fig. 2.20.

Alvarez-Valdes et al. (2013) propose a mixed-integer formulation for the Nesting problem,
expand the work of Fischetti and Luzzi (2009) and present an exact Branch & Bound algorithm.
They are based on the same approach, which divides the space around the NFP into disjoint re-
gions. First, if the NFP polygon is non-convex, it is decomposed into convex polygons and a
variable is associated to each one. The concavities of the NFP are then transformed, in a recursive
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Figure 2.20: Spatial partitioning by slices

way, into a convex set, where the resulting NFP is convex. The final step is to define horizontal
slices for the edges of the convex NFP, by drawing horizontal lines in the opposite direction to
the NFP, stretching the whole length of the strip. Using variables associated to slices overcomes
the disadvantages of the definition of Gomes and Oliveira (2006). Each feasible position of every
pair of pieces corresponds to a unique variable (except for the unavoidable common border shared
between slices) and defining horizontal slices (Fig. 2.21) enables an easier control of the relative
vertical positions of the pieces.

Toledo et al. (2013) propose a MIP model where binary decision variables are associated to
every piece type and to every point of a discretized board. The pieces can be convex or non-convex,
and can exist multiple pieces of every type. The piece reference point is placed into feasible points
on the board, considering the NFP and IFP of the other placed pieces and the board. When a
piece of a certain type is placed at a point in the board, the value one is assigned to the variable
associated with that point. A feasible layout (Fig. 2.22b) with the pieces placed on the positions
defined into the Dotted-board (Fig. 2.22a) are presented in Fig. 2.22

This type of model formulation allows solving large instances of the Nesting problem to op-
timality, with the downside of having to increase the precision related to the discretization of the
board. The optimal solutions of this model apply only to the cases where the Nesting problem is
discretized with the same characteristics. When the Nesting problem is defined over continuous
domains, these solutions may not be optimal solutions.

2.3.2 Models derived from Phi-Function

Using Phi-functions to address the positioning of the pieces, on a non-overlapping configuration,
requires the use of Non-Linear equations. The structure of a Non-Linear Programming model
used with Phi-functions ends up being a mix of the expressions used in the other models, since
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Figure 2.21: Horizontal slices for an NFP with closed concavities

(a) Dotted-board (b) Feasible layout

Figure 2.22: Feasible layout obtained from the placement of the pieces into the board (adapted
from Toledo et al. (2013))
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it compares pairs of pieces which can be composed simultaneously by lines, circles and arcs.
For this reason, models derived from Phi-functions have non-overlapping conditions represented
by linear and non-linear constraints. These mathematical expressions are used to express the
relative positions between pieces, just like the NFP, but they have positive, zero or negative values,
indicating the pieces are far apart, touching or overlapping each other, respectively. When the
value of the Phi-function is zero, it is similar to the NFP. Since Phi-functions cannot be generated
for every type of arbitrary shapes, approximations are done by decomposing the original shape
into several pieces that belong to a specific set of shapes (Bennell and Oliveira, 2009).

Stoyan et al. (2012) present a mathematical model for the packing problem, with phi-functions
derived from circles and non-convex polygons, supporting continuous translations and rotations,
for placement inside a strip with prohibited areas. In it, he constructs the starting points through
an optimization method by groups of variables, and then uses a local search methods to find an
approximation to a global minimum.

2.3.3 Models derived from Circle Covering

Deriving a model from Circle Covering representation produces non-linear constraints which
results in a non-linear programming model (NLP). Models derived from Circle Covering have
non-overlapping constraints derived from the Euclidean distance between centers of a pair of cir-
cles, from different pieces, while taking into account their individual radius. Also, since they
use trigonometric operations, any equation that also uses them will also be non-linear. The non-
overlapping conditions derived from the piece placement positions inside the large object, relative
the large object outline, are usually linear, but may also be non-linear if the frontier of the big
object is defined by sets of circles, instead of edges. The biggest advantage of this type of model
is that the non-linear non-overlapping constraints derived from circles are simple to compute, and
they are independent of any piece orientation. Unfortunately, with the increase on the amount of
circles that describe each piece, the non-overlapping constraints also increase, and the computa-
tional cost grows higher.

If the formulation of the model is derived from the simplest form of the problem, which is
when all the pieces are represented by a single circle, the problem becomes significantly easier to
address. The formulation of the problem becomes equivalent to circle packing. Birgin and Sobral
(2008) addresses the problem of circle packing through a variety of non-linear models, either with
a fixed set of identical or different-sized circles into with circular, triangular, squared, rectangular
and also strip shaped containers. His formulation can be used in 2D as also 3D. Several strategies
are described to reduce the complexity of non-overlapping constraints, such as spatial partition
of the layout into identical squared regions, for overlapping evaluation. For circle packing inside
ellipses, Birgin et al. (2013) explores multi-start strategies and non-linear programming models.

Wang et al. (2002) proposes a quasi-physical quasi-human algorithm for the unequal circle
packing problem. The method is an analogy to the physical packing of cylinders inside a con-
tainer where human behavior is mimicked, by removing cylinders to prevent being stuck on local
minimum.
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Stoyan et al. (2012) proposes a non-linear mathematical model for strip packing, supporting
not only circles but also non-convex polygons. The Phi-function is used in conjunction with
the non-linear model, and their behavior is analyzed. It is also discussed a possible approach to
construct feasible starting points and the development of search methods that allow finding local
minima and approximation to the global minimum.

Returning to piece representation through multiple-circles, Zhang and Zhang (2009) intro-
duces a method for 2D packing optimization called Finite-Circle Method. This consists in rep-
resenting every component of the problem through circles, and defining all non-overlapping con-
straints as constraints between pairs of circles. They discuss three algorithms that approximate
pieces by circles and experiment with genetic and gradient based algorithms together with the
Finite-Circle Method to solve the packing problem.

Imamichi and Nagamochi (2007) use an approach called Multi-Sphere Scheme that allows
efficient design of algorithms that compute compact layouts. It consists in approximating every
object by a set of spheres and then search for the placement position while minimizing a penalty
function, which is based on the penetration depth of the spheres. They use a non-linear formulation
together with a proposed Iterated Local Search algorithm to pack rigid objects, which applies the
quasi-Newton method to the packing problem. Although this example is focused on spheres, it
is also compatible with circle packing. In Imamichi et al. (2009), they proposed a separation
algorithm based on a nonlinear program, and incorporated it, together with a piece swapping
algorithm, into their Iterated Local Search algorithm.

The approach used by (Jones, 2013) focuses on solving to full optimality the Nesting problem
using global optimization methods for certain types of quadratically constrained, quadratic pro-
gramming problems. The method is based on inscribing several circles within each irregular shape
and relaxing the constraint that the shapes do not overlap with the inscribed circles from another
shape. It starts the compaction with a low number of circles per shape, and adds circles to the
pieces where they are needed, to increase the quality of the covering, until the required accuracy
is obtained.

2.4 Solution Approaches to the Nesting Problem

The methods used to solve Nesting problems can be defined into distinct categories, approaches
that rely on specific solvers to solve mathematical models, approaches based on greedy construc-
tive algorithms that build a solution from scratch and approaches that start from a feasible solution
and try to improve it.

The approaches based on algorithms can be distinguished from mathematical model approaches
by their aim, which focuses on achieving a good solution in a reduced computational time. Math-
ematical models, on the other hand, search for the optimal solution which can take too much time.
The constructive heuristic approaches have the disadvantage of not being able to return a feasi-
ble solution at any time during the computation, since it only returns a solution when it finishes
constructing it. In the next sections, an overview of these approaches will be discussed.
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2.4.1 Mathematical Solvers

The approaches based on mathematical models require the definition of the problem in mathe-
matical terms and its resolution with the assistance of a specific solver. Depending on the type
of problem, the definition of the mathematical model will be different, due to the different types
of variable and constraints. Variables can be binary, integer and real, while the constraints can
be linear and non-linear constraints. The different combinations of variable and constraint types
produce distinct mathematical models which require specific approaches to be efficiently solved.

The mathematical solvers are specifically designed to deal with certain types of mathematical
models, and depending on the characteristics of the problem, they may be able to compute the
global optimum solution. Linear Programming solvers can solve huge instances with hundreds
of pieces, as long as the relative positions between the pieces are fixed, as shown in Gomes and
Oliveira (2006). The Mixed-Integer Programing solvers can solve a reasonable number of pieces,
7 to 16 pieces for global optimum and considering continuous placement positions with discrete
rotations, as seen in Fischetti and Luzzi (2009) and Alvarez-Valdes et al. (2013). When the place-
ment positions and orientations are discretized, instances with a larger number of pieces can be
solved, up to 56 pieces, as seen in Toledo et al. (2013).

Non-Linear Programming solvers can solve problems with more than 75 pieces, considering
continuous translations and rotations (Stoyan et al., 2012), but returning local optimum solutions.
Finding the global optimum solution using NLP models can only be achieved when using two or
three pieces at most with continuous translations and rotations. NLP problems struggle to achieve
optimal solution with four pieces (Jones, 2013).

State-of-the-art solvers oriented to solve LP and MIP mathematical models are CPLEX1 and
Gurobi2. The resolution of NLP mathematical models can be done using solvers that do not
ensure global optimality, like Algencan3, and IPOPT4, solvers that ensure optimality, like LIN-
DOGlobal5, BARON6 and GloMIQO7.

The computational requirements for achieving the global optimum grow exponentially with the
size of the problem to be solved. Since achieving a global optimum, or even an admissible solution,
may not be possible within an acceptable computational time, alternatives based on constructive
and improvement algorithms are useful.

2.4.2 Constructive Algorithms

One of the approaches to solve Nesting problems is building complete layouts from scratch, by
selecting and placing pieces one-by-one. When using single-pass construction heuristics, some
reasonable quality solutions can be found without much computational effort. Since feasibility

1http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
2http://www.gurobi.com/
3http://www.ime.usp.br/~egbirgin/tango/
4https://projects.coin-or.org/Ipopt
5http://www.lindo.com/
6http://archimedes.cheme.cmu.edu/?q=baron
7http://helios.princeton.edu/GloMIQO/

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.gurobi.com/
http://www.ime.usp.br/~egbirgin/tango/
https://projects.coin-or.org/Ipopt
http://www.lindo.com/
http://archimedes.cheme.cmu.edu/?q=baron
http://helios.princeton.edu/GloMIQO/
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Figure 2.23: Cutting Pattern derived from Placement Heuristic used with a given sequence of
pieces (adapted from (Gomes and Oliveira, 2002))

tests are included into these heuristics, each piece is placed on an admissible placement position
on the stock sheet, and fixed to that position (Bennell and Oliveira, 2009). The quality of the
solution derived by this type of heuristics depends mostly on the sequence of the placement order
of the pieces, which can be in a random order, decreasing size, or other ordering criteria. The
placement rule adopted to select the placement point also has a strong impact on the final result.
More elaborated placement rules can have the ability to fill holes. Although the placement rule is
critical to achieve a good final solution, the sequence in which the pieces are ordered also plays an
important role. These two components determine how good is the approach to achieve a low waste,
compact cutting pattern. An example of an application of a placement heuristic to a sequence of
pieces can be seen in Fig. 2.23.

2.4.2.1 Placement Rules

Placement rules are useful to find an admissible piece placement position on the stock sheet. The
most commonly used placement rule is the Bottom-Left. This rule works by moving each piece
horizontally to the left until it cannot move in that direction, and then proceeds to move vertically
until it is able to resume horizontal movement or touching another piece/bottom of the stock sheet.
The piece is placed in its final position ensuring that it is fully contained in the stock sheet and that
it does not overlap other pieces that have been already placed.

The geometric representation chosen for the pieces has great influence on the bottom left
placement heuristic since if a grid representation is selected, the pieces must be moved in steps,
and in each step the placement feasibility must be checked. If overlap is detected, the piece is
returned to the previous position, and the movement is directed towards the bottom. If this bottom
movement is feasible, then it proceeds until no movement is allowed in this direction, and returns
to left movement direction. The final piece placement position is found when no more movement
to the left or bottom is allowed (Bennell and Oliveira, 2009), as is shown on Fig. 2.24.

An important issue in placement heuristics is the ability to fill holes that the pieces have, or that
may be created between previously placed pieces. Authors as Burke et al. (2006), Dowsland et al.
(1998) and Sagenreich and Braga (1986) suggest searching the layout from the left side through
the infeasible positions for holes, and therefore admissible placement positions in internal holes
are searched before looking for a position on the right side of the stock sheet. One way to find
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Figure 2.24: Bottom left approach example (adapted from (Bennell and Oliveira, 2009))

feasible positions is to build a grid over the stock sheet in order to define discrete positions on the
layout for testing. The grid can be used to represent both the layout and the approximated pieces,
using a Bottom Left approach, like in Sagenreich and Braga (1986), or reducing the stock sheet
to a grid while alternating the search between top and bottom moving to the middle and having
started from the left side (Dowsland et al., 1998).

Some other more advanced strategies, like one from Burke et al. (2006), use discrete movement
in horizontal direction for the pieces while maintaining a continuous vertical movement which is
achieved by geometric functions that check for admissible piece placement positions and compute
the minimum vertical distance needed to an admissible piece placement position. This strategy
uses the NFP to check for overlap in a given placement position avoiding the necessity to use a
grid. With this strategy, all the feasible placement positions can be identified, as long as they do not
belong to the inside of the NFP of the positioned pieces, and still maintain admissible positions
inside the IFP of the layout. One example of the feasible placement positions, can be seen in
Fig. 2.25d, using NFP examples and its degenerated cases, including the IFP, as seen on Fig. 2.25.

When having a partial solution composed of a set of previously placed pieces in fixed locations,
it is possible to compute the set of NFP between each of those placed pieces and the piece to be
placed next. This returns a feasible placement region that may be infinite in size, depending on the
stock sheet parameters, with infinite placement positions.

Gomes and Oliveira (2002) managed to reduce the number of possible placement points by
considering only intersection points between NFP’s and between NFP’s and IFP’s. These place-
ment points are a subset of the vertices present in all NFP, and are created in the intersection of all
NFP edges and also in the intersection of all NFP and IFP. If one of these vertices is inside another
NFP, then it is removed since it is not a feasible placement position. With a discrete and finite
set of vertices representing admissible placement positions, finding the Bottom Left placement
position for a given piece is a simple task.

Another alternative to the Bottom Left placement rule, is suggested by Oliveira et al. (2000).
This approach consists in using a floating origin while fixing the relative positions of the pieces to
each other, and defining the width of the partial solution to be equal or smaller to the stock sheet
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(a) Next piece to be placed (b) NFP’s according to other pieces on the layout

(c) IFP between piece and container

(d) Feasible placement positions, marked as white color

Figure 2.25: NFP examples and degenerate cases (adapted from (Gomes and Oliveira, 2002))
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Figure 2.26: TOPOS partial solution and pieces not yet positioned (adapted from (Oliveira et al.,
2000))

width. An illustration can be seen in Fig. 2.26.
The partial solution is described by the frontier defined by all the pieces, including the last

additional piece, and the space between the pieces is considered waste, discarding any possibility
of positioning a new piece in that region. In Oliveira et al. (2000), the NFP’s are used to find
feasible placement positions, and for each new additional piece, a new NFP needs to be computed
between that piece and the partial solution. Several rules were created to maintain the layout as
compact as possible. Their aim is to minimize the area or length of the rectangular enclosure of the
newly created partial solution, or maximize the overlap between the rectangular enclosure of the
actual partial solution, and the rectangular enclosure of the piece to be place, without any overlap
among pieces. An advantage to this alternative approach is that it can be used with irregularly-
shaped stock sheet.

2.4.2.2 Placement Sequences

The positioning sequence in which the pieces are ordered and placed on the stock sheet contributes
greatly to the solution of the final layout. The selection of pieces can be done using several
criteria, such as Random Selection, using a Monte Carlo based algorithm, which generates a great
variety of placement sequences. This approach is mostly used on methods that improve an already
complete solution, and also when multiple initial solutions are required. When a constructive
algorithm is being used, this approach is discarded in favor of another that uses a more intelligent
strategy other than random generation. Dynamic selection assigns pieces into groups defined by
types (identical shapes), with a given number of discrete orientations, and allows the placement
of any pieces as long as pieces from a given type have not yet been placed. Several criteria,
which were evaluated by Oliveira et al. (2000), determine which type of piece is the next to be
placed, such as relative waste, overlap, relative distance, waste minus overlap and relative waste
plus relative distance. In this method, all the piece types are positioned, and the best solution is
selected, repeating the same process (inserting all the remaining piece types with the previous best
pieces placed) iteratively until all pieces are positioned. An example can be seen on Fig. 2.27.

Dynamic piece selection can be extended, by constructing a search tree, in which every node
in the search tree corresponds to a partial solution, and a branch from a node represents a piece
that was added to the partial solution. The leaf nodes represent all of the complete solutions. Since
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Figure 2.27: TOPOS piece selection and positioning method (adapted from (Oliveira et al., 2000))

this is a greedy search, the path selected while navigating the tree may not lead to the best solution,
preventing wasting time building the entire tree while restricting the number of successor nodes at
each level. Several possibilities to improve this approach exist, as in Albano and Sapuppo (1980),
such as using backtracking within a given number of levels and pruning the tree using a waste
criteria to evaluate each partial solution. One path is pursued only if waste limit is slightly higher
than others from partial solutions further up the tree. Another possibility is beam search (Bennell
and Song, 2008) where the tree is pruned accordingly to two evaluation functions, one evaluates
the partial solution quality and the other makes an estimation of the final solution considering all
of the remaining pieces, packed on a greedy way.

2.4.3 Improvement Algorithms

Some approaches to Nesting problems start with a complete feasible solution, and proceed to it-
eratively make small changes in order to achieve better results. This technique is usually known
as local search. Due to the combinatorial component of nesting problems, local search is one of
the many possible approaches, but some others have been implemented like Tabu Search (Ben-
nell and Dowsland, 1999), (Burke et al., 2006), Simulated Annealing (Heckman and Lengauer,
1995), (Oliveira and Ferreira, 1993), and Genetic Algorithms (Babu and Babu, 2001), (Jakobs,
1996). Layout improvement approaches to Nesting problems can be divided into two types, by
either searching over a sequence of pieces and relying on a low-level placement rule to build
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Figure 2.28: Effect of Bottom Left placement rule with selected movements (adapted from (Ben-
nell and Oliveira, 2009))

the actual layout, as seen in the previous section using partial solutions, or by working with the
solution directly and moving the pieces around in the physical layout.

Both approaches have advantages but also limitations. When working with sequences of
pieces, the sequence and its solution needs to be analyzed in order to select a different sequence
with better solution. This approach is more computationally expensive than searching for a piece
move within the layout that improves the solution. The quality of the solution also depends on the
placement rule chosen, but as an advantage this approach ensures that the solutions are feasible.
The same cannot be said about the other approach, since moving pieces within the layout might
create overlaps among them, while searching for better positions, which in some cases difficult
achieving a feasible solution.

2.4.3.1 Sequence Shuffling

Sequencing problems are commonly found in optimization applications. A placement rule pro-
duces a solution (i.e., a layout) from a given sequence of pieces but its performance depends on the
sequence of the pieces. Some commonly used movements in approaches as local search are swap
movements which change the position of two pieces in the sequence, and insert movements which
inserts a piece into a given position into the sequence. When dealing with packing problems, an-
other movement can be included, namely the change of orientation of a piece. These movements
can be easily interpreted in the Fig. 2.28.

The original sequence, on the top, is modified considering each of the lower movements. Its
result is the layout on the right of each sequence. From what can be observed, the swap movement
has a higher chance of to generate smaller changes to the global layout than the other movements,
since replacing one piece by another leaves all the other pieces in the sequence in exactly the
same position. An insert move changes many more pieces out of their original position in the
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Figure 2.29: Piece swap limited by the maximum distance parameter (adapted from (Gomes and
Oliveira, 2002))

sequence, since pieces will move after the position where the piece is inserted. Comparatively, the
movement to change orientation cannot be always used, since in some cases orientation changes
are not allowed, but can cause great modifications to the layout. It is usually used with a swap or
insert move.

Due to the number of pieces in a real world Nesting problem it is necessary to restrict the size
of the neighborhood. One approach is used by Gomes and Oliveira (2002), where a parameter
limits the maximum distance a swap can occur among pieces, using a probabilistic two-exchange
heuristic. An example is presented on Fig. 2.29.

The layouts generated by the swaps are evaluated, making a decision based on criteria that
chooses layouts that improve the current solution (first-better), selects the best layout among all
(best), and a random solution, among all the solutions better than the current one. Burke et al.
(2006) uses tabu search to find local optima, and restrict their neighborhood size to five solutions
selecting each one of them randomly, and applying a random move between insert, pairwise swap,
three-way swap and n-way swap. The pieces for the swap move or the position for the insert move
are randomly selected. Takahara et al. (2003) propose a neighborhood search based exclusively on
insert moves, with a normal and adaptive state, in which pieces have the same move probability
or their move probability depend on their relative weight, respectively. Whenever a movement
improves the solution the weight of the piece increases by one unit. Jakobs (1996) uses genetic
algorithms to search piece sequences. The offspring are generated through random selection of a
number of consecutive pieces, starting from a random number and being placed at the beginning
of the offspring, and receiving the unmodified sequence part from the second parent. Mutations
are introduced by a rotation of pieces in 90 degrees. Also with genetic algorithms, Babu and Babu
(2001) deals with multiple heterogeneous stock sheets using genetic algorithms. Their genetic
codes have included the stock sheet sequence, orientation of the pieces and the sequence of the
pieces. It uses three mutation operators, one being the swap movement, and the other two based
on the piece orientation change movement. Dowsland et al. (1998) present the Jostle algorithm
which uses an analogy to the oscillation of a physical layout to shuffle the pieces from the left end
to the right end of the stock sheet. This switching among pieces makes the last pieces to be placed
in the last iteration to be the first to be moved and placed into the next iteration. The placement
rule used in this approach has a hole-filling capability which allows pieces that appear in the final
positions of the sequence to slide to positions between larger pieces. A representation of the Jostle
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Figure 2.30: Movement from the left end to the right end with the Jostle algorithm (adapted
from (Dowsland et al., 1998))

algorithms can be seen in Fig. 2.30.

2.4.3.2 Layout Shuffling

A critical aspect of working with complete solutions is ensuring that all operations end with a
feasible solution. However, infeasibility is used when searching for a better solution by allowing
overlap among pieces, which is penalized in the objective function. Allowing infeasible solu-
tions usually leads to more fully connected landscapes, increasing the efficiency of the search
algorithms. However they may have problems when converging to good local solutions with no
overlap. This may prevent the search algorithm of returning a feasible solution. Eliminating the
overlap and later adjusting of the pieces will result in a degradation of the solution quality.

Since the stock sheet is a continuous area in which exist an infinite number of admissible
placement positions, the search algorithms have to work with a continuous solution space. The
discretization of this solution space allows the search algorithms to compute faster at the expense
of accuracy, and eliminating some placement points while keeping the most promising among
them. This approach tries to ensure that the global optimal solution is still available as a placement
position. The problem with this approach is the difficulty in evaluating the physical layout in order
to find a movement. Usually this is tackled in two different ways, by moving a single piece, or by
moving a limited set of pieces. A single piece movement can be considered an insert movement
because that piece is removed from its current location and inserted into a new one. Considering
multiple piece movement, can be considered a swap movement since piece positions are exchanged
among them. Some other movements can be applied, like rotation or symmetry transformation.
Some strategies based on local search approaches reduce the solution space to a discrete set of
points, by means of imposing a grid over the stock sheet, and using only those points as placement
positions. The greatest advantages besides reducing the number of admissible piece placement
positions are its ease of implementation, easy to manage the dimension of the grid, and the search
positions are evenly distributed over the stock sheet.

A simulated annealing algorithm was presented by Oliveira and Ferreira (1993) that places
the pieces randomly on the stock sheet and executes a neighborhood movement upon one piece,
moving it one grid unit each time. Other similar approach using grids is presented by (Bennell and
Dowsland, 2001) in which their neighborhood keeps track of all the generated solutions through
piece movement into a new grid positioning. Taking into account the fact that in an optimal
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Figure 2.31: Finding the point with minimum overlap (adapted from (Bennell and Oliveira, 2009))

solution all the pieces will touch the stock sheet edges or some other piece, only those edges need
to be searched for admissible placement positions. When using the NFP, that task is simplified.
This is used by Bennell and Dowsland (2001) and improved by finding a subset of points where the
point of minimum overlap is contained. The point of minimum overlap between the current piece
and the current layout is contained in the set of vertices of all the NFP’s and vertices created by the
intersections between NFP’s and IFP’s. An example of a set of points with a point of minimum
overlap is presented in Fig. 2.31.

In Błażewicz et al. (1993), a tabu search algorithm is presented that converts the infinite piece
placement positions into a finite and discrete set. It uses a Bottom Left placement rule ordered by
non-increasing area, meaning that a piece is moved from its current position to a hole within the
layout, or to the end of the layout. This approach has the disadvantage of having to be aware of
the position of holes, which is a difficult and computationally expensive task. As an alternative to
the discretization of the layout space, and extending their previous work in Oliveira and Ferreira
(1993), they imposed a limit to the maximum distance that a piece can move and select a randomly
generated direction and distance. Another approach is presented by Gomes and Oliveira (2006)
which uses a hybrid algorithm, using a simulated annealing meta-heuristic with linear program-
ming models. The simulated annealing is used to guide the search over the solution space while the
linear programming models come from compaction and separation algorithms. The main differ-
ences to other similar approaches are the type of movements used to move between solutions (swap
movement) and the criteria used to accept or discard feasible and unfeasible solutions. When a
movement results into an unfeasible layout, the layout is not accepted.

When moving the pieces around, allowing overlapping but penalizing it creates an additional
objective when the primary objective is minimization of the length of the layout. Some approaches
can be taken. Defining weights for each cost element is the first one. Heckman and Lengauer
(1995) classify the total layout cost as being a weighted sum composed of the total layout length,
the sum of the overlap among each pair of pieces, and one additional cost related to the overlap
across horizontal and vertical dimensions. The balancing of the weight trade-off is done dynam-
ically. In Bennell and Dowsland (2001) the overlap is considered as a horizontal translation, and
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Figure 2.32: Overlap function of movement in horizontal direction (adapted from (Bennell and
Oliveira, 2009))

receives the direct sum of overlaps and weights without attributing any weights. They balance the
trade-off between overlap and weight using compaction and separation.

Another approach is to focus on the optimization of one objective, while fixing the other, and
then switch among them. Bennell and Dowsland (1999), Imamichi et al. (2009) and Egeblad
et al. (2007) focus on the minimization of the overlap while fixing the stock sheet length. After
achieving an admissible layout, the stock sheet length is reduced. In Egeblad et al. (2007) they
chose to minimize the overlap and only search for admissible placement positions in a horizontal
or vertical direction, thus simplifying the search by excluding one dimension and evaluating all
the positions along the other dimension. The overlap is seen as a function and its minimum is
selected as the position for the piece. We can see the overlap function in Fig. 2.32.

2.5 Specific Geometric Algorithms for the Nesting Problem

Building a layout from scratch or improving an existing one is a complex task, requiring ap-
propriate methods to assist in the search for the best layout possible. These methods cannot be
implemented without depending on another set of complex operations, such as the detection of
overlapping among pieces. Since it is desired to avoid complex and repetitive trigonometric com-
putations when dealing with overlap detections and computation of the relative position of the
pieces, several useful concepts, such as D-functions, No-Fit-Polygon (NFP) and phi-functions, are
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commonly used. Since most geometric representations cannot, by themselves, provide enough
capabilities to deal with the piece placement problem, other tools are required to assist them.

These tools are available from software libraries, free or proprietary software, or they might
require being developed, adapted and implemented by the user. A library that includes many func-
tions and algorithms specifically tailored to geometrical problems is CGAL. CGAL is a software
library developed by several research groups around the world. It provides a flexible implementa-
tion of computational geometry algorithms and data structures to be used in industry and also in
academia. It consists of a core with several geometric primitives and data types, a large collection
of basic algorithms and specific data structures (for triangulations, planar maps, among others)
and support libraries for I/O, debugging and visualization. Considering the discussed topics in this
work, CGAL contains algorithms related to NFP, convex decomposition, and many others. When
used for commercial applications it requires a license.

Besides the support for the geometrical component, the combinatorial component also requires
a specific set of tools that are not directly usable. Mathematical models, Heuristics and Meta-
Heuristics, among others, are used to achieve feasible solutions. These models and algorithms are
derived or depend directly on the chosen geometrical representation and can be improved by using
specific algorithms such as the ones discussed in this section.

In this section, commonly used mathematical tools and algorithms are described.

2.5.1 Spatial Partition Algorithms

Spatial partition involves dividing a region of space into several regions, often represented by a
hierarchical structure, where the partitioning algorithm is recursively applied to each sub-region
created. If a region is divided into equal discrete blocks, and the information about the contents of
that region is stored into a structure, the information about the placement of objects and empty area
will become redundant, since both the interior and exterior of the objects (either filled or empty
regions) do not contain information about the frontier of any object. This redundant amount of
information increases the computational cost of operations such as overlap detection, and limits
the maximum spatial detail (or resolution) due to memory consumption, which increases as the
number of discrete blocks grows.

Several partition methods can be used to efficiently reduce the amount of redundant informa-
tion. In Binary Space Partition (BSP) each region is recursively divided into two sub-regions, so
each node will have two children. Quad-trees divide every region into four sub-regions, so each
node of the tree has four children. An example of a Quad-tree can be seen on Fig. 2.33.

These spatial partition methods also have disadvantages. When storing information in the tree
about lines and curves, depending on the maximum depth allowed (due to the desired resolution
detail), the tree may become very unbalanced (with some leaf nodes of the tree very close to the
root node, and other leaf nodes very far), which may negate the benefits of a search tree, since
traversing it adds computational cost depending on the number of nodes.
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Figure 2.33: Quad-tree (adapted from (Moore, 2002))

2.5.2 Collision Handling

In literature, one can find many problems where there is the need to deal with the collision between
objects. The usual way of handling collisions include dealing with how the detection of collisions
is achieved, how to model the contact and how to respond to the collision. Collision handling is
usually used within simulations, where the progress of the motions of all objects is affected by
a temporal interval called simulation time. For each time period, the motions of all objects are
updated, and the collisions between them are computed while placed into their new positions. The
changes in the velocities and direction of movement of all objects are also updated.

2.5.2.1 Common weaknesses in basic collision detection algorithms

Cases that involve interactive simulations or animations require high consistent frame rate, which
can be difficult to attain due to some difficulties that arise. As discussed in Hubbard (1995), the
basic detection algorithm has three weaknesses:

Fixed time step weakness – By dividing the simulation time into fixed time steps of a given
period, if the period is too small, the accuracy of the collision detection will improve, at
the expense of a higher computational cost, and lower frame rate. If the algorithm uses a
large period for the time step, the algorithm becomes more efficient but on some occasions
the collisions of objects are not detected. This happens due to the non-overlapping of initial
and final position of both objects, although they overlap somewhere in the middle of their
movement, and that overlap is not detected. This can be seen in Fig. 2.34.

All-pairs weakness – In some simulations, besides collision detection there are some tasks com-
puted in real-time, such as frame renderization. If the number of objects to compare for
overlap is high (at the worst case the collision detection between N2 pairs objects need to
be compared) the computation time will increase quadratically and the frame rate will drop
substantially.

Pair-processing – A pair-processing algorithm determines if the surfaces of two objects intersect
in a particular moment in simulation time. The efficiency and accuracy of these algorithms
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Figure 2.34: Undetected overlap situation due to large time step (adapted from Hubbard (1995))

are heavily dependent on the geometrical representation used, which may have a high com-
putational cost, and added complexity when special intersection cases arise, that are difficult
to process with efficiency.

The fixed time step problem can be addressed using an adaptive time step period that changes
depending on the situation, being smaller when collisions are more likely to happen, and larger
when they are less likely. Another possible approach requires extending the problem into four di-
mensions (the new dimension representing time) as discussed in Cameron (1990). This expansion
creates a geometrical shape that can be tested for intersection against another. Cameron (1990)
also shows a visual example how this method works with a two-dimensional problem, expanded
to the third dimension (time) and the intersection of the resulting polygons. Another possibility
is to assign each object its own simulation time, where its state only gets altered when a collision
is found ((Mirtich, 2000)). The main difference between this method and a retroactive method is
that this method only steps back the simulation time of the colliding objects, instead of all ob-
jects. Discussion about further approaches for these fixed time step weaknesses can be found in
Bradshaw (2002).

