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Abstract and Keywords 

Biodiversity conservation planning and the impact of human activities on 

biological diversity and landscapes are some of the most pressing issues in ecology 

nowadays. Freshwater biodiversity is among the most threatened worldwide, hence 

conservation planning is an urgent need. 

The objective of this work was to provide an integrated assessment of 

anthropogenic impact and its implications for conservation planning and riverscapes’ 

bryophyte diversity, in Northern Portugal. 

To accomplish the sought integration and overcome the lack of spatial 

chorological data for fluvial bryophytes a community-level modelling approach was 

employed. This approach produced a set of four community types that constituted useful 

surrogates of regional bryophyte species presence in the conservation planning and 

management processes. The distribution of the four community types was modelled and 

projected for the study area using biomod2. 

In order to assess the impact of energy production schemes (dams, small 

hydroelectrics and wind turbines) and transportation networks (railways and main roads), 

on fluvial bryophyte communities, spatial data on these elements and on respective 

areas of influence and magnitudes of impact was superimposed to the communities’ 

potential distribution. In addition, a spatial conservation prioritization analyses using 

Zonation software was conducted to spatialize the different options priority of 

conservation areas chosen based on three bryophyte communities rich in species with 

conservation interest and different combinations of fragmentation restrictions. 

We found that, although the total area of bryophyte communities potential 

presence impacted can be considered low, a considerable part of this impact is located 

within protected areas of the study area, which undermines their efficiency for the 

protection of fluvial bryophytes. In the spatial analysis, main roads were found to be the 

leading cause of impact across all communities. In fact, roads are known to be 

responsible for the alteration of streambed, margins, water quality and debris flow, so, 

consequently, the alteration of bryophyte community structure and a change in species 

diversity. 

The Zonation analyses further reinforced the necessity of effective management 

strategies in protected areas, since the allocation of protection priority to these areas 

yielded some of the lowest values of protected distribution for the bryophyte 

communities. 
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This work, using fluvial bryophytic communities as a biological model for 

conservation studies, demonstrated that constraining protection of biodiversity solely to 

protected areas is not necessarily an effective strategy and that a more integrated 

management approach of a region and fragmentation elements should be considered in 

the overall conservation policies. 

 

Keywords: bryophytes, riverscapes, impact, fragmentation, conservation 
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Resumo e Palavras-chave 

 O planeamento da conservação da biodiversidade e os impactos antropogénicos 

sobre a diversidade biológica são assuntos prementes em ecologia, atualmente. A 

biodiversidade fluvial é uma das mais ameaçadas ao nível mundial, sendo, por isso, o 

planeamento da sua conservação uma necessidade urgente. 

            O objetivo deste trabalho foi providenciar uma avaliação integrada dos impactos 

antropogénicos e as suas implicações para o planeamento da conservação da 

diversidade briofítica das paisagens fluviais do Norte de Portugal. 

             De forma a conseguir esta integração e ultrapassar a falta de informação 

corológica espacializada para as espécies de briófitas fluviais, foi empregue uma 

abordagem de modelação ao nível da comunidade. Esta abordagem produziu um 

conjunto de quatro comunidades tipo que constituem úteis indicadores de substituição 

da presença regional de diferentes espécies de briófitas em processos de gestão e 

planeamento da conservação. A distribuição destas quatro comunidades tipo foi 

modelada e projetada para a área de estudo utilizando biomod2. 

            Para avaliar o impacto de infraestruturas de produção de energia elétrica 

(barragens, mini-hídricas e aerogeradores) e redes de transportes (rede viária e 

ferroviária), nas comunidades briofíticas fluviais, a informação espacial relativa a estes 

elementos, às suas áreas de influência e às suas magnitudes de impacto, foi sobreposta 

à distribuição potencial das comunidades tipo. 

Além disso, foi utlizado o software de priorização espacial de conservação Zonation para 

espacializar diferentes opções de áreas de conservação escolhidas com base nas três 

comunidades tipo mais ricas em espécies com interesse de conservação e em 

diferentes combinações de restrições de fragmentação. 

Apesar da área total de impacto sobre a distribuição potencial das comunidades 

briofíticas poder ser considerada baixa, parte considerável deste impacto localiza-se em 

áreas protegidas da área de estudo, o que põe em causa a sua eficiência na proteção 

de briófitas fluviais. 

Nesta análise espacial, a rede viária foi identificada como a principal causa de 

impacto em todas as comunidades. De facto, as estradas são responsáveis pela 

alteração do leito, margens, qualidade da água e fluxo de detritos, e como consequência 

pela alteração da estrutura das comunidades e riqueza específica. 
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As análises Zonation reforçaram a necessidade de estratégias de gestão eficazes nas 

áreas protegidas, uma vez que a alocação de prioridade de conservação a estas áreas 

deu origem a proporções de distribuição protegida mais baixas. 

Utilizando comunidades briofíticas fluviais como modelo biológico para estudos sobre 

conservação, demonstrou-se que restringir a proteção da biodiversidade apenas a áreas 

protegidas não é necessariamente uma estratégia eficaz e que devem ser consideradas 

estratégias de gestão de fragmentação integradas aquando da elaboração de políticas 

de conservação à escala regional. 

 

Palavras-chave: briófitas, paisagens fluviais, impacto, fragmentação, conservação
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1. General Introduction 

1.1 Riverscapes heterogeneity and diversity 

 The terms riverscapes and riverine landscapes refer to a perspective which 

regards fluvial systems their patterns and processes as a whole. This view recognizes 

the fact that river channels are a part of a series of biotopes and environmental gradients 

that, together with the respective biotic communities, constitute fluvial ecosystems (Ward 

1998).  

 Riverscapes are dendritic and hierarchical landscapes characterized by a 

downstream variation of geomorphological and hydrological patterns. The combination 

of substrate nature, morphology and stability with stream flow characteristics, such as 

magnitude of discharge, frequency, duration and timing, and natural disturbance 

regimes, generate a mosaic of different habitat patches (Poff & Ward 1989; Sidle & Onda 

2004; Poole 2010).  

 Patterns and processes in riverscapes are strongly orientated to the direction of 

the water movement. This directionality determines the structure and ecological 

connectivity of the system along three vectors, the longitudinal (upstream-downstream 

linkages), lateral (channel-riparian and floodplain systems) and the vertical (running 

waters-contiguous groundwater) (Ward 1989). 

Riverscapes also possess high spatio-temporal and hydrogeomorphological 

heterogeneity due to various environmental gradients and biotopes, natural disturbance 

regimes related to flow regimes and innate connectivity of the water column. The unique 

combination of processes and patterns acting at different spatial and temporal scales 

makes for a biologically diverse landscape (Fig. 1) (Ward 1998; Poole 2002; Wiens 

2002).  

Despite the heterogeneous nature of riverscapes, river and streams are mostly 

perceived as the epitome of connectivity, in what concerns the movement of water. In 

fact, water is an effective agent of linkage between landscape elements, both in time and 

space (Ward et al. 2002; Wiens 2002).  

 Community diversity in these landscapes is, therefore, promoted by spatial 

heterogeneity, which expand the resource gradient, and temporal heterogeneity, which 

increases the possibility for niche overlap (Ward et al. 2002). These conditions allow the 

persistence of several and diverse groups of organisms, among which are bryophytes. 
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Fig. 1 Patterns and processes that influence the species pool of riverscapes. From Ward et al. (2002). 

 

1.2 Regional conservation planning for fluvial biodiversity: Problems 

and approaches 

Freshwater ecosystems and biodiversity face significant threats worldwide, 

constituting a component of biodiversity that is highly endangered (Abell 2002; Dudgeon 

et al. 2006; Vörösmarty et al. 2010). Dudgeon et al. (2006) grouped major threats to 

freshwater biodiversity in five interacting categories: overexploitation, water pollution, 

flow modification, destruction or degradation of habitat and invasion by exotic species.  

Fluvial systems in the Mediterranean region have a long history of human impact, 

which, during the past century, is mainly related to water and channel management, 

urbanization and alteration of practices and land use (Hooke 2006). The construction of 

dams, the implementation of small hydroelectric schemes, water flow regulation, 

channelization and deviation, extensively altered the hydrological regime and fluvial 

connectivity of many water courses (Jansson et al. 2000; Nilsson & Berggren 2000; 

Nilsson et al. 2005). 

Additionally, transport infrastructures, such as railways and roads, and new 

energy production schemes, such as wind farms, have also played a role in the alteration 

of springs, river beds, margins and their surroundings (Wohl 2006; Perkin et al. 2013). 
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Human intervention has also led, inevitably, to aquatic and riparian habitats 

fragmentation, local extinction and community structure alteration (Hooke 2006; Prenda 

et al. 2006). 

Riverscapes and associated biodiversity should be considered priorities in 

conservation planning due to their uniqueness and vulnerability. However, conservation 

plans are most commonly oriented for the conservation of terrestrial biodiversity, and 

fluvial ecosystems are often secondary concerns in the design and management of 

conservation areas (Nel et al. 2009a; Chessman 2013).  

Only recently, the application of systematic conservation planning (Margules & 

Pressey 2000) to freshwater ecosystems has started gaining momentum (Nel et al. 

2009b; Linke et al. 2011; Turak & Linke 2011). This type of framework usually involves 

the selection of biodiversity surrogates, definition of conservation goals and finding the 

solution with lesser costs and maximising the outcomes.  

Systematic approaches require spatial data on biodiversity, and although 

available data is increasing, modelling techniques have proven useful in countering data 

needs. Statistical modelling techniques are powerful tools that enable modelling 

biological surrogates and extrapolating distributions across large regions. Although these 

techniques are mostly used for single species (Guisan & Thuiller 2005; Araújo & Guisan 

2006; Guisan et al. 2006), new and more integrative approaches, using communities as 

biodiversity surrogates, are being implemented in the development of freshwater 

conservation plans at regional level (Olden 2003; Arponen et al. 2008; Leathwick et al. 

2010). Community types with emblematic and representative species can act as 

surrogates for species diversity and fluvial integrity (Feio et al. 2012; Vieira et al. 2014). 

