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Resumo 

O pneumococo faz parte de um conjunto complexo de microrganismos que 

colonizam transitoriamente a nasofaringe, podendo por vezes causar doença. A 

colonização é considerada um pré-requisito para a doença e é a fonte de 

transmissão entre os indivíduos.  

As vacinas conjugadas pneumocócicas (VCPs) foram licenciadas em 2000 e 

demonstraram ter impacto sobre a doença em grande parte através da redução 

da colonização e transmissão entre indivíduos de serotipos vacinais, os quais são 

substituídos por outros não incluídos nas mesmas. Portugal não introduziu estas 

vacinas no seu Programa Nacional de Vacinação, estando disponíveis no mercado 

privado. Muitas famílias têm optado por imunizar as suas crianças. Assim, 

formulámos a hipótese de que o impacto da imunização com a VCP7-valente 

sobre a colonização nasofaríngea por S. pneumoniae, em comunidades com 

coberturas vacinais mais baixas, a aumentar lentamente e com distribuição 

geográfica heterogénea, será diferente daquele observado em países onde a 

vacina foi implementada de forma consistente ao longo do tempo, com 

distribuição geográfica uniforme e taxas de cobertura elevadas.  

Entre 2007 e 2010, numa série de estudos transversais anuais em crianças a 

frequentar infantários em Coimbra, Portugal, observámos, uma tendência de 

redução ou desaparecimento de serotipos vacinais em colonização nasofaríngea, 

exceto o 19F, que não seguiu este padrão e, mais recentemente aumentou, 

tornando-se o mais prevalente. Estes resultados demonstram que os efeitos 

indiretos da VCP podem ser observados com as taxas moderadamente elevadas 

de utilização da mesma em Portugal, mas que, pelo menos para o serotipo 19F, 

os atuais padrões de uso da vacina não parecem ser suficientes para reduzir ou 

eliminar este serotipo. Observámos também que, após vários anos de uso da 

VCP, não houve substituição completa de serotipos e a sua diversidade tem-se 

mantido consistentemente perto do valor mais alto observado noutros estudos e 

sem tendências progressivas ao longo do tempo. A utilização de uma nova 

técnica molecular de microarray para serotipagem de pneumococo, que permite 

deteção e quantificação do ADN que codifica para o locus capsular de mais do 

que um serotipo ou estirpe na mesma amostra, mostrou co-colonização por mais 

do que uma estirpe capsulada em cerca de 10% das crianças em infantários. 

Permitiu identificação de estirpes presentes em baixa densidade e 

reconhecimento de oportunidades para transferência génica entre bactérias. 

O sucesso da colonização nasofaríngea pneumocócica poderá depender da 

coexistência com outras bactérias que ocupam o mesmo nicho e os vírus poderão 
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Resumo 

também desempenhar um papel nesta dinâmica. A nasofaringe é uma importante 

fonte de secreções que poderão facilitar a transmissão de bactérias entre os 

indivíduos. Formulámos a hipótese de que poderá haver relações entre as 

diferentes espécies bacterianas, vírus respiratórios e rinite, que poderão 

contribuir para o sucesso da colonização nasofaríngea e da transmissão na 

comunidade. 

Através da recolha prospetiva de informação sobre a presença de rinite, 

associada a análise microbiológica de várias espécies bacterianas e de um painel 

de vírus respiratórios nas secreções nasofaríngeas, explorámos as relações entre 

colonização bacteriana, deteção de vírus e existência de rinite. Demonstrámos 

associações positivas entre a deteção de rinovírus e a presença e densidade de 

colonização nasofaríngea por pneumococo, sugerindo que a presença do vírus 

pode facilitar a aquisição e/ou proliferação bacteriana. Demonstrámos também 

associação entre a presença de H. influenzae e rinite, a qual poderá promover a 

transmissão, com vantagens para a bactéria.  

A otite média aguda (OMA), presumivelmente precedida por colonização 

nasofaríngea, é frequentemente causada por pneumococo. Formulámos as 

hipóteses de que a co-colonização por múltiplos serotipos na nasofaringe poderá 

também ocorrer no ouvido e que a presença e densidade de colonização 

bacteriana na nasofaringe poderão ser diferentes em crianças saudáveis e 

crianças com OMA, contribuindo para a patogenia desta infeção.  

Investigámos a microbiologia do ouvido médio em crianças com otite média 

aguda supurada (OMAS) através de cultura e utilizámos a técnica molecular de 

microarray para serotipagem de pneumococo nas secreções nasofaríngeas e do 

ouvido. Detetámos mais do que uma estirpe capsulada na otorreia em cerca de 

20% das crianças com identificação de pneumococo. A grande maioria das 

crianças com identificação de pneumococo na otorreia tinha também 

pneumococo nas secreções nasofaríngeas e, nestes casos, em todas, pelo menos 

um serotipo foi encontrado simultaneamente nos dois locais. A comparação das 

taxas e densidades de colonização nasofaríngea por S. pneumoniae, H. influenzae 

e M. catarrhalis foram semelhantes no grupo de crianças em infantários e 

crianças com OMAS mas, em análise multivariada, a densidade de colonização 

por H. influenzae e M. catarrhalis foi menor no grupo com otite, sugerindo que 

uma disrupção no equilíbrio entre estas bactérias poderá estar associada com a 

doença.   
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Em conclusão, estes estudos fornecem informação adicional sobre os efeitos 

da utilização da VCP na colonização nasofaríngea a nível populacional, e sobre a 

biologia da colonização em crianças saudáveis e com doença. Poderão ser úteis 

na definição de futuras estratégias de prevenção da doença e para melhor 

compreensão da patogenia da OMA. 

Palavras- chave: pneumococo, colonização nasofaríngea, vacinas conjugadas 

pneumocócicas, interações microbianas, otite média aguda 
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Abstract 

S. pneumoniae is a transient coloniser among a complex nasopharyngeal 

microbiota and can sometimes cause disease. Presence in the nasopharynx is 

considered a pre-requisite for disease and is the source of transmission between 

individuals.  

Pneumococcal conjugate vaccines (PCVs) were licensed in 2000 and appear 

to be impacting on disease to a great extent through reduction in colonisation 

and transmission of vaccine serotypes, which are duly replaced by non-vaccine 

serotypes. Portugal has not included PCVs in the national immunisation schedule 

offered to all children. Many families have chosen to have their children 

immunised through private provision. We hypothesised that the impact of 

immunisation with the seven-valent PCV on nasopharyngeal colonisation by S. 

pneumoniae, in a setting with lower, slowly rising and heterogeneous vaccination 

coverage would be different from that seen in countries where PCVs have been 

implemented at high rates, consistently over time and evenly geographically.  

Between 2007 and 2010, in a series of annual cross sectional surveys in 

children attending daycare nurseries in Coimbra, Portugal, we have charted 

downward trends in nasopharyngeal colonisation with PCV serotypes, except for 

19F which failed to disappear and latterly has risen to become the most prevalent 

serotype. These findings illustrate that indirect effects of PCVs can be seen even 

at the only moderately high vaccine uptake rates seen in Portugal but that, for 

19F at least, the present patterns of vaccine usage may not be sufficient to 

reduce or eliminate this serotype. We have also shown incomplete serotype 

replacement after several years of PCV use and that serotype diversity has been 

consistently close to the highest seen in other settings and without progressive 

trends over time. The use of a novel pneumococcal molecular serotyping 

microarray that allows detection and quantification of DNA coding for the 

capsular locus of more than one serotype or strain in each sample, showed co-

colonisation with more than one encapsulated pneumococcus in approximately 

10% of the children in nurseries. We detected serotypes in low abundance and 

thus identified an ecology that offers opportunities for horizontal gene transfer. 

Successful colonisation may also depend on successful coexistence with 

other bacterial species occupying the same niche. Viruses may also play a role in 

these dynamics. The nasopharynx is a major source of secretions that may 

facilitate transmission of bacteria between individuals. We hypothesised that 

there may be relationships between bacterial colonisers, respiratory viruses and 
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rhinitis that may contribute to successful colonisation and transmission in the 

community. 

By prospectively collecting data on rhinitis and analysing nasopharyngeal 

samples both for several bacterial species and for a panel of respiratory viruses, 

we have explored the relationships between bacterial colonisers, viral detection 

and rhinitis. We have shown positive associations between detection of rhinovirus 

and both the presence and the density of pneumococcus in the nose suggesting 

that the virus may enhance bacterial acquisition and/or proliferation. We have 

also shown an association between presence of H. influenzae and rhinitis which 

could promote transmission and thus be of advantage to this species.  

Acute otitis media (AOM), presumed to be preceded by nasopharyngeal 

colonisation, is frequently caused by pneumococcus. We hypothesised that just as 

nasal co-colonisation with multiple strains of S. pneumoniae occurs, this may also 

be the case in the ear and that the rates and densities of nasopharyngeal bacterial 

colonisation may differ between healthy children and children with AOM, in ways 

which may contribute to the pathogenesis of the disease. 

We investigated the middle ear microbiology in children with AOM with 

spontaneous otorrhoea (AOMSO) by culture and applied the same pneumococcal 

molecular serotyping microarray to nasopharyngeal and aural discharge samples. 

More than one pneumococcal serotype was found in approximately 20% of the 

otorrhoea samples of the children that cultured pneumococcus. The great 

majority of children with pneumococcus in the ear also had it in the nose and in 

all of those, at least one serotype was found simultaneously in both places. 

Nasopharyngeal colonisation rates and densities of S. pneumoniae, H. influenzae 

and M. catarrhalis did not differ between healthy children and children with 

AOMSO although multivariate analysis showed that the densities of H. influenzae 

and M. catarrhalis were lower in otitis, suggesting that a disruption of the 

equilibrium between these species may be associated with the disease.  

In conclusion, these studies further clarify the effects of pneumococcal 

vaccination on nasopharyngeal carriage at the population level and the biology of 

colonisation during health and disease. Our findings may prove useful in the 

development of future disease prevention strategies and to better understanding 

of AOM pathogenesis. 

Keywords: pneumococcus, nasopharyngeal colonisation, pneumococcal 

conjugate vaccines, microbial interactions, acute otitis media 
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General Introduction 

1.1 Introduction to the microflora of the nasopharynx 

 

The five most common bacterial families in the human nasopharynx are 

Moraxellaceae, Streptococcaceae, Corynebacteriaceae, Pasteurellaceae (including 

the genus Haemophilus), and Staphylococcaceae (1-3). Streptococcus pneumoniae 

(S. pneumoniae), Haemophilus influenzae (H. influenzae) (mostly non-typeable 

strains), Moraxella catarrhalis (M. catarrhalis) and Staphylococcus aureus (S. 

aureus) are transient colonisers of this complex microbiota that can also cause 

disease (2, 3).  

Although there is no universally accepted terminology, the following 

definitions are used in this work: 

− Exposure: contact of the upper respiratory tract mucosal surface with the 

microbe, which may or may not persist and proliferate; 

− Acquisition: the process of establishment of a strain within the host on the 

mucosal surface; 

− Carriage or colonisation: overarching terms used interchangeably to include 

both the acquisition and the stable, detectable presence of the microbe in the 

nasopharynx of an individual over a period of time (a condition usually persisting 

for weeks or months). 

Bacteria rapidly colonise the human nasopharynx soon after birth and can 

be acquired and eliminated many times over the life of a person (4-7). This is a 

dynamic process, during which microbes interact with each other and with the 

host and its maturing innate and specific immune responses (8). This human 

bacterial ecosystem is thought to be beneficial to the host, by stimulating the 

immune system, promoting the development of mucosal structure and function 

and providing a protective barrier against pathogen invasion (9). Viruses can also 

frequently be detected in the nasopharynx of children (10-16). 

Nasopharyngeal colonisation is affected by the complex interplay of host 

and environmental factors, immune responses induced by organisms and 

vaccines, bacterial and viral characteristics and their interactions (17).  

Several host and environmental factors have been shown to influence or be 

associated with colonisation: age, immunity, attendance at day care centres 

(DCCs), exposure to tobacco smoke and recent antibiotic use being examples 

(18-20). Infants and young children are more commonly colonised with S. 

pneumoniae and other bacteria, with rates peaking at around the age of 1-2 years 

(18). They have longer carriage episodes (21), more frequent rhinitis symptoms 
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and behaviours that make them more promiscuous with their respiratory and oral 

secretions, facilitating transmission both to other young children and to their 

family contacts. Day-care centre attendance by preschool children has 

consistently been associated with increased frequency of colonisation with S. 

pneumoniae, H. influenzae and M. catarrhalis (18) and DCCs are considered to be 

a unique setting for the transmission of nasopharyngeal bacteria (22).  

Successful colonisation also depends on successful coexistence with other 

bacteria (23). The acquisition, presence and clearance of bacterial species may 

not occur entirely independently of one another and interactions seem to 

influence the species which persist in the nasopharynx (24, 25). Bacteria may be 

positively or negatively associated with each other (19, 23, 25-27) and 

associations may shift from negative to positive when additional bacterial species 

are present (17). It is also increasingly acknowledged that human diseases 

including respiratory tract infections can be polymicrobial resulting from 

synergistic and competing interactions between pathogens (28). More recently 

there is a growing interest in possible interactions between potentially pathogenic 

bacteria and commensals. The latter might prevent disease by inhibition of 

colonisation and expansion of pathogens, and by inducing immune modulation 

and stimulation of both mucosal maturation and barrier function (9). A better 

understanding of the dynamic relationships which exist between commensals and 

potential pathogens in the nasopharynx may provide insight into the 

pathogenesis of respiratory infectious diseases. The evolution of gene sequencing 

technologies has enabled detailed analyses of the nasopharyngeal microbiota of 

children by amplification and sequencing of the V5 and V6 hypervariable regions 

of the 16S ribosomal RNA (ribonucleic acid) gene (3). 

In 2000, a seven-valent pneumococcal conjugate vaccine (PCV) was licensed 

in the USA and one year later in Europe. This vaccine has both direct and indirect 

effects on nasopharyngeal colonisation (29-31), resulting in reduced carriage 

rates of the serotypes contained in the vaccine, but with little or no long-term 

impact on the overall prevalence of pneumococcal carriage as other non-vaccine 

serotypes subsequently become more common (32). The approach to and timing 

of adoption of PCV immunisation of children has varied between countries and 

this may have resulted in distinct epidemiological effects on nasopharyngeal 

ecology. 

The biological success of pneumococcus can be attributed to cellular 

components that are useful for colonisation and transmission (33). While the host 
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generally exists in harmony with the commensal microflora, changing conditions 

in the nasopharynx may affect the equilibrium of these components, and may 

also determine if and when the pneumococcus becomes a pathogen (34). For 

example, episodes of acquisition of new microbes, bacterial or viral, may 

potentially disrupt the equilibrium of this ecosystem, creating the conditions for 

invasion and causation of local or systemic disease (28, 35). 

S. pneumoniae remains an important cause of serious bacterial disease 

among children worldwide. Presence in the nasopharynx is thought to be a 

prerequisite for disease, which only occurs in a small percentage of people who 

are colonised, and is also considered to be the source of pneumococcal 

transmission between individuals. Since children have the highest carriage rates, 

the highest transmission rates and are the recipients of PCVs, to examine 

bacterial colonisation in this age group is key to understanding transmission, 

interactions between colonising species and the impact of pneumococcal 

vaccination on nasopharyngeal ecology. Since the dynamics of microbial 

interactions may influence disease development, examining bacterial carriage 

during respiratory tract infections is a useful strategy for studying changes in 

nasopharyngeal ecology that may have a role in the pathogenesis of these 

infections.  

 

1.1.1 Streptococcus pneumoniae 

S. pneumoniae is a Gram-positive coccus, occurring as pairs (diplococcus), 

often arranged in chains (Figure 1.1.). Pneumococci grow on blood agar. Samples 

are commonly inoculated onto streptococcal selective colistin-blood agar (COBA) 

or gentamicin containing media and incubated at 37ºC in 5% CO
2
. Identification 

of S. pneumoniae from culture is achieved by accurate observation of both its 

morphologic appearance (elongated cocci) and four main phenotypic 

characteristics: alpha-haemolysis of blood agar, catalase negativity, optochin 

susceptibility and bile solubility. Identification of suspected alpha-haemolytic 

colonies is confirmed by growth inhibition around optochin discs on subculture 

and solubility in bile salts (36). Culture-based methods have a number of 

advantages, including the ability to provide antibiotic susceptibility information. 
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Figure 1.1. Streptococcus pneumoniae. 

Gram-stain showing Gram-positive elongated cocci seen as pairs (reproduced with permission from: 

MicrobeLibrary, American Society for Microbiology, distributed under a Creative Commons 

Attribution-Noncommercial-Share Alike 3.0 License) 

 

Almost all pathogenic strains of pneumococci express a polysaccharide 

capsule. Currently, more than 90 immunologically distinct pneumococcal 

serotypes are recognised (37) on the basis of their polysaccharide capsules 

(Figure 1.2.) that can also provoke type-specific protective immune responses. 

Serotypes 6C, 6D and 11E are the most recently discovered (38-40). 

 

 

Figure 1.2. Streptococcus pneumoniae serotype 3. 

Transmission electron microscopy image. Scale bar: 0.5 μm. Adapted from Poolman et al. (41) 

(reproduced with permission from: Elsevier) 

 

Serotypes with chemically similar polysaccharide capsules are classified 

together into serogroups (there are 46 serogroups) - for example serogroup 6 

consists of serotypes 6A to 6D. The genes involved in capsule synthesis are 

located in a region labelled the capsular polysaccharide synthesis (cps) locus (42). 

There are pneumococcal isolates that cannot be typed due to lack of capsule and 

are designated non-typeable pneumococci. Lack of capsule production may 

happen because of down regulation of gene expression of existing functional cps 
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genes or by the acquisition of genetic lesions that render capsule polysaccharide 

biosynthesis non-functional (43).  

S. pneumoniae frequently colonises the nasopharynges of healthy people, 

particularly young children. Transmission occurs from person-to-person by 

inhalation of respiratory tract droplets or by direct contact with respiratory tract 

secretions. Although transmission is very common, clinical illness occurs 

relatively infrequently among contacts. None-the-less, because it is so ubiquitous, 

S. pneumoniae is a leading cause of disease in young children worldwide (44-46), 

imposing a significant burden of morbidity and healthcare costs in developed as 

well as developing countries where it is also an important cause of mortality. 

Pneumococcus can cause invasive infection including meningitis, sepsis and 

bacteraemia and is also a common cause of acute otitis media (AOM), pneumonia, 

sinusitis and conjunctivitis. Occasionally it causes mastoiditis, periorbital 

cellulitis, endocarditis, osteomyelitis, pericarditis, peritonitis, arthritis and soft 

tissue infection. Haemolytic-uraemic syndrome can also complicate invasive 

disease (47). The risk of pneumococcal disease is generally highest among young 

children, the elderly, immunocompromised patients and people who have chronic 

medical conditions, such as heart or lung disease, diabetes and asplenia (48, 49). 

Day care centre attendance among children aged <2 years is a risk factor for 

invasive pneumococcal disease (50, 51). Most cases of disease are sporadic and 

outbreaks are uncommon (see section 1.1.1.2) but may occur in closed 

populations such as nursing homes or DCCs (52-54). 

 

1.1.1.1 S. pneumoniae serotypes in nasopharyngeal colonisation 

In the pre-PCV era, the rank order of serotypes found in colonisation was 

reasonably stable across different populations (8, 55). Certain serotypes such as 

6A, 6B, 9V, 10, 11, 13, 14, 15, 18C, 19A, 19F, 23F, 33 and 35, accounted for the 

majority of nasopharyngeal isolates from children; others, like serotypes 1 and 5 

were rarely detected (8, 56-58). This tendency of certain serotypes to be 

undetectable in the nasopharynx may be associated with their low density and 

duration of carriage (59). Weinberger et al. (60) showed an association between 

increased carriage prevalence and resistance to non-opsonic neutrophil-mediated 

killing: the more prevalent serotypes, such as 19F and 23F, were most resistant 

to killing, while types rarely isolated from carriage, such as types 4 and 5, were 

more efficiently killed. Serotypes that were resistant to killing, tended to be more 

heavily encapsulated. An association between polysaccharide structure and 
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carriage prevalence was also identified - commoner serotypes had fewer carbons 

per repeat unit and thus lower energy expended on capsule generation. A 

significant association between metabolic cost and degree of encapsulation and a 

trend between metabolic cost and resistance to non-opsonic killing was 

demonstrated (60). Other microbial factors, such as adhesins, toxins and proteins 

that avoid host immune effectors, are also likely to influence the carriage 

prevalence of a serotype (61). A model to estimate rates of clearance and 

competitive ability of different pneumococcal serotypes was used in a 

longitudinal study in Kenya (62). Children aged 3–59 months were swabbed 

several times until two swabs were negative for the original serotype. Time to 

clearance ranged from 28 to 123 days. Among the 27 commonest serotypes, the 

lowest susceptibility to competition, defined as the rate at which individuals 

carrying that serotype switch to carry another one, relative to the rate at which 

that other serotype colonises an uncolonised person, was found in 19F and for 

this serotype, acquisition of other types was 52% less likely compared to a non-

colonised individual. Highly prevalent serotypes had the longest time to clearance 

and the lowest susceptibility to competition. Duration of carriage declined with 

age for most serotypes (by 41 months of age, the mean time to clearance was 

less than half of that for children younger than 22 months) and differences 

between clearance rates were attenuated as children became older and capable of 

more rapid clearance of the longest-lived serotypes, postulated to be due to 

development of immune responses targeted at antigens other than the capsule 

(62).  

It is interesting that serotypes that are less fit, with lower prevalence, higher 

clearance rates and less competitive ability, can persist at all. While strong 

immune responses have been shown for some serotypes (individuals who have 

carried type 14 are ~90% less likely to carry it again), prior carriage appears to be 

much less protective for others (63-65). There is also evidence for serotype-

independent protective acquired immunity that reduces the rate of new 

colonisation and which is stimulated in young children by previous pneumococcal 

carriage (66). Cobey and Lipstich (67) used a model to explain the coexistence of 

pneumococcal serotypes based on serotype-specific and non-specific acquired 

immunity. Serotypes to which few hosts are immune have a relative advantage 

that partially compensates for lack of fitness. The authors propose that weak 

serotype-specific immune responses allow repeated colonisations by the same 

type and anticapsular immunity alone appeared to be insufficient to overcome 
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differences in serotype fitness in their model. As described above (62) and 

demonstrated by Högber et al. (68), as individuals acquire non-specific immunity 

to pneumococcal non-capsular antigens, the duration of carriage declines and 

becomes more similar for all serotypes. As consequence of this, the relative 

advantage of the serotypes with lower clearance rates is reduced, decreasing 

fitness variation between serotypes and contributing to the higher carriage 

serotype diversity that is observed in older children and adults (67, 69). 

An age-related serotype distribution, with some serotypes (19F, 6B, 6A, 9V, 

and 23F) peaking at the age of 1–2 years, and others (especially serotypes 3, 8, 

10, 11, and 15) peaking at an older age, was described by Bogaert et al. (70). 

Antimicrobial resistance also tends to be commoner in certain serotypes. 

Due to the prolonged nature of carriage compared to invasive disease, selection 

for antibiotic-resistant strains is likely to occur in the nasopharynx, where 

bacteria are likely to be exposed to antibiotic selection pressure at lower drug 

concentrations and also exposed to other species and strains with the ability to 

pass on antibiotic-resistance genes (71). The frequency of detection of certain 

serotypes correlates with their likelihood of becoming resistant (59, 72). For 

example, serotype 1, rarely detected in carriage, remains highly susceptible to 

antibiotics. 

Non-typeable pneumococci have been reported in nasopharyngeal 

colonisation studies in the USA, ranging from 5% of pneumococcal isolates in 

Navajo and White Mountain Apache children (73) to 1.8% in children in 

Massachusetts (74). We previously reported rates of colonisation with non-

typeable pneumococci of 5.2% among all pneumococcal carriage isolates in DCCs 

in Coimbra (75). As these strains do not, by definition, express capsular 

polysaccharide antigens, they are not subject to anti-capsular immunity either 

induced by carriage or vaccination. They do express other species antigens and 

colonisation rates likewise fall with increasing age in childhood (75).  

 

1.1.1.2 S. pneumoniae serotypes in invasive and mucosal disease 

Although all common serotypes can cause any form of pneumococcal 

disease, some are more frequently associated with certain presentations than 

others.  

Most paediatric invasive disease around the world was caused by ten 

serogroups, with 1, 6, 14, 19, and 23 among the most prominent, but with some 

variations in the proportions in different populations (55). A meta-analysis 
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showed that the invasive disease potential of a specific serotype, defined as the 

proportion of carriage episodes that results in a case of invasive disease, was 

stable over time and geographically (57). However different serotypes had 

different invasive disease potential - serotypes 1, 5, and 7 were more invasive 

than 3, 6A, and 15 (57). In an analysis that took into account the prevalence of 

invasive pneumococcal disease caused by different serotypes in a community to 

the extent of exposure of that population to these serotypes, it was found a 

significant inverse correlation between invasive disease and carriage prevalence, 

with the most invasive serotypes being the least commonly detected in carriage 

and the most frequently carried the least invasive (57).  

A review of pneumococcal serotype distribution showed that the most 

common serotypes causing AOM globally in children aged <18 years were 3, 6A, 

6B, 9V, 14, 19A, 19F and 23F (76). Unlike for invasive disease, there are only 

small differences between the propensities of different serotypes to cause AOM, 

most causing it at a frequency that is proportional to their prevalence in 

nasopharyngeal carriage (77).  

Due to the difficulty in obtaining adequate samples for culture in 

pneumonia, the identification of aetiological agents has remained a challenge. A 

study to estimate pneumococcal serotype-specific disease potential in paediatric 

community-acquired alveolar pneumonia, compared nasopharyngeal 

pneumococcal colonisation during disease with colonisation in healthy children, 

reporting that serotypes 1, 5, 22F, 7F, 14, 9V and 19A had higher odds of being 

carried during radiologically diagnosed community-acquired alveolar pneumonia 

compared to healthy controls, with lower odds for serotypes 6A, 6B, 23A, and 

35B (78). A review of serotype-specific properties reported a high proportion of 

complicated pneumonia cases being caused by serotypes 1 and 3 (79).  

