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Resumo

Computação grid é uma tecnologia que permite o compartilhamento de recursos que

estão geograficamente dispersos e utilizam redes heterogêneas em ambientes de larga

escala. Uma infraestrutura de grid provê serviços e funcionalidades tais como controle

de instrumentos cient́ıficos, recursos, virtualização, auto-adaptação e gerenciamento

uniforme. O compartilhamento de recursos em grid requer algum componente de

software capaz de distribuir tarefas para as filas dos gerenciadores remotos de recursos.

Apesar de existirem vários trabalhos na literatura que propõem diferentes estratégias

de escalonamento e distribuição de tarefas no grid, ainda há muito trabalho a ser

feito, especialmente quando se lida com aplicações que precisam analisar e processar

dados que estão localizados em máquinas remotas. Normalmente, nestas aplicações,

o sistema traz dados de diferentes fontes, processa-os e exibe os resultados. Em

ambientes de grid, esta sequência de operações, com estes dados remotos, pode trazer

vários problemas: (1) os dados solicitados pela aplicação podem não caber no espaço

de armazenamento local; (2) o tempo de processamento local pode ser muito menor

do que o tempo de transferência dos dados; (3) os resultados de processamento podem

não caber no espaço de armazenamento local; (4) a máquina selecionada para executar

a tarefa pode não estar a responder; e (5) o tempo de transferência pode ser proibitivo

devido ao tamanho dos dados. Além destes problemas, que são intŕınsecos a este tipo

de aplicação, em ambientes de grid, a taxa de falhas de tarefas pode ser muito alta,

tornando o desempenho muito ineficiente. Adicionado a este problema está o overhead

imposto pelo próprio software de controle do grid, o grid middleware.

Neste trabalho estudamos o desempenho de transferências de ficheiros em ambientes

de grid e propomos uma metodologia para seleção dos melhores recursos de acordo com

o volume de dados da aplicação, utilizando os resultados do estudo de desempenho.

Classificamos os recursos de acordo com seu comportamento dependendo dos tamanhos

de dados a serem transferidos. Resultados mostram que a metodologia adotada pode

reduzir a taxa de falhas deste tipo de aplicação em pelo menos 30%.
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Abstract

Grid computing is a technology that enables geographically distributed resource shar-

ing, wide-area communication and collaboration in large scale environments to pro-

vide powerful services/functionalities such as online control of scientific instruments,

resource pooling, virtualization, self-adaptive systems, and unified management. Shar-

ing resources in grid requires some software component capable of distributing jobs to

the many local resource manager queues available. While there are several works in

the literature that propose and experiment with different grid scheduling strategies,

there is still much work to be done, specially when dealing with applications that

need to analyze and process remote data. Usually, in these applications, the system

brings data from different data sources, process them and display results. In grid

environments, this sequence of operations on remote data can bring several problems:

(1) the data required by the application may not fit in the local storage; (2) the time

to process the data locally may be lower than the transfer time; (3) results may not

fit in the local storage; (4) the selected machine where the data is located may be

down; and (5) the transfer time may be prohibitive. Besides these problems that are

intrinsic to these kinds of applications, in grid environments, the job failure rate is

considerably high, making it difficult to run applications efficiently. Added to this is

the overhead imposed by the grid grid middleware.

In this work, we study the performance of file transfers in a grid environment

and propose a methodology for scheduling best machines according to the volume of

data needed by the application, using results of the performance study. We classify

machines according to their behavior when executing jobs that need files of different

sizes. The results of the study show that if our methodology is adopted we can have

at least 30% of reduction on the failure rate of the applications.
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Chapter 1

Introduction

Grid computing is a technology that enables geographically distributed resource shar-

ing, wide-area communication and collaboration in large scale environments to pro-

vide powerful services/functionalities such as online control of scientific instruments,

resource pooling, virtualisation, self-adaptive systems, and unified management. In

a grid environment, the resources may be supercomputers, software, storage systems,

data sources or special services that belong to different institutions or departments of

a single organization. Similarly different organizations may own the resources of the

grid and they may have different administrative policies to access their resources.

The grid computing provides a common way of defining the policies of the resources

that can be shared and used globally by the users across a virtual organization in

the grid infrastructure. The users have direct access to computers, software, storage

systems, data sources, special service and other resources transparently without having

information about the location, operating system, administrative stuff and other

details. This sharing is highly controlled by the resource management system, with

resource providers and consumers defining clearly and carefully what is shared, who

is allowed to share, and the conditions under which the sharing occurs. This concern

for resource sharing makes a grid computing environment different from a traditional

distributed computing environment as this does not deal with resource sharing and

management across organizations.

There are many grid infrastructures available worldwide but large-scale production

Grid infrastructures such as EGEE in Europe, the Open Science Grid (OSG) in

the North America and NAREGI in Japan are providing their services and support
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2 CHAPTER 1. INTRODUCTION

collaboration to many scientific and industrial applications from an increasing number

of domains such as Biomedicine, Earth Sciences, Financial Simulations, Astrophysics,

Fusion, Life Sciences, Multimedia, Material Sciences and High Energy Physics, among

others. They provide the facility of sharing of computational and data resources within

and between many different Virtual Organizations such as ample, eela, biomed, cms,

atlas and alice, related to several different common interests.

In grid computing, a virtual organization (VO) is one of the fundamental concepts.

A virtual organization refers to a particular organization or group of people with

common scientific interests and requirements, who define resourse-sharing policies,

work collaboratively with other members and/or share resources among themselves

regardless of geographical location. These virtual organizations can share their re-

sources collectively as a larger grid.

Sharing starts with the data in the form of files or databases but it is not limited

to the files only. The other resources can also be shared such as software, licenses,

services, sensors, networks and so on. In grid computing, the details are abstracted

and resources are virtualized. The participants and users of the grid may have the

membership of many real and virtual organizations. In any case a user has to follow

the rules of the VO to gain its membership.

Sharing resources in grid requires a software component capable of distributing jobs

to the many local resource manager queues available. While there are several works in

the literature that propose and experiment with different grid scheduling strategies,

there is still much work to be done, specially when dealing with applications that need

to analyze and process remote data. Geospatial applications are an example. Usually,

in these applications, the system brings data from different data sources, process them

and display results. In grid environments, this sequence of operations on remote data

can bring several problems:

• The data required by the application may not fit in the local storage;

• The time to process the data locally may be lower than the transfer time;

• Results may not fit in the local storage;

• The selected machine where the data is located may be down;

• The transfer time may be prohibitive.
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Besides these problems that are intrinsic to these kinds of applications, particularly,

in grid environments, the job failure rate is considerably high, making it difficult to run

applications efficiently. Added to this is the overhead imposed by the grid middleware.

In this work, we present the performance of file transfers in a grid environment

and propose a methodology for scheduling best machines according to the volume of

data needed by the application, using results of the performance study. We classify

machines according to their behavior when executing jobs that need files of different

sizes. The results of the study show that if our methodology is adopted we can have

at least 30% of reduction on the failure rate of the applications.

The remaining of this text is organized as follows. Chapter 2 gives a brief introduc-

tion to grid concepts and describes gLite, the middleware used in this work. Chapter 3

discusses about sources of overheads and the impact of failures in grid performance.

Chapter 4 presents our methodology to select best machines according to data transfer

sizes. Finally, we conclude this work with a discussion and final remarks.
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Chapter 2

Grid Infrastructures

Grid computing is a technology that enables the sharing of computational resources

(computers, software, data, sophisticated scientific instruments, etc) belonging to

different institutions or departments of a single organization.

In a computing system, resources are subject to the use policies of the administrative

domain to which they belong. These policies, in turn, define how each resource is to

be used by the registered users. Once logged in, different users will be granted access

to different files and will have different rights regarding the operations that can be

performed over these files. In addition, the manager of the administrative domain may

have defined which network connections are allowed in and out each of the computers

in a local area network. These are just a few examples of the many use policies that

need to be defined for the proper functioning of a computer system [6].

When we aggregate resources belonging to distinct administrative domains, each

with its own local use policies and set of users, setting up global policies to coordinate

the use of these resources by all registered users is not an easy task. This is one

of the main issues that the grid computing technology solves. It provides a common

ground for the specification of the global use policies for the resources that the different

institutions want to share in the grid infrastructure. It provides a way to uniquely

identify and authenticate users across a Virtual Organization (VO), a set of people with

common interests that define policies and share resources with each other. Finally, it

offers a multitude of services that facilitate the access and use of the resources that

are shared.

The Open Grid Forum (OGF), an organisation that is responsible for establishing

5
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standards for grid computing, defined the Open Grid Service Architecture (OGSA)

which serves as a basis for the implementation of the grid systems, most known as

grid “middleware”.

A grid middleware is a software that “glues” together resources, users and use

policies of different administrative domains providing the vision of a single integrated

system. The middleware is constructed from a number of components which usually

make up a toolkit. This toolkit provides client, server and development components

for the management and use of the hardware, software, data and information that is

shared, as well as for the proper execution of applications over these resources.

There are several grid infrastructures available worldwide. These can be part of

national or regional grid initiatives. Currently, there are two very large infrastructures,

one in the European block - the EGI (European Grid Infrastructure) and another one

in North America - the OSG (Open Science Grid). They support several Virtual Or-

ganizations related to several different common interests. For example, biomed, alice,

cms, atlas, eela, among many others. The EGI currently supports two middleware:

gLite (http://glite.web.cern.ch/glite/) and OurGrid (http://www.ourgrid.org/). In

this work, we will concentrate on the gLite middleware.

2.1 “Gridification”

Just like “webifying” makes an application ready to be deployed and execute on the

internet, one may need to “gridify” their applications to run on a grid [36]. This process

may comprise the creation of additional shell scripts to better exploit the distributed

grid resources as well as to change the original source codes in order to include APIs

to directly interact with grid services. In some cases, it is also necessary to stop

using services and libraries that are not supported by the standard distribution of the

adopted grid middleware. For example, distributed applications that use interprocess

communication may need to be rewritten to make use of communication via grid files.

2.2 The gLite middleware

The gLite grid middleware is developed by the Enabling Grids for E-ScienceE (EGEE)

collective efforts of different academic and research institutes as part of the Enabling
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Grids for E-scienceE (EGEE) project. The gLite middleware combines various com-

ponents developed in various related projects, particularly in Globus, Condor, LCG

extended by EGEE developed services [28]. The gLite middleware facilitates the

users with high level services for scheduling and running computational jobs, for

accessing, moving and sharing big data with collaborators around the world and for

obtaining information on the grid infrastructure and the grid applications [27]. The

glite middleware runs over the Scientific Linux platform [1] and it is mainly written

in C + +.

Grid services based on the Open Grid Service Architecture (OGSA) specification,

which follows the Service Oriented Architecture (SOA) involving a collection of services

capable of communicating with one another. A service is known as a grid service if it is

associated with a grid resource. In other words, the grid services are the web services

with improved characteristics and services. The grid services control and manage the

resource and its state in a grid environment and are accessible by more than one grid

resource or vice versa.

In order to achieve the goals of the end user, the services provided by gLite

middleware are expected to work in a concerted way. The gLite service can be

grouped into five services groups: Access Services, Security Services, Information and

Monitoring Services, Data Services and Job Management Services.

Security Services: The security services include Authentication, Authorization,

and Auditing operations which enable the identification of the users, system and

services and handle secure and confidential access to remote resources like worker

or storage nodes. It also provides protection and monitoring to avoid exploitation

of resources by malicious users or unauthorized third parties. In order to prevent

users from making use of resources for which they do not have access a User-level

authentication is required.

A user needs to join a Virtual Organization (VO) to be authenticated and au-

thorized to using the grid resources. The Grid Security Infrastructure is based on

hierarchic Public Key Infrastructure (PKI) and X.509 certificates. For the authenti-

cation, a user must have a X.509 certificate issued by universally trusted Certificate

Authorities (CAs) and in order to access a specific grid resource, an authorization of

a user is also required, which relies on the Virtual Organisation Membership Service

(VOMS). The VOMS is the way gLite improves the management of authentication

and authorization to the Grid resources. It allows to their own members to define

different access rights to VOs resources.
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Information and Monitoring Services: The information and monitoring ser-

vices provide a method to access and publish information concerning the grid resources

and their status. This information is important for the whole grid as it is used to dis-

cover the grid resources. Moreover, Job Monitoring Service and Network Performance

Monitoring services can be built on top.

Job Management Services: The main job management services are Computing

Element (CE), Accounting, Workload Management System (WMS), Job Provenance

(JP) and Package Manager (PM). The Workload Management System (WMS) accepts

user jobs, schedules them on available CEs according to the user preferences and

several policies, keeps track of the jobs and retrieves their output.

The CE provides the virtualization of a computational resource (e.g., cluster, su-

percomputers or individual workstations) and it also provides information about the

underlying resources. It is used as common interface to submit and manage jobs on

resources. The Accounting service takes into account not only computing, but also

storage and network resources.

The purpose of the Job Provenance (JP) service is to provide persistent information

on jobs executed on the Grid infrastructure for later observation, data-mining oper-

ations, and possible reruns. The Package Manager (PM) service allows the dynamic

deployment of application software.

Data Services: Storage Element, File & Replica Catalog Services and Data

Management are three main services that are related to data and file access in grid

environment. The Storage Element (SE) provides the virtualization of a storage

resource, the catalog services keep track of the data location as well as relevant

metadata (e.g. checksums and filesizes) and the data movement services allow for

efficient managed data transfers between SEs.

The detail of the main components or services implemented by the gLite middleware

is given in the next sections.