Solving the problems related to all-pair and pair-processing is usually done through a multi-
phase algorithm (with a Broad, Narrow and Exact phase) that consists in a few steps:

Broad Phase: Discard overlap comparisons between distant pieces – The Broad phase con-
sists in the first phase of the collision detection, where most of the overlapping possibilities
between objects far apart are discarded. An accurate selection of the objects that do not
overlap has great impact on the performance of the algorithm, since the number of potential
collision detection tests increase quadratically with the number of objects. The more colli-
sion detection operations are discarded, the more efficient the algorithm will be. This has
the effect of minimizing the effects of all-pairs weakness. Approaches that deal with his
problem can be found on Cameron (1990) where he uses a fourth dimension related to time
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to predict collisions, Palmer and Grimsdale (1995) uses bounding spheres to represent ob-
jects and computes collisions using sphere-trees and exact polygon intersection tests, among
others.

Narrow Phase: Discard overlaps through Bounding Volume Hierarchy(BVH) tree – The Nar-
row phase makes use of spatial localization techniques to reduce the complexity of the ob-
jects that need to be considered for collision detection. Bounding Volume Hierarchies are
very useful to simplify collision detections, since they use a hierarchy with simplified ob-
jects on one end and on the other the accurate representation of the object. This allows
to use simple representations of the object, such as sphere-trees (Fig. 2.35), Axis-Aligned
Bounding Boxes (AABB) (Fig. 2.36a) and Oriented Bounding Boxes (OBB) (Fig. 2.36b),
among others. In order to support a consistently high frame rate Hubbard (1995) proposed
an algorithm that approximates contact points as fast as possible. The algorithm is capable
of dynamic accuracy adjustment allowing to reduce accuracy of the algorithm to maintain
frame rate.

Exact Phase: Perform accurate collision detection between objects – The Exact phase uses the
results previously obtained in the Broad and Narrow phases, and performs accurate collision
detection between objects using their highest level of detail available, taking into account
the used geometrical representation. One approach used in the Exact phase is to use BVH
that contain triangles in their leaf nodes, as mentioned in Bradshaw (2002), where in case
of possible overlap, the triangles within the leaf nodes are used to test it. Other algorithms
for collision detection in the Exact phase are mentioned and discussed in Bradshaw (2002),
referring to line clipping that tests for edge-faces intersection between convex polyhedra,
and also closest point algorithms.

2.5.2.2 Interruptible collision detection

Real-time simulations may require additional tasks to be executed in parallel, such as rendering
frames. For achieving consistent high frame rate, without dropping below a certain level, Hubbard
(1995) proposed an algorithm that approximates contact points in the objects as fast as possible,
using a sphere-tree. The algorithm is capable of dynamic accuracy adjustment allowing to reduce
accuracy to maintain frame rate. This is achieved through a space-time approximation that tries
to predict the future position of the objects, focusing only on impending collisions, and making
sure that no collisions will be missed. The algorithm maintains a list of objects that are potentially
colliding, and as the tests return positive, they generate new nodes (children) that require further
collision testing. By testing one hierarchical level at a time, and progressing deeper into the col-
lision tree, the algorithm verifies a tighter approximation of the object and increases the accuracy
of the collision information. As it builds the collision tree, it tests the overlaps at each successive
hierarchical level, until the time available has been expended. When no more time is available,
the algorithm stops the search and continues from the last node on the next iteration. This allows
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(a) Original polygon (b) Sphere-tree

Figure 2.35: Bounding Volume Hierarchy of Sphere-Tree (adapted from (Broutta et al., 2009))
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(a) Axis Aligned Bounding Box (b) Oriented Bounding Box

Figure 2.36: Axis-Aligned and Oriented Bounding Boxes (adapted from (Bradshaw, 2002))

refining the search for collisions at each time step, but using only the incomplete information from
the collision detection algorithm. This approach allows interrupting the collision detection algo-
rithm, maintaining the currently state of information, and continuing the search for collisions on
the next iteration.

2.5.2.3 Traversal Algorithm for Bounding Volume Hierarchies

Bounding Volume Hierarchies require a proper method to navigate through the structure, in the
most efficient way (i.e. being able to confirm collisions with the minimum amount of comparisons
between objects). While BVH can be composed by multiple different object representations, such
as bounding boxes, enclosing circles, convex polygons, among others, in order explain how the
traversal algorithms works, an example with sphere-tree’s will be used.

Having a representation of an object by an hierarchy of spheres (or circles in 2D), or boxes(3D
or 2D), every time its not possible to discard the possibility of overlap between objects, the search
for collisions continues on the next (more detailed) hierarchical level of the tree. When objects do
not overlap at the current level, then the objects do not overlap, and further search of collisions
between the current objects can be ignored. Two possibilities exist for making a traversal into the
BVH trees: one of them progresses to the next hierarchical level on both object trees, and in the
other the search only advances one of both object trees to the next hierarchical level. The second
option (proposed by Palmer and Grimsdale (1995)) provides a reduced amount of comparisons
that result from positive overlaps, when compared to the first option.

The traversal of the BVH tree of two possible colliding objects can be seen in Fig. 2.37, for a
two-dimensional example. The algorithms starts at both objects root nodes, where the overlap test
returns positive. The nodes from hierarchical level 1 of object B are tested against the root node of
object A. All nodes from object B, from the current hierarchical level, that do not return a positive
overlap are discarded. The following step advances one hierarchical level of object A and tests its
nodes against currently selected nodes in B. Negative nodes are discarded, and the process repeats



52 The Problem of Nesting Irregular Shapes with Continuous Rotations

in the same way, by advancing the hierarchical level of object B, and testing against the currently
selected nodes from object A. This is repeated until the final hierarchical level is reached, and
collision can be definitely confirmed.

This traversal method has also been adapted to support collision detection with interruptions,
as can be seen in O’Sullivan et al. (1999). The main change is that all leaf nodes in the tree are
introduced into a list with resolved collision tests, and when the algorithm needs to be interrupted,
the pending collision tests get the current nodes introduced into a queue. The current results from
the collisions are returned even if they had not completed the tests up to the leaf of each tree. The
collision tests are then resumed while taking into account the nodes already processed and placed
into the queue, with a selection algorithm based on human perception that differentiates between
high and low priority collisions.

2.5.2.4 Collision detection adapted to Nesting problems

In Nesting, objects are normally represented by polygons, where the usual method to compute
overlap is through D-functions. The BVH consists, at the root node, of an AABB that contains
the whole polygon. The next hierarchical level of the BVH tree contains the AABB of the edges
of the same polygon. On the last hierarchical level, the edges and vertices of the polygon are
used directly to compute for overlaps. These simple tests can be used to avoid comparing all
the primitive components (such as points, lines, arcs, etc) between the pair of pieces, which is
even more important in Nesting problems. This hierarchy of overlap exclusion tests can be found
in Bennell and Oliveira (2008). A simple test as the one proposed by Preparata and Shamos (1985)
can be used to verify if one polygon is included in another. Comparatively to other problems
where Collision Detection methods are required, in Nesting problems there is a higher difficulty in
discarding possible collisions between objects since the aim is to get objects into a tightly packed
configuration.

2.5.3 Convex Decomposition

Convex decomposition is used as a simplification method for complex geometry since most geo-
metric problems can be made simpler and faster if the objects are convex, instead of non-convex.
Convex polygons are much easier to work with than the original objects. This method can be
employed in a preprocessing stage, and the resulting convex polygons are used in real-time. The
simplest form of convex decomposition is triangulation, where the interior of the polygon is com-
pletely decomposed into triangles, however, using triangulation creates too many derived polygons
which makes a problem more computationally expensive. There are two conflicting objectives
when considering literature in convex decomposition, one is time complexity and the other is the
number of convex polygons generated. The computation of the optimal decomposition is consid-
erably slower than a suboptimal solution.

An optimal decomposition algorithm can be found in Greene (1983) which runs in O(N4)
time, being N the number of vertices of the original polygon.
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Figure 2.37: Traversal of Bounding Volume Hierarchy Tree (adapted from Palmer and Grimsdale
(1995))
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(a) Example of Angle Bisector Decomposition,
with intersection point I (adapted from (Chazelle
and Dobkin, 1985))

(b) Example of Small Side Angle Bisector Decom-
position, with concave vertices Pi and Pj (adapted
from (Agarwal et al., 2002))

Figure 2.38: Angle Bissector Decomposition

Hertel and Mehlhorn (1983) has an algorithm that decomposes a polygon no more than four
times the minimum amount of convex polygons. It starts with an arbitrary triangulation of the
polygon and removes non-essential diagonals iteratively, until none are left. It runs in O(N) time.

Chazelle and Dobkin (1985) proposed an algorithm called angle bisector decomposition that
works by initially extending the angle bisectors of the concave vertices of the polygon until it
intersects the outline or another angle bisector. This procedure repeats itself until concave vertices
cease to exist. An example of this algorithm can be seen in Fig. 2.38a, where the angle bisector A
is extended and intersects point I.

Agarwal et al. (2002) proposes an algorithm called small side angle bisector decomposition.
It is an improvement over the algorithm proposed by Chazelle and Dobkin (1985) that analyses
all pairs of concave vertices of the initial polygon, and traces a dividing line between a pair of
those vertices that has the minimum number of concave vertices between them, thus eliminating
the vertices. When the connection between two concave vertices is not possible, the process
eliminates only one vertex by tracing a single line closest to the angle bisector of that vertex. This
decomposition has a low computational cost and returns good results when compared to others
in the literature. The time complexity of this algorithm is O(N2). An example of this algorithm
can be seen in Fig. 2.38b, where the concave vertices (Pi and Pj) are connected and eliminated
simultaneously.

2.5.4 No-Fit-Polygon construction

The NFP is used to compute overlaps between two polygons. It is a very efficient method to com-
pare overlaps between two polygons, since it transforms the comparison between two pieces into
a comparison between a piece and a point. However, computing the NFP in real-time has a great
computational cost, making the algorithms that compute it very slow. For this reason, the compu-
tation of the NFP is usually done in a pre-processing phase, but only for discrete orientations, and
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not with free-rotations (while being possible to do so).
A similar concept to the NFP is the Minkowski sum. The Minkowski sum can be described as

the sum of all the pairs of points of two different sets, both sets representing, polygons. It is defined
as seen in Eq. 2.2 and is equivalent to the NFP if polygon B is transposed into its symmetrical B0,
as seen in Eq. 2.3, while B0 also maintaining the same orientation as A. This relation was first
formalized by Stoyan and Ponomarenko (1977). A procedure that generates the NFP, attending to
this relation, is presented in Ghosh (1991). The procedure is based on a set of theorems for convex
and non-convex cases, which represents the Minkowski sum through slope diagrams.

S = A�B = {a+b|a 2 A,b 2 B} (2.2)

B0 = {�b : b 2 B} (2.3)

The computation of NFPs is done through three main approaches, which are known as Sliding
algorithms, Slope diagrams and Polygonal decomposition into convex polygons. The first two
approaches allows to obtain the full NFP, while the decomposition approach requires another step,
which rebuilds the full NFP by merging the individual convex NFP components together.

The following subsections present the algorithms used to compute NFPs, Sliding algorithm
and Slope diagram, and Polygonal decomposition which is divided into two parts, one that focuses
on decomposition only, and the other on the merging of the decomposed NFP components.

2.5.4.1 Sliding Algorithm

The sliding algorithm, as proposed by Mahadevan (1984), is used to compute the NFP from pairs
of polygons through a method that mimmics the sliding of a mobile piece around a static piece,
without losing contact. The NFP is constructed by drawing the set of positions of the mobile piece
reference point around the static piece until it reaches the original position. The NFP generated
is simple, and convex, if both polygons are convex. When the polygons involved are not convex,
it may lead to NFPs with very complex outlines. Difficulties arise when one or both polygons
contain concavities with narrow entries or internal holes. When the sliding polygon is capable of
reaching all touching positions on the outline of the fixed polygon, the resulting NFP is simply
connected. When pairs of polygons that may be simply connected themselves but cannot reach
all points of their outlines when sliding, they are referred as multiple connected polygons and
result in an NFP with multiple components. Some other cases can also be referred as being not
strictly multiple connected, for example when a polygon slides into a concavity in one direction
only. Several improvements to the sliding algorithm have been proposed by Whitwell (2004), that
improve computational efficiency and allow to deal with exact fit sliding through a “passageways”,
among other improvements.

The sliding algorithm starts with two pieces touching each other, A and B, where the vertex
with the highest value of y-axis coordinate of piece A, is touching the lowest y-axis coordinate of
the piece B. An illustration about the sliding is shown on Fig. 2.39. The piece A is denominated
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Figure 2.39: Sliding distance according to the available length that maintains no overlapping be-
tween the pieces (adapted from Bennell and Oliveira (2008))

Figure 2.40: Search method to find a possible positioning place on the hole of piece A (adapted
from Bennell and Oliveira (2008))

static piece, and piece B as the orbital piece, since piece B will slide around piece A without losing
contact, while drawing the NFP with the reference point of B. If both pieces are convex, B slides all
the length of the edges of piece A, until B has completely traveled around A. When the polygons
have concavities, there is the possibility some edges might not be partially or totally slided. While
sliding, to avoid overlapping between the polygons, the vertices of the orbital polygon, B, are
projected on the direction of the sliding, the same length of the edge of the static polygon that is
being slided upon. The D-function is used to compute for intersections, and the slided distance is
the shortest available which conforms to no overlapping between both pieces.

The limitations to this algorithm is that it does not identify possible placement positions of
B inside a hole of A, or into unreachable positions in the outline of piece A, as in the case of
concavities that do not allow the orbital piece to slide inside while being able to contain B inside
without overlap. This example can be seen on Fig. 2.40. Extensions to this algorithm exist, such
as Burke et al. (2006), which tackle this issue by detecting which edges of A are in contact with
B, and then searching for holes. All the edges that were not slided or were partially slided are
possible candidates to being part of a hole. This is done by first finding the vertex of B that can
slide upon those edges, and then using the same previous method to find the available distance to
be slided that still maintains the no overlapping condition. If a valid positioning point is found,
the normal sliding algorithm is applied, and the respective IFP is computed.

Although this method enables the detection of holes and perfect fits, it may not be the most
efficient method to compute it.
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Figure 2.41: NFP between two convex polygons (adapted from Bennell and Oliveira (2008))

2.5.4.2 Slope Diagrams

Cuninghame-Green (1989) proposed a method to compute the NFP for pairs of convex polygons,
based on slope diagrams. Slope diagrams can be used with convex polygons without difficulty,
since it keeps the order of edges of both polygons, and will generate the NFP while navigating
through the list and adding each new edge to the previous edges. The specific procedure to generate
the NFP requires inverting the orientations of the edges of one polygon, while maintaining the
orientations for the second polygon, and ordering all the edges by slope which defines the sequence
of edges in the NFP. This procedure is illustrated on Fig. 2.41. On the left side of Fig. 2.41, both
polygons are shown, polygon A and polygon B, with their edges oriented in counter-clockwise
direction. In the middle, the oriented edges are placed accordingly to their slope, with the direction
of edged of polygon B inverted (in this diagram only the slopes of the polygons are considered,
the size of the edges is not represented). On the right side, the NFP between polygon A and B
can be seen. The difficulties arise when dealing with non-convex polygons, due to difficulties in
developing a robust NFP generator for them, limiting its use.

Ghosh (1991) extended Cuninghame-Green (1989) method for non-convex cases. When one
of the polygons has concavities, this approach changes, since the edges of the concave polygon
will not be ordered by slope. The edges of the convex polygon, which have slopes between the
slopes of the edges of the concave polygon, will be repeated every time they pass through the
concavity, when building the NFP. They are added with a positive sign to the NFP when entering
the concavity and added with a negative sign when leaving it. This method also works when both
polygons are concave, as long as their concavities do not interact.

Bennell et al. (2001) deals with the problem of two concave polygons, where the concave
edges of polygon B are replaced by artificial edges that end up simulating a convex polygon. This
produces an NFP from polygon A with the "convex" polygon B, where the original concave edges
will replace the previous artificial ones including any edges from A that are traversed wherever they
appear on the slope diagram. Dean et al. (2006) present an extension of Ghosh (1991) algorithm,
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using manipulation of sorted lists of polygon edges to find the NFP efficiently. Bennell and Song
(2008) proposed modifications to Bennell et al. (2001), which refers to an approach that retains
the concavities of the polygons while partitioning one of the polygons (such as B) into groups of
convex or concave sequential edges. These groups are then merged with the slope diagram of the
complete polygon (such as A), then following the original algorithm from Ghosh (1991) to create
the NFP, and finally, removing any internal edges or intersections that were created, maintaining
only the ones that belong to the outer limits.

2.5.4.3 Polygonal Decomposition

Another alternative is to use polygonal decomposition, where each irregular polygon is decom-
posed into several convex sub-polygons. The NFPs from every pair of sub-polygons from differ-
ent pieces are generated, and merged, to obtain the NFP from the original polygons. The most
complicated step of this process is to merge the polygons efficiently and without precision er-
rors. Achieving the minimum number of convex sub-polygons derived from the decomposition
of the original polygons reduces the computational cost of the merging procedure, but it is com-
putationally expensive by itself. The use of a greedy algorithm, while not achieving the optimal
decomposition, might be good enough in reducing the numbers of sub-polygons. The number of
total NFPs depend on the number of the convex sub-polygons generated from each piece, since
each convex sub-polygon from one piece will be used with every convex sub-polygon from the
other piece in generating the NFP. The procedure to generate the NFP from polygon decomposition
also suffers from mathematical precision problems. Some authors that use convex decomposition
are Watson and Tobias (1999), Babu and Babu (2001) and Agarwal et al. (2002). This procedure is
presented in Fig. 2.42, where Fig. 2.42a is piece A and Fig. 2.42a is piece B, Fig. 2.42c shows the
reference point at coordinates (0,0) of every component of the pieces (A1,A2,B1,B2), Fig. 2.42d
shows the NFP computed from pairs of components of different pieces, and Fig. 2.42e shows all
NFPs overlapped to return the complete NFP derived from both complete pieces.

Although the NFP brings many benefits in its use, mainly the efficient verification of the
relative position between pieces, calculating it is not a trivial task. Each approach has limitations,
but some are more critical than others. Holes and perfect fits need to be correctly detected and
represented, which can become difficult due to numerical precision problems. The major limitation
of the NFP is that it cannot represent the relative position between two pieces in any rotation,
without recomputing for the desired rotation.

2.5.4.4 NFP Component Merging algorithm

An important tool to generate NFPs can be found in Sato et al. (2013), where it explores the con-
cept of collision free region, which represents the set of translations that places a movable item
in the interior of the container, without colliding with the already placed items. The collision free
region is derived from the union of the NFPs generated between the movable item and the con-
tainer with the already placed objects in it. The union of the NFPs is achieved through Boolean
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(a) Polygon A (b) Polygon B

(c) NFP between convex components

(d) NFP between pairs of components

(e) Union of all NFPs between Piece A and Piece B

Figure 2.42: NFP computation through convex decomposition (adapted from Bennell and Oliveira
(2008))
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operations. The union of NFPs generates degenerate edges and vertices, which represent a slid-
ing fit (movement allowed in only one direction) or a perfect fit(no overlapping position, but no
movement allowed), respectively.

In Sato et al. (2013), the Boolean operations generate the NFP from two polygons, polygon
A (Fig. 2.43a) and polygon B (Fig. 2.43b). The overlap between both polygons generates the
intersections shown in Fig. 2.43c. The intersecting vertices between both polygons are determined,
and edges are divided by the vertices in both polygons. The vertices of the polygons are classified
as internal, external or in the boundary, while considering cases where both polygons share an edge
that may have opposed or identical orientations. The edges of the polygons are also classified as
internal, external, coincident shared or opposite shared, as seen on Fig. 2.43d. The resulting union
of the polygons can be seen in Fig. 2.43e and their subtraction is seen in Fig. 2.43f. In the union
case, the opposed shared edges create internal degenerated edges, where in the subtraction case,
the coincident shared edges generate external degenerated edges.

The main advantages of using a single polygonal structure to define the collision free region,
instead of multiple simpler polygons (such as in the case of convex decomposition), consists in
having a reduced number edges and vertices to verify against the item reference point. However,
the comparisons are more complex due to concavities and degenerated cases that appear, than
those made when using only convex polygons obtained from convex decomposition. The instances
where this approach provides benefits occurs when a large number of convex polygons used to
describe the collision free region is so computational expensive, that using a single NFP, even
with more complex operations, is less computationally demanding. The trade-off is trading the
computation of a large number of simple items, against a single item with higher complexity.

2.5.5 Medial Axis Construction

The Medial Axis (MA) of an object represents, according to Blum and Nagel (1978), a particular
description of an object that is centered on the object. It is also known as skeleton or symmetric
axis transform, and is described as the collection of maximal discs that fit inside the object but not
inside any other disc. The description of the M.A. consists on the locus of centers and the radius
at each point. Using this description, it is possible to reduce a shape into its skeleton, and when
required, reconstruct the boundary of the shape from it.

The M.A. use has been limited due to several difficulties. One difficulty consists in its volatil-
ity, since very small changes on the outline of a shape can induce large changes in the M.A.
Another difficulty is its complexity of accurate computation, due to underlying geometrical com-
plexity. The construction of the medial axis for polyhedral models is a complex and computa-
tionally expensive task. As mentioned in Foskey et al. (2003), when computing the M.A. for a
polyhedron, the surfaces that constitute the M.A. are quadrics, and seam curves can have degree
four, while when dealing with solids with curved boundaries, the M.A. sheets and seam curves can
have much higher degrees, which makes the M.A. computation extremely difficult to do reliable
and with enough computational efficiency.



2.5 Specific Geometric Algorithms for the Nesting Problem 61

(a) Polygon A (b) Polygon B (c) Polygon A and Polygon B Inter-
section

(d) Edges from both polygons are classified as internal,
external, coincident shared and opposite shared

(e) Union of Polygon A and B (f) Subtraction of Polygon A and
B

Figure 2.43: Polygonal Boolean operations for collision free region (adapted from Sato et al.
(2013))



62 The Problem of Nesting Irregular Shapes with Continuous Rotations

According to Foskey et al. (2003), the M.A. construction can be classified into four different
categories, being them thinning algorithms, distance field based algorithms, algebraic methods
and surface-sampling approaches, where their main differences are the representation used and
the method of construction.

Thinning algorithms use voxel or pixel based representation of the initial object, and perform
erosion operations to arrive at the set of pixels/voxels that are an approximation to the Me-
dial Axis. Thinning is commonly used in digital image processing, pattern recognition,
image analysis, signature verification, among others. A survey of these approaches can be
found in Lam et al. (1992), and a comparison in Zhang and Wang (1993). Another com-
parative survey can also be found in Vincze and Kovári (2009) where they compare several
thinning algorithms to a reference skeleton. Németh and Palágyi (2011) present six differ-
ent 2D thinning algorithms based on a generalization of curve/surface interior points that
are called isthmuses. An example of this tining algorithm can be seen in Fig. 2.44, where a
skeleton is generated from the letter P, using on the left side endpoint preservation (i.e. the
external vertices of the piece are preserved into the final skeleton) and on the right side, the
isthmus interior points are the points that define the skeleton.

Distance fields also use pixel or voxel based representation of the objects, but every pixel/voxel
contains the euclidean distance to the nearest point on the boundary of the object. Daniels-
son (1980) uses this approach for 2D, and an extension to 3D can be found in Ragnemalm
(1933). Another approach consists in using spatial subdivision of vertices (that represent
the M.A.) in different Voronoi regions depending on a threshold (Vleugels and Overmars
(1995)). Hoff III et al. (1999) uses interpolation-based graphics hardware to construct a
polygonal approximation of the distance field that is created in the depth buffer. Foskey
et al. (2003) extended the algorithm of Hoff III et al. (1999) to compute the gradient of
the distance field and using it for fast computation of the M.A.. Siddiqi et al. (2002) uses
a differential equation simulating the inward progress of a front that starts at the objects
boundary and moves towards the center. Every point on the boundary moves according to a
vector created from every point inside the outline oriented the nearest point on the outline.
An example of a thinning algorithm by Siddiqi et al. (2002) can be seen in Fig. 2.45.

Algebraic methods used to construct the M.A. can be seen in Etzion and Rappoport (1999),
where spatial partition is used, dividing regions until the curves are all connected or min-
imum size of the regions is achieved. Tracing approaches Milenkovic (1993) start from a
junction point, and follow the seam that leaves it, recursively arriving at another junction
point and following another seam. An overview of other tracing approaches can be seen in
Foskey et al. (2003). One method that allows to compute the MA is presented in Yao and
Rokne (1991), but a more detailed description can be found on a technical paper by Edwards
(2010). It allows the construction of the MA from simple polygons, returning only straight
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Figure 2.44: Thinning algorithm for skeleton generation (adapted from Németh and Palágyi
(2011))

Figure 2.45: Distance fields to approximate the Medial Axis (adapted from Siddiqi et al. (2002))
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lines on the skeleton of convex polygons, and returning a set of straight lines and parabolic
arcs from irregular polygons, i.e. non regular and non convex polygons. This method is iter-
ative, which leading to increased numerical precision errors as the complexity of the object
increases. An example with an iterative construction of the M.A. from the technical paper
by Edwards (2010) can be seen in Fig. 2.46

Surface sampling approaches consist in approximating the M.A. through a subset of the Voronoi
diagram of a point cloud that is concentrated on the boundary of the object. Several authors
use this approach, such as Amenta et al. (2001), Dey and Zhao (2002), Dey and Zhao (2003)
that create a simplified model of the M.A., and Turkiyyah et al. (1997) focuses on increased
accuracy instead of a simplification. A difficulty that arises when applying these methods
is that in order to achieve a tight approximation to the M.A. the number of points on the
boundary needs to be large. Bradshaw and O’Sullivan (2004) uses a Voronoi diagram to
represent the M.A. and extended Hubbard (1995) method, which was based on a static M.A.
approximation, to support dynamic M.A. approximation while building a sphere-tree. A
example of a surface sampling approach can be seen in Fig. 2.47, where the darker points
refer to the points that hare approximated to the real M.A., the white points refer to the
external M.A., and the gray points are the points on the boundary of the objects from where
the inner points are deduced and the approximation to the M.A. is made.

2.6 Concluding Remarks

The current literature presents multiple approaches to solve C&P problems, without any clear
definitive answer to which is the most promising path to be explored. C&P problems, and also
Nesting problems, without fixed orientations, have received focus in their development due to
their simpler requirements compared to the same problems with continuous rotations. The geo-
metric representations available (grid, polygons, NFP) are properly adapted to be used with fixed
or discrete orientations, but unable to be computationally efficient when dealing with continu-
ous rotations. Using Phi-Functions can address the problem of free rotations at the expense of
high complexity and computational cost. In order to adequately address the Nesting problem with
continuous rotations a proper geometric representation, that takes into consideration its specific
requirements, is necessary. Among the several explored representations, the most adequate repre-
sentation to deal with the requirements of efficient overlap computation and continuous rotations
is a geometric representation based on Circle Covering. The overlap computation between cir-
cles is very straightforward, and with a reduced computational cost, however, methods that allow
representing pieces, with controlled accuracy, and a reduced number of circles are hard to find.
A promising method uses the algorithm from Zhang and Zhang (2009). However, more efficient
circle covering representations might be achieved through other methods, such as the Medial Axis.
Considering the characteristics of the circle covering geometrical representation, and the require-
ments of the Nesting problem, a possible approach is through non-linear mathematical models.
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(a) Step 1 (b) Step 2

(c) Step 3

Figure 2.46: Iterative construction of a Medial Axis (adapted from Edwards (2010))
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Figure 2.47: Surface sampling to approximate the Medial Axis (adapted from Bradshaw and
O’Sullivan (2004))



2.6 Concluding Remarks 67

NLP models have not been as explored as other types of models, due to their difficulty, although it
is an area that has significant potential to be developed, which can bring significant improvements
compared to currently used solution approaches. The use of NLP models is appropriate due to the
non-linear equations derived from the non-overlapping constraints between pairs of circles. Non-
Linear Programming Models able to deal with continuous translations and rotations are desired,
that are able to return good quality solutions, but also at a reduced computational cost. Heuristics
and other solution approaches might be required to complement the use of NLP models, to solve
efficiently the Nesting problem with continuous rotations. For this reason, using a combination
of Circle Covering Representation with Non-Linear Programming models may be a promising
approach to address the Nesting problem with continuous rotations.





Chapter 3

Geometric Representation based on
Circle Covering

In this chapter, the main focus will be on the geometrical component of the Nesting problem with
continuous rotations. This problem requires an approach with complete support for full rotations
of the pieces involved, and easy overlap verification. Using methods such as the NFP or grids to
ensure feasibility (i.e., to check overlap) is not an efficient approach when pieces/polygons can
rotate freely. Representations based on Phi-Functions, while able to support continuous rotations,
may not provide the most efficient method to represent and verify overlaps, since it uses multiple
non-uniform primary shapes to represent pieces. Comparing pieces this way requires having con-
straints to check overlap between different types of primary shapes, which may not be efficient if
pieces are composed by many primary shapes with high complexity. For this reason, using only
circles to represent pieces is a good solution, since the circles do not need to be rotated around their
centers (only rotating their centers around a reference point), and they have simple overlap compu-
tation between each other. Since the Nesting problem deals with irregular pieces, which is usually
represented by irregular polygons, the choice of representation based on circles necessarily leads
to an approximated representation. Better approximations to pieces require the use of more cir-
cles, which becomes prohibitive due to the exponential increase in the number of non-overlapping
conditions. The main difficulty is to achieve a good trade-off between the approximation quality
and the number of circles used, i.e., to find a good approximation to the piece with the minimum
number of circles. So, finding the best placement configuration of the circles is an important issue,
which is also a great challenge.

The geometrical aspects of the Circle Covering (CC) representation are discussed in this chap-
ter, introducing the concepts of different types of CC, defined as Complete, Partial and Inner Circle
Covering (CCC, PCC and ICC, respectively), and multiple levels of approximation quality, such
as Low and High resolution (LR and HR). These developments enable a CC approach capable of
generating circle coverings that take into account a set of characteristics, derived from a specific
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problem, which enable tackling the problem with great efficiency. Since this approach enables
generating the CC representation without human intervention, it can be adjusted in real-time, al-
lowing for a fully automatic production process.

This chapter will start with a section presenting the different types of CC. The following sec-
tions discuss the approaches that were explored in order to find an adequate CC, taking into ac-
count the characteristics of the Nesting problem with continuous rotations. The first approach is
a Hierarchical Complete Circle Covering, followed by an iterative approach with the aim to also
generate a Complete Circle Covering representation. This iterative approach is then expanded to
support the other circle covering types, while also exploring further enhancements. The final sec-
tions deal with the impact of different levels of quality of approximation, and ending with the final
remarks.

3.1 Types of Circle Covering

The Nesting problem with continuous rotations requires an adequate geometrical representation
of the pieces so that approaches that tackle it are computationally efficient. Depending on the
required quality of the approximation and the specific characteristics of the Nesting application,
several types of coverings can be defined. The Complete Circle Covering (CCC) (Fig. 3.1a) con-
sists in completely covering the piece by a set of circles. When the piece is not completely covered
by circles, the covering is defined as an incomplete covering. Among incomplete coverings, a spe-
cific case occurs when the set of circles is partially covering the piece without any circle exceeding
its outline, which is defined as Inner Circle Covering (ICC) (Fig. 3.1b). An intermediate situation,
defined as Partial Circle Covering (PCC), occurs when the set of circles does not entirely cover
the piece and neither does the piece contain completely the set of circles (Fig. 3.1c). The concept
of PCC is similar to the Three-Step+Gap approach from (Zhang and Zhang, 2009), where circles
are placed, and separated by a specified gap between each other, when measured on the outline
of the piece. Other approaches that generate circle coverings can be seen in Imamichi and Nag-
amochi (2008), where the circle covering is achieved through the use of a grid, where the circles
are placed (if the points are inside the piece) and expanded until they reach the outline; in (Zhang
and Zhang, 2009), where circle covering focus on covering outlines of pieces; and Jones (2013),
where an iterative process is used recursively to place the biggest possible circle inside a piece.

3.2 Hierarchical Circle Covering Approach

The initial approach to the CC problem focuses on achieving the CCC of a polygon with a set
of unequal circles, based on convex decomposition and the Minimum Enclosing Circle (MEC)
algorithm. It is an iterative approach that basically decomposes the pieces into convex polygons
and then covers each convex polygon with its MEC. When a particular MEC leads to a bad ap-
proximation, the respective convex polygon is further divided.
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(a) Complete Circle Covering
(CCC).