Serotypes also differ in the age distribution of those affected and their 

tendency to cause outbreaks. The incidence of disease caused by serotypes 1 and 

5 remains constant or even increases slightly after 2 years of age, in contrast to 

the pattern followed by other common serotypes causing invasive disease. This is 

observed in settings with a high incidence of serotype 1 (Alaskan natives, South 

Africa, and Israel) and also in lower incidence settings (USA and Western Europe) 

(79). Outbreaks are both caused by serotypes that tend to be frequent colonisers 

of the nasopharynx (i.e., 4, 9V, 14, and 23F) and by the more rarely carried types 

1 and 3 (79), suggesting that independent properties drive the phenomenon in 

the two distinct scenarios.  
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Long-term secular trends can also result in changes in serotype prevalence 

(80, 81). Serotype 1, for example, has shown long-term fluctuations (82, 83). A 

study of historical trends (1928-1998) in serogroup distribution in the USA, 

showed that the proportion of paediatric pneumococcal infections caused by 

serogroups 4, 6, 9, 14, 18, 19 and 23 increased significantly from 53% to 87% 

while infections caused by serogroups 1–3 and 5 decreased significantly from 

18% to 2%. These differences could be due to patterns of antibiotic use, 

socioeconomic conditions, the immunocompromised status of populations and 

also be confounded by changes in blood-culture practices (71). Another analysis 

of temporal trends (1938-2007) in pneumococcal invasive disease and serotypes 

in Denmark, a country with low antibiotic use, showed that some 

serotypes/serogroups also increased (4 and 9), others decreased (18C), while 

others remained stable (6, 7F, 14, and 23F) and serotype 2 nearly disappeared. 

Before the 1960s, serotypes 1, 2, 3, and 5 peaked every 2-3 years. Peaks became 

less frequent during the 1970s, occurring every 7-10 years (83). 

Non-typeable pneumococci have been associated with conjunctivitis in 

outbreaks or sporadic cases (84, 85). Occasionally, they have been implicated in 

other types of pneumococcal disease, such as otitis, respiratory infections and 

invasive disease (43, 84, 86). Between 2001 and 2006, 3% of invasive disease 

isolates from Navajo children and adults, were reported to be non-typeable (87). 

Recently, a microarray serotyping method was applied to study non-typeable 

isolates identified by the Quellung reaction from invasive disease in children and 

showed that, although invasive disease caused by “true” non-typeables that lack 

capsule gene loci can occur, it is very rare. Most of the non-typeable invasive 

isolates studied by the microarray, had complete cps genes for known serotypes 

present, suggesting that capsule production was fully down regulated in vitro, 

resulting in the negative Quellung reactions (43).  

 

1.1.2 Haemophilus influenzae 

H. influenzae is a Gram-negative coccobacillus, variable in length with 

marked pleomorphism and with random arrangements (Figure 1.3.). It is a 

fastidious organism that requires factors that are present in blood, specifically 

haemin (X factor) and nicotinamide-adenine-dinucleotide (NAD, known as V 

factor) for growth. Samples are commonly inoculated onto Bacitracin chocolate 

agar plates and incubated at 35-37ºC in 5% CO
2
. Identification of suspect colonies 
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is confirmed using manufactured discs with X and V factors in the base plate. H. 

influenzae appear as round, colourless-to-grey, opaque colonies (36, 88).  

 

 

Figure 1.3. Haemophilus influenzae. 

Gram stain showing Gram-negative coccobacilli, with no specific arrangement (reproduced with 

permission from: Kenneth Todar, PhD) 

 

There are encapsulated strains that express antigenically distinct capsular 

polysaccharides (a to f) and non-encapsulated strains designated non-typeable. 

The nasopharynx is the natural habitat of H. influenzae in humans. 

Transmission occurs through contact with respiratory tract or oral secretions.  

H. influenzae type b (Hib) was a major cause of meningitis, bacteraemia, 

pneumonia, epiglottitis, septic arthritis, cellulitis, AOM, and other less common 

infections, such as endocarditis, osteomyelitis and peritonitis. Non-type b 

encapsulated H. influenzae can, more rarely, cause disease similar to type b 

infections. Non-typeable strains cause infections of the respiratory tract and, less 

often, bacteraemia and meningitis (89).  

The widespread use of conjugate Hib vaccines in infancy has resulted in a 

dramatic decline in invasive Hib disease in children. There is no evidence of 

substantial replacement disease with non–b encapsulated H. influenzae in young 

children subsequent to widespread vaccine use (90). Most of the residual disease 

burden, which is caused by non-b H. influenzae, occurs in the youngest and 

oldest age groups and those with underlying immunocompromising conditions 

(90, 91).  

 

1.1.3 Moraxella catarrhalis 

M. catarrhalis is a Gram-negative coccus occurring singly or in pairs (Figure 

1.4.). For culture, samples are commonly inoculated onto non-selective blood 

agar plates and incubated at 35-37ºC in 5% CO
2
. Suspect colonies are smooth, 
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flat, uniform, buff colonies, 1-2 mm in diameter and oxidase-positive. 

Identification is confirmed by detection of butyrate esterase activity by a positive 

tributyrin test (92). 

 

Figure 1.4. Moraxella catarrhalis. 

Gram-stain showing Gram-negative cocci and diplococci (reproduced with permission from: Public 

Health Image Library (PHIL), Center for Disease Control and Prevention; ID#15012) 

 

Exclusive to humans, it is part of the normal flora of the upper respiratory 

tract and is rarely pathogenic. Transmission is presumed to occur through direct 

contact with respiratory or oral tract secretions. Symptomatic infections are most 

common in infants and young children and include AOM and sinusitis. In patients 

with chronic lung disease or immunodeficiencies it can also cause 

bronchopulmonary infections. Rare manifestations include bacteraemia, 

endocarditis, pneumonia, preseptal and orbital cellulitis, osteomyelitis, septic 

arthritis and neonatal meningitis (30). Unlike S. pneumoniae, H. influenzae and S. 

aureus, M. catarrhalis rarely causes bacteraemic illness. 

 

1.1.4 Staphylococcus aureus 

S. aureus is a Gram-positive coccus, occurring singly, in pairs, tetrads and in 

irregular clusters (Figure 1.5.). They grow on a variety of non-selective agars 

when incubated in 5% CO
2
 at 35-37ºC and are capable of growing on selective 

agars containing high concentrations of sodium chloride. Colonies are opaque 

and may be white or cream and are occasionally yellow or orange. They are 

catalase positive and oxidase-negative (do not contain cytochrome c oxidase). 

There are three major characteristics that in combination differentiate S. aureus 

from coagulase negative staphylococci. Firstly, identification can be made by 

agglutination on Latex tests, which confirms the presence of bound coagulase 

(although some coagulase negative staphylococci can also give a positive result). 

Secondly, a positive coagulase test detects the presence of free coagulase. Finally, 

S. aureus produces a DNAase that is detected by incubation of the suspect colony 
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on a DNAase plate, which then produces a zone of clearance around the organism 

when the plate is developed with hydrochloric acid (36, 93). 

 

 

Figure 1.5. Staphylococcus aureus. 

Gram stain showing positive cocci forming irregular clusters (reproduced with permission from: 

Kenneth Todar, PhD) 

 

S. aureus colonises epithelial surfaces, of which the anterior nares are the 

most frequent carriage sites but can also commonly be found on the skin. 

Colonisation is associated with a higher risk of infection, with more than 80% of 

health care–associated S. aureus infections being endogenous (94-97). S. aureus 

is an important cause of skin and soft tissue infections, pneumonia, bloodstream 

infections, bone and joint infections, meningitis, endocarditis and urinary tract 

infections in both children and adults.  

 

1.1.5 Respiratory viruses 

Viral respiratory infections are very frequent in young children, peaking in 

the first two years of life (98). They show seasonality, more clear for some virus 

(respiratory syncytial virus and influenza virus) than others (rhinovirus), and DCC 

attendance is a major risk factor for those infections (98). The most common 

symptoms and signs are nasal congestion, runny nose, cough and sneezing (99). 

Human bocavirus, polyomaviruses, respiratory syncytial virus (A and B), 

human influenza virus A and B, parainfluenza virus 1–4, picornaviruses (human 

rhinoviruses and enteroviruses), adenovirus, human coronavirus and human 

metapneumovirus are well known causes of respiratory infections and can 

frequently be detected in nasopharyngeal samples of children with respiratory 

symptoms but also in children without clinical manifestations, as shown in 

several studies (10-16, 100-103).  
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Despite variations in the relative proportions of different viruses causing 

respiratory infections, depending on factors such as age, season, sampling and 

detection methods, rhinoviruses have been consistently found to be the most 

common in all age groups (98). Results of virological and serological analysis in a 

cohort of children during the first 2 years of life showed that, by the age of 6 

months, more than 20% had had at least one episode of rhinovirus detection. By 

the age of 2 years, rhinovirus infection had been documented in 79% and 91% of 

the children had antibodies to it (104). 

The use of highly sensitive molecular techniques, such as polymerase chain 

reaction (PCR), has greatly improved detection of these viruses. With this method, 

a pair of synthetic oligonucleotides or primers hybridises to a single stranded 

deoxyribonucleic acid (DNA) target (generated by reverse transcription in the case 

of RNA viruses), with the pair spanning a region that will be exponentially 

reproduced. The hybridised primer acts as a substrate for a DNA polymerase that 

creates a complementary strand via sequential addition of deoxynucleotides. With 

real-time PCR, in contrast to conventional assays, the detection of the amplicon 

can be visualised using fluorescently labelled probes which release the label from 

an adjacent quencher on polymerisation so that as the amplification progresses 

the emergence of the target can be accurately detected by association with a 

number of cycles ("viral load"). Multiplex real-time PCR uses multiple primer pairs 

to allow amplification of multiple templates within a single reaction (with 

multicolour fluorescent labelling) (105). However, despite all the benefits of these 

methods, they can also make the interpretation of results more difficult, raising 

the question whether the presence of small amounts of viral nucleic acid has 

clinical relevance. One prospective case-control study using PCR in symptomatic 

and asymptomatic young children, confirmed that asymptomatic carriage of 

respiratory viruses occurs frequently although viral loads were higher in cases 

than in controls for all viruses. In contrast to rhinovirus, respiratory syncytial 

virus was rarely detected in asymptomatic children, suggesting that a positive 

test is almost always of clinical relevance, independently of the viral load. 

Accordingly, a causal inference based on the detection of rhinoviruses in 

symptomatic patients should be made with caution and assessment of viral load 

could potentially assist the interpretation of positive results. The establishment of 

cut-off levels for diagnosing significant infections using these molecular tests has 

been proposed (15). A study of viral respiratory infections in hospitalised and 

community control children in Alaska also showed that respiratory syncytial virus, 
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parainfluenza virus, human metapneumovirus and influenza virus nucleic acid 

detection was significantly more common in hospitalised cases than controls. 

Rhinovirus and adenovirus were detected in two-thirds of hospitalized children, 

but their frequent detection in control children made their role in respiratory 

hospitalisation uncertain. Respiratory syncytial virus and human 

metapneumovirus virus detection were associated with more severe illness (106).  

The presence of viruses in the nasopharynx of asymptomatic children may 

have several explanations: it may be detected during the incubation period, the 

presence of minor respiratory symptoms may be missed or ignored by the 

parents, it may indicate a subclinical infection in which the presence of a low viral 

load may only trigger a minimal inflammatory response without symptoms or the 

presence of the virus may be detected at the end of an expiring infection after 

symptoms have resolved (12, 15, 107). 

 

1.1.6 Methods for detecting nasopharyngeal colonisation  

The sensitivity of detection of S. pneumoniae colonisation depends on the 

sampling technique used, the handling of the specimen and the methodologies 

used to culture and/or identify and serotype the organism, all of which can 

therefore contribute to variability between observed rates of carriage. The World 

Health Organization (WHO) has established standardised methods for the study of 

pneumococcal nasopharyngeal colonisation, intending to reduce or eliminate 

such artefactual variation (108, 109).  

It is recommended that samples should be deep nasopharyngeal swabs. For 

studies in children, swabs should be of paediatric size with a calcium alginate or 

a Dacron polyester tip and a flexible shaft. The type and supplier of the swab 

should be consistent throughout the study. Once obtained, the swab can be 

immersed in 0.5 or 1mL of skim milk-tryptone-glucose-glycerin (STGG) broth, a 

transport medium the use of which has been validated against the standard 

method of direct inoculation of the nasopharyngeal swabs onto culture plates 

(110, 111). There are several benefits of using STGG broth over direct plating: the 

possibility of long term storage of the original specimen at -70ºC; the opportunity 

to inoculate multiple plates from the original sample and to conduct multiple 

assays on a single specimen; with homogenous dispersion of the nasopharyngeal 

specimen in the broth sample, the ability to quantitate the growth of organisms; 

transport of nasopharyngeal specimens from the site of collection to a distant 

laboratory; and cost-efficient laboratory analysis of large numbers of 
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nasopharyngeal specimens in batches. STGG is inexpensive and remains stable 

for at least 6 months after sterilization (110). After collection, samples containing 

swabs should be maintained and transported on wet ice to the laboratory within 8 

hours. Storage should be at -70ºC. Samples can be kept for long periods of time 

up to 2 and even 6 years after collection (112). 

The culture techniques used in this project are described in sections 1.1.1, 

1.1.2, 1.1.3 and 1.1.4. The isolates are also stored in glycerin at -70ºC.  

Conventional serotyping can be done from purified isolates immediately 

after culture or recultured after being stored frozen. 

Detection of respiratory viruses by PCR assay of nasopharyngeal swabs 

stored in STGG is an alternative approach to using nasal aspirates stored in viral 

transport medium, with similar sensitivity and specificity (113). Thus a single 

swab can permit both detailed bacteriological and virological analysis. 

 

1.1.6.1 Pneumococcal serotyping – new techniques to detect co- colonisation  

The Quellung reaction, that involves mixing a loopful of a pure 

pneumococcal culture with an equal quantity of specific antiserum and then 

examining microscopically for capsular swelling (Figure 1.6.), provided the basis 

for the development of widespread serotyping (114).  

It has been recognised for a long time that simultaneous colonisation with 

different pneumococcal strains and serotypes can occur (115, 116). However, 

most studies have relied on conventional culture techniques and serotyping 

individual colonies, detecting only the most abundant ones and thus 

underestimating simultaneous colonisation with multiple serotypes. Detection of 

co-colonisation is important for understanding vaccine effectiveness, 

transmission, replacement and opportunities for horizontal gene transfer that 

may lead to change of the capsular serotype or acquisition of antibiotic 

resistance. Several methods for detection of multiple serotypes have been 

proposed, including swab enrichment culture followed by Quellung typing (117) 

or multiplex PCR (118) from the broth, immunoblot (119) or multiplex PCR (120) 

from the primary culture plate, multiplex PCR direct from the nasopharyngeal 

swab transport medium (121) and pneumolysin non-coding region (plyNCR) PCR 

followed by terminal restriction fragment length polymorphism (RFLP) 

determination direct from the swab (122).  When more sensitive methods are 

applied, the rate of multiple S. pneumoniae serotypes found in the same sample 

ranges from 10–50%: it has been shown to be relatively common in areas with a 
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high burden of S. pneumoniae colonisation and disease, however many studies 

report rates at the lower end of that range (118, 120, 122-126). 

 

 

Figure 1.6. Quellung reaction. 

Capsular swelling demonstrating the presence of a specific capsular type (reproduced with 

permission from: Kenneth Todar, PhD) 

 

  In 2009, Hinds et al. (127) presented a new microarray detection and 

serotyping method, based on genomic DNA hybridisation, that is able not only to 

detect but also quantify DNA from multiple serotypes in the same sample. 

Molecular serotyping is performed on the DNA extracts using the B_G@S SP-CPS 

v1.4.0 microarray (Bacterial Microarray Group at St. George’s, University of 

London, London, United Kingdom - B_G@S; http://bugs.sgul.ac.uk). An evaluation 

of methods to facilitate direct analysis of nasopharyngeal swabs by microarray 

showed a reduction in sensitivity for detecting additional serotypes at low 

abundance when directly analysing DNA from the broth, associated with low 

amounts of DNA recovered, the bacterial load of the pneumococcus and other 

pathogens and the presence of contaminating host DNA. The method has evolved 

to culturing STGG prior to DNA extraction, as an initial enrichment and 

amplification step to increase yields of pneumococcal or bacterial DNA prior to 

microarray analysis (128). The microarray includes reporters to represent all cps 

genes involved in capsule polysaccharide biosynthesis of the serotypes known to 

date. The serotype is determined by the combination of cps genes found to be 

present in the isolate. This method detects S. pneumoniae with full complement 

of cps genes required to produce the polysaccharide capsule (serotypes) and is 

also able to detect the presence of the collectively called non-typeables that 

include non-encapsulated pneumococci (usually S. pneumoniae lacking any cps 

genes that are found in carriage such as NT2, NT3, NT4 and also S. pneumoniae 

containing incomplete cps gene complement for serotype so also non-

encapsulated) and closely related Streptococcus species such as S. mitis, S. oralis, 
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S. pseudopneumoniae that may contain homologues of cps genes. Identifying 

non-pneumococcal streptococci using microarray is not uncommon in 

pneumococcal carriage studies (43), which is also important because they may 

contribute cps or antimicrobial resistance genes to the pool available for genetic 

exchange in the nasopharynx. A recent study using this methodology in children 

and adults showed that colonisation with multiple strains of S. pneumoniae was 

associated with higher overall density of nasopharyngeal carriage and was more 

frequent at younger age (125). Another study showed no association of multiple 

colonisation with age and a pattern that often consisted of a dominant and one or 

more minor serotype populations (129). A comparison of nasopharyngeal 

colonisation by use of conventional methods (WHO protocol) (108, 109), latex 

agglutination and molecular serotyping by microarray, showed that co-

colonisation detection rates were lower for the first (11.2%), significantly 

underestimating multiple-serotype carriage, and similar between microarray 

(48.8%) and latex agglutination (43.2%). However, latex agglutination failed to 

detect serotypes at low abundance. The authors concluded that microarray 

serotyping, although more costly and technology dependent, is more sensitive for 

such low-density serotypes (123).  

  

1.2 The determinants and dynamics of nasopharyngeal colonisation 

 

Several factors determine whether individuals within a population carry a 

microorganism in their nasopharynges. First whether, how often and at what dose 

they are exposed to it. Second, how resistant they are to it as it arrives, which 

may be affected by epithelial integrity and thus also physical environmental 

conditions (which may also directly affect the viability of the organism) and both 

innate and specific existing mucosal immunity. Third, how efficient they are at 

eliminating it once carriage is established, principally through development of 

specific immunity, in concert with innate immune mechanisms. The presence or 

absence of other microorganisms and antimicrobial drugs within the niche may 

also affect this process. All the factors known to be associated with colonisation 

operate through one or more of these mechanisms. Additionally, when comparing 

studies, different sampling techniques and laboratory methodologies need to be 

taken into account because they can be responsible for differences in reported 

colonisation rates (8, 18).  

19 



Chapter 1 

Any individual is likely to be colonised with potential pathogens many times 

during his or her life (8). Children usually acquire several different strains over 

time. In a 10-month longitudinal household study of S. pneumoniae 

nasopharyngeal carriage, in the 0–2 year olds, 39% were found to carry 

pneumococcus more than five times during the follow-up period (130). Another 1-

year longitudinal study with 11 sampling periods, performed among 47 children 

attending a single DCC, reported that children were sequentially colonised with 

up to five S. pneumoniae serotypes and nine H. influenzae clones, suggesting a 

high rate of acquisition and turnover of strains (131). 

The mean age of first acquisition of S. pneumoniae, H. influenzae and M. 

catarrhalis is 6 months (1–30 months) (5, 18, 132), although in certain 

populations S. pneumoniae can be found as early as the first month (63) and even 

on the first day of life (133). In developing countries and indigenous populations 

children universally acquire pneumococcus in the first few months of life (109). 

The duration of S. pneumoniae carriage varies between serotypes, previous 

immunological exposure and the host’s age and immunocompetence (see section 

1.1.1.1). A longitudinal study in Thailand showed a median duration of 31 days in 

adults and 60.5 days in children (134). However, duration periods of more than 

30 weeks have been observed (135) and a recent African paediatric study using 

intensive sampling, found a mean duration of carriage of 31.3 days, with serotype 

specific means ranging from 6.7 to 50 days (136). Colonisation with the initial 

strain of non-typeable H. influenzae was reported to persist from 1-5 months with 

a median duration of 2 months (137).  

Nasopharyngeal carriage studies in children have been conducted in various 

settings and populations around the world, reporting different rates, summarised 

in Tables 1.1., 1.2. and 1.3. The studies were selected to represent different 

regions of the world. 

 

Table 1.1. Selected studies of rates of S. pneumoniae nasopharyngeal carriage in children. 

Country Study population Year Carriage rate  

USA (Buffalo) (4) 
306 healthy children or with otitis 

media; 1Y 
1997 54% 

Sweden (138) 
1129 healthy children; 2-7Y 

2Y/4Y/7Y 
1995 50%/42%/21% 

Portugal (139) 586 healthy children; DCC; 6M-6Y 1996 47% 

Greece (140) 1269 healthy children; 2-23M 1997-98 33% 
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The Netherlands 

(141) 
259 healthy children; DCC; 3-36M 1999 58% 

Israel (142) 
264 healthy children; DCC;  

12-23M 
1996-97 78% 

Asia and Middle East 

(143) 

4963 healthy children; 5Y 
1998-99 22.3% 

Indonesia (144) 484 healthy children; 12-25M 1997 51% 

India (145) 100 healthy children; 6W-18M 2001 81% 

Uganda (146) 191 healthy children; <3Y 1995 62% 

Gambia (147) 102 healthy children; 46M 2001 87% 

DCC: Day Care Centre; M: months; W: weeks; Y: years 

 

Table 1.2. Selected studies of rates of H. influenzae nasopharyngeal carriage in children. 

Country Study population Year Carriage rate 

USA (Buffalo) (4) 
306 healthy children or with otitis 

media; 1Y 
1997 33% 

Sweden (138) 635 healthy children; <7Y 1995 32% 

Portugal (139) 
586 healthy children; DCC;  

6M-6Y 
1996 72% 

The Netherlands (141)  
259 healthy children; DCC;  

3-36M 
1999 37.4% 

DCC: Day Care Centre; M: months; W: weeks; Y: years 

 

Table 1.3. Selected studies of rates of M. catarrhalis nasopharyngeal carriage in children. 

Country Study population Year Carriage rate  

USA (Buffalo) (4) 
306 healthy children or with otitis 

media; 1Y 
1997 72% 

Sweden (138) 635 healthy children; <7Y 1995 42% 

Portugal (139) 
586 healthy children; DCC;  

6M-6Y 
1996 54% 

The Netherlands (141) 
259 healthy children; DCC;  

3-36M 
1999 81.6% 

DCC: Day Care Centre; M: months; W: weeks; Y: years 

 

Several factors are associated with colonisation (4-7, 18, 137). It varies 

widely with age - S. pneumoniae, H. influenzae and M. catarrhalis are all more 

prevalent in children than in adults.  
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For S. pneumoniae the rates of nasopharyngeal colonisation rise from birth, 

peaking at 50% to >70% around 2 years of age (1, 8). Thereafter, an age related 

decline is observed starting gradually after the age of 3-5 years in developed 

countries, to a stable colonisation rate of around 5-10 %, which is reached after 

the age of 10 years (130, 148, 149), but that can be as high as 25–60% in some 

developing countries (150, 151) and as low as 1% in Finland (152) and Sweden 

(153). In developing countries and settings with high disease burden, high S. 

pneumoniae carriage rates persist further into childhood (73, 150).  

For H. influenzae and M. catarrhalis, a study in the USA evaluating 

nasopharyngeal carriage during the first year of life showed that, at 6 months of 

age, 9% were colonised with H. influenzae and 26% with M. catarrhalis and at 1 

year of age these percentages increased to 33% and 72% respectively (4). The 

overall isolation rates for pre-school children, school children and adults found in 

Sweden were respectively: 13%, 6% and 3% for H. influenzae and 27%, 4% and 2% 

for M. catarrhalis (153).  

Higher carriage rates in younger children could be explained by close 

contacts with other young children (often attending DCCs), associated with poorly 

developed immunity to these pathogens. As discussed in section 1.1.1.1, 

serotype-specific antibodies to the capsular polysaccharide and non-capsule-

specific immune responses are generated in response to carriage of S. 

pneumoniae (63-66, 154). The latter provides a potential biological explanation 

for the fact that serotype-specific duration of carriage shortens with age. 

Children, in particular those <2 years of age, are much less likely to develop an 

immune response to carriage (155, 156).  

Colonisation rates with S. pneumoniae and S. aureus seem to follow 

opposing age-related trends, the causative mechanisms of which remain 

controversial and uncertain (25, 70, 157). S. aureus nasal colonisation is very 

common among newborns and decreases rapidly during the first year, while 

pneumococcus is rare at birth and increases significantly during the first year of 

life (157). Serial nasal swabs collected in 443 children in The Netherlands showed 

that the prevalence of S. aureus carriage decreased from 52.1% at the age of 1.5 

months to 12.9% at 14 months (157).  In adulthood, S. aureus is found in the 

nares of up to half of the adult population (158). About 20% of the adult 

population can carry the same strain for extended periods of time (persistent 

carriers) and 30% host different strains over time (intermittent carriers) (94, 159). 

Ten percent of children from 0 to 9 years old and 24% from 10 to 19 years old 
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were also found to be persistent carriers (160). In a paediatric study that defined 

persistent carriage as continuous carriage of the same S. aureus strain at 1.5, 6, 

and 14 months, this was rarely found in early infancy (157). 

