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Abstract

We study the drastic changes in agglomeration patterns in a solvable core-
periphery model with 2 asymmetric regions. For this purpose, we extend the Foot-
loose Entrepreneur model developed by Forslid and Ottaviano (2003) by considering
a possibly asymmetric distribution of unskilled workers (which are immobile) and a
possible preference by skilled workers (which are mobile) for living in a particular
region - which may be due to its scenic beauty, climate or cultural factors. The
modified model reproduces all the features of the original model, including analyti-
cal solvability. Our main aim is to study how these asymmetries interfere with the
agglomeration forces to generate agglomeration patterns. In particular, we provide
evidence which suggests that our extension of the model of Forslid and Ottaviano
(2003) constitutes a universal unfolding. This means that the two perturbations
(of the distribution of unskilled workers and of the preferences of skilled workers)
generate all the possible qualitative behaviour of the model. Other perturbations
of the model would not lead to new qualitative behaviour. We also show that the
tomahawk bifurcation is not robust to generate a Core-Periphery pattern - disap-
pearing with the introduction of asymmetries between regions. Many examples of
bifurcation diagrams are used to illustrate the behaviour of our model.

Keywords: New Econmic Geography, Core-Periphery, Footloose Entrepreneur, Bi-
furcation; migration dynamics; genericity analysis
JEL Classification Numbers: R12, R13, C62, F12
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Resumo

Estudamos as mudanças nos padrões de aglomeração numa versão resolúvel do
modelo Core-Periphery de Krugman com duas regiões assimétricas. Para isso, am-
pliamos o modelo “Footloose entrepreneur” desenvolvido por Forslid e Ottaviano
(2003) considerando uma possível distribuição assimétrica de trabalhadores não
qualificados (que são imóveis) e uma possível preferência por parte trabalhadores
qualificados (que são móveis) para viver numa determinada região - seja devido à
sua paisagem, clima ou fatores culturais. O modelo modificado reproduz todas as
características do modelo original, incluindo a sua solvabilidade analítica. O nosso
principal objetivo é estudar como essas assimetrias interferem com as forças de aglo-
meração para gerar padrões de aglomeração. Em particular, fornecemos evidências
que sugerem que a nossa extensão do modelo de Forslid e Ottaviano (2003) cons-
titui um “desdobramento universal”. Isto significa que as duas perturbações (da
distribuição dos trabalhadores não qualificados e das preferências dos trabalhadores
qualificados) geram todos os comportamentos qualitativos possíveis. Outras per-
turbações do modelo não acrescentarão qualquer comportamento qualitativo novo.
Demonstramos também que o “tomahawk” não é robusto para gerar um padrão de
centro-periferia - desaparecendo com a introdução das assimetrias entre as regiões.
Usamos alguns exemplos de diagramas de bifurcação para ilustrar o comportamento
do nosso modelo.

Palavras-chave: Nova Economia Geográfica; Centro-Periferia; “footloose entrepre-
neur”; Bifurcações; Dinâmica de Migração; Análise de Generacidade
Código JEL: R12, R13, C62, F12
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1 Introduction

Economic Geography is the field that studies the distribution of economic activ-
ities and the reasons that underlie this distribution. There are many equilibrium
models which consider space and geography, like those that descend from the Von
Thünen model of land use. However, in the past two decades, following the work of
Krugman (1991), Economic Geography has gained more relevance as several New
Economic Geography (NEG) models have been developed. The model of Krugman
(1991) is considered the benchmark of NEG models, being based on the notion of mo-
nopolistic competition à la Dixit and Stiglitz (1977). The outcome is the well-known
Core-Periphery (CP) model, where trade costs are crucial to explain the geographic
distribution of economic activity between two regions. When trade costs are high,
there is geographic dispersion, but when trade costs are low there is geographic con-
centration. In this original NEG model, there are two absolutely identical regions,
and two sectors (the manufacturing sector and the agricultural sector). Manufac-
turing firms only employ the labour of industrial workers who are mobile between
regions, while the agricultural sector only uses the labour of agricultural workers
who are immobile.

The mechanics of the CP model is very simple. Spatial concentration may itself
create an environment that encourages spatial concentration, being driven by three
effects: “market size effect”, “cost of living effect” and “market-crowding effect”. The
first effect describes the tendency of firms to locate their production in the big market
and export to small markets due to the positive impact on demand per firm as long
as the income generated by a new entrant is mostly spent locally, thus increasing
local expenditures. The second effect reflects the impact of a decrease in price
indices motivated by the entrance of a new firm, which results in a positive impact
on consumer surplus. Indeed, consumers will import a narrower range of products
in order to avoid trade costs. Finally, the third effect concerns the negative impact
on demand per firms due to the decrease in price indices caused by the entrance of
a new firm. The first two effects encourage spatial concentration, while the third
discourages it. Therefore, trade costs are crucial because they determine the relative
strength of that agglomeration and dispersion effects.

The Krugman’s CP model captures important aspects for the explanation of
spatial distribution evolution patterns relying on a number of assumptions, which, if
relaxed, may lead to additional interesting results. Other studies have been focusing
on the possibility of obtaining more results from existing NEG models or on the
possibility to relate them with other subjects, extending their basic framework. For
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instance, Baldwin and Forslid (1999) present a modified CP model that shows how
long-run growth can be a powerful centripetal force.

There are many works based on dropping the assumption of non-existence of
direct negative externalities between firms (for example due to pollution or conges-
tion). An example is the work of Brakman et al. (1994) who introduced negative
technological externalities using also a multi-region version of CP model. Congestion
effects are usually introduced by making the fixed and/or the marginal costs depend
positively on the number of firms in a region. For this reason, agglomeration may
not be complete, as firms will realize that it is more profitable to move to the less
congested periphery. This explains why a complete concentration of manufacturing
in a region rarely occurs. This issue is also well discussed in the work of Lanaspa and
Sanz (2001) where there are non-constant transport costs. These transport costs in-
crease with the size of regions (congestion concept). On the other hand, the authors
also assume the existence of infrastructures which require a certain dense population
in the region in question to be executed.1 This causes the agricultural population to
divide unevenly between the two regions and the appearance of asymmetric stable
equilibria.

Adding more regions to the model, leads to more complex agglomeration pat-
terns, and it also makes the framework applicable to new questions. Several authors
have been contributing to this investigation branch. Castro et al. (2012) developed
a core-periphery model with three equidistant regions. They have concluded that
3-region model favours the agglomeration of economic activity while partial agglom-
eration equilibrium is excluded as a stable outcome. That is, when there are three
regions available, a distribution of industrial activity in which one of the regions is
empty and the other two share the workers equally is always unstable. They have
also obtained some results regarding the n-region model. Gaspar et al. (2013) also
provided a 3-region model using as a base model the Footloose Entrepreneur model
of Forslid and Ottaviano (2003).2

Another important offshoot of this research theme, is to consider that the dy-
namics of migration choice can be derived explicitly from forward-looking optimizing
behavior because the results of the CP model can be strongly dependent on the ad-
justment process considered. An example of a work that dropped this assumption is
by Oyama (2006) who considers a migration dynamic with forward-looking agents.

1See also Martin and Rogers (1995) for an extended overview of industrial location and public
infrastructure.

2We will next describe the Footloose Entrepreneur model of Forslid and Ottaviano (2003) in
more detail.
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Using a solvable variant of the CP model with multi-regions that are asymmetric
with respect to their import barriers and market sizes, the author considers that mi-
gration should be seen as an investment decision because individuals are naturally
interested in current utility but also with expected future utility, which depends on
future location patterns. Baldwin (1999) also presented a model where agglomera-
tion arises from endogenous capital with forward looking agents.

Research had also raised in what concerns the question on if a region has a su-
perior resource base or technology. This way, some interesting efficiency questions
emerge, which are absent in the basic model. Efficiency questions are discussed in
Lanaspa and Sanz (1999) where regions have different natural resources and land
quality, which causes the agricultural population to divide itself unequally between
the two existing regions. The introduction of intermediate goods also leads to the
emergence of new backward and forward linkages. Venables (1995) modified Krug-
man’s model considering firms in an upstream and downstream industries and, where
there is no labour mobility. Nevertheless, the concentration of the manufacturing
industry sales in one region may result in benefits for both. Upstream firms bene-
fit from being in a region with many downstream firms, because this way they can
serve customers more cheaply. Downstream firms benefit from being in a region with
many upstream firms because this decreases input costs. Gaigné and Thisse (2013)
explain the differences in the economic performance of regions by the behaviours
of households and firms that are located within them. Unlike the standard core-
periphery model where regions are like spaceless places, Gaigné and Thisse (2013)
take into account a land market because they recognize that when a considerable
number of workers settles in a region, it takes the form of a city where economic
agents compete for land. One of their main conclusions is that the relative position
of a city within the whole network of interactions matters because households and
firms relocate between and within cities in response to major changes in economic
environment.

Last, but not least, we can still relax the assumption of the CP model relative to
preferences for living in the two (or more) regions. If households are not indifferent
between regions offering identical wages, because they take into account issues such
as pollution or the value of amenities (landscape, climate, etc), new centrifugal
forces can appear. Tabuchi and Thisse (2002) argue that although the standard
assumption of identical regions is convenient to isolate the effects generated by the
interplay between agglomeration and dispersion forces, it does not permit to study
the impact of differential amenities. In their model, they show how preference
heterogeneity is a strong dispersion force and that dispersed equilibrium is generally
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asymmetric with the region that has a higher level of amenities being larger than
the other one. Mori and Turrini (2005) add skill heterogeneity on mobile labour
induced by pecuniary externalities and show that the sustainability of a symmetric
location pattern breaks. Thus, they prove that regional inequality is inevitable since
more highly skilled workers are attracted by wealthier locations.

Everyone knows that Krugman was, and has been, actually, a very diligent author
in this field of Economic Geography3 but, unfortunately, the CP model he developed
is difficult to manipulate analytically and most results in the literature are actually
obtained through numerical simulations. In the past few decades, there have been
several theoretical advances in this field, thanks not only to new techniques devel-
oped in economic modeling and numerical methods, but also in other fields such as
industrial economics. Forslid and Ottaviano (2003) modified the CP model in order
to render it analytically solvable. The modification consists in assuming that the
variable input in manufacturing is unskilled (geographically immobile) labour. As
a result, the only role of skilled (geographically mobile) labour is as the fixed input
in manufacturing. Their model, called the Footloose Entrepreneur model, repro-
duces all the features of Krugman’s CP model, but allows them to obtain additional
analytical results. Furthermore, they investigate the implications of asymmetries
between regions by introducing different regional endowments of unskilled workers.