(b) Inner Circle Covering (ICC). (c) Partial Circle Covering (PCC).

Figure 3.1: Types of Circle Covering.

Figure 3.2: Convex decomposition with Minimum Enclosing Circles.

The first step of the approach is based on using convex decomposition to form convex poly-
gons which are used to define the placement of the circles. In the second step, the MEC is created
for each convex polygon, which is defined as the circle of minimum radius that contains the convex
polygon. The third and final step consists in verifying the difference in area between the original
piece, and the covered area by all of the MEC. If the difference is above a given threshold, further
subdivision is done. This subdivision is done only on the polygons whose MECs lead to bad ap-
proximations, by dividing them into two convex polygons through the longest line that connects
its most distant points. The main advantage of this approach is its inherent hierarchy. As a disad-
vantage, it is hard to compute exactly the difference between the area of the polygon and the area
of the circle covering, due to the high number of circles overlapping each other. An example of
the progression of this method can be seen on Fig. 3.2.
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The efficiency of this method greatly depends on the algorithm used for convex decomposi-
tion, since it may not achieve the minimum number of convex polygons (optimal solution). When
very tight threshold values are required (difference of areas), the number of circles will grow ex-
ponentially. This method can be used to dynamically adjust the approximation error of the piece,
on demand, by using a different approximation level. A less refined level has a lower number of
circles, which is beneficial when trying to reduce the computational cost of comparing overlap
between many pieces. The main benefit of this approach is that it allows different levels of ap-
proximation to the original piece, organized as an hierarchy of low to high quality approximations.
Although this approach can achieve a CCC with high quality, its number of circles is prohibitive.

3.3 Complete Circle Covering Approach

In order to achieve a CCC with a reduced number of circles, without having to compromise quality
of approximation, another approach was explored. The main difficulty that arises when generating
a CCC is where to place the circles in order to achieve a low approximation error with the lowest
number of circles. Some details can be deduced beforehand, such as: the position of the center
of the circles cannot be outside of the outline of the enclosed polygon, and that better results are
achieved if each circle covers the maximum possible area. This means that each circle should
have the highest possible radius without exceeding the admissible distance outside of the enclosed
piece. This observation leads to the approach that obtains the Complete Circle Covering with the
assistance of a topological skeleton called Medial Axis (MA). Placing the circles on the MA will
lead to a low number of circles since it allows to place bigger circles and to achieve a significant
reduction in the number of possible placement positions for the circle centers.

3.3.1 Medial Axis Algorithm

The MA is a topological skeleton which defines inner points of a polygon that are equidistant to
at least two points in its outline. The MA derived from convex polygons is composed entirely by
straight lines, but when derived from non-convex polygons, it also produces parabolic arcs. The
parabolic arcs, which are generated by the concave vertices, are approximated by straight edges to
simplify the process. An example of a MA with parabolic arcs generated from an irregular piece
can be seen in Fig. 3.3. The bones can be distinguished as interior and exterior bones, where the
first are all bones of the MA that do not have connections to the outline of the polygon, and where
the latter consists of the bones that have connections to the outline. Further details about possible
methods can be seen in Chapter 2, section 2.5.5.

Our current approach to generating the MA is based on the method from Yao and Rokne (1991)
but following the algorithm described in (Edwards, 2010). The greatest problem that this method
presents is the difficulty in dealing with numerical precision problems, due to its iterative nature.
When extracting the MA from a very complex polygon, the skeleton might become deformed due



3.3 Complete Circle Covering Approach 73

Figure 3.3: Medial Axis of an Irregular Piece.

Figure 3.4: A bone of the skeleton (dashed line) and part of the outline of the piece.

to accumulated error. Yet, despite its difficulties, this method is very promising due to its gener-
ation of parabolic arcs that allow computation of placement positions on its MA with controlled
approximation error.

3.3.2 CCC-MA Algorithm

The CCC-MA algorithm works upon each bone of the skeleton individually. A visual example
can be seen in Fig. 3.4, where the iterative method places the center of the circles in the MA,
while taking into account the threshold that regulates the approximation error to the outline of the
polygon. It operates using the distances to the outline (R1 and R2) at the extremities of the bone
and the length of each bone (D). Distances R1 and R2 are measured perpendicularly to the edge
of the outline, since a circle that is touching the outline has its center contained in the same line
(perpendicular to the outline) that contains the contact point.

The extremities of each bone contain a circle with a radius equal to the nearest point in the
piece outline. Both circles are then expanded by the threshold value that is defined by the ap-
proximation error. The threshold can be seen in Fig. 3.5. The algorithm iteratively computes the
next center position, starting from the biggest circle (in order to cover the largest area possible),
making sure that the circles intersect each other on the outline of the piece, until they reach the
opposite circle. The radius of each new circle is easily computed since it is a linear function that
depends on the difference of both radius (at the extremities of the bone) and the distance that sep-
arates them. When dealing with bones that connect to the outline of the piece, the algorithm stops
placing circles when they cover the bone completely. This procedure is also presented in Fig. 3.6.

The algorithm computes every bone of the skeleton independently, taking into consideration
the radius of the circles at the extremities of each bone, their length and the threshold that each
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Figure 3.5: Circle placement positions, with T hreshold = Excess distance.

CCC-MA algorithm
for all bones do

Expand both circles radius by the threshold value
Select biggest circle
repeat

Compute circle and outline intersection
Compute next circle center position on the bone1

Save circle position
until Circles completely cover the bone

end for

1Taking into account that it must also intersect the previous circle/outline intersection and that the radius of the circle
depends on the position of its center on the bone.

Figure 3.6: CCC-MA pseudocode.
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Figure 3.7: Complete Circle Covering of a piece.

circle is allowed to expand. After repeating the same operation on every bone of the skeleton, the
CCC of a piece is achieved. An example of a piece with its CCC computed, using its MA skeleton,
is shown in Fig. 3.7.

3.3.3 Results and Discussion

Using Circle Covering representation for Nesting problems with continuous rotations requires a
good management of the trade-off between the quality of the piece approximation and the number
of circles generated. Good quality approximations are obtained at the expense of a greater number
of circles, which reduces computational efficiency. The variation of the threshold value that con-
trols the approximation can produce different levels of approximation for each Circle Covering,
therefore it is useful to be able to control that trade-off with precision.

To assess and evaluate the behavior of the CCC-MA algorithm, a set of experiments were
performed regarding the variation of the threshold that defines the approximation error and its
impact on the approximation quality and number of circles. In order to verify the efficiency of
the approach, four pieces with different characteristics were chosen and tested with approximation
threshold values ranging from 0.25 to 0.01 units. The threshold is expressed in units of length,
and is not relative to the size of the piece. As an example, if we use 0.01 units for threshold, it will
be the same distance whether the rectangle has 10 or 15 units of length. The results obtained are
summarized on Table 3.1, where for each piece two columns are presented (titled, respectively,
circles # and area %). The first column shows the number of circles used in the covering, and
the second one shows the additional area related to the original piece area. In this table, it can be
observed that a linear reduction in the threshold leads to an exponential increase on the number of
circles and an almost linear reduction in the additional area.

The CCC-MA (Medial Axis followed by Circle Covering) of these four pieces denoted P1, P2,
P3 and P4, can be seen on Fig. 3.8, with threshold of 0.01 units.

An important issue that must be analyzed is the trade-off between the increase in the number
of circles and the reduction of the additional area. Table 3.1 already shows this trade-off for
pieces P1, P2, P3 and P4, where initially a decrease in the threshold value (for example, from
0.25 to 0.20) leads to a small increase in the number of circles and a significant reduction in the
additional area (one more circle in P1 reduced the area by 3.2%), while later, the same reduction
in the threshold value leads to large increase in the number of circles and a small reduction in the
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Table 3.1: Number of circles and added area for different threshold values.

Pieces
P1 P2 P3 P4

Threshold circles area circles area circles area circles area
Value # % # % # % # %
0.25 13 14.1 35 13.2 12 12.1 28 20.6
0.20 14 10.9 37 10.6 13 9.6 29 15.7
0.15 17 8.3 41 7.9 14 7.1 36 12.2
0.10 21 5.5 48 5.2 15 4.4 41 7.9
0.05 31 2.7 70 2.6 25 2.1 61 4.0
0.01 72 0.7 161 0.1 55 0.4 141 0.9

(a) P1. (b) P2. (c) P3. (d) P4.

Figure 3.8: CCC-MA results for pieces P1, P2, P3 and P4 with 0.01 units for threshold.

additional area (Reducing threshold from 0.10 to 0.05 in P1 leads to an increase of 10 circles,
and area reduction of only 2.8%) (Fig. 3.9). The graph on Fig. 3.9 shows a similar behavior for
all 4 pieces. The evolution of the circle covering of piece P3 can be seen in Fig. 3.10, where the
covering with the largest number of circles is also the closest to the real shape of the piece.

The complexity of the piece also has a negative impact on the performance of the algorithm,
since the numerical precision errors increase at each iteration, due to having to compute multiple
intersections, leading to incorrect skeletons being built. For complex pieces where the MA cannot
be correctly constructed, convex decomposition is used on the original piece, computing the skele-
ton for each one, but with the downside of increasing substantially the number of circles. Com-
parisons of this CCC-MA approach were also made against the Three-Step and Three-Step+Gap
approaches from (Zhang and Zhang, 2009). To compare the algorithms, the original pieces from
(Zhang and Zhang, 2009) were used, according to the dimensions of the pieces and their thresh-
old, as presented in (Zhang and Zhang, 2009). The pieces are presented in Fig. 3.11 and Fig. 3.12,
having the threshold of 0.1 and 0.2, respectively.

Taking into consideration the results obtained from (Zhang and Zhang, 2009), Table 3.2 is
presented, with the focus being on the total number of circles used to represent the same pieces,
with the same threshold. Although (Zhang and Zhang, 2009) had three distinct algorithms, we
compared only against the ones that allowed complete or nearly complete covering of the piece.

According to the results, as shown in Table 3.2, the CCC-MA approach managed to achieve 3
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Figure 3.9: Trade-off between the number of circles and the additional area.

(a) Threshold = 0.25 (b) Threshold = 0.20 (c) Threshold = 0.15

(d) Threshold = 0.10 (e) Threshold = 0.05 (f) Threshold = 0.01

Figure 3.10: CCC-MA results evolution for piece P3

Figure 3.11: Circle covering of a rectangle, with 19 circles.
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Figure 3.12: Circle covering of a triangle, with 7 circles.

Table 3.2: CCC-MA approach results.

Pieces
Algorithm Rectangle Triangle

(# circles) (# circles)
CCC-MA 19 7
Three-Step 22 8
Three-Step+Gap 21 6

and 2 less circles for the rectangle and 1 less and 1 more circles for the triangle, than the Three-
Step and Three-Step+Gap approaches, respectively. The comparison against the Three-Step+Gap
algorithm is not entirely fair since this approach does not ensure complete circle coverings.

3.4 Partial and Inner Circle Covering Approaches

The different types of Circle Covering are useful for solving the Nesting problem with continu-
ous rotations while considering different characteristics. The main advantage of using Complete
Circle Covering (CCC) is that it creates layouts that are always admissible, as long as the circles
representing different pieces do not overlap each other. One disadvantage is that due to the excess
covering of the circles that protrudes the piece (defined by the threshold value that controls the ap-
proximation error) the pieces are kept apart by a maximum distance of twice the threshold value.
This effect can be seen in Fig. 3.13a, where the two pieces (in gray) do not touch each other due to
the presence of the circles used to represent each piece. This characteristic is clearly a disadvan-
tage since it prevents perfect fits between pieces, which are crucial to obtain compact layouts. In
order to minimize this effect, one could increase the resolution to achieve tighter coverings at the
cost of a much greater number of circles, or selecting another type of covering.

To overcome the limitations inherent to the Complete Circle Covering CCC representation
other circle covering representations can be used, such as Inner Circle Covering (ICC) and Partial
Circle Covering (PCC). To be able to use these other circle covering representations the CCC-
MA algorithm was extended into the kCC-MA algorithm. An example of the ICC can be seen in
Fig. 3.14a and an example of the PCC can be seen in Fig. 3.14b. The main advantage of using ICC
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(a) CCC piece separation. (b) ICC perfect fit. (c) ICC piece overlap.

Figure 3.13: CCC vs ICC.

(a) Inner Circle Covering with Medial Axis (b) Partial Circle Covering with Medial Axis

Figure 3.14: Inner and Partial Circle Covering

can be seen when attempting to solve Nesting problems with perfect fits, as seen in Fig. 3.13b,
where the CCC would be unable to achieve those placement positions. The pieces represented by
ICC can produce the closest placement positions at the expense of producing infeasible layouts in
some cases due to overlaps, as seen in Fig. 3.13c. The PCC allows to achieve a trade-off between
the layout admissibility and the separating distance between the pieces.

3.4.1 kCC-MA Algorithm

In the CCC-MA algorithm the quality of the approximation to the piece outline is controlled
through the threshold parameter that measures the distance that the circles can exceed the out-
line. In the kCC-MA algorithm the threshold parameter is extended to measure also the maximum
internal distance from the outline not covered by circles. This maximum internal distance will be
denoted as the maximum penetration depth (Fig. 3.15) and the threshold is equal to the sum of
the exceeding distance and the penetration depth. The kCC-MA algorithm supports not only CCC,
but also PCC and ICC types of covering, where the k in kCC is used to identify the covering that
is produced. The different configurations regarding protrusion (excess) distance and penetration
depth allows the kCC-MA algorithm to obtain the three different types of coverings (CCC, PCC
and ICC). To obtain a CCC, the threshold represents the maximum distance allowed for the circles
to exceed the outline, while penetration depth being zero. To obtain a ICC, the threshold represents
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Figure 3.15: ICC placement positions, with T hreshold = PenetrationDepth.

Figure 3.16: PCC placement positions, with T hreshold = ExcessDistance+PenetrationDepth .

the penetration depth, while the maximum distance allowed for the circles to exceed the outline is
zero. In order to compute the circle placement positions for ICC, the circles expand until touching
the outline of the polygon and compute their intersections with the edge that corresponds to the
PenetrationDepth edge. From that point, the next circle center position can be computed. To
obtain a PCC, the excess distance and penetration depth are both equal to half the threshold value
(Fig. 3.16). The procedure to obtain the circle center placement positions follows the same logic
as the ICC, by computing the intersections with the PenetrationDepth supporting edge. However,
the circles must now be expanded up to the supporting edge of the ExcessDistance.

PCC and ICC coverings obtained by the kCC-MA algorithm may have poor quality when
covering pieces with very acute angles, i.e., narrow tips, which may lead to infeasible layouts.
This is because the penetration depth is measured perpendicularly to the edges of the outline,
causing a distance higher than the penetration depth to be uncovered from the vertex to the last
placed circle. The algorithm keeps placing circles until the next circle has a radius that is inferior
than the threshold value, which can occur with the PCC and ICC. This situation does not happen
in CCC because the circle at the extremity of the bone never has a radius inferior than the threshold
value.
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(a) Outline simplification. (b) Skeleton simplification.

(c) Circle merging.

Figure 3.17: Coverings simplifications.

3.4.2 Coverings Simplifications

Covering simplifications are required to decrease the total number of circles generated by the kCC-
MA algorithm, since further improvement of the CC quality of the algorithm is very difficult to
obtain. The complexity of a MA skeleton increases with the complexity of the piece outline, and
the total number of circles increases with the complexity of the MA skeleton. For this reason, in
order to reduce the total number of circles, simplifications to both piece outline and piece skeletons
are required. The piece outline simplification consists in replacing two adjacent edges that form a
wide angle on the concave vertex that connects them, by a single edge. This simplification takes
into account the additional area that is added to the polygon, since it is always oriented to the
reduction of concavities of the piece. Other possibility to simplify the piece outline is to erase the
concave vertex on the outline that adds the least area to the polygon. This simplification process
can be seen in the example presented in Fig. 3.17a. The simplification related to the piece skeleton
consists in removing the bones of the skeleton smaller than a specified value, and connecting its
extremities together. An example of this process can be seen in Fig. 3.17b.

Its possible to introduce another simplification when pairs of circles are almost fully contained
one inside the other. Replacing both circles by an enclosing circle can allow further reduction of
the total number of circles, as long as the reduction of the approximation quality of the covering
is not greater than a specific value. The pairs of circles can be merged by replacing them by
their Minimum Enclosing Circle (MEC). This process can be seen in Fig. 3.17c, where the circles
merged produce a MEC that contains both circles, with a diameter equal to the distance between
the two most distant points among them.
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Figure 3.18: Overlapping between pieces due to uncovered tips.

(a) ICC. (b) ICCtc.

Figure 3.19: Correction of covering for acute angles for ICC.

3.4.3 Tip Covering Correction

The types of coverings that allow a positive penetration depth in the piece covering, such as PCC
and ICC, require a correction of the covering for their narrow tips. Since the algorithm computes
the circles positions based on the intersection between the circles and the outlines created by
the excess (protrusion) distance and penetration depth, when the outline of the penetration depth
meets the bone, the algorithms stops. Beyond this point, to place circles, the penetration depth
needs to be reduced, considering the diminishing distance from the bone to the outline created by
the protrusion distance. The tip covering correction is used to deal with this problem, by adding
additional circles to cover the tips of the pieces with very acute angles. This problem only exists
in the ICC and PCC. An example of an area of a layout where this effect appears can be seen in
Fig. 3.18.

In order to correct this, several circles with constant radius are placed until their distance to the
tip vertex is within the value of the penetration depth. The correction to this problem can be seen
in Fig. 3.19. Using circles that would reduce their size proportionally would cause an exponential
growth on the number of circles, since their covering radius would be reduced at each iteration,
resulting in a much greater number of circles. This effect is much more noticeable when the angle
of the tip is very acute. Considering this correction for very acute tips of the outline of the pieces,
we can distinguish between five types of coverings: the CCC, PCC, ICC, PCC with tip covering
(PCCtc) and ICC with tip covering (ICCtc).
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Table 3.3: Number of circles generated by each covering with 0.05 TH.

Total # of circles for piece coverings
Piece CCC PCC ICC PCCtc ICCtc

P1 33 31 31 31 31
P2 73 73 73 73 74
P3 25 25 25 25 25
P4 60 60 59 60 64

Table 3.4: Area of circles generated by each covering with 0.05 TH.

Total area of circles for piece coverings Piece
Piece CCC PCC ICC PCCtc ICCtc Area

P1 41.06 40.27 39.47 40.27 39.47 40.0
P2 116.99 114.92 112.83 114.92 112.84 114.0
P3 49.54 48.82 48.07 48.82 48.07 48.5
P4 40.58 39.43 38.29 39.43 38.32 39.0

3.4.4 Results and Discussion

The different types of coverings are oriented to enable dealing with problems with specific char-
acteristics. In order to estimate the impact that each type of covering has on the quality of ap-
proximation of a piece, and on the potential computational cost, a set of four pieces with different
characteristics, denoted as P1, P2, P3 and P4, are used. Since it is not yet possible to determine
the impact of the coverings on the layout solutions, regarding their computational efficiency, the
number of circles produced by the set pieces is analyzed, and presented in Table 3.3.

Table 3.4 shows the difference between the area of the circle coverings and the polygonal area
of the piece. The values presented in Table 3.3 and Table 3.4 show that no significant differences
exist between the number of circles generated from each covering, nor their area, therefore the
computational efficiency of the circle coverings should be similar.

The simplifications to the piece outline and the piece skeleton, and also the enhancements
done to the covering generated by the algorithm all have an impact on the approximation quality
of the covering, but they cannot be considered independently since the simplifications on one
of them will impact the others. This is due to the sequential application of each one of these
simplification methods. The piece outline returns the piece skeleton, which is then used to produce
a circle covering that is then modified and improved. Simplifications in all these steps modify the
approximation error to the original outline of the piece.

In order to estimate the impact that each simplification has on the total number of circles,
each simplification is analyzed independently of the others. Table 3.5 shows the simplification
of the outline of piece 10 from instance swim, as seen in Fig. 3.20. The algorithm was defined
to eliminate adjacent edges considering the value of their angle, with preference to collinear, or
nearly collinear adjacent edges, instead of defining a number of vertices to be removed. Since this
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Figure 3.20: Piece 10 from instance swim.

Table 3.5: Outline simplification of piece 10, instance swim (piece area reference value: 1107.0).

Polygonal CCC
S mp. representation representation
Angle Vertices Area Area Circles Area Area
(o) (#) (103) (%) (#) (103) (%)

0 36 1107.0 100.0 58 1405.4 127.0
5 29 1115.1 100.7 45 1405.9 127.1

10 23 1155.0 104.3 33 1427.8 129.0
15 21 1170.9 105.8 31 1438.4 129.9
20 16 1242.7 112.3 24 1508.3 136.3
25 13 1258.4 113.7 21 1520.6 137.4
30 12 1347.1 121.7 20 1602.3 144.8
35 10 1402.6 126.7 17 1652.9 149.3
70 9 1588.2 143.5 14 1829.3 165.3

110 8 1956.9 176.8 8 2161.5 195.3

piece has many adjacent edges that are nearly collinear, erasing those edges allowed the biggest
reduction in the number of vertices, with a small increase in the area of the piece. This small
adjustment to this piece also had a great impact on the reduction of the number of circles but
without showing a decrease in the circle covering area. Using the outline simplification in pieces
that have this complexity (many near collinear adjacent edges) can substantially reduce the number
of circles, without significant impact on the quality of the circle covering. Table 3.5 also shows
that as the simplification process advances, a lesser number of edges are removed, but with higher
increases of the piece area and circle covering area. The cost of reducing the number of circles at
each step grows, returning significant diminishing returns for the reduction in collinear edges. In
this case, we accept values for angles that lead a to a difference in the covering area by about 3%.

The process of the simplification of the skeleton can be seen in Table 3.6. The Bone Distances
(BDist) parameter defines the bones which will be erased, by imposing a minimum bone length.
This is done by connecting their endpoints together, at the middle of the erased bone. The initial
skeleton used in this table was obtained from the original outline of the piece, without simplifi-
cations. Since the piece has a complex outline, with many edges that are nearly collinear and a
high number of vertices, the skeleton that is produced has a high number of bones. As shown in
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Table 3.6: Piece skeleton simplification, piece 10, instance swim (piece area reference value:
1107.0).

Circle covering representation
Bone Bones Circles Area Area

distance (#) (#) (103) (%)
0 113 58 1405.5 127.0

25 93 38 1425.9 128.8
50 83 28 1470.2 132.8
75 78 23 1498.6 135.4

100 74 21 1573.8 142.2
125 71 17 1676.4 151.4
150 67 17 1773.0 160.2

Table 3.7: Circle merging, piece 10, instance swim (piece area reference value: 1107.0).

Circle covering representation
Circle Circles Area Area

distance (#) (103) (%)
0 58 1405.5 127.0

25 39 1437.5 129.9
50 35 1466.3 132.5
75 34 1503.9 135.9

100 33 1568.8 141.7
125 31 1595.3 144.1
150 31 1604.2 144.9

Table 3.6, the elimination of the smallest bones reduces the number of circles by a large amount
without a substantial increase in the covering area. As bigger and bigger bones are eliminated
the reduction in the number of circles becomes more difficult without reducing significantly the
approximation quality to the original piece. Considering bone distance, we accept values for it
that lead to a difference in the covering area by about 3%.

The reduction in the number of circles by merging the ones that are nearly contained inside
another can be seen in Table 3.7. Pairs of circles are replaced by a MEC if the distance between
their centers plus their radius is smaller than a defined value, defined as Circle Distance (CDist).
As this value increases, more circles are replaced by MECs at the expense of a larger covering
area. Small CDist values are particularly beneficial in cases where the coverings have nearly
identical circles almost fully overlapping. Regarding the value for the circle distance, we consider
an acceptable value if it reduced the CC representation area up to 3%.

The simplifications to the piece outline, skeleton bones and circle covering have a significant
impact on the number of circles, at the cost of a lower quality of circle covering. Table 3.8 shows
the effect that these simplifications have when they are all used sequentially. Finding the right
combination of parameters can have a significant impact in the reduction of the circle number.
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Table 3.8: Combination of simplifications, piece 10, instance swim (piece area reference value:
1107.0).

Circle covering representation
Angle Bone Circle Circles Area Area
(o) distance distance (#) (103) (%)

0 0 0 58 1405.5 127.0
0 25 25 30 1446.3 130.7
5 25 25 27 1434.3 129.6
5 50 25 23 1454.2 131.4

10 25 25 24 1440.8 130.1

For the currently used piece, the best configuration was achieved by using a very low degree of
simplifications. This configuration allowed reducing the number of circles from 58 to 27 at the
expense of an increase of about 2.5% in the the additional covering area. Taking into account
the combination of all simplifications approaches, our accepted value for the resulting difference
regarding the CC area is also 3%.

3.5 High and Low Resolution Coverings

A high number of pieces together with high number of circles can make the Nesting problem with
continuous rotations very difficult to solve within a reasonable time. For this reason, reducing
the quality of the approximation can reduce the number of circles, up to a certain point, where
additional reductions in quality have diminishing returns in the number of circles. In order to
analyze the impact of the different covering types and the effect that different resolutions have
on the number of circles, two different resolutions (LR and HR) and pieces from two nesting
instances (poly1a and jakobs1) were selected. The selection of these instances is due to their
geometry. Pieces from instance jakobs1 have many concavities and square angles, while pieces
from instance poly1a are composed by mixed types of pieces, mostly convex, some being small,
others big.

The difference between LR and HR is the value of the threshold that controls the approximation
error of the circle covering. The value used for the LR threshold in Table 3.9 is 0.25 units and for
the HR threshold is 0.10 units. These two levels of approximation, LR and HR, were selected by
choosing values from where the effect of diminishing returns starts to become noticeable. Below
a certain point, reducing the quality of the approximation will hardly reduce the number of circles,
and beyond another point, increasing the number of circles will not increase significantly the
approximation quality of the piece. This trade-off can be seen in Fig. 3.21, where the points A and
B are considered the points where the effect of diminishing returns are noticeable, regarding the
quality of approximation, and the number of circles.

The initial data about the several types of covering for the selected instances, is presented in
Table 3.9. This table shows the number of circles of HR coverings, for all the pieces of each
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Figure 3.21: Three regions of the trade-off between the quality of the CC representation and the
total number of produced circles.

Table 3.9: CC used for computational experiments.

Total # of circles for circle coverings
Instance Resolution CCC PCC ICC PCCtc ICCtc
poly1a LR 154 149 145 149 155

HR 260 254 250 254 261
jakobs1 LR 208 202 198 202 198

HR 368 368 340 368 340

instance. It can be seen that, usually, when the complexity increases (with higher number of ver-
tices), the total number of circles required to represent all pieces also increases. The different
coverings do not have significant variation among them in the total number of circles. However,
that variation is more easily noticeable between the representations with different levels of ap-
proximation, i.e. between high and low resolutions. The selected points for LR and HR show a
difference in the number of circles of about 68% for poly1a instance and a 71% difference for the
jakobs1 instance.

3.6 Concluding Remarks

The approaches that were presented in this chapter can be used to accurately represent pieces, with
a controlled approximation error and number of circles, that take into account the requirements of
the Nesting problem with continuous rotations. The first approach to this problem, using an Hier-
archical Circle Covering has shown to be able to achieve a very good approximation to the pieces,
while completely enclosing them in the set of circles, but with a very large number of circles. In
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order to achieve a reasonable approximation error to the covering of the piece, the number of cir-
cles is so large that the application that uses these coverings will have a prohibitive computational
cost. However, this approach also enables producing several distinct covering approximations,
that when organized into an hierarchical structure, allows using an overlap exclusion mechanism
with more efficiency.

The second approach successfully achieved a circle covering representation, with a control-
lable approximation error to the piece outline, and a much reduced number of circles (when com-
pared to the hierarchical Circle Covering). Deriving the Medial Axis of a given polygon and using
an iterative algorithm to compute the placement positions of the circles on the Medial Axis has
shown to produce circle coverings with a very low number of circles, and with very good quality
of representation. Several problems were identified, such as the difficulty in generating accurately
the Medial Axis of very complex pieces, due to the numerical precision errors that arise. The
circle placement algorithm was extended to support additional types of circle representation, pro-
ducing two additional types of circle coverings defined as Partial Circle Covering and Inner Circle
Covering. These circle coverings were aimed at problems with characteristics than could not be
properly addressed by the Complete Circle Covering. The Inner Circle Covering allowed address-
ing Nesting problems that produced layouts with perfect fits, and the Partial Circle Covering was
able to reduce the excessive covering of the Complete Circle Covering at the expense of allowing
pieces to have overlaps up to a certain penetration depth. While the Partial Circle Covering is also
unable to ensure feasible layouts, it may produce tighter layouts than the Complete Circle Cover-
ing (less protrusion distance) and with less overlap (considering the polygonal representation of
the pieces) than the Inner Circle Covering (due to less penetration depth). These three types of
covering enable addressing a great variety of problems with different characteristics.

The kCC-MA algorithm that generates Partial Circle Covering and Inner Circle Covering has
shown to have some limitations, regarding the approximation quality of the pieces and the total
number of circles. Since the final Circle Covering representation is always an approximation to the
polygonal representation of the piece, the kCC-MA approach was extended to include simplifica-
tions that could lead to a reduced number of circles, without affecting significantly the approxima-
tion quality of a piece. These simplifications focused on the polygonal representation of the piece,
the Medial Axis skeleton that it generated, and the final circle covering produced. The computa-
tional experiments shown that just a small degree of simplification leads to a significant reduction
in the amount of circles, which can be explained due to the sequential procedure in generating
the circle covering. The simplifications in the polygonal outline (smoothing of the outline of the
piece) generated simpler Medial Axis skeletons (lower number of skeleton segments), which when
also simplified (by eliminating the smallest ones, and connecting the nearest), generated a circle
covering with less circles. The simplification of the circle covering replaced pairs of circles by a
single circle when the approximation error would not increase more than a certain specified value.
All these simplifications managed to reduce the number of circles required to represent a piece by
circle covering, while maintaining a desired approximation level. Another limitation of the kCC-
MA algorithm that was addressed deals with the difficulty in covering narrow tips of pieces due



3.6 Concluding Remarks 89

to their very acute angles. The algorithm was extended to allow using circles with equal radius to
cover the bone until the tip is fully covered, or force the covering of circles to continue until the
uncovered distance to the tip is equal or lower than the penetration depth (at a cost of a significant
increase in the number of circles, depending on the number of tips to be covered).

All these developments allow addressing the geometrical component of the Nesting problems
by producing coverings with controllable approximation error, and total number of circles pro-
duced. This approach allows adjusting the quality of representation depending on the computa-
tional cost that is acceptable, where if the solution approach is very computationally efficient, a
higher quality circle covering can be used, while having a solution method with low computational
efficiency may require a reduced quality circle covering representation.

The computational experiments that were presented in this chapter only focus on the quality
of approximation of the coverings and their total number of circles. The impact that the different
resolutions and types of covering have on the resolution of the Nesting problem will be analyzed
in Chapter 4 after the introduction of the Non-Linear Mathematical Models and their Solution
Approaches. The approaches presented in this chapter can be improved by exploring multiple
paths. These will be introduced and discussed in Chapter 6.

Some of the contents presented in this chapter can also be found in (Rocha et al., 2013a). It
contains the approach used to tackle the geometric representation of pieces, using Circle Covering
with Medial Axis, for the Nesting problem with continuous rotations. It describes the constructive
algorithm used, showing possible covering types and also comparing to other approaches used to
achieve piece representations through circles.





Chapter 4

Non-Linear Programming Approach
for the Irregular Shapes Placement
Problem

The requirements imposed by the Irregular Shapes Placement problem (i.e. Nesting problem) with
continuous rotations, require that the pieces must be placed inside a container in a non-overlapping
configuration. A Circle Covering representation was selected to represent geometrically the pieces,
due to its intrinsic capability in dealing with continuous rotations. Using a Circle Covering repre-
sentation, naturally leads to the usage of a Non-Linear Programming formulation for the Nesting
problem. This is due to the non-overlapping constraints between circles, which are described
by quadratic non-linear equations, and to deal with trigonometric functions. Among the differ-
ent variants of the Nesting problem, the Irregular Shapes Strip Packing problem was selected.
This problem requires a set of irregular polygons (i.e., simple non-convex polygons) to be placed
without overlap inside a rectangular container with a given width and infinite length, where the
objective is to minimize the strip length.

