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Resumo

O objectivo principal desta dissertação prende-se com a criação de um modelo de simulação que
possa avaliar e validar balanceamentos de linhas de produção na indústria do calçado, onde estes
terão de responder a pedidos customizados pelos clientes. Este modelo de simulação deve ter
a capacidade de reproduzir o funcionamento da linha de produção de forma a avaliar e validar
operações de balanceamento desta linha, as quais podem incluir a adição ou remoção de maquinas
na linha de produção, modificação de ordens, etc.

Este problema está relacionado com um projecto em curso de uma investigação em maior
escala, no qual participam algumas empresas da indústria do calçado, um centro tecnológico de
calçado e o INESC TEC. Tradicionalmente, a indústria do calçado divide-se em três partes. Porém,
nesta dissertação, vamos apenas abordar a parte da costura de sapatos, por ser a mais complexa
entre as três, e por ter uma mão de obra bastante intensiva, onde todos os postos de trabalho
necessitam de um operador. O modelo de simulação criado poderá ter a capacidade de mais tarde
ser aplicado a um caso real, e pretende resolver um problema de balanceamento de linhas de
produçao através de uma ferramenta simulação.
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Abstract

The main objective of this dissertation is to create a simulation model that can validate a problem
of production line balancing, in a in a specific case that refers to the footwear industry, where they
will need to respond to customized requests by the customers regarding the footwear industry.
This simulation model must have the ability to reproduce the functioning of the production line in
order to evaluate and validate balancing operations, which may include the addition or removal of
machines in the production line, modification of orders, etc..

This problem is included in an ongoing project, that as has the participation of some compa-
nies in the footwear industry, a footwear technological center and INESC TEC. Traditionally, the
footwear industry is divided in three stages. In this dissertation we are only going to approach the
stitching stage, for being the most complex between the three of them, and a part with a lot of op-
erators, where all the workstations have operations assigned. The simulation model created should
be able be applied to a real case, and it is intended to solve a problem of balancing production lines
via a simulation tool.
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Chapter 1

Introduction

This dissertation regarding a Production Line Balancing Simulation is based in a specific case

study in the footwear industry that is being developed in INESC TEC - Techonology & Science.

As this specific case involves high complexity in its configuration, it is important to find an efficient

way to resolve it. And so, the mean that was used to find a solution for it was applying a simulation

framework to the problem.

The industrial production has been changing its productive system due to the change in the

clients demand. It becomes necessary to build faster and more flexible production systems, that

can manage a high variety of models to be produced simultaneously in small quantities. Associ-

ated with this come production lines with high complexity layouts, for which there is a need of

Production Lines Balancing, which consists in changing the operations and workstations so that

the line is balanced, resulting in a continuous flow in production and in an idle time as minimum

as possible. This balancing involves great amounts of time and costs to put into effect and to ob-

serve it actually working. Putting this, there is a need of reducing these cons and evaluate if an

assembled line of production is going to have good results.

The approach used in this dissertation to avoid these high costs and great amounts of time

is the utilization of a simulation framework. So, first it is needed to choose this framework and

then we will use it to recreate the facility of the case study, build a simulation model and try to

improve its results by asking questions such as "Does this machine need to be here when it would

be a lot more productive in other place?", "Why are the operations in this sequence?" or "What

could increase the performance of this production line?". In the end, it is expected to have a model

that, when receiving input data, it can simulate the behaviour of a production line and so provide

information about how to better distribute the workstations and the operations along it.

1.1 Motivation for this project

Each person has his own identity and, although people may have similar needs, each person has

a unique taste and a unique personality. And lately, industrial production has been focusing on

identifying these unique characteristics of the individuals and then satisfying them in a way that

1



2 Introduction

approaches the efficiency of a mass production. This can be called mass customization and al-

though these two words may seem antagonistic, technology is making this possible. And we can

already see this happening in very small (and almost imperceptible) ways. For instance, when we

browse the internet, the data that we receive can be automatically stored in a HTTP cookie file.

This will allow that the website records the information in which the user was interested and this

way the website can show advertisements customized to each user depending on what the user

has browsed before. This is one example of mass customization. However, when we talk about

mass customization related to the footwear industry, we are describing the possibility of providing

a customer an option to personalize his shoes as he wants (e.g. choosing the color of the shoe, the

pattern of the shoe laces, the size of the shoe, etc.)

Providing this possibility to the customers via web can increase exponentially the number of

customers. However it raises not only the challenge of being capable of deliver in their houses the

shoe exactly as they ordered it, just as they saw the shoes in their computer screens, but also to

produce faster and with lower prices. To hundreds, thousands or even millions of clients.

The motivation for this project comes from the fact that, as we can understand easily, it is a

problem that doesn’t strict to this company neither to the footwear industry. On the contrary, it

may be applied to a lot of other companies that are trying to modify their productive system so

they can satisfy these individual customer needs and in completely different areas. The fact that

balancing production lines is such a big and complex problem and the fact that it may not have

one perfect solution but is also a challenging and motivator factor.

1.2 Project Plan

Before starting this dissertation, it’s necessary to make a plan of the intended objectives in order

to have a guideline so later we can analyse the final work and check if they were all completed. In

case they weren’t, it’s important to find out what could have been done differently and that can be

done in the future.

1. Getting comfortable with the simulation framework, getting to know its tools and character-

istics and learning how to work with it.

2. Data research and gathering about the company in general, its purpose and goals, its history.

3. By starting with a specific part of the whole facility, we will find more specific aspects about

this part, such as timing variables, workstations quantity, operators capability. Without

forgetting the role of this part in the whole factory.

4. Conception and proposal of a first simulation model that can recreate the real case.

5. Optimization and implementation of this model by applying the researched values and find

changeable scenarios in order to search for a line configuration with better results than the

first one.
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6. Doing a study of the analytical performances so that we can have some guidelines before

producing the results. This way we can more easily evaluate the obtained results

7. Running the simulations and observe the results. Draw conclusions on them about what can

be improved in the studied system

1.3 Hosting Institution

The work was developed in INESC TEC - Institute for Systems and Computers Engineering of

Porto - Science and Technology. INESC TEC is a private non-profit association that has as as-

sociated founders INESC and FEUP.1 INESC TEC is recognized as a Public Utility Institution

and in 2002 it acquired the statute of Associated Laboratory. It was created to act as an interface

between the academic world, the world of industry and services and the public administration in

Information Technologies, Telecommunications and Electronics (ITT&E), and it is based on the

following strategic objectives:

• Develop science and technology that is capable of competing on a national and international

level.

• Participate in the technical and scientific training of high-quality human resources to en-

hance the nation’s capacities and encourage modernisation.

• Contribute to the development of the scientific and technological education system, mod-

ernising it and helping it to adapt in order to meet the needs of society and the economy.

• Promote and incubate business initiatives in order to improve R&D activities and encourage

young researchers to take risks and use their initiative.

• Create a modern Portugal, a well-established economy and a high calibre society by follow-

ing the objectives that have been outlined.

The R&D made in INESC TEC is divived by twelve R&D centres and one R&D Associate

Unit. This project was developed in CESE - Centre for Enterprise Systems Engineering, whose

activities are related to Operations Management and Enterprise Information Systems appliet to

industrial companies and enterprise collaborative networks. The Centre is committed to conduct

high quality research with a strong application focus.

The Centre conducts R&D in the following domains: Logistics (supply-chain management

systems, logistic systems, transportation, distribution and warehouse systems), Operations Re-

search (optimisation methods, Decision Support Systems) and, the most approached domain by

this dissertation, Manufacturing (operations management, advanced information systems for in-

dustrial management, planning and control systems, rationalisation and optimisation of manufac-

turing processes, intelligent automation systems, decision support systems for production man-

agement). CESE is based in the following strategic objectives:
1Information taken from http://www2.inescporto.pt/



4 Introduction

• Strongly contribute for the performance improvement of industrial companies, through R&D

projects, consultancy, technology transfer and training.

• Foster high quality research initiatives in specific areas where the elements of the group

are internationally recognised, and start innovative research programmes in new emerging

topics.

• Transfer the resulting knowledge and technologies to software houses, equipment produc-

ers and industrial companies, through applied research, technology transfer and consulting

projects.