Most of the existing studies were carried out for symmetric CP models, that
is, considering identical regions. An exception is the work of Sidorov (2011) who,
considering that «Asymmetric cases remain weakly studied», studied the CP model
of Krugman (1991) with asymmetric regions. Assuming that the share of agricultural
population in a region may be greater than in the other region, he showed how
the bifurcation diagrams change from the usual tomahawk to other configurations
(see also Baldwin et al. (2003) and Forslid and Ottaviano (2003)). Berliant and
Kung (2009) also studied an asymmetric Core-Periphery model extended with three
exogenous parameters (two that parametrize regional fixed inputs and another that
parametrizes regional amenity), and argue that the choice of parameters affects
the equilibrium diagrams. They provide analytic proofs that the use of pitchfork
or tomahawk bifurcations (or other that have crossing in the equilibrium loci) are
not robust to generate a core-periphery pattern. As Pflüger and Südekum (2008)
highlight putting too much emphasis on the particular implications of the tomahawk
bifurcation type [...] is, therefore, unwarranted because this bifurcation type will
only result under certain conditions of the underlying individual preferences. These

3See, for instance, the survey of Schmutzler (1999) that well summarizes and discusses the
research already done in this area of NEG models.
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authors have discussed how the results of three different Footloose-Entrepreneur new
economic geography models with regard to the shape of the location pattern can be
reconciled suggesting that certain insights are robust but others are not.

Our aim is, first of all, to study drastic changes in agglomeration patterns in a
solvable core-periphery model with two asymmetric regions, namely their predictions
concerning the shape of the location pattern. For this purpose, we extend the
Footloose Entrepreneur model of Forslid and Ottaviano (2003) by assuming that
the distribution of unskilled workers between regions may be non-symmetric and
that workers can prefer to live in one of the regions relatively to the other. This
preference for one of the regions can reflect regional amenities like scenic beauty,
climate or cultural factors. As Baldwin et al. (2003) argue in their work, if an
exogenous asymmetry in the regional endowments of immobile unskilled workers is
considered, catastrophic agglomeration still occurs, but the tomahawk bifurcation
disappears. So there is much evidence in the literature that this type of bifurcation
is not robust to perturbations that break the exogenous symmetry between regions.
Note also that, as Tabuchi and Thisse (2002) argue, regions are not necessarily
similar because there are different natural and cultural features and people tend
to value differently these local amenities. Empirical evidence shows that natural
amenities, such as a coastal location, beautiful scenic and good climate, explain the
spatial distribution of industrial activities (Perloff et al. (1960); Mills (1972); Black
and Henderson (1999); Gallup et al. (1999)).4

Our model can be seen as a perturbation of the Footloose Entrepreneur model of
Forslid and Ottaviano (2003). Therefore, the question of whether this perturbation
is generic or not emerges. We provide evidence that it is in fact a universal unfolding,
which means that any smooth perturbation that might be added in the model would
not lead to new qualitative behaviour.

This dissertation is structured as follows. We begin in section 2 by extending
the Footloose Entrepreneur model of Forslid and Ottaviano (2003) and deriving the
nominal wages as a new explicit function of the spatial distribution of skilled workers.
In section 3, we analyse the conditions for long-run equilibria and their stability
concerning the dynamical system, setting the differences with the original model.
Section 4 provides a way to recognize our extended model as generic perturbation.
We prove, using mathematical properties and some results from bifurcation theory,
that our generic perturbation is a universal unfolding.5 In section 5 a detailed

4References cited in Tabuchi and Thisse (2002).
5See Golubitsky and Schaeffer (1985) for an extensive overview about characterization and

recognition of Universal Unfoldings.
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analysis of persistent bifurcation diagrams concerning the dynamics of our extended
model is made. We make some concluding remarks in Section 6.
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2 The Model

This section describes the Footloose Entrepreneur model developed by Forslid
and Ottaviano (2003), with some remarks about the assumption of the symmetry of
that model. Thus all comments made here about this model are based on Forslid and
Ottaviano (2003) since a good deal of our model is a replication of the construction
made by them with the certainty that the modified model reproduces all the features
of the original one. To this purpose, we have changed the assumption of symmetry in
the distribution of unskilled workers between regions and we have introduced a new
variable to measure the attractiveness of a region as Berliant and Kung (2009) have
already suggested.6 This changes allow us to study the changes in agglomeration
patterns and they are explicitly and clearly detailed in the considerations that follow.

2.1 General assumptions

In this model, the economy comprises two regions (1 and 2) and two sectors
(called agriculture and industry) that we describe next. In the industrial sector
there is monopolistic competition, while in the agricultural sector there is perfect
competition. There are two types of labour, skilled labour and unskilled labour, with
the assumption that each worker provides one unit of his type of labour inelastically.
Introducing some notation, we define H = H1 +H2 as the allocation of skilled labour
and L = L1+L2 the allocation of unskilled labour, with Li andHi the total allocation
of both factors in region i, i = 1, 2.

Unskilled workers, unlike what happens in Forslid and Ottaviano (2003) where
they are evenly spread across regions, are distributed by the two regions, in the
following way: L1 = kL and L2 = (1 − k)L, with k ∈ (0, 1) the percentage of
unskilled workers in region 1. If k > 1

2 , the market provided by unskilled labour in
region 1 is bigger than region 2. If k < 1

2 , region 1 is smaller than region 2. Skilled
workers are like individual entrepreneurs who move freely between the two regions.
Unskilled workers do not move between the regions. For k = 1

2 we recover the model
of Forslid and Ottaviano (2003).

In the agricultural sector a homogeneous good (A) is produced under constant
returns to scale using as production factor only the immobile workers. The industrial
sector produces a horizontally differentiated product (X) using skilled labour (fixed
cost) and unskilled labour (variable cost) under increasing returns to scale.

6Berliant and Kung (2009) suggest the introduction of a parameter γ as a measure of workers’
preferences for a particular region due to its climate and landscape.
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The transportation of the agricultural good between the two regions is costless,
whereas for industrial products there is a cost associated with their transportation,
called iceberg costs: for one unit of the differentiated good to reach the destination
region, τ ∈ (1,+∞) units must be shipped from the region where it is produced.

2.2 Demand

All workers have the same preferences regarding the consumption of industrial
goods and agricultural goods. The utility function of a representative consumer in
each region is given by:

U1 = (1 + γ)Xµ
1A

1−µ
1 , (2.1)

U2 = Xµ
2A

1−µ
2 , (2.2)

where µ ∈ (0, 1) is the fraction of expenditure on industrial goods; Ai is the consump-
tion of agricultural goods; and Xi represents a composite index of the consumption
of industrial goods defined as a function of constant elasticity of substitution (CES):

Xi =
[∫
s∈N

di(s)
σ
σ−1ds

] σ
σ−1

, (2.3)

where di(s) is the consumption of variety s of good X; N is the mass of varieties
produced; and, finally, σ > 1 represents, not only the demand elasticity of any
variety, but also the elasticity of substitution between any two varieties.

The consumer’s problem involves the maximization of (2.1) and (2.2) subject to
the following budget restriction:

PiXi + pAi Ai = Yi, (2.4)

where pAi is the price of the agricultural good; Pi is the price index of the industrial
goods; Yi is the local income, comprising wages of skilled (wi) and unskilled (wLi )
workers, given by:

Yi = wiHi + wLi Li. (2.5)

The resolution of (2.4) demonstrates that (Fujita et al., 2001, pp. 46-47), for a
given value of the index of industrial goods consumption, Xi, the consumption of
each variety, d(s), is chosen to minimize the cost of obtaining Xi, whereby:

dji(s) = pji(s)−σ
P 1−σ
i

µYi, i, j = 1, 2, (2.6)
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where dji(s) is the consumption by residents in region i of a variety produced in
region j; pji is the consumer price of a variety produced in region j and sold in
region i; and Pi is the local price index linked to (2.3) defined by:

Pi =
[∫

ni
pii(s)1−σds+

∫
nj
pji(s)1−σds

] 1
1−σ

, (2.7)

where ni are the varieties produced in region i, i = 1, 2, such that n1 + n2 = N . In
addition, from utility maximization of (2.4) we obtain the consumption of agricul-
tural goods in region i. The fraction of consumers’ income spent on consumption of
agricultural goods is (1− σ), and therefore:

Ai = (1− µ) Yi
PA
i

. (2.8)

2.3 Supply

Firms in the agricultural sector produce a homogeneous good under constant
returns to scale using only unskilled workers. For the production of each unit of
the good, one unit of labour is required. Thus, the unit cost of production and the
marginal cost of a firm in the agricultural sector equal the wage of unskilled workers.
As already mentioned, firms in this sector operate on the rules of perfect competition
which justifies that the price equals marginal cost. Moreover, once the agricultural
good has transportation costs associated, its price will be the same in both regions.
These considerations justify the wages equality in both regions which, without loss
of generality, is assumed to take the unit value: pAi = wLi = 1. Therefore, considering
the parameter k, equation (2.5) can be rewritten:

Y1 = w1H1 + kL

Y2 = w2H2 + (1− k)L.
(2.9)

At this point, we distinguish what relates to the model by Forslid and Ottaviano
(2003) where k = 0.5 and γ = 0 from the current new model, dependent on the
values of k and γ. We use the superscript 0 to indicate quantities in Forslid and
Ottaviano (2003) and no superscript for quantities in the current model. Thus,
Y 0
i = w0

iHi + L
2 is the local income in region i, (i = 1, 2), in Forslid and Ottaviano

9



(2003).7

In the industrial sector, horizontally differentiated goods are produced ensuring a
one-to-one relationship between firms and varieties, i.e, each firm produces only one
variety of good X. Thus, each firm produces x(s) units of variety s of the industrial
good. Regarding production costs, each firm supports a fixed cost corresponding to
α units of skilled labour and a marginal cost corresponding to β units of unskilled
labour per unit produced:

TCi(s) = wiα + βxi(s). (2.10)

In this point, the model of Forslid and Ottaviano (2003) differs from the model
of Krugman (1991). Krugman (1991) assumes that skilled labour is not only an
integral part of the fixed cost but also of the variable cost of each firm. According
to the costs in (2.10), the profit function of each firm in the industrial sector located
in region i is:

Π(s) = pii(s)dii(s) + pij(s)dij(s)− β[dii(s) + τdii(s)]− αwi, (2.11)

where τdij(s) is the total supply of the variety s to the region j including the
fraction of products that are lost in transport due to the iceberg costs. So, firms
choose quantities that maximize their profits (2.11). To solve this maximization
problem, the first order conditions are:

pii(s) = βσ

σ − 1 and pij(s) = τβσ

σ − 1 . (2.12)

Given the fixed input α required in production, the equilibrium in the skilled
labour market implies that, in equilibrium, the number of firms is such that the
number of active firms in region i is proportional to the number of skilled workers
that live there:

ni = Hi

α
. (2.13)

2.4 Short-run equilibrium

In short-run equilibrium, given the distribution of industrial workers, demand
equals supply in all markets, labour and goods. The industry price index in equation

7Note that wi ≡ wi(h, φ, k), whereas w0
i ≡ w0

i (h, φ).
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(2.7), using conditions in (2.12), becomes:

Pi = βσ

σ − 1 [ni + φ nj]
1

1−σ , (2.14)

where φ = τ 1−σ is a measure of economic integration (“freeness of trade”) in the
industrial sector. If φ = 1, there are no transportation costs (τ = 1), so there is full
economic integration. Conversely, if φ = 0, transportation costs are infinite, so we
can conclude that there is no economic integration.