2.3 Job Description Language

When a user submits a job to a grid, it is described in a specific language, the gLite Job

Description Language (JDL) and the job description file contains the characteristics

and requirements of the job. The JDL is based on the classified advertisement
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(ClassAds) language used to describe jobs and aggregates of jobs with arbitrary

dependency relations [20]. It is also used to describe resources. It uses a semi-

structured data model, so there is no specific schema required for the resource or

job description, which allows it to work naturally in a heterogeneous environment.

Jobs descriptions in JDL format are text files with the syntax attributes = ex-

pression that include the command-line instruction to be executed on the computing

resources as well as various parameters for resource selection and other variables

related to the handling and execution of the job. A set of specific attributes are

defined in gLite JDL to specify Simple, MPI-based, batch or interactive, partitionable

jobs and Direct Acyclic Graphs (aggregates of jobs with dependencies) [20].

JDL can also be used to specify constraints that need to be satisfied for the selected

computing and storage resources. The data access requirements can also be specified

in the JDL file which are appropriate methods to define the constraints about the data

and its physical/logical location within the grid. The attributes are also used in the

JDL file to express the preferences for choosing among the suitable resources.

The JDL attributes are usually decomposed in the following groups.

• Job attributes: through which the job’s specific information and actions are

specified that have to be performed by the WMS to schedule the job.

• Data attributes: represent the job input data and storage element related

information. They help in selecting the resources from which the job has the

best access to data.

• Requirements and Rank: through this attribute, a user can specify the needs

and requirements of the job’s CE and preferences can also be specified in term

of resources.

2.4 Computing Element

In a grid environment, the computing element (CE) is the component that deals

Worker Nodes (WN) for the actual execution of a Grid job. It can represent a cluster

or other grid component on which computations take place. The main function of a

CE is job management. It provides the information about the underlying resource and

acts as generic interface to submit and manage jobs on the resource. The CE contains
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two logical parts, the gatekeeper(Grid Gate)/job manager, that enables access to the

CE and a collection of WNs, which are the nodes that execute the jobs. Jobs assigned

to the CE are distributed to the Worker Nodes via a Local Resource Management

System (LRMS), a very important component of each CE that schedules the jobs like

a normal batch system. OpenPB [46], PBSPRO [38], LSF [17], Condor [22], Torque

[33] are the supported LRMS types in gLite. The gatekeeper service provides the

job information to the CE via a HTTP request and the necessary user credentials

are also transmitted while a secure connection is established via the Grid Security

Infrastructure (GSI). The CE evaluates the given JDL file and matches the specified

job requirements to its available computing resources (for examples, to only select the

WN that has CPU characteristics described in the JDL file) and then assign the job

to its job controller.

2.5 Workload Management System (WMS)

The workload management system composed of a set of gLite components is respon-

sible for distributing and managing the jobs across available grid resources. The

WMS basically receives job submission requests from the user Interface (UI) servers,

finds the appropriate computing element for the job’s execution according to the job’s

requirements and preferences expressed in the job description [20]. Figure 2.1 depicts

the process that takes place when a job is submitted to the Grid. The individual

components are described below in detail.

The selection of the resources for the job’s execution is the outcome of a match-

making process between the job submission requests and available resources. The

matchmaking service is provided by the Matchmaker (MM) or Resource Broker (RB)

components of the WMS service to select the resources that best match the job’s

requirements. The information about the resources is held by the Information Super

Market (ISM) repository that is updated periodically.

Each CE contacts periodically the corresponding Berkeley Database Information

Index (BDII), which is an information system for grid computing infrastructures and

the BDII informs periodically the ISM. Another main component of the WMS is the

Task Queue (TQ) that basically keeps the job if the required suitable resources are not

immediately available that match the job’s requirements. Moreover, the WMS uses

the Logging and Bookkeeping service to track the job’s status and after job completion
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Figure 2.1: gLite Job Workflow [20]

the job it retrieves the job’s results. It may require to communicate with the Storage

Element (SE) if a grid file is needed by the user’s job. After submitting a job, users

can cancel the job, track job status or retrieve the output sandbox if the job is already

successfully completed. In the WMS, the authentication and authorization occurs in

the same way as with other Grid components. The proxy credentials are used for the

user authentication. In addition to the initial proxy credential submission together

with the job, the WMS also provides a Proxy Renewal Service that detects expiring

certificate and if possible requests credential renewal from MyProxy Service.

Although the WMS performs an important role in actual execution, it does not give

much support for job handling. Users have to manually keep track of jobIDs. They

have to manually check the status of the job. If the job is done, they have to manually

request for transferring the results back to their personal machine. This helps when

the number of jobs are limited, but users may have hundreds or thousands of running

jobs on the grid. In that case a more sophisticated job handling is required.

Jobs in gLite can be in one of the following states, as shown in Figure 2.2.

• Pending: Job is submitted from User Interface (UI) to the grid.
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• Submitted: The one or more files specified in the job description are initially

copied to the WMS when the user submits a job from the UI to the gLite WMS.

The status of the job is submitted and managed by the Logging and bookkeeping

(L&B) service. Afterwards the specified files are copied to the Worker Node

(WN) for execution.

• Waiting: The WMS finds the best required available CE for the job to execute.

It takes information from the Information Supermarket (ISM) about the com-

putational and storage resources and contacts with the File Catalog to access

the location of any required input file. An event is logged in the (L&B) and the

status of the job is Waiting.

• Ready: The WMS assigns the job to the selected CE (but not yet transferred

to CE) along with the wrapper script and other parameters. The status of the

job becomes Ready in the (L&B) service.

• Scheduled: The CE receives the job and sends the job to the Local Resource

management System (LRMS). The job waits in the Computing element’s queue

for execution and the status of the job is Scheduled in the (L&B).

• Running: The Input Sandbox files are copied from the gLite WMS to the

available Worker Node where the job is executed. The LRMS manages the

execution of the job on the Local Working Nodes. An event is logged in the

(L&B) and the status of the job is Running.

• Done: If the job is successfully completed without any error, the results are

transferred back to the gLite WMS machine. The Status is updated to Done in

the (L&B).

• Aborted: If the job takes longer to finish or the proxy certificate is expired, it

is aborted by the WMS. An event is logged in the (L&B) and the status of the

job is Aborted.

• Canceled: After Submitting the job the user can cancel it and the status of the

job in the (L&B) is Cancelled.

• Cleared: When the user retrieves the output files of the job to the UI, an event

is logged in the (L&B) and the status of the job is Cleared.

The “V” numbers in the Figure 2.2 show different events generated by the other

components of gLite middleware. The v1=userinterface regjob Epoch is an event
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that occurs when a job is submitted from the UI to the Grid. The network server of the

gLite middleware accepts the job and generates an event v2=networkserver acce-

pted Epoch. The v3=workloadmanager match Epoch event occurs during the

match-making process between the job and the available resource. The v4=jobcontr-

oller transfer Epoch event is generated when a job is submitted to the selected CE.

When the selected CE accepts the job and sends it to the local Resource Management

System (LRMS) for execution an event v5=logmonitor accepted Epoch occurs.

The events v6=lrms running Epoch and v7=logmonitor running Epoch are

the events that occur when a user’s files are copied from the WMS to the worker

node (WN) where the job executes. When a job is completed without errors and the

job’s output files are transferred back to the WMS, an event v8=lrms done Epoch

occurs. An event v9=logmonitor done Epoch is generated when a user retrieves

his/her the output files to the UI.

2.6 Worker Node

In the gLite execution flow, Worker Nodes are the final elements, attached to a CE’s

batch system and receive jobs for execution. They are a set of cores managed by the

CE’s resource manager. A WN-local Unique account ID that is taken out of a local

pool of account, is assigned (associated) to each job to create a Sandbox environment

for the execution of the job. When the job is completed, the sandbox must be cleared

and the job results need to be stored or transferred back to the WMS. The Worker

Node(s) selected by the CE computes the job till its completion and returns the results

to the CE.

2.7 Logging and Bookkeeping

The Logging and bookkeeping service (L&B) is used by the WMS internally to

collect/store all the information related to the job life cycle and provides an overall

view of the job status to the user. This service collects events that are passed from

other components such as CE and WMS, in a non-blocking asynchronous way with

a robust delivery mechanism. Its operation is transparent to the user without any

interaction. It implements a database schema that contains information about the job

description (the JDL file), the time-stamps related to the various states of the jobs in
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Figure 2.2: Jobs Status[14]
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the system etc.

When a job is submitted, a jobID is assigned to the job and registered with L&B.

From then on, every event related to the job is tracked by L&B; its architecture is

job-centric. The L&B service can also collect the user information as well in the form

of arbitrary ”name = value” tags assigned to a job both from a running application

or independently.

The gLite user interface commands are used to provide the job status information

collected by the L&B. In addition to this simple querying system, a public interface

(L&B API, available in C, C++ and java or as a web-service interface) is given to any

individual Grid user who can pose simple or more complex queries for job information

or register for notifications.

When the events are transformed into job states, the user can synchronously query

for job information through the public interface (via HTTP or HTTPS). Moreover,

every processed event is matched with a list of registrations for notification by the

L&B. If a match is found, a notification for the corresponding status is created and

sent to the registered notification listener by the L&B.

The security concept that the L&B implement is common to all gLite components.

If users want to check the status information, they need to authenticate with their

respective proxy credentials that allow users to share their authorization and have

right to query the L&B for information about their jobs.

2.8 Storage Element (SE)

The Storage Element is a service that provides the virtualization of a storage resource

which can vary from simple disk servers to complex hierarchical tape storage systems.

This service allows a user or an application to store data for future retrieval. In SE

all the data must be considered read-only (except for an application and its owner)

and therefore can not be changed unless physically removed and replaced. There are

different data access protocols and interfaces that Storage elements support such as:

The GSIFTP (Grid Security Infrastructure File Transfer Protocol) is the protocol that

provides the functionalities of FTP, but with support for GSI. It is used for secure,

fast and efficient file transfers to/from storage elements.

RFIO was developed to access tape archiving systems such as CASTOR (CERN
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Advanced Storage manager) and it comes in both secure and insecure version. Another

protocol is gsidcap that is the GSI enabled version of the dcache native access protocol,

dcap, used for local and remote file access.

The Storage Resource Manager (SRM) has been designed to be a single interface to

manage the storage resources. It hides the complexity of the resources setup behind it

and provides capabilities like transparent file transfer from disk to tape for specified

lifetime, space reservation for new entries and so on.

Different storage elements in he Worldwide LHC Computing Grid (WLCG)/EGEE

offer different version of the SRM protocol and they may also have varying capabilities.

There are many types of SRM implementations in use. The Disk Pool Manager (DPM)

is used for relatively small SEs with disk-based storage only. A virtual file system hides

the complexity of the disk pool architecture and the secure RFIO protocol allows file

access from the WAN. Like in DPM, a virtual file system (namespace) supports the

transparently file transfers from disk to tape.

2.9 User Interface

In standard gLite environments, the User Interface is the access point to the gLite

grid. It is a piece of software that can be installed in any machine where users have

a personal account and where their user certificate is installed. From the UI, a user

can be authenticated and authorized to use the EGEE resources and can access the

functionalities offered by the Workload and Data management systems. It consists of

a set of Command Line Interface (CLI) tools to perform some basic Grid operations

and provides the information about application’s characteristics, the user performance

criteria and user’s constraints. Following are the functionalities provided by the UI:

• Listing of all the resources suitable to run a given job according to the job

requirements.

• Job submission for execution on a computing element.

• Cancel one or more submitted jobs.

• Retrieve the output files of one or more finished jobs.

• Retrieve the logging and bookkeeping information of the jobs.
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Here is the short introduction of basic commands of the gLite command line

interface. Before submitting the job, the user needs to have their proxy credentials.

myproxy-init is used to create and upload credentials that can be used for credential

renewal during the job. voms-proxy-init is executed to create the initial proxy

certificate including VOMS authorization extensions which is valid for 12 hours by

default and it is saved to a temporary directory with its private key to form the initial

proxy credentials. A JDL file together with the proxy credential is submitted to the

WMS using the command ”glite-wms-job-submit” and returns a WMS job identifier

(ID) for future reference, especially for status inquires. After submission, the user

can check the status of a submitted job with glite-wms-job-status. The user can

also check the list of events that were collected over the lifetime of a given job in the

Logging & Bookkeeping service by issuing the command glite-wms-job-logging-

info. While the job is completed, the user can retrieve its output files using the

glite-wms-job-output. The jobID is used as a parameter to identify one specific

job. glite-wms-glite-cancel command is used to cancel one or more submitted job

by the user.

2.10 Job Types

Besides just submitting a single job and waiting for it till its completion in order to get

the results, we can also submit many similar jobs with different parameters or several

different jobs at once which can be independent or dependent on other jobs output.

The JDL allows a number of description of different job types such as Simple job,

Direct Acyclic Graph, Collection, Partitionable, Parametric jobs and MPI jobs [20].
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Chapter 3

Performance Evaluation of Grid

Infrastructures

3.1 Sources of Overheads

Grid computing has the ability to provide coordinated resource sharing among different

multi-institutional virtual organizations. The sharing is not particularly file exchange

but rather direct access to computers, data, software and other resources [16]. Quality

of service is a fundamental issue in the Grid. In this chapter, we present a literature

review of performance of grid systems. Most work has been done to analyze the

grid performance in terms of makespan (total execution time to execute all jobs

belonging to an application). There are many applications that use the network to

transfer data, the requirement of geospatial data processing. When a grid node accepts

several requests, the overall execution performance can be significantly affected due

to the overhead introduced by the Grid middleware. In fact, there are several sources

of overhead associated to a grid infrastructure that can be divided into four main

categories such as middleware, data transfer, loss of parallelism, and activity related

overheads [39]. Figure 3.1 illustrates the hierarchy of total overheads that occur when

executing scientific workflows in dynamic grid environments and could be the reason

of performance losses.