1.4 Thesis Structure

The document is divided in 6 chapters, in which the evolution of the work developed for this thesis

was documented, that contain the following information:

• The present chapter, Chapter 1 gives a brief introduction of the problem addressed by this

thesis. It is also possible to find a description of the institution where the work was made

and the motivation for it.

• In Chapter 2 are presented some theoretical concepts about Simulation of Assembly Lines.

First there’s an explanation of both of these therms with the contextualization of the concept

Mass Customization and then the idea of a Job Shop environment. After this, the possible

frameworks for the problem’s approach were presented and, after choosing the ideal one, it

is presented.

• Chapter 3 presents the problem and the case study in particular, including its functioning,

the characteristics of its components and what it’s intended to obtain for the project.

• Chapter 4 describes how the implementation was done and how the model was built as well

as the procedures to recreate the facility as close as possible to the real case. The indicators

provided by the framework are then presented and it is done a brief study of the analytical

performances, so that the results obtained can be compared to other results.

• Chapter 5 is where the simulations are runned and the results are explained.

• In Chapter 6 the final conclusions about the dissertation are drawn and the possible future

works are referred.



Chapter 2

Simulation of Assembly Lines

This chapter will expose the subjects that this dissertation approaches: Simulation and Lines Bal-

ancing. We will start on Assembly Lines Balancing (ALB) - how to balance them and the problems

that it involves - and then the job-shop concept will be presented (and why it is important to the

project). Only then, the term simulation will be addressed so that it is easier to understand why

simulation helps solving these kind of problems. And finally, after the possible frameworks are

presented, the chosen one will be described, where the tools will be indicated and the vantages of

it will be pointed out. But first, it is important to do a contextualization of these terms with the

concept of Mass Customization. That way it easier to understand what is intended with the Lines

Balancing Simulation - what should enter the system and then what should come out.

Mass Customization is an antagonistic term that connects two opposite concepts (one referring

to mass production and other referring to customized production) reflecting the way in which the

reality of production is going these days – to satisfy individual demands by the costumers with

mass production efficiency. Major companies are trying as much as they can to provide to their

clients this mass customization. In 2010, Coca-Cola invested $100 million in a plant in its home

town of Atlanta, Georgia, to churn out concentrates for its Freestyle soda dispensers, which offer

more than 100 drink choices to mix and mash up. [1]

Mass customization is similar as saying "the technologies and systems to deliver goods and

services that meet individual customers’ needs near "mass production efficiency". [1] The fol-

lowing quote summarizes the actual concept of mass customization and makes it really easy to

understand.

"Mass customization refers to a customer co-design process of products and services,

which meet the needs of each individual customer with regard to certain product fea-

tures. All operations are performed within a fixed solution space, characterized by

stable but still flexible and responsive processes. As a result, the costs associated with

customization allow for a price level that does not imply a switch in an upper market

segment." [2]

5



6 Simulation of Assembly Lines

Figure 2.1: ALB basic example, adapted from [4]

Now that we are contextualized about the market’s demand, the next sections will introduce

more concepts that are essential to easily follow this work.

2.1 Assembly Lines

When we introduce the term of Assembly Lines we are referring to something that has a big

importance in most production systems. In fact, it is something that is constantly being target

of investigation. The traditional Assembly Line consists in a set of workstations sequentially

organised to which the work pieces will go successively, through some sort of transportation -

usually a conveyor belt, in order to perform assembly operations during a cycle time. According

to Nancy Nardin [3], Henry Ford - the one who first came with the concept of Assembly Lines -

had 3 principles for eliminating waste in the assembly process:

1. Place the tools and the operators in the sequence of the operation so that each component

part shall travel the least possible distance while in the process of finishing.

2. Use work slides or some other form of carrier so that when a workman completes his op-

eration, he drops the part always in the same place – which place must always be the most

convenient place to his hand — and if possible have gravity carry the part to the next work-

man for his operation.

3. Use sliding assembling lines by which the parts to be assembled are delivered at convenient

distances.

2.1.1 Assembly Lines Balancing Problem

In order to have a continuous work flow that allows the tasks to be optimally assigned to the

workstations in the assembly line, we have to solve the assembly line balance problem. This is a

concept that since his first appearance that academic work has been mainly focused on the core of

the problem - the assignment of tasks to the stations. This means that there is a large variety of

regarded extensions and that start from a general assembly line balancing.

For better understanding of this concept, a basic example will be presented.

As it is shown in Figure 2.1, which represents a precedence graph, the numbers from 1 - 9 in

the nodes represent the activity number. Then, to each activity we can see a node weight associated
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representing the task times (in this case we will just say the numbers represent time units). And

then, there are arcs representing direct precedence constraints from where we can take paths for

indirect precedence constraints.

The arrows in the image ensure that no precedence relationship is violated in the assignment

of tasks to the stations. The set of the tasks Sk assigned to a station k will constitute the work load

of that station, while the cumulated task time given by 2.1 is called station time.

t(Sk) = ∑
j∈Sk

t j (2.1)

In this example, we could come up with a feasible line balance with cycle time c = 11 and

m= 5 stations that is given by the station loads of S1 = {1;3}, S2 = {2;3}, S3 = {5;6}, S4 = {7;8},
S5 = {9}.

The cycle time referred above is given by the equation 2.2

c =
Total Operation Time

Quantity of Production Produced
(2.2)

The long-term effect of balancing decisions means that the objectives need to be carefully cho-

sen considering the strategic goals of the enterprise. However, measuring and predicting the cost

of operating a line over months or years and the profits achieved by selling the products assembled

is complex and besides it is very likely to involve big errors, it also has big costs associated. A

usual surrogate objective consists in maximizing the line utilization which is measured by the line

efficiency E, which is given by the equation 2.3

E =
W

N ∗T
(2.3)

W = Total Work Content

N = Number of Workstations

T = Longest Operation

2.1.2 Types of Assembly Lines Balancing

The problem that was described in the previous subsection is known as Simple Assembly Line
Balancing Problem (SALBP). It is based on a set of limiting assumptions which reduce the com-

plex problem line configuration to the main problem - assigning the tasks to stations. However,

the assembly lines balancing in real-world problems will require the observation of a large variety

of more technical or organizational aspects (such as the the workstations that are capable of doing

what tasks, alternative lines, U- shaped assembly lines or the technical capacities of the operators.
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[4] More extensions of SALBP were considered afterwards: SALBP-E - maximizing the line ef-

ficiency E, SALBP-1 - minimizing the number m of stations given the cycle time c, SALBP-2 -

minimizing c given m and SALBP-F - seeking a feasible solution between m and c.

We may also refer to another kind of Assembly Lines Balancing types depending on the num-

ber on the number of models. In the case that the output is only one type and the work pieces

are identical, then we call this Single-Model Assembly Line Balancing (SALB). Also, if there

more than one product being assembled on the same line, but aren’t any changes in the setups or

significant operation times variations then it can be referred as single-model line as well. SALB

Problems focus mainly on minimizing the cycle time for a fixed number of workstations and min-

imizing this number required.

On the other hand, there is the case where batches are produced, each one containing units of

only one or similar models, with intermediate setup operations. And so, a lot sizing problem comes

associated with the batch sequencing part. This is a Multi-Model Assembly Line Balancing
(MtMALB)

Finally, and the most important one since it is going to be the most discussed one over the

next pages, we have the Mixed-Model Assembly Line Balancing (MMALB). It refers to the pro-

duction of units of different models in an arbitrarily intermixed sequence. Therefore, the Mixed-

Model ALBP brings a sequencing problem - with it, comes the need to find a sequence of models

and tasks in order to reduce all the inefficiencies. And although the balancing and the sequencing

problem are too complex to be solved simultaneously, because the sequence depends on the short-

term model-mix, a horizontal balancing objective is usually used to equalize the work content of

stations over all models. [5]

In figure 2.2 we can see a diagram that makes it easier to understand the division of these

different types of ALB.

We can also make the distinction between one-sided and two-sided Assembly Lines. Here

the difference may be obvious - in the first one, we can only find workstations in one side of the

conveyor while in the second one we can find them in both sides, such as Figure 2.3 illustrates.

[7] The advantages of a Two-Sided Assembly Line Structure over an One-Sided one include

the possibility of a line length reduction - and consequentially fewer operators needed, reducing

the amount of throughput time and it also can reduce material handling, workers movement and

set-up time, which otherwise may not be easily eliminated. The Assembly Lines Balancing that

will be focus of attention in the next chapter is a Two-Sided one, so we will give more attention to

it.