Using (2.13), equation (2.14) can be rewritten and we obtain the two price indices
P1 and P2:

P1 = βσ

σ − 1

(
H

α

)1/(1−σ)
[h+ φ(1− h)]1/(1−σ) , (2.15)

P2 = βσ

σ − 1

(
H

α

)1/(1−σ)
[1− h+ φh]1/(1−σ) , (2.16)

In the absence of entry barriers in the manufacturing industry, in equilibrium,
profits are zero. Therefore, the wage of skilled workers is given by:

wi = µ

σ

[
Yi

Hi + φHj

+ φYj
φHi +Hj

]
. (2.17)

The short-run equilibrium is determined by solving the system, for i = 1, 2,
composed by equations (2.9), (2.12), (2.13) and (2.17). The system determines, for
a given distribution of skilled workers, the variables ni, pi, wi and Yi. Substituting
(2.9) in (2.17), we obtain the equilibrium nominal wage of skilled workers due to the
spatial distribution of them:

Proposition 2.1. The nominal skilled wages are given by:



w1 = µ L
σφH1 + [(σ − µ)k − ((σ − µ)k − σ)φ2]H2

σφ(σ − µ)(H2
1 +H2

2 ) + [(σ − µ)2 + (σ2 − µ2)φ2]H1H2

w2 = µ L
σφH2 + [(σ − µ)(1− k) + ((σ − µ)k + µ)φ2]H1

σφ(σ − µ)(H2
1 +H2

1 ) + [(σ − µ)2 + (σ2 − µ2)φ2]H1H2
.

(2.18)

Proof. See Appendix A.

In this case, we can achieve the wage equation obtained by Forslid and Ottaviano
(2003) if we consider k = 0.5. Moreover, setting h = H1/H, as the percentage of
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skilled workers in region 1, and, implicitly, (1−h) as percentage of workers in region
2, it follows that:

w1

w2
= σφh+ [(σ − µ)k − ((σ − µ)k − σ)φ2] (1− h)
σφ(1− h) + [(σ − µ)(1− k) + ((σ − µ)k + µ)φ2]h. (2.19)

In Figure 1 we can observe how the wages ratio reacts to different values of k.
For instance, if region 1 is bigger than region 2 (k > 1

2), the red line tells us that
the real wage in region 1 increases relative to that in region 2. In this case, in
equilibrium, there would be a greater fraction of skilled workers preferring region 1.

Figure 1: Indirect utility for different values of k and γ = 0.
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3 Long-run equilibrium and stability

A long-run equilibrium is a spatial distribution of skilled workers that remains
unchanged over time, i.e., such that there are no incentives for skilled workers to
migrate across regions. A long-run equilibrium is stable if, after a small deviation
from the equilibrium distribution, the spatial distribution of skilled workers returns
to the initial one.

In the long-run, skilled workers choose their location in order to maximize their
indirect utility. They take into account not only the real wage that they earn, but
also the regional amenities, such as scenic beauty, climate or cultural factors. These
amenities are captured by the parameter γ. As we have already said the two regions
are not, necessarily, equally attractive. A positive value of γ means that region 1
is more attractive than region 2. When γ = 0, the regions are symmetric in terms
of amenities. So, choosing γ = 0 is a necessary and sufficient condition for both
regions to be identical, as in Forslid and Ottaviano (2003).

The direction of skilled worker migration depends on the sign of the indirect
utility differential between the two regions. The speed of migration is, for our
purposes, irrelevant. As Forslid and Ottaviano (2003), we assume that it is equal to
the indirect utility differential:

ḣ =


W (h, φ), if 0 < h < 1

min{0,W (h, φ)}, if h = 1

max{0,W (h, φ)}, if h = 0

, (3.1)

where,

W (h, φ) = η

[
(1 + γ)w1

P u
1
− w2

P u
2

]
, (3.2)

η = µµ(1− µ)(1−µ) and γ is the parameter that measures the relative attractiveness
of region 1.

The dynamics of migration in (3.1) capture interior and boundary dynamics.
The spatial equilibrium implies that ḣ = 0. If W (h, φ) is positive, then if there are
skilled workers in region 2, they will have greater utility in region 1, and thus some
workers will move from region 2 to region 1 until real wages in the two regions are
balanced and the equilibrium is achieved again. If W (h, φ) is negative, the opposite
will happen.

Note that it is possible to have h = 0 while ḣ 6= 0, unlike the dynamics referred
to in Berliant and Kung (2009) and Castro et al. (2013).
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As we can see W (h, φ) is the focal point of migration dynamics. So, substituting
(2.15) and (2.16) in (3.2) we obtain:

W (h, φ) = Ω(h, φ)V (h, φ), (3.3)

where,

Ω(h, φ) = η
µL

H

1
σφ(σ − µ)[h2 + (1− h)2] + [(σ − µ)2 + φ2(σ2 − µ2)]h(1− h)

(
βσ

σ − 1

)−µ(
H

α

) −µ
1−σ

,

and,

V (h, φ) = (1 + γ)σφh+ [(σ − µ)k − φ2((σ − µ)k − σ)] (1− h)
[h+ φ(1− h)]

µ
1−σ

− (3.4)

σφ(1− h) + [(σ − µ)(1− k)− φ2((σ − µ)k + µ)]h
[1− h+ φh]

µ
1−σ

.

Similarly to what happens in Forslid and Ottaviano (2003), equation (3.3) shows
that all that matters to the determination of equilibria, that is, to W (h, φ) = 0,
is V (h, φ) because Ω(h, φ) is a positive bundling for all values of parameters and
variables.

We are next interested in studying the dispersion and the agglomeration config-
urations. Dispersion occurs when none of the regions is empty. This includes the
extreme situation where we have one of the regions with only one skilled worker
and all other in another region. On the other hand, agglomeration occurs when all
skilled workers are concentrated in one region in such a way that the other region
has no skilled worker.8

3.1 Stable Dispersion

One of the two existing equilibria is that for which all skilled workers are dispersed
across two regions in such a way that no region is without skilled workers. This
type of equilibria, also called interior equilibria, are solutions to V (h, φ) = 0. This
condition ensures that each skilled worker has no incentive to migrate to the other
region because they look to the other and note that both regions provide them with
the same indirect utility.

8We stress that we use the terms agglomeration and concentration as equivalent.
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Interior equilibria (0 < h < 1) are stable if, and only if, the slope of W (h, φ) is
non-positive in the neighbourhood of equilibrium.

Definition 3.1. A dispersion equilibrium distribution is an h∗ ∈ (0, 1) such that

V (h∗, φ) = 0. It is stable if ∂W (h,φ)
∂h

< 0.

Considering a dispersion equilibrium with 0 < h < 1 if the differential real wages
W (h, φ) are decreasing in h, then continuity of real wages in the share of skilled
workers ensures that if there was a marginal and exogenous migration of skilled
workers to the other region all the skilled workers return to their region of origin.

Proposition 3.2. A sufficient condition for the stability of a dispersion equilibrium

is:
∂V (h, φ)

∂h
(h∗, φ) < 0. (3.5)

Proof. By definition 3.1, the stability of a dispersion equilibrium is given by:

∂W (h∗, φ)
∂h

= ∂Ω
∂h

V (h∗, φ) + Ω∂V (h∗, φ)
∂h

.

An equilibrium implies that V (h∗, φ) = 0. Then, since Ω > 0, we have that
∂V (h∗,φ)

∂h
< 0 ⇒ ∂W (h∗,φ)

∂h
< 0.

From the moment that we introduced asymmetries it makes no sense to use the
concept of break point of Fujita et al. (1999). This is because the asymmetries in-
troduce a discontinuity in the equilibrium branches. Then, there are situations when
for particular values of φ there are no interior equilibria.9 But, solving V (h, φ) = 0
and defining h as a function of φ, if there exists a φf such that ∂h

∂φ
(φφf ) = 0 we have

a point where the interior equilibrium looses stability as we increase continuously
the value of φ. We call this point a Fold Point.10 Because of the existence of bound-
aries this point mostly does not appear in our bifurcation diagrams. But we know
it exists as we can verify in section 5.

9See for instance the bifurcation diagram in Figure 4(b) where there is no point where interior
equilibria switches from stable to unstable.

10Under some genericity conditions, namely ∂2h
∂φ2 6= 0, it is related to a fold bifurcation.
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3.2 Stable Agglomeration

Another existing equilibrium configuration is that for which all skilled workers are
concentrated in one of the two regions and the other region is without skilled workers.
Given the dynamical system referred to in (3.1), these configurations occur when h =
0 and h = 1 and are equilibria if and only if V (0, φ) < 0 and V (1, φ) > 0, respectively.
If V (0, φ) > 0 and V (1, φ) < 0, those total agglomeration configurations are not
equilibria. It is because workers only have incentive to remain in a region if the
indirect utility they obtain in that region is higher than in the other. Otherwise
they want to migrate to the region that offers them higher indirect utility.

Definition 3.3. Agglomeration in region 1 (region 2) is an equilibrium distribution

if and only if V (1, φ) ≥ 0 (V (0, φ) ≤ 0). It is stable if the inequality is strict.

Unlike what happens in Forslid and Ottaviano (2003), here V (0, φ) 6= −V (1, φ)
if k 6= 0.5 or γ 6= 0. This shows how the new assumptions introduced in the model
can perturb not only the interior equilibria but also the boundary equilibria, if they
exist. We have that:

V (0, φ) = (1 + γ)(σ − µ)k − φ2((σ − µ)k − σ)
φ

µ
1−σ

− σφ, (3.6)

and

V (1, φ) = (1 + γ)σφ− (σ − µ)(1− k) + φ2((σ − µ)k + µ)
φ

µ
1−σ

. (3.7)

If we set k = 0.5 and γ = 0, we certainly obtain that:

V (0, φ) = −V (1, φ) = 0.5(σ − µ) + (0.5σ + 0.5µ)φ2

φ
µ

1−σ
− σφ. (3.8)

As mentioned previously, an equilibrium is stable if, for any small deviation
from equilibrium, the spatial distribution of workers is pulled back to the initial
one. According to the dynamical system in (3.1) the total agglomeration solutions
(h = 0 and h = 1) are always stable as long as they are equilibria.

