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Abstract

It is known that unstable periodic orbits of a given map give all informa-
tion about the natural measure of a chaotic attractor. There are conditions
that need to be satisfied for the existence of such measure but if it exists
then the natural measure of some subset S is, by definition, the fraction of
iterates of the orbit {f i(x0)}, for almost every point x0 (Lebesgue), lying in
S. So, we can look to this measure as a density of periodic returns.

This work tries to characterize the density function of the first Poincaré
returns in terms of unstable periodic orbits. We present a conjecture on how
periodic orbits may be used to compute the density of the first Poincaré re-
turns and we present numerical results that support the conjecture for some
well known dynamical systems. We prove, in the case of Markov transforma-
tion under some conditions, that the density function of the first Poincaré
returns is completely determined by the unstable periodic points for an ele-
ment or for a perfect union of elements of the Markov partition of the map.
We also discuss the extension to a more general subset S of the phase space.
Unlike the work of Grebogi, Ott and York to calculate the natural measure,
to characterize the density function of the first Poincaré returns we need not
all but just some special unstable periodic orbits.

The close relation between periodic orbits and the Poincaré returns allows
for estimates of relevant quantities in dynamical systems, as the Kolmogorov-
Sinai entropy. Since return times can be trivially observed and measured,
this work has also application to the treatment of experimental systems.

Resumo

É sabido que é possível calcular a medida natural usando as órbitas
periódicas instáveis de uma dada aplicação que exiba um atractor chaótico.
Existem condições a serem satisfeitas para que exista tal medida mas no
caso de ela existir então ela é, por definição, a fracção de vezes que a órbita
de quase todo o ponto (Lebesgue) visita o conjunto que queremos medir.
Assim sendo, esta medida pode ser vista como uma densidade de retornos
periódicos.

Neste trabalho tenta-se caracterizar a densidade dos primeiros retornos de
Poincaré usando as órbitas periódicas instáveis do sistema. É conjecturada
uma forma desta densidade ser calculada usando as órbitas periódicas bem
como apresentadas simulações numéricas, usando sistemas dinâmicos clássi-
cos, que sustentam a conjectura. É provada a conjectura para a classe das
transformações de Markov sob certas condições e são também discutidas as
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possíveis extensões do resultado. Ao contrário do que apresenta o trabalho
do Grebogi, Ott e Yorke (onde caracterízam a medida natural usando todas
as órbitas periódicas instáveis de um certo período), para caracterizar a den-
sidade dos primeiros retornos de Poincaré basta considerar algumas e não
todas as órbitas periódicas instáveis.

Esta relação próxima entre as órbitas periódicas e a densidade dos primeiros
retornos permite estimativas de quantidades relevantes em sistemas dinâmi-
cos como por exemplo a entropia de Kolmogorov-Sinai. Como os tempos
de retorno podem ser trivialmente observados e medidos então este trabalho
tem também uma forte aplicação ao tratamento de dados experimentais.

Résumé
On connaît déjà que les órbites périodiques d’une systm̀e nous donnent

des informations à propos de la mesure naturelle d’un attractor chaotique. Il
y a des conditions qui assurent l’existence de cette mesure. Cependant si la
mesure existe, elle correspond à la mesure naturelle pour un sous-ensemble S.
Cette mesure est, par définition, la fraction des itérés que l’orbite {f i(x0)}i∈N
visite S, pour presque tous les points x0. Par consequence, il est possible de
considerer cette mesure comme une mesure des densités des retours péri-
odiques.

Dans cette thèse, nous ensayerons d’étudier la fonction densité des prim-
iers retours de Poincaré en usant les orbites périodiques instables. Nous sug-
gerons un conjecture pour calculer la fonction densité des premiers retours
de Poincaré et nous présenterons des simulations associés à des systemes dy-
namiques classiques, supportant la conjecture. Nous démontrerons que, sous
certaines conditions, dans le cas des transformations de Markov, la fonction
de premier retour est complement déterminé par les points périodiques insta-
bles associés a un element ou par l’union parfaite des élèments de la partition
de Markov.

Nous discuterons l’extension de ce résultat pour un sous-ensemble de
l’espace de phase. Malgré le fact que Grebogi, Ott et York caracterisent la
mesure naturelle en usant toutes les orbites périodiques instables, pour carac-
térizer la fonction densité des primiers retourns de Poincaré il faut seulement
certaines órbites périodiques instables spéciales.

Cette rélation proche entre les órbites périodiques et les retours de Poincaré
est valide pour les estimatives de quantités centrales aux systémes dinamiques,
comme l’entropie de Kolmogorov-Sinai. Étant donné que les temps de retours
sont computables et mensurables, cette thèse a une application aux traite-
ment des systèmes expérimentaux.
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Introduction

State of Art

In 60s, Lorenz presented to the world a very simple dynamical system
with sensitivity to initial conditions[12]. Then, there were many attempts
to explain Lorenz’s observation. Among these, Li and Yorke[11] proved a
theorem on sensitivity to initial conditions for 1-dimensional maps, the well
known result "period three implies chaos". Here the definition of chaos is
not only about sensitivity to initial conditions. More precisely, f : V → V is
chaotic on V if

1. f has sensitive dependence on initial conditions,

2. f is topologically transitive,

3. periodic points are dense in V .

On the literature there are some different ways to define "chaotic attrac-
tors". Some of them are not equivalent but in general, a chaotic attractor
is a chaotic set (a forward limit set of a chaotic orbit) that is an attractor
(a forward limit set which attracts a set of initial values that has nonzero
Lebesgue measure). By chaotic orbit of some point x we mean an orbit that
is bounded, is not asymptotically periodic and the orbit has a positive Lya-
punov exponent. In this thesis we adopt the above definitions of "chaotic
map", "chaotic attractor" and "chaotic orbit".

In 70s and 80s, considerable attention was given to "chaotic attractors"
in dynamical systems. Some important results were proved for instance the
Lasota and Yorke theorem[10] about the existence of invariant measures in
such attractors. In the end of the 80’s, Grebogi, Ott and Yorke[7] published
a paper about unstable periodic orbits and the dimensions of multifractal
chaotic attractors. Among other results proved in this article, there is one
particular result about natural measure and periodic points. Essentially, they
proved that the natural measure of a chaotic attractor, over some conditions
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on the dynamical system, is totally described by the unstable periodic orbits.
More precisely:

Consider a d-dimensional C2 map of the form xn+1 = F (xn), where x ∈
Rd = Ω and Ω represents the phase space of the system. Consider A ⊂ Ω to
represent an attractor.

For a subset S of the phase space and an initial condition x0 in the basin
of attraction of A, we define µ(x0, S) as the fraction of time the trajectory
originating at x0 spends in S in the limit that the length of the trajectory
goes to infinity. So,

µ(x0, S) = lim
n→∞

]{F i(x0) ∈ S, 0 ≤ i ≤ n}
n

. (1)

Definition 1 If µ(x0, S) has the same value for almost every x0 in the basin
of attraction of A, then we call the value µ(S) the natural measure of S.

By almost every x0 we mean with respect to the Lebesgue measure.

For now we assume that our attractor A has always a natural measure
associated to it and is mixing: given two subsets, B1 and B2, in A, we have:

lim
n→∞

µ(B1 ∩ F−n(B2)) = µ(B1)µ(B2).

In addition, we consider A to be a hyperbolic set: Let F : Rn → Rn be
a diffeomorphism, and let M ⊂ Rn be a compact invariant set for f . We
denote by TM the restriction of the tangent bundle TRn to M .

Definition 2 F is uniformly hyperbolic onM if for every x ∈M the tangent
space TxM splits into a direct sum TxM = Eu

x ⊕ Es
x such that

DF (x)Eu
x = Eu

F (x),

DF (x)Es
x = Es

F (x),

and there are constants c > 0 and 0 < θ < 1 independent of x such that

||DF n(x)v|| < cθn||v|| for v ∈ Es
x,

||DF−n(x)v|| < cθn||v|| for v ∈ Eu
x ,

holds for n ≥ 0.

The eigenvalues of the Jacobian matrix of the n-th iterate, F n, at the jth
fixed point xj of F n are denoted by λ1j, λ2j, ..., λuj, λ(u+1)j, ..., λdj, where we
order the eigenvalues from the biggest, in magnitude, to the lowest and the
number of the unstable eigenvalues is u. Let Lj(n) be the product of absolute
values of the unstable eigenvalues at xj. Then it was proved by Bowen in
1972[4] and also by Grebogi, Ott and Yorke in 1988[7] the following:
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Theorem 3 For mixing hyperbolic attractors, the natural probability mea-
sure of the attractor contained in some closed subset S of the d-dimensional
phase space is

µ(S) = lim
n→∞

∑

j

L−1
j (n), (2)

where the summation is taken over all the fixed points xj ∈ S of F n.

So, this formula is essentially the representation of the natural measure in
terms of the periodic orbits embedded in the attractor.

For nonhyperbolic systems there is no such result. However, on the paper
[9], they test the goodness of such a periodic-orbit characterization of the
natural measure for nonhyperbolic systems from unstable periodic orbits.
They suggest that the previous result is typically valid for nonhyperbolic
systems.

Contribution of the present thesis
This work consists essentially on proving the existence of a strong relation

between the periodic orbits of a given chaotic map and the density of the
first returns. As it was referred before, the natural measure is characterized,
under some assumptions on the map, by the unstable periodic orbits. The
goal here is similar but for the density function of the first returns. The first
challenge was to identify which unstable periodic orbits will characterize such
density since we already knew that, for a sufficiently large period, all orbits
characterize the natural measure of a given subset of the phase space.

Chapter 2 consists of two articles ([3],[14]) with numerical simulations.
These articles suggest the type of unstable periodic orbits, defined in section
1.1, to estimate the density of the first returns. The conjecture, which is
presented in section 1.2 with more detail, is tested in some well known chaotic
dynamical systems as the logistic map, the Henon map and the Chua’s circuit
and the results suggest that the conjecture is plausible. Also, in [14], is
presented an application of the conjecture where we use it to calculate an
approximate value for the Kolmogorov-Sinai entropy of the logistic family
and, again, the numerical simulations suggest that the conjecture is plausible.
These articles are presented as a motivation for the results in Chapter 3, that
are the main results in the thesis.

Having tested the conjecture numerically we proceeded to its analytical
treatment. Chapter 3 is dedicated to the proof of this fact for some class
of dynamical systems and for some special subsets of the phase space. In
section 3.2 is presented the definition of Markov transformation and it is
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proved the conjecture on the elements of the Markov partition for the linear
case. We start, in section 3.3, with the description of the density function of
the first return on the space of sequences and with properties of the space
of sequences that will be used to prove the result. Markov transformations
allows us to construct a topological conjugacy between the original map and
the shift acting on the space of the sequences. Under some conditions on
this class of dynamical systems, we prove, by theorem 23, the conjecture
for elements of the Markov partition. Also we prove (theorem 31 and 32)
the conjecture for subsets that are represented by a union of elements of the
Markov partition. Finally we discuss the extension of this result to more
general subsets of phase space and we present some numerical simulation to
estimate the error, since theorem 23 and theorem 31 are not true anymore,
only in an approximate sense.

Chapter 4 is dedicated to the main conclusions of this work and to future
work.
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Chapter 1

Preliminaries

1.1 Definitions
Consider some discrete dynamical system generated by the map F : I → I,

where I is a compact metric space. We assume that we have always a chaotic
attractor, A, that is dense in I.

Definition 4 A non-recurrent periodic point of F with period p > 1, with
respect to a set S ⊂ I, is a periodic point of period p inside S that only
returns to S after p iterations. When this fails because F j(x) ∈ S for some
1 < j < p with x ∈ S and F p(x) = x, the periodic point is called recurrent.

For an initial condition x0 in the basin of attraction of A, we define
µ(x0, S) as

µ(x0, S) = lim
n→∞

#{F i(x0) ∈ S, 0 ≤ i ≤ n}
n

. (1.1)

Definition 5 If µ(x0, S) has the same value for Lebesgue almost every x0 in
the basin of attraction of A, then we denote this value by µ(S) and say that
µ(S) is the natural measure of the attractor inside S.

Observe that µ, defined as before, is always F -invariant: for almost all x0 ∈ I

µ(F−1(S)) = lim
n→∞

#{F i(x0) ∈ F−1(S), 0 ≤ i ≤ n}
n

=

= lim
n→∞

#{F i+1(x0) ∈ S, 0 ≤ i ≤ n}
n

=

= lim
n→∞

#{F i(x0) ∈ S, 1 ≤ i ≤ n+ 1}
n

=

1



= lim
n→∞

#{F i(x0) ∈ S, 0 ≤ i ≤ n} − r1 + r2

n
=

= µ(S) + lim
n→∞

r2 − r1

n
= µ(S),

where rj ∈ {0, 1} ∀j ∈ {1, 2}.

Definition 6 A natural number τ , τ > 0, is the first Poincaré return to
S of a point x0 ∈ S if F τ (x0) ∈ S and there is no other τ ∗ < τ such that
F τ∗(x0) ∈ S.

Definition 7 The density function of the first return of length p for
some subset S, denoted by ρ(p, S), is defined as the fraction, in measure, of
points inside S that have first Poincaré returns of length p. Equivalently,

ρ(p, S) =
µ(S ′)

µ(S)
,

where S ′ = F−p(S) ∩ S − (∪p−1
i=1F

−i(S) ∩ S) and µ is the natural measure.

Definition 8 For a given natural number p we define

µNR(p, S) =
∑

j

L−1
uj ,

where it is considered in the summation all non-recurrent periodic points with
period p, with respect to S, and Luj is the product of the absolute values of
unstable eigenvalues of DF p(xj) for the jth non-recurrent periodic point, xj,
inside S.

In particular, for a 1-dimensional expanding map, for some subset S of the
phase space and for a periodic point xj ∈ S of period p, we have Luj(xj) =
|(F p)′(xj)|.

The measure of recurrent points, µR(p, S), may be defined in a similar
way using the recurrent unstable periodic points.

1.2 Conjecture
For a chaotic attractor A generated by a mixing uniformly hyperbolic map F ,
for an open ball S on the basin of attraction of A we have that

ρ(τ, S) = µNR(τ, S). (1.2)

2



Essentially we conjecture that between all orbits, that the Grebogi, Ott
and Yorke formula uses to calculate the natural measure, only the non-
recurrent ones will give us the information about the frequency of the first
Poincaré return on a subset S of the basin of attraction of the chaotic at-
tractor A.

Obviously the conjecture is false for a general subset S with at least one
non-recurrent periodic point of period τ inside it since we can simply consider
S ′ = S − {periodic points of period τ} and the result is false for S ′ and τ .
However we would like to know how common are the sets for which it holds.
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Chapter 2

Numerical Evidences

2.1 Article 1 - Kolmogorov-Sinai entropy from
recurrence times

Physics Letters A 374 (2010) 1135-1140.
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KOLMOGOROV-SINAI ENTROPY FROM
RECURRENCE TIMES

M. S. BAPTISTA(1)(2), E. J. NGAMGA(3), PAULO R. F. PINTO(1),
MARGARIDA BRITO(1), J. KURTHS(3)

(1)CMUP - Centro de Matemática da Universidade do Porto
Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

(2)Institute for Complex Systems and Mathematical Biology
King’s College, University of Aberdeen

AB24 3UE Aberdeen, UK

(3)Potsdam Institute for Climate Impact Research
Telegraphenberg, 14412 Potsdam, Germany

Abstract. Observing how long a dynamical system takes to re-
turn to some state is one of the most simple ways to model and
quantify its dynamics from data series. This work proposes two for-
mulas to estimate the KS entropy and a lower bound of it, a sort
of Shannon’s entropy per unit of time, from the recurrence times
of chaotic systems. One formula provides the KS entropy and is
more theoretically oriented since one has to measure also the low
probable very long returns. The other provides a lower bound for
the KS entropy and is more experimentally oriented since one has
to measure only the high probable short returns. These formulas
are a consequence of the fact that the series of returns do contain
the same information of the trajectory that generated it. That sug-
gests that recurrence times might be valuable when making models
of complex systems.

1. Introduction

Recurrence times measure the time interval a system takes to return
to a neighborhood of some state, being that it was previously in some
other state. Among the many ways time recurrences can be defined,
two approaches that have recently attracted much attention are the
first Poincaré recurrence times (FPRs) [1] and the recurrence plots
(RPs) [2].

While Poincaré recurrences refer to the sequence of time intervals be-
tween two successive visits of a trajectory (or a signal) to one particular
interval (or a volume if the trajectory is high dimensional), a recurrence
plot refers to a visualization of the values of a square array which in-
dicates how much time it takes for two points in a trajectory with M
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2 M. BAPTISTA, E. NGAMGA, P. PINTO, M. BRITO, J. KURTHS

points to become neighbors again. Both techniques provide similar re-
sults but are more appropriately applicable in different contexts. While
the FPRs are more appropriated to obtain exact dynamical quantities
(Lyapunov exponents, dimensions, and the correlation function) of dy-
namical systems [3], the RPs are more oriented to estimate relevant
quantities and statistical characteristics of data coming from complex
systems [4].

The main argument in order to use recurrence times to model com-
plex systems [5] is that one can easily have experimental access to
them. In order to know if a model can be constructed from the re-
currence times, it is essential that at least the series of return times
contains the same amount of information generated by the complex
system, information being quantified by the entropy.

Entropy is an old thermodynamic concept and refers to the disorga-
nized energy that cannot be converted into work. It was first math-
ematically quantified by Boltzmann in 1877 as the logarithm of the
number of microstates that a gas occupies. More recently, Shannon [6]
proposed a more general way to measure entropy HS in terms of the
probabilities ρi of all possible i states of a system:

(1) HS = −
∑

i

ρi log (ρi).

Applied to non-periodic continuous trajectories, e.g. chaotic trajec-
tories, HS is an infinite quantity due to the infinitely many states ob-
tained by partitioning the phase space in arbitrarily small sites. There-
fore, for such cases it is only meaningful to measure entropy relative to
another trajectory. In addition, once a dynamical system evolves with
time, it is always useful for comparison reasons to measure its entropy
production per unit of time.