Other independent risk factors that also seem to predict colonisation in 

healthy populations include:  

− Ethnicity (161, 162): African American, native American (Apache and Navajo) 

and Alaskan native populations are at increased risk of pneumococcal 

colonisation; 

− Socio-economic and environmental factors (5, 8, 18, 163-165): these include 

family size, income, smoking and recent antibiotic use. Colonisation rates with S. 

pneumoniae, H. influenzae and M. catarrhalis are higher among infants with 

siblings (132). The number of siblings and overcrowded living conditions 

facilitate horizontal transfer of bacteria from one person to another. Parental 

smoking and passive smoke exposure in general may damage the 

nasopharyngeal mucosa and impair immune responses, increasing the 

susceptibility to viral infections and bacterial colonisation (18, 166). The number 

of older siblings, family size and passive smoking, also identified by some 

authors to be associated with S. aureus nasal colonisation rates (167), were not 

confirmed by others (157). Antibiotics induce several changes in nasopharyngeal 

flora. Lower isolation rates of potential pathogens have been observed during and 

soon after (first weeks) antibiotic treatment (148). However, rapid replacement 

occurs with either overgrowth of more resistant strains or by newly acquired 

strains. Antibiotics can also affect the balance between pathogenic bacteria and 

commensals (18). 

− Crowding (8, 18, 141, 163, 168, 169): this has been reported as a major risk 

factor for carriage and spread of pneumococcus. In young children, DCC 

attendance, because of closer interpersonal contact, facilitates transfer of 

bacteria from one child to another. A study investigating colonisation among 

children attending DCCs and children who did not attend DCCs, showed a 1.6 to 

3.4-fold increased risk for nasopharyngeal carriage among the former. Genetic 

analysis of the pneumococcal isolates revealed 75% clustering among 

pneumococci isolated from DCC attendees versus 50% among those not attending 

DCCs, indicating a higher risk for horizontal spread of pneumococci in DCCs than 

in the general population (141). In Finland, DCC attendees and their family 

members were followed for 9 months, with monthly sampling of the 

nasopharynx. For children, the majority of acquisitions, with documented 
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exposure to homologous pneumococci, resulted from exposure in DCC and much 

less in the family (170). Studies performed in Portugal showed that the likelihood 

of being colonised with pneumococcus was higher in larger nurseries (75) and 

that colonised children shared S. pneumoniae and H. influenzae clones with 

others in the same DCCs (131). 

 

1.3 The relationship between nasopharyngeal colonisation and disease 

 

Posterior to the nasal cavity, superior to the oropharynx and connected to 

the middle ear by the Eustachian tube, the nasopharynx has connections with the 

mouth, nose (and thence the outside world) and the sinus cavities, middle ear 

and lower respiratory tract, common sites of symptomatic and clinically 

significant disease. This complex ciliated epithelial structure is the niche for 

many microbes, in an environment which includes air (and its gaseous, 

particulate and dissolved constituents including water), tethered and free mucins 

and the cells and products of the innate and specific immune systems (34) 

(Figures 1.7. and 1.8.). 

 

 

 

Figure 1.7. Anatomy of the nasopharynx. 

Reproduced with permission and slightly modified from: image as adapted by Shak et al. (34) from 

an illustration by Patrick J. Lynch distributed under Creative Commons Attribution 2.5 License 

 

Blood vessel  
(bacteraemia) 

24 



General Introduction 

 
Figure 1.8. Nasopharyngeal epithelial cell and S. pneumoniae attachment to the cell. 

A) Electron microscopic image of a nasopharyngeal epithelial cell; B) Transmission electron 

micrograph of pneumococcal attachment to nasopharyngeal epithelial cells. Tonnaer et al. (171) 

(reproduced with permission from: Elsevier) 

 

Although most commonly associated with health, developing (acquisition) or 

established nasopharyngeal colonisation is a precondition and thus a necessary 

initial step in the development of disease. For example, pneumococcus can 

migrate to the ear to cause AOM, to the sinus to cause sinusitis, to the lower 

respiratory tract to cause pneumonia, and in some cases into the blood vessels 

through an epithelial surface to cause bacteraemia and thence invasive disease 

(172-174). However this happens only in a small percentage of children who are 

colonised. 

There are ecological associations between S. pneumoniae colonisation and 

disease. The peak incidence of bacterial AOM happens between 6 and 18 months 

of age, when the highest rates of S. pneumoniae colonisation occur. Studies of 

children with invasive pneumococcal disease conducted in Pakistan and The 

Gambia showed that more than 94% of children with invasive pneumococcal 

disease simultaneously carried S. pneumoniae, compared to 52% and 76% 

respectively in healthy controls (175, 176).   

Experimental challenge studies in animal models show that the nasal 

inoculation of pneumococci can lead to otitis media (177) or invasive disease 

(178, 179). A temporal relationship between S. pneumoniae acquisition and 

disease manifestation has been shown in prospective studies in children (35, 180-

182). Gray et al. (180) followed 82 infants from birth up to 2 years of age, with 

serial throat swabs, concluding that symptomatic infection usually occurred 

within 1 month of acquisition of a new serotype and was rarely associated with 

prolonged carriage. Another study assessing 329 infants, followed from 2 months 
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up to 2 years of age, with scheduled visits every 3 months up to 18 months of 

age, also showed that the majority of S. pneumoniae AOM events developed in 

association with newly acquired pneumococcus (35). In a third study, 213 

children were swabbed nine times between 2 weeks and 6 months of age showing 

that pneumococcal acquisition was significantly associated with office visits for 

non-specific respiratory infections (182). It was also reported that, at the time of 

S. pneumoniae infections such as AOM and pneumonia, there is higher prevalence 

of carriage among the affected children (148, 183), although others did not find 

such association (184, 185). Data on the association between colonisation density 

and disease in children are limited. High-density (≥106 colony-forming units/mL) 

nasopharyngeal colonisation with any bacterial pathogen in culture was more 

common in Vietnamese children with pneumonia (49%) than among children with 

acute bronchitis (29%) or healthy children (17%) (186). Recently Vu et al. showed 

that the median bacterial load of S. pneumoniae in nasopharyngeal samples, 

measured using a multiplex PCR, was substantially higher in children with 

radiologically confirmed pneumonia compared with healthy controls or children 

with other lower respiratory tract infections, although no clinically useful cut-offs 

could be established for the diagnosis of paediatric pneumonia (184). 

Furthermore, a recent study in adults showed that patients with community-

acquired pneumonia had higher density nasopharyngeal colonisation than 

asymptomatic controls, based on bacterial cultures and molecular methods, 

compatible with the hypothesis that higher bacterial loads in the nose may 

increase the risk of microaspiration thus resulting in lobar pneumonia (187).  

Although S. pneumoniae can be cultured from blood in a minority of children 

presenting with bacterial pneumonia, nevertheless, it is probable that, in most 

and perhaps all cases of pneumonia and AOM, the organisms first reaches the 

lung and the ear by spreading from the nasopharynx, overcoming the mucociliary 

and innate and specific immune protective mechanisms that are in place to 

prevent this. The transition from asymptomatic carriage to disease may happen at 

a critical nasopharyngeal colonisation density. We can speculate that high-density 

colonisation may be occurring either in an unstable early phase of colonisation 

not long after acquisition or later, coincident with respiratory viral infection, in an 

effort to transmit and that, in the latter case, micro-aspiration or migration to 

normally sterile sites and thus disease may be a by-product of the transmission 

phase of the organism's life cycle. A mechanistic explanation for this relatively 

rare occurrence, in the context of high prevalence of nasopharyngeal bacterial 
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colonisation, might lead to new strategies to prevent pneumonia and other 

bacterial infections.  

 

1.4 Nasopharyngeal colonisation and transmission to the community 

 

Colonised children serve as reservoirs for person-to-person transmission in 

the community (8, 96, 180, 188).  

Crowding, as occurs in DCCs, hospitals and prisons, increases the risk of 

horizontal spread of potential pathogens (163, 188-190). The high rates of 

pneumococcal colonisation and the crowding index found in young children are 

thought to be the most important factors for transmission of pneumococcal 

strains within the community (191). A prospective study conducted in Israel to 

determine the role of DCCs in the spread of S. pneumoniae to the community in 

general, evaluated the association between pneumococcal colonisation among 

young children cared for at home and among their older siblings who attended 

DCCs. The similarity between strains from the older and the younger siblings' 

isolates was noticeable and this was not found when isolates from other DCCs 

were compared (188). In a Finnish study of DCC attendees and their family 

members, it was shown that 66% of acquisitions of a new serotype in a family 

were associated with simultaneous or previous carriage of the same type in the 

child attending the DCC. Pneumococcal transmission was found to take place, in 

effect, as "micro-epidemics" driven by the DCCs (170). In a population-based 

cohort study, a correlation between the colonisation statuses of mothers and 

children was observed for S. aureus and H. influenzae (158). 

The nasopharynx is a major source of secretions. It is known that viral 

infections are the principle cause of most wintertime rhinitis in children and 

adults alike. This biological theory leads us to hypothesise that the efficiency of 

transmission of nasal bacteria may be enhanced by intercurrent rhinitis, when 

secretions, coughing and sneezing are increased.  

 

1.5 Pneumococcal conjugate vaccines 

 

S. pneumoniae is an encapsulated bacterium against which vaccine-induced 

protection can be conferred by antibodies directed against the polysaccharide 

capsule. 

After a trial with a killed whole-cell vaccine in 1911, the first purified 

27 



Chapter 1 

capsular polysaccharide vaccine was tested in the USA in the 1940s (192). 

Following these results, other preparations were formulated. The currently 

available pneumococcal polysaccharide vaccine (Pneumovax23®, Merck), contains 

purified capsular polysaccharides from 23 different serotypes (Table 1.4). Pure 

polysaccharide vaccines generate a T cell-independent, antibody-mediated 

response. Antibody responses to most pneumococcal capsular types are poor or 

inconsistent in children aged <2 years whose immune systems are, for unknown 

reasons, largely ineffective against these antigens (193). A double-blind, 

randomized, controlled trial of a 14-valent S. pneumoniae polysaccharide vaccine, 

showed lack of demonstrable benefit in young Australian children (194). 

Although it can induce mucosal immune responses (195), pneumococcal 

polysaccharide vaccine is thought to have little or no effect on pneumococcal 

carriage (196, 197). It also fails to induce immunological memory (198). This 

vaccine has been widely recommended for adults over 65 years and, despite little 

or no evidence of clinical efficacy, for children older than 2 years of age with 

high-risk medical conditions including immunosuppression, asplenia, chronic 

heart, lung and liver diseases, diabetes mellitus, cerebrospinal fluid leaks and 

cochlear implants on the basis that it provides broader serotype coverage than 

conjugate vaccines.  

Conjugating the polysaccharide antigens to a carrier protein, recruits T-cell-

help for B cell mediated immune responses, stimulating serotype-specific 

antibody production and immunological memory that can be demonstrated in 

early infancy, providing protection against disease caused by serotypes included 

in the vaccine. The first PCV, a seven-valent vaccine (PCV7) (Prevenar®, Wyeth), 

was licensed in the USA in 2000 and in Europe in 2001. The vaccine included 

polysaccharide antigens for the seven most common serotypes causing invasive 

disease in children in the USA (55), conjugated to a protein carrier CRM197, a 

non-toxic mutant of the diphtheria toxin (Table 1.4). It demonstrated clinical 

efficacy against vaccine-serotype invasive disease in two randomised, double 

blind, clinical trials in infants (199, 200). Immunogenicity studies demonstrated 

that infants receiving three doses 2 months apart (at 2, 4, and 6 months of age), 

successfully developed antibodies to all seven serotypes; studies including 

booster doses of polysaccharide at 12-15 months demonstrated that it could also 

induce immunological memory (201). The estimated vaccine coverage for invasive 

pneumococcal infections in children ≤5 years of age in Europe was below the 

estimates for the USA, ranging from 53.8% in a Spanish study to 85% in Denmark 
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(202, 203). Based on invasive disease isolates from 1999-2002, the potential 

coverage of PCV7 among infants in Portugal was 63.2% (204).  

Since the introduction of PCV7, WHO recommends that approval of new 

pneumococcal vaccines in terms of protection against invasive pneumococcal 

disease, should be based on non-inferiority data compared with PCV7, using a 

serological antibody threshold, demonstration of the functionality of the induced 

antibodies as measured by opsonophagocytosis (OPA) and demonstration of 

boostability (205). Based on these criteria, in 2009, a 10-valent pneumococcal 

conjugate vaccine (PCV10) (Synflorix®, GlaxoSmithKline Biologicals) (Table 1.4) 

was licensed (206, 207). This vaccine uses a recombinant version of protein D, a 

non-lipidated form of a highly conserved cell-surface lipoprotein of non-typeable 

H. influenzae as carrier for eight of the ten vaccine serotypes. For the other two 

serotypes, diphtheria and tetanus toxoids are the carrier proteins. This vaccine 

also showed efficacy against AOM caused by S. pneumoniae and non-typeable H. 

influenzae (208). 

In 2010, after studies showing that it was similarly immunogenic against the 

PCV7-containing serotypes and also against the new serotypes (209), a 13-valent 

pneumococcal conjugate vaccine (PCV13) (Prevenar13®, Pfizer) (Table 1.4), using 

the same protein carrier CRM197, was licensed and replaced PCV7. 

 

Table 1.4. Characteristics of licensed pneumococcal vaccines. 

Name and 

producer 

Date of 

availability   
Type Serotypes 

PPSV23, 

Merck  
1983 Polysaccharide 

1, 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 10A, 

11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 

20, 22F, 23F, 33F 

PCV7, 

Wyeth/Pfizer 
2000 Conjugate 4, 6B, 9V, 14, 18C, 19F, 23F 

PCV10, GSK 2009 Conjugate 4, 6B, 9V, 14, 18C, 19F, 23F +  1, 5, 7F 

PCV13, Pfizer 2010 Conjugate 
1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F, 23F +  

3, 6A, 19A 
 

PPSV, pneumococcal polysaccharide vaccine; PCV, pneumococcal conjugate vaccine; GSK, 
GlaxoSmithKline Biologicals 
 

By 2013, PCVs had been incorporated into routine childhood immunisation 

programmes in 96 countries (30). However, the chronology and dynamics of their 

adoption has varied as a result of diverse public health decisions and processes 
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in different jurisdictions. The original recommended vaccine schedule was three 

doses in infancy followed by a single booster dose in the second year of life – the 

so-called 3 + 1 schedule. The UK and subsequently other countries opted instead 

for a 2 + 1 schedule and both of these regimens are now in use.  

The introduction of PCV7 into the routine childhood vaccination schedule in 

several countries has dramatically reduced the incidence of invasive disease 

caused by vaccine serotypes (210-214) both in vaccinated and among 

unvaccinated groups as a result of herd immunity effects (214, 215). A post-

licensure surveillance of pneumonia incidence in Israel showed that PCV7 was 

associated with significant declines in radiologically confirmed alveolar 

pneumonia among children <6 month (-31%), 6–18 month (-41%) and 18–35 

month old children (-34%), respectively (216). A study from Brasil showed an 

approximately 25% decline in hospitalisations for pneumonia among children 

aged 2-24 months (217). A 2008-09 study in the UK reported a reduction in the 

incidence of community-acquired pneumonia of 19% in children aged <5 years, 

33.1% in those <2 years and a reduction of 38.1% in hospitalisations, compared 

to 2001-02 (218). In AOM, PCV7 has reduced the burden of disease and shifted 

pneumococcal serotypes and the distribution of otopathogens currently reported, 

with H. influenzae being now the predominant organism in some series (219-

221). Eight observational post-implementation database studies of PCV have 

reported an average of 19% reduction in visit rates for all cause AOM (222).  

In Portugal, PCVs have been used since 2001 through private sales and have 

not been included in the nationally funded immunisation programme. The 

original seven-valent vaccine was replaced in 2010 by PCV13 and, for a period of 

about one year (2009-2010), PCV10 was given to some children. Both the 2+1 

and 3+1 schemes have been commonly followed. All this, combined with the fact 

that vaccine uptake in Portugal is driven in part by the willingness and ability to 

pay, so that coverage will probably be much lower in areas of relative poverty, 

means that the situation in this country with regard to PCV usage is extremely 

complex and very uneven, placing Portugal in an unusual situation. A survey of 

immunisation records conducted in the north of Portugal in 2007 showed that the 

proportion of infants born in 2001 who received three PCV doses by 12 months 

of age was 23.7%. This rose steadily to 51.2% in 2005. The proportion of the 

2001 cohort who received four doses by 24 months was 20.2% and it was 43.1% 

for the 2004 cohort (223). National PCV sales data corroborate this picture, 

suggesting that the proportion of fully vaccinated children (based on a notional 
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3.5 doses per child) rose from around 32% in 2002 to around 65% in 2005 and 

79% in 2007, then falling slightly to 75% in 2008 and again to 62% in 2012 

(personal communication, Pfizer). Vaccination data from the Central Region of 

Portugal, obtained from the national vaccination registration system (SINUS – 

Modulo de vacinação), are presented in Table 1.5. 

 

Table 1.5. Vaccine coverage with ≥ 3 doses at 24 months of age in the Central Region of 

Portugal and Coimbra’s District by birth cohort, 2008-2011. 

Birth cohort Coimbra’s District (range) Central Region of Portugal 

2008  67% (26.3-84) 69% 

2009 71.6% (26.6-87.5) 71% 

2010 73.5% (38.1-100) 73% 

2011 71.1% (39.7-87.1) 73% 
 

Courtesy of Viveiros D. Source: Módulo de Vacinação do Programa SINUS, 2013 

 

A study to evaluate the impact of PCV7 use on serotypes causing invasive 

disease in Portugal, between 1999-2002 and 2003-2005, showed reduction in the 

proportion of vaccine types 4, 6B, 14 and 23F. Changes in serotype distribution 

compatible with the introduction of PCV7 were seen for children ≤5 years of age 

from 2003 onwards. Similarly, significant indirect effects on invasive disease in 

adults were noted, with reductions in the proportion of invasive disease caused 

by serotypes 4 and 14. These changes were accompanied by an increase in 19A 

in all age groups and in 7F in adults (224). A national surveillance programme for 

paediatric pneumococcal invasive disease reported a continuing decline of PCV7 

serotypes between 2006 and 2008, with non-vaccine types 1, 7F and 19A 

becoming the leading causes of invasive disease after seven years of PCV7 use 

(225). There are no available data regarding the impact of PCV on community-

acquired pneumonia or AOM in Portugal. 

 

1.6 The impact of pneumococcal conjugate vaccine on pneumococcal 

nasopharyngeal colonisation  

 

Like other bacterial capsular conjugate vaccines, such as those against H. 

influenzae type b and Neisseria meningitidis serogroup C (MenC), PCVs were 

developed and licensed based on their capacity to induce sufficient serum anti-

capsular antibodies in young children to protect them against developing invasive 
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disease in normally sterile sites – principally blood stream infection. However they 

also induce significant mucosal immune responses (195). At the time when the 

first widely used capsular polysaccharide-protein conjugated vaccine against H. 

influenzae type b was being introduced in European countries in the 1990s, the 

observation had already been made by researchers in Finland that these vaccines 

induced both IgG and IgA capsule-specific antibodies in mucosal secretions (226). 

Their potential to induce herd immunity by impacting upon colonisation and thus 

transmission of H. influenzae type b, as well as to induce direct protection 

against invasive disease in the vaccine recipient was anticipated and this 

expectation was soon borne out by observations that invasive H. influenzae type 

b disease disappeared more rapidly and more completely than could be explained 

by direct effects alone and also diminished in age groups who had not been 

immunised (227). The introduction of MenC conjugate vaccines and later PCVs 

into early childhood immunisation programmes has extended the impact of mass 

vaccination on paediatric nasopharyngeal ecology. These observations have 

begun to suggest that this class of vaccines actually owe their success, to a great 

extent, to mucosal immunogenicity and consequent herd immunity effects (227, 

228) and the primary mechanism of effectiveness of many vaccine programmes 

turns out to be their impact on colonisation and thus transmission. This 

phenomenon is now thought to be of great importance for the effectiveness of 

conjugate vaccine programmes at the population level and immunisation 

schedules are now being modified to take it into account. For example, in 

Portugal, the MenC programme was recently modified to discontinue vaccine 

doses in early infancy even though disease incidence peaked in infancy during the 

pre-vaccine era. 

The direct effect of the vaccine is the induced change in the risk of 

colonisation and disease caused by the vaccine types in the vaccinated individual. 

The indirect effect or herd immunity is the protection against vaccine type 

colonisation and thus disease in the unvaccinated population or in vaccinated 

individuals for example, after their direct protection has worn off or if it is 

incomplete. The indirect effect is mediated by a reduction of vaccine-type 

nasopharyngeal colonisation and thus transmission and disease.  

Since vaccinated individuals are also affected by indirect effects, direct 

effects can be measured only in pre-licensure efficacy trials or soon after 

implementation of the vaccine. Once vaccines are included in national 

immunisation programmes and widely used, direct effects can be measured only 
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combined with indirect effects. Pure indirect effects can still be measured among 

people who for any reason have never been vaccinated.  

A concern that vaccination against targeted serotypes might open ecological 

niches that would be filled by other serotypes was raised before introduction of 

PCVs (229, 230). 

 

1.6.1 Direct effects of pneumococcal conjugate vaccines on nasopharyngeal 

colonisation 

Several PCV efficacy trials (231-236) showed reduction of vaccine type 

nasopharyngeal colonisation, with a magnitude of the direct effect on vaccine 

type colonisation rates of around 50% (29). This decrease is thought to be 

achieved primarily by reductions in rates of acquisition and also lower 

colonisation density among those colonised, rather than by reduction in duration 

of carriage (234, 237). In a community-randomised controlled trial investigating 

the effect of PCV7 on nasopharyngeal colonisation among American Indian 

infants, children who had received PCV7 and were colonised with S. pneumoniae 

vaccine types, had lower density of colonisation than those who received the 

control vaccine and who were also colonised with vaccine types (234). No effect 

of PCV7 on the duration of colonisation by any serotype, at any age at sampling 

was shown, although modest differences in duration could have been missed 

because of low sampling frequency (234). 

Most trials have also shown that the prevalence of non-vaccine type 

colonisation increases among vaccinated subjects (232, 234, 236), with this 

colonisation rate consequently being higher in the pneumococcal-vaccine group 

than in the control group (234, 236). In the American Indian trial, this increase in 

non-vaccine type colonisation in the PCV7 group was not conclusively evident 

until 18 months of age (234). 

 

1.6.2 Indirect effects of pneumococcal conjugate vaccines on 

nasopharyngeal colonisation 

Since PCV decreases vaccine type nasopharyngeal colonisation prevalence 

and density in vaccinated children, this leads to decreased vaccine type 

transmission to both unvaccinated and vaccinated populations and consequently 

to generalised decreased colonisation with vaccine types. Reductions in vaccine 

type colonisation will necessarily also result in reduction of invasive disease 

caused by these serotypes in both vaccinated and unvaccinated individuals. 
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Indirect effects usually appear after widespread use of the vaccine for some time, 

however within communities with close contacts they may emerge promptly (29).  

A 2013 review summarising data from 14 countries, showed that 

introduction of PCV was consistently followed by significant decreases in vaccine 

type nasopharyngeal colonisation and invasive disease among age groups not 

targeted for vaccination (30). The same review also showed that although the 

greatest magnitude of reduction was observed in the first years following vaccine 

introduction, the decline continued thereafter. This is clearest at high vaccination 

coverage levels but is also seen to some extent with coverage as low as 40% and 

is observed across all age groups (30).  

Once indirect effects are observed, they affect both unvaccinated and 

vaccinated children and therefore, as vaccine types decline towards extinction, 

the differences between the two groups will progressively disappear over time 

until eventually they become indistinguishable.  

 

1.6.3 Replacement 

The first report of serotype replacement came from a randomised trial in 

The Gambia (229) showing that while vaccine types significantly declined in 

vaccinated infants, non-vaccine types significantly increased and as a result, the 

overall effect on pneumococcal nasopharyngeal colonisation rate was minimal. 

This study was followed by others in Israel (236), South Africa (232), The 

Netherlands (238) and a subsequent trial in The Gambia (233) that also 

demonstrated such replacement. 

Following widespread introduction of PCV7, several observational 

colonisation studies from the USA (239-241), Norway (126), France (242), Greece 

(243) and the UK (244), have also documented that vaccine types have 

significantly declined or disappeared and non-vaccine serotypes have increased, 

leaving overall colonisation rates virtually unchanged. However, complete 

disappearance of vaccine types with large increases in non-vaccine types has only 

been shown in highly-vaccinated populations to date (239). 

 

1.6.4 Effects of pneumococcal conjugate vaccine on strain diversity 

The diversity by serotype of S. pneumoniae nasopharyngeal colonisation in 

any population in the absence of any external pressure is thought to be relatively 

stable. However, if a population is challenged by vaccination and this leads to a 

reduction in the dominance of a few highly prevalent vaccine types, it has been 
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proposed that the serotype diversity will increase - with a larger number of 

circulating serotypes each, on average, at a lower proportion - and then take 

some time to return to the previous distribution, now with different serotypes 

predominating. The Simpson’s index of diversity (D) and the concept of a typical 

distribution for the ranked frequency of the serotypes were proposed by Hanage 

and colleagues as methods for assessing these changes (245). Two ecological 

studies in human populations, in the USA (245) and UK (246), have described 

changes in serotype diversity following introduction of universal vaccination. The 

group in the USA compared the serotype diversity of pneumococcal 

nasopharyngeal samples from children in Massachusetts, collected in 2001, 2004 

and 2007 with other collections from the pre-vaccine era, in order to describe the 

population effect of vaccine use. The diversity of each dataset was estimated 

using the D index. By 2004, coverage with three doses of vaccine among children 

aged 19-35 months in Massachusetts was close to 90% and has not dropped 

below 90% since then. The 2004 sample (4 years after vaccine introduction) was 

significantly more diverse than the pre-vaccine samples (D=0.946 versus 0.9181) 

while the 2007 sample showed no significant difference in diversity from the pre-

vaccine period (D=0.923), although now with different common serotypes. In 

2007 the carriage frequency of the non-vaccine type 19A was similar to that of 

the most common serotype in the pre-vaccine sample (~20%), suggesting that 7-8 

years after vaccine introduction, serotype replacement involving 19A may have 

been complete in Massachusetts, so that further marked increases in common 

serotypes were unlikely, either in colonisation or disease. In the UK study, where 

PCV7 was introduced to almost immediate high levels in 2006 with a catch up 

programme up to the age of 2 years, pneumococcal nasopharyngeal colonisation 

data in children from 2001-02 were compared with 2008-09 using the same 

index of diversity: for the 2001-2002 sample, D was 0.891 and increased 

significantly to 0.960 in 2008-09. The ranked frequency distribution of the 

serotypes, while similar in the prevaccination era compared to children in 

Massachusetts, changed to become more diverse after vaccination, suggesting 

that at the time of this analysis, PCV7-induced changes in pneumococcal 

population biology were still evolving. 