By analysing the possible classifications of production lines balancing problems, we may con-

clude that we can classify this problem as a Mixed-Model Production, where we want to find

a possible solution to reduce the idle time of the transporting robot and increase the machines’

percentage of processing time.

In Mixed-Model balancing problems, the cycle time no longer exists so now it is considered

the average of the operation times depending on the desired production rate, to what we can call

horizontal balancing [5]. Associated to this MMALBP, must be referred as well the concept of
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Figure 2.2: Classification of assembly line balancing, adapted from [6]

Mixed-Model Sequencing Problem, because besides finding the best lines balancing, it is also

essential to find the best sequence of the entrance with a known objective.

It was proposed to apply the method of Mixed-Model Lines Balancing to a mass customization

problem. The methodology consists in an heuristic with several steps, where first it used [8] the

method of the equivalent diagram so that later it is used an algorithm that applies an heuristic

called RPW - Rank Positional Weight. Through this, it is possible to obtain the initial solution and

transform it until we obtain the final solution.

Figure 2.3: Two-Sided Assembly Line Structure, adapted from [7]
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Figure 2.4: Job-Shop Layout,
adapted from [9]

Figure 2.5: Flow-Shop Layout,
adapted from [9]

2.2 Job-Shop

If we are referring to the footwear industry, the term Job-Shop becomes relevant. It describes

the need for practical order release and dispatching mechanisms in an environment where there

are sequence dependent setup. It is possible to improve the performance of a production system

by systematically determine when jobs should be released to the shop floor - the area where the

production is carried out, either by an automated system, workers or a combination of both.

The job-shops machines are aggregated by their type of operations and technological processes

involved, meaning that each shop may contain different machines. And, as there’s no need to

restrain jobs to a single machine, we end up having higher production flexibility in the system.

On the other hand, this type of production line means that a part will encounter other parts

competing for the same resources and queues at each machine, as it goes through the shop-floor.

Although it isn’t a perfect balance between the priorities in the job, if we can study one system

long enough, it is possible to gradually find best results for our system.

Job-Shop is ideal when it’s intended to build a system with the following characteristics:

• High variety / customized products

• Flexible resource

• Skilled human resources

• Mixed work flows

• High material handling and large volume of inventories

• Long flow time

• Highly structured information system

What, as we will see in the next chapter, are indeed the characteristics of the system that is

intended to build. In opposition to Job-Shop, and to understand better its advantages to this project,

we will present the term of Flow-Shop. It is characterized by a line layout where resources are

arranged according to the sequence of the operations. Usually in requires a duplication in the

source’s storage. It is more proper to systems that demand high standardization and speed, with
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Figure 2.6: The Product-Process Matrix, adapted from [9]

low material handling, high flow unit processing cost and low skilled labour prevent flexibility.

Basically is a system directed to mass production when, as presented earlier, we want a system

directed to mass customization. Figure 2.4 and figure 2.5 illustrate the differences between these

two concepts and make them easier to understand.

For better analysing these two kinds of terms, we may appeal to the use of a Product-Process

Matrix, a tool for improving strategic fit. With it, we can compare the product attributes (defined

by the market segment as "What is the client willing to pay for it) and the process capabilities to

deliver value. This combination is then represented by a covered area in the matrix, as we can see

in Figure 2.6. By the same figure it is possible to conclude that in fact a Job-Shop approach is the

best one for this project.

2.3 Simulation

Now that the concept of Line Balancing was exposed, it is now possible to explain the reason to

use Simulation and how can it be so useful in this field. First it is necessary to understand the

concept of simulation and then, after a brief guide on how to run a simulation, we will see the

possible frameworks the choose the right one.

2.3.1 Why Use Simulation

When a process or a system is created, the main focus is to develop a set of entities, which are

logically related and that contribute to the interest of some application, with the best possible

results. [10] And although it is possible to do a simple manual analysis of the system, it becomes

important to reproduce its behaviour using a computer simulation as the complexity increases.

With the use of worksheets or tables we can have an idea of the system statistics. However, as
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these statistics are mostly based on averages, they are far from the actual system behaviour. For

this, well mostly refer to a dynamic stochastic simulation. By being dynamic it means that we can

closely follow the evolution of the process with detailed information. On the other hand, by being

stochastic we assure that we are dealing with a process that has some uncertainty and risk on his

behaviour and that’s what the simulation is for – to be able to estimate the process’ performance.

Of course that as the process has this unpredictability, one simulation is never enough and that’s

why it’s needed to run several simulations in order to draw some conclusion about it.

With the creation of a simulation model we can have mathematical recreation of the system

random behaviour by using the proper key characteristics. This constitutes a model that can reveal

how the system works and instead of only trusting in the average of the outcomes we get, we can

better estimate of its real results in order to determine the best configuration without having to

experiment with the actual system. Also, there are some systems that can be dangerous to test just

for analysing – such as nuclear industry – so it’s safer to understand how to configure the system

in the best way. Putting this, we can say that simulation is fast, cheaper and safer than the actual

implementation, and has the following advantages:

• The evolution of the system can be studied in compressed time rather than in real time,

meaning that we can estimate the result of a lot of days in just some seconds. In fact, the

speed of the time evolution is only limited by the processor power of the computers running

the simulators.

• Instead of having to face the actual costs of implementing a certain configuration, which

often needs a significant amount to be applied, a computer simulation will lower what is

spent into finding the right configuration.

• Implementing something that we don’t quite know how it works, just for experimenting, can

bring several risks to the safety of people and their environment.

2.3.2 Types of simulation

[11] Although it is possible to distinguish different simulation types in several distinct ways, the

most important would be depending on how state variable change. With this, we can be referring

to one of two types of simulation:

• Discrete event simulation

• Continuous event simulation

In the first case, we’re implying that the state of the system change in discrete times, and with

a finite number of variable changes in some given time. On the second case, if we’re talking

about a continuous simulation, it normally involves a continuous change of the system state and

often requires solving systems of differential equations. Although one of these two types is always

predominant, in most cases they’re both used in the whole system. For instance, in an orange juice
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production, if we observe the production of the juice appears to be in a continuous outflow this

work we’ll mostly use a discrete event simulation.

2.3.3 Running a Simulation

Some time ago, a simulation was something that was done with a raw method, with very little

care about the data involved. However, over the last decades, the simulation evolved from being

a raw process to a group of activities that develop the validation, operation and the analysis of a

simulation process. With this being said, to create and to operate a simulation in a correct way

there are several important steps that can be divided in three stages: [12]

• Simulation Developing Process

The first step is to define a problem space. To run a simulation, we need to understand what

are objectives and the requirements of the simulations. Then, after making sure we have pre-

cise definitions of the hoped results we can define a conceptual model, where there might be

more than one appropriate conceptual model, which include the algorithms that represent

the system behaviour and a description that holds some requirements for the model produc-

tion and operation (amount of time, number of employees and equipment asset). Next we

need to collect input data, where we gather the input parameters, whose accuracy is the key

to get results with the least error. Then, before we actually run the simulation, is essential

to verify, validate and accredit the model, because this is where we verify that the software

model accurately reflects the conceptual model, validate that the operations done in the sim-

ulation actually reflect the functioning of the real world and we accredit the model, meaning

we accept the software model for some purpose.

• Running the Simulation

Once the simulation developing process is finished we can execute the simulation, where

the simulation uses the input data to generate the output data required to answer the prob-

lem early defined. Rarely happens that only one simulation is executed, so it’s normal that

hundreds or even thousands of simulations are done so that the results are closer to the ones

that should be expected – particularly in the case of Monte Carlo models.

• Results Processing

While the executions are being made and results are coming, it’s demanded to collect output

data and store it in an organized way, especially because it’s usual that there is a large quan-

tity of information. When all the simulations are finished executing, comes the part where

the data is analysed to find the answers to the questions the lead to the construction of the

simulation. Once these answers are found, is useful to document the results, because they’re

might be needed to be used to other simulations in order to improve them. The same thing
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should happen with the model, since once a model is built it is handy to modify it to other

related projects, with new requirements.