This chapter focuses on solution approaches based on Non-Linear Programming models to
tackle the Nesting problem with continuous rotations. The relations between the geometrical rep-
resentation and the formulation of the model are explored, by developing alternative NLP formu-
lations, that enable evaluating and assessing the Circle Covering Representation presented in the
previous chapter. Finding a model formulation that generates good quality solutions in a reason-
able amount of time, when used with Circle Covering representation may enable more complex
problems to be tackled efficiently.

The first section of this chapter discusses two alternative formulations to tackle the Irregular
Shapes Strip Packing problem. One model is based on considering each circle individually and
then use constraints to force the relative positions between circles from the same piece, and the
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other one on considering each piece as a whole. In the second section, different types of con-
straints aggregations are explored in order to improve the overall efficiency, which leads to several
model variants. Section three introduces a post-optimization approach needed to correct infeasi-
ble solutions that may be obtained when using inner or partial circle coverings. The fourth section
covers the computational experiments performed to compare and evaluate the circle coverings,
model formulations and their variants. The last section concludes the chapter with a set of final
remarks and comments.

4.1 Non-Linear Mathematical Model

Non-Linear Programming models can be used to formulate mathematically the Nesting problem,
taking into account the representation of the pieces by circles and the container outline, including
the side that is to be minimized. Through the use of NLP models, two different mathematical
models were formulated, one which has its main focus on the circles of the piece representation
and the other which has its focus on the pieces (each piece described by a set of circles). In order
to be able to represent the concept of pieces, using circles, a piece must be defined as a collection
of circles with fixed relative positions between each other.

Both NLP models are defined through a set of variables, constraints and objective function,
which conceptually are very similar. Considering the model that is based on circles, each piece is
defined indirectly through the variables assigned to its circles, while considering the model based
on pieces, each piece is defined through the variables assigned to its reference point. The variables
are continuous, where some define the orthogonal position (i.e., the layout position) and others the
orientation of the pieces. Both models require constraints that prevent the overlap between pieces
(Non-Overlapping Constraints), and that maintain the pieces inside the container (Containment
Constraints). Due to different formulations, only the model based on circles requires the use of a
third type of constraints that maintain the relative positions between the circles of a piece (Piece
Integrity Constraints).

The objective function focuses on the minimization of the container length, being the same for
both mathematical models. This function is designed to minimize the distance of the circles, plus
their individual radius, to the minimum position in the orthogonal dimension that represents the
layout length.

4.1.1 Model based on Circles

The Circle Covering representation, when used to solve the Nesting problem with continuous
rotations, naturally leads to a mathematical model where the main components are the circles.
This model based on circles (M1) considers each circle as an independent structure, with its own
set of assigned variables. This model has two translation variables (x,y) for each circle, a rotation
variable for each piece and an additional variable to keep track of the maximum x coordinate (i.e.,
the layout length). Concerning the constraints, it needs to have a Non-Overlapping Constraint for
each pair of circles belonging to different pieces, four Containment Constraints for each circle
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minimize l (4.1)

subject to: (xki � xh j)
2 +(yki � yh j)

2 � (Rki +Rh j)
2, 8i 2Ck, 8 j 2Ch, 8k,h 2 N,k 6= h

(4.2)

xki +Rki � l  0, 8i 2Ck, 8k 2 N (4.3)
� xki +Rki  0, 8i 2Ck, 8k 2 N (4.4)
yki +Rki �Wd  0, 8i 2Ck, 8k 2 N (4.5)
� yki +Rki  0, 8i 2Ck, 8k 2 N (4.6)
xki � xk0 = cos(Ak0,i +qk)⇥Dk0,i , 8i 2Ck ^ i 6= 0, 8k 2 N (4.7)

yki � yk0 = sin(Ak0,i +qk)⇥Dk0,i , 8i 2Ck ^ i 6= 0, 8k 2 N (4.8)

xki ,yki ,qk, l 2 R (4.9)

Figure 4.1: Mathematical Model based on Circles (M1)

(one constraint per side of the strip, including the length) and, for each piece, one Piece Integrity
Constraint for each circle except the circle that is used as the reference point of the piece. The
number of Non-Overlapping Constraints has a factorial growth with the number of circles from
different pieces, while the number of Containment and Piece Integrity Constraints grow linearly
with the total number of circles. The complete mathematical model M1 is presented in Fig. 4.1.

The NLP model based on circles consists of a formulation based on packing circles that are
aggregated into distinct sets, representing pieces. For each circle, two variables are defined: xki

is the variable that defines the position of circle i of piece k on the x-axis, and yki is the variable
that defines the position of circle i of piece k on the y-axis. Each piece k (i.e., a set of circles)
has an associated variable, qk, that defines its orientation. Each piece k is composed by a set of
Ck circles. So the total number of variables is 2⇥#Circles+#Pieces+1, all of them continuous.
The objective function of the model, as seen in Eq. 4.1, is represented by the variable l, corre-
sponding to minimization of the layout length (i.e., reducing the used length of the strip). The
Non-Overlapping Constraints, defined in equation 4.2, represent a comparison of the distance be-
tween each pair of circles i, j from pieces k,h and the sum of the radius of both circles Rki and
Rh j . The type of these constraints is quadratic. The Containment Constraints, defined in equa-
tions 4.3-4.6 ensure that each circle do not exceed the admissible placement area. The type of
these constraints is linear. Equations 4.7-4.8 are used to maintain the relative positions between
circles of the same piece, ensuring the piece structural integrity. This means that when the piece is
translated or rotated, the relative positions between all circles from the same piece are maintained.
The position of each circle i is fixed relative to the circle 0 of the piece k. Constants Ak0,i and
Dk0,i stand for, respectively, the angle and distance between the centers of circle i and circle 0 of
piece k. Constant Wd, in equation 4.5, defines the width of the strip. Piece Integrity constraints
are non-linear constraints due to the presence of the trigonometric functions. Finally, equation 4.9
defines the domains of the variables.
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The M1 model is a constrained non-linear programming model with multiple local minima.
Models of this type are known to be very hard to solve to optimality, as (Jones, 2013) has shown
recently on a similar problem. Furthermore, the complexity of the model increases both with the
number of pieces and the number of circles, specially the non-overlapping constraints that have a
factorial growth on number of circles.

4.1.2 Model based on Pieces

An alternative way to model the Nesting problem with continuous rotations is to base it on the
pieces instead of the circles. This idea led to the development of model M2, where placement and
rotation variables are defined for the reference point of each piece. Naturally, this model does not
require Piece Integrity Constraints, since the circle positions are described directly in the Non-
Overlapping and Containment Constraints. The Non-Overlapping and Containment Constraints
for model M2 are obtained by transforming the equivalent constraints in model M1 by replacing
the circle placement variables (xki and yki) with the equivalent expressions obtained from the Piece
Integrity Constraints (equations 4.7-4.8), which are equality constraints.

In model M2 each piece has three variables assigned to it, being two of them the placement
position on the layout x and y, and the third one the orientation of the piece q . This formulation
reduces both the number of variables and constraints. The number of variables is 3⇥#Pieces+1,
where the additional variable keeps track of the layout length. The number of variables grows
linearly with the number of pieces. Regarding the constraints, since the variables are assigned to
the reference point of the piece, the positions of the circles that define the piece must be computed
from the reference point. This requirement increases the complexity of the constraints that com-
pute the non-overlapping between the pieces and their containment inside the layout outline. The
number of Non-Overlapping and Containment Constraints are the same as in model M1, while
Piece Integrity Constraints are discarded. The Non-Overlapping Constraints still have a factorial
growth and the Containment Constraints a linear growth. The complete mathematical model M2
is presented in Fig. 4.2.

The Objective Function, as seen in equation 4.10, is represented by the variable l and is the
same as the Model M1 where the aim is to minimize the length of the strip. Each piece k is
composed by a set of Ck circles. For each piece, three variables are defined: xk is a variable that
defines the position of the reference point of piece k on the x-axis, yk is a variable that defines the
position of the reference point of piece k on the y-axis and qk is a variable that defines the orien-
tation of piece k, around its reference point. The Non-Overlapping Constraints, equations 4.11,
are a comparison of the distance between each pair of circles i, j relative to the reference point of
each piece k,h and the radius of both circles Rki and Rh j . The Containment Constraints, equations
sets 4.12-4.15, ensure that the positions of each circle, obtained from the reference point x and y,
do not exceed the admissible placement region. Finally, the domain of the variables are defined in
equation 4.16. Constants Ak0,i represent the initial angle between the center of circle i of piece k
and the reference point of the same piece where the constant Dk0,i represents their distance. The
constant Wd defines the width of the strip.
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minimize l (4.10)

subject to: (Rki +Rh j)
2 � (xk + cos(Ak0,i +qk)⇥Dk0,i � xh�

� cos(Ah0, j +qh)⇥Dh0, j)
2 � (yk + sin(Ak0,i +qk)⇥

⇥Dk0,i � yh � sin(Ah0, j +qh)⇥Dh0, j)
2  0,

8i 2Ck, 8 j 2Ch, 8k,h 2 N,k 6= h (4.11)
xk + cos(Ak0,i +qk)⇥Dk0,i +Rk � l  0, 8i 2Ck, 8k 2 N (4.12)

Rk � xk � cos(Ak0,i +qk)⇥Dk0,i  0, 8i 2Ck, 8k 2 N (4.13)

yk + sin(Ak0,i +qk)⇥Dk0,i +Rk �Wd  0, 8i 2Ck, 8k 2 N (4.14)

Rk � yk � sin(Ak0,i +qk)⇥Dk0,i  0, 8i 2Ck, 8k 2 N (4.15)

xk,yk,qk, l 2 R (4.16)

Figure 4.2: Mathematical Model based on Pieces (M2)

Nevertheless, like the previous model, model M2 is also a constrained non-linear programming
model with multiple local minimums, and also very hard to solve to optimality. The complexity of
model M2 also increases both with the number of pieces and the number of circles, specially the
non-overlapping constraints that has a factorial growth on number of circles. The most important
benefits of M2 formulation is the reduction in the number of variables and constraints. However,
this benefit comes with a price: an increased complexity of the Non-Overlapping and Containment
Constraints. This increased complexity is due to the presence of trigonometric functions (sin and
cos) needed to compute the positions of each circle.

4.2 Constraints Aggregation

Both NLP models presented in the previous section, M1 and M2, have difficulties in tackling large
instances due to the exponential increase in the number of Non-Overlapping Constraints, as the
number of pieces and circles increases. Real-world instances can have a large number of pieces, up
to a few hundreds, and require a large number of circles to achieve good quality approximations.
So, in order to tackle real world instances the models proposed in the previous section need further
improvements of their computational efficiency.

One possibility to reduce the computational cost is to avoid the computation of Non-Overlapping
Constraints between circles from pieces that are far apart in the layout. This can be achieved
through the use of an hierarchical overlap computation, to determine which pairs of pieces really
require comparison. Another possibility is to aggregate all Non-Overlapping Constraints between
circles from a pair of pieces in a single summation constraint. This aggregation can be further
extended to aggregate all Non-Overlapping Constraints in a single non-overlapping constraint
and also to aggregate other types of constraints in a single constraint. This way, the number of
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constraints is reduced to a maximum of three, one constraint of each type. The aggregation is
particularly efficient when used together with the hierarchical overlap method. Another benefit of
reducing multiple constraints to a single one, even without the hierarchical overlap method, is to
reduce the internal computational cost of the solver when compared to the individual computation
of different constraints.

In the following subsections the details on how to aggregate each type of constraints are pre-
sented, followed by the details on the hierarchical overlap method used. Combining the different
aggregations types leads to different model variants derived from models M1 and M2. This vari-
ants are presented in the last subsection.

4.2.1 Aggregating Non-Overlapping Constraints

The Non-Overlapping Constraints of model M1, as defined in equation 4.2, are now aggregated
in a single summation expression that returns the sum of all overlaps between each pair of circles
belonging to different pieces (equation 4.17). Each summation term represents the difference be-
tween the squared sum of the radius of both circles Rki and Rh j and the squared distance between
each pair of circles centers i, j from pieces k,h (equation 4.18). Since the Non-Overlapping Con-
straints are to be minimized, and being valid if zero or negative, one component of the constraint
with negative value could cancel another component with positive value. For this reason, compo-
nents that return values below zero are ignored, by considering the maximum between the value of
NOVLP_M1i, j,k,h and zero. This makes the function become non-differentiable, which is solved
by squaring the whole component, after verification and correction for negative values.

Ck

Â
i=0

Ch

Â
j=0

N

Â
k=0

N

Â
h=0
k 6=h

⇥
max(0,NOVLP_M1i, j,k,h)

⇤2  0 (4.17)

NOVLP_M1i, j,k,h =(Rki +Rh j)
2 � [(xki � xh j)

2 +(yki � yh j)
2] (4.18)

The same idea is applied to the Non-Overlapping Constraints of model M2 (equation 4.11),
given a single summation expression (equation 4.19). Again, each summation term represents the
difference between the squared sum of the radius of both circles Rki and Rh j (equation 4.20) and
the squared distance between each pair of circles centers i, j from pieces k,h (equations 4.21-4.22).
The same mechanisms are used to avoid negative values and to make the function differentiable.
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k 6=h

�
max

⇥
0,NOVLP_Ri, j,k,h � (NOVLP_Xi, j,k,h +NOVLP_Yi, j,k,h)

⇤ 2  0 (4.19)
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NOVLP_Ri, j,k,h = (Rki +Rh j)
2 (4.20)

NOVLP_Xi, j,k,h = [xk + cos(Ak0,i +qk)⇥Dk0,i � xh � cos(Ah0, j +qh)⇥Dh0, j ]
2 (4.21)

NOVLP_Yi, j,k,h = [yk + sin(Ak0,i +qk)⇥Dk0,i � yh � sin(Ah0, j +qh)⇥Dh0, j ]
2 (4.22)

The main advantage in aggregating Non-Overlapping Constraints is to discard the compu-
tation of a large set of summation terms when pieces are far apart. In fact, the terms are not
discarded but replaced by 0, since we already know in advance that equation 4.18 will be negative.
The hierarchical overlap method, which will be presented in section 4.2.4 is used to detect these
situations.

Aggregating Non-Overlapping Constraints becomes more effective as the number of pieces to
place increases, since it allows the hierarchical overlap method to discard more summation terms
as pieces are naturally more spread. Also, when the number of pieces increases, the corresponding
number of summation terms (and the number of Non-Overlapping Constraints) has a factorial
growth.

4.2.2 Aggregating Containment Constraints

Aggregating Containment Constraints follows the same general idea of aggregating Non-Overlapping
Constraints. So, the Containment Constraints of model M1, defined in equations sets 4.3-4.6, are
now aggregated in a single summation expression that returns the sum of distances that protrude
the container (equation 4.23). This equation has four terms (equations 4.24-4.27), one for each of
the four container sides (including one for the layout length). The same mechanisms are used to
avoid negative values and to make the function differentiable.

Ck

Â
i=0

N

Â
k=0

{[max(0,CNTM_XMAXi,k)]
2 +[max(0,CNTM_XMINi,k)]

2+

+[max(0,CNTM_YMAXi,k)]
2 +[max(0,CNTM_YMAXi,k)]

2} 0, (4.23)

CNTM_XMAXi,k = (Rki + xki � l), (4.24)

CNTM_XMINi,k = (Rki � xki), (4.25)

CNTM_YMAXi,k = (Rki + yki �Wd), (4.26)

CNTM_YMINi,k = (Rki � yki), (4.27)

Model M2 follows the same scheme, by aggregating constraints sets 4.12-4.15 in a single
summation expression (equation 4.23). The same four terms appear (equations 4.29-4.32) and it
is also necessary to use the same mechanisms to avoid negative values and to make the function
differentiable.
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Ck

Â
i=0

N

Â
k=0

[max(0,CNTM_XMAXi,k)]
2 +[max(0,CNTM_XMINi,k)]

2+

+[max(0,CNTM_YMAXi,k)]
2 +[max(0,CNTM_YMINi,k)]

2} 0, (4.28)

CNTM_XMAXi,k = (xk + cos(Ak0,i +qk)⇥Dk0,i +Rk � l), (4.29)

CNTM_XMINi,k = (Rk � xk � cos(Ak0,i +qk)⇥Dk0,i), (4.30)

CNTM_YMAXi,k = (yk + sin(Ak0,i +qk)⇥Dk0,i +Rk �Wd), (4.31)

CNTM_YMINi,k = (Rk � yk � sin(Ak0,i +qk)⇥Dk0,i), (4.32)

Containment Constraints aggregations are used without any hierarchical overlap method in
both models, which means that all the terms are always computed. This option was taken be-
cause the expressions in this case are easier to compute when compared to the non-overlapping
constraints case. Additionally, the number of terms only increases linearly with the number of
circles.

4.2.3 Aggregating Piece Integrity Constraints

Finally, one comes to the aggregation of the Piece Integrity Constraints. These constraints only
appear in model M1 and are intrinsically different from the previous constraints, since they are
equality constraints (equations sets 4.7-4.8) instead of inequality ones. Being equality constraints,
it is necessary to considerer both positive and negative deviations and to avoid positive devia-
tions cancellations due to negative deviations, and vice-versa. This is achieved by only squaring
each summation term, where equation 4.34 measures x deviations and equation 4.35 measures y
deviations.
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{PINT_Xi, j,k,h +PINT_Yi, j,k,h} 0 (4.33)

PINT_Xi, j,k,h = (xki � xh j � cos(Ak0,i +qk)⇥Dk0,i)
2 (4.34)

PINT_Yi, j,k,h = (xki � xh j � sin(Ak0,i +qk)⇥Dk0,i)
2 (4.35)

Unlike in the previous constraint aggregations, using hierarchical overlap methods does not
make sense when aggregating Piece Integrity Constraints since the constraints only deal with
circles of the same piece.
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Figure 4.3: Hierarchical Overlap example.

4.2.4 Hierarchical Overlap Method

The hierarchical overlap method is used together with the Non-Overlapping Constraints aggre-
gation of both models. This method consists in discarding overlap computation between distant
pieces. It uses a hierarchical approach to the verification of overlaps, defined as a Bounding Vol-
ume Hierarchy, with a tree structure, starting with a basic approximation to the piece (bounding
box), and using more refined representations until reaching the most accurate, based on circle cov-
ering. In this hierarchical overlap method the overlapping between two pieces can be defined as
not occurring when any of their representations is not overlapping.

Pieces are defined with three levels of representation in the hierarchical structure, where the
first level contains its bounding box, the second level a minimum enclosing circle (MEC), and
finally the circle covering. The verifications only proceed to the next hierarchical level when
a possible overlap situation is detected, as shown in Fig. 4.3. The overlap detection starts by
comparing the bounding boxes of each piece, and if positive the overlap detection proceeds to
compare the MEC. If the overlap cannot be discarded in the first two levels, the overlap detection
uses the Circle Covering of the pieces.

Models M1 and M2 have different behaviors and characteristics that require some modifica-
tions to the implementation of the hierarchical overlap verification method. Since the reference
point of each piece is not exactly on the center of the piece, but on the center of the closest circle,
the representation through bounding box and MEC must take into account the distance between
this point and the most distant circle plus radius of the circle covering. Since the rotation of the
piece around its reference point generates a circle (considering the radius equal to the most distant
point of the circle covering), the MEC will enclose it, and the bounding box will enclose the MEC.
This leads to a slight increase in the size of the bounding box and MEC, and also determined that
their centers are always on the current position of the piece reference point. The main difficulty in



100 Non-Linear Programming Approach

Table 4.1: Model variants.

Model Non-overlapping Containment Piece Integrity
Variant Constraints Constraints Constraints

M1S No No No
M1E Yes No No
M1T Yes Yes Yes
M2S No No —
M2E Yes No —
M2T Yes Yes —

implementing this method lays on the characteristics of model M1, where the positions of the cir-
cles are defined through the piece integrity constraints. Considering that the Circle Covering must
always be contained by the MEC, the problem arises when the solver is running the model, since
the solver method allows constraints to be infeasible during its operation, some of those being the
Piece Integrity Constraints, causing circles of a given covering to lag behind the current placement
of the piece, and being outside the MEC. This causes convergence problems for the solver, since
the Non-Overlapping Constraints start returning false positive and false negative detections. This
can be minimized by increasing the size of the bounding box and MEC, but with their increase,
the efficiency of the hierarchical overlap method is reduced. Model M2 does not have this type of
problem due to the formulation of its constraints, by having the circle positions computed directly
from the reference point.

4.2.5 Model Variants

Different models can be created based on these constraint aggregations, by using different com-
binations of constraint aggregations. The behavior of the model will change, together with its
computational efficiency and the quality of solutions. Since the Non-Overlapping Constraints has
a factorial growth while the Containment and Piece Integrity Constraints grow linearly, there is
a greater advantage in aggregating the Non-Overlapping Constraints together since their decrease
will provide a greater impact.

The downside of aggregating constraints is that it can lead to an increase in the sensitivity
during the search. This increased sensitivity causes difficulties for the solver to decide the path
that minimizes the objective function. Another effect that also needs to be considered is that as the
complexity of the constraint increases, the numerical precision error gets larger, thus resulting in
cases where the constraint will be considered valid when it is not, and vice-versa. Table 4.1 shows
the different variants of models M1 and M2 that were considered to solve the Nesting problem
with continuous rotations.

All variants starting with M1 are the ones derived from the model based on circles (M1), and
models starting with M2 are the ones derived from the model based on pieces (M2). The last
letter on the model variant name (S, E and T) indicates the constraint aggregations used in each
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variant, where: S means no aggregations used, E only aggregates Non-Overlapping Constraints,
and T aggregates all constraints types. The aggregations are done by type of constraint, so when
all constraints types are aggregated, the total number of constraints is, depending on the model,
3 for variant M1T (1 non-overlapping constraint, 1 containment constraint and 1 piece integrity
constraint) or 2 for variant M2T (1 non-overlapping constraint and 1 containment constraint).

4.3 Layout Post-Optimization

The post-optimization phase is used to address the infeasible layouts created by CC that do not
completely cover the pieces, such as the PCC and ICC, and also to reduce the excess waste derived
from LR and HR coverings when using the CCC. The produced results can only be compared to
results in the literature, and between different types of covering, if their layouts have no infeasi-
bilities. In order to address the layout infeasibility, the compacted layouts are re-compacted using
a CCC with an higher resolution than the one used when compacting the layout, such as High
Resolution Plus (HRP) or Very High Resolution (VHR). This is done in order to allow pieces
to more easily adjust to each other, since it uses a covering representation closer to the original
polygonal outline of the piece. Normally, the resolutions used in solving Nesting instances are the
LR and HR, due to their reasonable number of circles, since solving the same instances with an
higher resolution (HRP and VHR) in a single step is impractical, due to the significant increase in
computational cost. The main downside of the post-optimization phase is that it increases the total
computational cost required to achieve a feasible solution, while not being able to guarantee that
the correction of the layout will be successful. The computational cost increases with an increase
in the total number of circles of the used CC.

The use of CCC allows avoiding infeasible solutions due to its excess covering of the piece,
which is beneficial for certain industrial applications where pieces must be placed with a min-
imum distance separating them. This is due to technological constraints, related to the cutting
precision and also due to cutting process (if cutting with laser or torch, the surrounding area might
suffer deformations, which requires pieces to be placed with a minimum distance from the cutting
region).

A situation where infeasibilities exist can be seen in Fig. 4.4. The two polygonal outlines
overlap each other due to the incomplete covering of the pieces, while the circle covering does not
contain overlaps between circles from different pieces. The example shown in this figure has been
exaggerated, using a LR covering, in order to show the types of infeasible situations that may arise
when using PCC or ICC.

An example of the detection process for infeasibilities can be seen in Fig. 4.5. If the polygonal
representation of a piece has any vertex inside another piece, or if any edge of the current piece
intersects any edge of another piece, an infeasibility is defined. This example was made with
the purpose to explain all cases of infeasibilities that are detected, considering only the polygonal
representation.
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Figure 4.4: Example of the creation of infeasibilities, considering a feasible circle covering.

Figure 4.5: Detection of infeasibilities.
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Table 4.2: Scaling of CCC resolutions.

Resolution Threshold # Circles Area Area %
LR 0.25 13 33.61 117.9
HR 0.10 20 30.41 106.7
HRP 0.05 29 29.44 103.3
VHR 0.01 66 28.68 100.6
Polygonal 0.00 – 28.50 100.0

The differences between the coverings of the various resolutions can be seen in Fig. 4.6 where
a piece is covered using CCC with LR, HR, HRP and VHR resolution coverings. These figures
clearly show the increase in quality of representation through circle covering that is achieved by
using higher resolutions. The increase in the number of circles and the effect in the reduction
of the excess area can be seen in Table 4.2. In this table, the polygonal area of the piece is also
presented, to allow comparison with each type of covering. The polygonal representation has no
additional area, since the circle covering is derived from it, considering it the ”real" representation
of the piece. The benefit of using higher resolutions as a post-optimization method derives from
it being applied to a layout that has already been compacted, thus the pieces are not required to
move substantially to reach a stable position. This effect is able to compensate the increase in the
computational cost derived from the higher number of circles. However, in situations where the
overlaps present in the layout cannot be removed the computational cost increases, since the solver
will try to solve them. The computational cost is fully wasted on layouts that cannot be corrected.
For this reason, this method may be adequated to be applied only to the most promising solutions.

The Post-Optimization may not be able to correct infeasible layouts due to lack of space to
remove overlaps, such as when using ICC or PCC and being limited by the fixed width of the strip.
This may also occur when the layouts are so tightly packed that concavities of a piece prevent two
pieces that are overlapping from moving in opposite directions. Difficulties such as these are
difficult to solve. An alternative to assist in correcting infeasible layouts consists of compacting
the pieces using a container with reduced width, by as much as 2%, in order to allow pieces also to
adjust in that direction, and later using the Post-Optimization with the full width of the container.
This post-optimization approach can also be applied to feasible layouts derived from CCC, using
HRP or VHR in order to further improve the packing of the layout.

4.4 Results and Discussion

In this section, the proposed models and algorithms are tested, aiming to solve the Nesting problem
with continuous rotations, and having their results presented and discussed. This section focuses
on analyzing the behavior and effectiveness of the solution approach based on NLP models to-
gether with Circle Covering. Due to the interdependence between the different model variants,
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(a) LR. (b) HR.

(c) HRP. (d) VHR.

Figure 4.6: Scaling of CCC resolutions.

resolution coverings and types of covering, each one of these parameters will be tested indepen-
dently, while fixing the others, in order to analyze the impact that each has on the final solution,
considering solution quality and computational cost.

In the first sub-section, the Nesting instances used in the tests are presented. Not all instances
will be used in all tests, due to their characteristics. The most appropriate instances for each test
will be selected in order to present the computational results in a clear way. The instances can be
separated into three distinct groups, by their size (small, medium and large instances). The small
and medium instances are used to test the configuration parameters, such as model type, resolution
and covering type, that is used to solve the Nesting problems with continuous rotations. Since this
chapter focuses on the definition and evaluation of the NLP model variants, different resolutions
and types of covering, it will use only the small and medium size instances. The large instances
will be used on the next chapter, where the approaches designed to tackle larger and more complex
instances are introduced and explored, in order to verify their efficiency dealing with real world
problems. The overall setup configuration is also shown in this sub-section, including the approach
that is used to obtain the initial solutions.

The second sub-section evaluates the impact that the different formulations of the mathemati-
cal models have solving a Nesting problem with continuous rotations, considering also the variants
of each model depending on the type of constraints that are aggregated. This test allows to verify
which model and what variants are better suited to deal with specific characteristics of a given
instance, considering computational performance and quality of the solution. Since only the mod-
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els are being evaluated, the resolution and type of covering were selected with a focus on having
reduced computational cost and admissible solutions, thus selecting a low resolution (LR) version
of the instances, with the CCC.

The third sub-section addresses the impact caused by different resolutions, in terms of the
quality of layout compaction solution and computational cost. Two different resolutions are tested,
one with a lower resolution (LR) and the other with a higher resolution (HR). The models and types
of covering are selected in order to allow comparing the impact of both resolutions, with reduced
computational cost, while being able to achieve an admissible solution with good quality.

The fourth sub-section contains the computational experiments that were done in order to
select the most appropriate resolution for the post optimization method (that attempts to correct
infeasible layout results). A comparison between the impact of different resolutions, regarding
quality of solution and computational cost, is done.

The fifth sub-section focuses on the impact on the quality of the layout from the different
types of covering: CCC, PCC and ICC. These tests show the impact that each covering have on
the quality of the solution, after using the post-optimization method that addresses infeasibilities
and improves the compaction quality.

The final sub-section uses the most promising combination of parameters (model and con-
straint aggregation, resolution and covering) to obtain the best layout compaction solutions. These
results are then compared to the current literature results.

4.4.1 Nesting Instances, Setup Configuration and Initial Solutions

A set of Nesting instances were selected from the ESICUP1 website to evaluate and test the com-
putational efficiency of the proposed models and circle coverings. The selected instances are pre-
sented in Table 4.3, where the data is shown to give some sort of measurement about the relative
geometric complexity of each instance. The instances poly1a and poly2a have the least complex-
ity due to their low number of pieces and the reduced number of vertices and concavities. The
instance swim is, by far, the most complex one, with 960 vertices, 48 pieces and multiple concav-
ities per piece. This is a real-world instance and solving it remains the biggest challenge in this
area. It should also be noted that instances poly2a to poly5a are obtained from instance poly1a by
replicating it 2, 3, 4 and 5 times the original set of pieces from poly1a. Instances poly2b to poly5b
follow a similar scheme of poly2a to poly5a, but 15 new pieces are added each time, instead of
replicating the pieces from poly1a.

The instances poly1a, poly2a, poly2b and jakobs1 are considered small instances, while poly3a
and poly3b are considered medium instances. This is due to the combination of their number of
pieces, but also derived from the number of circles used in each Circle Covering. The instances
poly4a, poly4b, poly5a, poly5b and swim are considered large instances, due either to the high
number of pieces (more than 50) or the total number of vertices (almost 1000).

1EURO Special Interest Group on Cutting and Packing (http://www.fe.up.pt/esicup)

http://www.fe.up.pt/esicup
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Table 4.3: Geometric characteristics of the Nesting instances used.

Avg. # Total # Pieces with Best
Instance # Pieces # Vertices Vertices # Conc. Conc. Width length a

jakobs1 25 150 6.0 22 10 40 11.82
poly1a 15 69 4.6 6 5 40 13.21
poly2ab 30 138 4.6 12 10 40 25.71
poly2b 30 148 4.9 19 11 40 29.07
poly3ab 45 207 4.6 18 15 40 38.81
poly3b 45 222 4.9 39 17 40 38.79
poly4ab 60 276 4.6 24 20 40 52.08
poly4b 60 296 4.9 66 22 40 49.45
poly5ab 75 345 4.6 30 25 40 63.81
poly5b 75 363 4.8 96 27 40 58.09
poly10ab 150 690 4.6 60 50 40 — c

poly20ab 300 1360 4.6 120 100 40 — c

swim 48 960 20.0 99 42 5752 — c

swim4d 192 3840 20.0 396 168 5752 — c

a Best published results obtained by f -functions and mathematical model (Stoyan et al., 2012)
b poly2a, poly3a, poly4a, poly5a, poly10a and poly20a instances are multiple of poly1a
c Not currently solved with free continuous rotations
d swim4 instance is a multiple of swim

The instances poly1a and its multiples have pieces with few vertices (4.6 per piece) and few
concavities, and without compatible angles between pieces (i.e., the concave angles of a piece are
not compatible with the convex angles of another). Instance jakobs1 also contains pieces with few
vertices (6.0 per piece) and few concavities, but the pieces in this instance have compatible angles
between each other, due to the nearly perfect fits and square angles that the pieces contain. The
swim instance has a huge number of vertices (20.0 per piece) and concavities, without having pairs
of pieces with compatible angles.

The selection of these instances was based on their different geometric characteristics, taking
into account the variations in pieces size and their structure (convex and concave), while also
considering their number of pieces in order to have a variation in computational cost. Using these
instances has the benefit of making computational experiments with different characteristics, thus
better understanding the efficiency of the approaches, and also allowing a later comparison with
other results in the literature.

The computational experiments were processed on a computer with two Intel Xeon E5-5690
processors at 3.46Ghz, with 48Gb Ram at 1333Mhz and with the operating system Ubuntu 12.04
LTS x86-64. The selected Non-Linear solver is Algencan2 v2.37 as in (Andreani et al., 2007)
and (Andreani et al., 2008), which is a non-linear solver based on the Augmented Lagrangian
multipliers method. This solver is based in a single-thread execution. In order to reduce the total
computational cost required for a given instance, multiple executions of the solver are done in

2http://www.ime.usp.br/~egbirgin/tango/

http://www.ime.usp.br/~egbirgin/tango/
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Figure 4.7: Initial solution example for instance poly5b.

parallel. This solver does not guarantee convergence to the global optimum. While there are
solvers able to converge to an optimal solution, as Jones (2013) shown, they can only be applied
to instances up to four pieces, and even in those cases, the computational cost is very high.