 

1.6.5 Modelling the effects of vaccination on S. pneumoniae nasopharyngeal 

colonisation  

As discussed in section 1.1.1.1, Cobey and Lipstich (67) have created a 
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model to predict changes in pneumococcal colonisation with age. They also state 

that this model can be used to predict changes induced by the use of PCV. Unlike 

naturally occurring immunity following colonisation, the vaccine reliably induces 

anticapsular immunity that is often protective against future carriage.    

Simulating vaccination in the model reproduced rapid and sustained 

replacement of vaccine types as seen in real life. Serotype diversity briefly 

increased in the few years after vaccination and the prevalence of total carriage 

fluctuated before approaching a new equilibrium. Whether the simulated serotype 

diversity or total carriage prevalence ultimately returned to prevaccine levels 

depended on the ranks of the targeted serotypes.  

Scenarios in which vaccine serotypes might re-emerge because of sustained 

reductions in anticapsular and/or non-specific immunity after vaccination, include 

vaccine uptake at a coverage just below what is required to eliminate 

transmission through herd immunity or re-introduction of those serotypes 

through immigration. 

 

1.6.6 Observational nasopharyngeal colonisation studies in Portugal 

Nasopharyngeal colonisation studies in Portugal started in 1996, in children 

aged 6 months to 6 years, in DCCs in Lisbon, reporting colonisation rates of 47% 

for S. pneumoniae (139). A repeat study performed in the same area in 1999, 

showed pneumococcal colonisation rates of 63% (247). In 1998-99, a one-year 

longitudinal study was performed in a single DCC. Of the samples obtained, 

61.4% carried pneumococci. Five PCV7 serotypes were identified, in decreasing 

order of abundance: 19F (34.2%), 23F (15.2%), 6B (11.3%), 14 (8.6%) and 9V 

(3.1%). Children were sequentially colonised with up to five serotypes, showing a 

high rate of acquisition and turnover of strains. Colonised children shared clones 

with others (131). Between 2001 and 2003 a study to evaluate the impact of PCV7 

on carriage of drug resistant S. pneumoniae was performed showing that 

colonisation rates were similar in the intervention (vaccinated with PCV7) and 

control groups (68%). In the intervention group the frequency of vaccine types 

decreased significantly (81% to 5%) and the frequency of non-vaccine types 

increased significantly (19% to 95%); in the control group, the colonisation rate 

with vaccine types remained high and the rate of non-vaccine types showed no 

consistent upward or downward trends (248). In 2006, when 57.4% of the 

children had received at least one dose of PCV7, a point-prevalence study to 

evaluate PCV7 impact on pneumococcal colonisation was performed in DCCs in 
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the Lisbon area and results were compared with a similar study carried out in 

2001. Colonisation rates of S. pneumoniae remained stable (64.9% in 2001, 68.7% 

in 2006), with the six vaccine types detected decreasing from 53.1% to 11.2% of 

all pneumococci and non-vaccine types increasing from 46.9% to 88.8%, showing 

that extensive serotype replacement occurred among both vaccinated and non-

vaccinated children, indicating that vaccination had reached a sufficiently high 

coverage to induce indirect effects in unvaccinated children. Non-vaccine types 1, 

6C, 7F, 15A, 16F, 21, 23A, 29 and non-typeable strains increased significantly 

(249).  

In Coimbra, we studied rates of pneumococcal nasopharyngeal colonisation 

for the first time in 2007 (75). In January-February a cross-sectional study was 

conducted among children aged 6 months to 6 years attending eight DCCs. 

Nasopharyngeal swabs were obtained from 507 children of whom 76.7% had 

received at least one dose of PCV7. The pneumococcal nasopharyngeal 

colonisation rate was 61.3%. Colonisation rates varied with age: a peak (76.2%) 

was observed among children 12–24 months and the proportion of colonised 

children decreased progressively through the older age groups. Colonisation also 

varied with the number of children attending each DCC: the likelihood of being 

colonised being higher in larger nurseries. Serotyping results showed that 20.7% 

were vaccine types, 70.8% non-vaccine types and 8.5% non-typeable. Serotype 19F 

was the second most frequent serotype, detected in 10.5% of positive samples for 

pneumococcus. The global carriage rate was not associated with vaccination 

status, but vaccine types were more frequently found among unvaccinated 

children. 

 

1.7 Interactions between bacterial pathogens 

 

The microbes colonising the nasopharynx are adapted to be able to survive 

in that environment and are able to evade clearance mechanisms including mucus 

and ciliae, to attach to the epithelium, to find nutrients and to avoid elimination 

by host immune mechanisms at least for long enough to be able to transmit 

onwards. During these processes, it is likely that they interact with other strains 

and species occupying the same niche. It is likely that a range of different 

interactions that can be negative, positive or both have developed and that such 

relationships might change under different circumstances such as nutrient 

supply, life cycle phase, presence of other species, state of the host's immune 
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responses and other variations between individual hosts.  

Understanding of the bacterial–bacterial interactions observed in the upper 

respiratory tract is limited. Several mechanisms have been proposed including 

production of hydrogen peroxidase (H
2
O

2
) by some bacteria which is lethal for 

others (250, 251) and interference with other species' structures that mediate 

adherence to the epithelium via host receptors. Examples include using 

neuraminidase to cleave the sialic acid residues that some bacteria require for 

attachment. Expression of phosphorycholine a cell-surface molecule that 

mediates attachment to host cell receptors may induce cross reactive specific 

host immune responses (252, 253). Involvement of the host immune system is 

also possible in other ways, either triggering it to combat other species or 

selectively evading it (254). An example of the latter is production of outer 

membrane vesicles that may be able to inactivate complement (255), a 

mechanism which might benefit other species as well as those generating the 

vesicles. However, interspecies interactions are likely to be more complex than 

the simple interaction between two species (256). 

There is growing evidence of the existence of nasopharyngeal biofilms 

created by several bacterial species, including pneumococcus (257), S. aureus 

(258), H. influenzae (259) and M. catarrhalis (260). Pneumococcal biofilms start 

with bacterial attachment to the substratum followed by bacterial aggregation 

and creation of a matrix composed of extracellular DNA, proteins and 

polysaccharides (261, 262), linking bacterial cells and attaching them to host 

cells. The pneumococcus can also be part of multi-species biofilms, for example 

including H. influenzae, with increased biomass (263). M. catarrhalis likewise 

produces more robust biofilms in the presence of H. influenzae strains (260). 

Interspecies biofilms are able to engender passive gene transfer of antibiotic 

resistance between strains (264) but the role of biofilms in competition or 

cooperation among microbial species requires further investigation. 

Numerous studies trying to establish and quantify the relationships which 

exist between the different bacterial species that colonise the nasopharynx have 

reached conflicting conclusions (Table 1.6). This may be due to differences 

among study samples in the many variables that may have an influence on 

colonisation including age, season, intercurrent viral infections and other clinical 

and demographic variables such as levels of exposure to other children, 

environmental smoke and antibiotics. An overview of published clinical studies is 

presented in Table 1.6. 
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1.7.1 Interactions between S. pneumoniae and S. aureus 

A negative association between carriage of S. aureus and S. pneumoniae 

(particularly vaccine-type pneumococci) has been demonstrated in cross-sectional 

studies in different paediatric populations (25, 70). However, other studies have 

not confirmed this (19, 24, 265). 

The mechanisms for this possible negative association between S. 

pneumoniae and S. aureus or why vaccine types should be distinct in this regard 

remain unclear.  

 

1.7.2 Interactions between S. pneumoniae, H. influenzae and M. catarrhalis 

In nasopharyngeal colonisation studies, with few exceptions (17), positive 

associations between S. pneumoniae, H. influenzae and M. catarrhalis are 

typically reported in healthy children (24, 266-268). A recent study showed that 

the densities of S. pneumoniae and H. influenzae in individual carriers were also 

positively correlated (269). 

 

1.7.3 Interactions between S. aureus and M. catarrhalis 

There are very few studies analysing interactions between S. aureus and M. 

catarrhalis: three showed no association (19, 24, 270), while one (267) showed a 

negative association. 

 

1.7.4 Other associations between bacterial species 

Other significant positive and negative associations between species have 

not been reported to date.  

The presence of a third bacterium may affect the outcome of competition 

between two species, making the process more complex. Interactions may, for 

example, shift from negative to positive. Pettigrew et al. described negative 

associations between H. influenzae and S. pneumoniae but this competitive 

interaction changed when H. influenzae and M. catarrhalis were both present 

(17).  

Different patterns of colonisation and interaction have been observed during 

symptomatic respiratory infection. Xu et al. found that co-colonisation with 

different bacteria was more frequent at the onset of AOM than in healthy children 

and that H. influenzae carriage was negatively associated with S. pneumoniae and 

M. catarrhalis at the onset of AOM but not in healthy children (270). 
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Table 1.6. Studies of associations between co-colonising bacteria in the nasopharynx in children. 

Study reference Study population  Sp & Sa  Sp & Hi Sp & Mc Hi & Mc Sa & Hi Sa & Mc 

Bogaert et al.; 
2004 (70) 

The Netherlands; 
3198 children; 1-19Y  

Negative 
(for VT) 

ND ND ND ND ND 

Regev-Youchay 
et al.; 2004 (25) 

Israel;  
790 children; ≤40M  

Negative  
(for VT) 

ND ND ND ND ND 

Zemlickova et 
al.; 2006 (271) 

Czech Republic; 425 
children; 3-6Y 

Negative No association No association ND No association ND 

Jacoby et al.; 
2007 (24) 

Australia; 167 
children, 1005 
samples; <2Y 

No association Positive  
(Aboriginal 
children only) 

Positive Positive No association No association 

Madhi et al.; 
2007 (23) 

South Africa; 271 
children; mean age 
5.7Y 

Negative 
(HIV uninfected 
children) 

Positive ND ND Negative  
(HIV uninfected 
children) 

ND 

Lee et al.; 2009 
(265) 

USA; 1986 children; 
3M-7Y 

No association ND ND ND ND ND 

Abdullahi et al.; 
2008 (69) 

Kenya; 450 children; 
<5Y 

ND Positive ND ND ND ND 

Jourdain et al.; 
2011 (19) 

Belgium; 333 
children, 830 
samples; 3-6Y 

No association Positive No association Positive Positive No association 

Quintero et al.; 
2011 (272)  

Venezuela; 250 
children; 2-5Y 

Negative 
(for VT) 

ND ND ND ND ND 

Verhaegh et al.; 
2011 (273)  

The Netherlands; 
1079 children, 2751 
samples; <24M 

ND ND ND Positive ND ND 

van Gils et al.; 
2011 (274) 

The Netherlands; 
1005 children; <24M 

Negative Positive 
(for VT) 

Positive 
(for VT) 

ND ND ND 

Kwambana et 
al.; 2011 (268) 

Gambia; 30 children, 
498 samples; <12M 

Negative Positive 
 

Positive ND ND ND 

Dunne et al.; 
2012 (266) 

Fiji; 161 children; 
17M 

ND Positive 
 

Positive Positive ND ND 

Bae et al;  
2012 (267) 

South Korea; 582 
children; 3-10Y 

Negative Positive 
 

Positive Positive Negative Negative 

Xu et al.; 2012 
(270) 

USA; 320 children;  
6-24M 

Negative No association Positive No No association No association 

van den Bergh et 
al.; 2012 (103) 

The Netherlands 
986 children; 6-24M 

Negative Positive Positive No association No association Negative 

Chien et al.; 
2013 (269) 

Peru; 360 children, 
446 samples; ≤35M 

Negative Positive ND ND No association ND 

M, months; Y, years; ND, not done; Sp, S. pneumoniae; Hi, H. influenzae, Mc, M. catarrhalis; Sa, S. aureus; VT, vaccine types. Adapted from Dunne et al. 
(275)  
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1.8 The impact of pneumococcal conjugate vaccines on other potential 

pathogens colonising the nasopharynx  

 

Given that different bacterial species may interact, vaccines that target 

specific bacteria and modify colonisation rates and densities may also modify 

polymicrobial interactions in the nasopharynx and thus affect other species.  

The suggested negative association between carriage of S. pneumoniae 

vaccine types and S. aureus has raised concerns that widespread use of PCVs and 

the consequent reduction in vaccine types might be followed by an increase in S. 

aureus colonisation and associated disease (25). In a randomised controlled trial 

of PCV7 in The Netherlands, an increase in S. aureus colonisation was observed at 

12 months of age compared with unvaccinated controls but not at the other time 

points examined (274). A follow-up study comparing colonisation levels from this 

trial with two additional time periods following PCV7 introduction, showed S. 

aureus colonisation rates were significantly higher in 11 month old infants 

following widespread vaccine use, but no differences were observed at 24 months 

of age (276). Observational studies that have evaluated bacterial colonisation 

before and after PCV introduction report inconsistent results: some found 

increased prevalence of S. aureus (23, 276, 277) and for others it was stable 

(126, 266, 278). Cross sectional studies performed in Massachusetts between 

2003–04 and 2006–07, in the setting of widespread use of PCV and decreasing 

colonisation with vaccine types, found that S. aureus colonisation among children 

3 months to <7 years did not change significantly (15.3% to 14.1%) (265).  

Regarding other potential pathogens, a randomised controlled trial in Fiji 

showed that infant pneumococcal vaccination had no effect on overall 

nasopharyngeal colonisation rates or densities of H. influenzae or M. catarrhalis 

at 17 months of age (266). A trial in The Netherlands, reported that PCV7 had no 

effect on H. influenzae colonisation and that M. catarrhalis colonisation was 

lower compared to unvaccinated controls at 12 months of age (277). However 

these two reports are from randomised controlled trials and effects might be 

different once more widespread indirect effects have started to become apparent. 

Spijkerman et al. described an increase in carriage rates of H. influenzae, 3 and 

4.5 years after PCV7 implementation in The Netherlands, with no consistent 

changes for M. catarrhalis (276). Table 1.7. summarises studies of the impact of 

pneumococcal conjugate vaccines on nasopharyngeal colonisation of S. aureus, 

H. influenzae and M. catarrhalis. 
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Table 1.7. Studies of the impact of pneumococcal conjugate vaccines on nasopharyngeal colonisation of H. influenzae, M. catarrhalis and S. 

aureus. 

Study reference Country Study description Sa Hi  Mc 

Madhi et al.;  
2007 (23) 

South Africa Randomised controlled trial 
of PCV9  

No differences between 
PCV9 and placebo groups 

No differences between 
vaccinated and controls 

ND 

Prymula et al.; 
2009 (235) 

Czech 
Republic and 
Slovakia 

Randomised controlled trial 
of PCV11 

ND No differences between 
vaccinated and controls 

ND 

Lee et al.;  
2009 (265) 

USA Prospective observational 
studies 2-3Y and 5-6Y post-
PCV7  

Carriage rate: stable (14%) ND ND 

van Gils et al.; 
2011 (277) 

The 
Netherlands 

Randomised controlled 
trial of PCV7 

Carriage rates: 10% in the 
2+1 dose group and 5% in 
unvaccinated controls at 
12M 

No differences between 
vaccinated and controls 

Carriage rates: 61% in the 
2+1 dose group and 68% in 
unvaccinated controls 
at 12M 

Prymula et al.;  
2011(279) 

Czech 
Republic 

Randomised controlled 
trial of PCV10 

ND Carriage rates: 10% in the 
PCV10 group compared to 16% 
in unvaccinated controls at 
24–27M 

ND 

Dunne et al.; 
2012 (266) 

Fiji Randomised controlled 
trial of PCV7 with or 
without 23vPPS 
booster 

ND No differences between 
vaccinated and controls 

No differences between PCV7 
and unvaccinated controls 

Ho et al.;  
2012 (280) 

Hong Kong Cross-sectional study No difference between 
PCV7 vaccinated and 
unvaccinated children 

ND ND 

Dukers-Muijrers 
et al.; 2012 (281) 

The 
Netherlands 

Cross-sectional study No difference between 
PCV7 vaccinated and 
unvaccinated children 

ND ND 

Spijkerman et al.; 
2012 (276) 

The 
Netherlands 
 

Cross-sectional studies, 3Y 
and 4-5Y post-PCV7, 
compared to pre-PCV7 

Carriage rates: 9% and 14% 
in post-PCV7 time periods 
compared to 5% in pre-
PCV7 at 11-12M 

Carriage rates: 65% and 65% in 
both post-PCV7 time periods 
at 11–12M compared to 46% 
pre-PCV7; 73% and 76% post-
PCV7 compared to 52% pre-
PCV7 at 24M 

Carriage rates: 80% 4–5Y 
post-PCV7 compared to 59% 
pre-PCV7 at 24M 

 

M, months; Y, years; PCV7, 7-valent pneumococcal conjugate vaccine; PCV9, 9-valent pneumococcal conjugate vaccine; PCV11, 11-valent pneumococcal 
conjugate vaccine; 23vPPS, 23-valent polysaccharide vaccine; Hi, H. influenzae, Mc, M. catarrhalis; Sa, S. aureus; ND, not done. Adapted from Dunne et al. 
(275) 
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1.9 Interactions between bacterial pathogens and respiratory viruses 

 

Viral infection results in vasodilation and increased vascular permeability of 

the nasal mucosa which cause rhinorrhea and cholinergic stimulation leading to 

increased mucous secretion and sneezing (98). Some viruses like influenza virus 

and adenovirus can also cause extensive damage to the respiratory epithelium 

(98). 

The mechanisms by which viruses may influence bacterial colonisation are 

numerous and diverse: viral presence may render the epithelium more 

susceptible to bacterial adherence, disruption of the epithelial barrier, up-

regulation of adhesion proteins, production of viral factors that increase bacterial 

adherence and interference with the immune system may all occur (256, 282). By 

taking advantage of the presence of the virus, the bacteria may proliferate and 

stimulate or augment rhinitis, mechanisms that may increase bacterial 

transmission efficiency, but which may also play a role in causation of disease 

including pneumonia and AOM and promote development of host immunity.  

Interaction between viruses and bacteria in the pathogenesis of respiratory 

tract infections has been extensively reported in the literature in particular the 

synergism between influenza virus and S. pneumoniae (282). Other positive viral-

bacterial associations have been described in human studies: for example 

between human rhinovirus and S. pneumoniae (102), human rhinovirus and M. 

catarrhalis (283), human rhinovirus and H. influenzae and M. catarrhalis (101) 

and between adenovirus and H. influenzae and M. catarrhalis (101). 

Children are susceptible to secondary bacterial infections during viral upper 

respiratory tract infections and significant morbidity due to pneumococcal co-

infection is associated with viral respiratory infections (284-286). It was shown in 

animal models that respiratory syncytial virus and influenza virus can alter the 

immune system and enable S. pneumoniae to spread from the nasopharynx into 

the lungs (282, 287). In addition, it was observed that children with pneumonia 

carried significantly more S. pneumoniae when respiratory syncytial virus, 

influenza or rhinoviruses were present compared with children with pneumonia 

without viruses (184). Xu et al. found that among young children, viral upper 

respiratory tract infections were present at onset of AOM in 93% of the cases 

(270). 

Viral vaccines (e.g. influenza vaccine) might therefore have an impact on 

incidence of bacterial diseases. 
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Although most studies point towards viral predisposition to bacterial 

infection and little information exists regarding bacterial predisposition to viral 

disease, some report a possible bidirectional synergism with bacterial infection 

increasing the susceptibility to a consecutive viral infection (288, 289).  

In a double-blind, randomized, placebo-controlled trial in South-Africa, it 

was demonstrated that the 9-valent pneumococcal conjugate vaccine, in addition 

to reducing pneumococcal disease, substantially prevented viral-associated 

pneumonia, suggesting that pneumococcus has a major role in the development 

of pneumonia associated with these viruses and that viruses contribute to the 

pathogenesis of bacterial pneumonia (290). Epidemiological analysis of 

pneumonia hospitalisations before and after PCV7 introduction in the USA 

demonstrated that vaccination was associated with reduced incidence of 

influenza-associated pneumonia among children in addition to reduction in 

pneumococcal pneumonia (215). 

Further information on the associations between nasopharyngeal bacterial 

colonisation with different bacterial species and intercurrent respiratory viral 

infection may contribute to understanding the complex network of relationships 

that exists connecting these microbial pathogens and infections in the human 

host. 

 

1.10 Nasopharyngeal colonisation and acute otitis media  

 

Acute otitis media is one the most common bacterial infections among 

children (291). The incidence is greatest in the first 2 years of life and S. 

pneumoniae, non-typeable H. influenzae and M. catarrhalis are the major 

bacterial pathogens (292, 293). Recurrent AOM is common, with as many as 46% 

of children having three or more episodes before their third birthday (293). 

Added to this substantial morbidity, the fact that this diagnosis drives a large 

proportion of antibiotic prescribing to children and thus emergence of antibiotic 

resistant strains, gives this condition very substantial public health significance.  

Nasopharyngeal colonisation by potential middle-ear pathogens is presumed 

to precede AOM. A strong relationship between the frequency of colonisation and 

otitis media for each pathogen has been reported (4). Several studies have shown 

that if S. pneumoniae or H. influenzae are not found in the nasopharynx during 

AOM, it is unlikely that they would be found in the middle ear fluid (294-296). 

Another study to evaluate nasopharyngeal culture in predicting the aetiology of 
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AOM in children showed that the same pneumococcal serotype grew from both 

the nasopharynx and the middle ear fluid in all but one of the 158 events in 

which pneumococcus was serotyped in both of the samples (181) and S. 

pneumoniae from the ear showed a close genetic relatedness with their 

nasopharyngeal counterparts (297). It was also shown that the rate of bacterial 

nasopharyngeal colonisation is higher during AOM (148, 298) and that co-

colonisation with different bacteria is more frequent at the onset of AOM than in 

healthy children (270). However other studies have reported similar 

nasopharyngeal rates in healthy children and during AOM (185, 299). An 

association between nasal bacterial load and the presence of and severity of 

suppurative otitis media was reported (300).  

Obtaining a middle ear fluid (MEF) sample when the tympanic membrane is 

intact involves tympanocentesis or myringotomy, procedures that cause 

discomfort. Spontaneous rupture of the tympanic membranes is a complication of 

AOM that enables a culture of the draining MEF to be obtained. A study to 

evaluate the reliability of the microbiology of spontaneously draining AOM was 

performed comparing the bacteria isolated from the external ear canal associated 

with AOM with spontaneous otorrhoea (AOMSO) with those isolated from the 

middle ear fluid, in children with uncomplicated AOM (301). The authors 

concluded that culturing the otorrhoea material is a simple and practical method 

for obtaining information regarding the potential cause of the AOM. However, 

this method is 28% less sensitive for positive culture compared to aspiration of 

the middle ear. It was also reported that, compared to AOM, the relative 

importance of S. pneumoniae and S. pyogenes in AOMSO was higher than that of 

H. influenzae and M. catarrhalis (302) and that there was no correlation between 

the bacteria isolated and duration of otorrhoea (301). A study by Ruohola et al. 

evaluated the dynamics of bacteria in the middle ear during the course of AOM 

with tympanostomy tube otorrhoea, suggesting evolution over time with different 

species detected in successive samples (303). 

 Viral infections may render the middle ear susceptible to infection (284). 

Virus-induced inflammation of the nasopharynx, with production and release of 

cytokines and inflammatory mediators, which also extends to the Eustachian tube 

provoking dysfunction, may alter the equilibrium allowing bacteria and/or viruses 

to invade the middle ear. 

More than one bacterial species can simultaneously infect the middle ear in 

AOM (220, 302, 304). Recurrent, non-responsive and chronic cases of otitis 
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media are often polymicrobial with biofilm formation, with frequent involvement 

of non-typeable H. influenzae (305) and pneumococcal serotypes of lower 

virulence and commonly carried by healthy children (306). 

As described previously, conventional pneumococcal culture and serotyping 

methods underestimate multiple-serotype detection. Microarray-based serotyping 

has not previously been applied to biological samples from the middle ear. 

More detailed studies of the complex microbiology of the middle ear in 

AOMSO, the relationships that exist between the microbiology of the 

nasopharynx and middle ear in this condition and evaluation of the differences in 

nasopharyngeal ecology that exist between healthy children and children with 

AOM may have the potential to contribute to understanding disease pathogenesis 

and uncover new strategies for prevention through use of bacterial and viral 

vaccines. 
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Objectives 

 

The studies presented in this thesis were driven by the knowledge that 

nasopharyngeal colonisation is a prerequisite for disease and the source of 

transmission between individuals, that a complex microbiota shares this 

ecological niche and that PCVs impact on disease to a great extent through their 

effects on colonisation and transmission.  

 

The unifying hypothesis is that S. pneumoniae nasopharyngeal colonisation 

is affected by different vaccination strategies and by interaction with other 

bacterial species and viruses present in the same niche. These dynamics may be 

important for transmission between individuals and so vaccine effectiveness and 

in the pathogenesis of common childhood respiratory infectious diseases.  

 

The specific questions addressed in this thesis are: 

1. Is the impact of immunisation with PCV7 on nasopharyngeal colonisation 

by S. pneumoniae in settings with lower, slowly rising and heterogeneous 

vaccination coverage different from those seen in countries where PCVs have 

been implemented consistently over time, evenly geographically and at high 

rates? 

2. In this context, are there relationships between bacterial colonisers, 

viruses and rhinitis that may contribute to successful colonisation and 

transmission within the community?  