• Overheads related to Middleware: The middleware overheads are introduced

by the middleware services to support the proper execution and completion of

19
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Figure 3.1: Grid workflow overhead classification[39]
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the workflow. From the point of view of the middleware, the various layers of

software impact performance as well as the choice of the next task or resource

to execute a given application. Machine and various levels of software failure

may also impact performance and communication bandwidth can become a

bottleneck.

• Overheads related to Applications: From the point of view of the application,

some of the factors that affect performance are related to the data representation

or file representation and the application programming model.

• Overheads related to Data Transfer: The data transfer overhead occurs due to

any kind of data transfer including input/output file staging between the local

computer and grid site, database access, third-party file transfer upon large data

dependencies, user input and unbalanced parallel data transfers (for example,

due to different data sizes or network bandwidth). These overheads include any

network traffic or interceptions since the wide area network is a shared resource

in the grid environment.

To manage connections, dealing with the Web Services protocols and parsing the

requests require a non negligible amount of computing resources [9]. Carrera et al. [9]

studied the performance issues that affect the global behavior of grid services of a Grid

middleware based on web services such as the Globus toolkit 3 [4]. As an example of

overhead related to data representation, the distributed scientific computing applica-

tions need to exchange large arrays of floating point numbers and the representation

of information in the XML language may need up to 10 times more room than the

same information requires to be represented in the corresponding binary format. In

order to increase the performance, the impact of representing XML data using non-

text format is discussed in [42, 43, 8] as a generic technique and introduced in [21]

when it is applied to the Web Services technologies.

In [13], an alternative to text compression is discussed, where the authors proposed

that Simple Object Access Protocol (SOAP) must be extended to support the binary

formats. In [45, 44], similar proposals are introduced. In fact, to resolve this issue,

the researchers have been exploring the techniques and proposing extended versions

of SOAP (the Simple Object Access Protocol used with XML files) to support the

binary representation of scientific numbers. In geospatial application [37], some of

the data is represented in XML files which could be a problem in future. The World

Climate Global Data (http://www.worldclim.org) uses text files, contain binary

annotation of data and the ones with current higher resolution of 30 seconds (in the

http://www.worldclim.org
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near future this will be increased to 1 second) can hold GigaBytes of space in binary

representation.

Christodoulopoulos et al. [14] studied the performance of the European Grid In-

frastructure (EGI) by observing the job arrival process and time duration of a job at

different states. They defined four delay components of the job processing, each one

corresponding to the time that a job spent at different states of its processing in the

EGEE environment, from submitting a job until retrieving the corresponding output

results. The time duration of the observation was one month and the total number of

jobs submitted during this time period was 2,228,838. There were 343 CEs available

at that time for the execution of jobs in the Enabling Grids for E-sciencE (EGEE).

They evaluated the efficiency of the EGEE environment to be about 34% which means

that they would have obtained the same performance if they submitted all jobs to 90

local machines. With 90 local machines all jobs would have completed within the same

makespan as when executing in the grid.

Some of the overheads of a grid middleware are intrinsic to software used and the

end user usually can not interfere. One alternative to reduce overheads from the

user side is to implement a scheduler at application level. In the next Section, we

present some of the works in the literature related to application scheduling and job

scheduling.

3.2 Scheduling

More Applications are turning to Grid computing to meet their computational and

data storage requirements. Single sites are simply no longer efficient for meeting the

resource needs of high-end applications. A computational grid has many independent

resource providers with different access policies and the diversity of those policies

leads to a very complex allocation task that can not be manually handled by the

users. This task does not only include searching for appropriate resources but also the

coordination of the actual job execution on the selected set of resources. Therefore,

an efficient and flexible Grid scheduling system is required to manage the job requests

of the users and an effective Grid computing is possible, however, only if the resources

are well scheduled.

Grid scheduling refers to the process of making scheduling decisions involving

resources over multiple administrative domains and selecting machines appropriate for
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executing a particular job. The workload of a Grid system is generated by independent

users who submit their jobs over time. It is the task of the scheduling system to decide

when and where a job is executed and to allocate required resources to the job. Some of

the work related to different scheduling strategies in Grid environment is summarised

as follows:

The work of Kaur and Singh [25] did a comparative survey analysis of scheduling

algorithms for grouping the fine grained jobs in order to achieve better throughput,

resource utilization and low communication time in Grid computing. They discussed

various job grouping algorithms proposed in the literature for job scheduling in grid

environment. They mentioned according to the dynamic job grouping-based schedul-

ing algorithm proposed in [35], jobs are grouped together based on MIPS (Million

Instructions per Second) of the available resource. The proposed job scheduling

strategy takes into account: (1) the processing requirements for each job, (2) the

grouping mechanism of the jobs based on processing capabilities of the available

resources, (3) the dispatching of the job grouping to the suitable resource. They

concluded that this model is efficient in a way that it reduces the processing time

and communication time of the jobs but it does not consider the dynamic resource

characteristics and also it lacks sufficiently utilization of the resource by the job

grouping.

The work of [26] provides the scheduling framework for Bandwidth-Aware job

Grouping based strategy, that groups the jobs according to MIPS and bandwidth-

aware scheduling. This scheduling strategy takes into account the computational

and communication capabilities of the resources. The priority of each resource is

determined using network bottleneck bandwidth by this approach.The drawbacks of

this scheduling strategy is insufficiently utilization of the resource and it is also not

efficient to transfer the job.

Another approach [5] provides a similar scheduling strategy to [26]. The model

sends group of jobs to the resource whose network bandwidth has highest communi-

cation or transmission rate but does not ensure that the resources with sufficient

bandwidth will be able to transfer the group jobs within the required time. An

Adaptive Fine-grained job algorithm proposed in [31] mainly focuses on fine-grained

(lightweight) job scheduling in a grid. The problem of the algorithm is the time

complexity of the algorithm that makes the job’s preprocessing scheduling time high.

Moreover, it does not focus on the memory requirement of file-size. The work of Soni

et al. [24] performs the grouping on the basis of processing capabilities, memory size

and the bandwidth of the available resources. The Heap sort tree is used to select the
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highest computational power resource to balance the effective job scheduling.

Another interesting memory aware job scheduling model proposed by Mishra et

al. [34] studied the computational-communication, memory size based job grouping

scheduling strategy. The utilization of the grid resource is maximized while the

network delay to schedule the job is minimized. Another job grouping scheduling ap-

proach proposed by Sharma et al. [40] improves the resource scheduling by maximizing

the resource utilization and minimizing the processing time of job through a model

composed of three levels called user level, global level and local level (cluster level). A

huge collection of data generated by scientific instruments are stored or replicated on

distributed resource to increase the storage capacity or efficiency of access. Therefore,

the distributed data and computational resources can be accessed transparently by

the scientists.

Venugopal et al. [47] presented and developed the Gridbus Broker, an extension of

the Nimrod-G [3] computational Grid resource broker and provides services relevant

to data-intensive computations. The Nimrod-G works on the optimization of the

user-supplied parameters such as deadline and budget [7] for computational jobs only.

It has no function for accessing remote data repositories and for optimizing on data

transfer.

The Gridbus broker supports a declarative and dynamic parametric programming

model for creating grid applications such as Belle Analysis Software Framework, a

physics analysis application. The Grid broker works on the principle of discovering

appropriate computational and data resources. It schedules the jobs based on opti-

mization of data transfer on the suitable resources. It monitors the job execution on

the selected resources and returns the results back to the user when they are finished.

The Grid broker has the ability to locate and access the required data from best data

repositories from multiple sites according to the availability of files and the quality

of data transfer. The authors analysed three scheduling scenarios, (1) scheduling

limited to only those resources which hosted the data files for the job, (2) scheduling

without regarding the location of the data, and (3) adaptive scheduling proposed by

the authors, optimises computation according to the location of data. They considered

a data-set of 20 jobs. As there was no data transfer involved, according to the first

strategy, all of the resources successfully executed the 20 jobs each. According to the

second scheduling strategy, regardless of the location of the data, involves maximum

amount of data transfer which causes a problem for the applications requiring large

data transfers and utilising resources with slow network. In the last evaluation, the

authors chose best available computing resource that had best available bandwidth
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to the data host for the related data for the job. Their scheduling strategy is similar

to our proposed scheduling strategies but our proposed scheduling strategies take size

of the data files into account and selects the best resource accordingly for the job of

the corresponding data-set. For each data-set, we classify the resources into different

categories according to their performance for different particular data-set.

The work on AppLes project [11, 12, 10] investigates the adaptive scheduling for

grid computing and demonstrates their effectiveness on real applications in production

environments to improve the performance experienced by end-users. They considered

the static and dynamic resource information, performance predictions, application

and user-specific information while developing scheduling techniques to enhance the

application performance. It provides logistics of the deployment that involves “discov-

ering resources, performing application data transfers, keeping track of the application

data, launching and monitoring computations on Grid resources, and detecting and

recovering from failures”[10]. Their scheduling algorithms increase the performance

by making decisions related to application data transfer/download and selection of

computing element to start application tasks.

To evaluate and select the QoS guaranteed resources from a potential Grid re-

sources for the users, Wang and Cao [48] proposed the committee-based resource

evaluation and selection method denoted as CRESM. It is composed of two layers

called a representative layer and a committee layer. The representative layer collects

the information about the user experience about any particular grid resource. The

committee layer exploits this information based on individual judgments and decides

on grid selection. The fuzzy k-nearest classifier, a recognition method to classify

unknown entities including neural networks is chosen to classify the information due

to its reliability, stability, extensible nature and low overhead feature. The resources

are divided into two classes, reliable ones which provide high QoS and unreliable ones

that gives low QoS. Their results show that CRESM is stable and can accurately

evaluate the reliability of the resources. CRESM not only brings QoS improvement

but also increases the resource utilization ratio in the Grid. Moreover, it helps the

users avoid to reserve an over estimated time on the resources.

It has been observed that the agreement based resource management can resolve

the issues of dealing with policies and objectives of the different resource providers and

the resource users as it provides reliable interaction between them (resource providers

and users). This model needs negotiations to create bi-lateral agreements between grid

parties. Li and Yahyapour [30] presented and evaluated a strategic negotiation model

for grid computing which is based on utilities functions or preference relationship for



26 CHAPTER 3. PERF. EVALUATION OF GRID INFRASTRUCTURES

the negotiation parties and learning-based negotiation strategies. According to this

model once an agreement is established, it will be committed by both parties, User

and Resource provider and will not be violated.

Their negotiation model is based on bilateral negotiation model, while a Q-learning

[49] algorithm was chosen as a learning based negotiation strategy. Q-learning based

strategy is an online algorithm and hence well suited for dynamic and unpredictable

grid environments. They used 5000 jobs from the Cornell Theory Center (CTC)

workload traces [2] to do the experiments and five different simulation cases are

considered. From the results, they show that learning-based negotiation model is

flexible and can be applied in the practical use in automatic job scheduling and it

also indicates that negotiation overhead due to exchanged messages is manageable for

practical applications.

Another work related to grid scheduling is a scheduling algorithm called Multiple

Queues with Duplication (MQD) for bag-of-tasks applications in grid environments,

presented by Lee and Zomaya [29]. This algorithm makes scheduling decisions based

on the recent workload pattern of the resources and using multiple queues and task

duplication in order to gain better resource utilization. The performance of MQD algo-

rithm was compared between previously proposed performance information dependent

algorithms (PIDA), Min-Min, Max-Min and Sufferage [23, 32] and a performance in-

formation independent algorithm RR (round-robin) [18]. From the simulation results,

it is noticed that when the error in performance prediction increases, the performance

of the PIDAs significantly decreases.

Another scheduling strategy for grid resource allocation is Reinforcement learning

(RL) proposed by Galstyan et al. [19] and implemented by Costa et al. [15] to

actual grid environment. Reinforcement learning is an interesting and simple adaptive

technique that may work well in actual grid environments. In RL an agent, for

example a grid user, learns optimal actions through a trial and error exploration of the

environment and by receiving rewards for its actions. The reward (utility) function

defines what the good and bad actions are in different situations. The agent’s goal is

to maximize the total reward it receives. The grid users are modeled as agents and

they have no prior knowledge about the capabilities of the resources. Instead, they

utilize a simple reinforcement learning scheme to estimate the efficiency of different

resources based on their past experience. An agent assigns a ”score” that indicates

how well that resource has performed in the past. After each submitted job, the agent

updates the score of the corresponding resource.
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Silva et al. [41] proposed a Workqueue with Replication(WQR) scheduling algo-

rithm which delivers good performance without using any kind of information about

the grid resources or tasks. The WQR is similar to the classic Workqueue but

it uses task replication. In the proposed approach when a task is replicated, the

completion of first replica is considered as the valid execution of the task and the

other replicas are cancelled to make the resources available. However, this approach

requires an additional increase in resource consumption which can be controlled by

limiting replication.

Most scheduling solutions for grid environments mentioned so far focus on executing

jobs without taking into consideration data transfers with the exception of Venugopal

et al.’s Gridbus broker, and Casanova and Berman’s APPleS work.