These modelling approaches are generally designated as community-level 

modelling and can be implemented using three strategies (i) ’assemble first, predict later’, 

(ii) ‘predict first, assemble later’ and (iii) ‘assemble and predict together’ (Fig. 2) (Ferrier 

& Guisan 2006). These approaches differ in the stage in which the data on multiple 

species is combined, usually by numerical classification (Ferrier et al. 2002; Ferrier & 

Guisan 2006).  

‘Assemble first, predict later’ strategies involve some form of classification, 

ordination, aggregation of the biological data without any reference to environmental 

data, followed by modelling the previously obtained community-level entities as a 

function of environmental predictors (Ferrier et al. 2002) .  

In ‘predict first, assemble later’ strategies, individual species are modelled one at 

a time and the resulting species distributions are then classified (Leathwick et al. 1996). 
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In ‘assemble and predict together strategies’, generating community level 

attributes and modelling of biological-environmental relationships are performed in one 

step, through the use of extended techniques species-level modelling (Olden 2003).    

 

Fig. 2 Three approaches to modelling at the community-level, from Ferrier and Guisan (2006). 

 

After the spatial data requirements are met, other concerns arise in spatial 

conservation planning for freshwater biodiversity. A regional conservation plan should 

promote a coherent network of reserve areas articulating land use, fluvial ecosystems 

and organisms. To accomplish this, it is necessary to implement new reserves that 

encompass the diversity of species and ecosystems associated with riverscapes, protect 

critical refuges, ensure hydrological connectivity, monitor human impact and 

management and also evaluate the efficiency of existing reserves for the conservation 

of freshwater biodiversity (Abell et al. 2007; Nel et al. 2009b; Piquer-Rodriguez et al. 

2012; Scolozzi & Geneletti 2012).  

 

1.3 Fluvial bryophytes: ecological role and conservation 

Bryophytes are one of the most common group of macrophytes in riverscapes. 

Many species of bryophyte species are constrained in their distribution to moist habitats 

due to the lack of vascular system to transport water (Glime 2007). Riverscapes provide 
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a wide range of wet conditions providing a highly suitable habitat for bryophytes 

depending on seasonal or permanently humid conditions (Slack & Glime 1985).  

Bryophytes play a structural role in stream ecosystems, influencing community 

structure of stream fauna and competing for resources such as space, nutrients and light. 

These organisms partake in nutrient cycles, influencing nutrient uptake and retention, 

and are important primary producers in streams (Meyer 1979; Stream Bryophyte Group 

1999). Also, bryophyte colonies provide refuge for fauna, supporting different 

invertebrate species assemblages (Suren 1993; Bowden et al. 1999; Stream Bryophyte 

Group 1999; Paavola et al. 2006).  

Fluvial bryophytes distribution is influenced by microscale variables, such as 

substrate size, stream bed stability, stream slope and local flow type and also by 

mesoscale variables, such as geology, hydrology and water quality; the microscale set 

of variables influences their presence/absence and the mesoscale set the community 

type (Suren 1996; Suren & Ormerod 1998; Suren & Duncan 1999; Scarlett & O'Hare 

2006; Leutner et al. 2012). 

Bryophytes are recognized indicators of human impact, microhabitat 

heterogeneity and fluvial integrity, which determine the structure and composition of their 

communities (Zechmeister et al. 2003; Scarlett & O'Hare 2006; Fritz et al. 2009; Ceschin 

et al. 2012; Vieira et al. 2012). These organisms are already used as proxy of water 

quality and catchment environmental quality, for example, in the European Water 

Framework Directive (WFD) (Gecheva & Yurukova 2013; Luís et al. 2013; Vieira et al. 

2014). 

Portuguese bryoflora counts 40% of European bryophyte species, holds 65% of 

the Iberian Peninsula taxa and are a recognised group for the maintenance of the overall 

Iberian Peninsula’s biodiversity (Ros et al. 2007; Sérgio et al. 2007; Ros et al. 2013; 

Sérgio et al. 2013). 

In Portugal fluvial bryophyte communities composition counts some rare, 

endemic species with conservation interest (Vieira et al. 2005; Vieira et al. 2012b; Vieira 

et al. 2012c), and are associated with many priority aquatic and semi-aquatic European 

habitats (Council of the European Communities 1992). 

 

1.4 Aims and thesis layout 

In this context the general aim of this thesis is to assess the impact of riverscapes 

fragmentation in the conservation of fluvial bryophyte communities in Northern Portugal. 

Specific aims include: 
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(1) Establishing the main fluvial bryophyte community types at the regional level 

and obtaining spatialized information on their distribution, overcoming the existing lack 

of chorological information. 

(2) Assessing, categorizing and summarizing the impact of regional 

fragmentation elements, such as energy production schemes and communication 

elements, on bryophyte communities. 

(3) Analyse the effect of anthropogenic impacts in spatial conservation planning 

for fluvial bryophyte diversity. 

(4) Discuss the spatial congruence of protection areas and the most promising 

areas for fluvial bryophyte communities’ conservation in the studied region. 

 

This thesis is organized in five chapters: (1) a general introduction, exploring the 

main concepts related to the subject of this thesis; (2) a general methods chapter, which 

contains the characterization of the study area, a description of the biological and 

environmental datasets employed and the general methodological framework; (3) a 

chapter named “Connecting riverscapes and bryophytes: a spatial conservation planning 

approach” following the organization of a manuscript submitted to a scientific journal, 

where detailed methods, results and discussion are presented together with other 

pertinent information to publish this thesis; (4) a general discussion chapter, exploring 

more exhaustively the main trends and results of this work; and (5) a concluding remarks 

chapter, summarizing the main findings and messages of this thesis .  

All the references used are listed in the end of the respective chapter in a specific 

section. 
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2. General Methods 

2.1 Study area 

The study area encompasses Northern Portugal as delimited by NUTSII 

administrative region (Fig. 3). This region possesses a temperate climate with mean 

annual temperature of 13ºC and average total annual precipitation of 1013 mm 

(Ninyerola M. et al. 2005). However, this is a climatically heterogeneous area, with a 

west vs. east differentiation in mean annual temperature and precipitation. The distance 

from the Atlantic Ocean and the interaction between the land relief and climate are 

responsible for this environmental differentiation. In a recent environmental classification 

this area was divided in three environmental zones (Fig. 4 A) that reflect the above 

mentioned differentiation (Metzger et al. 2005). The Lusitanian area is influenced by the 

proximity to the Atlantic Ocean, has mild and humid winters and high summer 

temperature with few months of drought. The Mediterranean Mountains area is 

influenced by continentality and the Mediterranean climate, but still retains some of the 

influence of mountainous climate. The Mediterranean North presents a characteristic 

Mediterranean summer drought. 

 

Fig. 3 Study area geographical context in Europe (A), the Iberian Peninsula (B) and the sampling points over an Digitial 
Elevation Model (DEM). 
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The main typologies of streams and rivers of the study area reflect the climatic 

differentiation and the land relief. These typologies include the mountainous rivers of the 

North, northern rivers of small to medium-large dimensions and the Alto Douro rivers of 

small to medium-large dimensions (Fig. 4 B) (INAG 2008). The mountainous rivers are 

steep watercourses, located at high altitudes, with small catchment areas (less than 100 

km2) and high average annual drainage (800-1400 mm), the annual average temperature 

is 11°C and annual average precipitation is 1900 mm. The northern rivers have an annual 

average temperature of 12 to 13 °C and annual average precipitation of 1200 mm, are 

located at a diverse range of altitudes and have little mineralization due to the siliceous 

lithology of the substrates. The Alto Douro rivers are characterized by the higher mean 

temperature (13°C) and decreased precipitation (600 mm average) typical of the 

Mediterranean region where they are located (INAG 2008). 

Fluvial systems of the study area present high bryophyte species richness and, 

in the northwest territory, a total of 140 species has been reported (Vieira et al. 2005). 

Among these, 19 taxa are included in European or Iberian Red Lists, five taxa endemic 

to Europe and two endemic to the Iberian Peninsula (Vieira et al. 2005; Sérgio et al. 

2013). Additionally, many species distribution is restricted to streams located in the west 

of the study area and, for other species, this region corresponds to the southern limit of 

their distribution (Vieira et al. 2005). 

 

 

Fig. 4 Environmental zones according to Metzger et al. (2005) (A) and river typologies according to INAG (2008) (B) in 
the study area. 
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2.2 Methodological framework 

In order to accomplish the aims laid out for this work we established a 

methodological framework (Fig. 5) that consisted of three stages: 

(I) Community-level modelling: "assemble first, predict later" approach. 

(II) Spatialization and summarization of impacts caused by regional fragmentation 

elements. 

(III) Spatial conservation prioritization for the previously modelled community types. 

 

 

Fig. 5 Methodological framework employed in this thesis. 

 

In the first stage the goal was to obtain spatialized information on bryophyte 

communities’ distribution. In order to achieve this, we applied a “assemble first, predict 

later” modelling strategy (Ferrier & Guisan 2006). The first step was to conduct a 

classification of the biological data (see 2.3 Species data) using, in this case, Ward’s 

classification method on a previously matrix calculated of Jaccard’s similarity between 

sites (Borcard et al. 2011). 

The community types obtained by classification were then characterized 

according to species frequency and contribution for cluster similarity – a SIMPER 

analysis conducted in Community Analysis Package 1.52 (Hederson & Seaby 1999) . 

The community types occurrence was then modelled for the study area using 

biomod2: Ensemble platform for species distribution modelling, in R environment (R Core 
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Team 2013; Thuiller et al. 2013). The predictions obtained for each algorithm that yielded 

area under the curve (AUC) of the receiver operating characteristic (ROC) values above 

0.7 were combined to obtain an ensemble forecast of community types’ distribution. The 

resulting probability map was binarized into a presence/absence map, using 70% 

probability as a threshold for occurrence. 

In the following stage we compiled existing geographic information on regional 

fragmentation elements, including energy production schemes, such as dams, small 

hydroelectric schemes and wind turbines, and transportations networks, including main 

roads and railways. This information was obtained through “MoBia - Biodiversity 

Monitoring in Environmental Assessments” project, which main objective was to evaluate 

the effectiveness of the handling of biodiversity in environmental assessments and the 

contribution of associated monitoring programs for a global monitoring network 

(PTDC/AAC-AMB/114522/2009). 