Such an ideal entropy definition for a dynamical system was intro-
duced by Kolmogorov in 1958 [7] and reformulated by Sinai in 1959. It
is known as the Kolmogorov-Sinai (KS) entropy, denoted by HKS, basi-
cally the Shannon’s entropy of the set per unit of time [8], and it is the
most successful invariant quantity that characterize a dynamical system
[9]. However, the calculation of the KS entropy to systems that might
possess an infinite number of states is a difficult task, if not impossible.
For a smooth chaotic system [10] (typically happens for dissipative sys-
tems that present an attractor), Pesin [11] proved an equality between
HKS and the sum of all the positive Lyapunov exponents. However,
Lyapunov exponents are difficult or even impossible to be calculated
in systems whose equations of motion are unknown. Therefore, when
treating data coming from complex systems, one should use alternative
ways to calculate the KS entropy, instead of applying Pesin’s equality.

Methods to estimate the correlation entropy, K2, a lower bound of
HKS, and to calculate HKS from time series were proposed in Refs.
[12, 13]. In Ref. [12] K2 is estimated from the correlation decay and in
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Ref. [13] by the determination of a generating partition of phase space
that preserves the value of the entropy. But while the method in Ref.
[12] unavoidably suffers from the same difficulties found in the proper
calculation of the fractal dimensions from data sets, the method in Ref.
[13] requires the knowledge of the generating partitions, information
that is not trivial to be extracted from complex data [14]. In addition,
these two methods and similar others as the one in Ref. [15] require
the knowledge of a trajectory. Our work is devoted to systems whose
trajectory cannot be measured.

A convenient way of determining all the relevant states of a sys-
tem and their probabilities (independently whether such a system is
chaotic) is provided by the FPRs and the RPs. In particular to the
Shannon’s entropy, in Refs. [16, 17, 18, 4] ways were suggested to es-
timate it from the RPs. In Refs. [16, 17, 4] a subset of all the possible
probabilities of states, the probabilities related to the level of coher-
ence/correlation of the system, were considered in Eq. (1). Therefore,
as pointed out in Ref. [18], the obtained entropic quantity does not
quantify the level of disorganization of the system. Remind that un-
avoidably Shannon’s entropy calculated from RPs or FPRs depends on
the resolution with which the returns are measured.

The main result of this contribution is to show how to easily esti-
mate the KS-entropy from return times, without the knowledge of a
trajectory. We depart from similar ideas as in Refs. [16, 17, 18, 4]
and show that the KS entropy is the Shannon entropy [in Eq. (1)] cal-
culated considering the probabilities of all the return times observed
divided by the length of the shortest return measured. This result is
corroborated with simulations on the logistic map, the Hénon map, and
coupled maps. We also show how to estimate a lower bound for the
KS entropy using for that the returns with the shortest lengths (the
most probable returns), an approach oriented to the use of our ideas
in experimental data. Finally, we discuss in more details the intuitive
idea of Lettelier [18] to calculate the Shannon’s entropy from a RP and
show the relation between Letellier’s result and the KS entropy.

2. Estimating the KS entropy from time returns

Let us start with some definitions. By measuring two subsequent
returns to a region, one obtains a series of time intervals (FPRs) de-
noted by τi (with i = 1, . . . , N). The characterization of the FPRs is
done by the probability distribution ρ(τ,B) of τi, where B represents
the volume within which the FPRs are observed. In this work, B is a
D-dimensional box, with sides ǫ1, and D is the phase space dimension
of the system being considered. We denote the shortest return to the
region B as τmin(B).
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Given a trajectory {xi}Mi=1, the recurrence plot is a two-dimensional
graph that helps the visualization of a square array Rij:

(2) Rij = θ(ǫ2 − ‖xi − xj‖)
where ǫ2 is a predefined threshold and θ is the Heaviside function [2].
In the coordinate (i, j) of the RP one plots a black point if Rij = 1,
and a white point otherwise.

There are many interesting ways to characterize a RP, all of them
related to the lengths (and their probabilities of occurrence) of the
diagonal, horizontal, and vertical segments of recurrent points (black
points) and of nonrecurrent points (white points). Differently from
Ref. [18] where it was used the nonrecurrent diagonal segments, we
consider here the vertical nonrecurrent and recurrent segments because
they provide a direct link to the FPRs [19].

Given a column i, a vertical segment of Q white points starting
at j = p and ending at j = p + Q − 1, indicates that a trajectory
previously in the neighborhood of the point xi returns to it firstly after
Q + 1 iterations in the neighborhood of the point xi, basically the
same definition as the FPR to a volume centered at xi. However, the
white points represent returns to the neighborhood of xi which are
larger than 1. In order to obtain the returns of length 1, one needs
to use the recurrent segments, the segments formed by black points.
A recurrent vertical segment at the column i, starting at j = p and
ending at j = p + Q, means that it occurred Q first returns of length
1 to the neighborhood of the point xi. The probability density of the
return times observed in the RP is represented also by ρ(τ,B). It is
constructed considering the first returns observed in all columns of the
RP and it satisfies

∫
ρ(τ,B)dτ = 1.

Notice that the Shannon’s entropy of first returns of non-periodic
continuous systems becomes infinite [20] as the size ǫ of the volume
B approaches zero. For chaotic systems (as well as for stochastic sys-
tems) the reason lies on the fact that the probability density ρ(τ,B)
approaches the exponential form µe−µτ [21], where µ is the probability
of finding the trajectory within the volume B.

Placing in Eq. (1) the probabilities of returns ρ(τ,B), we can write
that HKS = HS/T , where T is some characteristic time of the returns
[8] that depends on how the returns are measured. For the FPRs
there exists three characteristic times: the shortest, the longest and
the average return. The quantity T cannot be the longest return since
it is infinite. It cannot be the average return, since one would arrive
to HKS

∼= µ log (µ) which equals zero as ǫ → 0. Therefore, T = τmin

is the only remaining reasonable characteristic time to be used which
lead us to

(3) HKS(B[ǫ]) =
1

τmin(B[ǫ])

∑

τ

ρ(τ,B[ǫ]) log

(
1

ρ(τ,B[ǫ])

)
.
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For uniformly hyperbolic chaotic systems (tent map, for example),
we can prove the validity of Eq. (3). From Ref. [26] we have that

(4) HKS = − lim
ǫ→0

1

τmin

log(ρ(τmin,B[ǫ]))

a result derived from the fact that the KS entropy exponentially in-
creases with the number of unstable periodic orbits embedded in the
chaotic attractor. Since ρ(τ, ǫ) → µe−µτ as ǫ → 0, assuming τmin to
be very large, and noticing that

∫
−µe−µτ log[µe−µτ ]dτ = −log[µ] + 1,

assuming that τmin → ∞ and noticing that for such systems µ[B] =
ρ(τmin, ǫ), we finally arrive that

(5) − 1

τmin

log [ρ(τmin)] = − 1

τmin

∑

τ

ρ(τ) log [ρ(τ)]

and therefore, the right-hand side of Eq. (3) indeed reflects the KS
entropy. But notice that Eq. (3) is being applied not only to non-
uniformly hyperbolic systems (Logistic and Hénon maps) but also to
higher dimensional systems (two coupled maps).

This result can also be derived from Ref. [27] where it was shown
that the positive Lyapunov exponent λ in hyperbolic 1D maps is

(6) λ = lim
ǫ→0

−log[µ(ǫ)]

τmin(B[ǫ])
.

Since ρ(τ, ǫ) → µe−µτ as ǫ → 0, and using that λ = HKS (Pesin’s
equality), and finally noticing that

∫
−µe−µτ log[µe−µτ ]dτ = −log[µ] +

1, one can arrive to the conclusion that T = τmin in Eq. (3).
The quantity in Eq. (3) is a local estimation of the KS entropy. To

make a global estimation we can define the average

(7) 〈HKS〉 =
1

L

∑

B(ǫ)

HKS[B(ǫ)]

representing an average of HKS[B(ǫ)] calculated considering L different
regions in phase space.

In order to estimate the KS entropy in terms of the probabilities
obtained from the RPs, one should use T = 〈τmin〉, i.e., replace τmin

in Eq. (3) by 〈τmin〉, where 〈τmin〉 = 1
M

∑
i τmin(i), the average value

of the shortest return observed in every column of the RP. The reason
to work with an average value instead of using the shortest return
considering all columns of the RP is that every vertical column in the
RP defines a shortest return τmin(i) (i = 1, . . . ,M), and it is to expect
that there is a nontypical point i for which τmin(i) = 1.

Imagining that the RP is constructed considering arbitrarily small
regions (ǫ2 → 0) and that we could treat an arbitrarily long data set,
the column of the RP which would produce τmin = 1 would be just one
out of infinite others which produce τmin >> 1. There would be also a
finite number of columns which would produce τmin of the order of one
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(but larger than one), but also those could be neglect when estimating
the KS-entropy from the RPs. The point we want to make in here is
that the possible existence of many columns for which one has τmin = 1
are a consequence of the finite resolution with which one constructs a
RP. In order to minimize such effect in our calculation we just ignore
the fact that we have indeed found in the RP τmin = 1, and we consider
as τmin any return time longer than 1 as the minimal return time. In
fact, neglecting the existence of returns of length one is a major point
in the work of Ref. [18], since there only the nonrecurrent diagonal
segments are considered [19], and thus, the probability of having a
point returning to its neighborhood after one iteration is zero.

From the conditional probabilities of returns, a lower bound for the
KS entropy can be estimated in terms of the FPRs and RPs by

(8) HKS(B[ǫ]) ≥ − 1

n

n∑

i=1

1

Pi

ρ(τi + Pi)

ρ(τi)
log

[
ρ(τi + Pi)

ρ(τi)

]

where we consider only the returns τi for which ρ(τi + Pi)/ρ(τi) > 0
and τi + Pi < 2τmin, with Pi ∈ N .

The derivation of Eq. (8) is not trivial because it requires the use
of a series of concepts and quantities from the Ergodic Theory. In the
following, we describe the main steps to arrive at this inequality.

First we need to understand the way the KS-entropy is calculated via
a spatial integration. In short, the KS-entropy is calculated using the
Shannon’s entropy of the conditional probabilities of trajectories within
the partitions of the phase space as one iterates the chaotic system
backward [2]. More rigorously, denote a phase space partition δN . By
a partition we refer to a space volume but that is defined in terms of
Markov partitions. Denote S as S = S0 ∩ S1 ∩ Sk−1 where Sj ∈ F−jδN

(j = 0, . . . , k−1), where F is a chaotic transformation. Define hN(k) =
µ(S∩Sk)

µ(S)
log µ(S∩Sk)

µ(S)
and µ(S) represents the probability measure of the set

S. The KS-entropy is defined as HKS = liml→∞
1
l

∑l−1
k=0

∫
ρ(dx)hN(k),

where the summation is taken over l iterations.
Assume now that the region B represents the good partition δN . The

region Sj is the result of F−jδN , i.e., a j-th backward iteration of B.
So, clearly, if one applies j forward iterations to Sj, then F jSj → B.
The quantities µ(S ∩ Sk) and µ(S) refer to the measure of the chaotic
attractor inside S ∩ Sk and S, respectivelly. By measure we mean the
natural measure, i.e. the frequency with which a typical trajectory
visits a region. µ(S ∩ Sk) refers to the measure that remained in B
after k iterations and µ(S) the measure that remained in B after k− 1
iterations.

For k →∞, we have that µ(S∩Sk)
µ(B)

→ µ(B). Also for finite values of k,

one has that µ(S∩Sk)
µ(B)

≈ µ(B). For any finite k, we can split this fraction

into two components: µ(S∩Sk)
µ(B)

= µREC(k,B) + µNR(k,B). µREC refers
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Figure 1. [color online] Results from Eq. (3) and (6).
The probability function ρ(τ,B) of the FPRs (RPs) were
obtained from a series of 500.000 FPRs (from a trajec-
tory of length 15.000 points). The brown line represents
the values of the positive Lyapunov exponent. In (A)
we show results for the Logistic map as we vary the pa-
rameter c, ǫ2 = 0.002 for the brown stars and ǫ1=0.001
for the green diamonds. In (B) we show results for
the Hénon map as we vary the parameter a for b=0.3,
ǫ2 = [0.002− 0.03] for the brown stars and ǫ1=0.002 for
all the other results, and in (C) results for the coupled
maps as we vary the coupling strength σ, ǫ2=0.05 for the
brown stars and ǫ1=0.02 for green diamonds.

to the measure in B associated with unstable periodic orbits (UPOs)
that return to B, after k iteration of F , at least twice or more times.
µNR refers to the measure in B associated with UPOs that return to B
only once.

As it is shown in Ref. [26], ρ(τ,B) = µNR(τ,B), which in other
words means that the probability density of the FPRs in B is given by
µNR(k,B). But, notice that for τ < 2τmin, µREC(k,B) = 0 since only
returns associated with UPOs that return once can be observed inside
B, and therefore ρ(τ,B) = µ(S∩Sτ )

µ(B)
, if τ < 2τmin. Consequently, we have

that µ(S∩Sτ )
µ(S)

= ρ(τ,B)
ρ(τ−1,B)

, since µ(S∩Sτ )
µ(B)

= ρ(τ,B) and µ(S)
µ(B)

= ρ(τ − 1,B).
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The remaining calculations to arrive in Eq. (8) consider the measure
of the region Sτ ∩ Sτ+P (instead of S ∩ Sτ ) in order to have a positive

condition probability, i.e. µ(Sτ∩Sτ+P )

µ(Sτ )
> 0, with µ(Sτ ) representing the

measure of the trajectories that return to B after τ iterations and µ(Sτ∩
Sτ+P ) the measure of the trajectories that return to B after τ + P
iterations. The inequality in Eq. (8) comes from the fact that one
neglects the infinitely many terms coming from the measure µREC(τ,B)
that would contribute positively to this summation.

3. Estimation of errors in HKS and 〈HKS〉
In order to derive Eq. (5), we have assumed that

∫
−µe−µτ log[µe−µτ ]dτ =

− log [µ] + 1, which is only true when τmin=0. In reality, for τmin > 0,
we have

∫∞
τmin

−µe−µτ log [µe−µτ ]dτ = e−µτmin [µτmin− log µ]+1, but as ǫ

tends to zero µτmin → 0 and therefore, as assumed
∫
−µe−µτ log [µe−µτ ]dτ ≈

− log [µ] + 1.
Making the same assumptions as before that ρ(τ, ǫ) → µe−µτ as

ǫ → 0, and using Eq. (6), then Eq. (3) can be written as

(9) HKS(B[ǫ]) ≈ λ +
1

τmin(B[ǫ])
.

Theoretically, one can always imagine a region ǫ with an arbitrarily
small size, which would then make the term 1

τmin
to approach zero. But,

in practice, for the considered values of ǫ, we might have (for atypical
intervals) shortest returns as low as τmin = 4. As a result, we expect
that numerical calculations of the quantity in Eq. (3) would lead us to
a value larger than the positive Lyapunov exponent, as estimated from
the returns of the trajectory to a particular region.

Naturally, 1
τmin

would provide a local deviation of the quantity in Eq.

(3) with respect to the KS entropy. To have a global estimation of the
error we are making by estimating the KS entropy, we should consider
the error in the average quantity 〈HKS〉 which is given by

(10) E =
∑

B(ǫ)

1

τmin(B[ǫ])

where the average is taken over L different regions in phase space, and
thus for chaotic systems with no more than one positive Lyapunov
exponent

(11) 〈HKS〉 ≈ λ + E

To generalize this result to higher dimensional systems, we make the
same assumptions as the ones to arrive to Eq. (9), but now we use Eq.
(5). We arrive that

(12) 〈HKS(B[ǫ])〉 ≈ H + E,

where H denotes the exact value of the KS entropy.
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Figure 2. [color online] Results from Eq. (8). The
probability function ρ(τ,B) of the FPRs (RPs) were ob-
tained from a series of 500.000 FPRs (from a trajectory of
length 15.000 points). The brown line represents the val-
ues of the positive Lyapunov exponent. In (A) we show
results for the Logistic map as we vary the parameter c,
ǫ2 = 0.002 for the black circles and ǫ1=0.001 for the red
squares. In (B) we show results for the Hénon map as we
vary the parameter a for b=0.3, ǫ2 = [0.002 − 0.03] for
the black circles and ǫ1=0.002 for the red squares, and in
(C) results for the coupled maps as we vary the coupling
strength σ, ǫ2=0.05 for the black circles and ǫ1=0.02 the
red squares.

Finally, it is clear from Eq. (12) that 〈HKS(B[ǫ])〉 is an upper bound
for the KS entropy. Thus,

(13) H ≤ 〈HKS(B[ǫ])〉.

4. Estimating the KS entropy and a lower bound of it in
maps

In order to illustrate the performance of our formulas we use the Lo-
gistic map [xn+1 = cxn(1− xn)], the Hénon map [xn+1 = a− x2

n + byn,
and yn+1 = xn], and a system of two mutually coupled linear maps
[xn+1 = 2xn − 2σ(yn − xn) and yn+1 = 2yn − 2σ(xn − yn), mod(1)],
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Figure 3. [color online] Results from Eq. (3) applied
to the FPRs coming from the Logistic map (A-B), as
we vary the parameter c and ǫ1=0.00005, and from
the Hénon map (C), as we vary the parameter a and
ǫ1 = 0.001. These quantities were estimated considering
10 randonmly selected regions. The brown line repre-
sents the values of the positive Lyapunov exponent. The
probability density function ρ(τ,B) was obtained from a
series of 500.000 FPRs. Green diamonds represent in (A)
the values of HKS calculated for each one of the 10 ran-
donmly selected regions, in (B) the average value 〈HKS〉
and in (C) the minimal value of HKS.

systems for which Pesin’s equality holds. The parameter σ in the cou-
pled maps represents the coupling strength between them, chosen to
produce a trajectory with two positive Lyapunov exponents.