Fujita et al. (1999) named sustain point the threshold value of φ above which
concentration is a stable equilibrium. Because in (3.1) stability and existence of a
concentration equilibrium coincide, we refer to a sustain point as a value of φ such
that concentration is an equilibrium on only one side of φ. In our modified model,
due to the presence of the parameters γ and k, which introduce some asymmetries
between both regions, we will have two sustain points, one for agglomeration in
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region 1 (h = 1) and another for the agglomeration in region 2 (h = 0) which are,
respectively and implicitly defined by φs1 and φs2 :

(1 + γ)σφ
µ

1−σ+1
s1 − (σ − µ)(1− k)− φ2

s1((σ − µ)k + µ) = 0, (3.9)

(1 + γ)
[
(σ − µ)k − φ2

s2((σ − µ)k − σ)
]
− σφ

µ
1−σ+1
s2 = 0. (3.10)

In the event of the existence of two solutions in one of these equations, then as
we shall see in section 5, Figures 3.1(b), 6 and 8(a), it can occur that agglomeration
is stable for φ ∈ (φs1 , φs2), where φs1 and φs2 are those two solutions.
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4 Genericity

When perturbing an existing model, there is always the question of determining
how generic the perturbation is or should be. In this section, we use results from
bifurcation theory to show that our perturbation of Forslid and Ottaviano (2003)
describes qualitatively all possible perturbations of their model with a minimum
number of parameters. Therefore, the bifurcation diagrams we exhibit in section 5
are generically the only ones appearing in any perturbation of Forslid and Ottaviano
(2003).

Let g(x, λ) be a smooth map for which a bifurcation occurs at (x0, λ0) and
let G(x, λ, α, β) be a two-parameter family of perturbations of g. This means
G(x, λ, 0, 0) = g(x, λ). We say (see Golubitsky and Schaeffer (1985), Definition
1.3) that G(x, λ, α, β) is a versal unfolding of g if any perturbation of g can be
transformed, through a convenient smooth change of coordinates, into G(x, λ, α, β).
If two is the minimum number of unfolding parameters in a versal unfolding then G
is said to be universal.

A universal unfolding is a parametrized family including all the possible pertur-
bations with a minimum number of parameters of a given problem. This means that
any smooth perturbation that might be added in the model would not lead to new
qualitative behaviour, that is, to behaviour not already present for the proposed
two-parameter family of perturbations (in our case, γ and k).

According to Golubitsky and Schaeffer (1985), any bifurcation problem g(x, λ)
which at a specific point satisfies gx = gxx = gλ = 0, gxxx 6= 0 and gλx 6= 0
is equivalent to the normal form for the pitchfork bifurcation which is given by
f(x, λ) = ±x3 ± λx. Moreover, according to Proposition 4.4 of Golubitsky and
Schaeffer (1985), if G(x, λ, α, β) is a two-parameter unfolding of a map g equivalent
to f(x, λ) = ±x3 ± λx, then G is a universal unfolding of g if and only if:

det


0 0 gxλ gxxx

0 gλx gλλ gλxx

Gα Gαx Gαλ Gαxx

Gβ Gβx Gβλ Gβxx

 6= 0,

at the bifurcation point of the unperturbed problem.11

11In this section the subscript denotes the partial differentiation with respect to the corresponding
argument.
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Let us say that G is, in our context, the dynamics function W (h, φ) in our
extended model [referred to in section 2, equation (3.2)] and g is the corresponding
function in Forslid in Ottaviano (2003) in such a way that W (h, φ, 1

2 , 0) = W 0(h, φ).
12 So, k and γ are, in this context, the two unfolding parameters. In this way, we
have that:

G(h, φ, k, γ) = W (h, φ) = η

(
(1 + γ)w1

P u
1
− w2

P u
2

)
, (4.1)

and
g(h, φ) = W 0(h, φ) = η

(
w0

1
P µ

1
− w0

2
P µ

2

)
. (4.2)

Furthermore, we can say that g in Forslid and Ottaviano (2003) is equivalent to
f(h, φ) = h3 + φh because g satisfies the conditions gh = ghh = gφ = 0 and ghhh > 0
and gφh > 0 at the specific bifurcation point (1/2, φ0

b) on Forslid and Ottaviano
(2003).13

Thus, to prove the existence of a universal unfolding we need to calculate the
following determinant and verify that it is non-zero:

D = det


0 0 ghφ ghhh

0 gφh gφφ gφhh

Gγ Gγh Gγφ Gγhh

Gk Gkh Gkφ Gkhh

 , (4.3)

at the bifurcation point of the unperturbed problem: (h, φ, k, γ)=(1
2 , φ

0
b , 1

2 , 0),
where k = 1

2 and γ = 0 correspond to the absence of perturbation.14

Here, it should be noted that Gk and Gγ are the partial derivatives of G(h, φ, k, γ)
with respect to unfolding parameters k and γ, respectively. The signs of these
derivatives are useful in the calculation of the sign of D and also provide information
on how the current indirect utility differential reacts to a variation in each parameter.

Lemma 4.1. An increase in agricultural population in region 1 relatively to region

2 causes an increase in real wages of industrial workers in region 1.

12For more details about the function g see Forslid and Ottaviano (2003), p. 235.
13In Forslid and Ottaviano (2003), p. 236, these conditions are confirmed and the expression of

φ0
b is also specified.
14See the expressions for the derivatives in Appendix B.

19



Proof. It is sufficient to show that Gk > 0 for any values of the parameters:

Gk(h, φ, k, γ) =

ηLµ

(
(γ + 1)(1− h)(σ − µ)(1− φ2)

(h+ φ(1− h))
µ

1−σ
+

(h(σ − µ)(1− φ2))

(φh+ 1− h)
µ

1−σ

)
(
βσ
σ−1

)µ (H
α

) µ
1−σ [(1− h)h(φ2(σ2 − µ2) + (σ − µ)2) + φ(h2 + (1− h)2)σ(σ − µ)]

,

sign(Gk(h, φ, k, γ)) = sign

(
(γ + 1)(1− h)(σ − µ)(1− φ2)

(h+ φ(1− h))
µ

1−σ
+ (h(σ − µ)(1− φ2))

(φh+ 1− h)
µ

1−σ

)
, (4.4)

since σ > µ, h ∈ [0, 1] and φ ∈ (0, 1), we have Gk(h, φ, k, γ) > 0.

Lemma 4.2. An increase in workers’ preferences for region 1 relatively to region 2

causes an increase in real wages of industrial workers in region 1.

Proof. It is sufficient to show that Gγ > 0 for any values of the parameters:

Gγ =

(
βσ
σ−1

)µ (
H
α

) µ
1−σ Lηµ

(
(1− h)

[
k(σ − µ)(1− φ2) + σφ2]+ φhσ

)
[h+ φ(1− h)]

µ
1−σ [(1− h)h(φ2(σ2 − µ2) + (σ − µ)2) + φσ(h2 + (1− h)2)(σ − µ)]

,

sign(Gγ(h, φ, k, γ)) = sign
(
(1− h)

[
k(σ − µ)(1− φ2) + σφ2]+ φσh

)
, (4.5)

since σ > µ, h ∈ [0, 1] and φ ∈ (0, 1), we have Gγ(h, φ, k, γ) > 0.

We can also prove that gφφ = 0 and gφhh = 0 at the bifurcation point (h, φ, k,
γ)=(1

2 , φ
0
b , 1

2 , 0), which simplifies the calculation of the determinant D in (4.3).

Lemma 4.3. The derivatives gφφ = 0 and gφhh = 0 at (h, φ, k, γ)=(1
2 , φ

0
b , 1

2 , 0).

Proof. See Appendix C.

In this way, the determinant we have to calculate simplifies to:

D = det


0 0 ghφ ghhh

0 gφh 0 0
Gγ Gγh Gγφ Gγhh

Gk Gkh Gkφ Gkhh

 .
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By inspection we observe that all entries in D have the common factor:

Lηµ(
βσ
σ−1

) µ
1−σ

(
H
α

) µ
1−σ

.

Then the determinant comes:

D =

 Lηµ(
βσ
σ−1

) µ
1−σ

(
H
α

) µ
1−σ


4

×D,

and D 6= 0⇔ D 6= 0.

In Figures 2(a) and 2(b) we plot D to see that it is positive for all values of
µ ∈ (0, 1) and σ ∈ (1,+∞).

We succeeded in proving that our bifurcation problem is a universal unfolding of
that in Forslid and Ottaviano (2003). So this proves that the tomahawk bifurcation
and others that have crossing equilibrium loci are not robust to generate a core-
periphery pattern under general perturbations because of what we know about the
bifurcation diagrams of the unfolded problem. Berliant and Kung (2009) also argue
this fact. They extended the model with three exogenous parameters (one that
parametrizes the workers’ preferences over regions and two other that parametrize
“regional fixed inputs”) and proved that there is a path set of parameters where those
classes of bifurcations do not appear. But their model is a particular case, in terms of
qualitative behaviour, of our current model. The reason is that our modified model
is a universal unfolding. This means that from our extended model we can obtain
the same qualitative behaviour in bifurcation diagrams that they may eventually
achieve, but the opposite may not be possible. That is, our universal unfolding
allow us to find particular agglomeration patterns they may not be able to achieve
perturbing the parameters of their model. Furthermore, the way they achieve that
conclusion is redundant because there is no need to introduce three parameters in
the model. As a convenience matter on choosing parameters we get that conclusion
using only two parameters (the minimum number of unfolding parameters in our
versal unfolding) and therefore the term universal. In this way, we shall see in the
next section that any smooth perturbation in the unfolding parameters generates
different agglomeration patterns as the symmetry between regions and distribution
of agricultural population cease to exist.
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(a) determinant for σ ∈ (1, 4).

(b) determinant for σ ∈ (4, 6).