The geographic information available consisted of the location of different 

elements, for example, for wind turbines the information available corresponded only to 

point features. Understandably, this type of information merely depicts localized 

destruction, and does not take into account different magnitudes of impact associated 

with the implementation of the infrastructures and the alteration of the surrounding 

environment. In order to account for different magnitudes of impact, a set of buffers with 

different distances were established for each type of fragmentation elements (Table 1). 

 

Table 1 Description of regional fragmentation elements spatial data and the different magnitude buffers established. 

Regional 
fragmentation 

elements 

Number of elements 
in study area 

General description of available 
geographic information 

Impact levels and buffers definition 

1 (lower) 2 (medium) 3 (stronger) 

Dams 24 Polygons corresponding to the 
reservoirs;  

All dams are already 
constructed. 

n.a. Buffer of 200 m 
around the 
reservoir +  

1 km of buffer, 50 
m wide, 

downstream of the 
reservoir 

Intersection of 
community 

distribution with 
the area of the 

reservoir 

Small hydroelectrics 34 Point features;  
34 were being subjected to EIA 
at the time,4 already licensed, 2 
in construction, 2 requiring EIA 

exemption and 1 project in 
execution 

n.a. Buffer of 500 m 
radius around the 

point  

Intersection of 
point with 

community 
distribution 

Wind farms 1054 Point features; 
 all installed 

Buffer of 500 m 
width around the 
area of impact 

level of two 

Buffer of 250 m 
width around the 

area with strongest 
impact 

Intersection of 
community 

distribution with 
the point feature 
and buffer of 100 
m radius around 

the point  
Railways 32 Line features;  

619.08 km including deactivated 
lines such as the Tua Line, and 

remodelled lines such as the 
Póvoa Line 

Buffer of 100 m 
width around the 
area of impact 

level of two  

Buffer of 50 m 
width around the 

line. 

Intersection of line 
community 
distribution 

Main roads 278 Polygon features 5, 10, 15 m 
wide respectively in national and 

regional roads, main and 
complementary itineraries and 

highways. 
1197.32 km of extent in total; 
50.45 km of highways, 182.56 
km of itineraries, 822.86 km 

national roads, 141.43 km  of 
regional roads 

Buffer of 100 m 
width around the 
area of impact 

level of two 

Buffer of 50 m 
width around the 
road polygons 

Intersection of 
polygon with 
community 
distribution 
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The assessment of impact was completed by superimposing the fragmentation 

elements and respective buffers to the binary potential distribution of bryophyte 

community types and summarizing impacted area for each community by fragmentation 

element and magnitude of impact in ArcMap 10.1 (ESRI 2012). 

The last stage of the methodological approach consisted in the use of the 

conservation prioritization software Zonation 4.0.0 (Moilanen et al. 2014), to identify 

areas of potential conservation, assess the potential role of previously defined protected 

areas and test the effects of human occupancy and fragmentation on the conservation 

of bryophyte communities. 

Zonation identifies areas that are important for retaining habitat quality and 

connectivity simultaneously for multiple species or other biodiversity features, providing 

a method for enhanced persistence of biodiversity on long term. This software produces 

a hierarchical prioritization of the landscape based on conservation value of the sites 

accounting for complementarity. The algorithm hierarchically removes least valuable 

cells from the landscape while minimizing marginal loss of conservation value, 

accounting for connectivity and priority given to biodiversity features. In this work we 

employed a Core Area Zonation (CAZ) removal rule, which selects as high priority cells 

those with high occurrence probability for highly weighted species, putting emphasis on 

rarity and conservation value of biodiversity features. The result of these analysis 

consists in a sequence of nested, highly connected structures with core areas that 

represent greatest conservation values (Lehtomäki & Moilanen 2013). 

In this case, Zonation software produces a hierarchical prioritization of the 

landscape based on biological value of the sites (cells) accounting connectivity and the 

importance given to the biodiversity features (in this case fluvial bryophyte communities). 

This produces a spatial prioritization composed of a nested sequence of highly 

connected landscape structures with core areas that present the greatest conservation 

values (top fraction).  

Restrictions to conservation, understood as the introduction of different 

fragmentations and human occupancy elements were considered in different Zonation 

analyses, both individually and combined (Table 2). The proportion of communities’ 

distribution protected by the top fraction of the landscape was examined for each 

analyses conducted and compared. Additionally, it was conducted a landscape 

comparison analysis (LSC), which consists in a comparison between two solutions in 

order to evaluate how much do they overlap and their average difference in cell removal 

order. Finally, all solutions were compared to the one that only took into account the 

biodiversity features in the process of choosing the top fraction of the riverscapes. 
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Table 2 Spatial conservation prioritization analysis conducted in Zonation software with respective data inputs 
(restrictions) and aims of representation. 

Analysis codes Data input Representation 

BIO Community types distributions 
modelled 

“Pristine” conditions. 

BIO+Pr Community types distributions 
Mask Layer: All protected areas 
(Natura 2000 network, protected areas 
and Ramsar sites) 

Force inclusion of protected areas 
in the choice of high priority 
conservation areas. 

BIO+Urb Community types distributions  
Condition Layer: Urban areas 

Exclude urban areas from analysis. 

BIO+Agr Community types distributions  
Condition Layer: Agricultural areas 

Exclude agricultural areas from 
analysis. 

BIO+Frag  Community types distributions  
Condition Layer: Areas impacted by 
regional fragmentation agents 

Exclude areas impacted by the 
regional fragmentation elements 
listed above. 

BIO+Urb+Agr Community types distributions  
Condition Layer: Urban and 
agricultural areas 

Exclude both agricultural and urban 
areas to reflect human presence 
occupancy constraints. 

BIO+Urb+Agr+Frag Community types distributions  
Condition Layer: Urban, agricultural 
and impacted areas 

Exclude urban, agricultural and 
areas impacted by regional 
fragmentation elements to reflect 
human occupancy and 
fragmentation constraints.  

BIO+Urb+Agr+Frag+Pr Community types distributions  
Condition Layer: Urban, agricultural 
and impacted areas 
Mask Layer: All protected 

More realistic approach, reflecting 
not only the human presence and 
impact in the landscape, but also 
the constraints to the creation of 
new conservation areas. 

 

2.3 Species data 

Species data utilized in this work correspond to a compilation of databases of 

fluvial bryophytes inventories, that correspond to fieldwork carried out between 2000 and 

2012 by Cristiana Vieira. 

Bryophyte species were surveyed in all immerged or semi-immerged rock 

microhabitats found within 100 m of riverbed and margins, of a total of 270 sampling 

points. Bryophyte species presence/absence was registered using 0.25 m2 sample plots 

placed in all recognizable hydrologic zones and microhabitats constantly or easily 

immerged, seasonally or several times a month, with discharges related to precipitation 

or dam releases and micro-habitats immerged only in extended periods of rain. 

The species encountered and their conservation status according to the Red List 

of Threatened Bryophytes of Portugal (Sérgio et al. 2013) are listed in Table 3.  

2.4 Environmental variables  

The set of environmental variables employed in the modelling of community types 

distributions were chosen taking into account the environmental drivers of the 

communities’ distribution and the available spatial data.  
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Table 3. List of bryophyte species in the study area, respective conservation status according to the Red List of 
Threatened Bryophytes of Portugal (Sérgio et al. 2013) and the number of sampling sites with registered presence. M – 
Moss; H – Liverwort; LC – Least concern; LC - att – Least concern, attention; LC-int – Least concern, introduced; NT – 
Near Threatened; VU- Vulnerable; DD – Data deficient; DD-n – Data deficient new;  EN – Endangered. 