Using Eqs. (3) and (6) to estimate HKS and λ furnishes good values
if the region B where the returns are being measured is not only suf-
ficiently small but also well located such that τmin is sufficiently large.
In such a case the trajectories that produce such a short return visit
the whole chaotic set [28]. For that reason we measure the FPRs for 50
different regions with a sufficiently small volume dimension, denoted
by ǫ1, and use the FPRs that produce the largest τmin, minimizing
HKS. Since the lower bound of HKS in Eq. (8) is a minimal bound for
the KS entropy, the region chosen to calculate it is the one for which
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the lower bound is maximal. This procedure makes HKS and its lower
bound (calculated using the FPRs) not to depend on B.

As pointed out in Ref. [18], one should consider volume dimensions
(also known as thresholds) which depend linearly on the size of the
attractor [28], in order to calculate the Shannon’s entropy. In this
work, except for the Hénon map, we could calculate well HKS, λ and
a lower bound for HKS from the FPRs and RPs, considering for every
system fixed values ǫ1 and ǫ2. For the Hénon map, as we increase the
parameter b producing more chaotic attractors, we increase linearly the
size of the volume dimension ǫ2 within the interval [0.002− 0.03].

We first compare HKS (see Fig. 1), calculated from Eq. (3) in terms
of the probabilities coming from the FPRs and RPs, in green diamonds
and brown stars, respectively, with the value of the KS entropy calcu-
lated from the sum of the positive Lyapunov exponents, represented by
the brown straight line. As expected HKS is close to the sum of all the
positive Lyapunov exponents. When the attractor is a stable periodic
orbit we obtain that HKS is small if calculated from the RPs. In such
a case, we assume that HKS = 0 if calculated from the FPRs. This
assumption has theoretical grounds, since if the region is centered in a
stable periodic attractor and ǫ1 → 0 (what can be conceptually make),
one will clearly obtain that the attractor is periodic.

The value of the Lyapunov exponent calculated from the formula
(6) is represented in Fig. 1 by the blue up triangles. As it can be
checked in this figure, Eq. (6) holds only for 1D hyperbolic maps.
So, it works quite well for the logistic map (a 1D “almost” uniformly
hyperbolic map) and somehow good for the Hénon map. However,
it is not appropriate to estimate the sum of the positive Lyapunov
exponents coming from 2D coupled systems. This formula assumes
sufficient hyperbolicity and one-dimensionality such that eτminλ = 1/ǫ.

To compare our approach with the method in Ref. [12], we consider
the Hénon map with a=1.4 and b = 0.3 for which the positive Lyapunov
exponent equals 0.420. Therefore, by using Ruelle equality, HKS =
0.420. In Ref. [12] it is obtained that the correlation entropy K2

equals 0.325, with HKS ≥ K2 and in Ref. [13] HKS = 0.423. From Eq.
(3), we obtain HKS = 0.402 and from Eq. (8), we obtain HKS ≥ 0.342,
for ǫ1=0.01.

In Fig. 2(A-C), we show the lower bound estimation of HKS [in
Eq. (8)] in terms of the RPs (black circles) and in terms of FPRs (red
squares). As expected, both estimations follow the tendency of HKS

as we increase a.
Another possible way Eq. (3) can be used to estimate the value

of the KS-entropy is by averaging all the values obtained for different
intervals, the quantity 〈HKS〉 in Eq. (7). In Fig. 3(A), we show
the values of HKS as calculated from Eq. (3) considering a series of
FPRs with 500.000 returns of trajectories from the Logistic map. For
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Figure 4. [color online] The same quantities shown in
Fig. 3, but now considering only the Logistc map, with
ǫ1=0.0002 and 500 randonmly selected regions.

each value of the control parameter c, we randomnly pick 10 different
intervals with ǫ1=0.00005. The average 〈HKS〉 is shown in Fig. 3(B).
As one can see, 〈HKS〉 is close to the Lyapunov exponent λ. Notice that
from Fig. 3(A) one can see that the minimal value of HKS (obtained
for the largest τmin) approaches well the value of λ.

In order to have a more accurate estimation of the KS-entropy for
the Hénon map, we have used in Figs. 1(B) and 2(B) a varying ǫ2

depending on the value of the parameter a, exactly as suggested in [18],
but similar results would be obtained considering a constant value. As
an example, in Fig. 3(C) we show the minimal value of HKS considering
regions with ǫ1 = 0.001, for a large range of the control parameter a.

In order to illustrate how the number of regions as well as the size
of the regions alter the estimation of the KS-entropy, we show, in Fig.
4(A-C), the same quantities shown in Fig. 3(A-B), but now from FPRs
exclusively coming from the Logistic map, considering 500 randonmly
selected regions all having sizes ǫ1=0.0002. Recall that in Figs. 1 and
3, the minimal value of HKS was chosen out of no more than 50 ran-
donmly selected regions. Comparing Figs. 3(B) and 4(B) one notices
that an increase in the number of selected regions is responsible to
smooth the curve of 〈HKS〉 with respect to c. Concerning the minimal
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value of HKS, the use of intervals with size ǫ1 = 0.0002 provides val-
ues close to the Lyapunov exponent if this exponent is sufficiently low
(what happens for b < 3.7). Otherwise, these values deviate when this
exponent is larger (what happens for b > 3.7). This deviation happens
because for these chaotic attractors the size of the chosen interval was
not sufficiently small [28].

Notice that the estimated KS entropy deviates from λ. See, for
example, Figs. 3(B) and 4(B). One sees two main features in these
figures. The first is that for most of the simulations, 〈HKS〉 > λ. The
second is that the larger λ is, the larger the deviation is. The reason
for the first feature can be explained by Eqs. (11) and (13). The reason
for the second is a consequence of the fact that the larger the Lyapunov
exponent is, the smaller τmin is, and therefore the larger the error in
the estimation of the KS entropy.

To see that our error estimate provides reasonable results, we calcu-
late the quantities 〈HKS〉 (green diamonds in Fig. 5), for the Logistic
map considering a series of 250.000 FPRs to L=100 randomly selected
regions of size ǫ1 = 0.0002, and the average error E, in Eq. (11) [shown
in Fig. 5 by the error bars]. The value of the positive Lyapunov expo-
nent is shown in the full brown line.

The error in our estimation is inversely proportional to the shortest
return. Had we considered smaller ǫ regions, τmin would be typically
larger and as a consequence we would obtain a smaller error E in our
estimation for the KS entropy. Had we consider a larger number of
FPRs, the numerically obtained value of τmin would be typically slightly
smaller, making the error E to become slightly larger. So, the reason
of why the positive Lyapunov exponent in Fig. 5 is located bellow the
error bars for the quantity 〈HKS〉 is a consequence of the fact that we
have only observed 250.000 returns, producing an overestimation for
the value of τmin. Had we considered a larger number of FPRs would
make the error E to become slightly larger.

The considered maps are Ergodic. And therefore, the more (less)
intervals used, the shorter (the longer) the time series needed in order
to calculate the averages from the FPR as well as from the RP, as the
average 〈HKS〉.

5. Conclusions

Concluding, we have shown how to estimate the Kolmogorov-Sinai
entropy and a lower bound of it using the Poincaré First Return Times
(FPRs) and the Recurrence Plots. This work considers return times
in discrete systems. The extension of our ideas to systems with a
continuous description can be straightforwardly made using the ideas
in Ref. [29].

We have calculated the expected error in our estimation for the KS
entropy and shown that this error appears due to the fact that FPRs
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Figure 5. [color online] Results obtained considering
FPRs coming from the Logistic map, as we vary the pa-
rameter c and ǫ1=0.0002. The probability density func-
tion ρ(τ,B) was obtained from a series of 250.000 FPRs.
Green diamonds represent the values of 〈HKS〉 calculated
for each one of the 100 randomly selected regions. The
error bar indicates the value of the average error E in
Eq. (11). These quantities were estimated considering
100 randomly selected regions. The brown line represents
the values of the positive Lyapunov exponent.

can only be physically measured considering finite sized regions and
only a finite number of FPRs can be measured. This error is not caused
by any fundamental problems in the proposed Eq. (3). Nevertheless,
even for when such physical limitations are present, the global estimator
of the KS entropy [Eq. (7)] can be considered as an upper bound for
the KS entropy [see Eq. (13)].
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(1)CMUP - Centro de Matemática da Universidade do Porto
Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

(2)Institute for Complex Systems and Mathematical Biology
King’s College, University of Aberdeen

AB24 3UE Aberdeen, UK

PACS: 05.45.–a Nonlinear dynamics and chaos; 65.40.gd Entropy

Abstract. It is known that unstable periodic orbits of a given
map give information about the natural measure of a chaotic at-
tractor. In this work we show how these orbits can be used to
calculate the density function of the first Poincaré returns. The
close relation between periodic orbits and the Poincaré returns al-
lows for estimates of relevant quantities in dynamical systems, as
the Kolmogorov-Sinai entropy, in terms of this density function.
Since return times can be trivially observed and measured, our
approach to calculate this entropy is highly oriented to the treat-
ment of experimental systems. We also develop a method for the
numerical computation of unstable periodic orbits.

1. Introduction

Knowing how often a dynamical system returns to some place in
phase space is fundamental to understand dynamics. There is a well
established way to quantify that: the first Poincaré return (FPR),
which measures how much time a trajectory of a dynamical system
takes to make two consecutive returns to a given region. Due to their
stochastic behaviour, given a return time it is not feasible to predict
the future return times and for that reason one is usually interested in
calculating the frequency with which the Poincaré returns happen, the
density of the first Poncaré returns (DFP).

This work explains the existence of a strong relationship between un-
stable periodic orbits (UPOs) and the first Poincaré returns in chaotic
attractors. Unstable orbits and first Poincaré returns have been usu-
ally employed as a tool to analyse and characterise dynamical systems.
With our novel approach we can calculate how frequently returns hap-
pen by knowing only a few unstable periodic orbits. Additionally, such

1
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relation allows us to easily estimate other fundamental quantities of
dynamical systems such as the Kolmogorov-Sinai entropy.

Our motivation to search for a theoretical and simple way of calcu-
lating the distribution of Poincaré return times comes from the fact
that they can be simply and quickly accessible in experiments and also
due to the wide range of complex systems that can be characterized
by such a distribution. Among many examples, in Ref. [1] the return
times were used to characterize a experimental chaotic laser, in Refs.
[2, 3] they were used to characterize extreme events, in Refs. [4, 5] they
were used to characterize fluctuations in fusion plasmas, and in Ref.
[6] a series of application to complex data analysis were described.

In addition, relevant quantifiers of low-dimensional chaotic systems
may be obtained by the statistical properties of the FPR such as the
dimensions and Lyapunov exponents [7, 8] and the extreme value laws
[9]. For most of the rigorous results concerning the FPR, in particular
the form of the DFP [10], one needs to consider very long returns
to arbitrarily small regions in phase space, a condition that imposes
limitations into the real application to data sets.

We first show how the DFP can be calculated from only a few UPOs
inside a finite region. Then, we explain how the DFP can be used to
calculate quantities as the Kolmogorov-Sinai entropy, even when only
short return times are measured in finite regions of the phase space.

Our work is organized as follows. We first introduce the work of
Ref. [11], which relates the natural measure of a chaotic attractor to
the UPOs embedded in a chaotic attractor. The measure of a chaotic
attractor refers to the frequency of visits that a trajectory makes to a
portion of the phase space. This measure is called natural when it is
invariant for typical initial conditions. This appears in Sec. 2, along
with the relevant definitions. In Sec. 3 we define ρ(τ, S) the density
of first Poincaré returns for a time τ to a subset S of phase space and
we study the relation between the UPOs and this function. This can
be better understood if we classify the UPOs inside S as recurrent and
non-recurrent. Recurrent are those UPOs that return more than once
to the subset S before completing its cycle. Non-recurrent are UPOs
that visits the subset S only once in a period. While in the calculation
of the natural measure of S one should consider the two types of UPOs
with a given large period inside it, for the calculation of the DFP for
a time τ one should consider only non-recurrent UPOs with a period
τ . Sec. 4 is mostly dedicated to show how to calculate ρ(τ, S) even
when not all non-recurrent UPOs of a large period are known. Such a
situation typically arises when the time τ is large. We have numerically
shown that the error of our estimation becomes smaller, the longer the
period of the UPOs and the larger the number of UPOs considered.

Throughout the paper we illustrate results by presenting the calcu-
lations for the tent map. Finally, in Sec. 6 we show numerical results
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on the logistic map that support our approach. In particular, we ob-
tain numerical estimates of the Kolmogorov-Sinai entropy, the most
successful invariant in dynamics, so far. The estimates are obtained
considering the density of only short first return times, as discussed
in Sec. 5. The UPOs of period p are computed numerically as stable
periodic orbits of a system of p coupled cells, a method described in
6.5.

2. Definitions and results

Consider a d-dimensional C2 map of the form xn+1 = F (xn), where
x ∈ Ω ⊂ Rn and Ω represents the phase space of the system. Consider
A ⊂ Ω to represent a chaotic attractor. By chaotic attractor we mean
an attractor that has at least one positive Lyapunov exponent.

For a subset S of the phase space and an initial condition x0 in the
basin of attraction of A, we define µ(x0, S) as the fraction of time the
trajectory originating at x0 spends in S in the limit that the length of
the trajectory goes to infinity. So,

(1) µ(x0, S) = lim
n→∞

♯{F i(x0) ∈ S, 0 ≤ i ≤ n}
n

.

Definition 2.1. If µ(x0, S) has the same value for almost every x0

(with respect to the Lebesgue measure) in the basin of attraction of A,
then we call the value µ(S) the natural measure of S.

For now we assume that our chaotic attractor A has always a natural
measure associated to it, normalized to have µ(A) = 1. In particular
this means that the attractor is ergodic[11].

We also assume that the chaotic attractor A is mixing: given two
subsets, B1 and B2, in A, we have:

lim
n→∞

µ(B1 ∩ F−n(B2)) = µ(B1)µ(B2).

In addition, we consider A to be a hyperbolic set.
The eigenvalues of the Jacobian matrix of the n-th iterate, F n, at the

jth fixed point xj of F n are denoted by λ1j, λ2j, ..., λuj, λ(u+1)j, ..., λdj ,
where we order the eigenvalues from the biggest, in magnitude, to the
lowest and the number of the unstable eigenvalues is u. Let Lj(n) be
the product of absolute values of the unstable eigenvalues at xj.

Then it was proved by Bowen in 1972 [12] and also by Grebogi, Ott
and Yorke in 1988 [11] the following:

Theorem 2.1. For mixing hyperbolic chaotic attractors, the natural
probability measure of some closed subset S of the d-dimensional phase
space is

(2) µ(S) = lim
n→∞

∑

xj

L−1
j (n),
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where the summation is taken over all the fixed points xj ∈ S of F n.

This formula is the representation of the natural measure in terms
of the periodic orbits embedded in the chaotic attractor. To illustrate
how it works let us take a simple example like the tent map:

Example 2.1. Let us consider F : [0, 1] → [0, 1] such that

F (x) =

{
2x, if x ∈ [0, 1/2]
2− 2x, if x ∈]1/2, 1]

For this map there is only one unstable direction. Since the absolute
value of the derivative is constant in [0, 1] we have Lj(τ) = L(τ) = 2τ .

For the tent map, periodic points are uniformly distributed in [0, 1].
Using this fact together with some of the ideas of G.H. Gunaratne and
I. Procaccia [13], it is reasonable to write the natural measure of a
subset S of [0, 1] as:

(3) µ(S) = lim
τ→∞

N(τ, S)

N(τ)
,

where N(τ, S) is the number of fixed points of F τ in S and N(τ) is the
number of fixed points of F τ in all space [0, 1]. For this particular case
we have N(τ) = L(τ) = Lj(τ) and so

µ(S) = lim
τ→∞

N(τ, S)

N(τ)
= lim

τ→∞
N(τ, S)

L(τ)
= lim

τ→∞

N(τ,S)∑

j=1

1

Lj(τ)

and we obtain the Grebogi, Ott and Yorke formula.

3. Density of first returns and UPOs

In this section we relate the DFP, ρ(τ, S), and the UPOs of a chaotic
attractor. We show in Eq. (10) that ρ(τ, S) can also be calculated
in terms of the UPOs but one should consider in Eq. (2) only the
non-recurrent ones.

3.1. First Poincaré returns. Consider a map F that generates a
chaotic attractor A ⊂ Ω, where Ω is the phase space. The first Poincaré
return for a given subset S ⊂ Ω such that S∩A 6= ∅ is defined as follows.

Definition 3.1. A natural number τ , τ > 0, is the first Poincaré
return to S of a point x0 ∈ S if F τ (x0) ∈ S and there is no other
τ ∗ < τ such that F τ∗(x0) ∈ S.

A trajectory generates an infinite sequence, τ1, τ2, ..., τi, of first re-
turns where τ1 = τ and τi is the first Poincaré return of F ni(x0) with

ni =
∑i−1

n=1 τn.
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The subset S ′ of points in S ⊂ Ω that produce FPRs of length τ to
S is given by

(4) S ′ = S ′(τ, S) =
(
F−τ (S) ∩ S

)
−

⋃

0<j<τ

(
F−j(S) ∩ S

)
.

3.2. Density function. In this work, we are concerned with systems
for which the DFP decreases exponentially as the length of the return
time goes to infinity. Such systems have mixing properties and as a
consequence we expect to find ρ(τ, S) ≈ µ(S)(1 − µ(S))τ−1, where
(1−µ(S))τ−1 represents the probability of a trajectory remaining τ −1
iterations out of the subset S. We are interested in systems for which
the decay of ρ(τ) is exponential, i.e., ρ(τ) ∝ e−ατ .

The usual way of defining ρ(τ, S), for a given subset S ⊂ Ω, is by
measuring the fraction of returns to S that happen with a given length
τ with respect to all other possible first returns [see Eq. (27)]. It is
usually required for a density that∫

ρ(τ, S)dτ = 1.