Another issue that is usually neglected is how to avoid selecting machines that are

prone to failure. Zeinalipour-Yazti et al. [50] worked on a framework to characterize

failures in a grid system. Besides characterizing the failures, it would be nice, if

we are able to avoid selecting these machines to execute jobs. Ideally, it would be

interesting to predict which machines have higher chance of executing jobs according

to the amount of data they need to transfer from or to a data server. Our proposed

strategies work on the principle of avoiding those machines that have high failure

chances to execute jobs and selecting good machines for the applications that require

data transfers according to the size of data.
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Chapter 4

Scheduling Strategies for

Applications that use File Transfers

This chapter describes a methodology and strategies to allow better performance of

applications that make use of file transfers. We used a grid infrastructure, the EGI

to apply our methodology and create our scheduling strategies. We used the Biomed

Virtual Organization to submit all jobs from the GridUP user interface, ui01.up.pt.

The Biomed VO is supported by many different sites, which provides access to tens

of thousands of CPU cores to its users. The list of the national Grid initiatives

that support Biomed by providing computing and storage facilities and technical

support, is Bulgaria, Croatia, Cyprus, France, Germany, Greece, Italy, Macedonia,

Moldavia, Netherlands, Portugal, Poland, Russia, Slovakia, Spain, Turkey, Ukrain,

United Kingdom, Canada, Asia Pacific.

Totally depending on a grid middleware, like gLite, to execute the jobs that require

data transfers can be very inefficient. The successful execution of these jobs depends

on a good choice of machines which can reduce the jobs failure rate. To achieve our

goal, the profiling technique is used to classify the grid machines into two categories,

fully responsive (Good machines) and limited-responsive machines (Bad machines).

The profiling method runs different jobs on these machines to get the aforementioned

classification. Based on the experimental results and this classification, we proposed

a scheduler that selects resources according to the size of the data transfers. This

process can be automated and easily performed with low complexity.

29
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4.1 Methodology

The application used in our methodology fetches text files that contain binary an-

notations of temperature around the world from the Wold Climate Global Data

website (http://www.worldclim.org). The reason for choosing this data is because

it is available in different resolution sizes and is used by geospatial applications that

fetch this data for processing and analysis. The data is stored on a website in four

different resolutions: data collected in an interval of 10 minutes, 5 minutes, 2.5 minutes

and 30 seconds. The size of the files corresponding to each of these resolutions is

given in Table 4.1. Each instance of our application is called a job. Each job has

the basic task of an open geospatial system, i.e., to fetch the files from the website

http://www.worldclim.org using WGET, unzip it and process it. It basically consists

of a python program that fetches binary files, decodes the binary format and generates

12 comma-separated-value (CSV) files that contain monthly mean temperatures in

the world. The zipped file contains 12 * 2 files, one per each month. One of the two

files contains the data in binary format. The second one contains the data header.

Each generated CSV contains temperatures related to a given month. Size of the

binary and of the CSV files vary according to the data resolution (30 seconds, 2.5,

5 and 10 minutes). The 10 Min resolution generates CSV files of 10 MBytes, the 5

Min data-set generates CSV files of 45 MBytes and the 2.5 Min data-set has CSV

files of 180 MBytes. The average runtime for this processing, excluding file transfer,

on a machine, for example, “svr014.gla.scotgrid.ac.uk:8443/cream-pbs-q1d”, for the

10 Min resolution data-set, is 812 seconds. Similarly, for data-set 5 Min and 2.5

Min the processing took 3058 seconds and 12054 seconds, respectively, on machine

“svr014.gla.scotgrid.ac.uk:8443/cream-pbs-q1d”.

We determined all the machines/resources/computing-elements available in Biomed

VO. The words machines, resources and computing elements are used interchangeably

throughout this chapter.

Resolution Size (MBytes)

10 Minutes 6.6

5 Minutes 22.5

2.5 Minutes 79

30 Seconds 1435

Table 4.1: File sizes of different data-sets
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Figure 4.1: Methodology of our Approach

The total number of the CE available in Biomed VO is equal to 188. Each one of

them has many processors/cores.

The methodology used in this chapter can be divided into three phases. These

phases are illustrated in Figure 4.1. All of these phases are described as follows.

4.1.1 Phase 1

In the first phase, we submit four jobs corresponding to each data-set (10 minutes, 5

minutes, 2.5 minutes and 30 seconds) to each machine available in the Biomed VO.

This gives us a total of 188 ∗ 4 = 752 jobs submitted. The JDL script used to define

the job in our system is given in Figure 4.2 for reference. The jobs are submitted with

the GridUP user interface ui01.up.pt. The results are collected from the WMS. A

job is declared successful if it executes without any error. The errors are categorized

into two classes:

1. the job finishes with a status Done and an exit code different from zero. This

means that the job terminated, but some failure occurred in the middleware

(such as a site misconfiguration problem, or a version of python not compatible)

2. the job finishes with a status Done and an exit code zero, but did not terminate
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Type = "Job";

JobType = "Normal";

Executable = "/usr/bin/python";

StdOutput = "DownloadWorldClim.out";

StdError = "DownloadWorldClim.err";

InputSandbox = {"/home/kiran/GIS/IO.py","/home/kiran/GIS/ntplib.py"};

OutputSandbox = {"DownloadWorldClim.err","DownloadWorldClim.out","*.csv"};

Arguments = "IO.py http://biogeo.ucdavis.edu/data/climate/worldclim/1_4

/grid/cur/tmin_10m_bil";

MyProxyServer = "px01.ncg.ingrid.pt";

ShallowRetryCount = 3;

Figure 4.2: JDL script used for 10 minutes samples

properly (for example, it is aborted because the proxy expired).

In this first phase, we want to rule out machines that are not responding or can

not run the jobs for some reason. For example, a machine may fail execution of a job

because: (1) it may not have the python version or libraries we need, (2) may not be

responding or (3) may not be properly configured.

4.1.2 Phase 2

In the second phase, having ruled out all machines that failed, we will check the

robustness of the successful machines by submitting various jobs of the same data-set

size to these machines. We then select all machines that succeeded executing the jobs

in the first phase and ignore all those machines which failed to run any of the four

data-sets. For each data-set, we select all the machines that successfully executed

that particular data-set in the first phase. For example, if machines M1 and M2

successfully executed the 5 minute data-set then we submit a batch of 10 jobs of 5

minute resolution to both M1 and M2.

Similarly, the other successful machines for the other data-sets are selected and

they are tested with a batch of 10 jobs of the same data-set. When the jobs are
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completed, we retrieve the output files from the WMS. The machines are collected

per each data-set size and further divided into two groups: 1) Good machines and 2)

Bad machines. The purpose of the further evaluation of machines for each data-set

size is to perform the classification of machines according to their performance while

executing each data-set. The machines that managed to successfully execute at least

a single job are declared as Good machines for that particular data-set.

4.1.3 Phase 3

Based on the results obtained with the first two phases, we are ready to create

strategies that can avoid selecting Bad machines to execute our jobs. We have proposed

two different scheduling algorithms based on the results of the previous phases to rank

the available machines in the grid to increase the efficiency. After ranking, we choose

the best ranked machine according to the data size. The names of these scheduling

algorithms are presented as follows.

• Class based Scheduling Algorithm (CBSA)

• Global Scheduling Algorithm (GSA)

Each algorithm has two versions: offline and online. The offline version is used to

build the initial machine ranking. The online version is used during execution and can

modify the original rank according to the machines’ dynamic behaviour.

4.1.3.1 Class Based Scheduling Algorithm (CBSA)

In the class based scheduling algorithm (CBSA), we initially create clusters based on

the results of the first two phases. Assume there are n data-sets used to determine

the good or bad machines. We create n+ 1 clusters numbered from 1 to n+ 1. In our

case there are 4 data-sets and hence the number of clusters will be 5. A machine in

the grid that is good for p data-sets is added into a cluster n − p + 1. For example,

a machine which is good for all the data-sets will be added into cluster number 1.

All the machines in the grid are added to their corresponding clusters. Afterwards,

machines inside the cluster are ranked. The ranking inside cluster is performed based
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Algorithm 1 Class based Scheduling Algorithm

1: Offline Phase: Rank Reliable Machines

2: Assume there are n different data-sets

3: Create n+ 1 clusters, numbered from 1 to n+ 1

4: A machine that successfully executes p data-sets will be allocated to n− p+ 1

5: i) Rank the machines within each cluster by an descending order of κ,

where κ =
Total Execution Time of all Successful Jobs

Total Number of Jobs
OR

ii) Create table for each data-set inside each cluster and rank the machines in

each table with respect to the number of jobs executed in phase 2 of that specific

data-set

6: The ranking of the machines in this phase starts from the first machine in cluster

1 and ends with the last machine in group n+ 1

7: Online Phase: Dynamically Updating the Ranking of the Machines

8: Assume a machine Mi under consideration and the current cluster number of Mi

is h

9: if (A machine Mi is unsuccessful for x times (where x ≥ 1) && its current cluster

number h 6= n+ 1 ) then

10: Demote a machine Mi from its current cluster number h to next cluster number

h+ 1,

11: else if (A machine Mi successful for y times (where y ≥ 1) && its current cluster

number h 6= 1) then

12: Promote a machine Mi from its current cluster number h to h− 1

13: end if

on a metric called κ. It is defined as follows.

κ =
Total Execution Time of all Successful Jobs

Total Number of Jobs
(4.1)

The total execution time of successful jobs is divided by the total number of jobs.
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All the machines inside each cluster are sorted in ascending order with respect to their

corresponding values of κ.

Similarly, we also propose another method to rank the machines inside the clusters

as well. The machines are ranked differently for each data-set in each cluster. The

specific data-set will consult the corresponding ranking of its data-set inside the cluster.

Assume, there are 4 data-sets and we are interested in cluster number 1. The proposed

algorithm creates four tables inside cluster number 1 for each data-set. The ranking

of the machines in each table is performed based on the number of successful jobs

executed in the previous phase for that specific data-set. Hence, if the machine needs

to be selected for a data-set b, all the machines inside the clusters corresponding to

data-set b are selected to give the overall ranking.

Irrespective to the method used to sort the machines inside a cluster, the overall

ranking of the machines starts from the first machine in the first cluster to the last

machine in the n + 1 cluster. The machines in the last cluster n + 1 can be ordered

with respect to their indexes or alphabetical orders of their names.

In the online phase, if a machine Mi is successful for x times then it is promoted to

the next best cluster, i.e., its current cluster number minus 1. The value of x can be

set to any integer greater or equal to 1. Similarly, if a machine Mi has unsuccessfully

executed the y jobs then it is demoted by one cluster, i.e., its current cluster number

plus 1. However, it is obvious, if the machine is in cluster number 1 then it cannot

be promoted anymore and similarly, a machine in a last cluster n + 1 cannot be

further demoted. We do not remove the machines from the cluster based on the

bad performance but we keep them in n + 1 cluster. This decision is made on the

assumption that some of the machines can perform well during in future. The pseudo-

code presented in Algorithm 1 shows these steps.

4.1.3.2 Global Scheduling Algorithm(GSA)

The global scheduling algorithm (GSA) globally ranks the machines based on the

results given in phase 2 of our methodology. We run total number of αi jobs on each

machine Mi for all data-sets. Assume αj
i is the total number of jobs of jth data-

set executed on Mi. Hence, αi =
n∑

j=1

αj
i , where n is the total number of data-sets.

Assume βj
i and γji are the successful and unsuccessful jobs of jth data-set on machine

Mi respectively. The execution time of the successful jobs can be easily computed from
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Algorithm 2 Global Scheduling Algorithm

1: Offline Phase: Global Ranking of Machines

2: Assume there are n different data-sets. Now consider a machine Mi. Let βj
i and

γji be the number of successful and unsuccessful jobs on machine Mi respectively

for data-set j. Total number of jobs submitted on Mi is equal to αi =
n∑

j=1

αj
i .

Similarly, the total number of jobs of data-set j is equal to αj
i = βj

i + γji

3: A penalty of unsuccessful job execution is U time units, where U is a very big

number.

4: For each machine Mi, and each data-set j

compute λji =
(Execution Time of βj

i jobs) + (γji ∗ U)

αj
i

5: Rank all the machines in ascending order with respect to their corresponding value

of λji for each data-set j

6: Ties are broken with respect to their indexes

7: Online Phase: Dynamically Updating the Ranking of the Machines

8: Assume a machine Mi has completed a job k of data-set j

9: if (A machine Mi has unsuccessfully executed a job k of data-set j) then

10: γji = γji + 1

11: else if (A machine Mi has successfully executed a job k of data-set j) then

12: βj
i = βj

i + 1

13: end if

14: αj
i = αj

i + 1

15: Update λji =
(Execution Time of βj

i jobs) + (γji ∗ U)

αj
i

of Mi

16: Re-rank this machine for data-set j

their results. However, the unsuccessful jobs should be penalized with extra time. In

order to do so, we assume a job that is unsuccessful on a machine has taken a time

of U time units. The value of U can be set to any arbitrary big number greater than

the successful job execution time. We compute a metric λji given in Equation 4.2 for

each data-set j on each machine. For each data-set j, all the machines in the grid are

ranked in ascending order with respect to their λji values. If two machines have the
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same λji , their ties are broken based on their indexes. This procedure is repeated for

each data-set and finally, we have a global list of machines ranked with respect to λji
for each data-set.

λji =
(Execution Time of βj

i jobs) + (γji ∗ U)

αj
i

(4.2)

In the online phase of this scheduling algorithm, the ranking of each machine

is dynamically changed based on its performance. Assume a machine successfully

executed a job of data-set j then its λji is re-evaluated by adding the execution of

this new job and its ranking in the corresponding data-set list is updated accordingly.

This procedure is performed to penalize a machine if it has unsuccessfully executed a

job. The reevaluation of λji may be expensive to perform on completion of each job.

This problem can be solved by storing the results of x jobs of data-set j and then the

value of λji can be collectively updated for its x jobs. Please note that the value of

x ≥ 1. The pseudo-code of GSA is presented in Algorithm 2.