The selected solver converges to a local minimum, requiring multiple starting points to explore
different regions of the solution space. Since starting from a specific solution will return the
same local minimum, having different starting positions allows to explore the solution space for
better local minimum, and maybe find the global minimum. This search strategy employed is
very basic, where the initial positions of the pieces are defined by placing them into a grid, in a
non-overlapping configuration, with random rotations. An example of an initial solution for the
instance poly5b can be seen in Fig. 4.7. For each nesting instance, 30 different initial solutions
were generated and used afterwards in the computational tests. This allows a fair comparison
of the results obtained with different approaches and coverings, since they all share the same
configuration.

4.4.2 Testing the Model Variants

This set of tests concerns the comparison of the two proposed mathematical models (M1 and M2)
and the several variants derived from those models, obtained through constraint aggregation. The
objective is to compare the two models and evaluate the constraints aggregation strategy. For
this set of tests, the circle covering type used was CCC with an LR resolution, with the instances
jakobs1, poly1a, poly2a, poly2b, poly3a and poly3b. This configuration was selected in order to
focus on the model variants, not having concerns about feasibility of the results neither the impact
that using a much higher resolution has on the computational cost. Tests were done using all the
30 initial solutions.

Both NLP models share the same objective function that aims to minimize the length l of
the strip. This objective function forces the pieces to gradually compact until they reach a stable
position, where the solver cannot find any movement that would improve the solution. Table 4.4
summarizes the results obtained for the 6 model variants (M1S, M1E, M1T, M2S, M2E and M2T).

The results indicate that the NLP models and their variants show a consistent behavior, with
model M2 achieving best average layouts and usually also the best one, although the computational
times are much higher than model M1. The reason for these bigger computational times is due to
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Table 4.4: Model variants computational results (obtained using CCC and LR).

Model Obj. Function (l) Avg. #
Instancea Variant Min. Avg. Max. Time (s) Runs
jakobs1 M1S 16.36 17.77 20.92 14.47 30
(11.82) M1E 15.98 17.96 25.37 1.70 30

M1T 15.82 18.01 20.89 1.77 30
M2S 15.33 17.13 19.89 79.47 30
M2E 15.73 17.14 20.17 18.07 30
M2T 15.85 17.38 19.69 4.37 30

poly1a M1S 16.61 17.68 18.75 4.60 30
(13.21) M1E 16.28 17.71 21.55 0.97 30

M1T 15.83 17.66 19.94 1.17 30
M2S 16.39 17.33 18.57 24.47 30
M2E 16.04 17.63 19.09 9.00 30
M2T 15.90 17.64 18.99 3.60 30

poly2a M1S 30.61 32.70 35.26 95.73 30
(25.71) M1E 31.60 33.40 35.44 8.60 30

M1T 32.00 33.30 36.58 11.63 30
M2S 30.30 32.25 35.26 635.70 30
M2E 30.94 32.84 34.58 111.10 30
M2T 30.83 33.24 35.60 37.97 30

poly2b M1S 34.15 36.27 38.05 106.80 30
(29.07) M1E 35.23 36.70 38.28 9.77 30

M1T 34.53 37.10 40.83 10.83 30
M2S 33.83 35.64 38.05 709.17 30
M2E 33.64 35.78 38.51 121.40 30
M2T 34.82 36.47 38.72 41.77 30

poly3a M1S 45.94 48.42 50.99 526.93 30
(38.81) M1E 46.22 48.50 51.00 36.80 30

M1T 46.26 48.79 52.65 38.50 30
M2S 45.70 47.33 48.99 3104.67 30
M2E 46.67 47.96 49.65 249.57 30
M2T 46.39 48.17 49.87 122.27 30

poly3b M1S 46.37 48.43 50.78 528.23 30
(38.79) M1E 46.50 48.46 52.40 29.53 30

M1T 45.36 48.46 51.62 36.27 30
M2S 45.00 47.02 50.01 2736.03 30
M2E 46.37 48.03 55.86 266.47 30
M2T 46.27 48.44 50.88 118.90 30

a Reference value: best result in literature, considering length
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the complexity of the constraints of model M2, specially in the last iterations of the convergence
to the local minimum.

Considering the aggregation of constraints, the variants without constraint aggregation, M1S
and M2S, return the best average solutions, but also with the higher computational cost. Ag-
gregating the Non-Overlapping Constraints greatly reduces the computational time with a slight
decrease in the solution quality. The models with all the constraints aggregated, M1T and M2T,
usually return the worst average solutions. Regarding their computational cost, small differences
are noticeable. While on model M2 the computational cost is reduced as the constraints are aggre-
gated (due to constraint exclusion), model M1 shows a different behavior. When the model M1
has all constraints aggregated, the Piece Integrity Constraints create difficulties in the convergence
to a local minimum, which increases the computational time. These behaviors in the quality of the
average solutions and computational time, can be explained by the increase of sensitivity of the
solver to numerical precision problems, which reduce its capability to distinguish small changes
in the value of the aggregated constraints during the convergence to local minimum.

To better compare and analyze the behavior of the different models, the results obtained for
instance poly3a will be presented in two graphs, one for the compaction layout result, and the other
for the computational time. This instance was selected due to its complexity, since less complex
instances do not show significant differences between the models. It is hard to compare the two
models based on their results in a random sequence, due to one model getting the best result in
a certain run but not on other runs, so the results will be presented for each model variant, with
each individual variant ordered by their solution quality. When presenting the details about the
computational time, the same ordering is used, for each individual model variant.

Considering the compaction results from instance poly3a, as seen in Figure 4.8a, the variant
M2S is clearly seen as the one that provides the best solutions. All of the other variants are very
close regarding the best compaction results, but their differences become more significant as the
number of initial solutions increases. Variants M2E and M2T have similar results, although not
as good results as M2S, while all variants of model M1 (M1S, M1E and M1T) provide inferior
compaction results, being M1T the variant with worse results. The trend in this, and the other
instances, is for the M2 variants to return better compaction results than the variants of M1. Occa-
sionally, the models are not able to fully compact a set of pieces, ending with a bad result, but that
may be also feasible (as can be seen in the worst value for the layout length in Figure 4.8a). This
problem is due to numerical precision problems that arise from the small variations in the value
of the constraints, which reduce the capability of the solver to define the best path to improve the
current solution. This problem causes an increase to the computational cost, and may produce
very bad solutions, if the solver is not able to converge to a local minimum, due to reaching its
maximum number of iterations. When comparing the variants using their computational time, as
seem in Figure 4.8b, presented in logarithmic scale, their differences are very noticeable. Vari-
ant M2S is the most computationally expensive, followed by M1S and M2E. The variant M2T is
immediately bellow, and above both M1E and M1T, which are the least computational expensive.

The behavior of the models in instance poly3a is similar to the behavior presented in other
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(a) Layout length l.

(b) Computational time.

Figure 4.8: Comparison of model variants, using instance poly3a with LR and CCC.
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instances, where the trade-off that exists between different NLP formulations for the Nesting prob-
lem with continuous rotations is noticeable, considering the quality of the compact solution, and
the computational cost required. Model M2 usually returns better compaction results than M1.
The variants M1S and M2S return better results than the variants M1E and M2E which have their
Non-Overlapping Constraints aggregated. These variants are also usually better than the variants
M1T and M2T that have all constraints aggregated. When comparing the computational cost, the
model M1 has better performance than M2, where the variants that have aggregated constraints
(M1T and M2T) are much faster than have just the Non-Overlapping Constraints aggregated (M1E
and M2E) or the variants that do not (M1S and M2S).

The results show that the model variants have different behaviors, when comparing the variants
based on M1 to the variants based on M2, where the same configuration allows M1 variants to have
lower computational cost, while M2 variants provide better solution quality. When the comparison
is made considering the change in constraint aggregation, the behavior is similar for the model
variants from both models M1 and M2, where the variant S usually provides high quality solutions
with high computational cost, and T provides low quality with low computational cost, being the
variant E in the middle. Aggregating the Non-Overlapping Constraints allows the computational
times to be more controllable, which allows the variants M1E and M2E scale well to instances
with more pieces. If the objective is to obtain the layout with the best compaction, the best model
is the M2S, however, if a solution is required, but with a reduced computational cost, the best is
model M1E.

4.4.3 Testing the High and Low Resolution Coverings

Another important parameter that affects the computational cost and solution quality is the CC
resolution used, i.e., the number of circles used to approximate the pieces. To evaluate the impact
of different resolutions the HR and the LR resolutions are used. The covering type used was
the CCC in order to obtain admissible solutions, with the model variants M1E and M2E. These
models were selected based on their trade-off between computational cost and quality of layout
compaction.

Table 4.5 summarizes the results obtained with 30 initial solutions, for each set of CC reso-
lution, model variant and instances. From the results shown in Table 4.5, the use of HR covering
shows significant improvements in the quality of the compaction of the layouts. The average value
is clearly lower, but the greatest difference can be noticed between the minimum values achieved
for each instance, which is significantly lower when using HR covering. Another noticeable as-
pect is that the improvement in the compaction of the layout increases with the complexity of the
instance, i.e., when the instances have a larger number of pieces. The main downside in using a
HR covering is the significant impact on the computational cost, which is about 2 to 3 times the
computational cost of using LR covering, for the tested instances.

In order to better visualize the impact that a different resolution has on this problem, poly3a
instance and its results are presented in Figure 4.9. Considering this instance, the graph presented
in Figure 4.9a, shows that when using a HR covering, the layout compaction results are clearly
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Table 4.5: Circle Covering Resolutions (LR and HR) computational results (using CCC).

Model Obj. Function (l) Avg. #
Instancea Variant Resolution Min. Avg. Max. Time (s) Runs
jakobs1 M1E LR 15.98 17.96 25.37 1.70 30
(11.82) HR 14.32 16.77 21.79 3.50 30

M2E LR 15.73 17.14 20.17 18.07 30
HR 13.85 16.15 20.54 56.00 30

poly1a M1E LR 16.28 17.71 21.55 0.97 30
(13.21) HR 15.20 16.55 18.44 2.27 30

M2E LR 16.04 17.63 19.09 9.00 30
HR 14.76 16.10 17.82 29.23 30

poly2a M1E LR 31.60 33.40 35.44 8.60 30
(25.71) HR 27.66 34.58 91.15 22.93 30

M2E LR 30.94 32.84 34.58 111.10 30
HR 28.74 29.88 31.69 286.03 30

poly2b M1E LR 35.23 36.70 38.28 9.77 30
(29.07) HR 31.88 33.70 36.74 26.37 30

M2E LR 33.64 35.78 38.51 121.40 30
HR 31.26 33.18 35.53 295.77 30

poly3a M1E LR 46.22 48.50 51.00 36.80 30
(38.81) HR 41.95 44.48 46.32 80.80 30

M2E LR 46.67 47.96 49.65 249.57 30
HR 41.93 44.17 47.79 710.83 30

poly3b M1E LR 46.50 48.46 52.40 29.53 30
(38.79) HR 42.38 44.07 46.22 70.53 30

M2E LR 46.37 48.03 55.86 266.47 30
HR 42.39 44.02 54.15 611.70 30

a Reference value: best result in literature, considering length
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(a) Layout length l.

(b) Computational time.

Figure 4.9: Comparison between different covering resolutions (LR and HR), using instance
poly3a with CCC.

better than those achieved with LR. Comparing the results achieved by both model variants, the
variant M2E returns better layout solutions than M1E. When comparing the computational time,
presented in Figure 4.9b considering logarithmic scale, the computational time of the HR covering
is always significantly higher than the LR covering. In this figure, the differences in computational
time between the model variants are also clearly observed. Variant M1E using either resolution
is faster than the variant M2E. Again, the occasional event of a compaction with convergence
problems due to numerical precision issues can be seen in Figure 4.9a and Figure 4.9b, where
one of the model variants is not able to fully compact a set of pieces, ending with a bad, but
still feasible, result (as can be seen in the worst value for the total length in Figure 4.9a) and
using too much computational time in the process (worst value for the total length in Figure 4.9b).
This is due to the maximum number iterations being reached for the solver, due to difficulties in
converging to the current local minimum.
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In order to have a visual representation of the impact that using LR covering and HR covering
have on the quality of the layout compaction, Figure 4.10 presents two solutions that have been
compacted with both resolutions. This figure clearly demonstrates that when using a HR resolution
instead of a LR one, together with CCC, the pieces have a higher probability to achieve tighter
layouts, due to the smaller distance between pieces, when compared to the LR covering. The
CCC was used to facilitate the comparison between the model variants and different resolution
coverings, by allowing to analyze their results with feasible solutions. If other types of coverings
had been used, the solutions would not be directly comparable, since the other types of covering
(PCC and ICC) generate infeasible solutions.

The use of different circle covering resolutions has a strong impact on the quality of the layout
compaction and in the computational time. Using a LR covering allows to compact the layout
much faster, but the quality of the results of the layout compaction are not satisfactory. The
HR covering returns tight layouts but with a much higher computational cost. The increase in
computational cost due to different resolutions indicates that the cost of using higher resolutions
than HR becomes too high to return solutions in an acceptable amount of time.

4.4.4 Layout Post-Optimization Computational Experiments

The Post-Optimization phase is used to address the infeasible layouts created by CC that do not
completely cover the pieces, such as the PCC and ICC, and also reducing the excess waste derived
from LR and HR coverings when using the CCC. In order to allow pieces to more easily adjust to
each other, a higher resolution is used, such as High Resolution Plus (HRP) or Very High Reso-
lution (VHR), since it allows a covering representation closer to the original polygonal outline of
the piece. The main downside to this Post-Optimization phase is that it increases the total com-
putational cost required to achieve a feasible solution, while not being able to guarantee that the
correction of the layout will be successful. In this section the computational experiments regarding
the Post-Optimization approach will be shown, in order to analyze the results and determine which
is the best configuration that allows correcting the highest number of infeasible solutions, and also
producing the highest solution quality possible. The presented results show a combination of high
resolution such as HRP or VHR with CCC, and several model variants.

A visual representation of the different levels of resolution that exist, for some of the instances
used, can be found in Table 4.6. Since the objective is to correct infeasible layouts, without
increasing its length significantly, using identical or lower resolutions in the post-optimization
phase does not bring any advantage. The LR and HR coverings are present in Table 4.6 in order to
allow comparison with the higher resolution coverings HRP and VHR. As seen in Table 4.6, the
increase in the quality of approximation leads to a significant growth in the number of circles. The
columns in the right side of Table 4.6 show the average number of circles for each piece which
allows to determine the relative difficulty between the instances, when also considering their total
number of circles.

Each instance was tested with 30 initial solutions which were compacted (during the normal
optimization process) with the model variant (M2E), using CCC, PCC and ICC, and HR covering,
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(a) LR-CCC layout. (b) Piece layout for the LR-CCC.

(c) HR-CCC layout. (d) Piece layout for the HR-CCC.

Figure 4.10: Layouts obtained for instance jakobs1 with HR and LR coverings.
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Table 4.6: Number of circles for Post-Optimization.

# Circles (total) # Circles per Piece
Instance LR HR HRP VHR LR HR HRP VHR
jakobs1 208 368 521 — 8.3 14.7 20.8 —
poly1a 154 260 370 853 10.3 17.3 24.7 56.9
poly2a 308 520 740 1706 10.3 17.3 24.7 56.9
poly2b 336 534 778 1799 11.2 17.8 25.9 60.0
poly3a 462 780 1110 2559 10.3 17.3 24.7 56.9
poly3b 476 755 1107 2546 10.6 16.8 24.6 56.6
poly4a 616 1040 1480 3412 10.3 17.3 24.7 56.9
poly4b 624 989 1448 3342 10.4 16.5 24.1 55.7
poly5a 770 1300 1850 4265 10.3 17.3 24.7 56.9
poly5b 770 1227 1795 4145 10.3 16.4 23.9 55.3
swim 921 1179 1362 2610 19.2 24.6 28.4 54.4

in order to be able to analyze the Post-Optimization approach using different characteristics. The
Post-Optimization method was applied to the results obtained, and its results analyzed considering
different resolutions (HRP and VHR) and different model variants (M1E and M2E). The last set
of computational experiments analyzed the influence that using different covering types on the
normal optimization phase has on the results returned by the post-optimization phase.

To verify the impact that both HRP and VHR coverings have in the Post-Optimization phase,
regarding computational cost and quality of compaction, several instances were selected (poly1a,
poly2a, poly2b, poly3a and poly3b) and tested using the model variant M2E. These instances were
selected due to their size and complexity, while the choice of the model variant used was selected
due to the reasons previously stated (able to achieve good quality solutions, within an accept-
able computational time). Considering the results shown in Table 4.7, increasing the resolution
from HRP to VHR causes a very small decrease in the length of the layout, at the expense of a
significant increase in the computation time. The same increase in resolution does not create a
significant difference in the number of feasible solutions, being both able to produce feasible so-
lutions almost every time. However, when infeasible solutions occur, they may be derived from
numerical precision errors, or lack of space to allow pieces to correct overlaps (due to fixed width
of the container, and pieces with concavities that prevent other pieces from separating), or another
reason. The computational tests for the post-optimization consider only values of the solution
quality and computational cost that correspond to feasible layout solutions.

The computational cost of the Post-Optimization phase can be reduced by using a different
model variant, such as M1E, however, this variant usually returns worse quality solutions than the
previously used M2E variant. Table 4.8 shows computational experiments regarding the impact
that the M1E variant has when used in the post-optimization procedure. As expected, the M1E
variant returns layouts with lower quality than M2, but at a significantly lower computation time.
The total number of feasible solutions is lower than M2E when using the the M1E variant. This
is due to numerical precision problems that arise with the non-overlapping constraint aggregation,
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Table 4.7: Impact of resolution in the Post-Optimization, with CCC and M2E.

Avg.O.F.a(l) Avg.Timea(s) # Feas. Solutions #
Instance HRP VHR HRP VHR HRP VHR Runs
poly1a 15.48 15.07 4.23 37.55 30 29 30
poly2a 28.59 27.73 46.70 488.14 27 29 30
poly2b 31.96 30.90 49.38 640.83 29 30 30
poly3a 42.38 40.93 132.61 2003.58 28 26 30
poly3b 42.16 41.07 161.96 1824.25 27 28 30
a Avg. values considering only feasible solutions

Table 4.8: Impact of model variants M1E and M2E in the Post-Optimization, with CCC and VHR.

Avg.O.F.a(l) Avg.Timea(s) # Feas. Solutions #
Instance M1E M2E M1E M2E M1E M2E Runs
poly1a 15.31 15.07 6.48 37.55 25 29 30
poly2a 28.18 27.73 33.11 488.14 27 29 30
poly2b 31.29 30.90 46.48 640.83 23 30 30
poly3a 41.47 40.93 86.44 2003.58 27 26 30
poly3b 41.11 41.07 88.89 1824.25 19 28 30
a Avg. values considering only feasible solutions

since the smallest circles that compose the pieces can easily overlap circles of other pieces, with-
out a significant effect on the aggregated non-overlapping constraint. The constraint aggregation
causes the effects of these small circles to be barely noticeable, which may be considered an ap-
proximation error. This model variant also has difficulties removing overlaps from pairs of pieces
that have circles on both sides of the other piece (i.e. when the skeletons of the pieces intersect
each other). This causes circles from the same piece to move in different directions to minimize
the overlap, but without success since doing so would violate the integrity of the piece. The M2E
model variant has a different formulation, which explains its different behavior. Since the ref-
erence point of the piece is considered, and not its circles, when the overlap is to be minimized
between two pieces, in the same condition as explained before, the piece will be forced to move
in one direction only, being able to remove overlaps much more efficiently.

Up to this point the Post-Optimization processed layouts compacted with CCC, which were
feasible, in order to isolate the influence of both resolutions and model variants. The main purpose
of using the Post-Optimization is to allow correcting infeasible layouts generated by PCC and ICC,
and for this reason, the next set of computational experiments, shown in Table 4.9 will analyze the
impact that they have on the Post-Optimization phase, when used during the normal optimization
phase. As seen in this table, using CCC returns layouts with lower quality, but almost all of them
being feasible. The difference in compaction quality between the PCC and ICC, after the Post-
Optimization phase, is very small. Most of their layouts start tightly compacted, and have their
length increased in the post-optimization phase when being corrected. The greatest difference can
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Table 4.9: Impact of covering types CCC, PCC and ICC in the Post-Optimization, with HRP and
M2E.

Avg.O.F.a(l) Avg.Timea(s) # Feas. Solutions #
Instance CCC PCC ICC CCC PCC ICC CCC PCC ICC Runs
poly1a 15.48 15.30 15.35 4.23 19.35 20.00 30 23 11 30
poly2a 28.59 28.64 27.55 46.70 139.00 195.29 27 15 7 30
poly2b 31.96 31.44 31.84 49.38 109.43 504.69 29 23 29 30
poly3a 42.38 41.87 40.99 132.61 89.56 791.00 28 18 5 30
poly3b 42.16 41.90 42.50 161.96 217.47 1285.38 27 19 26 30
a Avg. values considering only feasible solutions

be seen in their computational time, and number of admissible solutions.

An abnormally high computational time indicates that the solver is having difficulty in achiev-
ing a local minimum in the layout, which can be caused by several factors, such as numerical
precision problems, which cause difficulties converging to local minimum, also due to lack of
space to move pieces in order to correct overlaps, among others. It is natural that the type of cov-
ering that generates the tightest layouts (ICC) is the most difficult to correct the overlaps between
its pieces. This large increase in computational cost is not shown in Table 4.9 since only the values
for the instances that were successfully corrected by the Post-Optimization Phase are shown. The
excluded infeasible layouts wasted their computational time completely, and their average is sig-
nificantly higher than the feasible results, because the solver continues trying to reach a feasible
local minimum until it succeeds, or the number of iterations reaches the maximum. An example
of the Post-Optimization phase can be seen in Fig. 4.11 where an infeasible solution, produced
during the normal optimization phase with ICC-LR, is shown, together with the corrected layout,
using the Post-Optimization phase, with CCC-VHR.

Due to the significant impact that the number of circles has on the computational cost, the
use of HRP is preferable, compared to VHR. When the layouts have been compacted with PCC or
ICC, the use of the post-optimization is necessary, however, using it on admissible layouts initially
compacted using CCC can provide a slight improvement in the quality of the layout compaction.
The use of VHR covering can be justified to further improve a small set of very promising layouts,
but with a large computational cost. The model variant should be selected based on the expected
computational cost. The most balanced variants are M1E for low computational cost, and M2E
for high compaction quality. The post-optimization does not guarantee that the layouts will return
admissible solutions when they have been created by PCC or ICC due to difficulties removing
overlaps caused by numerical precision problems, and also due to limited space available for the
pieces to move (such as when limited by the fixed width of the container, when a concavity from
one piece prevents other pieces to move in opposite directions to correct their overlaps, among
other examples).
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(a) Infeasible solution produced
with ICC-LR.

(b) Feasible solution due to
Post-Optimization using CCC-
VHR.

Figure 4.11: Example considering ICC-LR during the normal optimization phase and CCC-VHR
durign the Post-Optimization phase

.



120 Non-Linear Programming Approach

4.4.5 Testing the Circle Covering Types

In order to determine the impact that the type of Circle Covering has when solving Nesting prob-
lems with continuous rotations, several covering types were tested. The model variants used were
M1E and M2E. The aim of this test is to complement the tests done previously, by evaluating the
computational cost and quality of the layouts obtained with the different circle covering types.
The circle covering types compared in this tests have already been introduced in chapter 3, and are
defined as CCC, PCC and ICC. The circle coverings PCC and ICC have their coverings improved
by the tip covering algorithm, in order to achieve a covering that minimizes the inadmissibilities
that might occur in the layout. For this computational experiment the instances that were selected
are jakobs1, poly1a, poly2a, poly2b, poly3a and poly3b, i.e., the ones defined as small or medium
instances.

Table 4.10 summarizes the results obtained from a run with 30 initial solutions, showing only
the admissible solutions (after applying the post-optimization phase to solve inadmissible solutions
and improve the ones already admissible). The minimum, average and maximum values for the
layout compaction are shown, together with the average computational time.

Taking into account the minimum and average values of the layout compaction, it can be seen
that the CCC is able to return, almost always, admissible solutions (it fails on some cases due to
numerical precision errors) but rarely achieves the best quality. The ICC has many layout solutions
that cannot be turned into admissible solutions, but the tendency is to achieve better results than
the coverings CCC and PCC. This is due to the ICC covering having a smaller covering of the
piece (since the circles are contained inside the piece outline). The disadvantage of this type of
covering is the high number of infeasible layouts, which means that the resulting layout has a high
number of occurrences of overlaps between pairs of polygons. An infeasible layout is troublesome
to resolve without degrading the quality of the final layout solution, and depending on the size and
tightness of the compacted layout, the pieces may lack sufficient space to be able to adjust and
eliminate the overlaps. The covering type PCC has the best trade-off between admissible solutions
and the quality of the solution, by having a number of admissible solutions close to CCC and a
quality of solution comparable to ICC.

The main downside in using PCC and ICC types of coverings is their possibility to generate
infeasible layouts, which require post-optimization to correct, and even then, may not be able to
successfully eliminate the overlaps. This Post-Optimization method increases the total compu-
tational time to solve the Nesting problem, which depends on the number of circles of the CCC
resolution used, HRP or UHR. This can be seen in Table 4.11, where the effect of using CCC,
PCC or ICC (including post-optimization) is analyzed, together with both model variants M1E
and M2E. The columns named Avg. O.F. Nrm. and Avg. O.F. P-Opt. refer to average values of the
layout compaction obtained in the normal compaction, and the post-optimization re-compaction,
respectively. Regarding the columns that refer to Avg. Time Nrm. and Avg. Time P-Opt., the same
applies.
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Table 4.10: Comparing Circle Coverings Types, with HR (including Post-Optimization using
HRP).

Model Covering Obj. Functionb(l) Avg. # Feas.
Instancea Variant Type Min. Avg. Max. Timeb(s) Solutions
jakobs M1E CCC 13.62 16.1 21.34 4.40 29
(11.82) PCC 13.87 15.7 21.35 4.57 25

ICC 13.16 14.8 19.36 8.61 19
M2E CCC 13.28 15.2 20.26 73.60 26

PCC 13.26 15.6 25.01 61.57 25
ICC 13.08 14.5 19.10 96.97 10

poly1a M1E CCC 14.70 15.8 17.90 2.59 29
(13.21) PCC 14.52 15.6 17.00 3.38 26

ICC 14.47 15.5 16.82 3.23 13
M2E CCC 14.18 15.5 17.24 32.43 30

PCC 14.42 15.3 18.52 47.18 23
ICC 14.46 15.3 16.17 45.20 11

poly2a M1E CCC 26.79 33.6 91.10 23.64 28
(25.71) PCC 27.49 34.3 91.10 25.00 23

ICC 27.61 28.9 30.75 54.22 8
M2E CCC 27.18 28.6 30.15 299.80 27

PCC 26.98 28.6 30.43 375.43 15
ICC 26.77 27.5 29.57 420.32 7

poly2b M1E CCC 30.32 32.3 34.52 28.26 29
(29.07) PCC 30.37 31.8 33.49 32.14 25

ICC 30.96 32.6 34.92 41.77 30
M2E CCC 30.55 32.0 33.76 324.81 29

PCC 29.55 31.4 33.35 374.47 23
ICC 29.68 31.8 34.13 504.69 29

poly3a M1E CCC 40.84 42.7 44.11 83.00 30
(38.81) PCC 40.92 42.3 44.48 92.07 21

ICC 40.22 41.5 42.35 131.81 9
M2E CCC 40.53 42.4 44.53 805.61 28

PCC 40.46 41.9 44.52 608.26 19
ICC 40.20 41.0 41.63 1400.90 5

poly3b M1E CCC 41.12 42.6 44.94 77.03 25
(38.79) PCC 40.46 42.2 44.03 102.14 21

ICC 40.25 42.6 45.29 124.54 28
M2E CCC 41.10 42.2 43.53 759.06 27

PCC 40.20 41.9 45.14 830.04 19
ICC 40.30 42.5 51.16 1285.38 26

a Reference value: best result in literature
b Values considering only feasible solutions
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The Post-Optimization method usually is able to improve the solution quality of layouts gener-
ated by CCC and PCC, while the layouts generated by ICC are usually degraded. Considering the
average solutions, it can be seen that ICC is able to return better but very few feasible solutions.
The CCC is able to return feasible solutions in almost all cases, although their solution quality
is lower than the other types of coverings. The infeasible solutions that arise with this covering
are created by the numerical precision errors, which prevent the solver from reaching a local mini-
mum, and forcing it to stop when the maximum number of iterations is reached. The PCC achieves
better quality solutions than CCC due to its circle outline being closer to the polygonal outline of
the piece. However, the PCC produces less feasible solutions than CCC but more than the ICC.
The ICC generates a very low number of feasible solutions, due to the large number of overlaps
between pieces caused by its very tight layouts, and the lack of space to move the pieces. The
pieces may be constrained by the fixed width of the container, or due to concavities of a piece that
prevents other pieces from moving apart from each other. These difficulties also arise in the PCC
but in a lesser degree, since it is also an incomplete covering of the polygonal representation of the
piece. Considering these types of covering, the PCC is the one that provides the most balanced
results considering solution quality and computational cost.

To illustrate visually the impact that each of these types of coverings have on a layout, Fig-
ure 4.12 shows three examples obtained with the CCC (Figure 4.12a), PCC (Figure 4.12b) and
ICC (Figure 4.12c), together with their respective polygonal representation. This allows to see
the distance separating the pieces and the overlapping created between them, depending on their
covering type. The PCC and ICC are infeasible solutions, while the CCC is feasible.

Figure 4.12d shows the layout obtained from CCC compaction, where the pieces have a small
separating distance among them. When comparing it to the distance in Figure 4.12e, with PCC, the
difference is noticeable since the pieces are closer together, but very few significant occurrences
of overlap can be seen. In comparison to Figure 4.12f, that uses ICC, nearly all corners of the
pieces are overlapping other pieces. This is due to the value of the allowed penetration depth in
ICC. Using a Post-Optimization approach allows correcting the overlaps and directly comparing
the layouts.

4.4.6 Non-Linear Programming Approach Evaluation

Taking into account all the approaches presented in this chapter, the selection of the best configu-
ration parameters for each one may enable achieving comparable results to the currently presented
in the literature. The computational experiments regarding the model, resolution and covering
type can be defined considering that the objective is to obtain the best solution, within an accept-
able computational time. For this reason, we propose using the model M2E for achieving a good
solution quality with a reasonable computational cost, and M1E for a reduced computational cost,
although with a reduced solution quality. Considering the resolutions, using HR has significant
advantages over LR where using a higher resolution increases the computational cost by a large
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Table 4.11: Impact of Circle Covering Types (with HR) in the Post-Optimization procedure (with
HRP).

Model Covering Avg. O. F. (l) Avg. Time (s) # Feas. Sol.
Instancec Variant Type Nrm.a P-Opt.b Nrm.a P-Opt.b Nrm. P-Opt.
jakobs1 M1E CCC 16.77 16.09 3.33 1.07 30 29
(11.82) PCC 15.95 15.74 3.33 1.24 0 25

ICC 15.32 14.79 2.67 5.95 0 19
M2E CCC 16.15 15.21 55.60 18.00 30 26

PCC 15.90 15.64 51.53 10.04 0 25
ICC 14.46 14.50 48.67 48.30 0 10

poly1a M1E CCC 16.55 15.84 1.87 0.72 30 29
(13.21) PCC 15.83 15.64 2.00 1.38 0 26

ICC 15.13 15.53 2.00 1.23 0 13
M2E CCC 16.10 15.48 28.20 4.23 30 30

PCC 15.49 15.30 27.83 19.35 0 23
ICC 15.42 15.35 25.20 20.00 0 11

poly2a M1E CCC 34.58 33.64 18.00 5.64 30 28
(25.71) PCC 33.68 34.31 14.13 10.87 0 23

ICC 32.28 28.86 14.97 39.25 0 8
M2E CCC 29.88 28.59 253.10 46.70 30 27

PCC 28.72 28.64 236.43 139.00 0 15
ICC 27.45 27.55 225.03 195.29 0 7

poly3a M1E CCC 44.48 42.70 70.23 12.77 30 30
(38.81) PCC 42.70 42.28 64.73 27.33 0 21

ICC 41.13 41.46 63.70 68.11 0 9
M2E CCC 44.17 42.38 673.00 132.61 30 28

PCC 42.12 41.90 522.37 85.89 0 19
ICC 39.92 40.99 609.90 791.00 0 5

a Avg. values considering all solutions
b Avg. values considering only feasible solutions
c Reference value: best result in literature
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(a) CCC layout. (b) PCC layout. (c) ICC layout.