In this work, we also adopt a more appropriate definition for ρ(τ, S)
in terms of the natural measure. We define the function ρ(τ, S) as the
natural measure of the set of orbits that makes a first return τ to S
divided by the natural measure in S. More rigorously

Definition 3.2. The density function of the first Poincaré return τ
for a particular subset S ⊂ Ω such that µ(S) 6= 0 is defined as

(5) ρ(τ, S) =
µ(S ′)

µ(S)
,

where S ′ = S ′(τ, S) ⊂ S is the subset of points that produce FPRs of
length τ defined in Eq. (4).

Even for a simple dynamical system as the tent map, the analytical
calculation of ρ(τ, S) is not trivial. However, an upper bound for this
function can be easily derived as in the following example:

Example 3.1. Consider the tent map defined in example 2.1, for which
the natural measure coincides with the Lebesgue measure λ, and let
S ⊂ [0, 1] be a non-trivial closed interval.

To have a return to S we only need to know the natural number
n∗ such that F n∗(S) = [0, 1]. Since F is an expansion, this natural
number always exists. To find it when λ(S) = ǫ > 0, we first solve
the equation 2x∗ = 1/ǫ and get x∗ = − log(ǫ)/log(2), so we take n∗ =
[− log(ǫ)/log(2)] + 1, where [x] represents the integer part of x. Then
n∗ is an upper bound for τmin, the shortest first return to S.

Most intervals S of small measure have large values of τmin and
τmin ≈ n∗ is a good approximation. A sharper upper bound for τmin

to S is the lowest period of an UPO that visits it.
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The set D = F−n∗(S) ∩ S 6= ∅ represents the fraction of points in S
that return to S (not necessarily first return) after n∗ iterations. Using
Eq. (5) and since S ′ ⊂ D we have

ρ(n∗, S) ≤ λ(D)

λ(S)
≤ ǫ 1

2n∗

ǫ
= 2−n∗ .

It is natural to expect that for τ of the order of n∗ and close to τmin

we have ρ(τ, S) ≤ 2−τ .
We can write this equation as ρ(τ, S) ≤ e(−τ log(2)) = e(−τλ1), where

λ1 = log(2) is the Lyapunov exponent for the tent map. In fact, in
1991, G. M. Zaslavsky and M. K. Tippett

[14][15] presented one formula for the exact value of
ρ(τ, S). That result can only be valid under the same conditions that

we have used previously, i.e. τ ≈ τmin and for most sets of sufficiently
small measure ǫ, so that τmin ≈ n∗.

3.3. Density function in terms of recurrent and non-recurrent
UPOs. Since our chaotic attractor A is mixing, the natural measure
associated with A satisfies, for any subset S of nonzero measure:

µ(S) = lim
τ→∞

µ(S ∩ F−τ (S))

µ(S)
.

We can write the right hand side of the last equation, for any positive
τ , in two terms:

(6)
µ(S ∩ F−τ (S))

µ(S)
=

µ(S ′)

µ(S)
+

µ(S∗)

µ(S)

with S ′ as defined in Eq. (4) and where S∗ = S∗(S, τ) is the set of
points in S that are mapped to S after τ iterations but for which τ is
not the FPR to S, so S ′ ∪ S∗ = (S ∩ F−τ (S)) and S ′ ∩ S∗ = ∅.

An UPO of period τ is recurrent with respect to a set S ⊂ Ω if there
is a point x0 ∈ S in the UPO with F n(x0) ∈ S for 0 < n < τ . In other
words, its FPR is less than its period. Thus, the UPOs in the set S∗

are all recurrent. We refer to them as the recurrent UPOs inside S.
Associated with the recurrent UPOs in S we define

(7) µR(τ, S) =
∑

j

1

LR
j (τ)

and associated with the non-recurrent UPOs in S we define

(8) µNR(τ, S) =
∑

j

1

LNR
j (τ)

where LR
j (τ) and LNR

j (τ) refer, respectively, to the product of the ab-
solute values of the unstable eigenvalues of recurrent and non-recurrent
UPOs of period τ that visit S.
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Notice that , if µ(S) 6= 0,

lim
τ→∞

µ(S∗)

µ(S)
= lim

τ→∞
µR(τ, S)

and

(9) lim
τ→∞

µ(S ′)

µ(S)
= lim

τ→∞
µNR(τ, S)

since µ(S∗)/µ(S) measures the frequency with which chaotic trajecto-
ries that are associated with the recurrent UPOs visit S and µ(S ′)/µ(S)
measures the frequency with which chaotic trajectories that are asso-
ciated with the non-recurrent UPOs visit S.

Comparing Eqs. (5), (6) and (9) we obtain the following:

Main Idea: For a chaotic attractor A generated by a mixing uni-
formly hyperbolic map F , for a small subset S ⊂ A, generated by a
Markov partition and such that the measure in S is provided by the
UPOs inside it, we have that

(10) ρ(τ, S) ≈ µNR(τ, S),

for a sufficiently large τ . Moreover,

µ(S) = lim
τ→∞

[ρ(τ, S) + µR(τ, S)].

A Markov partition is a very special splitting of the phase space.
For the purpose of better justifying Eq. (10), if a region C(τ) belongs
to a Markov partition of order τ , then there is a sub-interval C̃(τ) of
C(τ) that after τ iterations is mapped exactly over C(τ). Moreover,
points inside C̃(τ) make first returns to C(τ) after τ iterations. Then,
µR(τ, C(τ))=0. As a consequence, for sufficiently large τ we can write
that µ[C(τ)] → ρ[τ, C(τ)].

But approximation (10) remains valid for a small nonzero τ . The
reason for that is the following: Notice that from the way Kac’s lemma
is derived (see Sec. 8.1), Eq. (2) can be written as

µ(S) =

∫∞
τmin

ρ(τ, S)dτ

< τ >
,

where < τ > represents the average of the FPRs inside S, since∫∞
τmin

ρ(τ, S)dτ = 1. This equation illustrates that any possible existing

error in the calculation of µ(S) by Eq. (2) is a summation over all er-
rors coming from ρ(τ, S) for all values of τ that we are considering. As
shown in Ref. [11], µ(S) can be calculated by Eq. (2) using UPOs with
a small and finite period p. This period is of the order of the time that
the Perron-Frobenius operator converges and thus linearization around
UPOs can be used to calculate the measure associated with them. As
a consequence, if µ(S) can be well estimated for p ≈ 30 then ρ(τ, S)
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can be well estimated for τ << p. As we will observe, considering τ
small, of the order of 5, we get a very good estimation for ρ(τ, S).

In addition, we observe in our numerical simulation that S does not
need to be a cell in a Markov partition but just a small region located
in an arbitrary location in Ω.

We say that an UPO has FPRs associated with it if the UPO is non-
recurrent. See that for every UPO there is a neighborhood containing
no other UPO with the same period. If the UPO is non-recurrent then
all points inside a smaller neighborhood will produce FPRs associated
with this UPO in the sense that their FPR coincides with the UPO’s.
Consider τmin as the shortest first return in S.

Case τ < 2τmin

UPOs of period τ are non-recurrent. This is illustrated in Fig. 1
(A), where τmin = 7, for the logistic map (c = 4). In that picture we
observe that for τ ≤ 14 all FPRs are associated with UPOs. Because
of this fact µ(S∗) = 0 and then all the chaotic trajectories that return
to S are associated with non-recurrent UPOs. So, ρ(τ, S) ≈ µ(S) and
thus, ρ(τ, S) ≈ µNR(τ, S).

Case τ ≥ 2τmin

We can have recurrent UPOs of period τ , that do not have first re-
turns associated with them. As a consequence µ(S∗) > 0 and recurrent
UPOs contribute to the measure of S. This is illustrated in Fig. 1 (B),
when τ = 16.

4. How to calculate the density of first Poincaré
returns

A practical issue is how to calculate µNR(τ, S). There are two rele-
vant cases: All UPOs can be calculated; only a few can be calculated.

Assuming τ to be sufficiently small such that all UPOs of period τ
can be calculated and sufficiently large so that Eq. (10) is reasonably
valid, µNR(τ, S) can be exactly calculated and we can easily estimate
ρ(τ, S) from Eq.(10), using ρ(τ, S) ≈ µNR(τ, S).

When τ is large then, typically, only a few UPOs can be calculated.
For this case, it is difficult to use Eq. (10) to estimate ρ(τ, S) since there
will be too many UPOs. In order to calculate ρ(τ, S) using µNR(τ, S)
we do the following. First notice that

(11) µ(S) = lim
τ→∞

(µNR(τ, S) + µR(τ, S)).

Considering then τ sufficiently large we have that

µ(S) ≈ µNR(τ, S) + µR(τ, S)
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Figure 1. This picture shows some UPOs inside S ⊂
[0, 1] and first Poincaré returns for the logistic map,
[xn+1 = 4xn(1 − xn)]. In this example τmin = 7. For
τ < 14 all UPOs have FPRs associated with them. For
τ ≥ 14 (as in (B) for τ = 16) some UPOs are recurrent.
Picture (B) is a zoom of picture (A).

which can be rewritten [using Eq. (10) which says that ρ(τ, S) ≈
µNR(τ, S), for finite τ ] as

(12) ρ(τ, S) ≈ µ(S)− µR(τ, S) = µ(S)

(
1− µR(τ, S)

µ(S)

)
.

This equation allows us to reproduce, approximately, the function
ρ(τ, S), for any sufficiently large τ , only using the estimated value of
the quotient

µR(τ, S)

µ(S)

that is easy to obtain numerically, since not all UPOs should be calcu-
lated but just a few ones with period τ . We discuss this in 4.1 below.

4.1. How can we estimate µR(τ, S)/µ(S)? Considering a subset S
and fixing τ , we calculate a number t of different UPOs with period
τ (say, t = 50) inside S (It is explained in Sec. 6.5 how to calculate
numerically UPOs with any period of a given map). These UPOs are
calculated from randomly selected symbolic sequences for which the
generated UPOs visit S. See that, for example, in the tent map, for
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τ = 10 and S = [0, 1
8
], we may have 210/8 UPOs inside S and so, here

50 UPOs inside S is, in fact, a very small number of UPOs.
Now, we separate all the t UPOs that visit S into recurrent and

non-recurrent ones and suppose that we have r recurrent and nr non-
recurrent such that r + nr = t. So, r and nr depend on t and S. With
these particular r(t, S) recurrent UPOs we use Eq. (7) and we obtain

µ̃R[τ, S, r(t, S)] =

r(t,S)∑

j=1

1

LR
j (τ)

where LR
j (τ) represents the product of the absolute values of the un-

stable eigenvalues of the j-th recurrent UPO within the set of r(t, S)
recurrent UPOs. See that this quantity is not equal to µR(τ, S) since we
are not considering all recurrent UPOs inside S but just a small number
r(t, S) of them. We do the same thing with the nr(t, S) non-recurrent
UPOs and obtain the quantity µ̃NR[τ, S, nr(t, S)].

Finally, we observe that, for a sufficiently large t, we have

µ̃R[τ, S, r(t, S)]

µ̃(τ, S, t)
≈ µR(τ, S)

µ(S)
,

where µ̃(τ, S, t) = µ̃R[τ, S, r(t, S)]+ µ̃NR[τ, S, nr(t, S)]. Therefore, with
only a few UPOs inside S we calculate an estimated value for ρ(τ, S).
This estimation is represented by ρM and is given by

(13) ρM [τ, S, r(t, S)] = µ(S)

(
1− µ̃R[τ, S, r(t, S)]

µ̃(τ, S, t)

)

Notice that, for a large τ we will have more recurrent UPOs than
non-recurrent ones and therefore the larger τ is, the larger is the con-
tribution of the recurrent UPOs to the measure inside S.

4.2. Error in the estimation. To study how much our estimation in
Eq. (13) depends on the number t of UPOs, we first assume that if all
UPOs are known, the calculated distribution in Eq. (10) is “exact”, or
in other words it has a neglectable error as when compared to the real
distribution provided by Eq. (5).

Then, the error in Eq. (13) will depend on the deviation of the
quotient

(14) q1 =
µ̃R[τ, S, r(t, S)]

µ̃(τ, S, t)
,

calculated when only t UPOs are known, to the quotient

(15) q2 =
µ̃R[τ, S, r(t = N(τ, S), S)]

µ̃(τ, S, t = N(τ, S))
,

calculated when all the N(τ, S) UPOs are known.
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Thus, the amount of error that our estimate [Eq. (13)] has as when
compared to the “exact” value of ρ (when all the UPOs are known)
can be calculated by

(16) E[τ, S, t] =
|q1 − q2|

q2

which means that the quantity E gives the amount of deviation, in a
scale from 0 to 1, of ρM [Eq. (13)] as when compared to the “exact”
value of ρ [Eq. (10)]. Notice that in Eq. (16), the quantity 100E
corresponds to the percentage of error that our estimation has.

4.3. Uniformly distributed UPOs. There is another way to esti-
mate the value of ρ(τ, S) in terms of the number of UPOs in a subset
S of a chaotic attractor A. We define N(τ) as the number of fixed
points of F τ in A, N(τ, S) as the number of fixed points of F τ in S,
NR(τ, S) as the number of fixed points of F τ in S whose orbit under
F is recurrent and NNR(τ, S) as the number of fixed points of F τ in
S whose orbit under F is non-recurrent. Then, for a sufficiently large
τ and for a uniformly hyperbolic dynamical system for which periodic
points are uniformly distributed in A, we have

µR(τ, S) ≈ NR(τ, S)

N(τ)
, µNR(τ, S) ≈ NNR(τ, S)

N(τ)
.

Using the previous approximations we can write

µ(S) ≈ NR(τ, S)

N(τ)
+

NNR(τ, S)

N(τ)
=

N(τ, S)

N(τ)
.

By Eq. (10) we may write ρ(τ, S) ≈ µNR(τ, S) and we have that

(17) ρ(τ, S) ≈ µ(S)− NR(τ, S)

N(τ)
.

which can be written as

(18) ρ(τ, S) ≈ µ(S)

(
1− NR(τ, S)

N(τ, S)

)
.

Again, we have an expression with a quotient

NR(τ, S)

N(τ, S)

that is, again, easy to obtain numerically by the same technique from
which µR/µ can be estimated and therefore we can obtain an estimation
for ρ(τ, S), represented by ρN , by

(19) ρN [τ, S, r(t, S)] = µ(S)

(
1− r(t, S)

t

)

where r(t, S) represents the number of recorrent UPOs out of a total
of t UPOs, exactly as previously defined.
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5. Kolmogorov-Sinai entropy

In 1958 Kolmogorov introduced the concept of entropy into ergodic
theory and this has been the most successful invariant so far[16]. In
this section we explain how to use the density of first Poincaré returns
to estimate the Kolmogorov-Sinai entropy HKS.

The exposition here does not aim to be rigorous, only to explain
how we have arrived at the numerical estimates for the logistic map of
Sec. 6. which is a non uniformly hyperbolic map.

It is known that[17]

(20) N(τ) ∝ exp(τHKS).

Consider F as a dynamical system that has the following property:

NNR(τ, S)

N(τ)
≈ µNR(τ, S) ≈ ρ(τ, S),

for a sufficiently large τ . For example, dynamical systems for which
periodic points are uniformly distributed on the chaotic attractor A
have this property.

Considering the tent map and S ⊂ [0, 1] such that NNR(τ, S) = 1 (if
there is more that one non-recurrent UPO of period τ inside S we shrink
S to have only one), we have ρ(τ, S) ≈ 1

2τ that agrees with example 3.1,
for τ close to τmin and for most intervals S. For other non-uniformly
hyperbolic systems as the logistic the Hénon maps, this property holds
in an approximate sense and this approximation is better the larger τ
is and the closer the interval S is to a Markov partition.

Using the last approximation together with Eq. (20) we may write

NNR(τ, S)

ρ(τ, S)
≈ b exp(τHKS),

for some positive constant b ∈ R. So, we have that

(21) HKS ≈
1

τ
log

(
NNR(τ, S)

bρ(τ, S)

)
=

1

τ
log

(
NNR(τ, S)

ρ(τ, S)

)
− log(b)

τ
.

We define the quantity H(τ, S) as

(22) H(τ, S) =
1

τ
log

(
NNR(τ, S)

ρ(τ, S)

)

and then, for b ≥ 1, it is clear that

HKS ≈
1

τ
log

(
NNR(τ, S)

bρ(τ, S)

)
≤ H(τ, S),

so H(τ, S) is a local upper bound for the approximation of HKS, con-
sidering a sufficiently large τ .
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Supposing that there is at least one non-recurrent UPO inside S,

then for large τ we have NNR(τ,S)
ρ(τ,S)

>> b, as b is constant. Thus, the term

1

τ
log

(
NNR(τ, S)

ρ(τ, S)

)

dominates the expression (21), for longer times.

This equation allows us to obtain an upper bound for ρ(τ, S). See
that ρ(τ, S) ≤ NNR(τ, S) exp(−τHKS) and if τ ≈ τmin then NNR(τ, S) ≈
1 and we obtain ρ(τ, S) ≤ exp(−τHKS) as in example 3.1.

Equation (22) depends on the choice of the subset S and is then a
local estimation for HKS. To have a global estimate we take a finite
number, n, of subsets Si in the chaotic attractor and make a space
average as

(23)
1

τn

n∑

i=1

log

(
NNR(τ, Si)

ρ(τ, Si)

)
.

Better results are obtained taking the average over pairwise disjoint
subsets Si that are well distributed over A.

When we consider NNR(τ, S) = 1 this means that we have only one
non-recurrent UPO, with period τ , inside S. In general, for sufficiently
small subsets, Si, we may have NNR(τ, Si) = 1 ∀i and we obtain an
approximation that only depends on the density function of the first
Poincaré returns

(24) HKS ≈
1

τn

∑

i

log

(
1

ρ(τ, Si)

)
.

An equation which can be trivially used from the experimental point
of view since we just need to estimate ρ(τ, Si) and we do not need to
know the UPOs. For practical purposes, we consider in Eqs. (22), (23)
and (24) that τ = τmin.

