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ABSTRACT 

This work describes an experimental characterization the non-linear rate-dependent 
mechanical behavior of a composite material under compression. Fiber reinforced 
polymer matrix composites exhibit non-linear mechanical behavior, except in fiber 
direction, which is rate-dependent. In this work the Texipreg® HS160 REM material 
system was used, comprising high strength carbon fiber and epoxy resin. 
Unidirectional laminates were tested under uniaxial compression tests on a universal 
testing machine. The stress/strain curves of several specimens were obtained at three 
different strain rates of 0.07, 0.001 and 0.0001/s. In all cases tests were continued 
until failure was reached to measure the strain rate effect on strength. A 3-parameter 
constitutive viscoplastic model [6,7] was used to describe the mechanical behavior. 
This model was developed based on data for strain rate between 0.0001 and 0.07/s. In 
transverse direction the viscoplastic model was able to predict the high strain rate 
experiments conducted on a Split Hopkinson Pressure Bar. 

Key words: High Strain Rate, Carbon/epoxy, Hopksinson’s pressure bar, Constitutive 
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1 INTRODUCTION 

This work is part of a major research project aiming to study the mechanical behavior 

and failure of CFRP laminates under high strain rate. The increasing use of polymer 

matrix composite materials in many applications demands the characterization of their 

mechanical response under a range of strain rates from 10-3 to 10+3/s. Several 

experimental studies have been performed with the goal of determining the effects of 

strain rate on the mechanical properties and response of polymer matrix composite 
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systems at high strain rate conditions. A survey done by Gates [1] describes several 

analytical models to simulate the rate-dependent response of various types of polymer 

matrix composites. Later Gates and Sun [2] developed an elastic-viscoplastic model 

for an orthotropic material without tension/compression symmetry and Gates [3] used 

an extension of that model to describe an experimental methodology to generate 

material constants. Goldberg and Stouffer [4] presented an historical survey of 

experimental development to study the strain rate effect on mechanical properties of 

polymer matrix composites, followed by constitutive modeling [4,5]. 

A simple methodology associated to a simple constitutive elastic-viscoplastic 

model was developed by Sun et al. [6,7]. This methodology was applied in the present 

work to study mechanical behavior of a composite laminate under compression. 

2 THEORETICAL BACKGROUND 

The 3-parameter viscoplastic model used in this work was first presented by Sun et al. 

[6,7]. This model was developed based on the one-parameter plastic model proposed 

by Chen and Sun [8]. The model was very successful in representing the non-linear 

behavior of fiber-reinforced polymeric composite materials. The requirements of 

orthotropic symmetry and assumption that in the fiber direction the material is linear 

elastic lead to a simple potential function for plane stress state 

2 2
22 66 12

1
2

f aσ σ= + , (1) 

where a66 is an orthotropy coefficient and σ22 σ12 are the transverse and shear stresses, 

respectively. It is assumed that strain increments are small enough that can be 

separated into elastic and plastic parts as 
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e p
ij ij ijd d dε ε ε= + , (2)  

where the superscripts e and p denote elasticity and plasticity, respectively. The 

elastic part follows elastic strain/stress relations for the composite and the plastic 

strains are obtained from the potential function as 

p
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, (3)  

where dλ is the proportionally factor. Defining the effective stress as  
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f aσ σ σ= = + , (4)  

and using the equivalence of plastic work rate [8], the effective plastic strain rate is 

obtained as 
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where 22
pε&  and 12

pγ&  are the transverse and shear plastic strain rate, respectively. 

Under off-axis constant strain rate, the effective plastic strain can be related with 

uniaxial applied stress σx and plastic strain εx
p as 

( ) xhσ θ σ= , (6)  

( )

p
p x

h
εε
θ

= , (7)  

where h(θ) is an off-axis parameter defined as 

( ) ( )4 2 2
66

3 sen 2 sen cos
2

h aθ θ θ θ= + . (8)  
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The reference master curve effective plastic strain/effective stress is obtained for the 

transverse direction, since for this direction h(θ) do not dependent on the orthotropy 

coefficient a66. The coefficient a66 should be such that all curves obtained for all other 

directions collapse into a single master curve, i.e. the reference master curve. 

Therefore the viscoplastic model assumes that for each strain rate there is a unique 

master curve which can be represented by a power law as 

( )np
Aε σ= , (9)  

where n is a material constant and the parameter A is function of the effective plastic 

strain rate. Sun et al. [5,6] proposed the following relationship  

( )mp
A χ ε= & , (10)  

where χ and m are material constants. 