#!/bin/bash

lcg-infosites --vo biomed ce >> resources.out

sed ’1,2d’ -i resources.out

cut -f6 resources.out >> onlyres.out

while read line

do

array+=("$line")

done < onlyres.out

for ((i=0; i < ${#array[*]}; i++))

do

glite-wms-job-submit -a -o jobid -r ${array[i]} interval_10m.jdl

done >> jobs_submission_status.out

Figure 4.3: Shell script used to submit the jobs
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4.2 Results obtained in Phase 1

As mentioned previously, we have used the VO Biomed and the EGEE Grid infras-

tructure. The jobs are submitted from the GridUP user interface, ui01.up.pt. The

jobs were defined using a JDL script which invokes a python program, collects timings

from the execution phase (start, start fetching file, start processing, end processing)

presented in Figure 4.2. We used a shell script that selects the resource and submits

the jobs of each one of the data-sets as given in Figure 4.3.

In the first phase, we submitted a job of each data-set resolutions on all machines

available in the grid. While submitting the jobs of 10 minute and 2.5 minute res-

olutions, the grid infrastructure has 188 machines available. However, at the time

of submission of 5 Min and 30 seconds data-set jobs, it has 185 and 184 machines,

respectively. A subset of the machines that presents the results corresponding to

different machines for different data-sets in the first phase are available in Table 4.2.

A complete table is presented in Table A.1 for reference.

A machine that successfully executes the job in phase one is marked as Successful,

while the the machine failed to execute the jobs is represented as Failed. For example,

the machine at number 83 in Table 4.2 (cream ce02.marie.hellasgrid.gr:8443/cream-

pbs-biomed) has successfully executed the 10 and 2.5 Min data-set job, while failed

to executed the 5 Min data-set in the first phase. Please note that the column

corresponding to the 30 second data-set is omitted in the tables. The job corresponding

to the 30 second data-set in the first phase failed on all the machines available in the

grid infrastructure because the output sandbox in grid infrastructures has a limit in

size, we can not fetch files whose total size exceeds the size limit imposed by the grid.

No Machines In the Grid 10 Min 5 Min 2.5 Min

1 arc-ce01.gridpp.rl.ac.uk:2811/nordugrid-Condor-grid3000M Failed Failed Failed

2 arc-ce02.gridpp.rl.ac.uk:2811/nordugrid-Condor-grid3000M Failed Failed Failed

3 arc-ce03.gridpp.rl.ac.uk:2811/nordugrid-Condor-grid3000M Failed Failed Failed

4 cale.uniandes.edu.co:8443/cream-pbs-biomed Successful Successful Successful

5 cccreamceli09.in2p3.fr:8443/cream-sge-long Failed Failed Failed

...
...

...
...

...

79 cream-ce02.cat.cbpf.br:8443/cream-pbs-biomed Failed Successful Failed

80 cream-ce02.gridpp.rl.ac.uk:8443/cream-condor-grid1000M Successful Successful Successful

81 cream-ce02.gridpp.rl.ac.uk:8443/cream-condor-grid2000M Successful Successful Successful

82 cream-ce02.gridpp.rl.ac.uk:8443/cream-condor-grid3000M Successful Successful Successful

83 cream-ce02.marie.hellasgrid.gr:8443/cream-pbs-biomed Successful Failed Successful

84 cream.afroditi.hellasgrid.gr:8443/cream-pbs-biomed Successful Successful Successful

85 cream.egi.cesga.es:8443/cream-sge-GRIDEGI large Successful Successful Successful



4.3. RESULTS OBTAINED IN PHASE 2 39

86 cream.grid.cyf-kr.edu.pl:8443/cream-pbs-biomed Failed Successful Failed

...
...

...
...

...

185 svr026.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Successful Successful Successful

186 t2-ce-01.to.infn.it:8443/cream-pbs-biomed Failed Failed Failed

187 tochtli64.nucleares.unam.mx:8443/cream-pbs-biomed Successful Successful Successful

188 wario.univ-lille1.fr:8443/cream-pbs-biomed Failed Failed Failed

Table 4.2: Successful and Failed Machines while Running One Job of each

Data-set (Phase 1)

Data-set No of Machines Used Total Submitted Jobs Successful Failed % of Successful Machines

10 Min 188 188 89 99 47%

5 Min 185 185 96 89 51.8%

2.5 Min 188 188 84 104 44.6%

30 Sec 184 184 0 0 0%

Table 4.3: Summary of First Phase Results

In the first phase, for the 10 Min resolution data-set, out of 188 jobs (submitted to

188 machines) only 89 jobs successfully executed the jobs and 99 jobs failed. It means

that only 47% of the machines were successful. Similarly, for the 2.5 Min resolution

data-set, 84 jobs were successful and 104 failed. The percentage of the successful

machines is equal to 44.6%. As the number of machines available for the 5 minutes

resolution data-set was 185, out of 185 submitted jobs, 96 jobs successfully executed

and 89 failed. In this case, the percentage of successful machines is 51.89%.

For 30 second resolution, 184 machines were available in the grid infrastructure

and one of them was successful. So the successful percentage is zero. These results

are summarized in Table 4.3. As we can observe there is an oddity in the results of

the first phase. The percentage of the successful machines for the 5 Min resolution

data-set is better than for the 10 Min resolution data-set. This can occur in a grid

infrastructure as the results depend on the workload of the machines.

4.3 Results obtained in Phase 2

We also generated tables for each data-set to categorize the Good and Bad machines

determined in phase 2. A subset of those machines corresponding to the 10 Min

resolution data-set is presented in Table 4.4. The complete list for each data-set
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generated in phase 2 is presented in Appendix A (in Tables Table A.2,Table A.3 and

Table A.4) for reference.

We analysed the percentage of the successful machines in the second phase also.

The summary of the results is presented in Table 4.5. We describe the results for the

10 minutes resolution data-set here and results of the other data-sets can be easily

interpreted from the given tables. For the 10 minutes resolution, 89 machines were

successful in the first phase. We submitted a batch of 10 jobs of the 10 minutes

resolution data-set on each of these machines. Therefore, a total of 890 jobs were

submitted to these 89 selected machines. Among those 890 jobs, 661 jobs successfully

completed their execution, while 229 jobs failed to complete their execution. This

gives us a success rate of 74%, which is a very good improvement when compared

with the experiment with the 10 minutes resolution data-set during the first phase

(47%).

A machine that successfully executed all the 10 jobs submitted to it is declared as

a Good Machine. We computed the percentage of the successful machines and it is

76% for the 10 minutes data-set. Similarly, the percentage of the successful jobs in

this phase is equal to 74%. There are two oddities in this table. The percentage of the

successful machines of 2.5 minutes resolution data-set is greater than other data-sets.

Moreover, the percentage of the successful jobs of the 2.5 minutes resolution data-set

is greater than the 5 minutes resolution data-set. This is perfectly acceptable in a

dynamic and heterogeneous infrastructure such as a grid.
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No Machines In the Grid 10 Min

1 cale.uniandes.edu.co:8443/cream-pbs-biomed Good

2 ce-01.roma3.infn.it:8443/cream-pbs-grid Good

3 ce.fesb.egi.cro-ngi.hr:8443/cream-pbs-sunx2200 Good

4 ce.hpgcc.finki.ukim.mk:8443/cream-pbs-biomed Good

5 ce.irb.egi.cro-ngi.hr:8443/cream-pbs-hpdl580 Good
...

...
...

37 cream-ce01.gridpp.rl.ac.uk:8443/cream-condor-grid1000M Good

38 cream-ce01.gridpp.rl.ac.uk:8443/cream-condor-grid2000M Good

39 cream-ce01.gridpp.rl.ac.uk:8443/cream-condor-grid3000M Good

40 cream-ce01.marie.hellasgrid.gr:8443/cream-pbs-biomed Good

41 cream-ce02.gridpp.rl.ac.uk:8443/cream-condor-grid1000M Good

42 cream-ce02.gridpp.rl.ac.uk:8443/cream-condor-grid2000M Good

43 cream-ce02.gridpp.rl.ac.uk:8443/cream-condor-grid3000M Good
...

...
...

86 svr014.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Bad

87 svr026.gla.scotgrid.ac.uk:8443/cream-pbs-q1d Bad

88 svr026.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Bad

89 tochtli64.nucleares.unam.mx:8443/cream-pbs-biomed Good

Table 4.4: Good and Bad Machines for the 10 Min Data-

set (Phase 2)

Data-set Successful

Ma-

chines

in 1st

Phase

Good

Ma-

chines in

2ndPhase

Total

Sub-

mitted

Jobs

Successful

Jobs

Failed

Jobs

% of

Good

Ma-

chines

% of

Suc-

cessful

Jobs

10 Min 89 68 890 661 229 76% 74%

5 Min 96 69 960 562 398 71.8% 58.5%

2.5 Min 84 61 840 561 279 72.6% 66.7%

30 Sec 0 0 0 0 0 0% 0%

Table 4.5: Summary of Second Phase Results
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Figure 4.4: Execution Time Breakdown 10 Min (Phase 1)

4.3.1 Successful jobs

Figures 4.4, 4.5 and 4.6 present percentage of execution time breakdown of successful

jobs for the 10 Min, 5 Min and 2.5 Min data-sets, respectively, in phase one. Fig-

ures 4.7, 4.8 and 4.9 show the percentage of execution time breakdown of jobs of

data-sets 10 Min, 5 Min and 2.5 Min, which completed their execution in phase 2. In

the Figures, it is noticeable that some of the jobs have their very high remote waiting

time as compared to their execution time on the computing resource.

Figures 4.10, 4.11 and 4.12 show the total execution time per lot of 10 jobs per

each data-set i.e, 10 Min, 5 Min, 2.5 Min, respectively, on each selected machine in

phase 2 of the methodology. As it has mentioned previously, in the second phase we

submitted 10 jobs of each particular data-set to selected machines from phase 1. In

Figure 4.10, there is a total of 89 successful machines and the total execution time of

10 jobs of data-set 10 Min per machine is shown in the Figure 4.10. In these figures

some of the bars show very low total execution time for some machines for all 10 jobs

which corresponds to either jobs failure on those machines or that those machines are

fast enough to complete all jobs in very low time. It could also be the case that some

of the machines managed to execute very few jobs out of 10 jobs and have their low

execution time.
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Figure 4.5: Execution Time Breakdown 5 Min (Phase 1)
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Figure 4.6: Execution Time Breakdown 2.5 Min (Phase 1)
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Figure 4.7: Execution Time Breakdown 10 Min (Phase 2)
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Figure 4.8: Execution Time Breakdown 5 Min (Phase 2)
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Figure 4.9: Execution Time Breakdown 2.5 Min (Phase 2)

For example machine 4 in Figure 4.10 succeeded to run all 10 jobs and it has very

low total execution time for all jobs compared to other machines. Similarly machines

43 and 59 have their smallest total execution time but the fact is that machine 43

never succeeded to execute even a single job of batch of 10 jobs. All the jobs aborted

in this machine. While machine 59 successfully completed the execution of all 10 jobs

of 10 Min data-set resolution. The last machine in Figure 4.10 successfully executed

2 jobs out of 10.

4.3.2 Failed or Aborted jobs

Figures: 4.13, 4.14 and 4.15 show the total number of jobs failed or aborted per

machine in phase 2 for data-set 10 Min, 5 Min and 2.5 Min respectively. For example

in Figure 4.14, the number of aborted jobs on machine 11 is 10. This machine didn’t

manage to execute any job.

While there is only one job aborted and 9 successfully terminated on machine 83

in Figure 4.14.

There might be many reasons involved in this failure or abortion of jobs. The jobs

that need to fetch larger files have very high failure rate which means independent

of the environment we should avoid as much as possible to transfer large files (larger



46CHAPTER 4. SCHED. STRATEGIES FOR APP. THAT USE FILE TRANSFERS

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

Number of Machines

E
nd

 to
 E

nd
 D

el
ay

 (
10

M
in

)

Figure 4.10: End to End Delay of Jobs (10 Min Data-set)
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Figure 4.11: End to End Delay of Jobs (5m Data-set)
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Figure 4.12: End to End Delay of Jobs (2.5m Data-set)

than few megabytes) across the network to do any kind of processing. Some of the

jobs had exit code different of zero or exit code equals to zero but were not executed

because of various ”logged reasons”. Many jobs could not continue their execution

and were aborted because they had proxy expired. The cancellation of the jobs by

CE admin is also one of the jobs failure reason. Lack of disk space also matters in the

successful execution of jobs. Therefore, making an initial good selection of machines

is very important.

Figures 4.16, 4.17 and 4.18 represent the aborted and the successful jobs of the

corresponding data-set. The white area in the graphs shows the successful jobs while

the blue area represents the failed or aborted jobs of the specific data-set.
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Figure 4.13: Number of Jobs Aborted per Machine (10 Min Data-set)
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Figure 4.14: Number of Jobs aborted per Machine (5m Data-set)
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Figure 4.15: Number of Jobs Aborted per Machine (2.5m Data-set)
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Figure 4.16: Total Number of Aborted and Successful Jobs (10 Min Data-set)
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Figure 4.17: Total Number Aborted and Successful Jobs (5 Min Data-set)
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Figure 4.18: Total Number of Aborted and Sucessful Jobs (2.5 Min Data-set)



Chapter 5

Conclusions and Future Work

Grid infrastructures offer a good opportunity for harnessing resources of all types,

which are made available through coordinated sharing policies. Grid middleware

allows researchers to access these resources through Virtual Organizations in order

to advance their science using the resources available to make experiments. However,

despite the success of utilization of this infrastructure by researchers, there is still

scope for improvements. First, there are still several communities that could benefit

from using those resources, but do not know how. Second, various reasons prevent

more people from using grid infrastructures: (1) the bureaucracy involved in using

grids (for example, obtaining certificates or the need to have an account on a user

interface), (2) the overheads of grid services due to the various layers of software and

centralized servers, (3) the high rate of job failures, and (4) the change in methodology

and environment to execute applications.