Figure 2: Determinant D.
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5 Robustness and bifurcation diagrams

In this section we will address the issue of bifurcation, that is, we will study the
changes that occur in terms of equilibria and their stability depending on the param-
eters. Obviously, we are particularly interested in economic implications in terms
of the population migration dynamics. In particular, we study the change in ag-
glomeration patterns as φ varies for several combinations of the symmetry-breaking
unfolding parameters, k and γ. In this way, we will describe the configurations of
long-term equilibria and the respective diagrams that are obtained by giving differ-
ent combinations of values to parameters. As we will see, we have several examples
of bifurcations that do not have crossing of the equilibrium loci, which reinforces
the conclusion we drew in the previous section.

We recall that characterizing the behaviour of our model with such asymmetry
requires numerical simulation. So, all bifurcation diagrams we plot were obtained
by numerical computation. Furthermore, hereinafter the stable long-run equilibria
are illustrated with green lines, while the unstable long-run equilibria are marked
by red lines.

All of the bifurcation diagrams we plot here were obtained by setting σ = 4
and µ = 0.3, the values that Krugman (1991) uses in his benchmark model of New
Economic Geography.

First of all it is important to show that if we consider the values that turn us to
the Forslid and Ottaviano (2003) model (k = 0.5 and γ = 0) we obtain the expected
bifurcation diagram in Figure 3(a).

If we set a particular zoom for the convenient values of φ we can better observe in
Figure 3(b) the tomahawk that we know always happens in the symmetric Footloose
Entrepreneur model.

Let φs and φb be the values of φ corresponding, respectively, to the break-point
and sustain-point in Forslid and Ottaviano (2003). As expected, in the symmetric
case, for φ < φs, h = 1

2 is the only stable equilibrium. For φ > φb there are
three equilibria, full agglomeration configurations h = 0 and h = 1 and symmetric
outcome h = 1

2 , but only the agglomeration ones are stable. Finally, for φs < φ < φb

there are five equilibria. Two are the agglomeration configurations which are stable,
two other are interior asymmetric equilibria which are unstable and the last one is
the symmetric outcome and it is also stable.

Including boundaries in h on the tomahawk diagram the hysteresis effect emerges.
Hysteresis means that the equilibrium is sensitive, not only to the change in value of
the parameter φ, but also to the way in which this change occurs, that is, increasing
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(a)

(b)

Figure 3: Bifurcation diagram for the unperturbed model (k = 1
2 and γ = 0).

and decreasing the parameter does not lead to the same result. Whenever φ > φs,
the bifurcation diagram features multiple stable long-run equilibria. This means
that temporary shocks, for example, temporary policy changes, may have hysteresis
effects on the location of the industrial workers. For instance, let us consider a
temporary policy change that takes φ to a value between the sustain point and the
break point. If we consider a larger past value of φ, this decrease on φ leads to
agglomeration equilibria. But if we consider a smaller past value, then the increase
on φ leads to a dispersion equilibrium (see Figure 3(b)).

We also plot the bifurcation diagrams with exogenous asymmetries between re-
gions. Like Forslid and Ottaviano (2003) do, we study the case where there are only
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differences in the regional endowment of immobile unskilled workers, that is k 6= 1
2 .

Recalling, if k > (<)1
2 region 1 is bigger (smaller) than region 2. If we gradually

decrease the value of k, region 2 will become increasingly bigger than region 1 and
we obtain the bifurcation diagrams like these in Figure 4.

As we mentioned in section 2 there will be two sustain points (φs1 for agglomer-
ation in region 1 and φs2 for the agglomeration in region 2). A key contrast between
Figure 4 and the respective diagram in Forslid and Ottaviano (2003)15 is the exis-
tence of a unique unstable asymmetric equilibrium. Introducing boundaries on h

the asymmetric equilibria in first branch on their diagram disappear. Consequently
the break point also ceases to exist. According to Figure 4(a), where k = 0.499,
for φ < φs2 there is only one equilibrium which is stable and for which there are
more firms in the biggest region. For φs2 < φ < φs1 the agglomeration in region 2,
where there are more unskilled workers, is the only equilibrium. Only when φ > φs1

there are also an agglomeration equilibrium in region 1 and an unstable asymmetric
equilibrium with partial agglomeration in region 1.

If we decrease the value of k to k = 0.46 and then to k = 0.4 we obtain the
bifurcation diagrams in Figures 4(b) and 4(c), respectively. These show that it is
necessary to have more of economic integration for the agglomeration equilibrium
in region 1 to be stable.16 Furthermore, as economic integration proceeds (that
is, as φ increases), the smaller the region 1 is, the more quickly the agglomeration
equilibrium in region 2 is reached. There is a value of k for which region 1 becomes so
small that there is no longer agglomeration equilibrium (stable or unstable) in that
region and the greater fraction of population chooses to be in the biggest region. For
high transportation costs, that is, when there is a small level of economic integration,
the only equilibrium is the asymmetric stable equilibrium where most of population
concentrates in the region 2. As the transportation costs decrease towards more
economic integration population tends to concentrate increasingly in the region 2.
For φ > φs2 the only equilibrium is the stable agglomeration in the region 2.

We can conclude that the distribution of unskilled workers substantially disturbs
the equilibria of the model and perturbing only the parameter k there is a value of
k beyond which the region with more unskilled workers is the optimal choice to all
workers.

If we focus on the perturbations only in the parameter γ we observe that the
bifurcation diagrams also change significantly. That is perturbing singly each of our
parameters produces different effects. In Figure 5 we can observe the effects of an

15See Figure 2 on Forslid and Ottaviano (2003) p. 239.
16See how φs1 increases as region 2 increases its agricultural population relative to region 1.
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(a) k = 0.499.

(b) k = 0.46.

(c) k = 0.4.

Figure 4: Bifurcation diagram perturbing only the parameter k.
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increase in γ where region 1 becomes more attractive than region 2.
A smooth increase in the preferences of workers for a particular region, in the case

of the Figure 5(a), where γ = 0.001, for region 1, exhibits for high transportation
costs an asymmetric stable equilibrium with a greater fraction of firms operating in
the region 1. Furthermore, that increase in the preferences for lower transportation
costs also leads to the emergence of a stable full agglomeration equilibrium in region
2 at the same time as an unstable dispersion equilibrium with more firms operating
in region 2. When there is a sufficiently low level of trade costs, the workers prefer
the less attractive region. That is, if the attractiveness level of region 1 is not
sufficiently high then when the transportation costs are low there can also exist an
agglomeration equilibrium in the other region. This shows that as the economic
integration proceeds, different levels of preferences for a region lead to different
impacts on diagrams.

If we gradually increase the value of γ, region 1 will become increasingly more
attractive than region 2 and we obtain the bifurcation diagrams like those in Figures
5(b) and 5(c) where we assume γ = 0.01 and γ = 0.02, respectively. Looking at
these bifurcation diagrams we can note that, as economic integration proceeds, the
more attractive region 1 is, the more quickly the agglomeration stable equilibrium
in that region is reached.

A new feature appears as illustrated in Figure 5(b): as expected concentration
becomes an equilibrium for high φ but, in this case, concentration in region 2 (the
least preferred) is no longer an equilibrium when economic integration is close to
perfect. In this case, workers move to the most preferred region. This phenomenon
occurs also for situations depicted in other figures.

According to Figure 5(c) where the attractiveness measure is sufficiently high we
can see that the second branch of equilibria disappears (the asymmetric unstable
equilibrium and the agglomeration in the region 2). It is important to note that the
parameter γ is more sensitive than k. In Figures 4 and 5 we can verify that the same
smooth perturbation in γ leads to stronger changes in equilibria configurations than
to the same smooth perturbation in k.

However, we are also interested in configurations arising from perturbations of
both parameters simultaneously. Here we have to distinguish two situations. One
when we perturb both parameters in such a way that one of the regions is favoured
(for example when we set k > 1

2 and γ > 0 the region 1 is bigger and more attractive).
On the other hand we also show a situation when there is compensation between
parameters (for example if we set region 1 bigger but region 2 more attractive).

The first situation is shown in the bifurcation diagram in Figure 6. This Figure
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(a) γ = 0.001.

(b) γ = 0.01.

(c) k = 0.02.

Figure 5: Bifurcation diagram perturbing only the parameter γ.
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Figure 6: Bifurcation diagram for the perturbed model (k = 0.501 and γ = 0.01).

is similar to Figure 5(b) where the asymmetry is caused by γ only. This does not
mean that the parameter k does not add new qualitative behavior. In fact, Figure
4 shows that perturbing only the parameter k the agglomeration patterns change
significantly.

Figure 7: Bifurcation diagram for the perturbed model (k = 0.426 and γ = 0.0194).

In Figure 7 we show the second situation. Although region 1 is smaller we
compensate by making that region more attractive. It is interesting to observe
that despite the slight increase in preferences for region 1, the smaller fraction of
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unskilled labour in region 1 encourages more firms to settle in region 2. This allows
us to conclude about the existence of a strong market access advantage of the larger
region, that is, larger immobile demand in one region attracts more mobile demand
as Forslid and Ottaviano (2003) also argue. Thence, only for a particular set of φ
when transportation costs are sufficiently low, an agglomeration stable equilibrium
in region 1 emerges.

(a)

(b)

Figure 8: Bifurcation diagram for the perturbed model (k = 0.528 and γ = −0.0192).

We also plot two situations where the emergence of the fold point mentioned
in section 3 occurs. This is the case of Figure 8. In this Figure, k = 0.528 and
γ = −0.0192, thus region 1 is bigger but, at the same time, is less attractive than
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region 2. In this case, we have a stable dispersion equilibrium for φ < φf . As trans-
portation costs decrease the skilled workers, who initially were mostly in region 1,
have incentive to migrate to region 2. Then, for φ > φs2 there is a stable agglom-
eration equilibrium in region 2. But, there is also another stable agglomeration
equilibrium. When φs1a < φ < φs1b agglomeration in region 1 is also stable. For this
range of transport costs we can say that maybe workers do not value significantly
the relative unattractiveness of the region 1.

Figure 9: Bifurcation diagram for the perturbed model (k = 0.53 and γ = −0.0192).

The fold point we mentioned above is better observed if we set a particular zoom
for the convenient values of φ. See this case in Figure 8(b).

But making a smooth increase in k, from k = 0.528 to k = 0.53, see Figure 9,
there is also a fold point, but the bifurcation diagram changes significantly. That is,
with a small increase of unskilled workers in region 1, for φ < φf , as transportation
costs decrease, there are more and more skilled workers moving to region 1 (the
big one). We can say that in this case, for high transportation costs, the workers
tend to value region 1 (the larger region) more than region 2 (the smaller region).
But if economic integration be sufficiently installed in the economy, workers want to
migrate to the most beautiful region. This is because people can live in the region
that provides them more glee and travel to the other region to buy goods without
incurring in significant transport costs.
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6 Conclusion

We have extended the 2-region Footloose Entrepreneur model by Forslid and Ot-
taviano (2003) by introducing two additional parameters: one that describes the pos-
sibly asymmetric distribution of unskilled workers between regions; and another that
describes a possible asymmetry in the level of regional amenities, which may reflect
the preferences of workers for scenic, climate or cultural factors. These amenities
exert influence over the location decisions of workers, whose relevance and intensity
are not neutral to the size of the regions.