Class Species 
Red List status Number of 

sites 

M Andreaea rothii F. Weber & D. Mohr  LC 7 

H Aneura pinguis (L.) Dumort LC 17 

M Atrichum undulatum (Hedw.) P. Beauv. LC 20 

M Brachythecium rivulare Schimp. LC 49 

M Brachythecium rutabulum (Hedw.) Schimp. LC 11 

M Bryum alpinum Huds. ex With. LC 33 

M Bryum argenteum Hedw. LC 7 

M Bryum capillare Hedw. LC 15 

M Bryum gemmiparum De Not. LC 20 

M Bryum pseudotriquetrum (Hedw.) P.Gaertn. et al. LC 47 

M Calliergonella cuspidata (Hedw.) Loeske LC 6 

H Calypogeia fissa (L.) Raddi LC 8 

M Campylopus introflexus (Hedw.) Brid. LC-int. 3 

M Campylopus pilifer Brid. LC 13 

M Campylopus pyriformis (Schultz) Brid. NT 2 

M Ceratodon purpureus (Hedw.) Brid. subsp. purpureus LC 6 

H Chiloscyphus polyanthos (L.) Corda LC 43 

M Cinclidotus fontinaloides (Hedw.) P. Beauv. LC 23 

M Cinclidotus riparius (Host ex Brid.) Arn. VU 3 

M Cirriphyllum crassinervium (Taylor) Loeske & M.Fleisch. LC 4 

H Conocephalum conicum (L.) Dumort. LC 17 

H Corsinia coriandrina (Spreng.) Lindb. LC 4 

M Dendrocryphaea lamyana (Mont.) P. Rao LC 11 

M Dialytrichia mucronata (Brid.) Broth. var. mucronata LC 14 

M Didymodon insulanus (De Not.) M.O.Hill LC 21 

M Drepanocladus aduncus (Hedw.) Warnst. NT 2 

H Dumortiera hirsuta (Sw.) Nees VU 5 

M Epipterygium tozeri (Grev.) Lindb. LC 3 

M Eurhynchium hians (Hedw.) Sande Lac. var. hians LC 4 

M Eurhynchium pumilum (Wilson) Schimp. LC 4 

M Fissidens bryoides Hedw. var. caespitans Schimp. LC 48 

M Fissidens crassipes ssp. warnstorffi (Fleisch.) Brugg.- Nann. LC 6 

M Fissidens dubius P.Beauv. LC 5 

M Fissidens fontanus (Bach.Pyl.) Steud. LC 3 

M Fissidens polyphyllus Wilson ex Bruch & Schimp. LC 104 

M Fissidens pusillus (Wilson) Milde DD 27 

M Fissidens serrulatus Brid. LC 28 

M Fissidens taxifolius Hedw. LC 2 

M Fissidens viridulus (Sw. ex anon.) Wahlenb. var. viridulus LC 2 

M Fontinalis antipyretica Hedw. LC 38 

M Fontinalis hypnoides Hartm. var. duriaei (Schimp.) Kindb. LC 7 

M Fontinalis squamosa Hedw.  LC 67 

H Fossombronia angulosa (Dicks.) Raddi LC 4 

M Funaria hygrometrica Hedw. LC 5 

M Grimmia decipiens (Schultz) Lindb. LC 7 

M Grimmia laevigata (Brid.) Brid. LC 5 

M Grimmia lisae De Not. LC 12 

M Grimmia meridionalis (Müll. Hal.) E. Maier DD-n 4 

M Grimmia montana Bruch & Schimp. LC 2 

M Grimmia ovalis (Hedw.) Lindb. VU 9 

M Grimmia trichophylla Grev. LC 4 

M Heterocladium wulfsbergii I.Hagen DD 32 

M Hookeria lucens (Hedw.) Sm. NT 6 

M Hygrohypnum ochraceum (Turner ex Wilson) Loeske NT 35 

M Hyocomium armoricum (Brid.) Wijk & Margad. LC 105 

M Isothecium holtii Kindb. LC 51 

M Isothecium myosuroides Brid. LC 3 

H Jungermannia gracillima Sm. LC 14 

H Jungermannia hyalina Lyell LC 26 

H Jungermannia obovata Ness EN 2 

H Jungermannia pumila With. EN 2 

H Jungermannia sphaerocarpa Hook. LC 3 

M Kindbergia praelonga (Hedw.) Ochyra LC 58 

H Lejeunea cavifolia (Ehrh.) Lindb. LC 17 
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H Lejeunea lamacerina (Steph.) Schiffn. LC 5 

M Leptodictyum riparium (Hedw.) Warnst. LC 18 

M Leskea polycarpa Hedw. VU 2 

H Lophocolea bidentata (L.) Dumort. LC 3 

H Lunularia cruciata (L.) Lindb. LC 18 

H Marchantia polymorpha L. LC 11 

H Marsupella emarginata (Ehrh.) Dumort. LC 58 

H Marsupella sphacelata (Gieseke ex Lindenb.) Dumort. LC 11 

M Mnium hornum Hedw. LC 21 

H Nardia compressa (Hook.) Gray NT 24 

M Orthotrichum rupestre Schleich. ex Schwägr. var. rupestris LC 9 

H Pellia epiphylla (L.) Corda LC 73 

A Phaeoceros laevis (L.) Prosk. LC 3 

M Philonotis arnelli Husn. LC 6 

M Philonotis caespitosa Jur. LC 2 

M Philonotis fontana (Hedw.) Brid. LC 25 

M Philonotis rigida Brid. NT 3 

H Plagiochila porelloides (Torrey ex Nees) Lindenb. LC 2 

M Plagiomnium affine (Blandow ex Funck) T.J.Kop. LC 3 

M Plagiomnium undulatum (Hedw.) T. J. Kop. LC 36 

M Plagiothecium denticulatum (Hedw.) Schimp. LC 2 

M Plagiothecium nemorale (Mitt.) A. Jaeger LC 16 

M Plagiothecium succulentum (Wilson) Lindb. LC 9 

M Platyhypnidium lusitanicum (Schimp.) Ochyra & Bednarek-Ochyra LC 108 

M Platyhypnidium riparioides (Hedw.) Dixon LC 48 

M Pogonatum aloides (Hedw.) P. Beauv. LC 13 

M Pohlia annotina (Hedw.) Lindb. LC 4 

M Pohlia bulbifera (Warnst.) Warnst. DD 5 

M Polytrichastrum formosum (Hedw.) G. L. Sm. LC 3 

M Polytrichastrum formosum (Hedw.) G.L.Sm. DD 6 

M Polytrichum commune Hedw. LC 68 

M Polytrichum juniperinum Hedw. LC 2 

H Porella pinnata L. VU 6 

M Pseudotaxiphyllum elegans (Brid.) Z.Iwats. LC 4 

M Racomitrium aciculare (Hedw.) Brid. LC 119 

M Racomitrium affine (F.Weber & D.Mohr) Lindb. LC 3 

M Racomitrium aquaticum (Dicks. ex Sw.) Bruch & Schimp. LC 16 

M Racomitrium hespericum Sérgio, J. Muñoz & Ochyra LC-att 11 

M Racomitrium heterostichum (Hedw.) Brid. LC 6 

M Racomitrium lamprocarpum (Müll.Hal.) A.Jaeger LC-att 49 

M Racomitrium lusitanicum Ochyra & Sérgio LC-att 11 

M Rhizomnium punctatum (Hedw.) T. J. Kop. LC 39 

M Rhynchostegium confertum (Dicks.) Schimp. LC 3 

H Riccardia chamaedryfolia (With.) Grolle VU 10 

H Riccardia multifida (L.) Gray LC 13 

H Riccia huebeneriana Lindenb. VU 2 

H Saccogyna viticulosa (L.) Dumort. LC-att 10 

H Scapania compacta (A. Roth) Dumort. LC 20 

H Scapania nemorea (L.) Grolle LC 6 

H Scapania undulata (L.) Dumort. LC 118 

M Schistidium apocarpum (Hedw.) Bruch & Schimp. DD 18 

M Schistidium rivulare (Brid.) Podp. VU 16 

M Sciuro-hypnum plumosum (Hedw.) Ignatov & Huttunen NT 39 

M Scleropodium touretii (Brid.) L.F.Koch LC 15 

M Scorpiurium deflexifolium (Solms) M. Fleisch. & Loeske LC 23 

M Sphagnum auriculatum Schimp. LC 38 

M Sphagnum capillifolium (Ehrh.) Hedw. LC 3 

M Sphagnum subnitens Russow & Warnst. LC 2 

H Targionia hypophylla L. LC 2 

M Thamnobryum alopecurum (Hedw.) Gangulee LC 42 

M Thamnobryum maderense (Kindb.) Hedenäs VU 13 

M Trichostomum brachydontium Bruch  LC 6 
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The environmental predictors selected can be divided in three categories: climatic 

variables, physiographic and hydrologic (Table 4) (Suren 1996; Scarlett & O'Hare 2006).  

The climatic variables that influence the distribution of bryophytes are related to 

temperature and precipitation, their variation and seasonality (Hearnshaw & Proctor 

1982; Proctor 1982; Arscott et al. 2000; Proctor 2000). The physiographic variables 

include elevation, slope, aspect and solar radiation (Suren 1996). The hydrologic variable 

used was flow accumulation since it is the spatial information related to hydrology that 

could be generated and became available for the entire study area. 

 

Table 4 Environmental predictors considered in the bryophyte community modelling process and respective sources. 

Type of 
variable  

Variable Source 

Climatic Annual Average Temperature Digital Iberian Climatic Atlas (Ninyerola M. et 
al. 2005) 

Temperature annual range  Derived from Digital Iberian Climatic Atlas 
using R package “dismo” (Hijmans et al. 2013) 

Thermicity index Derived from Digital Iberian Climatic Atlas 
using R package “dismo” (Hijmans et al. 2013) 

Annual Average Precipitation Digital Iberian Climatic Atlas (Ninyerola M. et 
al. 2005) 

Precipitation of the driest month  Derived from Digital Iberian Climatic Atlas 
using R package “dismo” (Hijmans et al. 2013) 

Precipitation of the warmest 
quarter  

Derived from Digital Iberian Climatic Atlas 
using R package “dismo” (Hijmans et al. 2013) 

Physiographic Elevation Consortium for Spatial Information (CGIAR-
CSI) SRTM Database 

 (Jarvis et al. 2008) 

Slope Derived from Digital Elevation Model (DEM) 
using ArcMap 10.1 TM (ESRI 2012) 

Aspect Derived from DEM using ArcMap 10.1 TM (ESRI 
2012) 

Solar radiation Derived from DEM using ArcMap 10.1 TM (ESRI 
2012) 

Hydrologic Flow Accumulation Derived from DEM using ArcMap 10.1 TM (ESRI 
2012) 
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3. Connecting riverscapes and bryophytes: 

a spatial conservation planning approach 
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Abstract: Biodiversity conservation planning and the impact of human activities 

on biological diversity and landscapes are some of the most pressing issues in ecology 

nowadays. Freshwater biodiversity is among the most threatened worldwide, hence 

conservation planning is an urgent need. 

The objective of this work was to provide an integrated assessment of 

anthropogenic impact and its implications for conservation planning and riverscapes’ 

bryophyte diversity, in Northern Portugal. 

To accomplish the sought integration and overcome the lack of spatial 

chorological data for fluvial bryophytes a community-level modelling approach was 

employed. This approach produced a set of four community types that constituted useful 

surrogates of regional bryophyte species presence in the conservation planning and 

management processes. The distribution of the four community types was modelled and 

projected for the study area using biomod2. 

In order to assess the impact of energy production schemes (dams, small 

hydroelectrics and wind turbines) and transportation networks (railways and main roads), 

on fluvial bryophyte communities, spatial data on these elements and on respective 

areas of influence and magnitudes of impact was superimposed to the communities’ 
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potential distribution. In addition, a spatial conservation prioritization analyses using 

Zonation software was conducted to spatialize the different options priority of 

conservation areas chosen based on three bryophyte communities rich in species with 

conservation interest and different combinations of fragmentation restrictions. 

We found that, although the total area of bryophyte communities potential 

presence impacted can be considered low, a considerable part of this impact is located 

within protected areas of the study area, which undermines their efficiency for the 

protection of fluvial bryophytes. In the spatial analysis, main roads were found to be the 

leading cause of impact across all communities. In fact, roads are known to be 

responsible for the alteration of streambed, margins, water quality and debris flow, so, 

consequently, the alteration of bryophyte community structure and a change in species 

diversity. 