In this work, we show that totally relying on a grid middleware, like gLite, to execute

jobs that require data transfers can be very inefficient. The successful execution of

these jobs depends on a good choice of machines. Specially when applications need to

transfer and process remote data. We have shown that a careful selection of resources

can reduce the failure rate in 30%. Based on these results, we proposed a methodology

to select machines when starting a grid application according to the size of the data

transfers. We also proposed various scheduling strategies that can be dynamically

adapted during execution using the initial rank of machines that were selected to

start the application.

One of the issues not addressed in this work is the size limit of the user’s sandbox.
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Our methodology and strategies assume that the data can fit in the sandbox. One

interesting path to follow would be to use the same methodology to rank machines

based on data stored on the Storage Elements. Actually, in this work, we fetch data

from a central server. We could use the Storage Element to store several of the data-

sets with different resolutions and guide the choice for a machine according to the

distance to the data source chosen, as other schedulers, including gLite already do.



Appendix A

Tables generated in Phases 1 and 2

No Machines In the Grid 10 Min 5 Min 2.5 Min

1 arc-ce01.gridpp.rl.ac.uk:2811/nordugrid-Condor-grid3000M Failed Failed Failed

2 arc-ce02.gridpp.rl.ac.uk:2811/nordugrid-Condor-grid3000M Failed Failed Failed

3 arc-ce03.gridpp.rl.ac.uk:2811/nordugrid-Condor-grid3000M Failed Failed Failed

4 cale.uniandes.edu.co:8443/cream-pbs-biomed Successful Successful Failed

5 cccreamceli09.in2p3.fr:8443/cream-sge-long Failed Failed Failed

6 cccreamceli09.in2p3.fr:8443/cream-sge-medium Failed Failed Failed

7 cccreamceli09.in2p3.fr:8443/cream-sge-short Failed Failed Failed

8 cccreamceli10.in2p3.fr:8443/cream-sge-long Failed Failed Failed

9 cccreamceli10.in2p3.fr:8443/cream-sge-medium Failed Failed Failed

10 cccreamceli10.in2p3.fr:8443/cream-sge-short Failed Failed Failed

11 cccreamceli11.in2p3.fr:8443/cream-sge-long Failed Failed Failed

12 cccreamceli11.in2p3.fr:8443/cream-sge-medium Failed Failed Failed

13 cccreamceli11.in2p3.fr:8443/cream-sge-short Failed Failed Failed

14 cce.ihep.ac.cn:8443/cream-pbs-biomed Failed Failed Failed

15 ce-01.roma3.infn.it:8443/cream-pbs-grid Successful Successful Successful

16 ce-02.roma3.infn.it:8443/cream-pbs-grid Failed Successful Failed

17 ce.fesb.egi.cro-ngi.hr:8443/cream-pbs-sunx2200 Successful Successful Successful

18 ce.hpgcc.finki.ukim.mk:8443/cream-pbs-biomed Successful Successful Successful

19 ce.irb.egi.cro-ngi.hr:8443/cream-pbs-hpdl580 Successful Successful Failed

20 ce.irb.egi.cro-ngi.hr:8443/cream-pbs-sunx2200 Successful Successful Successful

21 ce.scope.unina.it:8443/cream-pbs-egee long Successful Failed Failed

22 ce.scope.unina.it:8443/cream-pbs-egee short Successful Successful Successful

23 ce.srce.egi.cro-ngi.hr:8443/cream-pbs-hpdl580 Successful Successful Failed

24 ce.srce.egi.cro-ngi.hr:8443/cream-pbs-sunx2200 Failed Successful Failed

25 ce.srce.egi.cro-ngi.hr:8443/cream-pbs-sunx4600 Failed Successful Successful

26 ce.ulakbim.gov.tr:8443/cream-pbs-biomed Failed Failed Failed

27 ce0.bordeaux.inra.fr:8443/cream-pbs-biomed Successful Successful Successful
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No Machines In the Grid 10 Min 5 Min 2.5 Min

28 ce0.bordeaux.inra.fr:8443/cream-pbs-sdj Failed Successful Failed

29 ce0.m3pec.u-bordeaux1.fr:8443/cream-pbs-biomed Successful Successful Successful

30 ce0.m3pec.u-bordeaux1.fr:8443/cream-pbs-sdj Failed Failed Failed

31 ce01-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Successful Successful Successful

32 ce01.gridc.lip.pt:8443/cream-sge-gridq Failed Failed Failed

33 ce01.tier2.hep.manchester.ac.uk:8443/cream-pbs-long Failed Failed Failed

34 ce01.up.pt:8443/cream-pbs-biomed Successful Failed Failed

35 ce02.lip.pt:8443/cream-sge-gridq Failed Failed Failed

36 ce02.ngcc.acad.bg:8443/cream-pbs-biomed Successful Failed Successful

37 ce02.tier2.hep.manchester.ac.uk:8443/cream-pbs-long Successful Successful Successful

38 ce02.up.pt:8443/cream-pbs-biomed Successful Failed Failed

39 ce04-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Successful Successful Successful

40 ce05-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Successful Successful Successful

41 ce05.esc.qmul.ac.uk:8443/cream-sge-sl6 lcg 1G long Successful Failed Failed

42 ce05.esc.qmul.ac.uk:8443/cream-sge-sl6 lcg 2G long Failed Failed Failed

43 ce06-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Successful Successful Successful

44 ce06.esc.qmul.ac.uk:8443/cream-sge-sl6 lcg 1G long Successful Failed Failed

45 ce06.esc.qmul.ac.uk:8443/cream-sge-sl6 lcg 2G long Failed Failed Failed

46 ce06.ncg.ingrid.pt:8443/cream-sge-gridq Failed Failed Failed

47 ce07-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Successful Successful Failed

48 ce07.esc.qmul.ac.uk:8443/cream-sge-sl6 lcg 1G long Successful Failed Failed

49 ce07.esc.qmul.ac.uk:8443/cream-sge-sl6 lcg 2G long Failed Failed Failed

50 ce08-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Successful Successful Successful

51 ce1.ts.infn.it:8443/cream-lsf-grid Successful Successful Successful

52 ce101.grid.ucy.ac.cy:8443/cream-pbs-biomed Successful Successful Successful

53 ce3.ppgrid1.rhul.ac.uk:8443/cream-pbs-biomed Failed Successful Failed

54 ce3.ui.savba.sk:8443/cream-pbs-biomed Successful Successful Successful

55 ceprod05.grid.hep.ph.ic.ac.uk:8443/cream-sge-grid.q Successful Successful Successful

56 ceprod06.grid.hep.ph.ic.ac.uk:8443/cream-sge-grid.q Successful Successful Successful

57 ceprod07.grid.hep.ph.ic.ac.uk:8443/cream-sge-grid.q Successful Successful Successful

58 ceprod08.grid.hep.ph.ic.ac.uk:8443/cream-sge-grid.q Successful Successful Successful

59 cert-37.pd.infn.it:8443/cream-lsf-grid Successful Successful Successful

60 cirigridce01.univ-bpclermont.fr:8443/cream-pbs-biomed Successful Successful Successful

61 clrccece01.in2p3.fr:8443/cream-pbs-biomed Failed Failed Failed

62 clrccece02.in2p3.fr:8443/cream-pbs-biomed Failed Failed Failed

63 clrccece03.in2p3.fr:8443/cream-pbs-biomed Failed Failed Failed

64 cox01.grid.metu.edu.tr:8443/cream-pbs-biomed Successful Successful Successful

65 cr1.ipp.acad.bg:8443/cream-pbs-biomed Successful Successful Failed

66 cream-ce-2.ba.infn.it:8443/cream-pbs-infinite Failed Failed Successful

67 cream-ce-2.ba.infn.it:8443/cream-pbs-long Failed Failed Successful

68 cream-ce-2.ba.infn.it:8443/cream-pbs-short Failed Failed Successful

69 cream-ce-3.ba.infn.it:8443/cream-pbs-infinite Failed Failed Successful

70 cream-ce-3.ba.infn.it:8443/cream-pbs-long Failed Failed Successful
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71 cream-ce-3.ba.infn.it:8443/cream-pbs-short Failed Failed Successful

72 cream-ce-grid.obspm.fr:8443/cream-pbs-biomed Failed Failed Failed

73 cream-ce.cat.cbpf.br:8443/cream-pbs-biomed Failed Successful Failed

74 cream-ce01.ariagni.hellasgrid.gr:8443/cream-pbs-biomed Successful Failed Successful

75 cream-ce01.gridpp.rl.ac.uk:8443/cream-condor-grid1000M Successful Failed Successful

76 cream-ce01.gridpp.rl.ac.uk:8443/cream-condor-grid2000M Successful Successful Successful

77 cream-ce01.gridpp.rl.ac.uk:8443/cream-condor-grid3000M Successful Successful Successful

78 cream-ce01.marie.hellasgrid.gr:8443/cream-pbs-biomed Successful Successful Successful

79 cream-ce02.cat.cbpf.br:8443/cream-pbs-biomed Failed Successful Failed

80 cream-ce02.gridpp.rl.ac.uk:8443/cream-condor-grid1000M Successful Successful Successful

81 cream-ce02.gridpp.rl.ac.uk:8443/cream-condor-grid2000M Successful Successful Successful

82 cream-ce02.gridpp.rl.ac.uk:8443/cream-condor-grid3000M Successful Successful Successful

83 cream-ce02.marie.hellasgrid.gr:8443/cream-pbs-biomed Successful Failed Failed

84 cream.afroditi.hellasgrid.gr:8443/cream-pbs-biomed Successful Successful Successful

85 cream.egi.cesga.es:8443/cream-sge-GRIDEGI large Successful Successful Successful

86 cream.grid.cyf-kr.edu.pl:8443/cream-pbs-biomed Failed Successful Failed

87 cream.grid.uni-sofia.bg:8443/cream-pbs-biomed Successful Successful Successful

88 cream01-tic.ciemat.es:8443/cream-pbs-biomed Successful Successful Failed

89 cream01.grid.auth.gr:8443/cream-pbs-biomed Successful Successful Successful

90 cream01.grid.uoi.gr:8443/cream-pbs-biomed Successful Successful Failed

91 cream01.kallisto.hellasgrid.gr:8443/cream-pbs-biomed Successful Successful Successful

92 cream02.grid.cyf-kr.edu.pl:8443/cream-pbs-biomed Failed Successful Failed

93 cream2.ppgrid1.rhul.ac.uk:8443/cream-pbs-biomed Failed Successful Successful

94 creamce.gina.sara.nl:8443/cream-pbs-medium Failed Failed Failed

95 creamce.gina.sara.nl:8443/cream-pbs-short Failed Failed Failed

96 creamce.reef.man.poznan.pl:8443/cream-pbs-biomed Successful Failed Failed

97 creamce02.ciemat.es:8443/cream-pbs-medium Successful Successful Successful

98 creamce03.ciemat.es:8443/cream-pbs-medium Successful Successful Successful

99 creamce2.gina.sara.nl:8443/cream-pbs-medium Failed Failed Failed

100 creamce2.gina.sara.nl:8443/cream-pbs-short Failed Failed Failed

101 creamce3.gina.sara.nl:8443/cream-pbs-medium Failed Failed Failed

102 creamce3.gina.sara.nl:8443/cream-pbs-short Failed Failed Failed

103 cygnus.grid.rug.nl:8443/cream-pbs-medium Successful Successful Successful

104 cygnus.grid.rug.nl:8443/cream-pbs-short Successful Failed Successful

105 dc2-grid-66.brunel.ac.uk:8443/cream-pbs-biomed Failed Successful Successful

106 dc2-grid-68.brunel.ac.uk:8443/cream-pbs-biomed Failed Failed Failed

107 dc2-grid-70.brunel.ac.uk:8443/cream-pbs-biomed Failed Failed Successful

108 desdemona.zih.tu-dresden.de:8443/cream-pbs-gridexpr scli Failed Failed Failed

109 desdemona.zih.tu-dresden.de:8443/cream-pbs-gridlong scli Failed Successful Failed

110 desdemona.zih.tu-dresden.de:8443/cream-pbs-gridmedium scli Failed Failed Failed

111 desdemona.zih.tu-dresden.de:8443/cream-pbs-gridshort scli Failed Failed Failed

112 desdemona.zih.tu-dresden.de:8443/cream-pbs-route scli Failed Failed Failed

113 dissel.nikhef.nl:2119/jobmanager-pbs-gratis Failed Failed Failed
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No Machines In the Grid 10 Min 5 Min 2.5 Min

114 dwarf.wcss.wroc.pl:8443/cream-pbs-biomed Successful Successful Successful

115 epgr02.ph.bham.ac.uk:8443/cream-pbs-long Failed Successful Failed

116 epgr02.ph.bham.ac.uk:8443/cream-pbs-short Failed Successful Failed

117 fal-pygrid-44.lancs.ac.uk:8443/cream-pbs-q Failed Failed Failed

118 fornax-ce.itwm.fhg.de:8443/cream-pbs-biomed Failed Failed Failed

119 fornax-ce2.itwm.fhg.de:8443/cream-pbs-biomed Failed Failed Failed

120 gazon.nikhef.nl:8443/cream-pbs-gratis Failed Failed Failed

121 glite-cream.scai.fraunhofer.de:8443/cream-pbs-egbiomed Successful Successful Failed