6. Numerical results

6.1. Calculating ρ when all UPOs are known. The logistic family
F : [0, 1] → [0, 1] is

(25) F (x) = cx(1− x),

were c ∈ R. There are many biological motivations to study this family
of maps[18]. The maps that we obtain when the parameter c is varied
have interesting mathematical properties. It is therefore of relevant use
for mathematical and biological study.

For most numerical simulations in this section we take c = 4 in Eq.
(25), for which the map is chaotic and the chaotic attractor is compact.
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Figure 2. Density function of the FPRs, ρ(τ, S), as
empty circles and the measure of the non-recurrent pe-
riodic orbits, µNR(τ, S), as crosses, considering the fol-
lowing intervals: (A), S = [0.3 − 0.05, 0.3 + 0.05]; (B),
S = [0.3 − 0.01, 0.3 + 0.01]; (C), S = [0.3 − 0.005, 0.3 +
0.005].

6.2. Calculating ρ when not all UPOs are known. Figure 2 shows
the function ρ(τ, S) calculated by Eq. (27) and the values of µNR(τ, S)
calculated by Eq. (8), for some subsets S. See that the DFP can be
almost exactly obtained if all the non-recurrent UPOs inside S with
period τ can be calculated: In Sec. 3 we concluded that ρ(τ, S) ≈
µNR(τ, S).

Figure 3 shows the approximations for ρ(τ, S) using Eqs. (13) and
(19). In (B), comparing with (A), we consider longer first return times.
We only use Eqs. (13) and (19) for τ > 2τmin.

6.3. Error of our estimation when not UPOs are known. To nu-
merically calculate the error [Eq. (16)] of our estimation in Eq. (13),
we only consider UPOs with a period smaller than 20. The reason is
because in order to calculate the quotient q2 in Eq. (15), all the UPOs
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Figure 3. Red empty circles represent ρ(τ, S) esti-
mated by Eq. (12), green crosses estimated by Eq.
(18) and the black line calculated by Eq. (27). Pic-
ture (B) is just a similar reproduction of (A) considering
longer first return times. We consider 200 UPOs inside
S = [0.1− 0.001, 0.1 + 0.001], for each τ .

must be known. Considering larger periods than 20 would be compu-
tationally demanding, even thought the proposed method to calculate
UPOs is capable of finding them all.

It is also required that τ > 2τmin, once that to calculate the quotient
q1 in Eq. (14) there has to exist at least one recurrent UPO within
the set of t UPOs considered, i.e. r ≥ 1. Therefore, we need to
choose the size of the interval such that 20-2τmin − 1 is sufficiently
large, meaning an interval for which τmin is sufficiently smaller. We
have chosen ǫ=0.02.

Since the error of our estimation is proportional to a quotient be-
tween two quantities that depend on the number r of recurrent UPOs,
it is advisable that one consider intervals for which a reasonable number
of recurrent UPOs are found, even when their period is short (smaller
or equal than 20). Such interval is positioned in places were the nat-
ural measure is large. In the case of the logistic map, these intervals
are positioned either close to x=0 or x = 1. Therefore, we consider an
interval positioned at x = 0.04. From the previous considerations, we
consider that the interval has a size of ǫ = 0.02.
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Figure 4. We show the quantity E[τ, S, t] with respect
to a number t of UPOs randomly chosen, for τ = 9 (A),
τ = 10 (B), τ = 11 (C), τ = 12 (D), τ = 13 (E), τ = 14
(F), τ = 15 (G), τ = 16 (H), τ = 17 (I), τ = 18 (J),
τ = 19 (K), and τ = 20 (L). The quantity E gives the
amount of deviation, in a scale from 0 to 1, of ρM [Eq.
(13)] as when compared to the “exact” value of ρ [Eq.
(10)]. We consider an interval positioned in x = 0.04
with size ǫ = 0.02.

In Fig. 4(A-I), we show the quantity E[τ, S, t] with respect to the
number t of UPOs randomly chosen, for τ = 9 (A), τ = 10 (B), τ = 11
(C), τ = 12 (D), τ = 13 (E), τ = 14 (F), τ = 15 (G), τ = 16 (H),
τ = 17 (I), τ = 18 (J), τ = 19 (K), and τ = 20 (L).

The most important information from these figures is that as UPOs
of longer periods are considered [going from Fig. (A) to (L)], the error
E of our estimation decreases in an average sense considering all the
values of t. Another relevant point is that the larger the number t of
UPOs considered, the smaller the error. Notice that the total number
of UPOs of period τ is given by 2τ . Therefore, looking at Fig. 4(L), one
can see that even considering only of about 0.0009% of all the UPOs
(10 UPOs, out of a total of 220=1048576), the error of our estimation
is smaller than 14% when compared to the “exact” value of ρ.



DENSITY OF FIRST RETURNS, PERIODIC ORBITS AND KS ENTROPY 17

3.6 3.7 3.8 3.9
c

0

0.2

0.4

0.6

0.8

1
x n

3.6 3.7 3.8 3.9
c

-2

-1.5

-1

-0.5

0

0.5

1

λ
H

KS

(A)

(B)

Figure 5. (A) A bifurcation diagram as points and the
randomly chosen intervals as empty squares. (B) Lya-
punov exponent as line and filled circles representing the
HKS entropy using Eq. (22), for the logistic family. We
consider 400 values of c and for each c the size of the set
S is ǫ = 0.002.

6.4. Estimating the KS entropy. In order to know how good our
estimation for HKS is we use Pesin’s equality which states that HKS

equals the sum of the positive Lyapunov exponents, here denoted by λ.
For the logistic map there is at most one positive Lyapunov exponent.

Figure 5 shows the approximation for the quantity HKS using Eq.
(22). See that Eq. (22) only needs one subset S on the chaotic attractor
to produce reasonable results. In this numerical simulation we vary the
parameter c of the logistic family and for each c we use just one subset
S(c) randomly chosen [shown in Fig. 5 (A)] but satisfying τmin ∈
[10, 14] so that τ considered in Eq. (22) is sufficiently large.

Finally, Fig. 6 shows the global estimation for HKS, using the Eqs.
(23) and (24), considering 40 intervals Si for each value of c. Recall
that if λ < 0, then HKS = 0.

6.5. Numerical work to find UPOs. The analytical calculation of
periodic orbits of a map is a difficult task. Even for the logistic map it
is very difficult to calculate periodic orbits with a period as low as as
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Figure 6. The Lyapunov exponent λ as line and the
aproximation of HKS entropy using Eqs. (23) and (24)
as empty circles. (A), Eq. (23); (B), Eq. (24). In this
simulation we consider 100 values of c and for each c we
consider 40 subsets Si each one with lenght ǫ = 0.002. A
subset Si is picked only if τmin ∈ [10, 14].

four or five. In our numerical work we need to find unstable periodic
orbits and, in some cases, we need to find all different UPOs inside a
subset of the phase space, for a sufficiently large period. For that, we
use the method developed by Biham and Wenzel[19]. They suggest a
way to obtain UPOs of a dynamical system with dimension D using
a Hamiltonian, associated to the map, with dimension ND, where N
is the number of UPOs with period p. The extremal configurations of
this Hamiltonian are the UPOs of the map. The force ∂H/∂t directs
trajectories of the Hamiltonian to the position of a UPO.

The Hamiltonian associated with the map gives a physical interpre-
tation of the problem but in some cases it is impossible to know it. We
propose a method with a similar interpretation that is simpler in the
sense that we do not need to know the Hamiltonian associated with the
map, just an array of N coupled systems where the linear coupling be-
tween nodes acts as the force directing the network to possible periodic
solutions of the dynamical system concerned.



DENSITY OF FIRST RETURNS, PERIODIC ORBITS AND KS ENTROPY 19

For this method we just need the force associated with the ith node,
described by xi, and satisfying the Euler-Lagrange (E-L) equations:

∂

∂t

∂L

∂ẋi
=

∂L

∂xi
,

where L is the Lagrangian associated with the map. We are inter-
ested only in static extremum configurations of the Hamiltonian and
therefore the kinetic term will be neglected[19]. This implies

∂L

∂xi
= 0

We illustrate the numerical calculation of UPOs with arbitrary length
applying it to the logistic family. Because the static (E-L) equations
reproduce the map, we have

∂L

∂xi
n

= xi+1
n − cxi

n(1− xi
n).

The force of the i node will be given by

Fi = − ∂L

∂xi
n

= −xi+1
n + cxi

n(1− xi
n).

When the chain is in stable or unstable equilibrium (an extremum
static configuration of the Hamiltonian), Fi = 0 for all i. To find
a specific extremum configuration of order p of the Hamiltonian we
introduce an artificial dynamical system defined by

(26)
∂xi

n

∂t
= siFi, i = 1, ..., p,

where si = ±1 represents the direction of the force with respect to
the ith node. This equation is solved subject to the periodic bound-
ary condition xp+1 = x1 and when the forces in all nodes decrease to
zero the resulting structure xi is simultaneously an extremum static
configuration and an exact p-periodic orbit of the logistic map. For
c = 4, if we take si = −1 ∀i then we obtain the trivial periodic point
xi = 0 ∀i. The different ways to write si will give different UPOs. We
may look at si as the representation of the orbit in a symbolic dynamics
with Σ = {−1, 1}, taking the trivial partition on the logistic map, i.e.,
si = −1 if xi ∈ [0, 1/2] and si = 1 if xi ∈ [1/2, 1].

Equation (26) is in fact an equation for a network of coupled maps.
The UPOs with period p embedded in the chaotic attractor can be
calculated by finding the stable periodic orbits of the following array
of maps constructed with i = 1, ..., p nodes xi

n, where every node is
connected to its nearest neighbor as in

xi
n+1 = xi

n − csi[x
i+1
n − F (xi

n)],

with the periodic boundary condition xp
n = x1

n, where the term csi[x
i+1
n −

F (xi
n)] represents the Lagrangian force.
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7. Conclusions

In this work we propose two ways to compute the density func-
tion of the first Poincaré returns (DFP), using unstable periodic orbits
(UPOs), where the first Poincaré return (FPR) is the sequence of time
intervals that a trajectory takes to make two consecutive returns to a
specific region. In the first way, the DFP can be exactly calculated
considering all UPOs of a given low period. In the second way, the
DFP is estimated considering only a few UPOs. We have numerically
shown that the error of our estimation becomes smaller, the longer the
period of the UPOs and the larger the number of UPOs considered.

The relation between DFP and UPOs allows us to compute easily
an important invariant quantity, the Kolmogorov-Sinai entropy.

For non-uniformly hyperbolic systems there exists some particular
subsets for which the UPOs that visit it are not sufficient to calculate
their measure of the chaotic attractor inside it[20, 21]. For such cases
our approach works in an approximate sense, but it still provides good
estimates as we have shown in our simulations performed in the logistic
map, a non-uniformly hyperbolic system. In addition, the approaches
shown in here were applied in ref. [22] to estimate the value of the Lya-
punov exponent in the experimental Chua’s circuit and in the Hénon
map, both systems being non-hyperbolic.

Our approach offers an easy way to estimate the KS entropy in ex-
periments, since one does not need to calculate UPOs, but rather only
to measure the DFP of trajectories that make shortest returns, i.e. the
quantity ρ(τmin, S). These trajectories are the most frequent trajec-
tories, and as a consequence even if only a few returns are measured,
one can obtain a good estimation of ρ(τmin, S). More details of how to
estimate the KS entropy from experimental data can be seen in Ref.
[22].

8. Appendix

8.1. Measure and density in terms of FPRs. We calculate ρ(τ, S)
also in terms of a finite set of FPRs by

(27) ρ(τ, S) =
K(τ, S)

L(S)

where K(τ, S) is the number of FPRs with a particular length τ that
occurred in region S and L(S) is the total number of FPRs measured
in S with any possible length.

We calculate µ(S) also in terms of FPRs by

(28) µ(S) =
L(S)

nL
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where nL is the number of iterations considered to measure the L(S)

FPRs and so nL =
∑L

n=1 τn (see definition 3.1).

We define the average of the returns by

(29) < τ >=
nL

L(S)
.

Comparing Eqs. (28) and (29), we have that

(30) µ(S) =
1

< τ >

also known as Kac’s lemma.
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Chapter 3

Analytical Results - Markov
Transformations

This chapter is dedicated to the proof of the conjecture, presented in
section 1.2, for a particular case of a well known class of dynamical systems
called Markov transformations. Before showing the results, we construct
special sets on the phase space of some particular expanding piecewise trans-
formations and we show that for these special sets the conjecture is true. The
way that these special subsets are constructed will be useful to understand
the choice of the class of Markov transformations to prove the conjecture.

3.1 Special sets in expanding piecewise linear
transformations

Class of dynamical systems

Denote by λ the Lebesgue measure and consider the class of expanding
and piecewise (finite) linear maps

F : I → I,

where I is an interval, 0 < λ(I) < ∞ and our chaotic attractor is dense in
I. We also suppose that the natural measure coincides with the Lebesgue
measure. This class of dynamical systems will be called PLC(I, I). Example
of such a map in [0, 1] is f(x) = 2x (mod 1), we discuss this example in section
3.2, after the proof of Proposition 15.

Observe that in PLC(I, I) all periodic points are unstable. Henceforth
when we say periodic points it is implicit that is unstable.
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Special subsets

Let’s define Cα(x̄) as the interval [x̄ − α, x̄ + α] where x̄ is a periodic
point of minimal period p > 1, non-recurrent with respect to this interval and
there is no other periodic point of period less or equal to p inside Cα(x̄). For
maps in PLC(I, I) there is always α0 > 0, for each x̄, such that ∀ α ∈ (0, α0]
Cα(x̄) has the previous property, i.e. there is no other periodic point of period
less or equal to p inside it. Henceforth Cα is always an interval constructed
around some x̄ with the previous property and we omit the x̄ in Cα(x̄) when
no ambiguity arises.

Let B be the set of points where F fails to be of class C1.

Results

Let x̄ be a periodic point for F ∈ PLC(I, I) with minimal period p > 1. Let
O(x̄) = {F i(x̄) : 0 ≤ i < p} be the orbit of x̄, and suppose

O(x̄) ∩B = ∅.

Then there exist α∗ > 0, β1 > 0 and β2 > 0 such that Cα∗ and C ′′ =
[x̄− β1, x̄+ β2] have the following properties:

1. d
dx
F p(x) is constant in C ′′,

2. F p(C ′′) = Cα∗ ,

3. for 1 < j < p, F j(C ′′) ∩ Cα∗ = ∅.

Lemma 9 Fixing p > 1 and from properties 1., 2. and 3. it follows that
∀α ∈ (0, α∗] we have

ρ(p, Cα) = µNR(p, Cα).

Proof. Since µ(Cα) = λ(Cα), using properties 2. and 3. we have

ρ(p, Cα) =
λ(C ′′)

λ(Cα)
.

Now, using properties 1. a 2. we conclude that

λ(Cα) = Lx̄λ(C ′′)

and we obtain
ρ(p, Cα) =

λ(C ′′)

λ(Cα)
=

1

Lx̄
= µNR(p, Cα).
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Proof of properties 1.,2. and 3.: We can choose α > 0 such that

d(O(x̄)− {x̄}, Cα) > α.

This is always possible because O(x̄) is a discrete set of points in I and then
when α → 0 we have d(O(x̄) − {x̄}, Cα) → γ > 0. Also we have the same
situation for period less than p and then it is always possible to find α such
that property 3. holds. Now, observe that we can always choose α > 0 such
that the map F |Cα is linear since O(x̄)∩B = ∅. Let α∗ be such that all these
hold. Also, for any β1, β2 < α∗ we have C ′′ ⊂ Cα∗ and property 1. holds. To
see that C ′′ always exists, define φ±(t) = F p(x̄± t)∓ x̄ and we conclude that
there is β1 ≤ α∗ such that φ+(β1) = α∗ (F is expanding). The same thing
for φ−(t) and we obtain β2 < α∗ and

C ′′ = [x̄− β1, x̄+ β2].

Some remarks about lemma 9

The first relevant observation is about the special sets presented here. By
construction, each one needs to have a non-recurrent periodic point inside
it and the existence of such set depends on the existence of a non-recurrent
periodic point. In general we want to choose any interval to observe the
first returns and not be limited by conditions 1., 2. and 3. that are very
restrictive. On the other hand, we can feel in lemma 9 that all the special
sets, for some fixed period p, form a kind of partition on the phase space.
The class of Markov transformations, as we will see it later, always have a
well defined partition of the phase space for which we know if there exists
or not periodic points of a particular period. Also the natural measure may
coincide, under some assumptions, with the Lebesgue measure for Markov
transformations.

The rest of the chapter is dedicated to the proof of the conjecture 1.2 for
a particular case of Markov transformations.

3.2 Markov transformations
Elements of Markov partition and symbolic dynamics

Definition 10 Denote with λ the Lebesgue measure. We say that f : [0, 1]→
[0, 1] is a Markov transformation if there exists a finite or countable family
{I0, I1, ...} of open and disjoint intervals in [0, 1] such that:
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1. λ([0, 1]−⋃j Ij) = 0,

2. ∀j, f(Ij) is a union, except for a λ-measure 0 set, of some intervals of
the family {I0, I1, ...} and λ(f(Ij)) > 0,

3. ∃α > 0 such that the derivative of f exist a.e.(λ) and satisfies
|f ′(x)| > α ∀x ∈ ⋃j Ij,

4. ∃β > 1 and n0 > 0 such that |(fn0)′(x)| ≥ β for almost all x such that
fm(x) ∈ ⋃j Ij for all 0 ≤ m ≤ n0 − 1,

5. ∀j, i ∃m > 0 such that λ(f−m(Ij) ∩ Ii) 6= 0,

6. ∃C > 0 and 0 < γ < 1 such that |f ′(x)
f ′(y)
− 1| ≤ C|x− y|γ for all x, y on

the same interval in the family.

Condition 4. means that some iterate of f is uniformly expanding. We
discuss this again in example 3.2.1 below. Condition 2. is usually called
Markov condition and means that elements of the partition {I0, I1, ...} are
always mapped into unions of elements of the same partition.