The Zonation analyses further reinforced the necessity of effective management 

strategies in protected areas, since the allocation of protection priority to these areas 

yielded some of the lowest values of protected distribution for the bryophyte 

communities. 

This work, using fluvial bryophytic communities as a biological model for 

conservation studies, demonstrated that constraining protection of biodiversity solely to 

protected areas is not necessarily an effective strategy and that a more integrated 

management approach of a region and fragmentation elements should be considered in 

the overall conservation policies. 

 

Keywords: bryophyte; community; riverscapes; modelling; conservation; Zonation 

3.1 Introduction 

The uniqueness and vulnerability of riverscapes and associated biodiversity should 

enhance their priority in conservation planning. Nevertheless, fluvial ecosystems are 

often secondary concerns in the design and management of conservation areas 

(Chessman 2013). Riverscapes possess high spatio-temporal and 

hydrogeomorphological heterogeneity due to various environmental gradients and 

biotopes, natural disturbance regimes related to flow regimes and innate connectivity of 

the water column. This unique combination of processes and patterns acting at different 

spatial and temporal scales makes for a biologically diverse landscape (Ward 1998; 

Wiens 2002). 

The need for systematic conservation planning applied to the specificities of 

riverscapes becomes evident, yet the application of landscape level spatial prioritization 
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to freshwater conservation is a relatively recent concern (Nel et al. 2009b; Linke et al. 

2011). 

The Mediterranean region has a long history of human impact on fluvial systems, 

which, during the past century, were mainly related to water and channel management, 

land use and practices changes and urbanization (Hooke 2006). Dams, small 

hydroelectric schemes, flow regulation, channelization and diverting water flow have, 

extensively, altered the hydrological regime and fluvial connectivity of many water 

courses (Nilsson & Berggren 2000; Nilsson et al. 2005). Railways and roads and, in 

recent times, wind farms have played an additional role in the alteration of springs, river 

beds, margins and their surroundings (Perkin et al. 2013). Human intervention has also 

led, inevitably, to aquatic and riparian habitats fragmentation, local extinction and 

community structure alteration (Hooke 2006; Prenda et al. 2006).  

At regional scales, human impact needs monitoring and management to ensure 

connectivity between protected areas (Piquer-Rodriguez et al. 2012; Scolozzi & Geneletti 

2012). A regional conservation planning approach should promote a coherent network 

of reserve areas articulating proper land use, fluvial ecosystems and organisms. In order 

to achieve this, it is necessary to implement new reserves that encompass the diversity 

of species and ecosystems associated to riverscapes, protect critical refuges and also 

evaluate the efficiency of existing reserves for the conservation of freshwater biodiversity 

(Abell et al. 2007; Nel et al. 2009a).  

Bryophytes, as one of the most common group of macrophytes in riverscapes, are 

recognized indicators of human impact, microhabitat heterogeneity and fluvial integrity, 

which is reflected in the structure and composition of their communities (Zechmeister et 

al. 2003; Scarlett & O'Hare 2006; Fritz et al. 2009; Ceschin et al. 2012; Vieira et al. 

2012c).  Bryophytes also play a structural role in water courses partaking in nutrient 

cycles and providing refuges for invertebrates (Stream Bryophyte Group 1999). In 

Portugal this distinctive communities count some rare, endemic species with 

conservation interest in their composition (Vieira et al. 2005; Vieira et al. 2012b; Vieira 

et al. 2012c), and are associated with many priority aquatic and semi-aquatic European 

habitats (Council of the European Communities 1992) 

The difficulties associated with identifying certain bryophyte taxa or incomplete 

knowledge on species distributions hinder their inclusion in some management plans 

(Tremp et al. 2012). Nevertheless, bryophytes are already used as proxy of water quality 

and catchment environmental quality, for example, in the European Water Framework 

Directive (WFD) (Gecheva & Yurukova 2013; Luís et al. 2013; Vieira et al. 2014). 

Moreover, conservation planning deals not only with human impact on landscapes but 

also with the challenges related to data collection and selection criteria, since data 



30 FCUP 
Impact analyses of riverscapes fragmentation on the conservation of bryophyte communities 

 

collection is many times confined to a small set of survey sites. Statistical modelling of 

species distributions is a powerful tool that enables us to extrapolate species distributions 

across large regions. However, their use in conservation planning and in general has 

focused mainly on individual species modelling (Araújo et al. 2004; Guisan & Thuiller 

2005; Guisan et al. 2006). New and more integrative approaches, such as community-

level modelling, have addressed biodiversity as a whole, using large datasets, numerical 

classification and statistical modelling to generate effective regional conservation plans 

(Olden 2003; Arponen et al. 2008; Leathwick et al. 2010). In this context, species 

assemblages, i.e., community types with emblematic and representative species can be 

even more useful recognizable management units, acting as surrogates for species 

diversity and fluvial quality (Feio et al. 2012; Vieira et al. 2014). 

Three broad modelling strategies can be used in community-level modelling: 

(i)’assemble first, predict later’, (ii) ‘predict first, assemble later’ and (iii) ‘assemble and 

predict together’ (Ferrier & Guisan 2006). These strategies differ essentially in the stage 

in which numerical classification of the communities is undertaken (Ferrier et al. 2002; 

Ferrier & Guisan 2006). In this work we used a “assemble first, predict later” community 

level approach to model the occurrence of fluvial bryophyte communities in Northern 

Portugal and a spatial conservation prioritization approach to assess the impact of 

regional fragmentation elements and validate protection areas and explore conservation 

management options.  

3.2 Methods 

 3.2.1 Study area  

The study area encompasses the Northern region of Portugal, delimited, for this purpose, 

by the NUTS II administrative region (Fig. 6). The climate is temperate, with mean annual 

temperatures of 13 °C and an average total annual precipitation of 1013 mm (Table 5). 

There is, however, a climatic differentiation between the west and the east of the area 

that results from the decreasing influence of the Atlantic Ocean and the interaction of the 

climate with land relief. Metzger et al. (2005) divided the study area in three 

environmental zones, Lusitanian, Mediterranean Mountains and Mediterranean North 

(Fig. 6 D). The Lusitanian area is Atlantic with high summer temperatures, some dry 

months and mild and humid winters.  
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Fig. 6 Geographical context of the study area in Europe (A) and the Iberian Peninsula (B), and sampling points symbolized 
over a Digital Elevation Model (C), environmental zones (D) and river typologies (E) in the study area. 
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The Mediterranean Mountains are influenced by the Mediterranean climate, but still 

retain the influence of mountainous climate. The Mediterranean North presents the 

characteristic Mediterranean summer drought.  

Water courses in the study area were typified into three major categories mountainous 

rivers of the north, northern rivers of small to medium-large dimensions and small to 

medium-large rivers of the Alto Douro region (Fig.6 E) (INAG 2008). The mountainous 

rivers are steep watercourses, located at high altitudes, with small catchment areas (less 

than 100 km2) and high average annual drainage (800-1400 mm), the annual average 

temperature is 11°C and annual average precipitation is 1900 mm. The northern rivers 

have an annual average temperature of 12 to 13 °C and annual average precipitation of 

1200 mm, are located at a diverse range of altitudes and have little mineralization due to 

the siliceous lithology of the substrates.  

  

Table 5 Environmental characterization of study area and respective environmental zones (See Fig.6). 

Environmental factor   Lusitanian Mediterranean 
Mountains 

Mediterranean 
North 

Study Area 

Aspect(°) Min 0 0 0 0 

  Max 359.912 359.8472 359.8824 359.912 

  Mean 190.7171 183.5685 181.116 187.2565 

Mean annual temperature 
(ºC) 
  
  

Min 7.866667 7.825 9.354167 7.825 

Max 16.27083 13.3375 17.87917 17.87917 

Mean 13.46179 11.03067 13.2203 13.32059 

Total annual precipitation 
(mm) 
  
  

Min 572.3 861.2 391.7 391.7 

Max 1704.4 1375.5 1189.8 1704.4 

Mean 1155.707 1081.426 745.7499 1013.1 

Precipitation of the driest 
month (mm) 
  

Min 0.9 11.1 0.1 0.1 

Max 38.9 28.3 29.5 38.9 

Mean 18.98596 19.23736 12.65394 16.81683 

Precipitation of warmest 
quarter (mm) 

Min 73.1 121.2 48.2 48.2 

 Max 247.6 197.2 186.9 247.6 

  Mean 148.972 197.2 109.4509 135.4713 

Temperature annual range 
  

Min 23.3 26.6 26 23.3 

Max 30.3 28.9 33.1 33.1 

Mean 26.94553 27.5434 28.42655 27.46861 

Elevation (m) Min 0 414 75 0 

  Max 1510 1472 1306 1510 

  Mean 460.7525 865.4753 564.4825 505.96 

Slope (%) Min 0 0.176777 0 0 

  Max 90.55695 60.39919 104.4723 104.4723 

  Mean 13.69104 14.17088 11.73911 13.03359 

Thermicity Min 202.4849 200.4849 215.4849 200.4849 

  Max 291.4849 253.4849 300.4849 300.4849 

  Mean 255.6382 231.7186 255.4841 255.0127 

Flow Accumulation (km2) Min 0 0 0 0 

  Max 2621.4 1 2621.4 2621.4 

  Mean 10.92293 0.022817 12.90601 11.34084 

Solar Radiation (MWH/m2) Min 579852.1 810326.8 677851.6 579852.1 

  Max 1552029 1483440 1486186 1552029 

  Mean 1216340 1288967 1239494 1226009 
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The Alto Douro rivers are characterized by the higher mean temperature (13°C) and 

decreased precipitation (600 mm average) typical of the Mediterranean region where 

they are located (INAG 2008). The water courses of the study region support a high 

bryophyte species richness and previous studies reported 140 fluvial bryophyte species 

for the northwest territory. A total of 19 taxa are included in the European or Iberian 

Peninsula Red List (Sérgio et al. 2013). Four mosses and three liverworts endemic to 

Europe and two species are endemic to the Iberian Peninsula (Racomitrium hespericum 

and R. lusitanicum) and can be found in the study area.  