(d) CCC Piece layout. (e) PCC Piece layout. (f) ICC Piece layout.

Figure 4.12: Instance jakobs1 with CCC, PCC and ICC.
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Table 4.12: Current approaches compared with best in literature, using HRP-CCC covering.

(Stoyan et al., 2012)b M1E M2E
Min. Time-to Min. Avg. Min. Avg.

Instance O.F. (l) Best (s) O.F. (l)a Time (s)a O.F. (l)a Time (s)a

jakobs1 11.82 495 13.16 2.75 13.08 25.45
poly1a 13.21 150 14.47 1.11 14.18 14.53
poly2a 25.71 280 26.79 18.59 26.77 127.00
poly2b 29.07 958 30.23 19.78 29.55 221.17
poly3a 38.81 390 40.22 36.07 40.20 337.72
poly3b 38.79 1156 40.25 56.84 40.20 554.94
a Values considering only feasible solutions
b Results obtained using f -functions and a mathematical model.

amount. Regarding the selection of covering types, the PCC has the best trade-off between solu-
tion quality, feasibility of the solutions and their computational cost (also derived from using the
post-optimization method).

The best results produced by M1E and M2E can be seen in Table 4.12, side by side, with the
current best results available in the literature, considering continuous rotations. Our computational
time is expressed in average values, considering both model variants M1E and M2E using HR cov-
ering with CCC, including the compaction with Post-Optimization. This is not directly compared
to the computational cost presented in the literature since it is only presented the Time-to-Best,
and not the overall optimization time.

The best results from the literature are not configured to simulate the conditions of a real-
world problem, since they have the gap between pieces defined as zero. In real-world problems
this value is never zero, due to technological constraints imposed by the cutting process. These
types of constraints can be easily simulated by the Circle Covering representation, where the
most favorable types of covering are the ones that have a positive protrusion distance between
the pieces, such as CCC and PCC. Comparing the CC approach to other approaches (that can
accurately represent the polygonal representation of the piece) places it at a disadvantage when
tackling problems that do not require a separating gap.

Regarding the remaining instances, the larger instances poly4a, poly4b, poly5a and poly5b
were not solved due to their computational cost. However, the instance swim was solved, in order
to verify that the developed approach is able to tackle this instance. It should be noticed that the
swim instance has not yet been solved using continuous rotations, except with our approach. Its
results, using several model variants, can be seen in Table 4.13. This is a particularly challenging
instance due the geometric complexity of the pieces, which contains a high number of vertices and
many concavities. Solving this challenging instance validates the proposed approach.

Taking into consideration the values presented in Table 4.13, our best result is 7023 units, with
model M2S with its average computational time being 36242 seconds. This table also shows the
difference in solution quality and computational time between model variants, confirming that the
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Table 4.13: Comparison of model variants for instance swim with CCC and HR.

Model Obj. Functiona (l) Avg.
Variant Min. Avg. Max. Time (s)a

M1S 7285 7647 8086 5531.32
M1E 7209 7685 8507 423.05
M1T 7263 7620 8595 420.14
M2S 7023 7293 7639 36241.71
M2E 7267 8985 20671 4806.59
M2T 7294 7693 8500 1127.29
a Values considering only feasible solutions

(a) Compaction with Circle Covering. (b) Compaction with only the pieces visible.

Figure 4.13: Example of Swim compaction, HR, CCC.

best solutions are usually obtained by M2S variant, but with a prohibitive computational cost. The
best solution can be seen in Figure 4.13. This figure shows the layout with the circle covering
containing a large number of circles and the layout with the polygonal representations of the
pieces.

4.5 Concluding Remarks

In this chapter several non-linear programming (NLP) model formulations have been presented.
All formulations are derived from two basic models, which focus on solving the Nesting prob-
lem with continuous rotations, taking into account its specific characteristics, by exploring dif-
ferent formulations. One NLP model focused on the description of pieces (represented by Circle
Covering) by considering them as composed by a set of individual circles (Circle Based Model
M1), while the other NLP model described the pieces as a single element (its reference point)
from where the circle covering outline is derived (Piece Based Model M2). These two alternative
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formulations of the Nesting problem have different intrinsic characteristics, allowing M1 to use
simpler equations, at the expense of a higher number of variables and constraints than M2. In
both models, the number of variables and constraints increases with a higher number of pieces
and also their number of circles, with the number of constraints having a factorial growth. In or-
der to control the growth of the constraints (and thus, limiting also the increase in computational
cost for larger instances), a method based on constraint aggregation (by type of constraint) was
implemented, for each type of constraint. This gave rise to three model variants (S, E and T), for
each model (M1 and M2), where the S variant did not use any constraint aggregation, while the
E variant aggregated only the non-overlapping constraints (they have exponential growth, while
the others have linear growth), and the T variant aggregated all types of constraints into individual
constraints.

The advantage of constraint aggregation is based on two effects, being the first one on reduc-
tion of the internal overhead in the solver derived from the selection of the individual constraints
to compute their value, and the second being the possibility to use a hierarchical overlap detection
approach to discard overlapping constraints between pieces that are far apart. The hierarchical
overlap detection method starts by comparing the bounding box of the pieces, then the minimum
enclosing circle, and only then the real circle covering. The solver allows some constraints to be
infeasible during its optimization process, leading to difficulties in converging to local minimums.
This problem is aggravated due to numerical precision errors. The downside of using constraint
aggregation is that the solver loses sensitivity to small variations produced from individual con-
straints, since the values of all positive overlaps are added together, causing an increase in the total
numerical precision error. This increases the difficulty of the solver in converging to a better local
minimum, due to losing capability to distinguish between small variations in the quality of the
result.

The selection of the best model variant depends on the computational cost limit, for which one
of them is able to provide the best results. The M1 model usually produces faster compactions,
but with lower quality than M2, which can be explained by its simpler equations. Considering
their variants, the variant without aggregated constraints (S) returns the best quality but being the
slowest, while the variant with all constraints aggregated (T) is usually the fastest, but with low-
est quality. The variant with only the non-overlapping constraints aggregated (E) is a balanced
approach, considering the others, returning average quality with an average computational time.
The best quality solution is usually obtained by the model variant M2S. Depending on its compu-
tational cost, other variants can be selected, in order to chose the model variant that leads to the
best quality, without exceeding the desired limit in computational cost. The variants with more
aggregated constraints are faster, however, their solution quality is inferior. Variant M1S is better
than M1E, which is better than M1T considering solution quality. Regarding computational cost,
their behavior is reversed. This is the same for variants M2S, M2E and M2T. When comparing
models, M1 is faster than M2, but it usually returns worse compaction solutions.

Instead of adjusting the computational cost through the model variant, another option is defin-
ing a circle covering representation with higher or lower quality of approximation. Coverings with
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distinct approximation quality have different number of circles, which impact the computational
cost through the number of constraints generated from them. Higher approximation quality leads
to circle coverings with more circles which increase the number of non-overlapping constraints
exponentially, which leads to a significant increase in the computational cost. The computational
costs have shown that using a High Resolution (HR) covering returns tighter compactions than
Low Resolution (LR) covering but with a significant increase in computational time. Using higher
resolutions than HR for the compaction process is prohibitive, while using resolutions lower than
LR produces layouts with very bad quality.

Another important aspect is the type of the selected circle covering. This issue does not have
a direct impact on the complexity of the NLP models since their total number of circles is nearly
identical, so the impact on the computational cost of the model is very reduced. The different
types of resolutions have mostly influence on the quality of the final solution, considering its
feasibility and tightness of the layouts. Since the Complete Circle Covering (CCC) produces a
circle covering with excess covering, with a specific protrusion distance, it naturally leads to fea-
sible layouts at the expense of the pieces not touching. The other covering types, Partial (PCC)
and Inner Circle Covering (ICC) exhibit a different behavior, since these two coverings have a
positive penetration depth, i.e., the circle covering does not completely cover the polygonal rep-
resentation of the piece leading to infeasible solutions. The main difference between the two is
that the ICC only has positive penetration depth (with zero protrusion distance), which allows the
pieces to be placed in configurations with perfect fits, while the PCC has both positive protrusion
distance and penetration depth. The computational experiments show that using a CCC returns
feasible solutions but plenty of wasted space on the layout, while the ICC achieves the tightest
layout compactions, although with very few feasible solutions. The PCC is shown to produce the
best trade-off considering the quality of the layout compaction, and the total number of feasible
solutions.

The feasibility of the layouts was addressed using an approach based on a CCC together with
a resolution higher than LR and HR. The NLP model is used to re-compact the pieces of the infea-
sible layout, aiming to produce a feasible one. This approach has shown to have some limitations,
regarding achieving feasible solutions, caused by numerical precision problems, the efficiency of
the selected model variant, and the type of covering used. The computational cost grows when
these problems appear, and is completely wasted when no feasible solution is produced. For this
reason, choosing the right set of configuration parameters (model variant, resolution, and type of
covering) is important to achieve feasible layouts with high quality, with a reasonable computa-
tional cost.

Regarding the configuration parameters, one important component that has a huge impact on
the final result, is the method used to generate the initial placement positions of the pieces. Since
the solver used starts with the initial solution and converges to a local minimum, the relative
positions of the pieces, as exist in the initial solution, will not change significantly. The current
way to produce a good initial solution is to place the pieces into a grid structure, in a random
sequential order, with random orientations.
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These approaches are able to solve the Nesting problem with continuous rotations, but demand
an extensive knowledge about the behavior of the models and which configuration parameters are
better suited to provide the best solutions. There is also the possibility of improving the approaches
by using a multi-step approach to the problem, where at each step, the configuration parameters
change, depending on the objective, and the solution obtained in the previous step. Modifications
include changing the objective function, and trying to solve smaller parts of the problem, which
are explored in the next chapter.

Some of the approaches presented in this chapter can also be found in (Rocha et al., 2013b).
In it, the Nesting problem with continuous rotations is addressed, but using only the model vari-
ant M1S in order to introduce the NLP model formulation, and its implementation regarding the
multiple covering types and resolutions. The instances presented are also a subset of the instances
used in this chapter.





Chapter 5

Extended Non-Linear Approaches

The previous chapter presented a solution approach to the Nesting problem with continuous ro-
tations based in alternative Non-Linear Programming formulations. The solution approach uses
one of the formulations to create a NLP model for a given instance. This model is then solved
by a standard NLP solver, starting from multiple initial solutions and producing compacted lay-
outs. Although previous solutions were interesting, there is a need for higher performance and
better quality layouts. In order to achieve that, extended approaches were studied and explored,
building up on strengths of the previous solution approach and addressing its weaknesses. These
approaches will be presented in the following sections, with their description and computational
experiments.

The first approach is named Multi-Resolution approach, in the first section of this chapter. It
is based on using a two-step process for the normal optimization process, where the main charac-
teristic is the use of different resolutions in the first and second step, having the first step a lower
quality resolution, and the second step, a higher quality resolution. This approach takes advantage
of the low computational cost of the LR covering to achieve a fast compaction, and using the HR
covering to re-compact the layout, to improve the compaction quality. Since the pieces are already
pre-compacted from the first step, the computational cost is reduced.

The second approach is the Two-Step approach (in the second section) which separates the
normal optimization process into two distinct phases. The first phase compacts a set of large
pieces, trying to adjust them well together but leaving sufficient space between them to position
the small pieces. The second phase assigns the remaining small pieces to the holes generated in
the first phase (between the large pieces), and compacts all pieces together. In order to tackle the
infeasibilities generated in this problem, due to the overlapping that is caused by the placement
of small pieces, the Post-Optimization phase (presented in the previous chapter) is tweaked to
improve the number of feasible solutions generated.

The last approach is the Multi-Layer approach (in the third section), where pieces are divided
(or distributed) into separate groups, and compacted sequentially into the layout, creating multiple
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compaction layers. Each layer is addressed as an independent compaction problem, while consid-
ering the previously compacted pieces in the layout as fixed pieces, and with the current pieces
being the only ones allowed to move.

The fourth section of this chapter presents the best results achieved by all presented ap-
proaches, for each instance. These results are compared to the best results in literature.

The final section contains the concluding remarks.

5.1 Multi-Resolution Approach

The Multi-Resolution approach was developed to address the high computational times obtained
with the NLP approaches presented in the previous chapter. The computational cost was managed
by selecting the right resolution considering its associated level of quality and number of circles,
that would achieve a reasonable computational time. Since reducing the computational cost im-
plies reducing the number of circles, and therefore, also reducing the quality of the approximation,
this strategy imposes a limitation on the quality of the layouts that could be produced. Using a
higher-quality representation would increase significantly the computational cost, but would allow
a tighter layout, since the pieces would be able to adjust better to each other.

The main idea of this approach consists in using a multi-step approach that combines the
strengths of the LR covering (achieving a compact layout very fast) and the HR covering (very
good adjustment of pieces between each other), to overcome their disadvantages when used inde-
pendently and gather their individual strengths.

5.1.1 Multi-Resolution Algorithm

The Multi-Resolution approach (denoted LR+HR) uses a LR covering initially to achieve a fast
compaction of the layout, and after it, it uses a HR covering to adjust the pieces to each other.
The type of covering is the same in both first and second steps of the normal optimization process.
Since a great amount of time is used in the compaction process, the LR covering should be selected
in order to be as fast as possible, while allowing the pieces to achieve a good relative position
between each other. The HR covering must also be carefully selected in order to adjust the pieces
to achieve an acceptable compaction quality, but without a significant impact on the computational
cost. In order to improve this effect, one model variant may be selected in order to also provide
the lowest computational cost in the first step, and another to provide the highest quality in the
second step (while also considering the impact in the computational cost). The objective of this
approach is either producing the same quality of layout compaction as the single use of HR, but
with much less computational cost, or producing a layout compaction with higher quality but with
similar computational cost of the independent use of LR covering.

The change in resolution from a lower quality to a higher quality can produce overlaps between
circles of adjacent pieces. This situation is more frequent when using the ICC and PCC, since
additional circles are used to better cover the piece, but it can also happen when using CCC in
rare situations. When using ICC, the re-compaction with higher resolution will have to spread out
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the pieces, thus increasing the length of the container. This is due to the large penetration depth
allowed by the LR ICC, which is significantly reduced when using HR ICC. Using this approach
with the PCC may increase or decrease its length of the layout (since it reduces both the protrusion
distance and penetration depth), while using CCC usually reduces the length (due to the reduction
in protrusion distance).

This approach is based on the same concept of the Post-Optimization approach used to address
infeasible layouts, but focusing on the reduction of the computational cost while maintaining the
high layout quality. This approach uses a different configuration, where the types of coverings
are the same in both steps, the resolutions have a lower quality than those used in the Post-
Optimization phase, and the model variants may be the same, or different in both steps, depending
on the requirements.

5.1.2 Results and Discussion

The behavior of the Multi-Resolution approach results (LR+HR) is compared to the single-step
NLP model compaction using both LR and HR resolutions. The results are shown in Table 5.1.
Table 5.1 used CCC together with model variant M2E to test the LR+HR approach, in order to
isolate the influences of each parameter (model variant, resolution and type of covering). Using
PCC and ICC would produce infeasible layouts, preventing their direct comparison, and requiring
using a Post-Optimization phase which would influence the results. For this reason, the CCC
is used. Using a model variant for the first step, and another one for the second step would
not allow comparing directly the independent LR compaction to the HR compaction, and would
also difficult their comparison to the Multi-Resolution compaction (using LR+HR). Using the
same model variant allows verifying the impact of each independent resolution compaction, and
also comparing them to the compaction of both resolutions sequentially, in the Multi-Resolution
Approach. The results in Table 5.1, regarding the LR and HR coverings compaction with model
variant M2E and CCC, were also presented in the previous chapter, in section 4.4.3.

The layout compaction quality achieved by the HR covering is better, on average, than the
compaction using LR covering, due to the lower waste of the former, but at the expense of a sig-
nificantly higher computational cost. When comparing the LR+HR approach to the independent
LR and HR, Table 5.1 shows that the LR+HR covering is able to achieve better average results,
and also able to achieve the best solutions occasionally. The biggest advantage of LR+HR over
the single HR compaction is the significant reduction in computational cost, while being able to
maintain very close results, regarding the compaction quality, or even improve them. The LR+HR
is able to achieve the best solution in instances poly1a, poly2b, poly2b and poly3b, while HR
achieves the best in jakobs1 and poly3a. This effect is also noticeable considering the average val-
ues. The improvement in the quality of the compaction can be explained by using two sequential
compactions of the layout and allowing a better adjustment of the pieces. The solver compacts
using LR on the first run, stopping at a local minimum. When the piece coverings are replaced by
other piece coverings with higher approximation quality, the pieces are forced to re-adjust to each
other, and the solver is able to search for a better local minimum than the one previously found.
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Table 5.1: Circle Covering Multi-Resolution approach (LR, HR and LR+HR) (with CCC and M2E,
30 runs each).

Obj. Function (l) Avg.
Instancea Resolution Min. Avg. Max. Time (s)
jakobs1 LR 15.73 17.14 20.17 18.07
(11.82) HR 13.85 16.15 20.54 56.00

LR+HR 14.12 15.62 19.95 30.63
poly1a LR 16.04 17.63 19.09 9.00
(13.21) HR 14.76 16.10 17.82 29.23

LR+HR 14.66 16.24 18.22 15.17
poly2a LR 30.94 32.84 34.58 111.10
(25.71) HR 28.74 29.88 31.69 286.03

LR+HR 28.09 29.69 31.43 172.47
poly2b LR 33.64 35.78 38.51 121.40
(29.07) HR 31.26 33.18 35.53 295.77

LR+HR 30.85 32.72 34.56 187.13
poly3a LR 46.67 47.96 49.65 249.57
(38.81) HR 41.93 44.17 47.79 710.83

LR+HR 42.31 43.62 45.09 461.20
poly3b LR 46.37 48.03 55.86 266.47
(38.79) HR 42.39 44.02 54.15 611.70

LR+HR 41.99 43.68 45.78 449.47
a Reference value: best result in literature, considering length
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By analyzing these results, this approach LR+HR shows the gains that can be achieved by starting
the compaction using a LR approach and then using a HR. This has the additional benefit of being
used on computationally expensive instances which can only be solved with LR, where the most
promising solutions can later be improved using this approach.

The average computational times presented in Table 5.1 show that using a LR covering for
a first compaction, and using HR for the second compaction, is able to reduce significantly the
total computational cost, and produce an equivalent or better compaction quality compared to the
HR. Since the relative positions between the pieces have already been quickly determined in the
first step of the LR+HR approach, the solver only needs to focus on adjusting the pieces in the
second step. The penalty for using a higher resolution is significantly reduced since only minor
adjustments to the pieces are required, thus being able to achieve a local minimum much faster.
Considering the results presented in Table 5.1, if the LR+HR approach had been used with a model
variant that focused on the computational speed, for the first step, the computational time could be
further reduced. The difference between the computational time of the independent LR compaction
and the LR+HR approach is the additional cost used by the second step with HR covering, since
the independent LR compaction and the first step of the LR+HR are the same. It clearly shows the
significant increase in the compaction quality by using a second step with HR and its impact in the
computation time.

An illustration of the compaction process using the Multi-Resolution approach can be seen
in Fig.5.1, with instance poly1a and CCC. In it is shown the impact caused by the selection of
different resolutions for each step, and their influence on the final quality of the layout. The initial
solution used can be seen in Figure 5.1a, with the LR covering. The compaction of the first step
produces the layout seen in Figure 5.1b. The pieces are then replaced by a higher quality covering,
which can be seen in Figure 5.1c, and their compaction in the second step produces the layout
shown in Figure 5.1d. In this example, the LR layout produced in the first step achieves a length
of 16.73 units and is improved in the second step to 15.22 units with HR covering. The reduction
in the length of the layout is due to the higher quality covering, which reduces the waste of its
covering when resolution is increased.

The results show that using a Multi-Resolution approach, combined with an appropriate type
of covering and model variant can produce improved results when addressing the Nesting problem
with continuous rotations, relative to the approaches presented in the previous chapter (single-step
approaches). The selection of the appropriate configuration parameters is very important since
it allows increasing the quality of the results, and reducing computational cost, which enables
tackling problems with greater efficiency.

5.2 Two-Phase Approach

The Two-Phase approach follows a common compaction strategy to achieve layouts with good
compaction quality which is based on the observation that the overall layout length is defined
by the positions of the large pieces. For this reason, this approach starts by initially compacting
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(a) LR-CCC initial solution. (b) Compaction of LR-CCC.

(c) LR CCC substituted by HR-CCC. (d) Compaction of HR-CCC.

Figure 5.1: Multi-Resolution approach LR+HR.
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only the larger pieces, followed by the placement and compaction of the smaller ones among the
already compacted larger pieces.

This approach is used to achieve better quality solutions, compared to the other results pre-
sented in this and previous chapters. By addressing the compaction process, using a Two-Phase
approach, the main compaction process becomes divided into two simpler components, where
the main structure of the layout is defined in the first phase. By focusing in the generation of high
quality layouts in the first phase, through an extension of the objective function of the NLP models
presented in chapter 4, the quality of the final layout is expected to increase, being fully feasible
and with a very reduced length.

In the first phase, the compaction process tries to adjust the larger pieces between each other
and also between the outline of the container, while compacting them until they create a good
layout, but still with sufficient space. In the second phase, the remaining unplaced smaller pieces
are assigned to the holes created in the first phase (empty space between larger pieces) and all
pieces are compacted together.

The distinction between big and small pieces is done through their area, although using a
combination of area, perimeter, and other geometrical characteristics may prove beneficial.

In the following subsections the overall description about the Two-Phase approach, and its
NLP model extension, will be discussed. The computational experiments will follow, by allowing
to analyze the results and discuss the impact that different configurations have on the final solution
quality.

5.2.1 Two-Phase Approach Overall Description

The objective of the first phase is to generate a layout, consisting only of the larger pieces, with
a good adjustment between each other and the container sides, while still having space between
them to place small pieces. In order to control the layout length, the adjustment between pieces,
and also to the container, a set of parameters are used, where target defines the minimum length L
of the layout (allowing the layout to be compacted until it reaches the target value), P controls the
adjustment between different pairs of pieces (how close pieces are to each other), and W controls
the adjustment between pieces and the container outline (how close are pieces to the outline).
These parameters were introduced into the objective function of the NLP models, presented in
chapter 4, producing an extended NLP model that is used in this approach.

An illustration about the first parameter can be seen in Figure 5.2, where the pieces are forced
to be compacted until they are all under the Target value. Since the pieces that are defining the
current length of the layout (with the highest x coordinate) are pushed, it is normal that they are
closer to the side that is pushing them (the same side of the target line) than the opposite side of
the layout. The compaction shows a different behavior when the other parameters are being used,
since they will increase or decrease this effect.

When the target value is too low, the pieces will be packed very tightly, thus reducing the
empty space available (that forms the holes). If the holes are very small, the remaining pieces will
not be able to be positioned inside any hole, and will have to be placed in the empty region of
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Figure 5.2: Layout derived from pushing pieces below target value.

the strip. When the target value is too high, the larger pieces will not be able to adjust well to
each other and to the container outline (therefore not creating a good initial layout) and preventing
further improvement of the final solution quality compared to the normally obtained (since the
pieces placement positions resemble a random initial solution).

The other two components (P and W ) deal with the minimization of the distance between
pieces, and between the pieces and the container outline. This is achieved by simulating an at-
traction effect between pieces, by extending the circles of each one of the pieces circle coverings,
by a given distance, and maximizing their overlap. An illustration of this effect can be seen in
Figure 5.3a, where the extended circles (Ca and Cb) obtained from their respective pieces circle
covering (C1 and C2) show the overlapping region that is to be maximized, while preventing the
overlap between both original circles. Figure 5.3b shows the multiple expanded circles from dif-
ferent pieces where some are overlapping. By maximizing the overlap of these circles, the pieces
are drawn together, forcing them to adjust to each other, in order to minimize their total separat-
ing distance. This effect is the same when considering the attraction between the pieces and the
container outline. This approach was inspired on one approach described in (Alves et al., 2012),
where the No-Fit-Polygons of the pieces are expanded and their overlap is used to better adjust the
pieces. In (Alves et al., 2012) many different constructive procedures are presented, all based on
the No-Fit-Polygon, where many strategies for sorting selection, placement and evaluation of the
placement of pieces are proposed and discussed.

The component P deals with the minimization of the distance between pieces, for pieces that
are within a specific range from each other. Figure 5.4 contains an illustration about the effect
of this component, where the expanded representation that is overlapping is maximized, bringing
the pieces together. This effect only works on pieces that have their extended representations
currently overlapping, being blind to pieces that are not close to each other. Figure 5.4a shows
the initial solution of a layout, where the extended representations of the pieces overlap, but only
between certain pairs of pieces. Their overlap represent the current attraction between the pieces.
Figure 5.4b clearly shows the effect of the attraction between pieces on the final layout, where
the pieces have been pulled together. This component allows the pieces to adjust properly to each
other, minimizing their separating distances, and creating holes (empty regions) near the outline
of the container. This component is used after the first component (minimize layout below target
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(a) Attraction between expanded circles. (b) Attraction between multiple expanded circles.

Figure 5.3: Example of attraction effect.

value) is achieved.

The component W deals with the attraction effect between pieces and the container outline,
for pieces that are within a certain range from the outline. Figure 5.5 presents this effect, where
the expanded representation of both the pieces and the container outline is maximized (if over-
lapping), and pulling the pieces toward the outline. Figure 5.5a shows the overlap between the
expanded representation of both pieces and the container outline, which is to be maximized. With
the maximization of their overlap the pieces will move to the external regions of the layout (but
remaining inside the container) and adjust themselves to the outline. An illustration of a layout
produced with this component can be seen in Figure 5.5b where the pieces are placed near the
outline of the piece and the inner regions of the container have empty space. This component is

(a) Attraction between all pieces (approximated repre-
sentation).

(b) Layout derived from attraction between all pieces.

Figure 5.4: Objective function piece adjustment component.
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(a) Attraction between pieces and container sides (ap-
proximated representation).

(b) Layout derived from attraction between pieces and
container sides.

Figure 5.5: Objective function container sides adjustment component.

used after the first component (minimize layout below target value) is achieved.
The three components (L, P and W ) are only active in the first phase of the Two-Phase ap-

proach, being used with the extended NLP model. Achieving a balanced trade-off between all
these components allows to produce a layout with the larger pieces well adjusted, and enough
space to place the smaller pieces without significant changes to the relative positions of the pieces.

The second phase consists in assigning the remaining smaller pieces to the holes created in
the first phase, followed by their compaction together with the previously placed larger pieces,
while using the normal NLP model presented in chapter 4. The hole assignment process starts by
analyzing the size of the pieces, considering their area. In order for a piece to fit into a hole, the
first thing to determine is the area of the piece relative to the area of the hole. If the piece area is
bigger than the hole area, it allows discarding this combination and if the piece area is smaller, it
still does not ensure that the piece fits inside the hole, since they may have incompatible shapes.

The assignment between pieces and holes is based on a greedy approach, being the assignment
of small pieces to smallest holes available. Finding if a piece fits inside the hole, and if affirmative,
computing the best placement position and orientation to do so is a very difficult task.

This approach distinguishes pieces based on a single criteria, their area. After the assignment
of the pieces to holes, the pieces are placed in the center of the hole, in a random orientation. This
does not ensure that the piece will not overlap the surrounding pieces, but it is expected that the
amount of overlap will be reduced. If the area of the piece is big enough to support another piece
or pieces, they are placed on the remaining space of the hole, positioned in a way also to reduce
overlap with the previously placed pieces into the same hole.

5.2.2 Non-Linear Programming Model Extension for the First Phase

The generation of the first phase layout, with only the larger pieces, requires a different model than
the ones previously presented in chapter 4, since they aim to achieve the best layout compaction
possible. In the first phase of this approach, the big pieces are positioned in order to achieve a
good adjustment between them, creating the main structure of the layout. In order to produce a
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good quality layout, three different parameters were included in the objective function, which must
be controlled during the first phase: target allows to define the minimum length that the layout
will be compacted, in order to leave enough empty space to position the small pieces; P allows
controlling the adjustment between pairs of pieces and W allows adjusting the pieces to the outline
of the container. The objective function of the normal NLP model as presented in chapter 4 only
considered the parameter l which represented the length of the container.

The original objective function of the NLP model consists only in minimizing the length l of
the strip. This objective function acts upon the circle with the highest value (placement position
plus radius) on the x-axis, forcing its x-axis value to be reduced. This effect pushes the circle that
is currently limiting the reduction of the length of the strip. Considering the extended NLP model
objective function, each one of the parameters has a specified weight assigned in order to control
them. The extended objective function is defined as minimizing Eq. 5.2, where aL, aP and aW

are the weights assigned to the components L, P, W , respectively. L represents the length l of
the strip minus a given target value, P represents the attraction between pairs of pieces, and W
represents the attraction between the pieces and the container. The values that these components
have assigned to them have a strong influence on the behavior of the model.

Figure 5.6 contains the formulation of the extended NLP model, used in the first phase of the
Two-Phase approach, while sharing some constraints of models M1 and M2.

GRAVP_Pi, j,k,h = GRAVP_R2
i, j,k,h �GRAVP_X2

i, j,k,h �GRAVP_Y2
i, j,k,h (5.10)

GRAVP_R = Rki +Rh j + vxp (5.11)

GRAVP_Xi, j,k,h = (xki � xh j)
2 (5.12)

GRAVP_Yi, j,k,h = (yki � yh j)
2 (5.13)

GRAVW_XMINi,k = (Rki + vxp� xki) (5.14)

GRAVW_YMAXi,k = (Rki + vxp� (Wd � yki)) (5.15)

GRAVW_YMINi,k = (Rki + vxp� yki) (5.16)

GRAVP_Pi, j,k,h = GRAVP_R2
i, j,k,h �GRAVP_X2

i, j,k,h �GRAVP_Y2
i, j,k,h (5.17)

GRAVP_R = Rki +Rh j + vxp (5.18)

GRAVP_Xi, j,k,h = xki + cos(Ak0,i +qk)⇥Dk0,i � xh j � cos(Ah0, j +qh)⇥Dh0, j (5.19)

GRAVP_Yi, j,k,h = yki + sin(Ak0,i +qk)⇥Dk0,i � yh j � sin(Ah0, j +qh)⇥Dh0, j (5.20)

GRAVW_XMINi,k = (Rk + vxp� xk � cos(Ak0,i +qk)⇥Dk0,i) (5.21)

GRAVW_YMAXi,k = (Rk + vxp+ yk + cos(Ak0,i +qk)⇥Dk0,i �Wd) (5.22)

GRAVW_YMINi,k = (Rk + vxp� yk � sin(Ak0,i +qk)⇥Dk0,i) (5.23)
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minimize F2P = aL ⇥L+aP ⇥P+aW ⇥W (5.1)

subject to: L = max(0, target � l), (5.2)
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Constants Definition: (5.5)
equations 5.10 to 5.16 for model M1 or equations 5.17 to 5.23 for model M2

Non-Overlapping Constraints: (5.6)
equations 4.2 for model M1 or equations 4.11 for model M2

Containment Constraints: (5.7)
equations 4.3 to 4.6 for model M1 or equations 4.12 to 4.15 for model M2

Piece Integrity Constraints: (5.8)
equations 4.7 to 4.8 only for model M1

xki 2 R,yki 2 R,qk 2 R, l � 0 (5.9)

Figure 5.6: Non-Linear Programming Model Extension for the First Phase.
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The objective function presented in Eq. 5.1 contains three components with weights assigned
to them, where the aim is to minimize their sum. The first component, L (Eq. 5.2) contains the
current value for the length l, where a target value is subtracted in order to disable this component
when l is below target. The second component P (Eq. 5.3) contains the distance that separates
pairs of pieces that are not separated by more than the defined vxp value (as seen in Eq. 5.11). The
last component, W (Eq. 5.4), contains the distance that separates the pieces from the container
outline, also only distances not bigger than the specified value vxp. The variables aL, aP and
aW assign weights to each component, to control the impact of the L, P and W components on
the objective function. The effects from P and W are only active for pairs of pieces closer than
vxp and for pieces closer to the outline than vxp. Balancing these three components is the key to
achieve good quality solutions when solving the Nesting problem with continuous rotations.