3. Is the nasopharyngeal ecology in children with acute otitis media with 

spontaneous otorrhoea distinct from that in healthy children in the same 

community, in ways that may be associated with the pathogenesis of the disease? 

 

Three main objectives were formulated. First, our goal was to survey 

changes in S. pneumoniae nasopharyngeal colonisation in healthy pre-school 

children in Coimbra, occurring in the context of moderately high paediatric 
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uptake rates of PCV, with special reference to serotype replacement and diversity. 

Second, we sought to evaluate the prevalence of other bacteria and viruses in the 

nasopharynx of healthy children as well as specific associations between these 

pathogens and relationships with rhinitis. Finally we aimed to analyse 

nasopharyngeal ecology during disease and compare it with that in health. 

 

The overarching goal of the research presented in this thesis is to increase 

our understanding of nasopharyngeal ecology in the era of conjugate vaccines 

that induce mucosal immune responses to nasal bacteria. The results may 

advance our understanding of the effect of PCV use on nasopharyngeal 

colonisation and of the interactions between microorganisms, transmission 

between individuals and disease pathogenesis, in preschool children. 
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Pneumococcal carriage in Portugal 

2.1 Abstract 

 

Objectives: To track ongoing trends in pneumococcal (Sp) serotype carriage 

under the selection pressure of moderate pneumococcal conjugate vaccine (PCV) 

use, children in a community in Portugal were studied in the same months in 3 

consecutive years.  

Methods: Nasopharyngeal specimens were collected (children aged 3 

months to <7 years) in 8 urban daycare centers in February 2008 (n=561) and 

2009 (n=585). Sp isolates were serotyped.  

Results: While demographics were similar in 2008-2009 and a previously 

reported sample in 2007, PCV coverage (at least one dose) in the children studied 

rose from 76.5% to 84% although national coverage was lower than this. Sp 

carriage fell from 61% to51% with a concomitant fall in PCV7 serotype carriage 

from 12.1% to 4.3%. Remaining PCV7 serotypes declined to near (23F) or totally 

(6B, 14) undetectable levels except 19F which persisted unchanged in around 4% 

of children. Although carriage of 3 and 6C rose, there was no net increase in non-

PCV7 serotypes and no progressive trend in serotype diversity. 

Conclusions: Ecological changes induced by PCVs where uptake is moderate 

appear to be different from high usage settings. We report falling Sp carriage due 

to PCV7 serotype disappearance with persistence of 19F and no ongoing net 

replacement after several years of PCV7 use and slowly rising uptake.  

 

Keywords: Streptococcus pneumoniae, nasopharyngeal colonisation, 

replacement, serotype 19F 
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2.2 Introduction 

 

Pneumococcal (Sp) conjugate vaccines, although not included in the 

nationally funded immunisation schedule, have been used in Portugal since the 

seven-valent vaccine containing serotypes 4, 6B, 9V, 14, 18C, 19F and 23F (PCV7) 

was licensed in Europe in 2001. Evidence from a survey of immunisation records 

conducted in the north of Portugal shows that the proportion of infants born in 

2001 who received three doses by 12 months of age was 23.7%. This rose 

steadily to 51.2% in 2005.  The proportion of the 2001 cohort who received four 

doses by 24 months was 20.2% and 43.1% for the 2004 cohort (223). No such 

data are available for the central region of Portugal, where Coimbra is situated, 

but coverage rates for other vaccines are similar for both regions. National PCV7 

sales data corroborate this picture suggesting that the proportion of fully 

vaccinated children (based on the assumption that immunised children receive, 

on average, 3.5 doses) rose from around 32% in 2002 to around 65% in 2005 and 

79% in 2007, then falling slightly to 75% in 2008 (personal communication, 

Pfizer). In April 2009, after the completion of the study reported in this paper, a 

10-valent vaccine containing serotypes 1, 5 and 7F (PCV10) became available and 

some infants received it instead of PCV7 that year, while notional PCV7 coverage 

fell to 62%. From January 2010 a 13-valent vaccine adding serotypes 3, 6A and 

19A (PCV13) replaced PCV7 and the large majority of immunised infants have 

received PCV13 since then (notional coverage in 2010 was 58%) (personal 

communication, Pfizer).   

Researchers in the US have reported disappearance to near extinction of Sp 

serotypes contained in the vaccine from paediatric carriage over a period of 

around 5-7 years under selection pressure of mucosal immunity induced by 

widespread primary schedule immunisation (239, 245). However, the chronology 

and dynamics of adoption of PCV immunisation has varied as a result of diverse 

public health decisions and processes, healthcare delivery and funding systems in 

different countries. 

Communities with similar serial cross-sectional surveys to those reported 

here include Massachusetts in the USA, Southampton in the UK and Nice in France 

(239, 242, 244). In the USA and UK vaccine use went up rapidly and stayed up. In 

Massachusetts, the percentage of children ≥12 and <12 months of age, 

respectively, who received at least one vaccine dose was 38%/83% in 2001, 

79%/96% in 2004 and 98%/98% in 2007. Total Sp carriage rates in children aged 3 
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months to <7 years in primary care practices were 27% in 2001-02, 23% in 2003-

04 and 30% 2006-07. Over this period, the proportion of children that carried 

non-PCV serotypes rose from 15% to 29% (64%-97% of isolates) (239). PCV7 was 

introduced in the UK in September 2006 as a two dose priming course and a 13 

month third dose booster. National coverage at 12 months (2 doses) was 83.7% in 

2007-2008 rising to 92.9% in 2009-2010, exceeding 92% in all regions apart from 

London where it was 86.5%. By 2009-2010 coverage at 24 months (3 doses) had 

reached 87.6% (307). In the 3 year study (2006-2009) of children aged ≤4 years, 

in the paediatric outpatients department of a large teaching hospital in 

Southampton, total Sp carriage rates were 32.2%, 27.1% and 31.1% while the 

proportion of isolates that were non-PCV7 serotypes rose from 46.2% to 83.3% 

(244). 

In France, PCV7 became available and its cost reimbursed from December 

2002. Results of a series of national surveys conducted annually since 2006 show 

lower coverage which rose more slowly than in the USA and UK, with only 64% 

having received at least one dose by 12 months in 2006, rising progressively to 

86% in 2008 and complete course coverage at 16-24 months peaking in 2008 at 

only 68% (308). In a detailed study in children aged 3-40 months attending day 

care centres (DCCs) in Nice, from January to March 1999, 2002, 2004, 2006 and 

2008, total Sp carriage rates fell from 54% to 45.2% while the proportion of 

isolates that were PCV7 serotypes fell from 77% to 4%. Vaccine coverage (≥1 dose) 

in the study population rose from 37.1% in 2004 to 90.1% in 2008 (242).  

The dynamics of the impact of immunisation with this vaccine on the 

ecology of nasopharyngeal colonisation by Sp in Portugal and other settings may 

differ from those seen in countries where it has been implemented more 

consistently over time, more evenly geographically and at higher rates. 

Previously, we reported carriage rates by age and serotype in a cross-sectional 

study performed in pre-school DCCs in Coimbra, Portugal in 2007 (75). We 

subsequently conducted two closely similar follow-up cross sectional studies, at 

the same time of year (late winter), in similarly-aged samples of children in DCCs, 

in the same city, in 2008 and 2009, before the newer vaccines became available, 

in order to track trends in serotype carriage over time. 

 

2.3 Methods 
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2.3.1 Recruitment, data collection, sampling and storage  

Cross-sectional nasopharyngeal specimens were collected from children 

aged 3 months to <7 years, in 8 urban DCCs (5 sites in all 3 years, 1 in 2007 

only, 1 in 2008 and 2009 and 1 in 2009 only) in Coimbra, a city in the central 

region of Portugal, in February 2008 and 2009. All subjects were healthy enough 

to attend nursery although some had intercurrent upper respiratory infections. 

The study was approved by the Ethics Committee of Hospital Pediátrico de 

Coimbra. Parents or guardians provided written informed consent for their child 

to participate in all cases. 

One week before sample collection, parents or guardians of participating 

children completed a questionnaire and the following information was obtained: 

age, sex, number of children in the household who were <6 years of age, 

presence of smokers at home, use of antibiotics in the preceding month and 

dates of all PCV7 doses received.  

 

2.3.2 Laboratory methods 

Nasopharyngeal swabs were taken by the same trained nurses each year and 

transported to the local microbiology laboratory. In 2008 (as in 2007), initial 

isolation of Sp colonies was undertaken locally in Coimbra, thus swabs were 

transported in Stuart transport medium and plated within 12 hours after storage 

at 4oC. In 2009, the swabs were transported to the UK for isolation and 

identification of Sp and other pathogens and were, therefore, inoculated into 

STGG and stored at -80oC prior to culture. As reported by O’Brien et al. (110), the 

two methodologies are expected to have closely similar sensitivities. Both 

laboratories used standard microbiological techniques for the isolation and 

identification of Sp: briefly, cultures were inoculated onto 5% blood agar plates 

(Becton-Dickinson, Portugal & E & O Laboratories Ltd, UK) and incubated at 37oC 

in 5% carbon dioxide for 24 hours. Plates were examined for the presence of Sp 

with identification determined by morphology, optochin sensitivity, gentamicin 

resistance (UK only) and bile solubility. When suspected Sp colonies with greater 

than one morphology were observed, each type was purified for further testing. 

Isolates were stored at -80oC.   

Sp isolates were serotyped using the Quellung reaction (anti-serum provided 

by the Statens Serum Institute, Copenhagen, Denmark), a multiplex PCR method 

(adapted from Pai et al.) (309) or a combination of both. PCR was undertaken on 

crude DNA extracts that were mixed with 3.3µL ImmoMix (Bioline, UK), 1µL 
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magnesium chloride (Bioline, UK), 0.5µL dNTPs (Invitrogen, UK), various 

combinations of oligonucleotides (Operon) and water to a final concentration of 

25µL.  Reactions were run on a DNA engine (PTC-225); 94˚C for 45 seconds, 

54˚C for 45 seconds, 65˚C for 2 min 30 seconds for 30 cycles followed by 10 

minutes at 65˚C.  The reactions were run on a 2% gel containing ethidium 

bromide for 45 minutes at 120 V and photographed using transilluminator 

(Biorad, UK).  All reactions that were positive for serogroup 6 or 15 were typed by 

Quellung to give a serotype.  All isolates that were identified as serotype 6A 

underwent PCR using 6C primers and methods previously published (310). The 

isolates that were not typeable by either Quellung or multiplex PCR were 

confirmed as Sp using detection of the autolysin gene according to the published 

method (311). 

For some analyses, serotypes were grouped into one of three categories:  

- PCV7 serotypes (VT): those that matched serotypes included in the 7 valent 

vaccine (4, 6B, 9V, 14, 18C, 19F and 23F) 

- Non-PCV7 serotypes (NVT): all other serotypes 

- Non-typeable (NT). 

 

2.3.3 Statistical analysis 

Standard descriptive statistics and Chi-square tests were used to 

characterise the sample and assess trends in overall carriage and carriage of 

PCV7 and non-PCV7 serotypes and serotype 19F. Simpson’s index for diversity 

was calculated to analyse the diversity among serotypes in each sample (312). 

Confidence intervals for this index were computed at 95%. 

 

2.4 Results 

 

561 and 585 children were enrolled respectively in 2008 and 2009. The 

demographic data of these children are shown in Table 2.1 and compared with 

those enrolled into the study performed in 2007 (75). These features were similar 

across the three years, although the proportion of children having one or more 

siblings <6 years old at home was higher and the proportion that received 

antibiotics in previous month was lower in 2009. The proportion of subjects who 

had received at least one dose of the PCV7 vaccine showed a significant upward 

trend (76.5% to 84%) over the 3 years. 
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Rates of Sp colonisation varied with age and were highest in the group aged 

< 12 months in 2008 and in those aged 12–24 months in 2009, falling thereafter 

with increasing age except that in 2009, carriage was slightly commoner in 5 

than 4 year olds. 

 

Table 2.1. Characteristics of the 2008 and 2009 subjects (compared with the 2007 

sample). 

 
2007 (for 

comparison) 
2008 2009 P 

Number of subjects 

recruited 
507 561 585 0.055 

Male (%) 51.7 55.1 52.5 0.500 

Aged <24m, 24- 48m, 

>48m (%) 
24, 37, 39 22, 36, 42 2, 37, 41 0.844 

Age (median and 

range) m 
41 (6-81) 43 (3-77) 42 (4-74) 0.800 

One or more siblings 

<6 years old at home 

(%) 

29.2 29.7 38.7 0.001 

One or more smokers 

at home (%) 
30.1 27.0 28.6 0.528 

Received antibiotics in 

previous month (%) 
24.9 26.8 18.1 0.001 

Doses of PCV7 received 

(%): 0/1/≥2 
23.5/4.3/72.2 17.6/1.8/80.6 16.0/1.2/82.8 <0.001 

   

  m: months; PCV7: 7 valent pneumococcal conjugate vaccine 

 

The overall proportion of children in whose swabs Sp was detected was 55% 

(311/561) in 2008 and 51% (300/585) in 2009. This compares with 61% 

(311/507) in 2007 (p=0.004) (Figure 2.1.).  

The proportion of PCV7 serotypes also shows a significant downward trend 

over time such that the fall in the overall carriage rate is accounted for by their 

disappearance (p<0.0001) (Figure 2.1.), apart from 19F which persists (Figure 

2.2.). In contrast to several other published studies (126, 239, 245, 246), no 

overall compensatory rise in non-PCV7 serotypes is seen (p=0.792) (Figure 2.1.). 

Among the PCV7 serotypes, only 6B, 14, 19F and 23F (the latter, one isolate only) 
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had been detected in the 2007 sample (75). Serotypes 4, 9V and 18C were never 

detected among these children (75). By 2009 both 6B and 23F were no longer 

found and only one isolate of type 14 (in a child aged 63 months) was identified 

among 585 children (Figure 2.2.). In contrast, serotype 19F continued to circulate 

at a frequency of between approximately 3.5% and 6% in this population 

(p=0.170). Of the 19F carriers, 65-75% had received at least one dose of vaccine 

and there was no obvious trend in their age over the period studied. 

 

 

Figure 2.1. Proportions of all children studied carrying pneumococcus in 2008 and 2009 

compared to 2007 data. 

Bars are subdivided into vaccine types (VT – 4, 6B, 9V, 14, 18C, 19F and 23F), non-vaccine types 

(NVT - all others) and non-typeable isolates (NT) 

 

Regarding the non-PCV7 serotypes, there was no overall rise, although the 

numbers of isolates of some of them increased from 2008 to 2009, most notably 

serotypes 3 (2,22) and 6C (4,16) (Figure 2.2.). Other serotypes which are included 

in the newer vaccines fluctuated over the three years but did not show obvious 

trends (1 (5,0,7); 6A (12*,32,8) *includes 6C; 7F (1,0,3); 19A (18,41,31). Other 

frequently found serotypes were 15B/C, 23A, 23B, 11A, 21, 16F, 35F and 24F. All 

3 of the serotypes most commonly associated with invasive disease during this 

period in Portugal (1, 7F and 19A) were detected (225).  

The proportion of children colonised with non-typeable Sp was 5.2%, 4.5%, 

and 4.4% in 2007, 2008 and 2009, respectively (Figure 2.1.). 
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Figure 2.2. Proportions of all children studied carrying PCV7 serotypes in 2008 and 2009 

compared to 2007 (data for 4, 9V and 18C are not shown as none were detected) and 

proportions carrying the non-PCV7 serotypes (additional five PCV13 serotypes and others) 

detected in 2008 and 2009. 

 

The total number of different serotypes identified was 26 in 2008 and 27 in 

2009 having been 27 in 2007. The corresponding Simpson indices (D) of diversity 

were: 2007 - D = 0.9366, 95% CI = (0.9361, 0.9372); 2008 - D = 0.9220, 95% CI = 

(0.9213, 0.9226); 2009 - D = 0.9405, 95% CI = (0.9400, 0.9410), confirming, 

despite an apparent transient fall in diversity in 2008, no progressive trend over 

this period. This is illustrated in the ranked frequency distribution curves (Figure 

2.3.) which are presented so as to permit visual comparison with two recent 

papers which have shown data in this way (245, 246). Relative to the other curves 

which almost superimpose, the 2008 curve shows greater relative abundance of 

the commonest serotypes (left end of curve) and lower frequency of the more 

uncommon ones (right end).  

 

  

PCV7 serotypes Additional PCV13 serotypes 
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Figure 2.3. Ranked frequency distribution curves for the commonest 20 serotypes in each 

year. 

PCV7 serotypes are shown as open symbols. To permit comparison with 2007 data when they were 

not distinguished and with previous publications using this approach, data for serotypes 6A and 6C 

and for 15B and 15C were combined 

 

2.5 Discussion 

 

The impact of PCV programmes depends heavily upon indirect effects due to 

changes in nasal colonisation and transmission between immunised children and 

their contacts. These changes may differ substantially from one place to another. 

As plans progress to roll out PCVs globally into more diverse settings, there is a 

pressing need to understand the main determinants of the size, shape and 

duration of the population effects of these immunisation programmes, to permit 

more accurate predictions and better informed choices about future vaccine 

formulations to be made. 

Several other groups have documented changes in the ecology of Sp 

serotypes carried by children over time during the era of PCV7 use in their 

communities. In Massachusetts, USA and Southampton, UK, where immunisation 

rates rose rapidly to high levels and were then maintained, overall carriage rates 

were little changed, despite apparent fluctuations, and PCV7 serotypes rapidly 

disappeared to be replaced by others (239, 244, 245). In Nice, France, where 
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vaccine uptake, as in Portugal, was more progressive, an overall fall in 

pneumococcal carriage from 54% in 1999 to 45.2% in 2008 was documented 

(242). While all of these studies, including ours, suffer from the inherent 

limitations of repeated cross-sectional surveys, they nevertheless document 

trends in particular communities over time.  

The data reported here are from children among whom immunisation rates 

rose during the study period to greater than 80%, but this was in the context of 

somewhat lower and falling overall vaccine coverage in the community. 

 The carriage rates of pneumococcus reported in two DCCs studies 

performed in Lisbon in 2001 and 2006 did not show any overall decrease (64.9% 

and 68.7% respectively) (249). This contrasts with a decline from 61% to 51% in 

Coimbra, between 2007 to 2009. The 2001 study from Lisbon reports circulation 

of all PCV7 serotypes apart from serotype 4 and the proportion of all 

pneumococci isolated that were PCV7 serotypes fell from 53% to 11% between 

2001 and 2006 although only serotypes 4 and 9V were completely absent in the 

latter dataset, indicating clearly that extensive serotype replacement in carriage 

occurred in Portugal over this period (249). The first study in Coimbra, performed 

in 2007, 6 years after PCV7 was first used, demonstrated continuing circulation 

of serotypes 6B, 14, 19F and 23F but not 4, 9V or 18C (75). The new data 

presented here document the disappearance of PCV7 serotypes 6B and 23F and 

the near-disappearance of serotype 14, while serotype 19F persisted with no sign 

of diminution.  

The rates of disappearance of different serotypes do appear to differ in 

other reports. In particular other studies have drawn attention to persistence of 

19F (126, 243) and even in reports where this phenomenon is not so obvious, 

careful examination of datasets reveals that this serotype tends to be among the 

last of the PCV7 serotypes to remain in circulation (246). A study to estimate the 

vaccine efficacy against acquisition of specific serotypes using previously 

published trials found no statistically significant efficacy of PCV7 against vaccine 

serotypes 19F and 14 (313). Another study involving toddlers attending DCCs in 

Israel, conducted to document the effect of a 9-valent pneumococcal conjugate 

vaccine on the carriage rate, showed significant protection against serotypes 6B, 

9V, 14 and 23F but not against 19F (236). Immunogenicity studies do not 

suggest that serotype 19F capsule or other relatively persistent serotypes in PCVs 

induce smaller IgG responses (201) and mucosal IgG and IgA responses in 

children primed with PCV7 and boosted with polysaccharide vaccine (PPV23), 
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show that 19F capsular antigen primes for mucosal memory responses of both 

these antibody isotypes that are similar in size to the other vaccine antigens 

(195). The main determinant of rate of elimination may instead be the quantity of 

capsule expressed, which is an inverse function of the metabolic cost of 

generating the necessary sugar repeats and which is high for serotype 19F and 

relatively high for the other vaccine serotypes whose prevalence is slower to 

diminish (60). In the context of moderate vaccine usage, it appears that the fall in 

prevalence of such serotypes is prolonged and that serotype 19F may circulate for 

longer or indefinitely.  

It is less clear why, in this setting, the eventual disappearance of all the 

more persistent vaccine serotypes apart form 19F has not been accompanied by 

their replacement with emerging non-PCV7 serotypes over this period and has 

instead resulted in an approximately 10% fall in overall carriage rates, with the 

ratio of PCV7 serotypes to other serotypes staying roughly constant at 8.2-8.7%. 

This could prove to be a temporary phenomenon and ongoing surveillance will 

clarify this. Alternatively it may be that, at the population level, gradual and more 

modest rises in vaccine-induced mucosal immunity result in new equilibria 

between pneumococcal strains and other colonising bacterial species at least 

where the disappearance of relatively more encapsulated and persistent serotypes 

is concerned. 

Recent reports from Massachusetts and the UK show a trend towards greater 

diversity among colonising serotypes as PCV7 serotypes disappear and 

replacement occurs at least during the first 2-4 years following vaccine 

introduction (245, 246). The samples collected in Coimbra span a period 6-8 

years from the first use of PCV7 in Portugal and suggest a diversity that is 

consistently close to the highest seen in these other studies and not changing 

progressively over time, despite some year to year variation. Such comparisons 

between these studies need to be made recognising that in Massachusetts and 

England samples were taken from children attending primary care surgeries, 

whereas our samples were collected in nurseries in which, if anything, higher 

transmission rates between subjects and thus less diversity might be expected. 

This is consistent either with a more persistent diversity-enhancing effect of 

slower, lower level vaccine use, or a fundamentally different and more diverse 

pneumococcal population structure in Portugal than in the UK or Eastern USA 

from the outset. Further analyses of data from earlier and our current Portuguese 

studies may help clarify this. 
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With the advent of higher valency vaccines, among the many non-PCV7 

serotype isolates, those that are included in the new vaccines are of particular 

interest. Some serotypes which cause significant numbers of cases of invasive 

disease are rarely seen in most colonisation studies, like serotypes 1 and 5 (79). 

In this context, the occasional detection of serotype 1 in this study is of some 

interest. Also of note is the apparent emergence of serotype 3, a somewhat 

anomalous serotype with a large capsule (60), and it will be of interest to observe, 

in due course, trends in colonisation in 2010, 2011 and beyond when PCV13, 

which includes serotype 3, has been in use and whether any cases of invasive 

serotype 3 disease are seen there or elsewhere in Portugal during the same 

period. 

In this study, a high proportion of pneumococcal isolates were non-typeable 

both by Quellung and the multiplex PCR reaction compared, for example, to the 

study in Southampton, UK (244). A previous study in Portugal in a similar 

population that investigated non-typeable strains found that they had a diverse 

genetic background (314). As MLST and PFGE have not been done on these 

isolates to date, we are not certain whether their population structure has 

remained stable over the study period. These non-typeable strains continue to be 

an intriguing sub-group which warrant further investigation.  

In conclusion, this study underlines the complexity of pneumococcal 

ecology and emphasises the fact that the effects of different approaches to 

implementation of conjugate vaccination exhibited in different environments may 

be more difficult to predict than we hope and expect. Further prospective studies 

of the nasopharyngeal colonisation trends of pneumococcus, including its 

relationships to other bacterial species and intercurrent respiratory viral 

infections are warranted. 
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2.6 Appendix to Chapter 2  

 

In order to evaluate continuing trends in pneumococcal nasopharyngeal 

colonisation, in February-March 2010 we swabbed again the nasopharynges of 

586 children attending the same DCCs in Coimbra. The previously described 

clinical and demographic questionnaire, methodologies of sample collection, 

storage (frozen at -80°C in STGG broth) and pneumococcal culture (briefly 

samples were inoculated onto blood agar plates and incubated at 37ºC in 5% CO
2
 

for 24 hours; S. pneumoniae was identified by morphology, optochin sensitivity, 

gentamicin resistance and bile solubility and isolates stored at −80ºC), were used.  

PCV10 was licensed in Portugal in April 2009 and only a few children 

received it in the period between then and March 2010. For this reason only PCV7 

types are considered to be vaccine types in this analysis, which permits 

comparison with previous data. A microarray based method for serotyping (see 

Chapter 1, section 1.1.6.1) was introduced in 2010. Since this method may detect 

serotypes present at low abundance that would be missed using Quellung 

reaction serotyping of a single cultured colony from each child, to permit 

comparison with earlier datasets, initially the sole or predominant serotype is 

considered in this analysis. The D index is used to access trends in diversity. Data 

on sole and co-colonisation with different serotypes are also presented. 

Clinical and demographic characteristics of this group of children were 

similar to the previous years: median age was 41.5 months (range 6.3–74.5 

months), 326 (56%) were boys, 11.8% had received antibiotics in the previous 

month, 86.5% had received at least one dose of PCV7 or PCV10, 36.3% had one or 

more siblings <6 years and 26.5% had smokers at home.   

S. pneumoniae colonisation rate was 58.5%, showing a slight increase 

compared to the previous two years and being now closer to the rate found in 

2007. This was due in part to an increase in non-PCV7 types but mostly due to an 

increase in the PVC7 serotype 19F (Figure 2.4.). Serotype 18C was detected in one 

child at an abundance of 91% alongside serotype 11D but no other PCV7 vaccine 

types were detected, in line with their reduction and disappearance observed in 

previous years. Although there was a net increase in non-vaccine types, among 

them some increased (6C, 16F, 21) while others decreased (23B, 16C). There was 

no obvious rise in serotypes 3, 7F and 19A, contained in PCV13, the use of which 

was only just starting at the time of this sample. Other non-vaccine types had 

fluctuations as seen in previous years but did not show obvious trends. 