Furthermore, many of the atlantic bryophytes (e.g., Isothecium holtii, Fissidens 

polyphyllus, Heterocladium wulfsbergii, Amphidium mougeotii, Fontinalis squamosa var. 

dixonii, Grimmia lisae, Plagiothecium succulentum, Platyhypnidium lusitanicum, 

Hyocomium armoricum, Saccogyna viticulosa, Dumortiera hirsuta, Riccardia 

chamedryfolia, Racomitrium hespericum, Nardia compressa, Lejeunea lamacerina, 

Radula holtii) are specially important since their suitable habitat is restricted to mainland 

northwestern streams. These species are also among the most threatened and 

responsive to thermal conditions and hydrological regime changes, and northern 

Portugal region corresponds to their southern European limit distribution limit (Vieira et 

al. 2005; Vieira et al. 2012b). 

3.2.2 Species Data 

We utilized a compilation of databases on bryophytic communities from field 

campaigns undertaken from 2000 to 2012, in a total of 270 sampling points in northern 

Portugal. Inventories correspond to fieldwork carried out by Cristiana Vieira following 

WFD methodologies during the implementation of this Directive, in Environmental Impact 

Assessment studies and PhD sampling. Bryophytes were surveyed in all immerged or 

semi-immerged microhabitats found within the 100 m of riverbed and margins. Sampling 

focused in the rocky substrates. Bryophyte species presence/absence was registered 

using 0.25 m2 (0.5 m x 0.5 m) sample plots placed in all recognizable hydrologic zones 

and microhabitats constantly or easily immerged, seasonally or several times a month, 

with discharges related to precipitation or dam releases, and micro-habitats immerged 

only in extended periods of rain.  

3.2.3 Community analysis: ordination and classification  

A species vs. sites Jaccard dissimilarity matrix was subjected to Ward’s hierarchical 

clustering using R’s vegan package to obtain community types by group of sites 

(clusters) (Oksanen et al. 2013; R Core Team 2013). Species composition of site clusters 

was then analysed and the dominant species and their frequencies calculated. The 
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contribution of each species for intra-cluster similarity was calculated with SIMPER 

analysis (‘Similarity Percentages – Species Contributions’) in the Community Analysis 

Package 1.52 for each site group (Hederson & Seaby 1999). 

 

3.2.4 Environmental Predictors 

The environmental predictors used in the distribution modelling of the community 

types and the respective sources of information are listed in (Table 6). The higher 

resolution rasters available for environmental predictors were resampled to match the 

200*200 m climatic data resolution. To ensure each cluster responsiveness to the 

environmental factors, we analysed the differences in environmental factors between 

clusters, by conducting a PERMANOVA analysis using PAST (PAleontological 

STatistics) 3.01 (Hammer et al. 2001), to test the significance of differences in 

environmental conditions between clusters.  

 

Table 6. Environmental predictors (spatial information) used to model community types distributions. 

Type of 
variable  

Variable Code  
(used in Table 9) 

Source 

Climatic Annual Average 
Temperature 

bio1 Digital Iberian Climatic Atlas (Ninyerola 
M. et al. 2005) 

Temperature 
annual range  

bio7 Derived from  Digital Iberian Climatic 
Atlas using R package “dismo” (Hijmans 

et al. 2013) 

Thermicity index  Derived from  Digital Iberian Climatic 
Atlas using R package “dismo” (Hijmans 

et al. 2013) 
Annual Average 

Precipitation 
bio12 Digital Iberian Climatic Atlas (Ninyerola 

M. et al. 2005) 
Precipitation of 

the driest month  
bio14 Derived from  Digital Iberian Climatic 

Atlas using R package “dismo” (Hijmans 
et al. 2013) 

Precipitation of 
the warmest 

quarter  

bio18 Derived from  Digital Iberian Climatic 
Atlas using R package “dismo” (Hijmans 

et al. 2013) 

Physiographic Elevation dem Consortium for Spatial Information 
(CGIAR-CSI) SRTM Database 

 (Jarvis et al. 2008) 

Slope slope Derived from Digital Elevation Model 
(DEM) using ArcMap 10.1 TM (ESRI 

2012) 
Aspect aspect Derived from DEM using ArcMap 10.1 TM 

(ESRI 2012) 
Solar radiation solarrad Derived from DEM using ArcMap 10.1 TM 

(ESRI 2012) 

Hydrologic Flow 
Accumulation 

flowaccumulation Derived from DEM using ArcMap 10.1 TM 
(ESRI 2012) 

 

3.2.5 Modelling techniques 

Bryophyte community distribution was predicted using ten models available in 

“biomod2: Ensemble platform for species distribution modelling” (Thuiller et al. 2013) in 
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R environment (R Core Team 2013).  The models included were Generalized Linear 

Models (GLM), Generalized Boosted Models (GBM), Generalized Additive Models 

(GAM), Classification Tree Analysis (CTA), and Artificial Neural Networks (ANN), 

Surface Range Envelop also known as BIOCLIM (SRE), Flexible Discriminant Analysis 

(FDA), Multiple Adaptive Regression Splines (MARS), Random Forests (RF) and 

Maximum Entropy (MAXENT). For all models biomod2 default parameters were used 

(Thuiller et al. 2013). These models were then combined and an ensemble forecast was 

generated for each community type.  

The available data for community type occurrences was presence-only, i.e., no 

confirmed absences were available. A set of random pseudo-absences (corresponding 

in number to 20% of the study area) was generated in order to use presence-absence 

models which tend to perform better than presence-only models (Elith et al. 2006; 

Barbet-Massin et al. 2012).  

Distribution models were calibrated using 80% of the species data and pseudo-

absences selected randomly. The remaining 20% were used to evaluate model 

performance. Model evaluation was performed calculating the area under the curve 

(AUC) of receiver operating characteristic (ROC). Models with AUC values of < 0.5 were 

considered no better than random, 0.5-0.7 were considered poor, 0.7-0.9 useful and > 

0.9 excellent (Swets 1988; Manel et al. 2001). 

Only the models that presented AUC values > 0.7 were included in the ensemble 

forecast of communities’ distribution models. We tested several consensus methods 

(mean, weighted mean, median, confidence interval, coefficient of variation and 

committee averaging) and kept the prediction that presented greater AUC values. The 

map binarization was completed in ArcMap 10.1TM (ESRI 2012) using a 70% probability 

of occurrence as a threshold for presence of community in a pixel. 

3.2.6 Fragmentation analysis 

The regional fragmentation elements included in the spatial analysis were dams, small 

hydroelectric schemes, wind turbines, main roads and railways (Table 7). The 

fragmentation elements were obtained through “MOBIA-Biodiversity Monitoring in 

Environmental Assessments” project, which main objective was to evaluate the 

effectiveness of the handling of biodiversity in environmental assessments and the 

contribution of associated monitoring programs for a global monitoring network 

(PTDC/AAC-AMB/114522/2009). 

We created a set of buffers around each fragmentation element in order to depict and 

account for different magnitudes of its impact. The dimensions established for the 

different magnitudes of buffers are described in Table 7.  



36 FCUP 
Impact analyses of riverscapes fragmentation on the conservation of bryophyte communities 

 

Table 7 Regional fragmentation elements and the respective buffer areas of impact proposed in the study. (n.a. not 
applicable). 

Regional 
fragmentation 

elements 

Number of elements 
in study area 

General description of available 
geographic information 

Impact levels and buffers definition 

1 (lower) 2 (medium) 3 (stronger) 

Dams 24 Polygons corresponding to the 
reservoirs;  

All dams are already 
constructed. 

n.a. Buffer of 200 m 
around the 
reservoir +  

1 km of buffer, 50 
m wide, 

downstream of the 
reservoir 

Intersection of 
community 

distribution with 
the area of the 

reservoir 

Small hydroelectrics 34 Point features;  
34 were being subjected to EIA 
at the time,4 already licensed, 2 
in construction, 2 requiring EIA 

exemption and 1 project in 
execution 

n.a. Buffer of 500 m 
radius around the 

point  

Intersection of 
point with 

community 
distribution 

Wind farms 1054 Point features; 
 all installed 

Buffer of 500 m 
width around the 
area of impact 

level of two 

Buffer of 250 m 
width around the 

area with strongest 
impact 

Intersection of 
community 

distribution with 
the point feature 
and buffer of 100 
m radius around 

the point  
Railways 32 Line features;  

619.08 km including deactivated 
lines such as the Tua Line, and 

remodelled lines such as the 
Póvoa Line 

Buffer of 100 m 
width around the 
area of impact 

level of two  

Buffer of 50 m 
width around the 

line. 

Intersection of line 
community 
distribution 

Main roads 278 Polygon features 5, 10, 15 m 
wide respectively in national and 

regional roads, main and 
complementary itineraries and 

highways. 
1197.32 km of extent in total; 
50.45 km of highways, 182.56 
km of itineraries, 822.86 km 

national roads, 141.43 km  of 
regional roads 

Buffer of 100 m 
width around the 
area of impact 

level of two 

Buffer of 50 m 
width around the 
road polygons 

Intersection of 
polygon with 
community 
distribution 

 

The impacted area of different levels of magnitude caused by each fragmentation 

element was calculated over the binary distribution of the community types using ArcMap 

10.1TM Zonal Statistics tool (ESRI 2012). These results were combined to calculate the 

proportion of impact caused by fragmentation elements typology to obtain spatial 

statistics of impact (total and partial areas). 

 

3.2.7 Zonation analysis 

In order to understand how the impact of human presence affects the conservation of 

fluvial bryophyte communities and their regional representation and connectivity we set 

out for a series of exercises using conservation planning software Zonation 4.0.0 

(Moilanen et al. 2005; Moilanen et al. 2014).   

Zonation software produces a hierarchical prioritization of the landscape based on 

biological value of the sites (cells) accounting for complementarity. The algorithm 

sequentially removes the least valuable cells while minimizing marginal loss of 

conservation value, accounting for connectivity and the importance given to the 

biodiversity features (in this case fluvial bryophyte communities). This produces a spatial 

prioritization composed of a nested sequence of highly connected landscape structures 

with core areas that present the greatest conservation values (top fraction). 