Definition 11 We say that f : [0, 1] → [0, 1] is an N-linear Markov trans-
formation if f is a Markov transformation, f has constant derivative in each
Ii and the family of intervals {I0, I1, ...} is finite with N elements.

From now on when we refer to "Markov transformations" we always mean
"N-linear Markov transformations".

Consider Pj as the closure of Ij for all j ∈ {0, ..., N − 1}. We will abuse
terminology and refer to P = {P0, ..., PN−1} as a partition of [0, 1].

Example 3.2.1 An example of an N-linear Markov transformation for N =
2 is:

f(x) =

{ x
c

if x ∈ [0, c]
cx

1−c − c2

1−c if x ∈ (c, 1]
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Note that even though ||Df ||I1 may be less that 1, the second iterate of f is
always expanding. Property 4. from the definition of Markov transformation
holds with n0 = 2 and β = min{ 1

1−c ,
1
c2
}.

Because of the fact that each Pi is mapped, by f , into a union of some
Pj’s (as in example 3.2.1), we can study f using the subshift of finite type
defined by the transition matrix

A =




A0,0 · · · A0,N−1

A1,0
. . . ...

...
AN−1,0 · · · AN−1,N−1


 ,

where Ai,j ∈ {0, 1} and Ai,j = 1 if and only if f(Pi) ⊃ Pj. The matrix
A codes the allowed symbol sequences that represent the way f maps one
interval into the others. In example 3.2.1 A is given by

(
1 1
1 0

)
.

Define XA = {(sj) ∈ Σ{0,...,N−1} : Asi,si+1
= 1 ∀i ≥ 0}, where Σ{0,...,N−1}

is the space of all infinite sequences with the symbols {0, ..., N − 1}. In
example 3.2.1 XA is the space of all infinite sequences of zeros and ones that
do not contain the word ’11’.

In XA the topology is induced by the metric

m(s, t) =
∞∑

i=0

1− δsiti
2i+1

, ∀s, t ∈ XA,

where s = (si) and t = (ti). In example 3.2.1, if 0 is the sequence si = 0 ∀i,
then if for some sequence t we know that m(0, t) < 1/4 then we conclude
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that the first two symbols of t needs to be zero. If, for some s, t ∈ XA we
have m(s, t) < 1/2k then the first k symbols of the sequences s and t must
coincide.

Defining B = {x ∈ [0, 1] : x ∈ (
⋃
{j,k: j 6=k} Pj ∩ Pk)}, let z ∈ [0, 1] be a

point such that fk(z) /∈ B for any k. Then, for every k, fk(z) lies in some Pi.
We associate with the point z an infinite sequence (z0, z1, ...) by choosing zi
so that f i(z) ∈ Pzi . The sequence (zi) = (z0, z1, ...) is called the P -name of
z and ψ(z) is the coding map that sends a point in [0, 1] to its P -name. So,
ψ : [0, 1]→ XA with ψ(z) = (zi). In example 3.2.1, ψ(0) = (0000...) because
∀k fk(0) ∈ I0 (0 is a fixed point for f).

The coding map ψ is not well defined at points z such that fk(z) lies
at the boundary of the intervals in the partition P . These points do not
have unique sequence of symbols. In example 3.2.1 these points are c and
all its preimages by f . Thus the map ψ is well-defined in [0, 1] − B̃, where
B̃ = {z ∈ [0, 1] : ∃k : fk(z) ∈ B}. It is a continuous map in this set and
ψ ◦ f = σ ◦ ψ, where σ is the one-sided shift operator on XA:

σ : XA → XA

with σ((s0, s1, s2, ...)) = (s1, s2, s3, ...).
The points with more than one image under ψ are the points inside B̃

but observe that λ(B̃) = 0 since B̃ is a countable set in [0, 1]. The map ψ
is the semi-conjugacy between (f, [0, 1]− B̃) and (σ,XA)[8, chapter 1.1]. We
will show in lemma 12 that ψ is, in fact, a full topological conjugacy.

Elements of the Markov partition and measure

Define Me(1) = P . Now define Me(p), p ∈ N, p > 1 recursively as
follows: if Me(p− 1) = {D0, ..., Dl} then

Me(p) = {f−p+1(P0) ∩D0, f
−p+1(P0) ∩D1, ..., f

−p+1(P0) ∩Dl,

f−p+1(P1) ∩D0, ..., f
−p+1(PN−1) ∩Dl}.

For each p > 0, all these closed intervals define a finite partition of
[0, 1] and all the elements of Me(p) will be called the elements of the
Markov partition of level p. If D ∈ Me(p) then there is an index set
I ⊂ {1, 2, . . . ,#Me(p)} such that

f(D) =
⋃

j∈I
Dj

where Dj ∈Me(p) for 0 < j ≤ #Me(p). This property is called Markov con-
dition. In example 3.2.1,D = [0, c2] is an element ofMe(2) = {[0, c2], [c2, c], [c, 1]}
and its image by f is [0, c] that is [0, c2] ∪ [c2, c].
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Lemma 12 Consider an N-linear Markov transformation f . If p ≥ kn0 and
D ∈Me(p) then

λ(D) ≤ 1

βk

for n0 and β given in property (4) of definition 10.

Proof. First of all observe that for any m < p, if D ∈Me(p) then fm(D) ∈
Me(p−m). Moreover, (fm)′(x) has the same value for all x ∈ D.

In particular, for m = n0

fn0(x) = αDx+ c ∀x ∈ D

with |αD| ≥ β, by property (4), and

λ(D)|αD| = λ(fn0(D)).

Therefore, for all D ∈Me(p), with p ≥ n0 we have

λ(D) ≤ λ(fn0(D))

β
. (3.1)

If p > kn0 then applying (3.1) recursively we obtain

λ(D) ≤ λ(fkn0(D))

βk

and the result follows since fkn0(D) ⊂ [0, 1] and thus λ(fkn0(D)) ≤ 1.
Lemma 12 can be proved in a more general than linear situation and if

the number of elements of the partition is not finite then lemma 12 is not
true anymore. A counter example can be found in [5].

Each D ∈ Me(p) has a well defined and finite code d0, ..., dp−1, where
di ∈ {0, ..., N − 1} ∀i = 0, ..., p − 1, that we denote by ψp(D). For some
D ∈ Me(p) with ψp(D) = (d0, ..., dp−1) we have x ∈ D if and only if ψ(x) =
(xi) with x0 = d0, x1 = d1, . . . and xp−1 = dp−1. The number of elements in
Me(p) is the number of different words with length p that are contained in
sequences of XA.

It follows from lemma 12 that given a sequence (zi) ∈ XA there is a unique
point z ∈ [0, 1]− B̃ having this sequence as its P -name since (z0, z1, ..., zp−1)
are, by definition, the first p symbols of the code of some point z ∈ D ∈Me(p)
with ψp(D) = (z0, z1, ..., zp−1) and λ(D) → 0 when p → ∞. We conclude
that the map ψ is invertible. Let π : XA → [0, 1]− B̃ be its inverse.
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If we look at the probability of moving from Pi to Pj in one step, i 6= j,
then we can write the stochastic matrix, associated to f , as

Z =




Z0,0 · · · Z0,N−1

Z1,0
. . . ...

...
ZN−1,0 · · · ZN−1,N−1


 ,

where
N−1∑

i=0

Zk,i = 1, ∀k = 0, ..., N − 1.

This matrix describes all the probabilities of moving from one state to
another one in one time step (Zi,j is the probability of moving from Pi to Pj
by f) and so 0 ≤ Zi,j ≤ 1 ∀i, j. To calculate the elements Zi,j we just need
to look for the portion of Lebesgue measure that is sent, by f , from some Pi
to some Pj. For instance, in example 3.2.1, Z0,0 = c because the portion, in
terms of Lebesgue measure, of points in P0 that stays in P0 by f is c and so,
the probability of choosing one point in P0 that will stay in P0 by f is c. In
general, for a given Markov transformation f ,

Zi,j =
λ(f−1(Pj) ∩ Pi)

λ(Pi)
. (3.2)

The stationary probability vector is a vector v = (v0, ..., vN−1) such that
vZ = v and

∑N−1
k=0 vk = 1. The Perron Frobenius theorem[15, ch 0, sec. 9]

ensures that every stochastic matrix has such an eigenvector, and that the
largest absolute value of an eigenvalue is always 1. In general, there may be
several such vectors. However, for a matrix with strictly positive entries, this
vector is unique.

The stochastic matrix and the stationary probability vector will be useful
to define an invariant measure in XA.

To define an invariant measure in XA let

C(j; a0, ..., ak) = {(si) ∈ XA : sj = a0, ..., sj+k = ak}

be the cylinders in XA. Observe that for each element D ∈ Me(p) with
ψp(D) = (d0, ..., dp−1) we have ψ(D) = C(0; d0, . . . , dp−1). From now on we
omit the p in ψp(D). All these open subsets form a basis for the topology
induced by the metric m in XA and we define

ν(C(j; a0, ..., ak)) = va0Za0a1 · · ·Zak−1ak , (3.3)
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where va0 represents the probability of being in Ia0 .
It is easy to prove that ν is a well defined measure on XA and does not

depend on j, so it is σ-invariant.
We will finish this section showing that the measure induced by ψ of ν,

ν∗(.) = ν(ψ(.)),

is, in fact, the natural measure defined in [0, 1] for Markov transformations
with finite partition. For this we need one more definition and a result.

Definition 13 If µ and λ are two measures on the same measurable space
then µ is said to be absolutely continuous with respect to λ, and we write
µ<< λ, if µ(S) = 0 for every set S for which λ(S) = 0

Theorem 14 (Adler and Bowen[13]) If f is an N-linear Markov trans-
formation then there exists a unique probability measure on the borelians
of [0, 1] that is f -invariant and absolutely continuous with respect to the
Lebesgue measure.

Proposition 15 If f is a Markov transformation then µ = ν∗.

Proof. From theorem 14, if we show that µ and ν∗ are absolutely continuous
with respect to the Lebesgue measure then they are the same measure. To
verify that µ << λ we use directly the Lasota-Yorke theorem[10] that says,
in particular, that there exists a constant c such that µ([a, b]) ≤ cλ([a, b]) for
any a, b ∈ [0, 1]. So, µ << λ and then, to finish the proof, we only need to
show that

ν∗ << λ. (3.4)

We have the following diagram:

[0, 1]− B̃ f→ [0, 1]− B̃
ψ ↓ ↓ ψ
XA

σ→ XA

and ψ ◦ f = σ ◦ ψ.
Let’s consider some S ⊂ [0, 1] such that λ(S) = 0. We want to show that

ν∗(S) = 0. (3.5)

If S is a finite set of points then it is clear that ν∗(S) = 0. If ψ(S) con-
tains a cylinder of the form C = C(0, d0, ..., dp−1) then ν(ψ(S)) > 0 because
all cylinders have positive measure in XA. On the other hand, π(C) ⊂ S
represents an interval in [0, 1] because π(C) ∈ Me(p). This contradicts the
assumption λ(S) = 0. From now we assume ψ(S) does not contain any
cylinder.
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Lemma 16 The family of intervals {⋃pMe(p)} generates the Borelians in
[0, 1].

Proof. Consider x ∈ [0, 1] − B̃. Then there exist A1 ∈ Me(n0), A2 ∈
Me(2n0), ..., Ak ∈Me(kn0), ... such that x ∈ Ai ∀i.

By lemma 12, we know that

λ(Ak)→k→∞ 0.

Then, x ∈ ∩∞i Ai and λ(Ai)→i→∞ 0.
We conclude that for any x ∈ [0, 1] − B̃ we can construct a sequence of

extremes of intervals in {⋃pMe(p)} such that the limit converges to x. This
means that we can approximate any point in [0, 1] by a sequence of extremes
of intervals in {⋃pMe(p)}. So, we can approximate any rational number in
[0, 1] and we conclude the proof because all open sets in [0, 1] with rational
extremes generate the Borelians in [0, 1].

We are considering an N -linear Markov transformation with Me(1) =
{P1, ..., PN} then ∀x ∈ Pj, f(x) = αjx + γj. If S = f−1(Pj) ∩ Pi then, by
condition (2) of definition 10, |αi|λ(S) = λ(Pj). So,

λ(S) =
λ(Pj)

|αi|
(3.6)

For D ∈Me(p), ν∗(D) = vd0Zd0d1 · · ·Zdp−2dp−1 where ψ(D) = d0, ..., dp−1,
by Eq. (3.2) we obtain

ν∗(D) =
vd0

λ(Pd0)

λ(Pdp−1)∏p−2
i=0 |αdi |

.

Also observe that D ∈Me(p), ν(ψ(D)) = vd0Zd0d1 ...Zdp−2dp−1 ≤ γ where,
directly by the definition of Z, γ < 1.

Lemma 17 With ψ(D) = {d0, ..., dp−1} we have

λ(D) =
λ(Pdp−1)∏p−2
i=0 |αdi |

=
λ(Pd0)

vd0
ν∗(D)

Proof. Because of the fact that fp−1(D) = Pdp−1 and using condition (2) of
definition 10 we obtain

fp−1(x) = αdp−2αdp−3 · · ·αd0x+ constant

for all x ∈ D. Then using (3.6) we conclude that λ(D) =
λ(Pdp−1)

|αdp−2
αdp−3

···αd0 |
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Lemma 17 allows us to conclude that ∀p > 1 ∃m > 0 such that ∀D ∈
Me(p) we have

mν∗(D) ≤ λ(D).

In fact, m = minj

{
λ(Pj)

vj

}
.

Finally, to show that we have (3.5) if λ(S) = 0, we observe that ∀ε > 0
we can chose, by lemma 12, a large p such that

∑

j

λ(Bj) < ε

and S ⊂ ∪jBj and ∀j Bj ∈ Me(p). Therefore ν∗(S) < ε
m

and we conclude
the proof of proposition 15.

Proposition 15 allows us to use symbolic dynamics to compute the natural
measure. From now on we use the same symbol µ for both ν and ν∗ measures.

Example 3.2.2 Let f : [0, 1]→ [0, 1] be given by

f(x) =

{
x
c

if x ∈ [0, c[
x−c
1−c if x ∈ [c, 1]

with 0 < c < 1.
For c = 1/2, f(x) = 2x (mod 1). The stochastic matrix associated to f

is (
1/2 1/2
1/2 1/2

)

with the stationary probability vector v = (1/2, 1/2).
For any D ∈Me(p) with ψ(D) = (d0, ..., dp−1) we have:

ν∗(D) = ν(D) =
vd0

λ(Pd0)
λ(D).

For c = 1/2 we have λ(P0) = λ(P1) = 1/2 and hence ν∗(D) = λ(D). For
other values of c, the constant m above may be taken to be the minimum of
2c and 2(1− c).

3.3 Density function of first returns for elements
of a Markov partition

From now on we restrict our attention to 2-linear Markov transformation.
In this section we prove the conjecture for first Poincaré returns of fp, where
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f is a 2-linear Markov transformation, to a set D ∈ Me(p) with p > 1. We
show that

ρ(p,D) = µNR(p,D).

Some of the tools developed in this section will be useful in extending the
result to other situations.

First Poincaré returns and symbolic dynamics

For D ∈Me(p), µ(D) = µ(C(0; d0, ..., dp−1)). Define

Sp(D) = {x ∈ D : fp(x) ∈ D}

and
SpNR(D) = {x ∈ Sp(D) : f i(x) /∈ D, 0 < i < p}.

The density function of the first Poincaré returns can be written as

ρ(p,D) =
µ(SpNR(D))

µ(D)
. (3.7)

Definition 18 We say that the code d0, ..., dp−1 identifies D ∈Me(p) if and
only if ψp(D) = (d0, ..., dp−1).

Lemma 19 If D ∈Me(p) then there exists at most one point of period p in
D.

Proof. Suppose that d0, ..., dp−1 is the code that identifies D. This means
that x ∈ D if and only if ψ(x) = (d0, ..., dp−1, xp, xp+1, ...).

If dp−1d0 is an allowed word in XA (i.e. if Adp−1,d0 = 1) then the p-
periodic sequence (d0, ..., dp−1) = (d0, ..., dp−1, d0, ..., dp−1, d0, ...) is in XA and
π(d0, ..., dp−1) ∈ D. Moreover, this is the only possible code for a p-periodic
point in D.

Observe that for each D ∈ Me(p) we have, at most, one periodic point
of period p inside it, represented by (d0, ..., dp−1). Here "at most" refers to
cases for which we can not have periodic points like in example 3.2.1:

A =

(
1 1
1 0

)

and consider D represented by the code (1, 0, 1). In this case (101) /∈ XA

and then there is no periodic point of period 3 inside D.
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Lemma 20 Consider some D ∈ Me(p), p > 1. If Sp(D) 6= ∅ then either
SpNR(D) = Sp(D) or SpNR(D) = ∅. Moreover, SpNR(D) 6= ∅ if and only if the
periodic point with period p in D is non-recurrent.

Proof. Suppose that d0, ..., dp−1 identifies D ∈ Me(p). For any x ∈ D,
ψ(x) = (d0, ..., dp−1, xp, xp+1, ...) where xi ∀i > p − 1 can be any symbol of
the finite set {0, 1, ..., N − 1}. If fp(x) ∈ D it means that

(xi) = (d0, ..., dp−1, d0, ...dp−1, x2p, ...).

So, this is the form of points in Sp(D).
The last observation implies that there exists a periodic point of period

p inside D, given by (d0, ..., dp−1).
Now, if SpNR(D) 6= ∅ then

(dj, ..., dp−1, d0, ..., dj−1) 6= (d0, ..., dp−1) ∀j with 0 < j < p.

This last property of the code of D implies that ∀x ∈ Sp(D), x is also a
point of SpNR(D). By definition, SpNR(D) ⊂ Sp(D) and we conclude that
SpNR(D) = Sp(D).

Finally we observe that if SpNR(D) 6= ∅ then there is at least one non-
recurrent point in D. The first p symbols of this non-recurrent point will
define all the code of the periodic point with period p in D and, consequently,
the periodic point needs to be non-recurrent.