63 



Chapter 2 

 

Figure 2.4. Proportions of all children studied carrying pneumococcus from 2007 to 

2010. 

Bars are subdivided into vaccine types (VT – 4, 6B, 9V, 14, 18C, 19F and 23F), non-vaccine types 

(NVT – all others) and non-typeable isolates (NT) 

 

The number of different predominant or sole serotypes and non-typeables 

identified was 27, the same as in 2007 and 2009 having been 26 in 2008. The 

corresponding D index was 0.9334, having been 0.9366 in 2007, 0.9220 in 2008 

and 0.9405 in 2009, reconfirming some fluctuation but no progressive trends 

over the 4 years of the study. The ranked frequency distribution curve is 

presented in Figure 2.5. 
 

 

Figure 2.5. Rank frequency distribution of the only or predominant serotype detected in 

the 2010 samples. 

Triangle – non-vaccine types and non-typeable; square – PCV7 types; circle – PCV13 types 
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The use of microarray serotyping permitted detection of co-colonisation with 

more than one encapsulated serotype or non-typeable pneumococcus in 103 

children. Figure 2.6 shows the frequency distribution of all the serotypes and 

non-typeables detected and demonstrates that, with the exception of a small 

number which were only rarely found, all serotypes occurred both in isolation and 

in association with others although no particular combinations were seen more 

frequently than would be expected by chance. Non-typeables were more 

frequently found in co-colonisation. 

 

 

Figure 2.6. Individual serotype and non-typeable distribution of single and co-colonised 

samples. 

 

Regarding the relative abundance of each strain in co-colonised children, in 

all but three, the predominant strain represented more than 50% of the DNA 

found in the sample (Figure 2.7.).  
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Figure 2.7. Percentage of DNA of the predominant strain (grey line) and the other strain(s) 

(black line) in co-colonised children. 

Each line represents a child 

 

In conclusion, there was a net increase in colonisation partly due to increase 

in non-vaccine types but mostly due to an increase in colonisation with serotype 

19F. This will be described in detail in the following chapter. The diversity 

remained high without a progressive trend. The introduction of PCV13 in 2010 is 

likely to drive further changes in pneumococcal ecology rendering further studies 

important for the understanding of what remains an evolving situation. 

 

 

 

66 



 

 

 

 

 

3. Resurgence of serotype 19F carriage in  

pre- school children in Portugal in the context of 

continuing moderate conjugate pneumococcal 

vaccine uptake 

 

 

Fernanda Rodrigues1, Begonia Morales-Aza2, Rachel Holland2, Katherine 

Gould3, Jason Hinds3, Guilherme Gonçalves4, Luís Januário1, Adam Finn2 

 

 
1Emergency Service & Infectious Diseases Unit Hospital Pediátrico de Coimbra, 

Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; 2School of 

Social and Community Medicine, University of Bristol, Bristol, UK; 3Division of 

Clinical Sciences, St. George's, University of London, London, UK; 4Instituto de 

Ciências Médicas Abel Salazar, Universidade do Porto, Porto, Portugal 

 

 

 

 

Clin Infect Dis. 2013;57(3):473-4 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reprinted from Clin Infect Dis, vol. 57, Issue 3, Fernanda Rodrigues, Begonia 

Morales-Aza B, Rachel Holland, Katherine Gould, Jason Hinds, Guilherme 

Gonçalves, Luís Januário, Adam Finn. Resurgence of serotype 19F carriage in 

preschool children in Portugal in the context of continuing moderate conjugate 

pneumococcal vaccine uptake, pages 473-4, Copyright 2013, with permission 

from Oxford University Press. All rights reserved. 

 



High serotype 19F carriage in Portugal 

Reduction to near extinction of pneumococcal (Streptococcus pneumoniae 

(Sp)) vaccine serotype nasal colonization has been reported over a period of 

around 5-7 years of pneumococcal conjugate vaccine (PCV) use (239, 245).  

PCVs have been used in private practice in Portugal since 2001. They are not 

included in the universal national immunization program. After licensure of the 7-

valent vaccine (PCV7, Wyeth), estimated coverage, based on sales information, 

increased from 32% in 2002 to 65% in 2005 and 79% in 2007, then fell slightly to 

75% in 2008 (oral communication, Pfizer). In April 2009, the 10-valent vaccine 

(PCV10, GSK) became available and some infants received it. In January 2010, the 

13-valent vaccine (PCV13, Pfizer) replaced PCV7 and is the vaccine which has 

been used almost exclusively since then (estimated coverage in 2010 and 2011 

was approximately 65%; oral communication, Pfizer). Both schedules (2+1 and 

3+1) have been used. 

Previously, we reported carriage rates by serotype in cross-sectional studies 

performed annually in pre-school children attending day care centers (DCCs) in 

Coimbra, a city in the central region of Portugal, between 2007 and 2009 (75, 

315). Among the children studied, the proportion who had received at least one 

dose of PCV7 vaccine showed a significant upward trend over the 3 years (76.5%, 

82.4% and 84%) (315). The proportion of PCV7 serotypes (by Quellung reaction) 

showed a significant downward trend over time apart from 19F, which persisted, 

detected in 4.1% of all children studied in 2009 (315). Studies from other 

countries suggest that 19F is slower to disappear than other PCV types (126, 

243). 

In February-March 2010 we swabbed the nasopharynges of 586 children, 

attending the same urban DCCs in Coimbra. The study was approved by the 

Ethics Committee of Centro Hospitalar de Coimbra. Parents or guardians provided 

written informed consent for their child to participate.  

The mean age was 41.5 months (standard deviation, 18.1; range 6.3-74.5); 

326 (56%) were male, and 507 (86.5%) children had received at least one dose of 

PCV7 or PCV10. Among those aged ≥18 months, 78 (15.2%) and 338 (65.6%) had 

completed either a full 2+1 or 3+1 schedule, respectively. Nasopharyngeal swabs 

were inoculated into Skim-milk tryptone glucose glycerol broth and stored at -

80oC prior to culture. Standard microbiological techniques for the isolation and 

identification of Sp were used as described previously (316). The Sp carriage rate 

was 58.5% (343/586). Molecular serotyping was undertaken, using a microarray 

based method to determine cps gene content from genomic DNA hybridization, 
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capable of detecting multiple serotypes in a single sample (123). Excluding non-

typable (NT) signals (n=7 NT only, n=76 NT with other serotypes), which, using 

this methodology can include non-Sp streptococci, 73 children (12.5%) carried 

more than one Sp serotype. A total of 11.3% had PCV7/10 vaccine serotypes: 19F 

8.9% (52); 7F 2.2% (13, including 2 with 19F); 1, 5 and 18C (1 each). Serotype 19F 

was more commonly detected than any other serotype. There was sole 

colonization by 19F in 34 children (5.8%) and by 19F with other serotype(s) in 18 

(3.1%), among whom in 11 (1.9%) 19F was both the predominant serotype and 

represented >50% of the bacterial DNA detected in the sample (Figure 3.1.). 

Accordingly 45 children (7.7%) carried 19F as the only or the predominant 

serotype, a clear rise.  

 

Figure 3.1. Percentage of serotype 19F DNA in 18 children co-colonized with 19F and at 

least 1 other serotype. 

 

Twenty cases of invasive disease due to 19F were reported to the national 

surveillance scheme, from 2006 to 2012, with 6 cases occurring between July 

2011 and June 2012 (317). 

Serotype 19F, covered by all 3 PCVs, has emerged as the most commonly 

carried encapsulated pneumococcus in this DCC population. Higher coverage 

than is at present being achieved in Portugal may be necessary to control it at the 

population level. 
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Nasopharyngeal microflora  

4.1 Abstract 

 

Background: Nasal bacterial colonization is often dubbed “asymptomatic”. 

We hypothesized that rhinitis, common in pre-school children, is associated with 

bacterial colonization and that respiratory viruses, which cause rhinitis, interact 

with bacteria in ways which promote transmission.  

Methods: Five hundred eighty-five children (4.2–73.6 months) attending 

daycare had clinical information, a rhinitis score and nasal swabs collected in 

February 2009. Swabs in soya tryptone glucose glicerine broth were cultured for 

Streptococcus pneumoniae (Sp), Haemophilus influenzae (Hi) and Staphylococcus 

aureus (Sa) and analyzed by real-time polymerase chain reaction for respiratory 

viruses, both semi-quantitatively.  

Results: Rhinitis symptoms, carriage of Sp and Hi and viral detection fell, 

while Sa carriage rates rose with age. Significant, age-independent associations 

between rhinitis symptoms and detection of Hi (p<0.033) and Hi colonization 

density (p<0.027) were observed. Of the 42% with detected viruses, most (78%) 

had picornavirus. There was a significant age-independent association between 

viral detection (and viral load, picornavirus infection and picornaviral load) and 

detection of Sp (p=0.020, 0.035, 0.005, 0.014) and between viral detection and 

viral load and Sp colonization density (p=0.024, 0.028).  

Conclusions: Hi may promote its own transmission by inducing or 

amplifying rhinitis in children. There is a close quantitative relationship between 

respiratory viral detection, including picornavirus detection and Sp colonization. 

These findings have implications for understanding disease pathogenesis and 

formulating prevention strategies using vaccines. 

 

Keywords: children, nasopharyngeal colonization, microbial interactions, 

rhinitis symptoms, transmission 
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4.2 Introduction 

 

The nasopharynx is thought to be the source for many pediatric mucosal 

and invasive bacterial infections, including otitis media, pneumonia, septicemia 

and meningitis (8, 89, 94, 96). Nasopharyngeal colonization is affected by 

environmental and host factors, and microbial characteristics. Changes in 

nasopharyngeal ecology are occurring in many populations as a consequence of 

selection pressure due to widespread use of childhood conjugate vaccines which 

induce not only systemic but also mucosal specific immune responses to bacterial 

capsular antigens (195, 318).  

Streptococcus pneumoniae (Sp), non-typeable Haemophilus influenzae (Hi) 

and Staphylococcus aureus (Sa) are frequent nasal colonizers of young children 

(18, 19, 268). Cross sectional studies show changes in frequency of detection of 

these species with age, with rates characteristically peaking in the first or second 

years of life for the former 2, whereas Sa carriage rates decrease from significant 

rates during the first weeks or months of life and then progressively rise during 

the pre-school years (18, 19, 25, 70, 265, 268, 274). For Sp, which has been most 

widely studied, there are also marked differences in carriage prevalence between 

populations (18, 63, 148, 162, 319). It is often suggested that the decline in 

carriage rates of Sp and Hi with increasing age in children may be due to 

maturation of mucosal immune responses, acquisition of specific immunity or 

both (320, 321). Other environmental alterations, such as competitive or 

synergistic interactions with other microbial species or progressive changes in the 

mucosal microenvironment could also explain observed trends with age, 

including observed rises in Sa carriage rates. None of these potential mechanisms 

are mutually exclusive and any combination of them, along with changing 

frequency and density of exposure over time as children get older, may influence 

carriage rates of all these organisms. 

Different species occupying the same niche are often assumed to be 

competitors. Studies have shown evidence of a reciprocal relationship between Sa 

and Sp in the human nasopharynx suggestive of mutually inhibitory or other 

competitive effects (17, 25, 70, 268, 322). Experiments in mice and in vitro 

suggest that competitive interactions between Sp and Haemophilus spp. may 

exist, either directly, or indirectly through subversion of host responses (323). 

However, different species may not influence each other and synergistic 

relationships may even exist between them (19, 23, 24, 268, 324). In addition, 
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intercurrent viral infections may predispose to bacterial carriage or disease (24, 

27, 101). 

Since causing disease neither augments survival in the host nor 

transmission of these bacteria, it may be an accidental side-effect of their 

normally benign lifestyle. Proinflammatory, proadhesive or proinvasive gene 

products dubbed “virulence factors” because of their apparent disease-promoting 

effects (325, 326), may have been selected because they also improve 

colonization or transmission success. Intercurrent rhinitis represents a significant 

transmission opportunity. Perhaps nasal colonization is not asymptomatic, as it is 

commonly described (8, 17, 327). Maybe it is associated with rhinorrhea either 

because the bacteria induce host secretions and inflammatory responses or 

because they respond to rhinitis induced by respiratory viral infections by 

proliferating, or both. 

To track changes in pneumococcal serotype carriage in pre-school children 

attending daycare, we began cross-sectional studies every winter in Coimbra, 

central Portugal in 2007 (75, 315). In 2009, cultures for Hi and Sa and PCR for 

respiratory viruses were also performed and a score for intercurrent rhinitis was 

recorded for each child. 

 

4.3 Methods 

 

4.3.1 Study population 

Healthy children aged 4.2 to 73.6 months were recruited in 8 urban daycare 

centers (DCCs) in Coimbra, a city in the central region of Portugal, during 

February 2009.  

 

4.3.2 Study approval and consent 

The study was approved by the Ethics Committee of Hospital Pediátrico de 

Coimbra, Centro Hospitalar de Coimbra. Parents or guardians provided written 

informed consent for their child to participate. 

 

4.3.3  Clinical data 

A week before sample collection, parents were given a questionnaire on 

their child’s age, sex, use of antibiotics in the preceding month and 

immunization history for pneumococcal conjugate vaccines (PCVs) (number of 

doses and dates). At the time of sample collection, a member of the research 
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team asked the carer of the child for a “symptoms of nasal outflow tally” (SNOT) 

score. A single score for severity of nasal discharge, blockage and of sneezing 

was made as follows: 0 - none; 1 - mild; 2 - moderate; 3 – severe. The approach is 

based on a previously described scoring system used for allergic rhinitis (328). 

However, in practice, it was found that for infectious rhinitis in pre-school 

children, who cannot usually report nasal blockage and in whom sneezing is a 

comparatively unusual symptom, the score primarily reflected the current and 

recent level of nasal discharge. 

 

4.3.4 Nasopharyngeal swab collection 

A single, fine dry tip, flexible plastic shaft, rayon bud swab (Medical Wire & 

Equipment, Corsham, Wilshire, UK) was passed horizontally into 1 nostril of the 

child until resistance was felt, rotated along the axis of the shaft, withdrawn and 

broken off into a 2-mL cryovial containing 1.5-mL soya tryptone glucose glycerine 

broth, as previously described (329). Vials were stored at minus 80°C until 

batched culture was performed. 

 

4.3.5 Bacterial culture 

Swabs were thawed on ice, vortexed and 50µL of the resultant broth 

inoculated onto 5% Columbia blood agar and Chocolate agar plates (E & O 

Laboratories Ltd, Burnhouse, Bonnybridge, UK) with a gentamicin disc at a 

concentration 10µg (BD BBL Sensi-Disc, Oxford, UK) added to the Columbia plate. 

The cultures were incubated at 37oC in 5% carbon dioxide for 24 hours and then 

examined, with the density score for the presence of Sp, Hi and Sa recorded.   

Identification of each pathogen was based upon standard microbiological 

techniques as follows: presumptive Sp were streaked onto a Columbia blood plate 

with an optochin disc (5.0µg of ethylhydrocupreine hydrochloride per disc 

supplied as BBL™ Taxo™ Discs for Differentiation of Pneumococci) and were 

considered positive if the size of the zone of inhibition was >14mm. Potential Hi 

isolates were identified using V (nicotinamide adenine dinucleotide, NAD) and XV 

(haemim and NAD) discs (BBL Taxo Differentiation Discs for Haemophilus spp., 

UK) on nutrient agar (E & O, UK), incubated for 24 hours in 5% carbon dioxide at 

37oC. An isolate was confirmed as Hi if growth occurred only around the XV disc. 

Potential Sa identification was undertaken using DNase agar (E & O Laboratories 

Ltd, Burnhouse, Bonnybridge, UK) with a positive test indicated by a clear zone 

surrounding the growth on the plate after flooding with 1 N hydrochloric acid. 
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Further confirmation was obtained using the Staphurex latex agglutination test 

according to the standard protocol (Oxoid, Basingstoke, Hamshire, UK).  

For each bacterial species, density was scored as follows: 0 = not detected; 

1 = 1–5 colonies/50µL broth; 2 = >5–20; 3 = >20–50; 4 = >50–100; 5 = >100.  

 

4.3.6 Viral PCR 

Respiratory viral nucleic acid was detected for influenza A and B viruses, 

respiratory syncytial virus (RSV) types A and B, human metapneumoviruses, 

parainfluenzaviruses types 1-3, human rhinoviruses, enteroviruses, human 

adenoviruses and human bocavirus using established methodology. Total nucleic 

acid was recovered from 200µL aliquots of swab material in STGG broth using a 

Kingfisher 96 magnetic particle processor (Thermo Scientific) and eluted in 60µL 

sterile water. Viral DNA was amplified using real time PCR assays, and viral RNA 

using two-step reverse transcription-real time PCR assays. Complementary DNA 

(cDNA) synthesis was performed in 25µL volumes using 100 units MMLV reverse 

transcriptase (Promega) and 0.5mg/mL random hexamers for 30 minutes at 37°C 

followed by 10 minutes at 95°C. Real time PCR was performed in 20µL reactions 

consisting of ABI Fast Universal Master Mix (Applied Biosystems) with 5µL total 

nucleic acid extract or cDNA and primers and probes to detect influenza A (IFA) 

and B (IFB) viruses (330), respiratory syncytial virus types A and B (RSV) (Table 1), 

human metapneumoviruses (HMPV) (331), parainfluenzavirus (PIV) types 1-3 

(Table 4.1.), human rhinoviruses (RV) (332), enteroviruses (EV) (333), human 

adenoviruses (ADV) (334), and human bocavirus (HBoV) (335). A two temperature 

thermal cycling protocol (50 cycles of 95°C denaturation and 60°C 

annealing/extension) in an ABI 7500 Fast processor (Applied Biosystems) was 

used.  

 

Table 4.1. Primers and probes for RSV and PIF real time PCR. 

Virus/Primer/Probe Sequence and Label (5’- 3’) 
Gene Target 

(Accession no.) 

Respiratory Syncytial 

Viruses  

 

RSVA-Forward gtgcagggcaagtgatgttac 

NP Gene 

(U39661) 

(AF013254) 

RSVA-Reverse cacccaatttttgggcatattc 

RSVB-Forward ttcagggcaagtaatgctaagatg 

RSVB-Reverse cctcccaacttctgtgcatactc 

RSV-Probe NED-acaacttgttccatttctgc-MGB 
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Parainfluenza viruses   

PIV1-Forward acagatgaaattttcaagtgctactttagt 
L Gene 

(NC003461)              
PIV1-Reverse gcctcttttaatgccatattatcattaga 

PIV1-Probe NED-atggtaataaatcgactcgct-MGB 

PIV2-Forward ctatgaaaaccatttacctaagtgatgga 
HN Gene 

(AF533012) 
PIV2-Reverse cctccyggtatrgcagtgactgaa 

PIF2-Probe VIC-tcaatcgcaaaagct-MGB 

PIV3-Forward acagtggatcagattgggtcaat 
NP Gene 

(FJ455842) 
PIV3-Reverse atggttgtgaggtcatttctgct 

PIV3-Probe FAM-cggtctcaacagagct-MGB 

 

Results were reported as Cycle threshold (Ct) values, determined as the 

amplification cycle number when fluorescence become detectable. The Ct value is 

inversely related to the viral load, and a Ct value of ≤35 was regarded as evidence 

of infection for the purposes of this study. A categorical variable was also 

generated for viral load score as follows: 0 = not detected after 50 cycles; 1 = 

detected after 45-50 cycles; 2 = 40-45; 3 = 35-40; 4 = 30-35; 5 = 25-30; 6 = <25 

cycles. Enterovirus and rhinovirus group-specific PCR tests which target 

conserved regions of the viral genome do not reliably differentiate between these 

virus groups due to their genetic similarity. In common with several other recent 

studies, we therefore classified samples testing positive with enterovirus and/or 

rhinovirus assays as picornavirus positive.  

Assays were performed in a clinical virology laboratory, with appropriate 

positive controls and alongside routine samples among which positives for all 

viruses under investigation here were routinely detected. 

 

4.3.7 Statistical analysis 

Pearson's chi-squared test for independence and odds ratios (ORs) were 

calculated for the binary variables of interest. Additionally multivariate logistic 

regression was performed followed by likelihood-ratio tests to analyze the 

associations while adjusting for covariates. Finally, analysis of variance for 

multiple linear regression was applied to categorical variables and covariates.  

All analyses were carried out with STATA version 11.2 (StataCorp. 2009. 

Stata Statistical Software: Release 11. College Station, TX: StataCorp LP). 
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4.4 Results 

 

4.4.1 Characteristics of the study group  

Nasopharyngeal swabs were obtained from 585 children of whom 307 

(52.5%) were male. The mean (median) age was 41.2 (41.3) months (standard 

deviation 18.8, range 4.2 – 73.6) and age distribution is shown in the Table 

within Figure 4.1. and reflects the local demographic of DCC attendance. The use 

of an antibiotic within 1 month prior to study enrolment was reported for 106 

(18.1%) children and receipt of at least 1 dose of 7-valent PCV (PCV7) in 84%.  

 

 

N 36 98 100 120 105 126 

N with 

SNOT score 
35 97 96 114 105 126 

% with 

symptoms 
91.4 92.8 91.7 68.4 45.7 38.1 

Mean (SD) 

SNOT score 

1.26 

(0.61) 

1.49 

(0.74) 

1.26 

(0.68) 

0.81 

(0.65) 

0.50 

(0.57) 

0.45 

(0.63) 

% with 

virus 
86.1 72.5 54.0 40.8 20.0 15.9 

 

Figure 4.1. Age distribution of detected bacterial carriage in the study population. 

Table shows frequency of symptoms, mean SNOT score and rates of viral nucleic acid detection for 

different ages. N indicates number 

 

SNOT scores were obtained for 573 (98.0%) and of these 384 (67.0%) 

presented with symptoms (Table within Figure 4.1.). Distribution of symptom 

severity for each bacterial colonization is shown in the table within Figure 4.2. In 
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most symptomatic children, symptoms were mild, although nearly 1 in 5 had 

moderate or severe rhinitis. Symptoms were much commoner in younger children 

with progressive falls in both frequency and mean severity of symptoms after the 

age of 2 (Table within Figure 4.1.). 

 

 

Figure 4.2. Proportions of children with each SNOT score who were nasally colonized with 

Sp, Hi and Sa. 

Absolute numbers are shown in the table 

 

4.4.2 Bacterial carriage 

Culture results were obtained for all 585 children. Overall the carriage rate 

was highest for Sp (51.3%, 300), intermediate for Hi (32.7%, 191) and lowest for 

Sa (13.9%, 81) with this hierarchy persisting in all age groups apart from the 5 

year olds (Figure 4.1.). The carriage rates varied with age, with highest rates for 

both Sp and Hi and the lowest for Sa in the 1-year olds, then falling for Sp and Hi 

and rising progressively with age for Sa (ORs and P values for these age 

associations were Sp: 0.81, 0.001; Hi: 0.76,  <0.001 and Sa: 1.82, <0.001).   

The percentages of those colonized with Sp, Hi and Sa at each of the 

different densities are shown in Figures 4.3. A-C, respectively.  
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Figure 4.3. Relationships between SNOT score and density of colonization for (A) Sp, (B) 

Hi and (C) Sa. 

Absolute numbers are shown in the table 
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Sp carriage was most commonly of high, Hi of intermediate and Sa of low 

density. There was a slight preponderance of Sa carriage among males (61.7%) 

but this was found to be of weak significance (P= 0.07). Carriage of Sp and Hi 

appeared to be independent of gender. No evidence of an association between 

colonization with any of the 3 bacterial species and prior antibiotic use or 

between pneumococcal carriage and previous PCV7 administration was found. 

There was no significant association between colonization with Sp and Sa 

(P= 0.28) and little evidence of a positive association between Sp and Hi (P= 0.08). 

By chi-squared test for independence there was a negative association between Hi 

and Sa with an OR of 0.42 (95% confidence intervaI: 0.24-0.76).  

Analysis of the relationships between densities of the 3 species by ANOVA 

produced similar findings (significant for Hi and Sa only, P= 0.02). However, when 

age was taken into account in the analysis, no significant associations between 

any of the 3 species were found. 

 

4.4.3 Association between rhinitis symptoms and bacterial carriage 

SNOT scores were obtained and recorded for 98% (573) of the children. 

Colonization with each of the 3 bacterial species was strongly-positively (Sp and 

Hi) and negatively (Sa) associated with SNOT scores (P= 0.002, 0.001 and 0.04 by 

chi-squared analysis, respectively). However, there was also a highly significant 

inverse relationship between SNOT score and increasing age (P< 0.001, OR 0.46; 

95% confidence interval: 0.39-0.53). Given the strong associations between 

bacterial colonization and age presented above, the relationship between SNOT 

score and colonization with each of the 3 bacterial species was assessed taking 

age into account.  

A significant association was found for Hi (P= 0.003); however for Sp the 

evidence was weak (P= 0.06) and there was no evidence of an association with 

SNOT score for Sa (P= 0.62). The apparent association between Hi and rhinitis 

symptoms was investigated further by evaluating SNOT score against Hi 

colonization density, again taking age into account, and was again found to be 

significant (P= 0.027) while adjustment to include the effects of other variables 

including prior vaccination, antibiotic use, gender and exposure to smoking 

produced no significant alterations to the results. 
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4.4.4 Viral nucleic acid detection  

Two hundred forty-six (42.1%) of the children had nucleic acid detected from 

1 or more respiratory viruses. Despite being a wintertime cross sectional sample, 

there were no children with RSV infection and only 1 (0.2%) with influenza (type 

B). The most commonly detected viruses were picornaviruses (32.3%) of which the 

majority (27.5%) were presumed to be rhinoviruses based on the relative cycle 

threshold values of the enterovirus and rhinovirus PCR assays. Other viruses 

detected included bocavirus (8.4%), adenovirus (4.0%), parainfluenza type 3 (2.4%) 

and human metapneumovirus (2.2%). There was a strong association between age 

and viral nucleic acid detection (table within Figure 4.1.) with the odds of 

detection falling markedly with increasing age (OR = 0.5; 95% confidence interval: 

0.44-0.57) with closely similar values for analysis by picornavirus detection alone. 