2.3.4 Simulation frameworks

In the production lines balancing area, a great amount of research has been done on creating mod-

els using simulation. For a problem that includes stochastic elements such as demand and market

price, stochastic simulations should be favoured. And so, the following simulation frameworks

were considered:

• Arena - developed in 2000 by System Modelling and acquired by Rockwell Automation,

Arena is a discrete-event simulation where the user builds an experiment by placing models

(boxes of different shapes) that can represent either processes or logic, connected by lines

that also specify the flow of entities. These models can do specific actions to entities, flow

and timing. So it is actually up to the user how to represent each model and entity. Statistical

data, such as cycle time and WIP levels, can be recorded and outputted as reports.

• Flexsim - this framework was developed by Flexsim Software Products, Inc. The FlexSim

family includes both the basic FlexSim simulation software and FlexSim Healthcare Simu-

lation (FlexSim HC). It uses an OpenGL environment to create real-time 3D rendering.

• Simio - It’s a quite recent simulation tool, developed in 2007 by Dr. C. Dennis Pegden,

and it represents a new approach in simulation - object orientation. Modelling is based

on describing system’s objects and evolution of system behaviour by interaction of these

objects.

After some research and experiments on these simulation frameworks, the choice ended up

on Simio, mainly for two reasons: In the first place it is a tool that was already available in the

hosting institution; and then, the object-oriented simulation is an aspect that makes the building of

production systems in job-shop environments much easier.

2.3.5 Simio and Object-oriented Simulation

First of all, we can see only by the name Simio that we are referring to a Simulation modelling

software based on intelligent objects. The term object may be representing a wide list of things,

such a robot, an assembly machine, a doctor, a patient or even a tank or a plane. Normally, an

object oriented simulation system isn’t very user friendly and by having a lot of code they aren’t

that easy to analyse. However, Simio is. The possibility of handling an object in 3D animated way

makes it pretty accessible. Building a model or an object are very identical activities in Simio. In

fact, there is no difference between them. And if you build a model it is by definition an object that

can be instantiated into another model. For instance, if you combine two machines and a robot

into a model of a work cell, the work cell model is itself an object that can then be instantiated any
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Figure 2.7: Example of 3D animation in Simio, adapted from [14]

number of times into other models. The work cell is an object just like the machines and robot are

objects.

Simio also allows the programming in languages such as C#, Python or Java in order to con-

struct a set of cooperating objects that are instantiated from classes. These classes are designed

using the core principles of abstraction, encapsulation, polymorphism, inheritance and composi-

tion. [13]

2.3.5.1 User Accessibility

The amount of tools for this kind of purpose is getting bigger and bigger, so it means that the

easiness of access for the user has a big importance. This is one of Simio’s biggest strengths

because it provides:

• 3D animations on one step, importing 3D objects from Google 3D Warehouse (as you can

see in Figure 2.7);

• By importing data from Excel worksheets it allows Simio to process data from real cases

and to do simulations with less error. See Figure 2.8;

• Writing own logic function (e.g. priority rules) in many languages (C++, Visual Basic, etc.);

• Creating own intelligent objects and libraries that can be used in other projects;

When Simio is opened, the user can define several models within a project. However, usually

a project only has one main model and one entity model (in fact, on creating a New Project, Simio

automatically generates this two (where the main model and the entity model are respectively

called "Model" and "ModelEntity"). In more advanced projects it is common to add more models

as sub-models of the main one. The entity model is used to describe the characteristics of the
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entities and their behaviour towards different events (although the default entity created by Simio

doesn’t have any explicit behaviour so it just goes "without reaction" through the model. As we it

is possible to see in one of the example models provided by Simio - an emergency department - it

is possible to distinguish different entities that represent either patients, nurses or doctors.

Figure 2.8: Example of an Excel Import to Simio, adapted from [14]

2.3.5.2 Creating Intelligent Objects Through Processes

As previously said, this kind of tools are good for quickly building models. The user just has to

drag the objects wherever he wants, setting their properties and the model should be ready to run.

And this kind of approach should be able to work in the simplest models. However, although this

is a rapid solution for building models, it lacks in flexibility. It’s really difficult (almost impossible)

to design a set of objects that work in all situations across multiple and in so different areas (just

imagine the variety of areas that Simio can simulate - since an Shoe assembly line, to a football

match (the viewers that enter the stadium and all the rest).

Through the Simio Standard Library it is possible to address this problem with the concept

of add-on processes. An add-on process is a small piece of logic that can be inserted into the

Standard Library objects at selected points to perform some custom logic which can be used to

change several properties. The processes are created as graphical flowcharts without the need for

programming. Hence Simio combines the benefits of object based modeling with the power and

flexibility of graphical process modeling.

Process logic can be inserted into an object on an instance by instance basis, without modi-

fying or changing the main object definition. For example one Server instance might incorporate

process logic to seize and move a secondary resource during processing, while another instance

for the same Server definition incorporates special logic to calculate the processing time based

on a learning curve, and a third instance of the same Server incorporates special process logic
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for modeling a complex repair process. All these instances share the same Server definition but

customize each instance as needed.

Figure 2.9: An example of a Simio process, adapted from [13]

2.3.5.3 Running the model

When the model is built, and with all the properties correctly set according to what we want, the

next step is to run it. In Simio we can run it in two ways - we can either execute it in the interactive

mode or in the experimentation mode.

2.3.5.3.1 Interactive Mode

This mode allows the user to watch the animated model in 3D and view in "real time" (the one

considered by Simio, which is normally way faster than the actual real time) both the dynamic

charts and the plots that summarize the system behaviour. With this it is possible to verify and

validate the model and also getting a basic notion on how the system is performing (which is made

much easier by Simio’s animations). Then, once the model is considered to be validated, it is

common to determine specific scenarios to test with the model, where some individual properties

are changed to understand what is the difference in the model’s performance when facing this

changes. Normally, when running specific scenarios only individual properties of the objects

are changed so it becomes irrelevant to observe the animation, because at the user’s eyes there

wouldn’t be a significant difference. Instead, the focus should be in replicating each scenario to

find the underlying differences in the system and to reach statistically valid conclusions from the

model.

2.3.5.3.2 Experimentation Mode

On the other hand we have the experimentation mode, in which it is possible to run several simu-

lations with different properties so we can see how the system reacts with them
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In the experimentation model we can define one or more properties on the model that we can

change to see the impact on the system performance. These properties, exposed in the experiment

as Controls, might be used to vary things like conveyor speeds, the number of operators available,

or the decision rule for selection the next customer to process. These model properties are then

referenced by one or more objects in the model, that will make the difference in the produced

statistic. You may also add Responses. These would generally be your Key Performance Indicators

on which you make the primary decision about if your scenario may be considered a good one.

Sometimes it is convenient to sort dynamically the columns created in the statistic (for instance to

display the highest profit scenarios first) which is possible to do. The user can also add Constraints

that will automatically be applied before or after a run to prevent running or to later discard a

scenario that violates an input or output constraint. When the user runs an experiment, it takes

full advantage of all processors available. Figure 2.10 illustrates several scenarios being executed

simultaneously in an inexpensive quad-core machine.

Figure 2.10: Running a experimentation with different scenarios, adapted from [13]

2.3.5.4 Summary - Why Simio?

Simio is a new modeling framework based on the main principles of object-oriented modelling.

It provides the user unique features - that, as we will see in chapter 4 and 5, will be of a big

importance - that expresses their presence in the following ways [14]:

1. Simio’s framework is a graphical object-oriented modelling tool while most of the other

ones are constituted simply by a set of classes in an object-oriented programming language

that are useful for simulation modelling. The graphical modelling framework of Simio fully

supports the core principles of object oriented modelling without requiring programming

skills to add new objects to the system.

2. The Simio framework isn’t specific to any area of business, and allows objects to be built

that support many different application fields. The process modelling features in Simio
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make it possible to create new objects with complex behavior - and if it isn’t enough, the

user can create his own object using coding languages such as C#, Java or Python

3. It supports multiple modelling paradigms as well as both discrete and continuous systems

(although the most common is the discrete - and what will be used in this project), an event,

process, object, and agent modeling view.

4. It provides specialized features to directly support applications in emulation and finite ca-

pacity scheduling that fully leverage the general modelling capabilities of Simio.