We prove that our extended model is a generic perturbation in the sense that
it describes all possible perturbations, in terms of qualitative behaviour, of the
model of Forslid and Ottaviano (2003). This means that any smooth perturbation
that might be added in the model would not lead to new qualitative behaviour
(that is, to behaviour not already present for the proposed two-parameter family of
perturbations). For this reason, and because we attain this with a minimum number
of parameters, our extended model is a universal unfolding of the FE model of Forslid
and Ottaviano (2003). That is because our modified model is a perturbation with
the fewest parameters that describes all possible qualitative perturbations of the
original Footloose Entrepreneur model of Forslid and Ottaviano (2003). Therefore,
the bifurcation diagrams we have exhibited illustrate, in a generic way, the admissible
perturbations that may appear in a perturbation of the FE model.

Another important result of our approach is that slight changes of the possible
values of the two unfolding parameters give rise to considerable changes regard-
ing the resulting agglomeration patterns. That is, with certain specific values of
the unfolding parameters, we obtain new patterns of skilled workers distribution.
Perturbing singly each of the parameters produces agglomeration patterns that are
already present in the existing literature. But perturbing both parameters together
gives rise to appreciable changes in agglomeration patterns, which, to the best of
our knowledge, have not been properly discussed in the literature.
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Appendix A

In order to study the dynamics of the modified model it is necessary to find
the new expression for nominal wages of skilled workers wi. That is because skilled
workers, comparing real wages in the two regions, make their migration decisions.
So, the region where the real wage is higher earns them a higher indirect utility and,
naturally, they decide to move there. Substituting (2.9) in (2.17), we obtain the
equilibrium nominal wage of skilled workers given their spatial distribution:


w1 = µ

σ

[
Y1

H1+φH2
+ φY2

φH1+H2

]

w2 = µ
σ

[
Y2

H2+φH1
+ φY1

φH2+H1

]

⇔


w1 = µ

σ

[
w1H1+kL
H1+φH2

+ φw2H2+φ(1−k)L
φH1+H2

]

w2 = µ
σ

[
w2H2+(1−k)L
H2+φH1

+ φw1H1+φkL
φH2+H1

]

⇔


w1 = 1

σ(H1+φH2−µH1)

{
µkL(φH1+H2)+µ[φw2H2+φ(1−k)L][H1+φH2]

φH1+H2

}

w2 = 1
σ(H2+φH1−µH2)

{
µ(1−k)L(φH2+H1)+µ[φw1H1+φkL][H2+φH1]

φH2+H2

} ,

which becomes after solving the system:



w1 = µ
[σ(H1+φH2)−µH1][σ(H2+φH1)−µH2]−µ2φ2H1H2

∗

[
kL[µH2φ2−µH2+σ(H2+φH1)][φH1+H2]+[φ(1−k)L(σ(H2+φH1)−µH2)+φH2µL(1−k)][φH2+H1]

φH1+H2

]

w2 = µ
[σ(H2+φH1)−µH2][σ(H1+φH2)−µH1]−µ2φ2H1H2

∗

[
(1−k)L[µH1φ2−µH1+σ(H1+φH2)][φH2+H1]+[φkL(σ(H1+φH2)−µH1)+φH1µkL][φH1+H2]

φH2+H1

]
,

(6.1)
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After some manipulation, the system simplifies to:



w1 = µL
σφH1 + [(σ − µ)k − ((σ − µ)k − σ)φ2]H2

σφ(σ − µ)(H2
1 +H2

2 ) + [(σ − µ)2 + (σ2 − µ2)φ2]H1H2

w2 = µL
σφH2 + [(σ − µ)(1− k) + ((σ − µ)k + µ)φ2]H1

σφ(σ − µ)(H2
1 +H2

2 ) + [(σ − µ)2 + (σ2 − µ2)φ2]H1H2

(6.2)
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Appendix B

This Appendix includes the expressions of partial derivatives needed to prove
the existence of a universal unfolding.

The partial derivatives are calculated at the bifurcation point of the unperturbed
problem: (h, φ, k, γ) = (1

2 , φ
0
b ,

1
2 , 0)

To simplify writing, we call num and den to the following expressions, respec-
tively:

num = σ(−µ+ σ − 1)(σ − µ)
(µ+ σ − 1)(µ+ σ) +(0.5(σ − µ)− σ)(−µ+ σ − 1)2(σ − µ)2

(µ+ σ − 1)2(µ+ σ)2 −0.5(σ−µ).

den = 0.5σ(−µ+ σ − 1)(σ − µ)2

(µ+ σ − 1)(µ+ σ) +0.25
(

(−µ+ σ − 1)2(σ − µ)2(σ2 − µ2)
(µ+ σ − 1)2(µ+ σ)2 + (σ − µ)2

)
.
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ghφ∣∣( 1
2 ,φ

0
b

)
=

2(σ−µ−1)(σ−µ)
(µ+σ−1) − 2σ

den
[

0.5(−µ+σ−1)(σ−µ)
(µ+σ−1)(µ+σ) + 0.5

] µ
1−σ

−

µ
[

1 − (−µ+σ−1)(σ−µ)
(µ+σ−1)(µ+σ)

] [
0.5(−µ+σ−1)(σ−µ)

(µ+σ−1)(µ+σ) + 0.5
] −µ

1−σ−1 [
0.5σ − (0.5(σ−µ)−σ)(σ−µ−1)(σ−µ)

(µ+σ−1)(µ+σ)

]
(1 − σ)den

−

0.5µ
[

0.5(σ−µ−1)(σ−µ)
(µ+σ−1)(µ+σ) + 0.5

] −µ
1−σ−1

[
σ(−µ+σ−1)(σ−µ)

(µ+σ−1)(µ+σ) + (0.5(σ−µ)−σ)(−µ+σ−1)2(σ−µ)2

(µ+σ−1)2(µ+σ)2 − 0.5(σ − µ)
]

(1 − σ)den
−

[
0.5(−µ+σ−1)(σ−µ)(σ2−µ2)

(µ+σ−1)(µ+σ) + 0.5σ(σ − µ)
][

σ(−µ+σ−1)(σ−µ)
(µ+σ−1)(µ+σ) + (0.5(σ−µ)−σ)(−µ+σ−1)2(σ−µ)2

(µ+σ−1)2(µ+σ)2 − 0.5(σ − µ)
]

[den]2
[

0.5(−µ+σ−1)(σ−µ)
(µ+σ−1)(µ+σ) + 0.5

] µ
1−σ

+

µ
[

0.5(−µ+σ−1)(σ−µ)
(µ+σ−1)(µ+σ) + 0.5

] −µ
1−σ−1

[
0.5σ(−µ+σ−1)(σ−µ)

(µ+σ−1)(µ+σ) + 0.5
(

0.5(σ − µ) − (0.5(σ−µ)−σ)(−µ+σ−1)2(σ−µ)2

(µ+σ−1)2(µ+σ)2

)]
(1 − σ)den

+

µ

(1 − σ)den

[
0.5(−µ + σ − 1)(σ − µ)(σ2 − µ2)

(µ + σ − 1)(µ + σ)
+ 0.5σ(σ − µ)

][
1 −

(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

][
0.5(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

] −µ
1−σ−1

×[
0.5σ(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

(
0.5(σ − µ) −

(0.5(σ − µ) − σ)(−µ + σ − 1)2(σ − µ)2

(µ + σ − 1)2(µ + σ)2

)]
−

0.5µ
(1 − σ)den

(
−µ

1 − σ
− 1
)[

1 −
(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

][
0.5(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

] −µ
1−σ−2

×[
0.5σ(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

(
0.5(σ − µ) −

(0.5(σ − µ) − σ)(−µ + σ − 1)2(σ − µ)2

(µ + σ − 1)2(µ + σ)2

)]
+

µ
[

0.5(−µ+σ−1)(σ−µ)
(µ+σ−1)(µ+σ) + 0.5

] −µ
1−σ−1

[
0.5σ(−µ+σ−1)(σ−µ)

(µ+σ−1)(µ+σ) + 0.5
(

(−µ+σ−1)2(σ−µ)2(µ+0.5(σ−µ))
(µ+σ−1)2(µ+σ)2 + 0.5(σ − µ)

)]
(1 − σ)den

−

µ

(1 − σ)den

[
0.5(−µ + σ − 1)(σ − µ)(σ2 − µ2)

(µ + σ − 1)(µ + σ)
+ 0.5σ(σ − µ)

][
0.5(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

] −µ
1−σ−1 [ (−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
− 1
]

×[
0.5σ(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

(
(−µ + σ − 1)2(σ − µ)2(µ + 0.5(σ − µ))

(µ + σ − 1)2(µ + σ)2
+ 0.5(σ − µ)

)]
+

0.5µ
(1 − σ)den

(
−µ

1 − σ
− 1
)(

0.5(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

+ 0.5
) −µ

1−σ−2( (−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

− 1
)

×[
0.5σ(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

(
(−µ + σ − 1)2(σ − µ)2[µ + 0.5(σ − µ)]

(µ + σ − 1)2(µ + σ)2
+ 0.5(σ − µ)

)]
+

0.5µ
(

0.5(−µ+σ−1)(σ−µ)
(µ+σ−1)(µ+σ) + 0.5

) −µ
1−σ−1

(
−σ(−µ+σ−1)(σ−µ)

(µ+σ−1)(µ+σ) + (−µ+σ−1)2(σ−µ)2[µ+0.5(σ−µ)]
(µ+σ−1)2(µ+σ)2 + 0.5(σ − µ)

)
(1 − σ)den

+

(
0.5(−µ+σ−1)(σ−µ)(σ2−µ2)

(µ+σ−1)(µ+σ) + 0.5σ(σ − µ)
)(

−σ(−µ+σ−1)(σ−µ)
(µ+σ−1)(µ+σ) + (−µ+σ−1)2(σ−µ)2[µ+0.5(σ−µ)]

(µ+σ−1)2(µ+σ)2 + 0.5(σ − µ)
)

[den]2
(

0.5(−µ+σ−1)(σ−µ)
(µ+σ−1)(µ+σ) + 0.5

) µ
1−σ

+

µ
(

(−µ+σ−1)(σ−µ)[µ+0.5(σ−µ)]
(µ+σ−1)(µ+σ) + 0.5σ

)(
0.5(−µ+σ−1)(σ−µ)