The off-axis material response for the unidirectional loading tests can be predicted 

using the following non-linear equation 

px
x x

xE
σε ε= +
&

& & , (11)  

where Ex is the apparent modulus of elasticity of the off-axis specimen which is 

obtained from the transformation equation 

4 2 2 412

1 12 1 2

1 1 1 2 1cos sin cos sin
xE E G E E

υθ θ θ θ
 

= + − + 
 

, (12)  

where E1, E2, G12 and ν12 are the orthotropic elastic constants of composite. After 

some algebraic manipulation of Equation (11) a more convenient formulation of the 

non-linear differential equation can be obtained [6] using equations (6) and (7) and the 

following relations 
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x hε ε θ=& & , (13)  

and, from equations (9) and (10), 

( ) ( )
1 11

m mp pn mε σ ε
χ
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& . (14)  

Finally the non-linear differential equation is obtained 
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where  

p x
x x

xE
σε ε= − . (16)  

It is interesting to note that previous equation allows creep analysis. Let us consider 

the typical creep loading, with a constant load applied 0xσ σ=  for 0t ≥ , and 

0x xEε σ=  for t=0. Then solving equation (15) for this load condition, the following 

non-linear creep equation, power law of time, is obtained 
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, (17)  

where t represents the time. 

3 MATERIALS & SPECIMEN PREPARATION 

The epoxy pre-preg system used in this work, Texipreg® HS160 REM manufactured 

by SEAL, is a modified epoxy REM reinforced with high strength carbon fiber in the 

form of unidirectional tape (0.125 mm thick). The laminates were produced on a 40-

ton capacity SATIM hot plate press at 130°C under 1 bar pressure during 50 minutes 
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and 3 bar pressure during more 60 min, which gives 110 min of dwell time. The 

average thickness of cured laminates was 2.5 mm and fiber content by volume, based 

on the fiber contents supplied by the pre-preg manufacturer, was Vf≅0.60. From the 

original manufactured laminates, square samples with 8.5 mm side were cut using 

water jet. Since some of the specimens would be tested in the Split Hopkinson 

Pressure Bar (SHPB), it was essential to obtain an accurate parallelism between the 

faces that would be in contact with the bars. A specific tool was designed to perform 

this task. The square specimens were then lapped using fine sandpaper (grit #600). 

4 EXPERIMENTAL SET-UP 

The low strain rate compression tests were carried out in an INSTRON conventional 

testing machine in displacement controlled mode with constant cross-head speed of 

0.1, 1.0 and 100 mm/min. 

The compression tests at high strain rate were performed with the Split Hopkinson 

Pressure Bar (SHPB), depicted in Figure 1. The particular setup used in the current 

study consists of striker, incident and transmission bars made of steel. The bars 

diameter is 12 mm. The striker bar is 1 m long, while the incident bar length is 2.5 m 

and the transmission bar 1.5 m. The specimen was sandwiched between the incident 

bar and the transmission bar. Lubricant grease was applied at the specimen surfaces in 

contact with the bars to reduce the effect of friction and to provide better contact. 

Equally, a small amount of lubricant grease was applied at the end of the striker bar to 

avoid high frequency phenomena in the signal acquired by the oscilloscope, 

consequence of heterogeneous contact. The full bridge with strain gage transducers A 

and B, used as signal monitors, were mounted at 1250 and 215 mm from the 

specimen, respectively. The striker bar was released at a pressure of 1 bar by a gas 
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gun specially made for that proposes. The transient strain history is recorded from the 

strain gages A and B set up on the incident and transmission bars. A PICO CM001 

signal conditioner adapter amplifies the gages output signal 10 times. The data is 

acquired using a LeCroy 9450A digital oscilloscope at a sampling rate of 1 MHz. A 

program named ADAVID® [9] imports the data from the oscilloscope data storage to 

the PC for posterior analysis. 

Striker 
 

Incidente bar Transmission bar 

Strain Gages
 

Specimen

 

v 

Data Aquisition
 

PC  
 

Speed sensor
 

A B

 

Fig. 1: Schematic representation of the SHPB setup used for compression test. 

5 RESULTS & DISCUSSION 

An analysis of strain rate dependent mechanical behavior of unidirectional laminates 

was performed. In Figure 2 the effective stress-effective plastic strain rate is plotted 

for three strain rates, 0.0001, 0.001 and 0.07/s, for specimen loaded in the transverse 

direction. In this study, it was used the viscoplastic model proposed by Sun et al. 