Lemma 21 Consider some D ∈Me(p− k), p > 1 and 0 < k < p.
If SpNR(D) 6= ∅ and if SpNR(D) 6= Sp(D) then there exists at least one

periodic point with period p in D that is non-recurrent in D and also there
exists at least one periodic point with period p in D that is recurrent in D.

If SpNR(D) = Sp(D) 6= ∅ then there exists a p-periodic point in D and,
moreover, all p-periodic points in D are non-recurrent.

If SpNR(D) = ∅ then any p-periodic points in D are recurrent.

Proof. It is a direct consequence of the existence of at least one point in D
that is non-recurrent (or recurrent) in D as in lemmas 19 and 20. The first
p symbols of the code of that non-recurrent (or recurrent) point will define
all the code of the non-recurrent (or recurrent) periodic point with period p
in D.

For D ∈ Me(p), if ψ(D) = C(0; d0, . . . , dp−1) i.e. if d0, . . . , dp−1 is the
code that identifies D, then ψ(Sp(D)) = C(0; d0, . . . , dp−1, d0, . . . , dp−1). By
(3.3) it follows that

µ(D) = vd0Zd0,d1 · · ·Zdp−2,dp−1
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and
µ(Sp(D)) = vd0Zd0,d1 · · ·Zdp−2,dp−1Zdp−1,d0Zd0,d1 · · ·Zdp−2,dp−1

=
Zdp−1,d0µ(D)2

vd0
.

From this it follows that if SpNR(D) 6= ∅ and using Lemma 20 we have

ρ(p,D) =
Zdp−1,d0

vd0
µ(D). (3.8)

Some useful results about the space of the sequences with two
symbols

In this section we will prove some useful results related with maps whose
trajectories are encoded by two symbols, 2-linear Markov transformation.

If we assume that there is a chaotic attractor, C, on the phase space
[0, 1] such that C = [0, 1] then only some of all possible transition matrices,
associated to the linear Markov transformation that can be represented by
two symbols, are allowed since the transformation needs to have a dense orbit
in [0, 1]. The allowed transition matrices are:

A1 =

(
1 1
1 1

)
, A2 =

(
0 1
1 1

)
and A3 =

(
1 1
1 0

)
. (3.9)

The next result will be useful for the proof of the main result of the next
section and, essentially, it gives us, for some fixed sequence (xj) ∈ ΣAi , all
the relations between the number of words with two symbols and the number
of words with just one symbol, for some fixed length p > 2 of (xj).

Let (xj) ∈ XAi . Define x̂p = (x0, ..., xp−1) and skword = (s0, ..., sk−1)
where sl ∈ {0, 1} ∀l = 0, ..., k − 1. Define N(skword, (xj), p) as the number of
occurrences of skword in x̂p, for some fixed p > 1.

Lemma 22 For some fixed p > 1 and (xj) ∈ XAi , i ∈ {1, 2, 3}, we have

1. N(00, (xj), p) +N(01, (xj), p) = N(0, (xj), p− 1) = N(0, (xj), p)− (1− xp−1),

2. N(00, (xj), p) +N(10, (xj), p) = N(0, σ((xj)), p− 1) = N(0, (xj), p)− (1− x0),

3. N(10, (xj), p) +N(11, (xj), p) = N(1, (xj), p− 1) = N(1, (xj), p)− xp−1,

4. N(01, (xj), p) +N(11, (xj), p) = N(1, σ((xj)), p− 1) = N(1, (xj), p)− x0.

Proof. For equation (1) observe that every occurrence of a 0 in one of
the terms x0, ..., xp−2 also corresponds to an occurrence of 00 or to one 01.
For equation (2) observe that every occurrence of a 0 in one of the terms
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x1, ..., xp−1 also corresponds to an occurrence of 00 or to one 10. The last
two equations can be proved using similar arguments. Q.E.D.

For a more formal proof, let us use an induction argument on p: For
p = 2, x̂p can only have the form 00, 01, 10 or 11. In any of these cases
equation (1), (2), (3) and (4) is valid. For p = 2 all equations are valid. Now,
suppose equation (1), (2), (3) and (4) valid for some p > 2, let’s prove for
p+ 1. First, observe that

N(00, (xj), p+ 1) = N(00, (xj), p) +

{
1 if xp−1xp = 00,
0 if xp−1xp 6= 00,

N(01, (xj), p+ 1) = N(01, (xj), p) +

{
1 if xp−1xp = 01,
0 if xp−1xp 6= 01,

N(10, (xj), p+ 1) = N(10, (xj), p) +

{
1 if xp−1xp = 10,
0 if xp−1xp 6= 10,

N(11, (xj), p+ 1) = N(11, (xj), p) +

{
1 if xp−1xp = 11,
0 if xp−1xp 6= 11,

N(0, (xj), p+ 1) = N(0, (xj), p) +

{
1 if xp = 0,
0 if xp = 1,

N(1, (xj), p+ 1) = N(1, (xj), p) +

{
1 if xp = 1,
0 if xp = 0.

As we can see from the last equations, the differences between all quanti-
ties only depends on the value of the terms xp−1 and xp. If (xp−1, xp) = (0, 0)
then, using the induction condition and some of the last relations, we obtain

(1)⇔ N(00, (xj), p + 1)− 1 + N(01, (xj), p + 1) = N(0, (xj), p + 1)− 1− (1− xp)

⇔ N(00, (xj), p + 1) + N(01, (xj), p + 1) = N(0, (xj), p + 1)− (1− xp),

(2)⇔ N(00, (xj), p + 1)− 1 + N(10, (xj), p + 1) = N(0, (xj), p + 1)− 1− (1− x0)

⇔ N(00, (xj), p + 1) + N(10, (xj), p + 1) = N(0, (xj), p + 1)− (1− x0),

(3)⇔ N(00, (xj), p + 1)− 1 + N(10, (xj), p + 1) = N(0, (xj), p + 1)− 1− (1− x0)

⇔ N(00, (xj), p + 1) + N(10, (xj), p + 1) = N(0, (xj), p + 1)− (1− x0),

(4)⇔ N(00, (xj), p + 1)− 1 + N(10, (xj), p + 1) = N(0, (xj), p + 1)− 1− (1− x0)

⇔ N(00, (xj), p + 1) + N(10, (xj), p + 1) = N(0, (xj), p + 1)− (1− x0) Q.E.D.

The arguments to prove for the cases when (xp−1, xp) = (0, 1), (1, 0) or (1, 1)
are similar and we conclude that the equation (1), (2), (3) and (4) is valid
for any p > 1.
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Linear Markov transformations with two pieces

As we already described, some of the elements of Me(p), for some fixed
p > 1, do not contain a periodic point of period p. For a 2-linear Markov
transformation and D ∈Me(p), the expression for µNR(p,D) in definition 8
takes the form

µNR(p,D) =
1

(der0)N(0)(der1)N(1)
, (3.10)

whenever SNR(D) 6= ∅, where N(0) = N(0, (xj), p) and N(1) = N(1, (xj), p),
for (xj) = (d0(D), ..., dp−1(D), xp, ...), and der0, der1 are the absolute values
of the derivative of the map in I0, I1, respectively.

The main result of this section is:

Theorem 23 Consider f as a 2-linear Markov transformation. Also let’s
assume that there is a chaotic attractor, C, on the phase space [0, 1] such
that C = [0, 1]. Then, fixing p > 1, for any element D ∈Me(p) we have

ρ(p,D) = µNR(p,D).

Before proving the theorem let us recall that, for a linear Markov transfor-
mation with 2 pieces and on the conditions of the theorem, the only allowed
transition matrices are those in (3.9):

A1 =

(
1 1
1 1

)
, A2 =

(
0 1
1 1

)
and A3 =

(
1 1
1 0

)
.

Lemma 24 On the conditions of the theorem 23, if either Sp(D) = ∅ or
SpNR(D) 6= Sp(D) 6= ∅ then theorem 23 is a trivial observation.

Proof. If Sp(D) = ∅ and if d0, ..., dp−1 is the code that identifies D then
there are no points x ∈ [0, 1] with the code d0, ..., dp−1, d0, ..., dp−1, x2p−1, ...
and it means that there is no periodic point with period p inside D. This
implies that µNR(p,D) = 0. On the other hand, SpNR(D) ⊂ Sp(D) = ∅ and
so ρ(p,D) = 0.

If Sp(D) 6= ∅ and SpNR(D) 6= Sp(D) then, by Lemma 20, SpNR(D) = ∅ and
it means that we do not have any non-recurrent periodic point of period p
inside D and so µNR(p,D) = 0. On the other hand, SpNR(D) = ∅ implies
ρ(p,D) = 0.

The interesting and non trivial cases are those where the transition ma-
trices are (3.9) and, at the same time, for a chosen D ∈ Me(p) we have
SpNR(D) 6= ∅. Then the proof of theorem 23 is divided in three lemmas, for
the three possible transition matrices.
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Lemma 25 Let f be a linear Markov transformation with transition matrix
A1. Then, under the conditions of theorem 23, for any D such that SpNR(D) 6=
∅ we have

ρ(p,D) = µNR(p,D).

Proof. The stochastic matrix and the stationary vector, with I0 = (0, c) and
I1 = (c, 1) for 0 < c < 1, are given by

Z =

(
c 1− c
c 1− c

)
,

and v = (c, 1 − c). For a chosen D ∈ Me(p) with code d0, ..., dp−1, we write
its measure as

µ(D) = µ(C(0; d0, ..., dp−1)) = vd0Zd0d1 · · ·Zdp−2dp−1 =

= vd0c
[N(00)+N(10)](1− c)[N(01)+N(11)],

whereN(00) = N(00, (xj), p), N(01) = N(01, (xj), p), N(10) = N(10, (xj), p)
and N(11) = N(11, (xj), p), for (xj) = (d0, ..., dp−1, xp, ...). We also write the
measure for SpNR(D) and using Eq. (3.8) we obtain

ρ(p,D) = c[N(00)+N(10)+1−d0](1− c)[N(01)+N(11)+d0].

Using the information about the derivatives of the map, we write Eq. (3.10)
as

µNR(p,D) = cN(0)(1− c)N(1),

where N(0) and N(1) are the numbers of occurrences of 0 and 1, respectively,
in the code of D. We apply lemma 22 to the case (xj) = (d0, ..., dp−1, xp, ...)
and we conclude thatN(00)+N(10)+1−d0 = N(0) andN(01)+N(11)+d0 =
N(1). Then, it follows that

ρ(p,D) = cN(0)(1− c)N(1) = µNR(p,D).

Lemma 26 Let f be a linear Markov transformation with transition matrix
A2. Then, under the conditions of theorem 23, for any D such that SpNR(D) 6=
∅ we have

ρ(p,D) = µNR(p,D).
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Proof. The stochastic matrix and the stationary vector, with I0 = (0, c) and
I1 = (c, 1) for 0 < c < 1, are given by

Z =

(
0 1
c 1− c

)
,

and v = ( c
1+c

, 1
1+c

). For a chosen D ∈ Me(p) with code d0, ..., dp−1, we write
its measure as

µ(D) = vd0c
N(10)(1− c)N(11),

where N(10) and N(11) are the numbers of occurrences of the words 10 and
11, respectively, in the code of D. We also write the measure of SpNR(D) and
using Eq. (3.8) we obtain

ρ(p,D) = c[N(10)+1−d0](1− c)[N(11)+d0−1+dp−1].

Using the information about the derivatives of the map, we write Eq. (3.10)
as

µNR(p,D) = cN(0)(1− c)[N(1)−N(0)],

where N(0) and N(1) are the numbers of occurrences of 0 and 1, respectively,
in the code of D. We apply lemma 22 to the case (xj) = (d0, ..., dp−1, xp, ...)
and we conclude that N(10) + 1 − d0 = N(0) and N(11) + d0 + dp−1 − 1 =
N(1)−N(0). Then, it follows that

ρ(p,D) = cN(0)(1− c)[N(1)−N(0)] = µNR(p,D).

Lemma 27 Let f be a linear Markov transformation with transition matrix
A3. Then, under the conditions of theorem 23, for any D such that SpNR(D) 6=
∅ we have

ρ(p,D) = µNR(p,D).

Proof. The stochastic matrix and the stationary vector, with I0 = (0, c) and
I1 = (c, 1) for 0 < c < 1, are given by

Z =

(
c 1− c
1 0

)
,

and v = ( 1
2−c ,

1−c
2−c). For a chosen D ∈Me(p), we write its measure as

µ(D) = vd0c
N(00)(1− c)N(01),

61



where N(00) and N(01) are the numbers of occurrences of the words 00 and
01, respectively, in the code of D. We also write the measure of SpNR(D) and
using Eq. (3.8) we obtain

ρ(p,D) = c[N(00)+1−d0−dp−1](1− c)[N(01)+d0].

Using the information about the derivatives of the map, we write Eq. (3.10)
as

µNR(p,D) = c[N(0)−N(1)](1− c)N(1),

where N(0) and N(1) are the numbers of occurrences of 0 and 1, respectively,
in the code of D. We apply lemma 22 to the case (xj) = (d0, ..., dp−1, xp, ...)
and we conclude that N(01) + d0 = N(1) and N(00) + 1 − d0 − dp−1 − 1 =
N(0)−N(1). Then, it follows that

ρ(p,D) = cN(0)(1− c)[N(1)−N(0)] = µNR(p,D).

3.4 Longer returns to elements of the Markov
partition

In this section we generalize theorem 23 in terms of the subset that we
want to observe the returns. If S ∈ Me(p − k) then for k = 0 theorem 23
says that

ρ(p, S) = µNR(p, S)

and in this section we will show that, in fact, is not only true for k = 0 but
is also true for 0 ≤ k < p.

Subset as a perfect union of elements of the Markov partition

Let’s take A,B ∈Me(p) such that S = A∪B ∈Me(p−1). In these con-
ditions we know that ψ(A) and ψ(B) differ only on the last digit. So, ψ(S) =
d0, ..., dp−2, ψ(A) = d0, ..., dp−2, dp−1(A) and ψ(B) = d0, ..., dp−2, dp−1(B)
where dp−1(A) 6= dp−1(B).

Recall that

Sp(A ∪B) = {x ∈ A ∪B : fp(x) ∈ A ∪B}

and

SpNR(A ∪B) = {x ∈ Sp(A ∪B) : f i(x) /∈ A ∪B 0 < i < p}.
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Lemma 28 Suppose S = A ∪ B ∈ Me(p − 1), with A,B ∈ Me(p) and
SpNR(S) 6= ∅. If p is prime then SpNR(S) = Sp(S). If p is not prime then
in the cases where SpNR(S) 6= Sp(S) there exists one and only one recurrent
periodic point of period p in S and one and only one non-recurrent periodic
point of period p in S.

Proof. All x ∈ SpNR(S) have the form

ψ(x) = (xj) = (d0, d1, ..., dp−2, xp−1, d0, d1, ..., dp−2, x2p−1, ...)

and there is no k = 1, ..., p− 1 such that σk((xj)) ∈ S.
Let us take some y ∈ Sp(S) and it has the form

ψ(y) = (yj) = (d0, d1, ..., dp−2, yp−1, d0, d1, ..., dp−2, y2p−1, ...).

For 0 < k < p, σk((yj)) = (dk, dk+1, ..., dp−2, yp−1, ...). So, if for some
0 < k < p we have σk((yj)) ∈ S ⇔ dj = dj+k and dp−k−1 = yp−1 ∀j =
0, ..., p− 2 (mod p).

Case prime: See that {j : dj = d0} = {nk (mod p)}. By a classical
result we know that k generates Zn iff (k, n) = 1. As we are assuming p
prime then we conclude that {nk (mod p)} = Zp and all dj’s has to have
the same value. In this situation we only have the cases where either S =
{11..11} or S = {00..00} but in these cases SpNR(S) = ∅ and we conclude
that SpNR(S) = Sp(S) whenever SpNR(S) 6= ∅ and p prime.

Case not prime: Let us consider some point in Sp(S) that is not in
SpNR(S), we call it z. Now, z has the form

ψ(z) = (zj) = (d0, d1, ..., dp−2, zp−1, d0, d1, ..., dp−2, ...) (3.11)

and for some k, 0 < k < p we have

(dk, ..., dp−2, zp−1, d0, ..., dp−2,...).

Moreover, every point y satisfying ψ(y) = (d0, d1, ..., dp−2, zp−1, d0, d1, ..., dp−2, ...)
lies in Sp(S) − SpNR(S). In particular, π(d0, d1, ..., dp−2, zp−1) is a recurrent
periodic point in S.

To complete the proof, note that if x ∈ SpNR(S) then ψ(x) must be of the
form

ψ(x) = (d0, d1, ..., dp−2, 1− zp−1, d0, d1, ..., dp−2, ...).

since we are assuming SpNR(S) 6= ∅ then dp−2, 1− zp−1, d0 is an allowed word
in XA and thus π(d0, d1, ..., dp−2, 1− zp−1 is a non recurrent periodic point in
S.
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Lemma 29 Consider S = A ∪ B ∈ Me(p − 1), with A,B ∈ Me(p) and
SpNR(S) 6= ∅. If SpNR(S) = Sp(S) (for instance, if p is prime) we have

ρ(p, S) =
µ(A)Zdp−1(A),d0

vd0
+
µ(B)Zdp−1(B),d0

vd0

and if SpNR(S) 6= Sp(S) then

ρ(p, S) =
µ(S∗)Zdp−1(S∗),d0

vd0

where S∗ represents the set, either A or B, that contains, by lemma 28, the
non-recurrent periodic point of period p in S.

Proof. If SpNR(A ∪B) = Sp(A ∪B) 6= ∅ we have that

ρ(p, S) =
µ(Sp(A)) + µ(Sp(B)) + µ(A→ B) + µ(B → A)

µ(A ∪B)
, (3.12)

where A→ B represents the set of points in A that returns to B and B → A
represents the set of points in B that returns to A after p iterations by F .
Their measures are given by

µ(A→ B) = vd0Zd0,d1 · · ·Zdp−2,dp−1(A)Zdp−1(A),d0Zd0,d1 · · ·Zdp−2,dp−1(B)

and

µ(B → A) = vd0Zd0,d1 · · ·Zdp−2,dp−1(B)Zdp−1(B),d0Zd0,d1 · · ·Zdp−2,dp−1(A).