In this analysis we used the 200*200 m rasters with the probability of occurrence 

obtained for the community types with the highest conservation value through the 
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modelling procedure and weighted them according to conservation importance (1, 0.5 

and 2 respectively). We selected Core Area Zonation (CAZ) removal rule, which selects 

as high priority cells the ones with a high occurrence probability for highly weighted 

species, enabling emphasis on rarity and conservation value of certain community 

assemblages. This analysis was repeated with the same parameters for the biodiversity 

features (BIO) and different condition and mask layers were added, the first to exclude 

unsuitable areas (e.g., agricultural and urban areas) from the selection and the second 

to force the inclusion of others (e.g., protected areas) in the high priority cells. The 

different analysis performed are described in the Table 8. We also performed a 

landscape comparison (LSC) as part of the post-processing analysis in order to compare 

the overlap and average difference in cell removal order of the top 25% fraction of the 

landscape between the “biodiversity features only” solution (BIO) and all other solutions. 

 

Table 8 Zonation analyses coding, description and data inputs 

 

3.3 Results 

3.3.1 Community types characterization 

Using the classification tree with Ward’s method we obtained four clusters of sites 

corresponding to four different community types (A, B, C and D) shown in Fig. 7.  

Analysis codes Data input Representation 

BIO Community types distributions modelled “Pristine” conditions. 

BIO+Pr Community types distributions 
Mask Layer: All protected areas (Natura 
2000 network, protected areas and Ramsar 
sites) 

Force inclusion of protected areas 
in the high priority conservation 
areas. 

BIO+Urb Community types distributions  
Condition Layer: Urban areas 

Exclude urban areas from analysis. 

BIO+Agr Community types distributions  
Condition Layer: Agricultural areas 

Exclude agricultural areas from 
analysis. 

BIO+Frag  Community types distributions  
Condition Layer: Areas impacted by 
regional fragmentation agents 

Exclude areas impacted by the 
regional fragmentation elements 
listed above. 

BIO+Urb+Agr Community types distributions  
Condition Layer: Urban and agricultural 
areas 

Exclude both agricultural and urban 
areas to reflect human presence 
occupancy constraints. 

BIO+Urb+Agr+Frag Community types distributions  
Condition Layer: Urban, agricultural and 
impacted areas 

Exclude urban, agricultural and 
areas impacted by regional 
fragmentation elements to reflect 
human occupancy and 
fragmentation constraints.  

BIO+Urb+Agr+Frag+Pr Community types distributions  
Condition Layer: Urban, agricultural and 
impacted areas 
Mask Layer: All protected 

More realistic approach, reflecting 
not only the human presence and 
impact in the landscape, and also 
the constraints to the creation of 
new conservation areas. 
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Community A species assemblage was dominated by Scorpiurium deflexifolium, 

Platyhypnidium riparioides and Cinclidotus fontinaloides, essentially Mediterranean 

species (Table 9). 

Community B is dominated by Kindbergia praelonga, Chiloscyphus polyanthus and 

Brachythecium rivulare species that appear in the most atlantic river valleys. Community 

C is dominated by Fontinalis antipyretica and Leptodyctium riparium characteristic of 

more mineralized, if not polluted, rivers and streams. Community D is characterized by 

Scapania undulata, Hyocomium armoricum and Racomitrium aciculare, high altitude 

Atlantic streams species. 

All the species assemblages obtained contain one or more taxa listed in the Red List 

of Threatened Bryophytes of Portugal (Sérgio et al. 2013) as vulnerable or endangered.  

Community A includes four species listed as vulnerable and two as near threatened.  

In community B there are seven taxa considered vulnerable and an additional six as near 

threatened. Community C counts only one taxa listed as near threatened. Community D 

contains two endangered species, four listed as vulnerable and six listed as near 

threatened. When considering only endangered or vulnerable taxa, they correspond to 

6.7%, 7.1% and 5.94% of the species present in community A, B and D respectively. 

 

 

Fig. 7 Ward's hierarchical classification dendrogram of the sampled sites and the bryophytic community types obtained. 
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3.3.2 Community types distribution modelling 

Community type C was excluded from the modelling step and posterior analysis since 

only 13 presence points were available, a number considered insufficient to generate a 

reliable distribution model (Franklin 2009). The models that obtained AUC values greater 

than 0.7 are listed in Table 9. In general, the best performing algorithms were GAM, 

GBM, MAXENT, CTA and RF. For community types B and D the best performing 

consensus method was the mean, and for community type A the weighted mean.  

The spatial ensemble forecasts obtained for each community type, both as probability 

of occurrence and presence/absence maps obtained with the binarization process, are 

presented in Fig. 8 and Fig. 9, respectively. The potential area of occupancy calculated 

after the binarization is presented in Table 9, with type D with the biggest potential area, 

3614.68 km2, and type A with the smallest potential area, 839 km2. 

 

 

Fig. 8 Probability of occurrence obtained for each community type through the biomod2 spatial modelling. Community C 
was not included in the modelling step, hence no distribution map is presented.  

 

3.3.3 Fragmentation analysis  

A total of 2904.149 km2 of area with some potential occurrence of bryophytic 

communities are impacted in some order of magnitude by the regional fragmentation 

elements. This corresponds to 12.8 % of the total potential area of occurrence for all the 

communities. For each community the area of potential occurrence affected varies from 

10.5% for community type D to 17.95% for type A (Fig. 10 A). Most of the impacted area 

for community type A and B has a level of magnitude of level two. For community D the 

majority of impact is of magnitude of level one (Fig. 10 B). 
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Fig. 9 Binarization of potential modelled occurrence for each community type separately (A, B, C) and the collective 
potential modelled occurrence (D). 

Main roads were responsible for 59.53% of the total impact caused on all community 

types, followed by wind farms, responsible for 14.85% of the impact, while dams and 

railways are responsible for 12.84% and 11.89% of impact, respectively.  

When each community type is analysed separately, main roads are still the leading 

cause of impact only differing in percentage. The second cause of impact is different for 

all 3 community types: railways for type A, dams for type B and wind farms for type D 

(Table 9).  

 

 

Fig. 10 Percentage of community types’ potential occurrence impacted by the regional fragmentation elements (A), and 
percentage of impact of different magnitudes (B). 
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3.3.4 Zonation analysis 

The spatial prioritization maps, showing the priority rank for the study area, obtained 

for each analysis conducted using Zonation are presented in Appendix A.  

In general, the selected areas for conservation, when taking into account only the 

biodiversity features (Fig. 11 A), coincide with areas already protected (as National 

Parks, Natura 2000 Sites, and Special Protection). However, it becomes apparent that 

the top fraction of the landscape chosen by Zonation is smaller and spatially more 

fragmented as we include in the analysis more constraints that highlight human presence 

in the territory (such as the urban and agriculture mosaics as surrogates of human 

occupation) (Fig. 11 B and 11 C).  

 

 
Fig. 11 Spatial conservation prioritization obtained for the BIO analysis (A), BIO+Urb+Frag analysis (B) and BIO + 
Urb+Agr+Frag+Pr analysis (C). Also the spatial output of the landscape comparison post-processing analysis between 
Bio and Bio+Urb+Agr+Frag+Pr (D). See Table 8 for Zonation analyses coding and description.  

 

As expected, in all the solutions constrained both by human occupation (Urb+Agric) 

and fragmentation elements (Frag), the proportion of the communities protected by the 

top 25% of landscape is smaller than in the BIO solution (Fig. 12). The forced inclusion 

of protected areas (BIO+Pr) in the selection process of the top fraction of the landscape 
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is one of the solutions which allows the protection of a smaller proportion of the potential 

distribution of all three community types, exceeded only by the solution with most 

restrictions - BIO+Urb+Agric+Frag+Pr, which allows the protection of the smallest 

proportion. Community type D retains a bigger proportion of its distribution across all 

Zonation analyses conducted. 

The LSC analysis (Fig. 11 D), comparing the BIO solution with the 

BIO+Urb+Agr+Frag+PR solution, reveals a small coincidence between the two solutions 

(only 2032.48 km2, corresponding to 9.6% of total area coincides between the two 

analysis). Additionally, there is a loss of 3263.24 km2 that are no longer selected in the 

BIO+Urb+Agr+Frag+PR solution, and are mostly concentrated in the Atlantic region of 

the study area. On the other hand, another 3263.24 km2, mostly located in the 

Mediterranean region, are only selected in the BIO+Urb+Agr+Frag+PR solution. A total 

of 6526.48 km2 (30.81 %) of divergence in the top 25% of the landscape is found between 

the two options. Other LSC analyses are presented in Appendix B. 

 

 

Fig. 12 Proportion of community types’ distribution protected by the top 25% of the landscape in each Zonation analysis. 

 

3.4 Discussion 

Our approach is based on a hierarchical classification in community types, and hence 

an “assemble first, predict later” methodology. A few shortcomings were pointed to this 

approach, such as not describing community variation and predicting non existing co-
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occurrence of communities (Baselga & Araújo 2010). However, the classification and 

spatialization of community types we obtained are in line with field observations and 

literature (Vieira et al. 2012a; Vieira et al. 2012b; Vieira et al. 2014). Furthermore, in 

biological groups such as bryophytes which face some negative bias in terms of field 

reconnaissance, community types with flagship species are useful and recognisable 

surrogates for planning and management of riverscapes’ biodiversity (Leathwick et al. 

2010; Turak et al. 2011). 

The community types and its species assemblages obtained are consistent with 

previous fluvial bryophytes community classifications for this region (Vieira et al. 2012a; 

Vieira et al. 2014). The community types obtained resemble the major groups obtained 

in the cited studies, reflecting a differentiation in Atlantic (B and D) and Mediterranean 

assemblages (A), and also separating assemblages that occur in more mineralized rivers 

(C). Moreover, each community type is characterized by a small set of frequent species 

that present the highest percentage of contribution for group cohesion (see Table 9).  