122 grid-cr0.desy.de:8443/cream-pbs-desy Successful Successful Successful

123 grid-cr1.desy.de:8443/cream-pbs-desy Successful Failed Successful

124 grid-cr2.desy.de:8443/cream-pbs-desy Failed Successful Successful

125 grid-cr3.desy.de:8443/cream-pbs-desy Successful Successful Successful

126 grid-cr4.desy.de:8443/cream-pbs-desy Successful Successful Successful

127 grid0.fe.infn.it:8443/cream-pbs-grid Successful Successful Successful

128 grid001.fc.up.pt:8443/cream-pbs-biomed Successful Failed Failed

129 grid001.fe.up.pt:8443/cream-pbs-biomed Successful Failed Failed

130 grid001.ics.forth.gr:8443/cream-pbs-biomed Failed Failed Failed

131 grid002.jet.efda.org:8443/cream-pbs-biomed Successful Failed Successful

132 grid36.lal.in2p3.fr:8443/cream-pbs-biomed Failed Failed Failed

133 grid36.lal.in2p3.fr:8443/cream-pbs-sdj Failed Failed Failed

134 gridce.ilc.cnr.it:8443/cream-pbs-grid Failed Failed Failed

135 gridce0.pi.infn.it:8443/cream-lsf-biomed Failed Not Available Failed

136 gridce01.ifca.es:8443/cream-sge-biomed Failed Successful Failed

137 gridce02.ifca.es:8443/cream-sge-biomed Failed Failed Failed

138 gridce03.ifca.es:8443/cream-sge-biomed Failed Successful Failed

139 gridce1.pi.infn.it:8443/cream-lsf-biomed Failed Not Available Failed

140 gridce2.pi.infn.it:8443/cream-lsf-biomed Failed Not Available Failed

141 gridsrv2-4.dir.garr.it:8443/cream-pbs-grid Successful Successful Successful

142 grisuce.scope.unina.it:8443/cream-pbs-grisu long Successful Failed Failed

143 grisuce.scope.unina.it:8443/cream-pbs-grisu short Successful Successful Successful

144 hepgrid10.ph.liv.ac.uk:8443/cream-pbs-long Failed Successful Failed

145 hepgrid5.ph.liv.ac.uk:8443/cream-pbs-long Failed Successful Failed

146 hepgrid6.ph.liv.ac.uk:8443/cream-pbs-long Failed Successful Failed

147 hepgrid97.ph.liv.ac.uk:8443/cream-pbs-long Failed Successful Failed

148 heplnx206.pp.rl.ac.uk:8443/cream-pbs-grid Failed Failed Failed

149 heplnx207.pp.rl.ac.uk:8443/cream-pbs-grid Failed Failed Failed

150 heplnx208.pp.rl.ac.uk:8443/cream-pbs-grid Failed Failed Failed

151 juk.nikhef.nl:8443/cream-pbs-gratis Failed Failed Failed

152 kalkan1.ulakbim.gov.tr:8443/cream-pbs-biomed Successful Successful Successful

153 klomp.nikhef.nl:8443/cream-pbs-gratis Failed Failed Failed

154 lcgce12.jinr.ru:8443/cream-pbs-biomed Successful Successful Successful

155 lcgce2.shef.ac.uk:8443/cream-pbs-biomed Failed Failed Failed

156 lcgce21.jinr.ru:8443/cream-pbs-biomed Successful Successful Successful
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157 lcgce3.shef.ac.uk:8443/cream-pbs-biomed Failed Failed Failed

158 linux1.grid.creatis.insa-lyon.fr:8443/cream-pbs-qbiomed Successful Successful Successful

159 llrcream.in2p3.fr:8443/cream-pbs-biomed Failed Failed Failed

160 llrcream.in2p3.fr:8443/cream-pbs-sdj Failed Failed Failed

161 lpsc-ce.in2p3.fr:8443/cream-pbs-biomed Failed Failed Failed

162 lpsc-ce2.in2p3.fr:8443/cream-pbs-biomed Failed Failed Failed

163 lpsc-cream-ce.in2p3.fr:8443/cream-pbs-biomed Failed Failed Failed

164 lptace01.msfg.fr:8443/cream-pbs-biomed Failed Failed Failed

165 lptace01.msfg.fr:8443/cream-pbs-sdj Failed Failed Failed

166 marcream01.in2p3.fr:8443/cream-pbs-biomed Failed Failed Failed

167 marcream02.in2p3.fr:8443/cream-pbs-biomed Failed Failed Failed

168 ngiescream.i3m.upv.es:8443/cream-pbs-biomed Successful Successful Successful

169 node01-04.grid.renam.md:8443/cream-pbs-other Failed Successful Failed

170 node05-02.imi.renam.md:8443/cream-pbs-other Successful Successful Successful

171 node74.datagrid.cea.fr:8443/cream-pbs-biomed Successful Successful Successful

172 prod-ce-01.pd.infn.it:8443/cream-lsf-grid Successful Successful Successful

173 sampace.if.usp.br:8443/cream-pbs-biomed Failed Failed Failed

174 sbgce2.in2p3.fr:8443/cream-pbs-biomed Failed Failed Failed

175 snf-10952.vm.okeanos.grnet.gr:8443/cream-pbs-biomed Successful Failed Failed

176 svr009.gla.scotgrid.ac.uk:8443/cream-pbs-q1d Successful Successful Successful

177 svr009.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Successful Successful Successful

178 svr010.gla.scotgrid.ac.uk:8443/cream-pbs-q1d Successful Successful Successful

179 svr010.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Successful Successful Successful

180 svr011.gla.scotgrid.ac.uk:8443/cream-pbs-q1d Successful Successful Successful

181 svr011.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Successful Successful Successful

182 svr014.gla.scotgrid.ac.uk:8443/cream-pbs-q1d Successful Successful Successful

183 svr014.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Successful Successful Successful

184 svr026.gla.scotgrid.ac.uk:8443/cream-pbs-q1d Successful Successful Successful

185 svr026.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Successful Successful Successful

186 t2-ce-01.to.infn.it:8443/cream-pbs-biomed Failed Failed Failed

187 tochtli64.nucleares.unam.mx:8443/cream-pbs-biomed Successful Successful Successful

188 wario.univ-lille1.fr:8443/cream-pbs-biomed Failed Failed Failed

Table A.1: Successful and Failed Machines while Running the One Job of each

Data Set
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1 cale.uniandes.edu.co:8443/cream-pbs-biomed Good

2 ce-01.roma3.infn.it:8443/cream-pbs-grid Good

3 ce.fesb.egi.cro-ngi.hr:8443/cream-pbs-sunx2200 Good

4 ce.hpgcc.finki.ukim.mk:8443/cream-pbs-biomed Good

5 ce.irb.egi.cro-ngi.hr:8443/cream-pbs-hpdl580 Good

6 ce.irb.egi.cro-ngi.hr:8443/cream-pbs-sunx2200 Good

7 ce.scope.unina.it:8443/cream-pbs-egee long Good

8 ce.scope.unina.it:8443/cream-pbs-egee short Good

9 ce.srce.egi.cro-ngi.hr:8443/cream-pbs-hpdl580 Good

10 ce0.bordeaux.inra.fr:8443/cream-pbs-biomed Good

11 ce0.m3pec.u-bordeaux1.fr:8443/cream-pbs-biomed Good

12 ce01-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Good

13 ce01.up.pt:8443/cream-pbs-biomed Good

14 ce02.ngcc.acad.bg:8443/cream-pbs-biomed Good

15 ce02.tier2.hep.manchester.ac.uk:8443/cream-pbs-long Good

16 ce02.up.pt:8443/cream-pbs-biomed Good

17 ce04-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Good

18 ce05-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Good

19 ce05.esc.qmul.ac.uk:8443/cream-sge-sl6 lcg 1G long Good

20 ce06-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Good

21 ce06.esc.qmul.ac.uk:8443/cream-sge-sl6 lcg 1G long Good

22 ce07-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Good

23 ce07.esc.qmul.ac.uk:8443/cream-sge-sl6 lcg 1G long Good

24 ce08-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Good

25 ce1.ts.infn.it:8443/cream-lsf-grid Good

26 ce101.grid.ucy.ac.cy:8443/cream-pbs-biomed Good

27 ce3.ui.savba.sk:8443/cream-pbs-biomed Good

28 ceprod05.grid.hep.ph.ic.ac.uk:8443/cream-sge-grid.q Good

29 ceprod06.grid.hep.ph.ic.ac.uk:8443/cream-sge-grid.q Good

30 ceprod07.grid.hep.ph.ic.ac.uk:8443/cream-sge-grid.q Good

31 ceprod08.grid.hep.ph.ic.ac.uk:8443/cream-sge-grid.q Good

32 cert-37.pd.infn.it:8443/cream-lsf-grid Good

33 cirigridce01.univ-bpclermont.fr:8443/cream-pbs-biomed Good

34 cox01.grid.metu.edu.tr:8443/cream-pbs-biomed Good

35 cr1.ipp.acad.bg:8443/cream-pbs-biomed Bad

36 cream-ce01.ariagni.hellasgrid.gr:8443/cream-pbs-biomed Bad

37 cream-ce01.gridpp.rl.ac.uk:8443/cream-condor-grid1000M Good

38 cream-ce01.gridpp.rl.ac.uk:8443/cream-condor-grid2000M Good

39 cream-ce01.gridpp.rl.ac.uk:8443/cream-condor-grid3000M Good

40 cream-ce01.marie.hellasgrid.gr:8443/cream-pbs-biomed Good

41 cream-ce02.gridpp.rl.ac.uk:8443/cream-condor-grid1000M Good

42 cream-ce02.gridpp.rl.ac.uk:8443/cream-condor-grid2000M Good

43 cream-ce02.gridpp.rl.ac.uk:8443/cream-condor-grid3000M Good
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44 cream-ce02.marie.hellasgrid.gr:8443/cream-pbs-biomed Good

45 cream.afroditi.hellasgrid.gr:8443/cream-pbs-biomed Bad

46 cream.egi.cesga.es:8443/cream-sge-GRIDEGI large Good

47 cream.grid.uni-sofia.bg:8443/cream-pbs-biomed Bad

48 cream01-tic.ciemat.es:8443/cream-pbs-biomed Good

49 cream01.grid.auth.gr:8443/cream-pbs-biomed Bad

50 cream01.grid.uoi.gr:8443/cream-pbs-biomed Bad

51 cream01.kallisto.hellasgrid.gr:8443/cream-pbs-biomed Good

52 creamce.reef.man.poznan.pl:8443/cream-pbs-biomed Bad

53 creamce02.ciemat.es:8443/cream-pbs-medium Good

54 creamce03.ciemat.es:8443/cream-pbs-medium Good

55 cygnus.grid.rug.nl:8443/cream-pbs-medium Bad

56 cygnus.grid.rug.nl:8443/cream-pbs-short Bad

57 dwarf.wcss.wroc.pl:8443/cream-pbs-biomed Good

58 glite-cream.scai.fraunhofer.de:8443/cream-pbs-egbiomed Bad

59 grid-cr0.desy.de:8443/cream-pbs-desy Good

60 grid-cr1.desy.de:8443/cream-pbs-desy Good

61 grid-cr3.desy.de:8443/cream-pbs-desy Good

62 grid-cr4.desy.de:8443/cream-pbs-desy Good

63 grid0.fe.infn.it:8443/cream-pbs-grid Good

64 grid001.fc.up.pt:8443/cream-pbs-biomed Good

65 grid001.fe.up.pt:8443/cream-pbs-biomed Good

66 grid002.jet.efda.org:8443/cream-pbs-biomed Good

67 gridsrv2-4.dir.garr.it:8443/cream-pbs-grid Good

68 grisuce.scope.unina.it:8443/cream-pbs-grisu long Good

69 grisuce.scope.unina.it:8443/cream-pbs-grisu short Good

70 kalkan1.ulakbim.gov.tr:8443/cream-pbs-biomed Good

71 lcgce12.jinr.ru:8443/cream-pbs-biomed Good

72 lcgce21.jinr.ru:8443/cream-pbs-biomed Good

73 linux1.grid.creatis.insa-lyon.fr:8443/cream-pbs-qbiomed Good

74 ngiescream.i3m.upv.es:8443/cream-pbs-biomed Good

75 node05-02.imi.renam.md:8443/cream-pbs-other Good

76 node74.datagrid.cea.fr:8443/cream-pbs-biomed Good

77 prod-ce-01.pd.infn.it:8443/cream-lsf-grid Good

78 snf-10952.vm.okeanos.grnet.gr:8443/cream-pbs-biomed Bad

79 svr009.gla.scotgrid.ac.uk:8443/cream-pbs-q1d Bad

80 svr009.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Bad

81 svr010.gla.scotgrid.ac.uk:8443/cream-pbs-q1d Bad

82 svr010.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Bad

83 svr011.gla.scotgrid.ac.uk:8443/cream-pbs-q1d Bad

84 svr011.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Bad

85 svr014.gla.scotgrid.ac.uk:8443/cream-pbs-q1d Bad

86 svr014.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Bad
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87 svr026.gla.scotgrid.ac.uk:8443/cream-pbs-q1d Bad

88 svr026.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Bad

89 tochtli64.nucleares.unam.mx:8443/cream-pbs-biomed Good

Table A.2: Good and Bad Machines for 10 Minute Data Set
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1 cale.uniandes.edu.co:8443/cream-pbs-biomed Good