Chapter 3

High Speed Shoe Factory

Now that all the concepts and tools used in the project were presented, the next step is to present

the actual project.

As previously said, although this thesis is based on a real case, it is intended that it is also

directed to other small and medium companies that want to expand their online sales and that

follow the same train of thought as the company in focus.

The case study is included in a wider scheme - the High Speed Shoe Factory. It is integrated

in the National Strategic Reference Framework (QREN), has a system of incentives for research

and technological development in companies that encourages the HSSF project. HSSF is being

developed by a small group of companies and research institutes that have applied to their imple-

mentation, including the INESC TEC, where the author of this thesis was involved.

Its main objective is to conceive, develop and implement a new model of a shoe factory that

can quickly answer to different requests in approximately 24 hours (maximum 2 days) and that

is oriented to unitary production, in which it’s produced one pair at a time, and that, without any

stocks, is capable of responding to internet sales, to small orders and also to the reposition of

products in the stores, while it also produces samples for new products and tests of new products

for new collections. The project focuses on the modernization of assembly lines and replaces the

traditional section of cutting, stitching, assembly and finish, by making them more flexible and

prepared for producing several types of footwear simultaneously. Also, one of the other main

objectives of this project is to provide to the client a big virtual shop, with a lot of interactivity

and that brings him a customized environment, where there’s advertisements directed to him and

where he can make a custom purchase.

3.1 The Stitching Line

Obviously, the creation of a pair of shoes goes through several stages, since the feedstock arrives

the factory until the output is 100% completed. The factory we will be focusing divides into 3

different stages:

21
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Figure 3.1: U-Shaped Lines

1. Cutting - This is the first stage of the shoe production. It is where the synthetic components

will be cut into the several parts that constitute a shoe, with the help of operators or automatic

systems of laser cutting or water jets, so that it has full efficiency.

2. Stitching - Once the parts are all cut in individual segments the next stage make sure that

they are stitched and glued together, forming the upper. This is probably the most complex

stage and the most difficult line to balance because each part must go through a lot of

different operations and in different machines along the line.

3. Assembly - The final stage of the shoe production is the assembly where the upper formed

in the previous stage is added to the shoe sole.

For this dissertation we will focus in the stitching stage, for having high complexity and diffi-

culty in balancing problems. Figure 3.1 shows the production line of the stitching stage. We will

consider it divided in 3 different parts, disposed in a U-Shaped configuration, due to the fact that

each part has a robot that transports the parts along the respective line. Once a part is finished

doing all the operations in that line, it follows to the end of it and the next stop should be either

the next part of the line or the next stage of operation. This should be only to situate this work

in the general configuration of the factory. Although there’s a lot more in the factory besides this

production line, we will only be focusing in one of its parts. Each part will focus in a different type

of operations. However, the way they move along the lines it’s pretty similar - as one part enters

the line, it is transported through the workstations to get the operations done and then it exits the

line. In this case we will be focusing in the one on the right (as seen in the figure 3.1).



3.1 The Stitching Line 23

Figure 3.2: Production line in focus

The core simulation done in the next pages will focus in a sector of the whole factory - an

assembly line that is constituted by several workstations (each one with an operator), inputs (pairs

of shoes that have a list of operations that will be done in this line), outputs (pairs of shoes that are

either completed or at least ready to go to the next assembly line) and, probably the most relevant,

the robot that will transport the entities through the assembly line. Figure 3.2 gives an illustrative

example of the line. In the same figure, we can see the workstation placed along the two sides of

the assembly line. This way, gives us a easier way to understand how the line works.

Inputs
In the real line, the inputs in this line are pair of shoes that need to go through stitching

operations. As we have seen above, this line follows a Job Shop concept, which means that each

pair will have different sequences and so it will probably follow a different path from the previous

one and from the next one.

When a new job enters the line, the information about it will be received and processed, so

that the line can get to know this job. The information about it includes:

• Job Type - First of all, the line needs to know what type of job has just arrived. There are

dozens of different kinds and it is essential to distinguish each one, although in this work we
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will consider 6 different models, in order to easier analyse the results. The Unique Identifier

that will guarantee to be unique among the other types is its Type Name.

• Operations Sequence - Each job need to do a lot of operations since it’s entrance in the line

until its end. So that all the operations are done and in its correct sequence, the jobs will have

associated their Operations Sequence. They’re essential and every time a new Job Type is

created, it is needed to be created as well a new operations sequence. They’re developed by

a responsible that, experimentally, builds a new shoe, registering its operations done and the

respective time. It’s easy to understand that they have a great importance, not only because

they’re used as a guide by the operators, but they also are an input to the transporting robot

to show him in which workstation the part will be operated.

• Operations Machines - This information transmits in which machines the operations can

be done. As it happens a lot that a machine is already occupied with another job, and as

there are machines that can to a lot of different jobs, there’s a need to find an alternative

machine when the first choice is unavailable, in order to avoid a unnecessary bottleneck.

• Process Time - Finally, the process time. It varies not only with each operation but also

with each job (even if the operation is the same, it can take longer in some jobs than others)

Workstations
The sequential operations that need to be done by the jobs are processed by the workstations.

As evidenced by the figure 3.2, we will have 12 workstation in this line we are working (6 on each

side of the line). Some of them will do similar operations, so the robot can choose between these

two machines.

Operators
All the operations need to be done by an operator, so we will find one worker assigned to each

station. Although in the real case it happens that sometimes there aren’t 12 operators working due

to an eventual high idle time by some machines, and so one operator is enough to operate on both,

we will consider that there are always 12 operators working (meaning that the idle time of each

worker is the same as his respective machine).

Transporting Robot
This is the most important part of the line. It is what makes sure that the line is always flowing,

so if it happens some failure to the robot, all the line is compromised and there isn’t any more work,

as the parts can’t move neither to the next workstation nor the end of the line. At first we will give

the robot a FIFO priority - the first part demanding the transport from the robot is the first one to

be served. Then we will change this priority in order to see if it is the best approach to this problem.

Outputs
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As soon as the parts are finished doing all the operations in this line, the stitching stage of the

shoes production is over, so the transporting robot will move them to the end of the line where

they will next be transported to the next stage (that is the final one - the assembly stage).

Input and Output Buffers
Each workstation will have an input buffer and an output buffer that will allow increasing the

flow of the system. This way, when there’s a part processing in a workstation there’s the possibility

of putting another part in the input buffer so as soon as the part is finished processing it moves to

the output buffer and the other can start processing right away.

3.2 Comments on the Project

With this work it is pretended the development of a system where, by changing some properties

of the components exposed above or by changing some sequence (in the operations routings or in

the machines placement), it can process the input data that it will receive, process it and, through

several experimentations, obtain a great quantity of simulations of the system whose results, after

being treated, give clear information on how the line should be implemented.

It is intended that this work that is being developed here fits into the "bigger picture", i.e. that

the manager proposes a solution for some line of work and then this simulation should recreate it,

in order to see if it was a good solution. This means that these simulations should go along and

work synchronously with the manager that is proposing this.





Chapter 4

Approach and implementation

In chapter 3, the previous one, we have understood the project and the project context has been

explained as well as the intended goal. The next step is first to find the right approach to the

problem. It goes through a simulation process where the real system is recreated, including the

parts routings, the respective processing times as well as the transporting robot algorithm.

4.1 Input data

Figure 4.1: The 6 entities that represent 6 different model of shoes

In Simio, the parts are represented by Entities. Each entity will have its own routing sequence,

its own processing times. We will call them by the name of the model of shoes produced. In this

case only 6 entities will be represented, in order to be easier to understand the system. In reality

there are dozens of models being produced each seasonal period. In figure 4.1 we can see the

entities represented by the boxes, each one with a stripe of an individual colour so that during the

running of the simulation it is easier to distinguish them.

27
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Besides the entities, we have the sequence of operations that each entity will follow. We can

see them in table 4.1, number of the operation of each entity associated with its respective machine

and process time. The line’s algorithm will assure that all the sequences are done only one time

and in their proper sequence. Also, if there are two consecutive operations that can operate in the

same machine, the operations will be done consecutively (so the robot doesn’t come and pick the

part and then put it again in the same machine).

Table 4.1: Sequence of Operations

Op.
Wrapper Humpry Sakie Foxy Jeffreson Frazer
M. P.T. M. P.T. M. P.T. M. P.T. M. P.T. M. P.T.