Although, by chi-squared, there was a significant association between Sp and Hi 

(positive) and Sa (negative) colonization and respiratory viral detection (P< 0.001, 

P= 0.037, P< 0.001, respectively), using a multiple regression model, taking age 

into account, a significant positive association between respiratory viral nucleic 

acid detection (P= 0.020) and detection of Sp was observed (picornavirus only P= 

0.005), but no evidence of significance was seen for the other 2 bacterial species 

(Hi P= 0.85; Sa P= 0.18). Likewise, multiple regression analysis showed a 

significant association between viral nucleic acid detection and Sp bacterial 

colonisation density (P= 0.024; although picornavirus only, P= 0.08). Using PCR 

cycle threshold to estimate respiratory viral load, both the presence and density 

of Sp was associated with overall viral density (P= 0.035, 0.028 respectively) 

(picornavirus only, 0.014, 0.078). 

 

4.5 Discussion 

 

This study was conducted in a population of preschool children attending 

daycare and so likely to be experiencing close contact and high infection 

transmission rates amongst their peers. Two thirds of them had some symptoms 

of rhinitis at the time of study and such symptoms were near universal among the 

younger children. We investigated whether such symptoms and whether 

respiratory viral infection, generally presumed to be responsible for most 

wintertime rhinitis in children, were associated with bacterial nasal colonization 

and found evidence of a significant and independent positive association between 

colonization with Hi and symptoms of rhinitis and an equally robust and 
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quantitative association between colonization with Sp and respiratory viral nucleic 

acid detection – predominantly with picornaviruses. Both of these observations 

make biological sense in as much as generation and exploitation of transmission 

opportunities are important for survival of both these bacterial species, but that 

they were each found, individually, for different bacterial species was unexpected. 

Studies assessing any association between nasal bacterial colonization and 

symptoms are scarce. Sleeman et al. (182) reported an association between 

acquisition of Sp by newborn infants or their family members and general 

practitioner consultation for infection by the study infants in a prospective cohort 

study. Ours is the first study to measure rhinitis symptoms directly alongside 

colonization and, in this sample at least, it appears that Hi, rather than Sp or Sa 

colonization is independently associated with nasal discharge. A study of this 

design cannot establish causality or, if it exists, whether the bacteria are inducing 

symptoms, the symptoms are promoting bacterial growth or both. However, there 

is good evidence showing that Hi is intimately involved in the triggering and 

regulation of human inflammatory responses (336), and it is certainly plausible 

that by causing, amplifying or prolonging rhinitis, the bacterium might increase 

its chances of transmission from child to child. While, in principle, it is 

conceivable that bacterial density is unchanged but culture is somehow rendered 

more sensitive from secretions obtained from children with rhinitis, this possible 

explanation for our findings seems unlikely, particularly since a significant 

association was only seen for Hi and neither Sp nor Sa.  

Our observation of an association between not only the presence of 

respiratory virus, specifically picornavirus, and Sp but also between viral load and 

bacterial colonization density extends related findings from other recent studies 

in distinct populations and samples. One study from Australia, including 

indigenous children, showed associations between rhinovirus infection and 

colonization with Sp, Hi and Moraxella catarrhalis (24). A study from Vietnam 

using PCR to detect nasopharyngeal bacteria and viruses showed higher Sp load 

in the presence of viral nucleic acid detection with rhinovirus, influenza A and 

respiratory syncytial virus in children with radiographic pneumonia (184). Peltola 

et al. (337) recently showed a temporal association between periods of rhinovirus 

activity and rates of invasive Sp disease in pre-school children in Finland. Taken 

together these findings are consistent with the hypothesis that Sp proliferates, 

thus becoming more easily detectable both by culture and PCR, in the presence of 
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rhinovirus infection, which is very common in young children. This may facilitate 

transmission and result, on occasion, in disease. 

Several previous studies have explored the possibility that colonization with 

one bacterial species might impact on the chances of successful simultaneous 

colonization with another. In particular there has been much interest in the 

possibility of a competitive relationship between Sp and Sa, driven perhaps by 

their reciprocal age distribution patterns and by interest in the possibility that 

changes in Sp colonization patterns due to conjugate vaccine use could result in 

altered Sa ecology and disease. Some studies done when, unlike this one, PCV7 

serotype carriage predominated suggested negative associations between those 

serotypes and Sa (25, 70, 274, 322), although concerns that Sa carriage rates 

would consequently rise over time have not been borne out (265). Our study 

failed to demonstrate any associations between the 3 bacterial species studied 

that were independent of age. Given the important relationships that exist 

between age and bacterial and viral infection, rhinitis and immunological 

experience and maturation, it is clear that any conclusions concerning interaction 

between colonizing bacteria should take age into account (268) and that other 

papers which do not do so should be treated with caution.  Conversely, it is likely 

that in any given sample of children studied, differences, for example, in the 

incidence of specific viral infections at the time of study could have major impact 

on bacterial ecology. For example the complete absence of RSV and almost 

complete absence of influenza from the children reported in this study, both of 

which are consistent with available local and national epidemiological data for the 

annual epidemics of these two viruses which peaked early in 2008-09, could have 

impacted not only the levels of bacterial colonization but also the relationships 

between colonizing bacteria. 

Most previous studies of bacterial colonization of the nose simply document 

the presence or absence of the organism (17, 19). The availability of quantitative 

PCR provides a rapid and technically robust means of measuring the number of 

copies of one or more specific bacterial genes but has the potential flaw that DNA 

from non-viable bacteria will be detected (184). We used a semiquantitative 

culture technique which permitted exploration of relationships between 

colonization, symptoms and viral nucleic acid detection to be conducted in more 

depth and which adds confidence to interpretations of associations by providing 

an additional dimension of dose-response.  
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That conjugate pneumococcal vaccine induces mucosal antibody responses 

(195) and that widespread use of the vaccine results in disappearance of vaccine 

serotypes (245, 315, 319) are both well known. Nevertheless, it is unsurprising 

that no association between prior vaccination and colonization status was found 

in this study. Carriage status in the day care setting is likely, primarily, to be 

affected by exposure to organisms from other children, and pneumococcal 

serotypes, which become scarcer following widespread vaccine use are, to a large 

extent, rapidly replaced by others. 

This study provides new insights into the relationships between nasal 

bacterial colonization, intercurrent respiratory viral infection and symptoms of 

rhinitis in children attending daycare, which have implications for disease 

pathogenesis and prevention. 
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Abstract  

Among 55 children with cultures positive for acute otitis media with 

spontaneous otorrhea, 28 (51%) had cultures positive for aural Streptococcus 

pneumoniae, and in 10 of these, two distinct strains were detected, in which five 

had pairs of starins which were both capsule-bearing serotypes. Such cases were 

more likely to have cultures positive for other otopathogens than those with only 

one pneumococcus present. 

 

Keywords: Children, acute otitis media, spontaneous otorrhea, multiple S. 

pneumoniae serotypes  
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The most common bacteria causing acute otitis media (AOM) in children are 

Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and 

Streptococcus pyogenes. Spontaneous otorrhea can complicate AOM, and S. 

pyogenes may be found in higher and H. influenzae and M. catarrhalis in lower 

percentages among such patients than among those with AOM and intact 

tympanic membranes (302).  

Nasopharyngeal colonization by potential middle-ear pathogens is presumed 

to precede AOM. There is an association between nasal bacterial load and the 

presence and severity of ear disease (300), and aural S. pneumoniae shows a 

close genetic relatedness with its nasopharyngeal counterparts (297).  

Understanding of the etiopathogenesis of AOM is increasing. Viral and 

bacterial causation are no longer seen as alternatives. Intercurrent respiratory 

viral infections may render the middle ear susceptible to symptomatic infection 

with bacteria that normally colonize the nasopharynx. Ruohola et al. suggest that 

the majority of acute middle ear infections in children are due to bacterial and 

viral coinfection (304). 

More than one bacterial species can simultaneously infect the middle ear in 

AOM (302, 304). Multibacterial species biofilm formation may be involved in 

chronic recurrent otitis media pathogenesis, perhaps explaining the 

demonstrated effectiveness of conjugate pneumococcal vaccines against AOM but 

not recurrent disease (338).  

Conventional S. pneumoniae culture and serotyping methodologies 

underestimate multiple-serotype carriage. Molecular serotyping improves 

detection of multiple serotypes and determines the relative abundance of each 

(123, 125) but has not previously been applied to the middle ear.  

The pneumococcal conjugate vaccine (PCV) became available in Portugal in 

2001 but has not been included in the national immunization program. Coverage 

from private market sales data was around 65% in 2011 following a peak of 

around 79% in 2007 (oral communication, Pfizer). Since 2010, 13-valent PCV 

(PCV13) has been used predominantly. 

Tympanocentesis is not routinely performed in the investigation and 

management of AOM in Portugal. To obtain data on the etiology of AOM, we 

studied children with AOM with spontaneous otorrhea (AOMSO). We hypothesized 

that just as simultaneous nasal colonization with multiple pneumococcal 

serotypes and strains occurs (125), this may also be the case in the ear. 
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The study was conducted at Coimbra Children’s Hospital, a 120-bed tertiary 

care center in central Portugal, with more than 60,000 emergency service (ES) 

visits each year. It was approved by the hospital ethics committee. Parents or 

guardians provided written informed consent. 

Children (aged 0-13 years) with AOMSO, defined as a history of acute onset 

signs and symptoms of middle ear inflammation, with presence of spontaneous 

otorrhea not due to acute otitis externa, who visited ES between December 2010 

and July 2011were studied prospectively. Disease onset was defined as time of 

first symptom (fever and/or ear pain and/or otorrhea). Children with recurrent 

AOM or previous ear, nose, and throat surgery were included. Demographic and 

clinical data were recorded, and paired swabs taken from the nasopharynx and 

aural discharge. No prior external ear canal toilet nor aspiration through the 

perforation were performed. Swabs were stored at -80ºC in skim-milk tryptone 

glucose glycerol (STGG) (Oxoid, Basingstoke, UK) broth until batched analysis by 

semi-quantitative bacterial culture within 18 months. No routine cultures were 

performed. 

S. pneumoniae, H. influenzae, M. catarrhalis, and S. pyogenes were 

considered true AOM pathogens. Staphylococcus aureus was excluded, as it may 

be a contaminant from the skin or external ear canal. Standard microbiological 

techniques were used for isolation and identification of S. pneumoniae and H. 

influenzae, as described previously (316). Additionally M. catarrhalis and S. 

pyogenes were cultured and identified using standard procedures (briefly, using 

Columbia blood agar supplemented with 5% defibrinated horse blood and 

streptoccocal selective plates with colistin sulphate and oxolinic acid (COBA, 

Oxoid Limited, Basingstoke, United Kingdom), respectively). M. catarrhalis 

identity was confirmed by cytochrome c oxidase test (Pro-Lab Diagnostics; 

Merseyside, United Kingdom) and presence of acetate esterase activity (Indoxyl 

Strip test, Sigma-Aldrich, Dorset, United Kingdom). S. pyogenes identity was 

based on β-haemolysis and detection of pyrrolidonyl peptidase activity (Pyrase 

Strip test; Sigma-Aldrich).  

Molecular serotyping was undertaken on all S. pneumoniae culture-positive 

aural samples and nasal samples from the same patients, using a microarray-

based method to determine serotype from cps gene content from genomic DNA 

hybridization (123). Detection of nontypeables, in the presence of one or more 

other S. pneumoniae serotypes, represented either true unencapsulated S. 

pneumoniae and/or closely related Streptococcus spp. 
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We used a chi-square test to check for significance of associations with 

STATA 12.0. 

Over 5 months, 113 children with AOMSO were studied (113 aural swabs 

and 108 nasal swabs). The median age was 27 months (range, 3 to 158 months), 

and 62 (54.8%) were boys. Fourteen (12.4%) were receiving antibiotics at the time 

of swabbing, and 52 (46.0%) had received them in the previous month. Forty 

(35.4%) had smoking parents and 100 (88.5%) attended nursery or school. The 

median/mean duration of disease was 1/2.5 days (range, 0 to 14): 0-3 days in 89 

children (78.8%), 4 to 7 days in 15 children (13.3%), and 8 to14 days in 9 children 

(8.0%). Previous history of AOM and/or ear surgery was recorded in 17 (14.9%) 

cases. Regarding vaccination history, 85/112 (75.9%) had received at least one 

dose of S. pneumoniae conjugate vaccine (Prevenar 7 or 13 and/or Synflorix).  

Fifty-five (48.7%) children were culture positive for bacteria from aural 

discharge, and among these cultures, S. pneumoniae was present in 50.9% (28) 

(Figure 5.1.), S. pyogenes in 30.9% (17), M. catarrhalis in 27.3% (15), and H. 

influenzae in 20.0% (11). Fourteen children (25.4%) had two or more otopathogen 

species: S. pneumoniae and M. catarrhalis in 5; S. pneumoniae and H. influenzae 

in 4; M. catarrhalis and S. pyogenes in 2, M. catarrhalis and H. influenzae in 1; S. 

pneumoniae, H. influenzae, and S. pyogenes in 1 and S. pneumoniae, H. 

influenzae, S. pyogenes, and M. catarrhalis in 1. 

Of the 28 children with S. pneumoniae-positive culture from aural discharge 

(median age 32.5 months, range of 5 to 125 months), five had S. pneumoniae in 

the ear only and 23 both in the ear and nose (one had nontypeable S. pneumonaie 

detected in the nose by PCR and array only and not by culture). In 10 (36%) cases, 

two distinct streptococcal strains were identified in the aural sample, often with 

one predominating (Figure 5.1.). Five of these were pairs of capsule-bearing 

serotypes (Figure 5.1.). Sixteen different serotypes were found in the ear: 6 

PCV13 vaccine types (the most frequent being 19A and 14), and 10 nonvaccine 

types (the most frequent being 10A) (Figure 5.1.). 

In the 23 children who had S. pneumoniae in both sites, individual serotypes 

could be found either in the ear, or in the nose, but all 23 had at least one 

serotype that was found simultaneously in both places (Figure 5.1.). Cases with 

multiple aural streptococcal strains did not differ noticeably in age from the 

group with a single strain (median/mean ages 37.5/35.9 and 32.5/38.6 months, 

respectively). 
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Seven of the 10 cases who had multiple aural streptococcal strains also had 

other bacterial species isolated from the ear: M. catarrhalis in five and H. 

influenzae in three. This occurred in only four of the 18 cases with only a single 

aural streptococcal strain (chi-square= 6.23, P= 0.0125) (Figure 5.1.).  

 

 

Figure 5.1. Microbiological characteristics of 28 children with acute otitis media with 

spontaneous otorrhea who were culture positive for pneumococcus. 

Subject numbers of children on antibiotics are left justified. Culture results are shown on the left 

and microarray serotyping results on the right. The percentage of capsular locus DNA in the ear is 

shown to the right of the first of each pair of aural strains in subjects where two were detected. 

PCV13 serotypes are indicated with an asterisk and PCV7/13 serotypes with two. Black box, ear and 

nose; patterned box, ear; gray box, nose 
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This is the first report of the microbial etiology of AOMSO in Portugal. 

Among this group of children, the duration of disease from the first acute 

symptom or symptoms to enrollment in the study lasted less than 3 days for the 

majority, and only four children with aural S. pneumoniae had more than 7 days 

of illness. S. pneumoniae was the predominant bacterium and, as reported by 

others (302), we found that S. pyogenes was identified in a higher percentage 

than usually reported in patients with AOM with intact tympanic membranes. 

The proportion of cases from whom aural bacteria were successfully 

cultured in this study was relatively low. Brook and Gober reported that by 

culturing both the otorrhea fluid and middle-ear fluid obtained by needle 

aspiration, 28% additional pathogens were identified (301). Use of PCR detection 

may also increase bacterial detection rates (338), particularly in children who 

have received antibiotics. We did not include S. aureus in our analysis, as it is 

often assumed to be a contaminant in studies of AOM. Nevertheless, it was 

frequently cultured both from ear and nose in these children. 

Although detection of more than one bacterial species in aural samples was 

as frequent in this AOMSO series as in others, by using molecular serotyping, we 

were also able to show that multiple S. pneumoniae serotypes were sometimes 

present in the ear. Although the clinical significance, if any, is uncertain, in such 

cases, serotypes that are at relatively low density may be underrecognized as 

otopathogens when conventional serotyping methods are used.  

Children with multiple aural S. pneumoniae serotypes were more likely to 

have multiple bacterial species present as well. There is increasing evidence that 

AOM and recurrent AOM lie on a spectrum of disease whose pathogenesis varies 

according to the microenvironment that has developed in the middle ear with 

increasing chronicity of disease. Initially AOM may represent penetration of the 

middle ear by a single bacterial strain, facilitated by preceding viral infection. 

However, this may evolve into a more complex picture as other nose-colonizing 

bacterial strains and species join the process, perhaps no longer necessarily virus 

driven and more closely resembling the multi-bacterial environment of the 

nasopharynx. One study suggests evolution over time with different species 

detected in successive samples (303). Contributions from the flora of the external 

auditory canal may also become relevant once the tympanic membrane has been 

breached. If combinations of pneumococcal strains persist for longer in the ear 

than the nose, this might provide additional opportunities for horizontal gene 
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exchange. Some of these hypotheses can be tested in future studies in this 

patient group. 

 

Acknowledgments 

We thank children and their families for their participation. We also thank 

the study nurses. 

95 



 

 



 

 

 

 

 

6. Nasopharyngeal pneumococcus is neither 

commoner nor more abundant in children with 

acute otitis media with spontaneous otorrhoea 

than healthy children; but other otopathogens may 

have lower density 

 

 

Fernanda Rodrigues1,2, Begonia Morales-Aza3, Paulina Sikora3, Guilherme 

Gonçalves2, Luís Januário1, Adam Finn3 

 

 
1Infectious Diseases Unit and Emergency Service, Hospital Pediátrico de 

Coimbra, Centro Hospitalar e Universitário de Coimbra, Coimbra; 2Instituto de 

Ciências Médicas Abel Salazar, Universidade do Porto, Porto, Portugal 
3Bristol Children’s Vaccine Centre, Schools of Clinical Sciences and Cellular 

and Molecular Medicine, University of Bristol, Bristol, UK 

 

 

 

 

Manuscript in preparation 

  

 



 

 

 



Nasopharyngeal colonisation in health and otitis 

6.1 Abstract 

 

Background and aims: Studies comparing rates and/or densities of S. 

pneumoniae colonisation in children with respiratory infections and in health are 

conflicting. We compared patterns of nasopharyngeal colonisation in healthy 

children attending daycare centres (DCCs) with those in children with acute otitis 

media with spontaneous otorrhoea (AOMSO). 

Methods: In February-March 2011 we swabbed 515 children in DCCs and 

107 with AOMSO. Nasopharyngeal swabs were stored at -80°C in STGG broth and 

cultured using standard techniques. S. pneumoniae, H. influenzae, M. catarrhalis, 

S. aureus and S. pyogenes were identified and densities assessed by scoring 

numbers of colonies (0= not detected; 1= 1–5 colonies/50µL broth; 2= >5–20; 3= 

>20–50; 4= >50–100; 5= >100). 

 Results: 80% of the children with AOMSO attended nurseries (p=<0.001). By 

univariate analysis, rates of colonisation and mean densities did not differ 

between the two groups apart from M. catarrhalis which had lower density in 

AOMSO. By multivariate analysis (adjusting for age), colonisation densities for 

both H. influenzae and M. catarrhalis were lower in AOMSO. The mean number of 

bacterial species identified was similar in the two groups (1.7 versus1.8; 

p=0.674). 

Conclusions: Children with AOMSO did not have higher rates or densities of 

nasal S. pneumoniae but significantly lower densities of both H. influenzae and M. 

catarrhalis were seen. This relative imbalance between species in otitis may point 

to ecological conditions associated with disease. 

 

Keywords: nasopharyngeal colonisation, rates, density, acute otitis media 
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6.2 Introduction  

 

Many children experience nasopharyngeal carriage of bacterial pathogens 

that in some will progress to AOM. A child must be colonised in order both to 

develop disease and to transmit the organism to others, but it is not clear by how 

much infectiousness varies between children. It seems plausible that among 

children with higher rates and density of colonisation there may be a higher 

likelihood of developing disease or of onward transmission or both. Although 

several studies have shown higher rates and/or densities of S. pneumoniae 

nasopharyngeal colonisation in children with respiratory infections than in health 

(4, 148, 183, 270, 298, 339), others have failed to find any such differences (185, 

299).  

A Finnish study that followed 329 children from the age of 2 to 24 months, 

found higher proportions of nasopharyngeal positive samples for pneumococcus 

during AOM (49%) and in particular during AOM confirmed as pneumococcal (by 

myringotomy), compared to children with respiratory infection without concurrent 

AOM (35%) or during health (21%) whereas non-pneumococcal AOM was not 

associated with higher carriage rates than respiratory infection without 

concurrent AOM (148). Pneumococcal carriage prevalence during health and 

respiratory infection without AOM increased with age over the course of the study 

while in contrast, during AOM, the rates were high, regardless of age. In a 5 year 

prospective study in five suburban paediatric practices in the USA, Xu et al. (270) 

compared colonisation rates in nasopharyngeal and oropharyngeal samples from 

320 children aged 6 to 24 months during healthy and at AOM visits confirmed by 

tympanocentesis. Colonisation rates for S. pneumoniae, H. influenzae and M. 

catarrhalis at healthy and AOM visits were 30.3% and 52.7%, 11.7% and 47.9% 

and 36.3% and 43.4% respectively although colonisation rates for S. pneumoniae 

when neither H. influenzae nor M. catarrhalis were present, did not differ 

significantly (14.2% versus 14.4%; p=0.93). Polymicrobial colonisation was 

significantly less common at healthy visits than at AOM visits. Another American 

study performed in 294 children aged between 6 and 35 months during 709 

episodes of upper respiratory tract infections, conducted over a 5 year period, 

showed that the same three bacterial species either alone or in combination were 

more likely to be isolated from the nasopharynx of children with AOM than from 

those without after controlling for breast feeding, daycare attendance, cigarette 

smoke exposure and number of PCV7 doses (340). An Australian study compared 
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nasal bacterial load of the same three respiratory pathogens using quantitative 

measures (semi-quantitative bacterial culture and real-time quantitative PCR) in 

nasal swabs from 52 non-Aboriginal children, aged 18 to 36 months attending 

urban DCCs and from 59 Aboriginal children of the same age among whom the 

prevalence of each respiratory pathogen and of suppurative OM is much higher. 

Nasal bacterial load was significantly higher among Aboriginal children and was 

significantly associated with the presence and severity of ear disease (300). 

Levin et al. (183) showed that patients with pneumonia in China, aged 

between 2 and 60 months, were more likely to be colonised with Hib (7.3% vs 

1.9%) and S. pneumoniae (44.8% vs. 38.8%) than control patients who had no 

indication of respiratory tract disease. For pneumococcus this difference achieved 

statistical significance when the data were adjusted for possible confounding 

factors such as age, day-care attendance, the presence of other children in the 

household and recent antibiotic use. Anh et al. (186) reported that carriage rates 

among 91 children aged <5 years with radiological pneumonia enrolled over 2 

years in Vietnam, were higher than among 70 healthy children attending DCC 

(19.8% vs 10.0% for S. pneumoniae, 26.3% vs 5.7% for H. influenzae and 7.7% vs 

1.4% for M. catarrhalis). The frequency of intense growth of these potential 

pathogens measured by quantitative culture was also higher in the pneumonia 

group.  

However other investigators have reported similar nasopharyngeal 

prevalence rates both in healthy and in ill children. In a 2 year study in the USA, 

nasopharyngeal specimens were taken at scheduled monthly intervals as well as 

at the times of episodes of AOM from 62 children attending DCCs. During AOM 

episodes, pneumococcus was not found significantly more frequently than among 

the scheduled cultures (185). Another USA study involving 73 children aged 

between 5 months and 14 years, either with AOM, uncomplicated upper 

respiratory infection or who were healthy, compared their nasopharyngeal flora 

using a semi-quantitative method. There were no significant differences between 

nasopharyngeal density of bacterial species isolated among the different clinical 

categories. However, there were significant differences in carriage rates in some 

cases: M. catarrhalis was significantly more likely to be present in children 

without bacteriologically confirmed otitis media as compared with children with 

confirmed otitis media while the reverse relationship was found for H. influenzae. 

S. pneumoniae was found frequently but did not vary between the groups with 

different clinical syndromes (299).  
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A Vietnamese study compared nasopharyngeal carriage rates and densities 

(measured by PCR) of S. pneumoniae, H. influenzae and M. catarrhalis between 

214 children less than 5 years of age with radiologically confirmed pneumonia 

and 350 healthy controls who were free of fever and signs or symptoms of acute 

respiratory infections. The cases were recruited from 16 communes in the study 

area, over more than 1 year, whereas healthy controls were randomly selected 

from only 2 of the 16 communes, in January, a cool month. The proportion of 

children carrying S. pneumoniae was higher in healthy controls compared to 

children with radiologically confirmed pneumonia (50.3% versus 38.7%; p=0.004) 

and the same was found for M. catarrhalis (58% versus 28.1%; p<0.0001). 

However, the median bacterial density of S. pneumoniae in children with 

radiologically confirmed pneumonia was significantly higher than in healthy 

controls, and even higher if pneumonia with viral coinfection, but no clinically 

useful cut-offs could be defined for the diagnosis of paediatric pneumonia. In 

contrast, H. influenzae and M. catarrhalis detected in children with radiologically 

confirmed pneumonia did not have significantly different density from healthy 

controls. The detection of any combination of the three bacteria was more 

frequent in the healthy controls (43.4%) than in children with pneumonia (32.5%; 

p=0.005) (184).  

Some of these studies included only small numbers of children, and/or had 

poor seasonal matching between groups. The age range and distribution studied, 

sample collection and microbiological methods used also varied between studies. 

The somewhat contradictory results may be affected by these factors and others 

may also be at play so that further studies need to be done in order to 

understand these relationships more fully.  