2 ce-01.roma3.infn.it:8443/cream-pbs-grid Good

3 ce-02.roma3.infn.it:8443/cream-pbs-grid Good

4 ce.fesb.egi.cro-ngi.hr:8443/cream-pbs-sunx2200 Good

5 ce.hpgcc.finki.ukim.mk:8443/cream-pbs-biomed Good

6 ce.irb.egi.cro-ngi.hr:8443/cream-pbs-hpdl580 Good

7 ce.irb.egi.cro-ngi.hr:8443/cream-pbs-sunx2200 Good

8 ce.scope.unina.it:8443/cream-pbs-egee short Good

9 ce.srce.egi.cro-ngi.hr:8443/cream-pbs-hpdl580 Good

10 ce.srce.egi.cro-ngi.hr:8443/cream-pbs-sunx2200 Good

11 ce.srce.egi.cro-ngi.hr:8443/cream-pbs-sunx4600 Bad

12 ce0.bordeaux.inra.fr:8443/cream-pbs-biomed Good

13 ce0.bordeaux.inra.fr:8443/cream-pbs-sdj Bad

14 ce0.m3pec.u-bordeaux1.fr:8443/cream-pbs-biomed Good

15 ce01-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Good

16 ce02.tier2.hep.manchester.ac.uk:8443/cream-pbs-long Good

17 ce04-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Good

18 ce05-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Good

19 ce06-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Good

20 ce07-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Good

21 ce08-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Good

22 ce1.ts.infn.it:8443/cream-lsf-grid Good

23 ce101.grid.ucy.ac.cy:8443/cream-pbs-biomed Good

24 ce3.ppgrid1.rhul.ac.uk:8443/cream-pbs-biomed Good

25 ce3.ui.savba.sk:8443/cream-pbs-biomed Good

26 ceprod05.grid.hep.ph.ic.ac.uk:8443/cream-sge-grid.q Good

27 ceprod06.grid.hep.ph.ic.ac.uk:8443/cream-sge-grid.q Good

28 ceprod07.grid.hep.ph.ic.ac.uk:8443/cream-sge-grid.q Good

29 ceprod08.grid.hep.ph.ic.ac.uk:8443/cream-sge-grid.q Good

30 cert-37.pd.infn.it:8443/cream-lsf-grid Good

31 cirigridce01.univ-bpclermont.fr:8443/cream-pbs-biomed Good

32 cox01.grid.metu.edu.tr:8443/cream-pbs-biomed Good

33 cr1.ipp.acad.bg:8443/cream-pbs-biomed Good

34 cream-ce.cat.cbpf.br:8443/cream-pbs-biomed Good

35 cream-ce01.gridpp.rl.ac.uk:8443/cream-condor-grid2000M Good

36 cream-ce01.gridpp.rl.ac.uk:8443/cream-condor-grid3000M Good

37 cream-ce01.marie.hellasgrid.gr:8443/cream-pbs-biomed Bad

38 cream-ce02.cat.cbpf.br:8443/cream-pbs-biomed Good

39 cream-ce02.gridpp.rl.ac.uk:8443/cream-condor-grid1000M Good

40 cream-ce02.gridpp.rl.ac.uk:8443/cream-condor-grid2000M Good

41 cream-ce02.gridpp.rl.ac.uk:8443/cream-condor-grid3000M Good

42 cream.afroditi.hellasgrid.gr:8443/cream-pbs-biomed Good

43 cream.egi.cesga.es:8443/cream-sge-GRIDEGI large Good
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44 cream.grid.cyf-kr.edu.pl:8443/cream-pbs-biomed Good

45 cream.grid.uni-sofia.bg:8443/cream-pbs-biomed Bad

46 cream01-tic.ciemat.es:8443/cream-pbs-biomed Good

47 cream01.grid.auth.gr:8443/cream-pbs-biomed Bad

48 cream01.grid.uoi.gr:8443/cream-pbs-biomed Good

49 cream01.kallisto.hellasgrid.gr:8443/cream-pbs-biomed Good

50 cream02.grid.cyf-kr.edu.pl:8443/cream-pbs-biomed Good

51 cream2.ppgrid1.rhul.ac.uk:8443/cream-pbs-biomed Bad

52 creamce02.ciemat.es:8443/cream-pbs-medium Good

53 creamce03.ciemat.es:8443/cream-pbs-medium Good

54 cygnus.grid.rug.nl:8443/cream-pbs-medium Good

55 dc2-grid-66.brunel.ac.uk:8443/cream-pbs-biomed Good

56 desdemona.zih.tu-dresden.de:8443/cream-pbs-gridlong scli Good

57 dwarf.wcss.wroc.pl:8443/cream-pbs-biomed Bad

58 epgr02.ph.bham.ac.uk:8443/cream-pbs-long Bad

59 epgr02.ph.bham.ac.uk:8443/cream-pbs-short Bad

60 glite-cream.scai.fraunhofer.de:8443/cream-pbs-egbiomed Good

61 grid-cr0.desy.de:8443/cream-pbs-desy Good

62 grid-cr2.desy.de:8443/cream-pbs-desy Good

63 grid-cr3.desy.de:8443/cream-pbs-desy Good

64 grid-cr4.desy.de:8443/cream-pbs-desy Good

65 grid0.fe.infn.it:8443/cream-pbs-grid Good

66 gridce01.ifca.es:8443/cream-sge-biomed Bad

67 gridce03.ifca.es:8443/cream-sge-biomed Bad

68 gridsrv2-4.dir.garr.it:8443/cream-pbs-grid Good

69 grisuce.scope.unina.it:8443/cream-pbs-grisu short Good

70 hepgrid10.ph.liv.ac.uk:8443/cream-pbs-long Bad

71 hepgrid5.ph.liv.ac.uk:8443/cream-pbs-long Bad

72 hepgrid6.ph.liv.ac.uk:8443/cream-pbs-long Bad

73 hepgrid97.ph.liv.ac.uk:8443/cream-pbs-long Bad

74 kalkan1.ulakbim.gov.tr:8443/cream-pbs-biomed Bad

75 lcgce12.jinr.ru:8443/cream-pbs-biomed Good

76 lcgce21.jinr.ru:8443/cream-pbs-biomed Good

77 linux1.grid.creatis.insa-lyon.fr:8443/cream-pbs-qbiomed Good

78 ngiescream.i3m.upv.es:8443/cream-pbs-biomed Good

79 node01-04.grid.renam.md:8443/cream-pbs-other Bad

80 node05-02.imi.renam.md:8443/cream-pbs-other Good

81 node74.datagrid.cea.fr:8443/cream-pbs-biomed Good

82 prod-ce-01.pd.infn.it:8443/cream-lsf-grid Good

83 svr009.gla.scotgrid.ac.uk:8443/cream-pbs-q1d Bad

84 svr009.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Bad

85 svr010.gla.scotgrid.ac.uk:8443/cream-pbs-q1d Bad

86 svr010.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Bad
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87 svr011.gla.scotgrid.ac.uk:8443/cream-pbs-q1d Bad

88 svr011.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Bad

89 svr014.gla.scotgrid.ac.uk:8443/cream-pbs-q1d Bad

90 svr014.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Bad

91 svr026.gla.scotgrid.ac.uk:8443/cream-pbs-q1d Bad

92 svr026.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Bad

93 tochtli64.nucleares.unam.mx:8443/cream-pbs-biomed Good

Table A.3: Good and Bad Machines for 5 Minute Data Set
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1 ce-01.roma3.infn.it:8443/cream-pbs-grid Good

2 ce.fesb.egi.cro-ngi.hr:8443/cream-pbs-sunx2200 Good

3 ce.hpgcc.finki.ukim.mk:8443/cream-pbs-biomed Good

4 ce.irb.egi.cro-ngi.hr:8443/cream-pbs-sunx2200 Good

5 ce.scope.unina.it:8443/cream-pbs-egee short Bad

6 ce.srce.egi.cro-ngi.hr:8443/cream-pbs-sunx4600 Bad

7 ce0.bordeaux.inra.fr:8443/cream-pbs-biomed Good

8 ce0.m3pec.u-bordeaux1.fr:8443/cream-pbs-biomed Good

9 ce01-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Good

10 ce02.ngcc.acad.bg:8443/cream-pbs-biomed Good

11 ce02.tier2.hep.manchester.ac.uk:8443/cream-pbs-long Good

12 ce04-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Good

13 ce05-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Good

14 ce06-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Good

15 ce08-lcg.cr.cnaf.infn.it:8443/cream-lsf-biomed Good

16 ce1.ts.infn.it:8443/cream-lsf-grid Bad

17 ce101.grid.ucy.ac.cy:8443/cream-pbs-biomed Bad

18 ce3.ui.savba.sk:8443/cream-pbs-biomed Good

19 ceprod05.grid.hep.ph.ic.ac.uk:8443/cream-sge-grid.q Good

20 ceprod06.grid.hep.ph.ic.ac.uk:8443/cream-sge-grid.q Good

21 ceprod07.grid.hep.ph.ic.ac.uk:8443/cream-sge-grid.q Good

22 ceprod08.grid.hep.ph.ic.ac.uk:8443/cream-sge-grid.q Good

23 cert-37.pd.infn.it:8443/cream-lsf-grid Good

24 cirigridce01.univ-bpclermont.fr:8443/cream-pbs-biomed Good

25 cox01.grid.metu.edu.tr:8443/cream-pbs-biomed Good

26 cream-ce-2.ba.infn.it:8443/cream-pbs-infinite Bad

27 cream-ce-2.ba.infn.it:8443/cream-pbs-long Good

28 cream-ce-2.ba.infn.it:8443/cream-pbs-short Bad

29 cream-ce-3.ba.infn.it:8443/cream-pbs-infinite Good

30 cream-ce-3.ba.infn.it:8443/cream-pbs-long Good

31 cream-ce-3.ba.infn.it:8443/cream-pbs-short Good

32 cream-ce01.ariagni.hellasgrid.gr:8443/cream-pbs-biomed Bad

33 cream-ce01.gridpp.rl.ac.uk:8443/cream-condor-grid1000M Good

34 cream-ce01.gridpp.rl.ac.uk:8443/cream-condor-grid2000M Good

35 cream-ce01.gridpp.rl.ac.uk:8443/cream-condor-grid3000M Good

36 cream-ce01.marie.hellasgrid.gr:8443/cream-pbs-biomed Good

37 cream-ce02.gridpp.rl.ac.uk:8443/cream-condor-grid1000M Good

38 cream-ce02.gridpp.rl.ac.uk:8443/cream-condor-grid2000M Good

39 cream-ce02.gridpp.rl.ac.uk:8443/cream-condor-grid3000M Good

40 cream.afroditi.hellasgrid.gr:8443/cream-pbs-biomed Bad

41 cream.egi.cesga.es:8443/cream-sge-GRIDEGI large Good

42 cream.grid.uni-sofia.bg:8443/cream-pbs-biomed Bad

43 cream01.grid.auth.gr:8443/cream-pbs-biomed Bad
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44 cream01.kallisto.hellasgrid.gr:8443/cream-pbs-biomed Good

45 cream2.ppgrid1.rhul.ac.uk:8443/cream-pbs-biomed Good

46 creamce02.ciemat.es:8443/cream-pbs-medium Good

47 creamce03.ciemat.es:8443/cream-pbs-medium Good

48 cygnus.grid.rug.nl:8443/cream-pbs-medium Good

49 cygnus.grid.rug.nl:8443/cream-pbs-short Good

50 dc2-grid-66.brunel.ac.uk:8443/cream-pbs-biomed Good

51 dc2-grid-70.brunel.ac.uk:8443/cream-pbs-biomed Bad

52 dwarf.wcss.wroc.pl:8443/cream-pbs-biomed Good

53 grid-cr0.desy.de:8443/cream-pbs-desy Good

54 grid-cr1.desy.de:8443/cream-pbs-desy Good

55 grid-cr2.desy.de:8443/cream-pbs-desy Good

56 grid-cr3.desy.de:8443/cream-pbs-desy Good

57 grid-cr4.desy.de:8443/cream-pbs-desy Good

58 grid0.fe.infn.it:8443/cream-pbs-grid Good

59 grid002.jet.efda.org:8443/cream-pbs-biomed Good

60 gridsrv2-4.dir.garr.it:8443/cream-pbs-grid Good

61 grisuce.scope.unina.it:8443/cream-pbs-grisu short Bad

62 kalkan1.ulakbim.gov.tr:8443/cream-pbs-biomed Good

63 lcgce12.jinr.ru:8443/cream-pbs-biomed Good

64 lcgce21.jinr.ru:8443/cream-pbs-biomed Good

65 linux1.grid.creatis.insa-lyon.fr:8443/cream-pbs-qbiomed Good

66 ngiescream.i3m.upv.es:8443/cream-pbs-biomed Good

67 node05-02.imi.renam.md:8443/cream-pbs-other Bad

68 node74.datagrid.cea.fr:8443/cream-pbs-biomed Good

69 prod-ce-01.pd.infn.it:8443/cream-lsf-grid Good

70 svr009.gla.scotgrid.ac.uk:8443/cream-pbs-q1d Bad

71 svr009.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Bad

72 svr010.gla.scotgrid.ac.uk:8443/cream-pbs-q1d Bad

73 svr010.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Bad

74 svr011.gla.scotgrid.ac.uk:8443/cream-pbs-q1d Bad

75 svr011.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Bad

76 svr014.gla.scotgrid.ac.uk:8443/cream-pbs-q1d Bad

77 svr014.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Bad

78 svr026.gla.scotgrid.ac.uk:8443/cream-pbs-q1d Bad

79 svr026.gla.scotgrid.ac.uk:8443/cream-pbs-q2d Bad

80 tochtli64.nucleares.unam.mx:8443/cream-pbs-biomed Good

Table A.4: Good and Bad Machines for 2.5 Minute Data Set
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