1 A 0,40 A 0,90 A 0,80 A 1,00 A 0,80 A 1,80
2 C 0,65 A 0,65 A 0,70 A 0,75 A 0,35 A 0,40
3 A 0,70 A 0,55 A 1,00 A 0,35 B 0,40 A 1,80
4 A 1,58 A 1,20 C 0,60 A 4,20 A 1,60 A 0,90
5 C 0,90 A 0,75 A 0,90 C 3,00 A 1,80 C 2,20
6 A 0,65 C 0,75 A 1,00 A 1,50 B 2,20 A 2,23
7 A 1,80 B 0,60 A 1,60 A 2,80 B 0,75 A 5,50
8 A 4,20 C 0,55 A 1,90 C 6,20 B 1,45 C 1,43
9 D 1,40 B 1,00 C 0,96 A 2,50 D 0,55 A 1,13
10 B 0,95 B 1,00 D 0,55 C 2,75 C 6,80 A 0,45

Op. - Operation Number
M. - ID of the machine where the part can be operated
P.T. - Process time of this operation in the machine in minutes

Also, there is interarrival-time, the variable related with the time interval between two succes-

sive entity arrivals to the line. In reality it will depend on the frequency of the previous lines, but

here we will approximate this time to an ideal value that the robot never has idle time (or not idle

time due to the arrival of new entities). This time will be defined in the next pages.

4.2 Building the model

Now that we know the input variables, the next step is to build the model that will process them

and simulate the system as it behaves in the real case.

4.2.1 Objects

As explained in chapter 2, Simio’s is based in an object-oriented simulation, what means that

the first step to create the objects. The typical start in the creation of a new Simio model is the

placement of a Source, a Workstation, a Sink and Paths connecting them. This model started the

same way but then, of course, a lot of objects where added. Around 60 objects were used in the

model (and they can be seen in figure 4.2 ) which can be divided in the following categories:

• Source - This object "creates" new entities. In reality there isn’t one source, the parts just

come as they’re ready from the previous lines. In the source properties it is possible to define
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Figure 4.2: The facility recreation, that include all the objects

both the interarrival time between entities and which entity is going to be created. This last

property was defined as being random (equally distributed) between the 6 entities. It was

also stated that all the entities that leave the source must be transported by the vehicle (the

Transported Robot).

• Workstations - It is where the entities’ operations are executed. They get the information

about the entities’ processing time. All of them have an input and an output buffer, both

with capacity of one entity. This means that when a new part arrives the workstation, and

if there’s already a part in process, it is placed in the input buffer, so as soon as the part in

process finishes its operations and is moved to the output buffer, a new processing can begin

right away.

• Entities - As explained before, they represent the parts. Each one has their Type name with

the associated processing time and the operations sequence.

• Vehicle - Or the transporting robot. It moves the entities from the source to the workstations,

then from one workstation to other, following the correct sequence. The vehicle speed is

changeable, so we will define it with a speed of 2 m/s.

• Paths - The paths are the links that connect the other objects. They define the route that

the robot must follow. Without paths, the transporting robot would just move freely in the

facility, when in reality the robot follows a straight line. The paths were defined as being

bidirectional, so that the vehicle can move back and front them.

• Basic Nodes - they’re simple nodes that make connection between links, in this case the

paths. Without them, it would be necessary to create a lot more paths.
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4.2.2 User-defined Tables

In order to build the model with some complexity, the user cannot do it using only the components

standard library provided by Simio. There’s a need to create auxiliary global variables, states,

properties and tables. Here are variables created to help the creation of the simulation model:

Sequence Table As we can see in Figure 4.3, it relates information about the Type Name, of both

the operations actual and next, it associates the node to where it should go next, a variable

that says if it is available and its respective processing time.

Figure 4.3: A sample of the Sequence Table

MixTable It is shown in Figure 4.4, and it shows associated the type of entity and the respective

Mix number. This number is, as we will see in the next pages, an indicator of how many

parts of each type we want to put going out the source. Mix doesn’t say the precise amount

of parts that come, but is only a sort of priority when facing other types.

4.2.3 Processes

A process in Simio is composed by Steps, Elements and Tokens. It is a sequence of actions that

change the state of the model. Tokens flow through a process executing steps that can alter the

state of one or more Elements. All the process used in this work are Add-On Processes. This

means that the processes are executed by some pre-defined triggers.

4.2.3.1 MachineDecide

This is a process that will decide to where the entity should be moved next. It’s triggered whenever

an entity exits the object. In figures 4.6 and 4.7 we can respectively see the trigger being applied to
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Figure 4.4: A sample of the Mix Table

the Source and to one of the workstations. This means that whenever an entity exits the object it’s

created a Token associated with this entity. Now, as we can see in figure 4.5, the Token is created

in the green circle in the left. Then it goes through the following steps:

Figure 4.5: The Process that will decide to which machine to send the entity

Figure 4.6: Source Machine Decide Trigger Figure 4.7: Machine Decide Server

• TableSearch - This step runs through the sequence table (that will be explained ahead) and

will find the machines where the entity can move next. This operation is done by match

conditions. First it compares the Type Name of the Entity associated in the process with

the Type Names in the table (so we will get between 15-20 results, that represent all the

possible moves by that type). Then it compares the operation in progress with the operation

row in the table (that should narrow the results to about 3-4 results). Finally, it is checked if
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the input buffer is available (otherwise the robot would be transporting a part to a full input

buffer so it would be blocked while waiting for it to be free). This Search step forwards

the Found results to one side and the Original to the other one. It also stores the amount of

results found into a variable Machines Available.

Original

- Decide: It compares the variable Machines Available (the one in which is saved the

number of results found in the previous step TableSearch) with 0. And if it is false, it means

that search found possible results so this token can end the process with no more actions.

Otherwise, if there weren’t any results available, the token will follow to the next step.

- Assign: This step assigns the global variable VehicleOK to 0 so the vehicle doesn’t

come to pick any entity to the source (otherwise the Transporting Robot would come to pick

the part and then stop because it would have where to forward it).

- Delay: The delay step holds the token in it for the defined time and then it goes. Here,

the delayed time defined was 10 seconds and its purpose is to prevent the process of going

in infinite cycle.

- Execute: This last step is done in order to repeat the process. It will run the process

again and check if, after the delay of 10 seconds there’s a machine already available. If not

it will run again and again, until there’s a machine available.

Found

- Find: This step is going to go through the results found in search and find the work-

station with less parts on it (considering Input Buffer, Processing and Output Buffer) so that

the work is equally divided by all the machines.

- Assign: It increments the operation, so the next time this entity runs this process, it

will move to the next operation, so that it doesn’t neither repeat an operation nor skip it.

- Set Node: Now that we know the workstation where the entity should go next, this

steps makes sure it goes there.

- Assign: Finally, now that the node where the entity should go is set, it is possible to

give the vehicle permission to go pick the part.

- Fire: The purpose of this step is in case that an entity has already requested the vehicle

when it couldn’t transport it already. That means that the process ProcessVehicle is running

(and should be on the step Wait, so this step let this process finish so the vehicle can go and

pick the entity.

4.2.3.2 VehicleOK

This process will make sure that the Transporting Robot has permission to go pick up an entity. It

will trigger everytime that an entity demands the service of the vehicle and it should assure that if
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Figure 4.8: Vehicle OK process

this entity still hasn’t been assigned a node where it should go, then the vehicle shouldn’t go pick

it up (and so, it should first pick the next entity available and then it will return to this). The figure

4.8 illustrates the functioning of the process, and here how they work:

• Decide - This step will check the variable VehicleOK that, as we have seen in the previous

process, will have the information about if the vehicle can pick up the entity. If this entity

has already been assigned a node where it should move next, then this step returns the value

of true. On the other hand, if it doesn’t have knowledge about the next node, it will return

false.

True

- Assign: As the vehicle can transport the part, without any more actions of the delay

or other types of action, then it will just assign the previous value and that should be it for

this process

False

- Wait: This step will be active if the Transporting Robot doesn’t have permission to go

pick up the entity, so the natural thing to do is to wait until it is free to do it. It is important to

highlight that this wait step doesn’t mean that the whole system is stopped waiting (neither is

the vehicle). It only means that the token associated with this entity is waiting so, while the

Machine Decide process is finding a node to assign the entity, the token will be in this step.