In order to use the variables aL, aP and aW with the L, P and W components, the components
had to be normalized (i.e., their values should be variable only on the interval from 0 to 10). In
order to achieve this, the lower and upper bounds for each of the components were determined,
and based on their values, the normalization was done through a linear function. The computation
of the lower bound for the L component considered the container length for the perfect fit of the
pieces, while the upper bound used the initial container length. The other two components, P
and W , had their lower bound determined (zero, which is when no pieces are within range of one
another), while an approximation to their upper bound was determined by trial and error (since it
is difficult to compute the total of multiple overlaps).

The Eq. 5.6, Eq. 5.7 and Eq. 5.8 are the natural constraints of the NLP model. Depending
on the model, M1 or M2, they have a different formulation, since the models are either based
on circles or based on pieces, respectively. The terms present in Eq. 5.3 are obtained from the
Eq. 5.10. Depending on the model, M1 or M2, different equations are replaced in the terms of
Eq. 5.4. The equations used with model M1 are Eq. 5.10 to Eq. 5.16 and with model M2 are
Eq. 5.17 to Eq. 5.23.

5.2.3 Second Phase Hole Fill and Layout Compaction

The entire Two-Phase approach can be summarized in Figure 5.7. The first phase, where the largest
pieces are compacted and the main structure of the layout is defined (considering the target value,
the adjustment between pieces and the adjustment between pieces and the container), is shown in
Figure 5.7a. The holes produced during the first phase can be seen in Figure 5.7b, with the empty
region in the strip available at the right side of the target line.

In the second phase, a simplified illustration about the assignment process (placement of pieces
into holes) is shown in Figure 5.7c, considering the previously placed pieces and the remaining
empty space.

The hole assignment and piece placement process is done with the assistance of a grid that
represents a discretization of the layout, considering a certain approximation quality, which con-
tains the information about the available and unavailable placement positions. This process starts
by defining the regions in the grid that are empty and those that are non-empty, using 0 for the
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(a) Layout after compaction with specified target. (b) Holes produced by the compaction.

(c) Assignment of small pieces to available holes. (d) Final layout.

Figure 5.7: Assignment procedure of small pieces to holes.

first case, and 1 for the second. The second step uses a distance transform algorithm to attribute
to each empty block the value of its closest distance to a non-empty block (as illustrated in Fig-
ure 5.8, where 5.8a contains the grid and 5.8b its zoomed region). The following step removes
all grid values above a given distance, which allows excluding small holes and defining distinct
separate empty regions, and the last step identifies the individual empty regions while determin-
ing their block with highest distance to a non-empty block, in order to place pieces in them. The
placement of pieces in the points most distant from the other pieces (which can be considered the
center of the holes) reduces the chance of generating severe overlaps. After determining the indi-
vidual empty regions, the pieces are assigned based on a rule that defines that the smaller pieces
will be placed in the smallest holes where they can fit (considering their different areas). After a
piece is placed into the hole (in a random orientation), the grid is recalculated, in order to update
the information about the holes. This process continues until all pieces are placed.

The remainder of the second phase consists in the compaction of all pieces using the normal
NLP model, producing the final layout solution, as seen in Figure 5.7d. The configuration of the
model is the same as during the first phase (considering resolution, type of covering and model
variant) except for the introduction of a value for the upper bound of the objective function. This
value (the upper bound of the objective function) refers to the length of the layout l, and is defined
as equal or slightly bigger than the length of the layout achieved in the first phase. The specification
of this value is important due to the natural behavior of the solver with the normal NLP model.
When compacting a layout with overlaps, the solver initially gives preference to the correction
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(a) Grid with nearest distance to non-empty block. (b) Zoomed region.

Figure 5.8: Hole detection procedure.

of overlaps, by addressing the feasibility of the Non-Overlapping constraints, while the objective
function takes a secondary role. This behavior increases the length of the layout while the overlaps
are being corrected and later, when the solution is feasible, the objective function gains relevance
and its length starts decreasing with the minimization of the layout length. Since the NLP model
converges to local minima, after the expansion of the layout and its following contraction, the
model stops and returns a solution as soon as it reaches the first feasible local minima. In order
to force the solver to intensify its search for a feasible local minimum solution of better quality,
the layout length is prevented from expanding beyond the defined upper bound limit. The pieces
are forced to find feasible placement positions within the limited space that they have, generating
good solutions when they succeed, but at a cost of an increased number of infeasible solutions,
comparatively to when no such limit is imposed. If the maximum layout length is set too high, the
layout will expand too much and possibly generate bad solutions. If it is set too low, the overlaps
might not be corrected, leading to infeasible solutions. Finding the right value for this parameter
is a difficult task, due to the dependence on the layout obtained in the first phase.

5.2.4 Results and Discussion

The initial configuration of the parameters, used in the Two-Phase approach, considered the results
of previous computational experiments, when testing the model variants with different resolutions
and types of circle coverings. In the first phase, the target value was defined as equal to the
length of the perfect fit of all pieces in the layout, taking into account the specified width (even
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if no perfect fit exists for the layout). This was done by computing the total area of the pieces,
which allows to determine the length of a perfect fit of the pieces in the strip when considering the
width of the strip. The objective function components were configured with the weights aL = 100,
aP = 10 and aW = 1, to give preference to the piece compaction until it reaches the desired target
length. When this happens, this component is discarded, while the other two components gain
preference, with the adjustment between pieces being preferred to the adjustment between pieces
and the container.

The selection of the values for the parameters target, aL, aP and aW was based on prelimi-
nary tests that indicated which values could allow achieving good solutions. The tests were not
exhaustive, since this approach is currently being developed, but their results allowed drawing
some conclusions. The target value is the main influence in the area available for the holes that
are created in the first phase (also due to aL parameter being given priority over the others), while
the variation between aP and aW produce different types of holes. A value higher in aP leads to
pieces that are closer together leaving the bigger holes concentrated near the outline of the con-
tainer, while a bigger aW concentrates the pieces near the outline of the container, leaving the
bigger holes at the center. This type of behavior was observed in most preliminary experiments,
some of them reflecting it more than others. This behavior is heavily dependent on the initial po-
sition and orientation of the big pieces. Due to the difficulty selecting the exact values that could
produce the best results for a given instance, the values for these parameters were configured in
order to express the desired behavior: big pieces adjusted to each other with a layout length closer
to value of the perfect fit with all pieces, while giving preference to the adjustment between all
pieces instead of the adjustment to the container.

For the second phase, the target value is defined as zero, and the objective function weights
remain with the same values. This configuration still gives preference to the minimization of the
length of the layout, but still produces a reduced effect for the adjustment of the pieces, and an even
smaller effect for the adjustment between pieces and the outline of the container. The assignment
of the remaining pieces to the holes is based on the rule of assigning the smallest pieces to the
smallest available holes, with a tolerance of 5% between the area of the piece relative to the hole.
Orientations of the placed pieces are arbitrary, and the reference points of the pieces are placed in
the positions inside the holes that are further away from any unavailable placement position. Since
the small piece placement into holes is a greedy approach, and the exact placement method is very
basic, it is normal that most small pieces have overlaps with surrounding pieces.

The determination of the hole assignment rule was also based on preliminary tests. Several
possibilities were considered, such as assigning the largest pieces to the largest holes, assigning
the smaller pieces to the smallest available holes, or assigning them at random. The problem of
determining if a piece fits on a certain hole was also considered (it is addressed by comparing their
area), and if pieces can be placed into holes where they do not fit (since the compaction procedure
will adjust the pieces, the overlaps may be removed). There was also the difficulty in determining
the best orientation and position, inside the selected hole, in order to minimize overlap. Since it
is hard to deduce which configuration will produce the best results, due to the many configuration
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parameters that can be defined, and due to the significant impact that the initial solution has on the
resulting layout, the preference was given to the placement of small pieces into the small holes,
while the remaining pieces are placed on remaining space in the strip, when no more valid holes
exist.

The second phase compacts all pieces together, trying to remove the overlaps between each
other, and while also limiting the maximum increase in the strip length caused by the correction of
overlaps and adjusting pieces. If the layout length is fixed to the value obtained in the first phase,
the pieces are forced to adjust to each other (in order to find a non-overlapping configuration),
without increasing the length of the layout (which creates greater difficulties for the solver, and
may end up producing an infeasible layout). In order to intensify the focus of the solver in achiev-
ing a feasible solution without degrading the quality of the compaction significantly, the maximum
length of the layout was allowed to expand up to a maximum of 120% of the perfect fit. If the
produced layout contains overlaps, a Post-Optimization phase is used to address them, using the
CCC with a higher resolution.

The selected preferences do not ensure that the best results will be achieved, due to the lack
of exhaustive testing for each one. Better results can be achieved with further development of this
approach and selection of appropriate configuration parameters. The current configurations were
selected just to demonstrate how the approach works.

The first set of tests for both phases was done using HR and PCC together with M1E. The
Post-Optimization phase uses CCC with the model variant M1E to correct infeasible layouts and
also improving the feasible ones. The impact that two types of resolution have when correcting
the layouts with the Post-Optimization phase is shown in Table 5.2. The selection of model variant
M1E is due to its expected lower computational cost.

The results produced by the Two-Phase approach with Post-Optimization (as seen in Table 5.2)
show that the used configuration is not able to consistently return feasible solutions. When the
layouts are re-compacted using the Post-Optimization phase to correct the infeasibilites, only a
reduced number of them are able to become feasible layouts, which causes great difficulty in
achieving good results. This difficulty in solving overlaps is derived from the selected configura-
tion parameters, being the first the type of covering used in the Two-Phases (PCC) which allows
the placement of pieces very close to each other while allowing for some small regions of the
pieces to overlap. The second parameter is derived from the limitation of the expansion of the
container length l, which forces the pieces to adjust to each other, inside a limited container. This
creates overlaps between pieces that the model variant M1E cannot correct. The use of the model
variant M1E in the Post-Optimization phase confirms that it is not very efficient in removing the
overlaps. Considering the resolutions used in the Post-Optimization phase, it can be seen that
when using VHR over HRP there is an improvement in the average compaction quality and its
best solution, but with a significant impact on the computational time and a reduced number of
feasible layouts. The difference in compaction quality is due to the reduction in excess covering
between the pieces in the layout, while the difference in the number of feasible solutions is due to
numerical precision errors created by using very small circles.
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Table 5.2: Two-Phase Compaction using HR-PCC and Post-Optimization Phase using HRP-CCC
and VHR-CCC, 20 runs each.

Obj. Function (F) Avg. # Feas.
Instancec Phase Model Res. Cov. Min. Avg. Max. Time (s) Layouts
poly1a 2PHa M1E HR PCC 14.07 14.81 17.15 6 0
(13.21) P-OPTb M1E HRP CCC 13.88 14.70 15.62 3 7

VHR 13.57 14.41 15.58 4 3
poly2a 2PH a M1E HR PCC 24.16 26.15 28.07 70 0
(25.71) P-OPTb M1E HRP CCC 26.60 27.32 28.04 13 2

VHR 26.00 26.00 26.00 10 1
poly2b 2PHa M1E HR PCC 26.13 28.41 31.11 93 0
(29.07) P-OPTb M1E HRP CCC 29.72 29.72 29.72 45 1

VHR 29.41 29.41 29.41 36 1
poly3a 2PHa M1E HR PCC 36.17 37.94 40.40 192 0
(38.81) P-OPTb M1E HRP CCC 39.03 39.94 40.85 22 2

VHR 40.82 40.82 40.82 104 1
poly3b 2PHa M1E HR PCC 36.32 38.08 40.79 176 0
(38.79) P-OPTb M1E HRP CCC 39.08 39.08 39.08 52 1

VHR 38.94 38.94 38.94 22 1
a Values considering all solutions
b Values considering only feasible solutions
c Reference value: best result in literature, considering length

The use of PCC leads to very tight layouts, in the two phases of the approach, which are
very difficult to correct (by removing overlaps) in the Post-Optimization phase due to the limited
movement of the pieces (which is restricted by the width of the container). Since the Two-Phase
approach is based on placing pieces with small overlaps, to force them to adjust to each other, using
coverings as the PCC or ICC creates layouts that are too compact to be successfully corrected.

In order to improve results, another configuration was selected, with the Two-Phase approach
using CCC with M1E model variant and HR resolution, and the Post-Optimization phase using
CCC but with model variant M2S and HRP. The CCC in the Two-Phase approach and the M2S
model variant with HRP in the Post-Optimization phase were chosen to produce a higher number
of feasible solutions. The results of the computational experiments with this configuration can be
seen in Table 5.3.

Table 5.3 shows that the number of feasible solutions increased significantly, although only a
few are produced in the Two-Phase approach, even with CCC (due to the overlaps between pieces).
Only a few layouts are unable to be corrected on the Post-Optimization phase, due to numerical
precision errors, and also due to significant overlap between pieces (solver unable to determine
the best path that minimizes the overlap, within its maximum number of iterations). Comparing
the quality of the layouts, the change from PCC to CCC reduced the quality of the feasible lay-
outs, in both the best and average solutions, while also increasing the computational cost of the
Post-Optimization phase. While this configuration produces many more feasible solutions, using
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Table 5.3: Two-Phase Compaction using HR-CCC and M1E and Post-Optimization Phase using
HRP-CCC, with M2S, 30 runs each.

Obj. Function (F) Avg. # Feas.
Instancec Phase Model Res. Cov. Min. Avg. Max. Time (s) Layouts
poly1a 2PHa M1E HR CCC 14.59 15.20 15.92 6.70 10
(13.21) P-OPTb M2S HRP CCC 14.10 14.70 15.40 12.32 28
poly2a 2PHa M1E HR CCC 28.05 28.36 28.73 38.50 4
(25.71) P-OPTb M2S HRP CCC 26.83 27.83 29.60 214.30 25
poly2b 2PHa M1E HR CCC 29.93 31.23 32.13 61.00 5
(29.07) P-OPTb M2S HRP CCC 29.35 30.68 32.33 206.25 27
poly3a 2PHa M1E HR CCC 40.65 42.25 43.13 100.00 5
(38.81) P-OPTb M2S HRP CCC 39.52 41.10 42.72 718.65 21
poly3b 2PHa M1E HR CCC 41.75 41.75 41.75 90.00 1
(38.79) P-OPTb M2S HRP CCC 40.07 40.77 41.39 666.14 22
a Values considering all solutions
b Values considering only feasible solutions
c Reference value: best result in literature, considering length

another model variant may be able to produce better quality solutions while using the same cover-
ing type and resolutions. To address this, the same configuration was run, but using model variant
M2E on the Two-Phase approach, with HR and CCC. This configuration was expected to assist in
producing better layouts that also produce many feasible solutions with the Post-Optimization ap-
proach, with an acceptable computational cost. The model variant M2E is more computationally
expensive than the variant M1E but it also returns better average solutions. Table 5.4 contains the
results for the computational experiments with this configuration. The Post-Optimization has the
same configuration, using model variant M2S, together with HRP.

The results in Table 5.4 show that using the model variant M2E over M1E does not bring
significant benefits, since one model variant produces better results on some instances, while the
other model produces better results on other instances. The results from both model variants are
similar, except when comparing their computational cost and feasible solutions. There is a very
large increase in the computational cost by using M2E instead of M1E although the number of
feasible solutions is significantly higher for the Two-Phase approach. The computational cost
used in the Post-Optimization phase is only used to improve most solutions since they are already
feasible, which allows a significant reduction in the computational cost of the Post-Optimization
phase. In order to improve the quality of the solutions without decreasing the feasibility and
increasing the computational cost significantly, a change in the resolution of the Post-Optimization
to VHR could allow better solutions being achieved. The chance of infeasible solutions (caused
by numerical precision problems when comparing very small circles) may be lower due to most
layouts used in the Post-Optimization phase already being feasible solutions. The impact of the
increased resolution used with model variant M2S in the Post-Optimization phase can be seen in
Table 5.5.
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Table 5.4: Two-Phase Compaction using with Post-Optimization Phase together with model M2,
30 runs each.

Obj. Functiona (F) Avg. # Feas.
Instanceb Phase Model Res. Cov. Min. Avg. Max. Time (s)a Layouts
poly1a 2PH M2E HR CCC 14.21 15.39 17.11 118 26
(13.21) P-OPT M2S HRP CCC 14.23 15.08 16.70 13 30
poly2a 2PH M2E HR CCC 27.40 29.61 31.97 1251 20
(25.71) P-OPT M2S HRP CCC 26.64 28.32 30.28 184 30
poly2b 2PH M2E HR CCC 30.86 33.34 37.27 1700 19
(29.07) P-OPT M2S HRP CCC 30.02 31.59 33.54 269 30
poly3a 2PH M2E HR CCC 42.02 44.74 46.77 4784 12
(38.81) P-OPT M2S HRP CCC 39.58 41.82 44.32 806 30
poly3b 2PH M2E HR CCC 41.63 45.16 59.07 5790 18
(38.79) P-OPT M2S HRP CCC 39.65 41.46 43.58 922 29
a Values considering only feasible solutions
b Reference value: best result in literature, considering length

Table 5.5: Two-Phase Compaction with Post-Optimization Phase using HRP and VHR, for in-
stance poly1a, with all using CCC, 30 runs each.

Obj. Functiona (F) Avg. # Feas.
Instanceb Phase Model Res. Cov. Min. Avg. Max. Time (s)a Layouts
poly1a 2PH M2E HR CCC 14.21 15.39 17.11 118 26
(13.21) P-OPT M2S HRP CCC 14.23 15.08 16.70 13 30

VHR 13.59 14.66 16.97 77 26
a Values considering only feasible solutions
b Reference value: best result in literature, considering length
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Unfortunately, the VHR covering could not be compared with HRP using M2S for all selected
instances due to its large number of constraints, which the solver has problems supporting. The
model variant M2S with VHR covering could only be tested with instance poly1a. Table 5.5 shows
that the increase in the quality of approximation in the Post-Optimization phase leads to a small
reduction on the minimum and average length of the layout, but with a significant increase of the
computational cost. The growth in computational cost could be much higher if the layouts used
in the Post-Optimization phase were not initially feasible. For the selected configuration, using a
VHR covering in the Post-Optimization phase seems to produce very good quality solutions with
a minor impact on the number of feasible solutions. Unfortunately, this cannot be confirmed for
bigger instances due to limitations in the maximum number of constraints of the solver, using this
resolution.

An illustration of the Two-Phase approach, using results from these computational experi-
ments, can be seen in Fig. 5.9. This sequence starts by taking an initial solution composed of
big pieces (Fig. 5.9a), compacting them until they reach a specified Target value (Fig. 5.9b and
Fig. 5.9c), and placing the remaining small pieces in the empty spaces between the big pieces
(Fig. 5.9d and Fig. 5.9e). The positions where the pieces are placed depend on the hole assign-
ment and placement method, which may produce placement positions where the small pieces
overlap the big pieces. The final step is the compaction of all pieces (Fig. 5.9f), and correction of
the layout if it is infeasible, or improvement if it is feasible, using the Post-Optimization approach.

This approach enables achieving layouts with high compaction within a reasonable computa-
tional time, depending on the configuration used. This effect is derived from running the model in
two steps, by compacting some pieces in the first step, and placing and compacting the remaining
on the second. The Post-Optimization phase is also useful to address infeasibilities on the layout,
but further increasing the computational cost. More extensive computational experiments need to
be done, for each step of this approach, in order to determine the configuration that can lead to the
best results.

The first effect that can be noted in this approach is the great impact that the initial solution has
on the results. The initial solution, for the first phase, consists of a selection of a certain number
of big pieces, which are selected based on their area. Other methods for piece selection may allow
determining better pieces to be placed in this phase, which also can have a positive impact on the
results of the first phase. The initial position and orientation of the big pieces have a great effect on
the layout produced in the first phase. A single piece may prevent the layout to achieve the desired
target value, which also reduces the effect of the other components of the objective function.
The remaining variables that influence the layout produced in the first phase are derived from the
chosen target value, and the weights assigned to each component of the objective function, such
as the length minimization, piece adjustment and container adjustment components. Each one of
these parameters, including the initial solution have a huge influence in the shape and number of
holes generated.

The procedure used to assign pieces to holes is very basic, since it only verifies the difference
in area between pieces and holes, while placing the piece in a random orientation on the most far
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(a) Initial Solution PH1.

(b) PH1 Compaction with big pieces. (c) PH1 Layout with only the pieces visible.

(d) Initial Solution PH2. (e) PH2 Initial Solution with only the pieces visible.

(f) PH2 Compaction with all pieces. (g) PH2 layout with only the pieces visible.

Figure 5.9: Two-Phase compaction procedure.
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away point from the outline of the hole. The development of this method is expected to improve
the final results, by allowing a successful verification if a piece fits in a certain hole, and if it does,
determine the best piece placement position and orientation to place the piece inside the hole. The
selected placement rule managed to place the pieces near their defined position, but most of them
had high overlaps with the surrounding pieces. Due to the lack of exhaustive testing, it was not
possible to determine if the used rule (small pieces to small available holes) is the best rule, or if
the others would allow better results, and how much improvement would they provide, if they are
better.

The piece to hole assignment is the first part of the second phase, with the remaining part
dealing with the compaction of the layout in order to remove overlaps while minimizing the total
strip length. To successfully produce a feasible layout with a reduced length, the parameters of
the objective function must contain a proper configuration. Assigning different weights to the
component produces a significant impact on the final layout, even with the pieces pre-compacted
and with their relative positions defined. For this reason, the experiments that were done are
insufficient to determine their effect in the final quality of the layout.

Since the main objective is compacting the layout to achieve the lowest length possible, the
natural choice was selecting only that component, while the overlap correction was done through
the model constraints by having the other components of the objective function disabled.

The use of PCC has shown to produce many infeasible layouts, even with Post-Optimization.
This can be explained, in part, by the difficulties in solving the overlaps on the orthogonal axis
limited by the width of the strip. When the pieces are packed too tightly, there is no available
space for the pieces to spread-out, preventing the correction of the overlaps. By using the CCC,
this effect was minimized, but at the cost of a reduced compaction quality of the layout, due to the
excess covering by the circles.

Comparing the results produced by the Two-Phase (with Post-Optimization) approach to the
results presented in the previous chapter allows determining that this approach produces the best
results from all previously presented approaches. The best results produced with the Two-Phase
approach are close to the best results presented in the literature. Due to the geometrical repre-
sentation used, it is not possible to ensure that a layout is completely feasible without having any
excessive covering (such as CCC), which degrades the quality of the final solution. For this rea-
son, it is not entirely fair to compare the results derived from this approach to the best results in
literature, since the best results in literature have been achieved with the use of polygonal covering
of the pieces, without any separating distance imposed. Considering that our results are very close
to the best in literature, while not surpassing their quality, this validates the Two-Phase approach
as a possible approach to solve the Nesting problem with continuous rotations.
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5.3 Tweaking Normal Optimization for Layout Feasibility in Post-
Optimization

The infeasibilities that occur in the layouts are only partially addressed with the Post-Optimization
approach presented in section 4.4.4. Some of the reasons for this partial success are derived from
the numerical precision problems, lack of space across the width of the layout to move the pieces,
and interlocking pieces. The numerical precision problems increase with higher resolutions, due
to the existence of very small size circles, which reduces the ability to remove overlaps between
the pieces. The second case occurs when already very tight layouts need to be expanded to re-
move overlap situations. Expansions across the layout length are always possible by increasing its
length, however, the same is not true for expansions across the width due to the fixed width of the
container. In the third case, the overlaps between pieces are also very difficult to solve due to the
concavities of a piece preventing movement of other pieces.

Due to the great difficulty in solving the numerical precision problems, this problem is ad-
dressed by avoiding resolutions with excessive high quality (i.e., that contain circles with very
small size).

For these and other reasons a solution was created that consists in reducing the width of the
container by a small amount during the normal compaction, and later using a Post-Optimization
phase with the full width. This approach is designed to be able to improve the number of feasible
solutions, without a significant impact on the quality of the solution, since the pieces are placed
near their final relative positions, and only require minor adjustments.

Using this approach with CCC was also able to produce a higher number of feasible layouts,
due to the additional room required to remove overlaps created by the hole assignment and place-
ment method.

5.3.1 Layout Width Reduction

The use of CCC produces more feasible layouts than the PCC and ICC covering. The difficulty
of the PCC and ICC to generate feasible layouts can derive from the inability of the pieces to
spread-out across the width due to the fixed width of the strip. This problem is aggravated when
the circle coverings of the pieces are already in overlapping configurations, which produces an
increased overlap in the polygonal representation of the pieces (compared to when using PCC or
ICC with their circle coverings without overlaps).

In order to compensate for this, and possibly achieve a feasible solution, a strip with a reduced
width is used in the normal compaction phase, together with PCC, while using all of the strip
width in the Post-Optimization phase. The use of ICC has downsides, due to generating layouts
with too much overlap, which requires a bigger reduction in the container width in order to correct
them. A significant reduction in the container leads to a significant change in the relative position
of the pieces when they are processed in the Post-Optimization phase, which discards the result
of the compaction in the normal phase. The objective is to be able to adjust the reduction of
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the container width while achieving a feasible solution without significant changes in the relative
positions between the pieces.

An example of this method can be seen in Fig. 5.10. The normal compaction process starts
with the layout having its width reduced by a given amount, and then proceeds by compacting
the pieces (which can be seen in Fig. 5.10a, using HR-PCC, and in Fig. 5.10b, with its polygonal
representation).

The Post-Optimization phase uses the full width of the container, which gives sufficient space
across the width for the pieces to adjust, and remove overlaps (this can be seen in Fig. 5.10c,
using HRP-CCC, and in Fig. 5.10d, with its polygonal representation). This example uses pieces
from instance poly1a with width = 40. The normal compaction achieves a length of 13.11, with
a reduced width of 39 (a reduction of 2.5%). The Post-Optimization uses the full width of 40
and achieves a length of 13.91. This approach is more appropriate to be used with PCC and
ICC coverings in normal approaches, since CCC already achieves feasible solutions. If other
approaches are found to usually generate infeasible solutions, even with CCC, this approach may
be able to correct some of those solutions.

5.3.2 Results and Discussion

These computational experiments aim to verify the impact that the reduction of the layout width
has on the number of feasible solutions, and the quality of the final solution. In order to do this,
the layouts were compacted using PCC with HR in the normal optimization phase, and CCC
with HRP in the Post-Optimization, while the width of the container varied between 95.000%
and 99.375%. In order to achieve a low computational cost during the normal compaction phase
the model variant M1E was used, and to achieve a high quality solution the M2E model variant
was used in the Post-Optimization. The difference between using PCC and CCC was analyzed
through the quality of the final solution, in the computational experiments considering the same
configuration with the layout width at 95.000%. The compaction using the full width in both
normal and Post-Optimization is also shown to allow comparing the results from this method to
the results obtained without it.

The layouts produced in normal compaction phase were created using the Two-Phase approach
specifically to generate tight layouts with pieces that are overlapping, and also with the desired
reduction in layout width. The Two-Phase approach allows generating layouts with overlaps in
the circle coverings that could not be achieved using a normal compaction process. The normal
compaction process starts with a feasible layout, where the initial positions of pieces have a non-
overlapping configuration, and the compaction process adjusts the pieces to each other (using
continuous translations and rotations), trying to prevent overlaps in their circle covering, while
reducing the length of the container. For this reason, a normal compaction process produces
almost no overlaps considering the circle covering representation of the pieces, while possibly
generating overlaps of their polygonal representation (which is usual when using PCC and ICC
due to their reduced covering). In order to ensure that pieces would adjust well but still produce
overlaps in these layouts, the compaction process in the Two-Phase approach allowed an increase
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(a) PCC of normal compaction with width reduction
.

(b) Polygonal representation of normal compaction
with width reduction.

(c) PCC of Post-Optimization compaction with full
width.

(d) Polygonal representation of Post-Optimization
with full width.

Figure 5.10: Width reduction strategy to improve Post-Optimization feasibility (using poly1a with
CCC).
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Table 5.6: Different reductions of the layout size (Width = 40) using Two-Phase approach with
instance poly1a, and 30 runs each configuration.

Width Obj. Function (F) Avg. #
(%) (w) Phase Res. Cov. Model Min.c Avg. Max. Time (s) F.L.

100.000 40.00 2PHa HR PCC M1E 12.95 14.22 15.58 14.77 0
100.000 40.00 P-OPTb HRP CCC M2E 14.12 14.82 16.18 6.17 15
99.375 39.75 2PHa HR PCC M1E 12.38 13.86 16.02 18.13 0

100.000 40.00 P-OPTb HRP CCC M2E 13.71 14.72 16.13 12.17 13
98.750 39.50 2PH a HR PCC M1E 12.62 14.33 17.45 13.47 0

100.000 40.00 P-OPTb HRP CCC M2E 13.56 14.86 17.50 6.43 18
97.500 39.00 2PH a HR PCC M1E 12.72 14.40 15.87 17.00 0

100.000 40.00 P-OPTb HRP CCC M2E 13.54 14.76 15.53 9.67 18
95.000 38.00 2PH a HR PCC M1E 13.48 14.73 16.12 18.63 0

100.000 40.00 P-OPTb HRP CCC M2E 13.43 14.57 15.60 6.60 17
95.000 38.00 2PHb HR CCC M1E 13.91 15.50 17.35 15.60 16

100.000 40.00 P-OPTb HRP CCC M2E 13.93 14.76 15.92 2.23 22
a Values considering all solutions
b Values considering only feasible solutions
c Reference value 13.21: best result in literature, considering length

in the length of the layout obtained in the first phase by up to 120% for the compaction in the
second phase. The results of this approach can be seen in Table 5.6.

Table 5.6 shows that the reduction of the strip width in the Two-Phase approach (from 99.375%
to 95.000%) leads to an increase in the final number of feasible solutions. As we reserve more
space (by reducing width) to be used in the Post-Optimization phase (by increasing the width
reduction parameter), the number of feasible solutions produced also increases, but up to a certain
point. Even with more space across the width of the container, the infeasibilities of the layouts
may not be completely solved. This can occur due to numerical precision problems, created by
using resolutions that contain very small circles, and when certain pieces have overlaps where the
bones of their medial axis intersect. This causes circles, on each side of the intersection between
both bones, to prevent movements that would solve the overlap of the piece. Any of these relative
movements between both pieces would increase the overlap between circles, in order to find a
direction to move the pieces so that the overlap is corrected. Since the solver searches for the path
that minimizes the overlap, it then becomes stuck in this local minimum regarding the overlap of
this pair of pieces. Another reason for the inability to solve infeasibilities is due to interlocking
pieces, where the concavities of a piece prevent others or another from moving in directions that
correct the overlaps.

Using CCC (instead of PCC) with this approach and 95% of the width in the normal opti-
mization process limited the number of feasible solutions to 16 out of 30, which is a much higher
number of feasible solutions. When comparing the differences while using the Post-Optimization
phase, this approach with CCC managed to correct 6 infeasible layouts, with a total of 22 feasible
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layouts. This total number of feasible layouts produced with CCC is clearly superior to the num-
ber of layouts achieved when using PCC, but it also returns worse layout compaction results. The
difference in quality of the compaction is mainly due to the excessive covering of the CCC.

The computational experiments indicate that using this approach to correct infeasible solu-
tions, when addressing the layouts generated by the Two-Phase approach, is equivalent to using
CCC in the normal optimization process with full width, or using PCC with a width reduced by
1.25%. This small reduction in the container width allows achieving nearly the same relative posi-
tions between the pieces, while still maintaining a small distance available to address infeasibilities
in the Post-Optimization phase.

A combination of a type of covering and a specific reserved percentage of the width of the
layout may prove useful to correct infeasible layouts, but more extensive tests are required. This
approach shows promising results, but it is still in an early stage of its development. The main
difficulty consists in determining the best parameter configuration that enables producing good
results for any given instance.

5.4 Multi-Layer Approach

The Multi-Layer approach focuses on dealing with problems that cannot be solved using the nor-
mal approaches due to their computational cost. This situation arises in problems with a large
number of pieces, and also when the geometrical representation of the pieces require too much
detail, due to their complexity. This approach follows the idea that in order to successfully com-
pact a layout it is not required that all parts of the layout are improved at the same time. For this
reason, dealing with partial regions of the layout, and improving them locally, allows tackling the
compaction problem through a set of smaller sub-problems. The pieces are divided into distinct
groups, and each group is packed into the current layout, without overlapping pieces from other
groups. This packing strategy resembles a placement of pieces in layers. Since the groups are tack-
led one by one and sequentially, they can be considered almost independent of each other. The
compaction strategy adjusts the current pieces to the container, and also to the other previously
placed pieces.