[6,7], previously described. In this case the master effective stress – effective plastic 

strain was represented as follows 

( )7.00p
Aε σ= , (18)  
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where the parameter A is function of the effective plastic strain rate. Assuming that A 

is a power law function of effective plastic strain, the following relationship was 

obtained 

( ) 0.3704
208.448 10

p
A ε

−
−= × & . (19)  

It was found that the orthotropic parameter a66 remain constant (a66=2.1) for the three 

strain rates, 0.0001, 0.001 and 0.07/s. In Figure 2 it is possible to verify the model 

ability to reproduce experimental data for transverse direction.  
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Fig. 2:. The effective stress/effective plastic strain curves and model fitted for 

transverse loading. 

In Figures 3, 4, 5 and 6 are depicted model predictions using Equation (15) 

compared with experimental results at various strain rates for different fiber 

orientations. For all directions, except 75º off axis, the model and experimental results 

are in reasonable agreement. Further, in the case of 75º off axis, the discrepancy 

between model and experimental results is only verified in the case of the lower strain 

rate. 

The development of viscoplastic model was based on low strain rates 0.0001, 

0.001 and 0.07/s. The experimental tests for high strain rates 400/s were conducted on 
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a Split Hopkinson Pressure Bar (SHPB) located at the Optical Lab of INEGI. At this 

moment there are only results for transverse direction. Still, in this direction the 

viscoplastic model proved to be valid for high strain rates, as it is depicted in Figure 6. 
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Fig. 3: Comparison of experimental and theoretical stress-strain curves for the 30º off-

axis specimen. 
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Fig. 4: Comparison of experimental and theoretical stress-strain curves for the 45º off-

axis specimen. 
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Fig. 5: Comparison of experimental and theoretical stress-strain curves for the 75º off-

axis specimen. 
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Fig. 6: Comparison of experimental and theoretical stress-strain curves for different 

strain rates for the transverse loading. 

6 ANALYSIS OF TRANSVERSE FAILURE UNDER IN-PLANE COMPRESSION 

An analysis of failure in the transverse direction was performed. Figure 7 illustrates 

the shear rupture verified in the U 90º laminates. It is possible to see that the two 

halves have slithered by a defined angle. The total angle measurements average 

yielded an angle of 60º±3.8º. For similar materials Puck and Schürmann [10] 

measured this fracture angle as being between ±50º and ±55º. 
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Fig. 7: Shear fracture of the U 90º laminates. 

One possible approach to model the failure is to relate the time to failure with 

strain rate. Reifsnider et al. [11] verified that the Monkman-Grant classical equation 

fits data for epoxy at strain rates from quasi-static to very high rate ranges, almost 

perfectly. For this case the Monkman-Grant equation was determined as, 

( )0.9983 0.03861Rt ε =& , (21)  

where Rt  represents the time to failure and ε&  the strain rate. The model extrapolation 

to larger strain ratios predicts quit well the time to failure for high strain rate as 

depicted in Figure 8, confirming Reifsnider et al. [11] observations. This empirical 

relation was used as a failure criterion, in conjunction with constitutive law, to predict 

the strength evolution in function of strain rate. For transverse direction, the 

prediction obtained was quite close to experimental data, as depicted in Figure 10. 
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Fig. 9: Strain rate versus time to failure fitted by Monkman-Grant Equation. 
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Fig. 10: Experimental and theoretical predictions for strength rate dependency. 

7 CONCLUSIONS 

The rate dependent non-linear behavior of an unidirectional reinforced 

carbon/epoxy composite under monotonic compression loading was characterized.. 

The 3-parameter constitutive viscoplastic model proposed by Sun et al. [6,7] was used 

to describe the mechanical behavior. This model was developed based on data for 

strain rate between 0.0001 and 0.07/s. In transverse direction the viscoplastic model 

was able to predict the high strain rate experiments conducted on a Split Hopkinson 

Pressure Bar. Consequently, this 3-parameter viscoplastic model demonstrated to be 

capable to describe the strain rate dependent mechanical behaviour of Texipreg® 

HS160 REM composite material system, under compression and for a wide range of 

strain rates, with reasonably accuracy. 

In the transverse direction, the strength exhibited a strain rate dependency. The 

Monkman-Grant relationship was found appropriated to fit and extrapolate failure 

data from low strain rate to high strain rate. Of course the other way around should be 

also possible, i.e. extrapolate failure data from high strain rate to low strain rate. 
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