(µ+σ−1)(µ+σ) + 0.5
) −µ

1−σ−1 ( (−µ+σ−1)(σ−µ)
(µ+σ−1)(µ+σ) − 1

)
(1 − σ)den

.
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ghhh∣∣( 1
2 ,φ

0
b

)
=

−3µ
(

−µ
1−σ − 1

)[
1 − (−µ+σ−1)(σ−µ)

(µ+σ−1)(µ+σ)

]2 [ 0.5(−µ+σ−1)(σ−µ)
(µ+σ−1)(µ+σ) + 0.5

] −µ
1−σ−2

[num]

(1 − σ)
[

0.5σ(−µ+σ−1)(σ−µ)2
(µ+σ−1)(µ+σ) + 0.25

(
(−µ+σ−1)2(σ−µ)2(σ2−µ2)

(µ+σ−1)2(µ+σ)2 + (σ − µ)2
)] −

3
[

4σ(−µ+σ−1)(σ−µ)2
(µ+σ−1)(µ+σ) − 2(−µ+σ−1)2(σ−µ)2(σ2−µ2)

(µ+σ−1)2(µ+σ)2 − 2(σ − µ)2
]

[num][
0.5σ(−µ+σ−1)(σ−µ)2

(µ+σ−1)(µ+σ) + 0.25
(

(−µ+σ−1)2(σ−µ)2(σ2−µ2)
(µ+σ−1)2(µ+σ)2 + (σ − µ)2

)]2 [ 0.5(−µ+σ−1)(σ−µ)
(µ+σ−1)(µ+σ) + 0.5

]µ/(1−σ)
+

3µ
(1 − σ) [den]2

[
4σ(−µ + σ − 1)(σ − µ)2

(µ + σ − 1)(µ + σ)
−

2(−µ + σ − 1)2(σ − µ)2(σ2 − µ2)
(µ + σ − 1)2(µ + σ)2

− 2(σ − µ)2
][

1 −
(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

]
×[

0.5(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

+ 0.5
] −µ

1−σ−1 [ 0.5σ(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

+ 0.5
(

0.5(σ − µ) −
(0.5(σ − µ) − σ)(−µ + σ − 1)2(σ − µ)2

(µ + σ − 1)2(µ + σ)2

)]
+

−µ
(

−µ
1−σ − 2

)(
−µ

1−σ − 1
)

(1 − σ) [den]

[
1 −

(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

]3 [ 0.5(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

+ 0.5
] −µ

1−σ−3
×[

0.5σ(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

+ 0.5
(

0.5(σ − µ) −
(0.5(σ − µ) − σ)(−µ + σ − 1)2(σ − µ)2

(µ + σ − 1)2(µ + σ)2

)]
+

µ
(

−µ
1−σ − 2

)(
−µ

1−σ − 1
)

(1 − σ) [den]

[
0.5(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

] −µ
1−σ−3

×[
(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

− 1
]3 [ 0.5σ(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

(
(−µ + σ − 1)2(σ − µ)2(µ + 0.5(σ − µ))

(µ + σ − 1)2(µ + σ)2
+ 0.5(σ − µ)

)]
+

−3
(1 − σ) [den]

[
4σ(−µ + σ − 1)(σ − µ)2

(µ + σ − 1)(µ + σ)
−

2(−µ + σ − 1)2(σ − µ)2(σ2 − µ2)
(µ + σ − 1)2(µ + σ)2

− 2(σ − µ)2
][

0.5(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

+ 0.5
] −µ

1−σ−1
×[

(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

− 1
][

0.5σ(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

+ 0.5
(

(−µ + σ − 1)2(σ − µ)2(µ + 0.5(σ − µ))
(µ + σ − 1)2(µ + σ)2

+ 0.5(σ − µ)
)]

+

3

[den]2
[

0.5(−µ+σ−1)(σ−µ)
(µ+σ−1)(µ+σ) + 0.5

] µ
1−σ

[
4σ(−µ + σ − 1)(σ − µ)2

(µ + σ − 1)(µ + σ)
−

2(−µ + σ − 1)2(σ − µ)2(σ2 − µ2)
(µ + σ − 1)2(µ + σ)2

− 2(σ − µ)2
]

×

[
−σ(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+

(−µ + σ − 1)2(σ − µ)2(µ + 0.5(σ − µ))
(µ + σ − 1)2(µ + σ)2

+ 0.5(σ − µ)
]

+

3µ
(

−µ
1−σ − 1

)
(1 − σ) [den]

[
0.5(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

] −µ
1−σ−2 [ (−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
− 1
]2

×[
−σ(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+

(−µ + σ − 1)2(σ − µ)2(µ + 0.5(σ − µ))
(µ + σ − 1)2(µ + σ)2

+ 0.5(σ − µ)
]
.
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gφh∣∣( 1
2 ,φ

0
b

)
=

−
[

2(−µ+σ−1)(σ−µ)(µ+0.5(σ−µ))
(µ+σ−1)(µ+σ) − σ

]
[den]

[
0.5(−µ+σ−1)(σ−µ)

(µ+σ−1)(µ+σ) + 0.5
] µ

1−σ
+

2(0.5(σ−µ)−σ)(−µ+σ−1)(σ−µ)
(µ+σ−1)(µ+σ) + σ

[den]
[

0.5(−µ+σ−1)(σ−µ)
(µ+σ−1)(µ+σ) + 0.5

] µ
1−σ

+

−µ
[

1 − (−µ+σ−1)(σ−µ)
(µ+σ−1)(µ+σ)

] [
0.5(−µ+σ−1)(σ−µ)

(µ+σ−1)(µ+σ) + 0.5
] −µ

1−σ−1 [
0.5σ − (0.5(σ−µ)−σ)(−µ+σ−1)(σ−µ)

(µ+σ−1)(µ+σ)

]
(1 − σ) [den]

+

−0.5µ [num]
(1 − σ) [den]

[
0.5(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

] −µ
1−σ−1

+

−
[

0.5(−µ+σ−1)(σ−µ)(σ2−µ2)
(µ+σ−1)(µ+σ) + 0.5σ(σ − µ)

]
[num]

[den]2
[

0.5(−µ+σ−1)(σ−µ)
(µ+σ−1)(µ+σ) + 0.5

] µ
1−σ

+

µ

(1 − σ) [den]

[
0.5(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

] −µ
1−σ−1

×[
0.5σ(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

(
0.5(σ − µ) −

(0.5(σ − µ) − σ)(−µ + σ − 1)2(σ − µ)2

(µ + σ − 1)2(µ + σ)2

)]
+

µ

(1 − σ) [den]2

[
0.5(−µ + σ − 1)(σ − µ)(σ2 − µ2)

(µ + σ − 1)(µ + σ)
+ 0.5σ(σ − µ)

][
1 −

(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

]
×[

0.5(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

+ 0.5
] −µ

1−σ−1 [ 0.5σ(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

+ 0.5
(

0.5(σ − µ) −
(0.5(σ − µ) − σ)(−µ + σ − 1)2(σ − µ)2

(µ + σ − 1)2(µ + σ)2

)]
+

−0.5µ
(

−µ
1−σ − 1

)
(1 − σ) [den]

[
1 −

(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

][
0.5(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

] −µ
1−σ−2

×[
0.5σ(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

(
0.5(σ − µ) −

(0.5(σ − µ) − σ)(−µ + σ − 1)2(σ − µ)2

(µ + σ − 1)2(µ + σ)2

)]
+

µ

(1 − σ) [den]

[
0.5(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

] −µ
1−σ−1

×[
0.5σ(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

(
(−µ + σ − 1)2(σ − µ)2(µ + 0.5(σ − µ))

(µ + σ − 1)2(µ + σ)2
+ 0.5(σ − µ)

)]
+

−µ
(1 − σ) [den]2

[
0.5(−µ + σ − 1)(σ − µ)(σ2 − µ2)

(µ + σ − 1)(µ + σ)
+ 0.5σ(σ − µ)

][
0.5(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

] −µ
1−σ−1

×[
(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

− 1
][

0.5σ(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

+ 0.5
(

(−µ + σ − 1)2(σ − µ)2(µ + 0.5(σ − µ))
(µ + σ − 1)2(µ + σ)2

+ 0.5(σ − µ)
)]

+

0.5µ
(

−µ
1−σ − 1

)
(1 − σ) [den]

[
0.5(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

] −µ
1−σ−2 [ (−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
− 1
]

×[
0.5σ(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

(
(−µ + σ − 1)2(σ − µ)2(µ + 0.5(σ − µ))

(µ + σ − 1)2(µ + σ)2
+ 0.5(σ − µ)

)]
+

0.5µ
[

0.5(−µ+σ−1)(σ−µ)
(µ+σ−1)(µ+σ) + 0.5

] −µ
1−σ−1

[
−σ(−µ+σ−1)(σ−µ)

(µ+σ−1)(µ+σ) + (−µ+σ−1)2(σ−µ)2(µ+0.5(σ−µ))
(µ+σ−1)2(µ+σ)2 + 0.5(σ − µ)

]
(1 − σ) [den]

+

[
0.5(−µ+σ−1)(σ−µ)(σ2−µ2)

(µ+σ−1)(µ+σ) + 0.5σ(σ − µ)
]

[den]2
[

0.5(−µ+σ−1)(σ−µ)
(µ+σ−1)(µ+σ) + 0.5

] µ
1−σ

×

[
−σ(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+

(−µ + σ − 1)2(σ − µ)2(µ + 0.5(σ − µ))
(µ + σ − 1)2(µ + σ)2

+ 0.5(σ − µ)
]

+

µ
[

(−µ+σ−1)(σ−µ)(µ+0.5(σ−µ))
(µ+σ−1)(µ+σ) + 0.5σ

] [
0.5(−µ+σ−1)(σ−µ)

(µ+σ−1)(µ+σ) + 0.5
] −µ

1−σ−1 [ (−µ+σ−1)(σ−µ)
(µ+σ−1)(µ+σ) − 1

]
(1 − σ) [den]

.
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Gγ∣∣( 1
2 ,φ

0
b
, 1

2 ,0)
=

0.5σ(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

+ 0.5
[

0.5(σ − µ) −
(0.5(σ − µ) − σ)(−µ + σ − 1)2(σ − µ)2

(µ + σ − 1)2(µ + σ)2

]
[den]

[
0.5(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

] µ
1−σ

.