So, we write Eq.(3.12) only with the elements of the stochastic matrix Z
and we obtain

vd0Zd0,d1 · · ·Zdp−2,dp−1(A)Zdp−1(A),d0Zd0,d1 · · ·Zdp−2,dp−1(A)

vd0Zd0,d1 · · ·Zdp−3,dp−2

+

+
vd0Zd0,d1 · · ·Zdp−2,dp−1(B)Zdp−1(B),d0Zd0,d1 · · ·Zdp−2,dp−1(B)

vd0Zd0,d1 · · ·Zdp−3,dp−2

+

+
vd0Zd0,d1 · · ·Zdp−2,dp−1(A)Zdp−1(A),d0Zd0,d1 · · ·Zdp−2,dp−1(B)

vd0Zd0,d1 · · ·Zdp−3,dp−2

+

+
vd0Zd0,d1 · · ·Zdp−2,dp−1(B)Zdp−1(B),d0Zd0,d1 · · ·Zdp−2,dp−1(A)

vd0Zd0,d1 · · ·Zdp−3,dp−2

.

Now, the fact that Z is a stochastic matrix, in particular, implies that
Zdp−2,dp−1(A) + Zdp−2,dp−1(B) = 1 and we obtain from the last expression

ρ(p, S) =
µ(A)Zdp−1(A),d0 + µ(B)Zdp−1(B),d0

vd0
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and case SpNR(A ∪B) = Sp(A ∪B) 6= ∅ is done.
If SpNR(A ∪ B) 6= Sp(A ∪ B) 6= ∅, by lemma 28, let us suppose, W.L.G.,

that A is the set that contains the non-recurrent periodic point of period p.
Then, by definition, we have

ρ(p, S) =
µ(SpNR(A)) + µ(A→ B)

µ(A ∪B)
=

by lemma 20

=
µ(Sp(A)) + µ(A→ B)

µ(A ∪B)
,

and using the elements of the stochastic matrix Z, we obtain

ρ(p, S) =
µ(A)Zdp−1(A),d0

vd0
.

Lemma 30 For any A ∈Me(p), p > 1, we have

µ(A)Zdp−1(A),d0

vd0
= µNR(p,A).

Proof. By theorem 23

µNR(p,A) = ρ(p,A) =
µ(SpNR(A))

µ(A)

and by lemma 20 if this is not zero then it equals
µ(Sp(A))

µ(A)
.

Finally, we write the last expression only with the elements of the stochas-
tic matrix Z and we obtain

µNR(p,A) =
µ(A)Zdp−1(A),d0

vd0
.

Theorem 31 Under the conditions of Theorem 23, let us consider S = A∪
B ∈Me(p− 1), with A,B ∈Me(p) and SpNR(S) 6= ∅. Then

ρ(p, S) = µNR(p, S).

In particular, if SpNR(S) 6= Sp(S)(and therefore p is not prime) then either

ρ(p, S) = µNR(p,A)

or
ρ(p, S) = µNR(p,B).
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Proof. First we consider the case SpNR(A∪B) = Sp(A∪B) 6= ∅. By Lemma
28 this is always true when p is prime. Then

ρ(p, S) =
µ(Sp(A ∪B))

µ(A ∪B)
= (3.13)

by lemma 29

=
µ(A)Zdp−1(A),d0

vd0
+
µ(B)Zdp−1(B),d0

vd0
=

by lemma 30
= µNR(p,A) + µNR(p,B)

and the case p prime is done since both periodic points of period p (in A and
in B) are non-recurrent in S and are not the same (the last symbol of the
code of each point needs to be different). So,

µNR(p,A) + µNR(p,B) = µ(p, S).

The only case that we still need to prove is the case when SpNR(S) 6=
Sp(S). By Lemma 28 we suppose, W.L.G., that A is the element that has
the recurrent periodic point of period p, A = π(d0, ..., dp−2, dA) with dA =
dp−1(A) and B = π(d0, ..., dp−2, dB) with dB = dp−1(B). Observe that

SpNR(A ∪B) = π(d0, d1, ..., dp−2, dB, d0, d1, ..., dp−2)

= SpNR(B)∪̇π(d0, d1, ..., dp−2, dB, d0, d1, ..., dp−2, dA)

= SpNR(B)∪̇(B → A)

By definition we have

ρ(p, S) =
µ(SpNR(A ∪B))

µ(A ∪B)
=

=
µ(SpNR(B)) + µ(π(d0, d1, ..., dp−2, dB, d0, d1, ..., dp−2, dA))

µ(A ∪B)
=

by lemma 20

=
µ(Sp(B)) + µ(B → A)

µ(A ∪B)
.

Using lemmas 29 and 30 we conclude that

ρ(p, S) = µNR(p,B).

Because of our assumption on A (one and only one recurrent periodic point
of period p) we have µNR(p, S) = µNR(p,B) and we conclude the proof.
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Theorem 32 Under the conditions of Theorem 23, let us consider S =⋃
iAi ∈ Me(p − k), with Ai ∈ Me(p) ∀i with p > 0 and 0 ≤ k < p.

Then
ρ(p, S) = µNR(p, S)

Proof. Suppose that we are in the case where SpNR(S) = Sp(S) 6= ∅. Observe
that the number of A′is is N ≤ 2k and if the code of S is d0, ..., dp−k−1 then

ψ(Ai) = d0, ..., dp−k−1, dp−k(Ai), dp−k+1(Ai), ..., dp−1(Ai).

The density function of the first returns can be written as

ρ(p, S) =
µ(SpNR(S))

µ(S)
=
µ(Sp(S))

µ(S)
= (3.14)

=

∑N
i=1 µ(Sp(Ai)) +

∑N
i,j=1,i 6=j µ(Ai → Aj)

µ(S)

where
µ(Ai → Aj) =

= vd0Zd0,d1 · · ·Zdp−k−1,dp−k(Ai)Zdp−k(Ai),dp−k+1(Ai) · · ·Zdp−1(Ai)
,d0Zd0,d1 · · ·

· · ·Zdp−k−1(Aj),dp−k(Aj)Zdp−k(Aj),dp−k+1(Aj) · · ·Zdp−2(Aj)
,dp−1(Aj)

= µ(Ai)
µ(Aj)

vd0
Zdp−1(Ai), d0.

Finally we write Eq.(3.14) as

ρ(p, S) =

∑N
i=1

µ(Ai)
2

vd0
Zdp−1(Ai), d0 +

∑N
i=1

∑N
j=1,j 6=i

µ(Ai)µ(Aj)

vd0
Zdp−1(Ai), d0

µ(S)

and using lemma 30 we obtain

ρ(p, S) = µNR(p,A1)

(
µ(A1) + ...+ µ(AN)

µ(S)

)
+ ...

...+ µNR(p,AN)

(
µ(A1) + ...+ µ(AN)

µ(S)

)
=

=
N∑

i=1

µNR(p,Ai) = µNR(p, S)

since we are assuming SpNR(S) = Sp(S).
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For the case where Sp(S) 6= SpNR(S) 6= ∅, we reorder the A′is, using lemma
21, such that the first l Ai’s will be the ones that contain a non-recurrent (in
S) periodic point of period p. Then

ρ(p, S) =

∑l
i=1 µ(SpNR(Ai)) +

∑l
i=1

∑N
j=1 µ(Ai → Aj)

µ(S)
=

=

∑l
i=1 µ(Sp(Ai)) +

∑l
i=1

∑N
j=1 µ(Ai → Aj)

µ(S)
=

=
l∑

i=1

µNR(p,Ai) = µNR(p, S).

Finally if SNR(S) = ∅ then ρ(p, S) = 0 and by lemma 21 µNR(p, S) = 0.

Considering k = 1 in theorem 32 we have theorem 31 as expected but
theorem 31 still has a little bit more information. Observe that, for the
case k = 1, if p is prime then we automatically know that there are no
recurrent periodic points of period p in S and then we just need to calculate
all periodic points of period p inside D without verifying if they are or not
recurrent points in D. We do not have anymore this property if k > 1.

3.5 Subset that is not a perfect union of ele-
ments of the Markov partition - numerical
point of view

In this section we discuss the situation when, for some linear Markov trans-
formation, our subset of the phase space is not anymore a perfect union of
Markov elements. For simplicity, consider a 2-linear Markov transformation
and a set S ∈ [0, 1] such that one of the boundaries of S is not a boundary of
any element of the Markov partition, for some fixed level p > 1. More pre-
cisely, consider A,B ∈Me(p) with A ∪B ∈Me(p− 1) and S(ε) = A ∪R(ε)
where R(ε) ⊂ B is an interval such that S(0) = A, S(1) = A ∪ B and,
∀ε1, ε2 ∈ [0, 1], if ε1 > ε2 then S(ε2) ⊂ S(ε1). By theorem 32

ρ(p, S(0)) = µNR(p,A)

and
ρ(p, S(1)) = µNR(p,A ∪B).
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For the sets A and B, we have the following possible situations:

With respect to S,

1. A contains a non-recurrent periodic point of period p and B contains
a non-recurrent periodic point of period p that does not belong to the
orbit of the non-recurrent periodic point of period p in A,

2. A contains a non-recurrent periodic point of period p and B contains
a non-recurrent periodic point that belongs to the orbit of the non-
recurrent periodic point of period p in A,

3. A contains a non-recurrent periodic point of period p and B does not
contain a non-recurrent periodic point of period p,

4. A does not contain a non-recurrent periodic point of period p and B
contains a non-recurrent periodic point of period p,

5. A does not contain a non-recurrent periodic point of period p and B
also does not contain a non-recurrent periodic point of peroid p.

In each previous situation and ∀ε ∈ [0, 1] we expect the following relations
between ρ(p, S(ε)) and the quantities µNR(p,A) and µNR(p,A ∪B):

1. µNR(p,A) ≤ ρ(p, S(ε)) ≤ µNR(p,A ∪B), ∀ε ∈ [0, 1],

2. µNR(p,A ∪B) ≤ ρ(p, S(ε)) ≤ µNR(p,A), ∀ε ∈ [0, 1],

3. µNR(p,A) = µNR(p,A ∪B) 6= 0,

4. µNR(p,A) ≤ ρ(p, S(ε)) ≤ µNR(p,A ∪B), ∀ε ∈ [0, 1],

5. µNR(p,A) = µNR(p,A ∪B) = 0.

As a conclusion, we suggest that if S ⊂ A ∪ B ∈ Me(p− 1) then ρ(p, S)
is always bounded by µNR(p,A) and µNR(p,A ∪B).

Numerical simulations have been done considering the Markov transfor-
mation from example 3.2.1 with c = 0.6. In Fig. 3.1 (A), are shown by pluses
the order-5 Markov cell borders and in filled circles the 10 unstable periodic
points of minimal period p = 5 and the fixed point x = 0.

In Fig. 3.1 (B) and (C) are shown the values of ρ(p, S) and µNR(p, S)
as we change the size of the subset S. We start with a subset being a
Markov element S1 = [0.216, 0.3024] where ψ(S1) = (00100) and then we
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change it until it becomes a perfect union of two Markov elements S1 =
[0.2160, 0.3024]

⋃
S2 = [0.3024, 0.3600] where ψ(S2) = (00101). These two

intervals are in the situation described in 1. In Fig. 3.1 (B) we consider the
unstable periodic points of period p = 5 and in Fig. 3.1 (C) the unstable
periodic points of period p = 8 for the same sets. In the horizontal axis of
(B) and (C), λ(S) represents the length of S when we increase S1 in order
to get S1 ∪ S2.

According to theorems 23 and 31, ρ(p, S) = µNR(p, S) whenever S ∈
Me(p) or S ∈Me(p−1). That happens in (B) when λ(S) = 0.0864 (S = S1)
and when λ(S) = 0.144 (S = S1 ∪ S2).

According to theorem 32, as long as the subset is an element of a Markov
partition of order p1, ρ(p, S) = µNR(p, S) for any order p > p1. In Fig. 3.1
(C) we observe that fact using p = 8.

When the subset S ⊂ A∪B ∈Me(p−1) is not a perfect union of Markov
elements, then it can also happen that ρ(p, S) = µNR(p, S). As an example,
observe in Fig. 3.1 (C) when λ(S) is close to 0.1 or when λ(S) is close to
0.12.

When ρ(p, S) 6= µNR(p, S) notice that ρ(p, S) is confined within the values
of µNR(p, S1 ∪ S2) and µNR(p, S1). We strongly believe that this is always
true when S ⊂ A ∪B ∈Me(p− 1).

Fig. 3.2 shows similar numerical results for subsets S ⊂ A ∪ B where
A,B ∈Me(5) but where A ∪B are not necessarily in Me(4). In some cases
we still get either µNR(p,A) ≤ ρ(p, S(ε)) ≤ µNR(p,A ∪ B), ∀ε ∈ [0, 1] or
µNR(p,A ∪ B) ≤ ρ(p, S(ε)) ≤ µNR(p,A), ∀ε ∈ [0, 1] but this is not true
anymore in the case of ψ(A) = (01010) and ψ(B) = (10000) (Fig. 3.2 (D)).
This shows that theorem 32 cannot be much further extended (with respect
the subset of the phase space), and that from this point on we can only
expect to find approximate results.
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Figure 3.1: Comparing ρ and µNR using the map obtained by taking c = 0.6
in example 3.2.1.
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Figure 3.2: Comparing ρ and µNR using the map obtained by taking c = 0.6
in example 3.2.1.
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Chapter 4

Conclusion and future work

This work is dedicated to the presentation and the proof of a conjecture
for chaotic dynamical systems. The conjecture says, essentially, that the
density function of the first Poincaré returns is completely determined by
the unstable periodic points of a given chaotic map. The first Poincaré
return is the time spent by a trajectory to make two consecutive returns to
some specific region of the phase space. The relation between the density
of such returns and the unstable periodic points allows us to compute easily
important quantities as was done, for the Kolmogorov-Sinai entropy, in [14]
with the logistic map. Even for nonuniformly hyperbolic systems, where
there exist some particular subsets for which the unstable periodic orbits are
not sufficient to calculate their measure[1], the simulations, in [14] with the
logistic map and also in [2] with Chua’s circuit and Henon map, suggest that
the conjecture is still true but in an approximate sense. As a consequence
of the conjecture and the fact that first Poincaré returns can be simply and
quickly accessible in experiments, this work offers an easy way to obtain
important quantities in dynamical systems by experiments.

Simulations suggest, in particular, that the conjecture presented in [14]
can be proved in some particular classes of dynamical systems. In this work
is provided a proof of such fact, in lemma 9, for particular case of expanding
piecewise transformations and for special subsets of the phase space. Also
here is provided a proof considering the class of all Markov transformations
with a linear assumption. Theorem 23, 31 and 32 are the main results of
this work where it is proved that in elements of the Markov partition (of any
order) we can express the density of the first Poincaré returns in terms of the
unstable non-recurrent periodic orbits.

There are some natural continuations of this work: first, to extend the
results on piecewise linear Markov maps to some sets that are not elements
of the Markov class Me(p). Second, to reformulate the conjecture for the
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sets for which it may only hold in an approximate sense. Third, to extend
the results to other maps, without the assumption of linearity.

74



Bibliography

[1] M. S. Baptista, S. Kraut, C. Grebogi, Poincaré recurrence and measure
of hyperbolic and nonhyperbolic chaotic systems attractors, Physical
Review Letters, 95 094101 (2005).

[2] M. S. Baptista, D. M. Maranhao and J.C. Sartorelli, Dynamical esti-
mates of chaotic systems from Poincaré recurrences, Chaos, 19 043115
(2009).

[3] M. Baptista, E. Ngamga, P. Pinto, M. Brito and J. Kurths, Kolmogorov-
Sinai entropy from recurence times, Physics Letters A, Volume 374, Issue
9 (2010), 1135-1140.

[4] R. Bowen, Periodic Orbits for Hyperbolic Flows, American Journal of
Mathematics, Vol. 94 (1972), 1-30.

[5] P. Bugiel, A note on invariant measures for Markov maps of an interval,
Z. Wahrscheinlichkeitstheorie verw. Gebiete, 70 (1985), 345-349.

[6] R. L. Devaney, An Introduction to Chaotic Dynamical Systems (second
edition), Addison-Wesley Publishing Company (1989).

[7] C. Grebogi, E. Ott and J. A. Yorke, Unstable Periodic Orbits and the
Dimensions of Multifractal Chaotic Attractors, Physical Review A, Vol.
37 (1988), 1711-1724.

[8] B. Kitchens, Symbolic Dynamics, Springer-Verlag Berlin Heidelberg
New York (1998).

[9] Y.-C. Lai, Y. Nagai and C. Grebogi, Characterization of the Natural
Measure by Unstable Periodic Orbits in Chaotic Attractors, Physical
Review Letters, Vol. 79 (1997), 649-652.

[10] A. Lasota and J. A. Yorke, On the existence of invariant measures
for piecewise monotonic transformations, Transactions of the American
Mathematical Society, volume 186 (1973), 481-488.

75



[11] T.-Y. Li and J. A. Yorke, Period Three Implies Chaos, American Math-
ematical Monthly, Vol. 82 (1975), No. 10, 985-992.

[12] E. N. Lorenz, Deterministic Nonperiodic Flow, Journal of Atmospheric
Sciences, Vol. 20 (1963), No. 2, 130-141.

[13] R. Mañé, Introdução à Teoria Ergódica, Gráfica Editora Hamburgo
(1983).

[14] P. Pinto, M. Baptista and I. Labouriau, Density of first Poincaré re-
turns, periodic orbits, and Kolmogorov-Sinai entropy, Communications
in Nonlinear Science and Numerical Simulation, Volume 16, Issue 2
(2011), 863-875.

[15] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag New
York (1982), GTM 79.

76