We hypothesised both that pneumococcal colonisation may be commoner 

among children with otitis than among healthy children and that those with otitis 

who are colonised may have higher colonisation densities than colonised healthy 

children. Such associations, although they might be non-causal, may contribute to 

disease pathogenesis. For example, high nasopharyngeal colonisation density 

might increase the probability of bacterial spread along the Eustachian tube into 

the ear and consequent development of otitis.  

 

6.3 Methods 
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In February-March 2011 we swabbed again the nasopharynges of children 

attending the same DCCs in Coimbra. The group of children with otitis, previously 

described in Chapter 5, included 113 children seen at the Emergency Service of 

the paediatric hospital, with AOMSO, observed during the winter 2010-11 who 

had a nasopharyngeal sample collected. For this analysis, six children with 

AOMSO with more than eight days of duration of disease were excluded in order 

to avoid any risk of dilution of transient effects. Before children were enrolled, 

written informed consent was obtained. The protocol for this study was approved 

by the Ethics Committee of the hospital. 

The chi-squared test was used to study the association between qualitative 

independent variables. The Mann-Whitney test was computed to study differences 

regarding a quantitative variable between two study groups. Multiple logistic 

regression was used to evaluate which factors contribute to explain colonisation, 

its density and the number of bacterial species. All statistical tests were two-sided 

and a p value <0.05 was considered significant. 

The same clinical and demographic questionnaire, methodologies of sample 

collection and storage, bacterial culture techniques and semi-quantitative density 

measures were used as described previously (see Chapters 2, 4 and 5). 

 

6.4 Results 

 

In all, 107 children with AOMSO and 515 children attending DCCs were 

included in the study. Characteristics of the two groups are presented in Table 

6.1. There were significant differences between the two groups in age, DCC 

attendance, recent antibiotic use, presence of siblings less than 6 years old, 

exposure to tobacco smoke and previous pneumococcal conjugate immunisation. 

 

Table 6.1. Characteristics of children with acute otitis media with spontaneous otorrhoea 

and children in day care centres. 

Risk factor AOMSO 
(n=107) 

DCCs 
(n=  515) 

p- value 

Gender (male) 58/107 (54.2%) 277/515 (53.8%) 0.937 

Mean age (months) 

(median; range)  
37.5 (28; 2-158) 39.1 (39; 5-72) 0.002 

DCC attendance (%) 85/106 (80.2%) 515/515 (100%) <0.001 
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Recent antibiotic use 

No (%) 
52/104 (50%) 84/510 (16.5%) <0.001 

Passive smoking (%) 38/103 (36.9%) 140/511 (27.4%) 0.053 

Siblings <6 years (%) 20/102 (19.6%) 156/459 (34%) 0.005 

Received PCV (%) 79/105 (75.2%) 447/511 (87.5%) 0.001 
 

PCV: Pneumococcal conjugate vaccine; AOMSO: acute otitis with spontaneous otorrhoea; DCCs:  
day care centres 

 

By univariate analysis, S. pneumoniae colonisation was slightly more 

common in children in DCCs (60.6%) than among those presenting with AOMSO 

(56.3%) although this difference was not statistically significant (p=0.419). The 

colonisation rates in the two groups were similar for the other bacterial species 

studied, with slight, non-significant differences in both directions observed (Table 

6.2.). With regard to bacterial density scores among those colonised, for S. 

pneumoniae they were almost identical for the two groups while for the other 

species they tended to be slightly higher on average in children in DCC (apart 

from S. pyogenes) although these differences did not achieve statistical 

significance except in the case of M. catarrhalis. This species was the most 

commonly detected in both groups. The mean number of bacterial species 

identified was also similar in the two groups (Table 6.2.). 

 

Table 6.2. Colonisation rates and mean density scores of culture-positive children for S. 

pneumoniae, H. influenzae, M. catarrhalis S. aureus and S. pyogenes and mean number of 

bacterial species detected in univariate analysis. 

 AOMSO 
(n=107) 

DCC  
(n=515) 

p- value 

Rate of colonisation    

     S. pneumoniae 58 (56.3%) 312 (60.6%) 0.419 

     H. influenzae 21 (20.4%) 88 (17.1%) 0.422 

     M. catarrhalis 65 (63.1%) 345 (67%) 0.446 

     S. aureus 17 (16.5%) 75 (14.6%) 0.613 

     S. pyogenes 15 (14.6%) 85 (16.5%) 0.625 

Mean density (for densities ≥1) 

     S. pneumoniae 4.1 4.2 0.641 

     H. influenzae 3.9 4.3 0.067 

     M. catarrhalis 3.9 4.2 0.024 
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     S. aureus 2.4 3.0 0.146 

     S. pyogenes 3.3 3 0.468 

Mean (median) number 

 of bacterial species 
1.7 (2) 1.8 (2) 0.674 

 

AOMSO: acute otitis with spontaneous otorrhoea; DCCs: day care centres 

 

Multivariate analysis using logistic regression was undertaken to take into 

account the potentially confounding effects of the various factors shown in Table 

6.1. The odds of colonisation with S. pneumoniae and M. catarrhalis decrease 

with age (p=0.001 for S. pneumoniae, p<0.001 for M. catarrhalis) and for S. 

aureus increases with age (p<0.001). Rates of detection of S. pneumoniae as well 

as all other bacterial species including M. catarrhalis are not significantly 

different in AOMSO compared to DCCs (Table 6.3.). 

 

Table 6.3. Colonisation rates for S. pneumoniae, H. influenzae, M. catarrhalis, S. aureus 

and S. pyogenes in multivariate analysis. 

 ORa 95% CI p- value 

     S. pneumoniae 1.07 0.62-1.82 0.818 

     H. influenzae 0.80 0.42-1.53 0.496 

     M. catarrhalis 1.12 0.62-2.01 0.713 

     S. aureus 0.85 0.40-1.81 0.676 

     S. pyogenes 1.21 0.58-2.52 0.607 
 

OR: Odds ratio; CI: confidence interval 
aOdds ratio calculated for children in DCCs versus children with AOMSO 

 

When analysing colonisation densities, since the proportion of children with 

scores less than 4 was always small, logistic regressions were performed 

considering the following binary variable: 0 if density score is less than 5; 1 if 

score is 5. S. pneumoniae, H. influenzae and M. catarrhalis colonisation densities 

were also significantly associated with age (p=0.055; 0.010; 0.022, respectively), 

with older children having lower densities (OR=0.874, CI=0.762-1.003; OR=0.654, 

CI=0.474-0.903; OR=0.848, CI=0.736-0.976, respectively). S. aureus colonisation 

density was significantly associated with pneumococcal vaccination (p=0.021) 

with vaccinated children having lower density (OR=0.170, CI=0.04-0.77). 

Colonisation densities for S. pneumoniae, S. aureus and S. pyogenes remained 
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similar between the two groups but densities for H. influenzae and M. catarrhalis 

were lower in children with AOMSO (Table 6.4.).  

 

Table 6.4. Colonisation density for S. pneumoniae, H. influenzae, M. catarrhalis, S. 

aureus and S. pyogenes in multivariate analysis. 

 ORa 95% CI p- value 

     S. pneumoniae 0.92 0.45-1.87 0.812 

     H. influenzae 4.08 1.17-14.25 0.028 

     M. catarrhalis 2.01 1.13-3.59 0.018 

     S. aureus 1.85 0.27-12.76 0.534 

     S. pyogenes 0.36 0.08-1.54 0.168 
 

OR: Odds ratio; CI: confidence interval 
aOdds ratio calculated for the risk of a colonisation density score of 5 for children in DCCs versus 
children with AOMSO 

 

Logistic regression analysis showed that the number of bacterial species 

detected in each child tended to fall with age (p<0.001). However, it also showed 

that the total number of bacterial species detected was not significantly different 

between the two groups (p=0.959).  

 

6.5 Discussion 

 

Our study, which included children living in the same area and samples 

collected during the same period, shows that, in univariate analysis, rates and 

densities of colonisation with S. pneumoniae, H. influenzae, M. catarrhalis were 

not higher among AOMSO patients than among children in DCCs. The same was 

found for the number of bacterial species detected in colonisation. Data were 

adjusted for potential confounders (Table 6.1). Factors which were significantly 

different between the two groups and which were associated with differences in 

rates or densities of colonisation or both were included in the relevant regression 

equation in each case. 

Unexpectedly children who had received pneumococcal conjugate 

vaccination and who were colonised with S. aureus were found to have lower 

density of colonisation than unvaccinated children. No obvious biological 

explanation for this observation is evident, in particular because differences in 

total carriage rates for S. pneumoniae are not seen in this population between 

immunised and unimmunised children (OR=1.29, CI:0.78-2.14; p=0.325) as 

106 



Nasopharyngeal colonisation in health and otitis 

indirect transmission effects of vaccine use seem to be largely complete. 

Accordingly this finding requires reconfirmation before being investigated in 

more depth. 

Although colonisation rates and densities of S. pneumoniae were similar 

between the two groups, and colonisation rates for H. influenzae and M. 

catarrhalis were likewise similar, the observed densities for the latter two species 

were lower in children with AOMSO. These differences could be offering insights 

relevant to pathogenesis of otitis. 

 As expected, the results of this study have both similarities to and 

differences from those of the heterogeneous previously published studies 

summarised above. Clearly, discussion comparing the findings of studies needs 

to take into account the differences in epidemiology and methodologies. It is 

interesting that carriage rates for S. pneumoniae in our AOMSO group are very 

high compared to other studies and that those in our DCC group are much higher 

than reported in similar studies. This raises the question whether the conflicting 

results of previous publications comparing ill with healthy children may be 

influenced to a great extent by the nasopharyngeal ecology of the healthy 

controls. In our case, the controls were a DCC population with very high 

colonisation rates as well as high presence of rhinitis symptoms, presumably 

reflecting the very high transmission rates in that setting. Our findings suggest 

that high carriage rates and densities do not, per se, predict disease on an 

individual level and that choice of controls may influence the conclusions of 

studies of this nature.  

Although carriage rates and densities are related they are not the same. 

Increasing density from a very low level to a higher level may pass a threshold 

allowing colonisation to become detectable and thus counted and, when it 

reaches still higher levels, might also increase the risk of migration into the 

middle ear. It may also be possible to have two populations with similar rates of 

colonisation but one having much higher densities than the other or different 

balances between species. While it is possible that disease and marked increase 

in transmission rates occur as children reach density scores of 4 or 5, it is also 

possible that such changes only occur at much higher bacterial densities, all of 

which would be designated as score 5 using this methodology. Accordingly, use 

of alternative methodologies for bacterial detection capable of distinguishing 

between density of colonisation at much higher levels, such as species-specific 

real time quantitative PCR may permit clearer elucidation of the relationships 
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between density of colonisation and disease. It is also possible that children with 

similar bacterial densities vary in their infectiousness and predisposition to 

disease due to differences in the bacterial gene expression phenotype. Finally, 

differences in colonisation density which could contribute to pathogenesis may, 

of themselves be insufficient, requiring additional factors such as new bacterial 

acquisition, viral infection or certain kinds of host response to be present for 

disease to develop. 

A novel concept, though, is the idea of changes in relative colonisation 

density between detected bacterial species. While our studies show that in health 

there are children in DCCs with no nasal bacteria detectable by culture or 

colonised with only one species, the large majority has multiple bacterial species 

detected. Our study shows that, taken as a group, children with AOMSO who have 

these bacterial species in their noses do not have higher rates or densities of S. 

pneumoniae but do have significantly lower densities of the two other species H. 

influenzae and M. catarrhalis. Upon these observations we can speculate that 

there may be a dynamic balance between bacterial species in which disease 

sometimes occurs at times of change or imbalance. The association of this 

relative imbalance between species in otitis may be pointing to ecological 

conditions in which disease is more likely to occur. This could occur following 

acquisition of a new strain, it could be affected by intercurrent viral infection and 

other circumstances and factors such as changes in the host innate and specific 

immune responses could help bring it about. Syrjanen et al. (35) showed that the 

majority of S. pneumoniae associated AOM were due to newly acquired strains, 

rather than the ones found in health, suggesting that a new acquisition may 

contribute to altering an existing balance. However, it is not possible to attribute 

the direction of causality in associations observed in cross sectional studies of 

this nature. Nevertheless they can be used to construct new hypotheses that can 

then be addressed in future studies or reanalaysis of existing datasets.  

In conclusion we found similarly high colonisation rates and densities for S. 

pneumoniae, H. influenzae and M. catarrhalis, in health and disease. Colonisation 

densities for H. influenzae and M. catarrhalis were lower, on average, in disease, 

suggesting that a relative imbalance between species in otitis may point to 

ecological conditions associated with disease. The potential role of commensals 

in this process remains unclear and warrants further study.  
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General conclusions 

Streptococcus pneumoniae is a common asymptomatic resident of the 

human nasopharynx and is also an important aetiological agent of meningitis, 

sepsis, bacteraemia, pneumonia and otitis media. During its residence in the 

nasopharynx, pneumococcus commonly shares this anatomical and physiological 

niche with other strains and with several other bacterial and viral inhabitants. 

Colonisation of the nasopharynx is the source of transmission between 

individuals and a necessary but not sufficient pre-condition for development of 

pneumococcal disease. Pneumococcal conjugate vaccines are now known to 

impact on disease largely through their effects on colonisation and transmission. 

The studies presented in this thesis contribute to a better understanding of 

the effect of PCV use on nasopharyngeal colonisation and of the microbial 

interactions that may alter the nature of pneumococcal colonisation and its 

potential to be transmitted to another host or to progress to disease, in preschool 

children. 

Recognising the importance of monitoring pneumococcal nasopharyngeal 

colonisation in Portugal, particularly given the pattern of vaccine usage – in 

contrast to most other countries with either near universal uptake or virtually no 

vaccine use – we commenced a programme of surveillance in a group of DCCs in 

Coimbra. We have conducted cross sectional surveys involving collection of 

nasopharyngeal swabs and clinical and demographic data in between 500 and 

600 children, each year in February-March. A standard approach has been taken 

towards subject recruitment and data collection over the years. For the most part, 

the same nurseries have been studied each year and at roughly the same time of 

year. Approximately the same number of children, of the same age range, have 

been recruited and the same demographic and clinical dataset collected including 

age, sex, current respiratory symptoms, vaccination history, recent antibiotic use, 

exposure to tobacco smoke and number of siblings <6 years of age. In contrast, 

the sampling and laboratory methodology has evolved to keep pace with 

advances in the field. Whereas, at the outset, we took swabs and plated them 

promptly in the local laboratory onto selective media agar plates to identify 

pneumococcus and then forwarded these isolates to another laboratory for 

serotyping using the conventional Quellung reaction methodology, we have 

progressed to taking swabs into enrichment broth (STGG) which can be stored 

frozen for subsequent batched analysis by culture not only for pneumococcus but 

also for other bacterial species that colonise the nasopharynx, and later included 

in our studies. This methodology has been proven to be as good as direct plating, 

111 



Chapter 7 

saves time and increases scientific yield. We have also moved to a new molecular 

microarray serotyping methodology that permits detection and quantification of 

multiple pneumococcal serotypes in a single sample.  

As expected from the methodology used, the demographic of our series of 

cross sectional studies remains very constant over the years. The immunisation 

rate among this sample of children attending inner city private DCCs is, 

unsurprisingly, higher and more homogeneous than that known to exist in the 

wider community, rising steadily to around 87.5% who had received at least one 

dose of PCVs in 2011. 

We have made several important observations. First we have charted the 

decline of most PCV7 types in this population. In the first part of our study, six 

years after PCV introduction in Portugal, it became clear that we were observing 

reduction of the vaccine types that were detectable in this population. The 

combination of moderately high vaccine uptake among children attending these 

nurseries, in the context of somewhat more modest general vaccine usage in the 

paediatric population at large, was sufficient to bring about effective population 

immunity. However, the impact of the vaccine on the different vaccine serotypes 

varied, so that marked differences in their rate of disappearance were seen: some 

serotypes (4, 9V and 18C) had already disappeared by the time this study began 

whereas we have documented a failure of serotype 19F to decline. It is possible 

that the lower selection pressure of the moderately high vaccine uptake in 

Portugal, in contrast with the higher vaccine rates in other well studied 

populations in the USA (239, 245) and UK (246), may have permitted such inter-

serotype differences to be observed more clearly. These findings coincided with 

observations by Weinberger et al. (60), who raised an hypothesis to explain them, 

based on the capsular morphology, size and susceptibility to neutrophilic killing, 

predicting that serotype 19F, with a very large capsule, would be hard to 

dislodge. Lipsitch et al. (62) also demonstrated that 19F is a highly fit serotype 

with a long time to clearance and low susceptibility to competition. Vaccine 

efficacy studies found no statistically significant efficacy of PCV7 against 

acquisition of vaccine serotypes 19F and 14 and a study to evaluate the effect of 

a 9-valent conjugate vaccine on carriage, did not show significant protection 

against 19F (236, 313). The most recent sample set for which we currently have 

complete serotyping results was collected in 2010 and shows an unexpected and 

surprising rise in the proportion of children carrying serotype 19F, that became 

the most frequently carried serotype in this population. Although we used 
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microarray serotyping with enhanced sensitivity for detection of multiple 

serotypes in the same sample, even when children in whom 19F was a minority 

serotype (<50% of the DNA of the sample) are excluded, the upward trend 

remains obvious. Other studies have drawn attention to persistence of 19F (126, 

243), but a resurgence of this kind has not previously been reported in countries 

using PCVs. This could be a local phenomenon. It is also possible that we are 

describing, in real life, one of the scenarios about re-emergence of serotypes, 

proposed by Cobey and Lipstich (67) in their detailed model of pneumococcal 

carriage ecology recently published and described in section 1.6.5. Nevertheless 

19F is among the PCV7 serotypes still causing invasive disease both locally in the 

central region and nationally in Portugal (317) and so further monitoring is 

certainly needed. The practical implications for Portugal and for other countries 

of these observations are that 19F requires special attention in future surveillance 

and the need for effective control may influence future policy decisions. In 

Portugal today, this is of particular importance because it is possible that 

serotype 19F or other vaccine types may increase if economic pressures drive 

down immunisation rates. A randomized double-blind trial to compare 

immunogenicity and efficacy of PCV7 and PCV13 in reducing nasopharyngeal 

colonisation showed that the latter resulted in lower acquisition and prevalence of 

nasopharyngeal colonisation than PCV7 for 19F (341). If confirmed, this 

unexpected finding could mean that the rise in 19F carriage we have documented 

may already have been reversed. Therefore it will be of great interest to track any 

such changes following the introduction of PCV13 in 2010.  

Another recent observation, also predicted by mathematical models (67), is 

that PCV usage results in a temporary increase in serotype carriage diversity in 

the paediatric population that then trends back towards the original level over 

several years, the vaccine serotypes having been replaced by others (245). The 

data used to support this compelling concept have been somewhat fragmentary, 

comparing different types of nasopharyngeal samples (healthy children and 

children with AOM) and samples from different studies. Our data, derived from of 

very consistently collected samples, spanning a period 6–8 years after the first 

use of PCV7 in Portugal, suggests a diversity that has been continuously close to 

the highest seen in other studies (245, 246) and, despite some year to year 

variation, not changing progressively over time. Since we do not have pre-vaccine 

data, this could reflect either that any changes in diversity were already complete 

by the time of our first study or that the PCV7-induced changes were still evolving 
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in this community at that time, a difference that might be due in part to the 

different pattern of vaccine use in Portugal. Understanding better how 

nasopharyngeal bacterial populations change and rebalance themselves under 

vaccine-induced selection pressure will help to shape the future of this and 

related immunisation programmes. 

With the microarray pneumococcal serotyping method applied to 

nasopharyngeal samples of children attending DCCs and to a group of children 

with AOMSO, we have shown that multiple capsular serotypes and strains could 

be detected in the same child, both in the nasopharynx and in the ear. This 

method is an important tool to recognise a pool available for genetic exchange 

and to identify pneumococcal strains that may be circulating at low abundance. 

The apparent disappearance of some vaccine serotypes may sometimes represent 

low-level persistence such that any reductions in vaccine coverage could result in 

rapid re-emergence of detectable colonisation and disease. The more frequent 

serotypes were consistently found both as single-serotype and in co-colonisation.  

Pneumococcus was the bacterium most frequently found the ear of children 

with AOMSO. Of the children with S. pneumoniae positive culture from aural 

discharge, the majority had pneumococcus also in the nose and, in this group, at 

least one serotype was found simultaneously in both places confirming a strong 

correlation between the nasopharyngeal flora and middle ear infections.  

Since nasopharyngeal colonisation precedes disease and is a source of 

transmission, it is important to understand interactions between microorganisms 

in the nasopharynx and other factors that may be associated with both, especially 

in pre-school children who have high carriage rates and close contact with each 

other. Accordingly we explored carriage and density of pneumococcus alongside 

other bacterial species, intercurrent viral infection and the association of these 

factors with the presence of rhinitis. It turned out that the children studied early 

in 2009 were sampled after the end of both the wintertime respiratory syncytial 

virus and influenza virus epidemics that year and these two viruses were virtually 

undetected. Like viral detection and bacterial colonisation with pneumococcus 

and H. influenzae (but not S. aureus), rhinitis was commonest in the first 2 years 

of life and rates fell rapidly after the third birthday. The effects of vaccines upon 

bacterial colonisation and transmission take place upon a background of many 

influences. Age is clearly an important correlate of colonisation, of susceptibility 

to infectious diseases and of propensity to transmit them. Immunological 

immaturity and naïveté and the social habits of the young all change with age. We 
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have shown a significant positive association, using multiple regression analysis, 

between rhinitis and nasopharyngeal colonisation with H. influenzae and between 

respiratory viral detection and the rates and density of colonisation with 

pneumococcus, independently of age. By collecting quantitative clinical data on 

rhinitis while conducting a carriage study we have been able to contribute to a 

better understanding of how microbes influence each other and the human host. 

Our findings also suggest that, contrary to the common assertion that bacterial 

colonisation of the nasopharynx is “asymptomatic”, H. influenzae colonisation 

may be independently associated with rhinitis. Since effects on microbial 

transmission are critical for vaccine effectiveness, understanding the underlying 

mechanisms that determine how successfully transmission happens will 

contribute to design of vaccines and immunisation programmes in the future. The 

observation in our study that pneumococcal colonisation rates and densities were 

associated with the presence of rhinovirus and rhinovirus viral load in the 

absence of any association with increased symptoms of rhinitis, raises questions 

about the underlying mechanisms driving this association. Rhinovirus persists in 

children long after the symptoms caused by the infection have abated. It is 

possible, perhaps, that, as observed with influenza virus infection in ferrets by 

McCullers et al. (342), the presence of rhinovirus enhances the chance of 

successful pneumococcal acquisition perhaps through some effect on mucosal 

epithelium or by alteration of the immune response diminishing the ability of the 

host to clear pneumococcus. Although due to the cross-sectional design of these 

studies, it remains unclear whether these reflect a true cause-effect relationship, 

and if so, in what direction these effects occur, it makes biological sense either 

that, in combination with viral infections, bacteria might proliferate in response to 

rhinitis or might induce, amplify or prolong rhinitis symptoms resulting in 

increased chances of successful transmission to another host. Such phenomena 

might also play a role in causation of disease including pneumonia and otitis 

media. Longitudinal studies during health and disease are needed to better 

understand the sequence of the observed effects. 

Several studies have shown higher rates and/or densities of S. pneumoniae 

nasopharyngeal colonisation in children with respiratory infections than in health 

but others have failed to find such differences. In 2011 we compared patterns of 

pneumococcal nasopharyngeal colonisation between healthy children in DCCs 

and children with AOMSO, showing that, after data were adjusted for potential 

confounders, colonisation rates and densities for S. pneumoniae were similar 
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between the two groups but colonisation densities for H. influenzae and M. 

catarrhalis were lower in children with AOMSO, suggesting that there may be an 

equilibrium between bacterial species and disease may occur at times of 

imbalance. 

There are some limitations in our studies. Bacterial species were identified 

using conventional culture methods. The use of PCR for bacterial detection 

instead of conventional culture, may have increased detection rates, especially in 

children who were on antibiotics and is likely to become more widely used in 

future studies. Second we analysed bacterial density using a semiquantitative 

scoring system that does not distinguish between high and very high levels of 

colonisation. The use of PCR for bacterial load definition may also overcome this 

limitation. Finally we restricted our investigations to the bacterial pathogens that 

are generally considered to be the major contributors to respiratory disease in 

childhood. However there are other pathogenic and commensal bacterial species 

and how they fit into the picture and relate to pathogenesis is an important topic 

for research.  

 

These studies provide a foundation for future work. 

Published studies on nasopharyngeal co-colonisation with different 

pneumococcal serotypes and strains are few and a more extensive analysis of our 

results, exploring the relationship between pneumococci and other bacterial 

species is planned. As discussed above, it is now important to collect further 

samples and clinical data to evaluate the impact of the PCV13 vaccine, which has 

replaced PCV7. In addition, if evidence emerging from countries introducing 

universal influenza vaccines in childhood suggests this is cost-effective and given 

results from our studies and those of others indicating that associations exist 

between viral infections and bacterial colonisation and transmission, there are 

important studies to be done evaluating how flu vaccine in children affects 

nasopharyngeal bacterial ecology at the individual and the population levels. 

In addition to the development and use of the single gene PCR-detection 

methods discussed above, to use alongside and, potentially, to replace culture-

based microbial detection, the possibility of studying the nasopharyngeal 

microbiota by sequencing of bacterial 16S rRNA gene hypervariable regions (3) is 

rapidly becoming both feasible and affordable.  

 With improved case definitions and more sophisticated sampling and 

microbiology techniques designed to allow not only detection of viable microbes 
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and their DNA footprint but also levels of microbial gene expression and of host 

inflammatory and immune response gene expression as well, there is potential to 

conduct not only further cross sectional surveys in healthy and sick children but 

also longitudinal and interventional studies designed to elucidate the dynamics of 

respiratory tract infections at the individual and population level. Such studies are 

vital both in the understanding of disease pathogenesis, current health 

interventions and rational and cost-effective design of the interventions of the 

future. 
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