Gγh∣∣( 1
2 ,φ

0
b
, 1

2 ,0)
=

σ(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

+
(0.5(σ − µ) − σ)(−µ + σ − 1)2(σ − µ)2

(µ + σ − 1)2(µ + σ)2
− 0.5(σ − µ)

[den]
[

0.5(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

+ 0.5
] µ

1−σ
−

µ

(1 − σ) [den]

[
1 −

(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

][
0.5(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

] −µ
1−σ−1

×[
0.5σ(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

(
0.5(σ − µ) −

(0.5(σ − µ) − σ)(−µ + σ − 1)2(σ − µ)2

(µ + σ − 1)2(µ + σ)2

)]
.

Gγφ∣∣( 1
2 ,φ

0
b
, 1

2 ,0)
=

0.5σ −
(0.5(σ − µ) − σ)(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)

[den]
[

0.5(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

+ 0.5
] µ

1−σ
−

0.5µ
(1 − σ) [den]

[
0.5(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

] −µ
1−σ−1

×[
0.5σ(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

(
0.5(σ − µ) −

(0.5(σ − µ) − σ)(−µ + σ − 1)2(σ − µ)2

(µ + σ − 1)2(µ + σ)2

)]
+

−
[

0.5(−µ + σ − 1)(σ − µ)(σ2 − µ2)
(µ + σ − 1)(µ + σ)

+ 0.5σ(σ − µ)
]

[den]2
[

0.5(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

+ 0.5
] µ

1−σ
×

[
0.5σ(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

(
0.5(σ − µ) −

(0.5(σ − µ) − σ)(−µ + σ − 1)2(σ − µ)2

(µ + σ − 1)2(µ + σ)2

)]
.
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Gγhh∣∣( 1
2 ,φ

0
b
, 1

2 ,0)
=

−2µ [num]
[

1 −
(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

][
0.5(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

] −µ
1−σ−1

(1 − σ) [den]
−

µ
(

−µ
1−σ − 1

)
(1 − σ) [den]

[
1 −

(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

]2 [ 0.5(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

+ 0.5
] −µ

1−σ−2
×[

0.5σ(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

+ 0.5
(

0.5(σ − µ) −
(0.5(σ − µ) − σ)(−µ + σ − 1)2(σ − µ)2

(µ + σ − 1)2(µ + σ)2

)]
+

−
[

4σ(−µ+σ−1)(σ−µ)2
(µ+σ−1)(µ+σ) − 2(−µ+σ−1)2(σ−µ)2(σ2−µ2)

(µ+σ−1)2(µ+σ)2 − 2(σ − µ)2
]

[den]2
[

0.5(−µ+σ−1)(σ−µ)
(µ+σ−1)(µ+σ) + 0.5

] µ
1−σ

×

[
0.5σ(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

(
0.5(σ − µ) −

(0.5(σ − µ) − σ)(−µ + σ − 1)2(σ − µ)2

(µ + σ − 1)2(µ + σ)2

)]
.

Gk∣∣( 1
2 ,φ

0
b
, 1

2 ,0)
=

−
[

(−u + s − 1)2(s − u)3

(u + s − 1)2(u + s)2
+ u − s

]
[den]

[
0.5(−u + s − 1)(s − u)

(u + s − 1)(u + s)
+ 0.5

] u

1 − s

.

Gkh∣∣( 1
2 ,φ

0
b
, 1

2 ,0)
=

−
(−µ + σ − 1)2(σ − µ)3

(µ + σ − 1)2(µ + σ)2
+ µ − σ

[den]
[

0.5(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

+ 0.5
] µ

1−σ
+

−
[

−(−µ + σ − 1)2(σ − µ)3

(µ + σ − 1)2(µ + σ)2
− µ + σ

]
[den]

[
0.5(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

] µ
1−σ

+

−0.5µ
(1 − σ) [den]

[
−(−µ + σ − 1)2(σ − µ)3

(µ + σ − 1)2(µ + σ)2
− µ + σ

][
1 −

(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

][
0.5(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

] −µ
1−σ−1

+

0.5µ
(1 − σ) [den]

[
(−µ + σ − 1)2(σ − µ)3

(µ + σ − 1)2(µ + σ)2
+ µ − σ

][
0.5(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

] −µ
1−σ−1 [ (−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
− 1
]

= 0.

Gkφ∣∣( 1
2 ,φ

0
b
, 1

2 ,0)
=

−2(−µ + σ − 1)(σ − µ)2

(µ + σ − 1)(µ + σ) [den]
[

0.5(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

+ 0.5
] µ

1−σ
+

[
0.5(−µ + σ − 1)(σ − µ)(σ2 − µ2)

(µ + σ − 1)(µ + σ)
+ 0.5σ(σ − µ)

][
(−µ + σ − 1)2(σ − µ)3

(µ + σ − 1)2(µ + σ)2
+ µ − σ

]
[den]2

[
0.5(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

] µ
1−σ

.
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Gkhh∣∣( 1
2 ,φ

0
b
, 1

2 ,0)
=

2µ
[

−(−µ + σ − 1)2(σ − µ)3

(µ + σ − 1)2(µ + σ)2
− µ + σ

][
1 −

(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

][
0.5(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

] −µ
1 − σ

−1

(1 − σ) [den]
+

[
(−µ + σ − 1)2(σ − µ)3

(µ + σ − 1)2(µ + σ)2
+ µ − σ

][
4σ(−µ + σ − 1)(σ − µ)2

(µ + σ − 1)(µ + σ)
−

2(−µ + σ − 1)2(σ − µ)2(σ2 − µ2)
(µ + σ − 1)2(µ + σ)2

− 2(σ − µ)2
]

[den]2
[

0.5(−µ + σ − 1)(σ − µ)
(µ + σ − 1)(µ + σ)

+ 0.5
] µ

1−σ
+

2µ
[

(−µ + σ − 1)2(σ − µ)3

(µ + σ − 1)2(µ + σ)2
+ µ − σ

][
0.5(−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
+ 0.5

] −µ
1−σ−1 [ (−µ + σ − 1)(σ − µ)

(µ + σ − 1)(µ + σ)
− 1
]

(1 − σ) [den]
.
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Appendix C

We prove Lemma 4.3 which we restate here for completeness:

The derivatives gφφ = 0 and gφhh = 0 at (h, φ, k, γ)=(1
2 , φ

0
b , 1

2 , 0).

Proof of Lemma 4.3:

gφφ∣∣( 1
2 ,φ

0
b

)
= −

0.5(0.5φ + 0.5)−µ/(1−σ)−1[0.5(0.5(σ − µ) − φ2(0.5(σ − µ) − σ)) + 0.5φσ]µ2

(1 − σ)[0.25(φ2(σ2 − µ2) + (σ − µ)2) + 0.5φσ(σ − µ)]
+

0.5(0.5φ + 0.5)−µ/(1−σ)−1[0.5(φ2(µ + 0.5(σ − µ)) + 0.5(σ − µ)) + 0.5φσ]µ2

(1 − σ)[0.25(φ2(σ2 − µ2) + (σ − µ)2) + 0.5φσ(σ − µ)]
−

µ[φ(µ + 0.5(σ − µ)) + 0.5σ]

(0.5φ + 0.5)µ/(1−σ)[0.25(φ2(σ2 − µ2) + (σ − µ)2) + 0.5φσ(σ − µ)]
+

µ[0.5σ − φ(0.5(σ − µ) − σ)]

(0.5φ + 0.5)µ/(1−σ)[0.25(φ2(σ2 − µ2) + (σ − µ)2) + 0.5φσ(σ − µ)]
+

µ[0.5(φ2(µ + 0.5(σ − µ)) + 0.5(σ − µ)) + 0.5φσ][0.5φ(σ2 − µ2) + 0.5σ(σ − µ)]

(0.5φ + 0.5)µ/(1−σ)[0.25(φ2(σ2 − µ2) + (σ − µ)2) + 0.5φσ(σ − µ)]2
−

µ[0.5(0.5(σ − µ) − φ2(0.5(σ − µ) − σ)) + 0.5φσ][0.5φ(σ2 − µ2) + 0.5σ(σ − µ)]

(0.5φ + 0.5)µ/(1−σ)[0.25(φ2(σ2 − µ2) + (σ − µ)2) + 0.5φσ(σ − µ)]2

= 0.5(0.5φ + 0.5)
−µ

1−σ−1
µ

2[0.5(φ2(µ + 0.5(σ − µ)) + 0.5(σ − µ)) + 0.5σφ−

0.5(0.5(σ − µ) − φ
2(0.5(σ − µ) − σ)) − 0.5φσ]−

µ(φ(µ + 0.5(σ − µ)) + 0.5σ) + (0.5σ − φ(0.5(σ − µ) − σ))µ−

µ(0.5φ(σ2 − µ
2) + 0.5σ(σ − µ))[0.5(φ2(µ + 0.5(σ − µ)) + 0.5(σ − µ)) + 0.5σφ−

0.5(0.5(σ − µ) − φ
2(0.5(σ − µ) − σ)) + 0.5σφ]

= 0

Proving that gφhh = 0, we have that:

gφ(1
2 + x) = −gφ(1

2 − x), (6.3)
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where,

gφ(1
2 + x) = ∂

∂φ

[
w0

1
P1

(1
2 + x,

1
2 − x

)]
− ∂

∂φ

[
w0

2
P2

(1
2 + x,

1
2 − x

)]

= ∂

∂φ

[
w0

2
P2

(1
2 − x,

1
2 + x

)]
− ∂

∂φ

[
w0

1
P1

(1
2 − x,

1
2 + x

)]

=−
{
∂

∂φ

[
w0

1
P1

(1
2 − x,

1
2 + x

)]
− ∂

∂φ

[
w0

2
P2

(1
2 − x,

1
2 + x

)]}

=− gφ(1
2 − x), by (6.3).

If ∂
∂x
gφ(1

2 + x) = ∂
∂u
gφ(u),

and ∂
∂x
gφ(1

2 − x) = ∂
∂u
gφ(u)(−1),

then ∂
∂x
gφ(1

2 + x) = − ∂
∂x
gφ(1

2 − x) ⇔ ∂
∂u
gφ(u) = −

[
− ∂
∂u
gφ(u)

]
.

Differentiating twice, we have that:

if ∂2

∂x2 gφ(1
2 + x) = ∂2

∂u2 gφ(u),

and ∂2

∂x2 gφ(1
2 − x) = ∂2

∂u2 gφ(u)(−1)(−1) = ∂2

∂u2 gφ(u),

then by (6.3): ∂2

∂x2 gφ(1
2 + x) = − ∂2

∂x2 gφ(1
2 − x) ⇔ ∂2

∂u2 gφ(u) = 0.
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