This approach classifies the groups by two characteristics, the groups that have pieces able
to move (mobile), and groups that have fixed pieces. The group, or groups, that have mobile
pieces, allow free movement to their pieces. The other groups, with fixed pieces, do not allow
their translations or rotations, but their representation still produces an influence regarding the
valid areas for piece placement.

The main benefit of this approach is the reduction in computational time required to pack the
total amount of pieces, when compared to compacting all pieces at once. Since the computational
cost grows almost exponentially with the number of pieces to place, reducing just a few of pieces
can provide significant gains in computational time, which is the main limitation when addressing
real world problems (very large and complex instances).
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This approach offers a trade-off between the compaction quality and computational time.
When the number of pieces being compacted is reduced, for each layer, the quality of the com-
pactions is expected to be reduced, while the computational cost also is reduced.

This section discusses the Multi-Layer approach, considering its geometrical characteristics,
together with advantages and disadvantages, and its computational experiments.

5.4.1 Layered Piece Placement Strategy

The Multi-Layer approach basically divides the complete set of pieces into several separate groups.
The pieces are attributed randomly to each set, or using a greedy rule. The random distribution
of pieces for the different sets can be considered the default placement strategy. The process
starts with an empty layout, where the pieces of one set are placed, configured into initial starting
positions organized by a grid structure, without overlaps. The set is then compacted, and the pieces
from the next set are placed, with their positions also defined by a grid.

Depending on the configuration, one or more adjacent layers may have their pieces defined as
mobile pieces, simultaneously, while the remaining placed layers have all their pieces defined as
fixed pieces. These layers can be denoted as mobile layers, and fixed layers, respectively.

Considering only one mobile layer, it is defined always as the current set being compacted into
the layout, while all previously placed sets of pieces are fixed into their compacted position. This
enables pieces from the current set to adjust to the pieces in the previous layer. This process is
repeated until all sets of pieces are placed into the layout.

The process of compacting one set of pieces independently of the others, by placing the pieces
layer-by-layer, is defined as a compaction using one mobile layer (where only the pieces from only
one layer are allowed to move freely). An example of this process can be seen in Fig. 5.11, where
a single layer is compacted, taking into account the other layers that were previously placed.

The use of two mobile layers simultaneously has important benefits. The first mobile layer is
the current set of pieces being compacted, while the second mobile layer is the previously placed
set. Having this configuration allows adjusting the pieces of the previous layer to the pieces of the
current layer, thus achieving a better fit between pieces. The main downside is that the number
of pieces that are being worked upon doubles, increasing significantly the computational cost.
Using the two-layer configuration, instead of just one, allows adjusting the trade-off between the
final quality of the layout and the required computational cost. This potential problem is naturally
controlled, in part, due to the pieces in the previously placed layer being already packed together,
thus not requiring significant computational cost to move, only enough to adjust themselves.

The two-layer configuration allows achieving a smoother compaction since the outlines of
each layer are merged, due to the pieces being well adjusted to their neighbors, thus reducing
wasted space. An example of a two-layer compaction can be seen in Fig. 5.12, where two sets of
pieces are compacted simultaneously, taking into consideration the remaining previously placed
pieces. All pieces in the layout that do not belong to the current set are set as fixed.

Many parameters influence the behavior of this approach, being difficult to estimate their im-
pact and determining the best configuration for a given problem, particularly since they influence
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(a) Layer 1 with mobile pieces.

(b) Layer 1 with fixed pieces and layer 2 with mobile pieces.

(c) Layer 1 and 2 with fixed pieces and layer 3 with mobile pieces.

(d) Layer 1 to 3 with fixed pieces and layer 4 with mobile pieces.

(e) Layer 1 to 4 with fixed pieces and layer 5 with mobile pieces.

Figure 5.11: Single-layer compaction.
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(a) Layer 1 with mobile pieces.

(b) Layer 1 and 2 with mobile pieces.

(c) Layer 1 with fixed pieces and layer 2 and 3 with mobile pieces.

(d) Layer 1 and 2 with fixed pieces and layer 3 and 4 with mobile pieces.

(e) Layer 1 to 3 with fixed pieces and layer 4 and 5 with mobile pieces.

Figure 5.12: Two-layer compaction.
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each other. Among those parameters (resolution, coverings, model variants, etc), we can also de-
fine the number of pieces that is packed in each layer (which also determines the total number
of layers) and impacts the computational cost, the number of mobile layers (which influences the
quality of the solution by allowing a better adjustment between pieces from different layers), the
compaction strategy used to compact a given mobile layer or set of layers (using normal com-
paction, Two-Phase approach, multi-resolution, among others), selection of pieces for each set
(random, big and small, etc), among others. Selecting the best configuration is a difficult task that
cannot be addressed without extensive testing.

Other difficulties may arise due to using multiple layers with large differences between the size
of the pieces. Pieces that have a large size relative to the size of the layers being compacted may
cause difficulties if one of those pieces has its position fixed while being large enough to occupy
a region that belongs to multiple layers. A large piece could prevent some regions from being
filled by pieces, degrading the final solution quality. A possible method to address this difficulty
requires having a method to detect holes and assign unplaced pieces to the holes generated before.

Besides the size of the pieces, another important aspect that creates difficulties is the complex-
ity of the outline of the pieces. Very complex pieces might require additional effort to adjust to
each other, requiring some kind of pre-processing to match compatible pieces.

5.4.2 Results and Discussion

These computational experiments aim to analyze the impact of the multi-layer approach in the
compaction of medium, and large size instances. These experiments will also allow verifying
the trade-off between the number of mobile pieces selected and the growth in computational cost
compared to the compaction using all pieces, and also verifying the trade-off between the number
of mobile layers being used and the final layout quality. The instances used will be based on
poly3a, poly4a and poly5a, and multiples of instances poly5a with 150 and 300 pieces in total.

Table 5.7 presents the compaction values for the instances poly3a, with 45 pieces, poly4a
with 60 pieces and poly5a with 75 pieces. The pieces used HR CCC coverings and were solved
with the model M1E. This table allows comparing the Multi-Layer approach when using one and
two mobile layers, with the normal compaction with all pieces. The layers are composed by
sets of 15 pieces, which are compacted with 3 layers for instance poly3a, 4 layers for instance
poly4a and 5 layers for instance poly5a. It can be seen that using the Multi-Layer approach
has a reduced computational cost when compared to the compaction done considering all pieces
at the same time. The downside of this approach is the impact on the quality of compaction
caused by the bad adjustment of the pieces between layers. The use of two mobile layers enables
addressing this problem, where both minimum and average compaction values are significantly
lower when using two mobile layers. The use of one mobile layer is justified for cases that cannot
be solved with an acceptable time interval with two mobile layers, since it has a much lower
computational cost. Another aspect that can be noticed in Table 5.7 is that the computational cost
of both configurations (one or two mobile layers) does not seem to grow exponentially. This is
explained by the fixed number of pieces in each layer, where the only component that grows at each
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Table 5.7: Compaction with one and two mobile layers, with 15 pieces for each layer (using
HR-CCC and model variant M1E, 10 runs each).

# Mobile Obj. Function: min l
Instanceb Layers Min. Avg. Max. Timea(s)
poly3a — 42.14 44.21 46.75 296.10
(38.81) 1 45.06 48.20 51.09 30.60

2 42.46 44.85 46.47 108.60
poly4a — 55.69 57.80 59.88 781.50
(52.08) 1 61.02 64.14 67.74 55.05

2 57.80 59.60 61.92 165.75
poly5a — 69.03 71.04 73.17 2185.40
(63.81) 1 76.37 80.16 85.32 80.90

2 71.69 73.38 75.15 275.05
a Tests using Core i7-2670QM@2.2Ghz, 8Gb Ram 1.33Ghz
b Reference value: best result in literature, considering length

Figure 5.13: Layout produced with one mobile layer, for instance poly10a.

step is the number of objects that must not be overlapped (all the previously placed pieces). This
limited growth in computational cost allows addressing much larger problems than the previously
presented approaches.

An example of a large layout compacted with this multi-layer approach can be seen in Fig. 5.13.
This example is a variant of the instance poly1a, denoted as poly10a due to consist in the repeti-
tion of the poly1a pieces for about 10 times. This large instance has a total of 150 pieces and is
compacted using the Multi-Layer approach using a single mobile layer, with HR CCC and model
variant M1E. The layout, with this configuration, as seen in Fig. 5.13, has a total length of 162.35
achieved within a computational cost of 120 seconds. The different layers are marked with differ-
ent shades of gray color.

In order to verify if this approach is able to still address larger problems, another example
was used, using the same configuration but with more pieces (300 in total), which was also based
on a repetition of instance poly1a, was denoted as poly20a. An example of a layout compaction
of this instance can be seen in Fig. 5.14, where it achieved a length of 321.21, in 519 seconds.
Preliminary experiments can be seen in Table 5.8 where a a small number of configurations were
experimented, with 4 runs each, using model M1E with HR-CCC.
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Table 5.8: Compaction of poly20a with one mobile layer, 4 runs each.

# Pieces # Obj. Function: min l Avg.
per Layer Layers Min. Avg. Max. Time (s)

8 38 375.30 381.87 385.58 193.25
15 20 319.73 327.05 337.57 500.36
20 15 312.08 316.67 319.55 692.20
30 10 305.70 306.37 307.15 1422.67

Figure 5.15: Results of compaction (average length) for instance poly20a, considering different
number of pieces per layer.

The results in Table 5.8 show the impact that the number of pieces assigned to each set (which
also determines the total number of layers) has on the computational cost, and in the quality of the
solution. With the reduction in the number of pieces per layer, the computational cost is reduced,
but the quality of the solutions is degraded. There is a significant impact when addressing this
trade-off. In Table 5.8, by reducing the number of layers from 38 to 10, the length of the layout
was reduced by about 25%, while the computational cost increased by more than 7 times. The
impact on the quality of the layout is mainly due to the NLP model, which is better at adjusting
pieces when all the pieces are available to be packed instead of packing in groups, one by one. For
this reason, layouts that have less layers usually return better quality solutions, when compared to
layouts with more layers. This can be seen in Fig. 5.15, where the same instance, when compacted
with more pieces per layer (thus less layers) leads to higher quality solutions (with lower length).
The added length at each layer compaction grows linearly, since the same number of pieces is
being added to the layout, but due to the difficulties in adjusting pieces between layers, the final
length is bigger for the configurations that use many layers. Fig. 5.16 shows the growth in compu-
tational cost, taking into account the number of pieces per layer. Instances with fewer pieces per
layer have a very low computational cost, while the reverse leads to high computational cost.
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Figure 5.16: Results of compaction (average time) for instance poly20a, considering different
number of pieces per layer.

The results presented in Table 5.8 could be improved if a Two-Layer approach as used. Un-
fortunately, the growth in the computational cost could make the problem difficult to solve in
reasonable time. If this is addressed by reducing the number of pieces assigned to each layer,
the benefit of using multiple layers would be reduced. Finding the best configuration for a given
instance allows extracting the best quality possible while considering a reasonable computational
cost.

The instance swim4 was also compacted, being the best solution produced seen in Fig. 5.17
with a length of 31362.23 in 2454 seconds. All these computational experiments were done using
CCC, with HR and M1E model variant.

The Multi-Layer approach enables tackling problems with large number of pieces, with a con-
trolled computational time. Using one layer to compact the pieces proved to be the fastest config-
uration, but returning the worst results. Using two mobile layers showed an increase in the quality
of the compacted layout, but with an increase of the computational time. The biggest challenge is
find a way to increase the compaction quality in order to reach the level of other approaches. This
approach is not only useful to tackle problems that are very computationally expensive to solve
in a reasonable time, due to their large size, but also to address some technological limitations of
the software used to solve it. Very large instances may produce a very large number of variables,
constraints, which can exceed the limits for which the software was designed.

5.5 Extended Non-Linear Approaches Evaluation

In this section the best results for each instance, produced by all approaches in both previous and
current chapter, will be compared to the best results in literature. Their configuration, which in-
cludes resolution, type of covering and model variant, is also presented in order to detect patterns
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Table 5.9: Best results produced by the extended NLP approaches.

NLP-CC Configuration NLP-CC Results
Instance Appr. Normal Optimization Post-Optimization Min. O.F. Time (s)
jakobs1 NLP HR-CCC-M2E — 13.85 75
poly1a 2PH HR-PCC-M1E + WID95% HRP-CCC-M2E 13.43 10
poly2a 2PH HR-PCC-M1E VHR-CCC-M1E 26.00 116
poly2b 2PH HR-CCC-M1E HRP-CCC-M2S 29.35 179
poly3a 2PH HR-PCC-M1E HRP-CCC-M1E 39.03 209
poly3b 2PH HR-PCC-M1E VHR-CCC-M1E 38.94 278
poly4aa ML HR-CCC-M1E + 4L-1ML — 55.69 981
poly5aa ML HR-CCC-M1E + 5L-1ML — 69.03 1953
poly10a ML HR-CCC-M1E + 10L-1ML — 157.30 154
poly20a ML HR-CCC-M1E + 10L-1ML — 305.70 1377
swim4 ML HR-CCC-M1E + 8L-1ML — 31362.23 2454
a Tests using Core i7-2670QM@2.2Ghz, 8Gb Ram 1.33Ghz

in configuration parameters that lead to best solutions. The best results for the approaches pre-
sented in this chapter, are presented in Table 5.9, with their respective approach, and configuration
parameters used during the normal optimization phase, and the Post-Optimization phase. The
values refer to the minimum length achieved when compacting the layout, with the used compu-
tational time for that specific run. In order to facilitate the comparison with the literature, the set
of all developed approaches will be denoted as NLP-CC (Non-Linear Programming with Circle
Covering).

The instances presented in Table 5.9 consist not only of the previously introduced instances,
but now also consider the results for instances poly10a, poly20a and swim4, which were created in
order to test the performance of specific approaches when dealing with very large size instances.
In this table, the configuration parameters are presented for both the normal optimization and Post-
Optimization phases since they have a significant impact on the final quality of the solution. The
instances that do not have Post-Optimization had already produced feasible solutions during the
normal optimization phase, although some of the instances that show a Post-Optimization phase
might also have been feasible, but used Post-Optimization to improve the result. As presented in
the results, each approach was used to address specific types of instances, for which they have been
developed. The instance jakobs1 achieved the best result during the computational experiments
with Multi-Resolution approach, although using only the normal compaction. The instances poly1
to poly3 were addressed by the Two-Phase approach (2PH) which focuses in solving small to
medium size instances, aiming at achieving the best solution quality possible. The best results used
a combination of HR-PCC with model variant M1E while requiring a Post-Optimization phase to
correct infeasible solutions and improve the already feasible ones, as seen with poly2b (which
was achieved by CCC). The configuration parameter that is identified as WID95% is related to the
tweaking of the normal optimization phase, where the container width is reduced to 95 % and using
100 % during the Post-Optimization phase, to reduce difficulty in achieving feasible solutions.
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The large size instances used the Multi-Layer approach (ML) using different configurations for
the number of pieces used for each layer, and using only one layer with fixed pieces at each
iteration. The additional configuration parameters that are used in the Multi-Layer approaches are
related to the number of layers used. In Table 5.9, the instance poly4a uses parameter 4L-1ML
which determines that 4 sets of pieces are used, compacted into 4 layers, and also that only 1 set
of pieces has free movement at each iteration (only one mobile layer). The other instances use the
same type of configuration, 5 layers for poly5a, 10 layers for poly10a and poly20a, and 8 layers
for swim4. The computational cost of instances poly4a and poly5a are significantly higher than the
others due to being executed in a computer with different specifications. All these large instances
were solved in less than an hour. In order to compare the best results for each instance, obtained
by the approaches in both chapter 4 and chapter 5, to the best results in the literature, Table 5.10
presents an extension of Table 5.9, with the best results and the configuration that produced them.

The results presented in the left side of Table 5.10 show that the best results have been achieved
by the extended approaches introduced in this chapter, except for the instances jakobs1 and swim,
which had their best solutions generated by the approaches introduced in chapter 4. By observing
the results one can see that the configuration parameters have produced better solutions with a
specific configuration, using model variant M1E with HR covering during the normal optimization
phase. On average, the model variants that produce the best quality solutions are based on model
M2. The best results for large and very large instances only used the configuration HR-CCC since
higher resolutions increased significantly the computational cost, while different covering types
required a Post-Optimization phase, which would be unable to address such large instances. All
these results are compared to the best results in literature in the right side of Table 5.10.

The results shown in Table 5.10 are very close to the best results in literature, and even though
they do not improve in terms of optimization result, there is a potential for better and potentially
faster handling of large instances. This is due to the developed approaches using a Circle Covering
that produces excess covering of the pieces, which prevents them from getting even closer, where
the best results in literature consider that no separation distance between pieces exist. Without
this separating distance, the results of the NLP-CC approaches could probably match and even
surpass the quality of the current best in literature. The developed approaches are able to produce
good quality solutions within an acceptable computational time, and also address instances with
very large size. Some of these very large instances did not have results considering continuous
rotations, such as the instance swim. The other very large instances (swim4, poly10a, and poly20a)
are included to allow other authors to compare them with their approaches.

5.6 Concluding Remarks

This chapter presented several extensions to the solution approaches presented in the previous
chapter, where each focused on addressing a particular limitation (such as computational cost, so-
lution quality and size of the instance). The Multi-Resolution approach tackled the computational
efficiency of the normal compaction, by separating the compaction process into two distinct steps:
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a first step that focused on fast compaction of the pieces’ relative positions, while the second step
refined the adjustments to the pieces’ positions. The Two-Phase approach addressed the quality
of the final solution by separating the compaction process into two phases: first phase compacted
the larger pieces to obtain the overall structure of the layout, while the second phase placed the
smaller pieces and compacted all of them while forcing them to achieve a feasible solution within
an enclosed region. The number of infeasible solutions produced in the normal optimization and
the Post-Optimization phase were tweaked by reducing the width of the containers in the normal
phase, and using their full width in the Post-Optimization approach. The last approach, Multi-
Layer, divided the pieces into different groups, and compacted them individually to deal with the
growth in computational cost, which grows exponentially with the number of pieces. The results
obtained in the computational experiments of these extended approaches allowed to analyze the
impact that each had on the limitation that they addressed.

The Multi-Resolution approach was able to improve the quality of LR layouts significantly,
with a modest increase in the computational cost by re-compacting its layout solution using HR
covering. Comparatively to the single-step HR compaction, this approach managed to, most of the
times, achieve similar quality and even surpassing it occasionally, with a much lower computa-
tional cost. Part of the occasional improvement in the solution quality with this approach over the
single-step HR is explained by allowing a second attempt at finding a better local minimum than
the current one.

The Two-Phase approach was shown to be able to achieve promising results, by improving the
quality of the layouts over the other approaches, within a reasonable computational time. Selecting
the appropriate configuration parameters is very important, since they have a strong influence on
the quality of the results. The selection of the sets of big and small pieces, and definition of initial
position and orientation of the big pieces influences the produced layout in the first phase. The
second phase consists of assigning the remaining small pieces to the holes created in the first
phase, selecting their best placement position and orientation, and then re-compacting everything,
minimizing total length of the layout and solving existing overlaps. The hole assignment strategy
has a great impact on the final solution, as the process to determine the best position and orientation
of a piece inside a given hole.

The tweaking of the Post-Optimization method allows increasing the number of feasible solu-
tion produced by the presented approaches that tackle the Nesting problem with continuous rota-
tions. The selection of the appropriate resolution is very important to be able to produce a feasible
layout, but also the best solution quality possible. This approach was able improve the number of
feasible solutions without a significant impact on the quality of the solution (for small reductions
in width), since the pieces were already placed on their final relative positions, and only required
minor adjustments. Using this approach with CCC was also able to produce a higher number
of feasible layouts, due to the additional room required to remove overlaps created by the hole
assignment and placement method.

The Multi-Layered approach enables solving problems of very large dimension, with hundreds
of pieces, in a reasonable time. The growth in computational cost increases with the reduction in
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the number of pieces used in each layer (which also increases the total number of layers required
to be compacted), making the executions of the NLP model much easier. The computational cost
has a higher increase when addressing the problem with many pieces per layer, which shows that
the fixed pieces are responsible for a small portion of the total computational cost. The results
from this approach also show that the best quality of compaction is achieved when compacting
with fewer layers, which degrades as the number of layers increases, and the number of pieces
per layer is reduced. This indicates that compacting the layout all at once should produce the
best result, but with a prohibitive computational cost, while using a single piece per layer would
achieve results comparable to placing one piece at the time.

The results produced by these approaches are not able to beat those present in the current
literature, considering continuous rotations. However, the comparison is not entirely fair, since
the published results have been compacted with geometrical representations that do not have ”en-
larged" outlines due to covering, or other effect, since they use polygonal covering of the pieces,
without any separating distance imposed. Since the results obtained by these approaches are very
near the ones presented in the literature, it is possible that if they are re-compacted using a polyg-
onal representation without excess waste, the results would be nearly equivalent, or even better,
occasionally. This small difference validates these approaches, and with further development, they
may be able to tackle problems with greater size with lower computational cost, and provide better
quality results.



Chapter 6

Conclusion

The main objective of this thesis was to develop a solution approach that allowed to address real
world instances of the Nesting problem with continuous rotations. The difficuty in solving real
world instances is due to the very large number of pieces (hundreds) with very complex geometry,
and due to the characteristics of the specific problem that is being addressed (such as limita-
tions on the range of rotations, separation between pieces due to technological constraints, among
others). In order to achieve this, the geometrical characteristics of the problem were addressed
considering the specific requirements imposed, such as continuous rotations, and high quality of
piece representation, through a Circle Covering representation. Since no existing methods were
able to generate high quality circle coverings, taking into account the requirements of the Nesting
problem, several approaches were developed, and improved over time.

The solution method used to determine the piece placement positions into the container, must
also fully support continuous piece placement and orientations, while maintaining the pieces inside
the container, and in a non-overlapping configuration, all while minimizing the length of the con-
tainer. Since the mathematical description of the geometrical representation is based on non-linear
equations, due to comparison between pairs of circles, and also include trigonometric operations,
due to free-rotations, the natural choice was to use a Non-Linear Programming model based ap-
proach. Most of the development consisted in finding possible paths to improve the combination
between Circle Covering Representation and Non-Linear Programming model approach in order
to solve large size, real world problems, with high quality results, and reasonable computational
cost.

The main objective was achieved with success, although there is still room for further improve-
ments in order to produce better results. By developing a method that allows tackling real world
Nesting problems with irregular pieces and continuous orientations, many industrial applications
where this problem arises can be solved in a more efficient way.

The following sections present the main contributions of this thesis and possible paths of
exploration for future work.

173
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6.1 Main Contributions

The main objective (addressing real world instances of the Nesting problem with continuous ro-
tations) was achieved by using an appropriate geometric representation that fully supported free-
rotations (Circle Covering) and a solution approach (Non-Linear Programming Model) that could
use it efficiently and effectively. The work focused on the expansion of each one of these compo-
nents and also in determining the best parameter configuration that could lead to the best quality
results.

The iterative algorithm based on the Medial Axis that was developed is able to provide Com-
plete Circle Covering representations superior to those of comparable approaches. This approach
is based on a constructive algorithm (kCC-MA) that uses the Medial Axis skeleton of a piece as its
support, and computes the best placement positions for the circles. By controlling the approxima-
tion error, one can produce coverings with a desired level of resolution, and a reduced number of
circles. This enables generating multiple types of resolutions, that can be adjusted to better fit the
requirements considering the computational cost, and solution quality. Adjusting the approxima-
tion error parameters also enable this approach to produce coverings that adapt to different types
of problems, such as Complete Circle Covering (CCC) for industrial applications that require a
given distance between pieces, and Inner Circle Covering (ICC) for layouts with perfect fits, al-
though producing a very large number of infeasible solutions. The other type of covering, the
Partial Circle Covering (PCC), is the covering type that offers the best compromise between large
number of feasible layouts and high quality compactions.

In order to address the Nesting problems with continuous rotations, the choice was based
on the combination of Circle Covering representation with a Non-Linear Programming (NLP)
model. Two formulations for the NLP model were created, based on different characteristics of the
geometrical representation. One NLP model focused on the description of pieces by considering
them as a set of circles where each has individual characteristics (Circle-Based Model – M1), while
the other NLP model described the pieces as a single element (Piece-Based Model – M2). These
two different formulations had difficulties tackling large problems due to the factorial growth in the
number of non-overlapping constraints. In order to address these difficulties, several extensions
to their formulations were explored, by aggregating similar constraints in a single summation
expression. This allowed producing three types of model variants for each model. The model
variants were formulated with the aim to produce different behaviors that can be used to tackle
a wide variety of problem sized, by assigning the best model variant to the adequate problem
to be addressed. The model variants with more constraints aggregated are able to have reduced
computational cost, thus being able to tackle large size instances, although their average solution
quality is slightly inferior to the model variants with less or none constraints aggregated. Having
multiple formulations allows choosing the most adequate considering on the characteristics of the
instances and the minimum solution quality required.

In order to tackle infeasible solutions (caused by incomplete coverings such as ICC and PCC,
overlaps between circle coverings of the pieces caused by the approaches, numerical precision
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errors due to small circles and aggregation of constraints, among others), a Post-Optimization
approach was developed. It is based on the CCC representation with a sufficiently high resolution
to ensure a very low approximation error and a NLP model variant selected depending on its
computational cost. The Post-Optimization approach has been shown to successfully correct many
infeasible solutions, but its efficiency can be improved if using an approach that may require the
use of a layout with a reduced width during the normal compaction phase of the layout. This
approach does not ensure that all infeasible layouts will be successfully corrected.

Due to limitations that originated from the use of a NLP approach (which converges to a local
minimum) without having a method that was able to assist searching for better solutions, several
approaches were developed that consist on the iterative use of NLP model to achieve a good solu-
tion. The three approaches focused on solving different aspects where the performance of the NLP
approach was lacking. The first approach tackled the efficiency of the compaction of the layouts,
by using a compaction process with two separate steps, which used low resolutions on a first step,
and high resolution in the second. This approach is called Multi-Resolution Approach. Compu-
tational experiments show that this approach was able to achieve equivalent quality solutions to a
compaction using a HR covering, with significantly reduced computational cost.

The second approach focused on improving the solution quality by separating the compaction
process in two phases, thus being called Two-Phase Approach. The first phase selects big pieces,
and compacts them up to a certain length, generating holes (space between the big pieces). The
second phase assigns the small pieces to the holes, using specific rules, and compacts all pieces
producing a layout. Due to this process, the layout may be infeasible (by not being able to solve the
overlaps), therefore requiring a Post-Optimization approach to correct the infeasibilities. Compu-
tational experiments have shown that this process is able to produce layouts with superior quality
than the previously presented approaches, with a reasonable computational cost.

The third and last approach focused on tackling large size problems. This approach, called
Multi-Layer Approach, separates the pieces by groups, using a defined rule, and compacts each
set, into the layout, independently of the other sets. When a set is compacted, its pieces are defined
as fixed pieces and treated as forbidden placement regions. This strategy allows the NLP model to
only consider adjusting the pieces that are being placed in the current set, while assigning only non-
overlapping constraints between the pieces of the current set, and all the previously placed pieces.
An extension has been made to this approach, that allows considering the pieces of the previously
placed layer as not fixed, which allows a better adjustment between pieces from different layers,
improving the solution quality at the expense of the computational cost. This approach has been
shown to be able to successfully compact instances with up to 300 pieces, which allow tackling
real world problems.

These approaches are able to address successfully Nesting problems with continuous orienta-
tions, taking into account their different characteristics. The results produced by all the presented
approaches fall very short of the published results from the current literature, and although they
are not improved in terms of quality, there is a potential for better and faster handling of large in-
stances. However, the comparison with the results in the literature is not entirely fair, since the pub-
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lished results have been compacted with geometrical representations that do not have "enlarged"
outlines due to covering, or other effect. It is possible that our solutions could be equivalent, and
occasionally better, than the ones presented in the literature if they are re-compacted using a polyg-
onal representation without excess waste separating the pieces. The small difference in solution
quality validates the application of the presented approaches to address the Nesting problem with
continuous rotations. With some minor extensions and improvements, these approaches may be
able to produce better results consistently when compared to the current literature results. Also
referring to the current results in the literature, these approaches were able to successfully solve
the instance swim, for which no results existed previously considering continuous rotations.

6.2 Future work

The future developments of these approaches consider possible paths of exploration that may
lead to improvements in the solution quality, reductions in computational cost, or both. These
approaches may also be extended to support other types of problems with irregular pieces, using
closed containers.

The kCC-MA approach that generates the different types of circle covering, with controlled
approximation error, can be improved by using different types of simplifications for the polygonal
representation of the piece and the skeleton. The circle merging algorithm could use a different
method to select which pairs of circles are merged, since the current method uses a greedy ap-
proach. One problem of the kCC-MA algorithm is its dependency on the correct construction of
the Medial Axis, which is built following an iterative algorithm. This naturally leads to numerical
precision errors which fail to produce a correct Medial Axis skeleton for pieces with very com-
plex outlines. A great improvement over the current algorithm would be developing an approach
that was not iterative, could be parallelized and with high tolerance to numerical precision errors.
Another possible path is the extension of circles to ellipses, which may allow reducing the num-
ber of circles required to cover a piece, although the computational efficiency of comparing pairs
of ellipses would need to be high due to the less efficient comparison between ellipses than the
comparison between circles. The circle covering algorithm can be extended to 3D, using spheres
instead of circles, but that requires a support structure such as the Medial Axis skeleton in 3D.
This would allow tackling packing many problems with irregular 3D pieces.

The improvements to the solution approach may start by using different non-linear solvers.
Our current solver (Algencan) starts from an initial solution and converges to a local minimum, but
other solvers may employ different search strategies which can lead to better results. Considering
the current formulations for the NLP model variants, these can be modified in order to simplify
the equations that define the multiple constraints, at the expense of additional constraints, such as
treating the trigonometric operations as independent constraints, whose value is used in the current
constraints in the form of variables.

The post-optimization approach may still be further improved, in order to always generate a
feasible solution. This may require the use of a completely different approach, based on heuristics
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or linear programming. Increasing the number of feasible solutions improves the global computa-
tional efficiency, since no computational effort is wasted by producing no feasible solution.

A particular component that can be greatly improved is the generation of the initial solution.
Our approach places the pieces into a grid, in random sequence and arbitrary orientations. Better
approaches to the initial solution may be able to place the pieces into positions where they would
adjust better with each other, and enable the solution approach to converge to better solutions.

Considering the Two-Phase approach, one aspect that can be improved is the selection of big
and small pieces. The current selection method is based on their area, which does not say any rele-
vant information about its geometry. Other aspects can be considered, such as perimeter, bounding
box, medial axis, among others. This would enable a better distinction between pieces, so that they
could be better assigned, depending on the characteristics of the problem. Another aspect that can
be improved for the Two-Phase approach is the hole assignment and piece placement procedure.
The hole assignment also requires knowing if a certain piece fits inside a hole, by analyzing not
only their relative area but also their shape. The area is only useful to exclude bigger pieces, since
smaller pieces may have inferior area but they may not fit due to their shape. If a given piece
fits inside a hole, then the next problem to be solved is how to determine the best position and
orientation to place it inside the hole. Solving this problem would allow tackling many different
problems in a more efficient way, where detecting suitable holes and feasible placement positions
is important. In order to improve the results of the Two-Phase approach, more extensive tests
should be done to verify its behavior and select the best configuration parameters that lead to the
highest quality results.

The Multi-Layer approach can be extended to include the Multi-Resolution approach and the
Two-Phase approach in the individual compaction of each layer, which could lead to much better
compaction results, and also greater computational cost. Selecting the best combination of pieces
to be compacted at each layer is relevant to the quality of the final solution, but no extensive
experiments were done. Developing an approach that could do this could enable improving the
quality of the produced layout. A modification to the Multi-Layer approach that would analyze
the layout as it was being constructed, to detect holes where pieces could fit, and re-enabling
the compaction of previously compacted layers, could bring also improvements. An extension
with such modifications to the Multi-Layer could be interpreted as a different approach to the
construction of the layout.

An approach that also may bring additional improvements is the implementation of a lo-
cal search method, that improves the most promising layouts produced by these approaches, by
switching pieces, and making other operations over the layout.

While this work is able to solve the Nesting problem with continuous rotations, it still leaves
many possible paths to explore, which can bring significant progress in solving the Nesting prob-
lem with continuous rotations.
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