The modelled potential distribution obtained for the three community types is 

concordant with the chorological patterns of the corresponding core species. The 

distributions present a spatial overlap. Yet this is not unlikely to occur, since in the same 

river segment we can observe the co-occurrence of different communities due to the 

mosaic of hydrogeomorphologic features that can be found within the 100 meters of 

reach surveyed (in 15487 pixels, which correspond to 8.25% of total pixels modelled, co-

occurrence of bryophyte communities was predicted). In our case, the most frequent 

situation of co-occurrence is between community types B and D. The specific potential 

co-occurrence of communities B and D can be explained by the lack of spatial information 

on water quality for the total area modelled. In fact, previous studies, shown that 

community B substitutes community D whenever water becomes less acidic and more 

mineralized (Vieira et al. 2012b). Nevertheless, since this information is not included in 

the models and both communities overlap in part of their substrate and macroclimatic 

niche, they are modelled as co-occurring in the same pixels.  

In general, the impact of regional fragmentation elements (Table 9, Fig. 10) on fluvial 

bryophyte communities can be considered low (13.29% of total area corresponds to 

impacted area). However, the analysis of specific impacts and the occurrence of impacts 

within protected areas reveals other trends. For example, almost 13% of the total impact 

occurs within protected areas. For community type B, 18% of its protected occurrence is 

impacted. This raises questions about protected areas management and human impact 

within these areas. 

On the other hand community types A, B and D richer in threatened taxa (more than 

5% of the species in each community type) are impacted in more than 10% of their 
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distribution. This situation translates into a reduction in the potential distribution of 

species with conservation interest, further endangering taxa with restricted distributions. 

The most impacted community type is community A, which is the least represented 

community in the study area, but the one with greater proportion of impact in its 

occurrence. Community type D is the less potentially impacted, what is probably related 

to the fact that it occurs in mountainous areas with less access and less human 

occupation. 

Regarding the typology of the impact, roads are the leading cause of impact across 

all communities, which is related to the widespread and dense presence of this elements 

in the analysed territory. In the study area, as in many parts of the world, roads are an 

ubiquitous presence in the landscape (Girvetz et al. 2008). Roads alter water flow 

regimes and debris transport in watercourses through the modification of the river 

margins and also the streambed, they are also related to increased nutrient input and 

the introduction of chemicals due to water runoff (Jones et al. 2000; Trombulak & Frissell 

2000). Moreover this impact is often cumulative and far reaching, as roads are network 

infrastructures. In addition, riverscapes are hierarchical by nature propagating these 

effects (Jones et al. 2000; Coffin 2007). For fluvial organisms, including bryophytes, this 

translates to habitat destruction and habitat deteoration and ultimatly loss of connectivity 

between habitat patches and riverscapes fragmentation (Auerbach et al. 1997; Forman 

& Alexander 1998; Coffin 2007). 

The second cause of impact is for the most part related with the coincidence of 

distribution of community types and the fragmentation elements in the territory. For 

instance, community D second cause of impact are wind farms, which are installed in the 

mountain tops where this community is expected to occur. Community A second cause 

are railways that, in the Mediterranean part of the territory, roughly coincide the main 

water courses trajectory. 

Despite the fact that main roads are the main cause of impact across communities, 

this analysis reveals the diversity of impacts and protection necessities that can be 

encountered in a relatively small, but diverse, territory. Moreover this reflects the need 

for integrated systematic conservation planning and management and to evaluate the 

effects on biodiversity of current management practices. 

The proportions of protected distribution afforded by the “biodiversity features only” 

(BIO) solution and those including humans constraints considered individually are 

similar, nevertheless, when Zonation software combines biodiversity values and 

constraints (human occupancy and fragmentation elements), there is a decrease in the 

proportion of biodiversity that can be successfully protected. As we include human 

constraints in the analyses the top fraction of the landscape becomes smaller and more 
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fragmented, disrespecting the needs of connectivity essential for effective watershed 

management (Ward et al. 2002; Pringle 2003; Jansson et al. 2007)  

When forcing the allocation of the top fraction of the landscape to existing protected 

areas, we obtained the worst scenario for bryophytic conservation in terms of protected 

proportion of distribution. Moreover, the BIO solution and the BIO+Urb+Agr+Frag+Pr 

solution present a disparity of about 6000 km2.This disparity translates into losses in the 

protection of the distribution of the atlantic communities (communities B and D) that are 

less represented at the regional and also at national level.  

This analyses demonstrated that constraining the conservation of fluvial bryophytic 

communities to protected areas is not necessarily an effective strategy. The protection 

of bryophytic fluvial diversity in the study area depends greatly on the conservation of 

atlantic streams and headwaters, that are, for the most part but not only, included within 

protected areas. Additionally, protected areas are also part of the top fraction of the 

landscape that is fragmented due to human occupation and fragmentation elements that 

utilize mountains hydraulic and eolic energy (wind farms and dams).  

Methodological options and constraints, such as the number of clusters chosen, the 

spatial distribution of the sampling points and the lack of spatialized information on water 

quality and micro-scale variables, affect the spatialization of communities and 

consequently the spatial conservation prioritization.  

The results put emphasis on the necessity of studying the cumulative effects of 

regional fragmentation elements and land use, especially in protected areas, and also 

the need to account for these interactions in the elaboration of environmental impact 

studies and strategic environmental assessments.  

Riverscapes’ biodiversity strategies at the regional level will have to consider the 

cumulative effects mentioned above but also the role and effectiveness of existing 

protected areas. 
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3.6 Appendix A: Sampling points symbolized by attributed community types. 

 

3.7 Appendix B: Buffers of impact for the regional fragmentation elements 

superimposed to the community types distributions. 
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3.8 Appendix C: Spatial conservation prioritization obtained for all the Zonation 

analyses. 
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3.9 Appendix D: Comparison of the top 25% fraction of the landscape of all 

solutions with the “biodiversity features only” solution. 
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4. General Discussion  

Anthropogenic impacts on biodiversity, landscape fragmentation and conservation 

planning are among some of the most pressing issues in ecology nowadays. This work 

intent was to provide an integrated assessment of anthropogenic impact and its 

implications for conservation planning, for an ecosystem that, only recently, has been 

the subject of directed conservation planning studies, and for a group of organisms often 

overlooked in this type of study.  

4.1 Application of community-level approaches 

In order to provide the sought integration and overcome the lack of spatial 

chorological information for fluvial bryophyte species, we employed a community level 

modelling approach that yielded a set of four community types that constitute useful 

surrogates for the planning and management of riverscapes’ biodiversity. The community 

types obtained are consistent with previous works and reflect the main ecological drivers 

of differentiation between these communities at a regional scale (Vieira et al. 2012; Vieira 

et al. 2014). Despite the few shortcomings appointed to this approach (e.g., not 

describing community variation) this approach allowed the spatialization of community 

types that include flagship species and/or species with a low number of documented 

presences, and also counter some of the negative bias related to the field identification 

of these organisms at the species level. Moreover the potential distribution of the 

community types obtained is concordant with the chorological patterns of the 

corresponding core species.  

4.2 Regional impact assessment 

The impact of fragmentation on the community types can be considered low, however 

a considerable part of this impact is located within protected areas of the study area.  

This fact undermines the efficiency of protected areas for the conservation of fluvial 

bryophytes as one of requisites for their efficacy is the implementation of adequate 

management strategies. Despite the importance of the creation of protected areas, the 

efficiency of protection depends on land use and human impact within these areas 

(Mancini et al. 2005; Chessman 2013).  

Main roads are the leading cause of impact across all communities, these are in fact 

abundant structures in the study area. For fluvial bryophyte diversity the alteration of 
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streambed, margins and water and debris flow in the rivers mean alteration in the 

community structure and a decreased species diversity (Jones et al. 2000). The fact that 

roads are network infrastructures implies that these effects are often cumulative. 

Additionally the hierarchical nature of riverscapes has the potential to propagate these 

effects. The joint effect of these two components results in habitat deterioration, loss of 

connectivity and landscape fragmentation (Forman & Alexander 1998; Trombulak & 

Frissell 2000). 

In spite of the transversal impact of roads, the remaining fragmentation elements vary 

in the impact they have in each communities’ distribution, which reveals the variety of 

impacts, and management practices needed.  

4.3 Spatial conservation prioritization  

The spatial conservation prioritization analyses employed in this work further 

reinforced the necessity of effective management strategies in protected areas. For 

fluvial bryophyte diversity, forced allocation of conservation priority yielded some of the 

lowest values of protected distribution. Moreover, the inclusion of constraints to 

conservation such as land use and landscape fragmentation elements produces a 

smaller and more fragmented top fraction of the landscape, disrespecting the needs of 

connectivity of protected areas (Pringle 2003; Roux et al. 2008).  

Furthermore, there is a disparity in the spatial location of the top fraction of the 

landscape between the solutions that take into account only the biodiversity features and 

those that include human occupancy and fragmentation constraints. In the latter solution 

the Mediterranean territory is privileged in detriment of the Atlantic territory that would be 

selected if only biodiversity features were taken into account. This translates into losses 

in the protected distributions of the Atlantic communities that are less represented at the 

national level and include the most important taxa for conservation. 

This work demonstrated that constraining conservation of fluvial bryophytic 

communities solely to protected areas might not necessarily be an effective strategy.  In 

the study area the protection of fluvial bryophyte diversity depends greatly on the 

conservation of atlantic streams and headwaters that are for the most part, but not only, 

included in protected areas. However, protected areas in the study area correspond to a 

top fraction of the landscape that suffers from the effects of human occupation and 

fragmentation elements, and their management should be more thoroughly planned, 

especially in the cases where the human needs (eg. power facilities or road construction) 

interfere with fluvial conservation. 
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4. Concluding Remarks 

Our results put emphasis on the necessity of studying the cumulative effects of 

regional fragmentation elements and land use on biodiversity and riverine ecosystems. 

Future studies should focus on better understanding the joint effect of land use and 

fragmentation elements on biodiversity and the implications for riverscapes diversity and 

connectivity. 

Furthermore it becomes evident the need to evaluate the efficacy of existing 

protected areas for the protection of freshwater biodiversity which is rapidly declining 

worldwide. In this context, it becomes apparent the need to develop regional 

management strategies oriented for the conservation of freshwater biodiversity and to 

continue the application of systematic conservation planning to freshwater biodiversity 

acknowledging the specificities of the habitat. 

Important management strategies for the conservation of fluvial bryophyte flora ought 

to include the protection of headwaters, the idealization of microreserves, and the overall 

conservation of river ecosystems integrity. 
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