When, in the other process, the Fire step is activated, the vehicle will now have permission

to continue. So when it finishes doing its current operation, will move and to this operation.

- Assign: The purpose of this Assign step is exactly the same as the one above.

4.2.3.3 MachinesAvailable

This is actually a pair of processes that is associated with each workstation and their purpose is to

control the inflows and outflows of the input buffer of the workstations. They only run properly

when combined with each other and their configuration is pretty simple:

The first process is triggered everytime an entity enters the input buffer of a workstation. And

as we can see in Figure 4.9, this process has only one step - Assign. This step will change the

value of the variable MachineXAvailable (where "X" is the name of the machine correspondent to
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Figure 4.9: Machine Available Process

the one the entity just entered) to the value 0 so that the process MachineDecide use this to know

if the buffer is availabe.

On the other hand, we have the process that does the opposite action. It is triggered exactly

before the entity starts processing, which means that the input buffer is already free so, as the

previous process, this one will have only one step as well - Assign. It will change the value of the

variable MachineXAvailable back to 1, so that the process MachineDecide knows that the input

buffer is free to transport entities.

In figure 4.10 we can see how these process triggers are applied to each machine. As it must be

assigned a different variable to each workstation, it necessary to create as well a pair of processes

to each machine. The Figure 4.10 only shows the triggers for the machine A-1, but in the program

there are other triggers and other processes to the rest of the machines.

Figure 4.10: Trigger for MachineA1

4.3 Indicators

Simio provides indicators that can be placed along the facility and they transmit information to

user about how the system is evolving. These statistics can be seen in real-time so they serve

only to the user to see the evolution or, in other words, they aren’t useful for producing the final

results, because they wouldn’t be so precise. For the actual results, a lot of simulations need to be

executed. The following indicators were placed in the facility:

• Number of entities produced - This indicator shows the number of entities that were cre-

ated in the source, so it actually intends to recreate the amount of parts that arrive the line

from the previous lines (as shown in Figure 4.11) .
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Figure 4.11: Entities Produced

• Number of entities arrived - On the other hand, this indicator will represent the amount

of entities received by the sink, recreating the number of parts that finished doing all the

operations in the line (as shown in Figure 4.12. With these two indicators we can calculate

the Work in Progress (WIP), that is known by being an inventory between the start and

end points of a product routing or, in other words, where all the products between but not

including the ending stock points. The WIP is given by:

WIP = NEP−NEA (4.1)

where NEP is the number of entities produced and NEA is the number of entities arrived.

• Machines’ Status Pie - This is a way for the user to observe the performance of one of the

machines. There is one status pie chart for each machine and they are very useful because

they not only give information about if the machine’s performance is good, but also if the

blocked time increases too much, that means that there was a deadlock and the user can find

a way to prevent it right away. We can see the status pie in figure 4.13 and it is possible to

observe that there are a lot of subtitles for the different states that it may have. However, the

most common are Idle, Processing and Blocked.

• Vehicle’s Status Pie - This one has the same functioning as the previous one, but it is

indicated for the vehicle. It is also important, because by observing it, we can tell if there

could be more parts in the system (if the idle time is too big). For this system, it is ideal

that the vehicle is the bottleneck. That means that it should always be processing and never

waiting for some parts to arrive or to finishing process, so this status pie should be mostly

green.

4.4 Deadlocks

One of the main problems in the implementation was the appearance of deadlocks. They normally

happened when the vehicle put parts in all spaces available, so there wasn’t any movement avail-

able to do. For instance, a entity Wrapper needs to move to a machine A but they are all full. And

then, an entity Foxie on machine A wants to C, but it can’t because the machines are all full. A
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Figure 4.12: Entities Arrived

deadlock situation can be seen in Figure 4.15, where it is possible to see that all the input buffers

are full and, as there are 3 parts in each machine (corresponding to the input buffer, processing

and output buffer), it can’t receive any more parts.

In this situation, the robot can’t do anything else. As this problem appeared during the imple-

mentation, we needed to resolve this. Consequentially, two ways to resolve it:

• Interarrival-time This one was, due to lack of time for this work, the one that was imple-

mented (as we are going to see while running the simulations). It is easier to implement but

is not so effective and it doesn’t produce as good results as it could.

It consists in the increasing of the interarrival-time so that the frequency of arrival is very

close to the time that it take to one piece to complete all the operations. This way, there

won’t be any overload of pieces in the system and it can continue to flow normally.

• Storage buffer This one should be completely effective, but it wasn’t possible to implement

it, mainly because of the short time and to the lack of experience in the framework used. It

consists in a storage buffer (with an infinite capacity) to where the transporting robot would

transport the entities in case that the respective destination is full and there entities would

wait until this would be free. In Figure 4.16 we can see an example of what the system

would look like, with a storage implemented.
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Figure 4.13: Machine’s Status Pie

Figure 4.14: Vehicle’s Status Pie

Figure 4.15: A Deadlock situation
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Figure 4.16: Facility with storage implemented



Chapter 5

Experimentations and Results

In the previous chapter 4 we have seen how the implementation was done. Now, the next step

is to run these simulations and to analyse. That’s what is going to be done in this chapter. First

the different possible scenarios will be analysed and, in analogy to the real case, how can these

scenarios change and, after implementing some changes, what the possibility of changing some

configuration.

Figure 5.1: Bloqued Machines
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Interarrival-Time

It represents the frequency that new parts arrive to the line. As there aren’t any real values

that we can use. For deciding the best Interarrival-time, we will run some simulations and

analyse the machine’s blocked time. We are looking for an interarrival-time that doesn’t put

too much parts in the system ( and probably cause a deadlock ) but we also want to take the

most of the machines. And so, to test possible Interarrival-times, we will do 10 simulations

of the system for values 2, 3 and 4 minutes between each arrival, corresponding respectively

to scenarios 1, 2 and 3, and study how these scenarios respond with the machine percentage

time of processing and blocked.

As we can see in Figure 5.1, that represents the percentage of blocked time, the first scenario

(with interarrival-time of 2 minutes) has a very high percentage (more than 90%) of blocked

time. This might be explained by the fact that a deadlock happens (more about deadlocks

will be explained ahead) when the parts come with a frequency of between 2 and minutes.

So if we only look at the blocked time, we may say that the bigger the interarrival-time is,

the smaller will be the blocked time so it’s for the best.

However we must also consider the processing time. If we take a look at Figure 5.2, when

the processing time starts increasing apart from the second scenario , the processing time

starts going down (there wasn’t need to simulate more scenarios because the processing time

would just continue to go down.)

Figure 5.2: Processing Machines
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With this, we can conclude that the best time would be around 2 and 3 minutes. So, and

for the interarrival-time being a little synchronized with the values of the processing times,

so it was decided to go to the values in the operations sequence, in table 4.1 and calculate a

triangular distribution through it, where the minimum corresponds to the minimum process

time of an operation, the maximum corresponds to the maximum time of an operation and

then we have the average of all the values. Once we finish all the calculations, we end up

with the following results:

Table 5.1: Interarrival Time Probability Distribution

Maximum 6,8
Most Likely 1,51
Minimum 0,38

So now we take these results and apply them into a triangular distribution, resulting in the

graphic in Figure 5.3, where the x-axis represents the interarrival-time verified and the y-

axis represents the number of occurrences, where the maximum will correspond to the Mix

(the bigger the Mix is, the more occurrences of the entity there will be).

Figure 5.3: Interarrival-Time Distribution

Time of the simulation

This item has also a great influence on the final results and it depends on two aspects: the

amount of time we are simulating (one day, one week, one month) and also the amount of

simulations we do for each scenario.

So first, the amount of time. Typically, new orders arrive to the facility at least once a

week, so the simulations we will be doing will be for one week of work. A week of five

days (Monday - Friday) with 8 hours of work each (08:00 - 12:00 and 13:00 - 17:00). For
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simplifying the simulations, we won’t focus on workers breaks or holidays, so in every

simulation we will recreate 40 hours of work. If a more precise work, it would be possible

and important to put these things into attention. For defining a week and day pattern in

Simio, there were created two schedule tables. We can see them in Figures 5.4 and 5.5 how

these were defined.

Figure 5.4: Week Schedule

Figure 5.5: Day Schedule

Next step is to decide the number of simulations to be done in each scenario. The more

simulations we do, the closer it is going to be to the expected value. So of course, the best

thing to day would be do as many simulations as possible - thousands or even millions of

them. However, doing this gigantic amount of simulations also takes a lot of time, and that

is a big disadvantage. When creating this simulation model, we don’t intend that it takes

forever to produce results. The managers that requested the simulations don’t want to wait

so long to so the results of something that is more likely not to be implemented in real

facility (normally, dozens of different scenarios are simulated so that only one change can

be accepted).

Other thing that can speed up the simulation process is better hardware. With the available

tools, for each time that a work week is simulated, it takes between 30 and 45 seconds to

run. So if, for example, we want to run the simulation 1000 times, it would take over 10

hours. Here, we are going to work with a smaller number of simulations. For this, we are

going to test for 5, 10, 25 and 50 simulations, and see the difference of results in the number
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of entities created and destroyed (i.e., that arrived the line and that left it). So, from these

simulations, we got the following values:

Table 5.2: Number of Simulation Runs

Entities Arrived Entities Produced

Min. Av. Max. Min Av. Max.
Total Running Time

(mins)
5 Simulations 827 828 829 817 818 820 3,64
10 Simulations 828 837 846 817 829 839 7.02
25 Simulations 825 838 849 816 830 840 18.81
50 Simulations 823 838 852 816 830 844 36.27

As it was expectable, the maximum and minimum limits go wider as the number of simu-

lation occur. However, we can see that it takes to long to do this many simulations, so we

have to decide to a intermediate value. We can see in table 5.2 that there is a significant

difference between doing 5 or 10 simulations. But then, the major differences are between

the limits (max. and min.) but the average stays more or less the same. And so, we chose to

do 10 simulations, for each scenario.

Mix

The shoe’s industry is always changing according to the season, to people and to fashion. In

one week a model of shoes may be pretty famous and the next week almost no sales. That’s

why it is important to keep changing the amount of shoes that is produced of each type. And

that can be controlled through the Mix, according to the table we have seen before. And this

is where we will try to have values of a better simulation. In the next section, we are going

to see an example of a Mix change and then what we can do with the line to make it with

better results.

5.1 An example of a line balancing

Now that aspect of the simulation running in this model has been indicated, we can now proceed

to the simulation. First we are going to run the system with a purpose of recreating no big changes

in the market, what means that the Mix of all the parts will by the same. But then, we are going to

see how the system reacts to a big change (one of the shoe models will come out more often) and

analyse what can we do to improve that. We will first consider the configuration that can be seen

in Figure 4.2 to observe its behaviour and then, a small change in this configuration will be made

(a machine will be trade by another) so that the simulation model can validate this alteration.

So first we are going to proceed to an equal Mix simulation. See how many entities were

created and how many were produced of each type. And the results can be seen in Table 5.3.

So, as we can see in table 5.3 (where A. stands for parts arrived to the line and P. for parts that

were produced), all the values are more or less the same. There isn’t much variation because all

the Mix was the same.
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Table 5.3: Simulation 1

Humpry Wrapper Foxy Frazer Jefferson Sakie
A. P. A. P. A. P. A. P. A. P. A. P.

Average 144,2 141,8 130,0 128,2 139,6 138,8 136,0 134,8 145,8 144,8 140,4 138,6
Min 126,0 122,0 123,0 121,0 128,0 127,0 121,0 118,0 134,0 133,0 127,0 125,0
Max 165,0 165,0 135,0 133,0 156,0 156,0 148,0 147,0 166,0 165,0 173,0 172,0

However, let’s do it with a different Mix. Let’s pretend that, for instance, the model Frazer

was very fashionable, during one week, so it had a lot of demanding. Similar thing happened with

the models Humpry and Wrapper. On the other hand, Jefferson and Sakie had too little demand.

So we organised the Mix table like we can see in table 5.4

Table 5.4: Simulation 2 Mix

Humpry Wrapper Foxy Frazer Jefferson Sakie
Mix 75 75 50 100 5 5

And running the simulation, we have obtained the following values for both the pairs of shoes

that arrived the line and that left:

Table 5.5: Simulation 2

Humpry Wrapper Foxy Frazer Jefferson Sakie
A. P. A. P. A. P. A. P. A. P. A. P.

Average 209,8 142 203,6 129,2 138,6 70,4 258 171,4 13,4 8,2 12,4 8,6
Min 189,0 21 184,0 37,0 116,0 17,0 247 24,0 7,0 1,0 6,0 1,0
Max 246,0 246 229,0 202,0 158 129,0 272 269,0 19,0 19,0 19,0 18

As we can see in table 5.5, there is a lot of WIP, specilly in the parts that have more Mix. This

can be resolved by a simple action of line balancing. As we can see in table 4.1, the most produced

parts (Frazer, Wraper and Humpry) don’t use almost nothing the machine D. On the other hand,

they use a lot of machine A. As we have two machines D, let’s make a change and putting machine

D doing operations of machine A (of course, in some cases this isn’t possible, but for this example

let us assume that it is).

So now, we will run the simulation again, in the same values of Mix as in table 5.4, but now

we have have added another machine A. Now after we ran the simulation, we have obtained the

following results:

As we can see in table 5.6, there were more parts produced with around the same amount of

material (there was some change, of course, because as said before, simulation recreates random

processes, so it’s very difficult for one simulation to produce the same results as other.

Figure 5.6 represents a chart with the results of tables 5.5 and 5.6. As we can see, there a big

variance between the maximum and minimum values, specially in the amount of entities produced.

Also in the Appendix A we can see a table with the vehicle’s performance in the last scenario,

where are shown several values such as the amount of units transported, vehicle’s idle time or its

transporting time.
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Table 5.6: Simulation 3

Humpry Wrapper Foxy Frazer Jefferson Sakie
A. P. A. P. A. P. A. P. A. P. A. P.

Average 209,8 170 203,6 149,4 138,8 89,8 258 201,4 13,4 5,2 12,4 5,6
Min 189 43 184 41 116 21 247 94 7 1 6 1
Max 246 246 229 213 158 140 272 269 19 19 19 18

5.2 Results Analysis

With this we can conclude that a simple line balancing that consisted in changing a couple of work-

stations took a significant effect in the systems performance. If we went through other examples,

we could find more situations where we could improve the system’s performance by implementing

a line balancing operation. This model is more directed to this facility in specific, but we managed

to understand how it can work if we apply simulation to other fields of line balancing. We just

need to find where can we improve the system.
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Figure 5.6: Simulations for the last two scenarios



Chapter 6

Conclusions and Future Works

Production lines balancing is a concept really very complex and that go into a lot of direction,

which normally follow the evolution of technology. In this dissertation we have studied how

we can apply new technology to this concept. The technology: a fairly new framework that

represents a leap forward in simulation technology - Simio. Although much of the work spent

on the development of this thesis was spent learning how to work with Simio, this time can be

considered as very useful, as this is going to be a new simulation framework that is going to be

frequently used in resolving old problems.

The fact that it was used a real case to study this problem helped a lot. Although the real case

wasn’t strictly followed (for simplification of the problems solving and also because the company

couldn’t provide really specific data about the facility configuration and other areas), isn’t a prob-

lem. In fact, it opens doors to be used for other problems in other different areas. We’ve seen in

the previous chapter 5 that it works to resolve a line balancing problem in the footwear industry

through this way, so it is certain that it can be applied in other industries.

Therefore, for the future, this dissertation leaves two objectives:

• In the first place, it leaves the challenge to apply this model with more accurate data and use

real information to test new configurations and perhaps implement one of them.

• Then, it motivates to continue this area and to use what was learned here to other fields.

47





Appendix A

Simulation 3 - Vehicle Status
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Table A.1: Vehicle Properties for simulation 3

Object Name Data Item Statistic Type Av. Min Max. St. Deviation
Vehicle1 ScheduledUtilization Percent 58,69 57,25 59,95 1,29
Vehicle1 UnitsAllocated Total 5541,40 5444,00 5631,00 83,39
Vehicle1 UnitsScheduled Average 1,00 1,00 1,00 0,00
Vehicle1 UnitsScheduled Maximum 1,00 1,00 1,00 0,00
Vehicle1 UnitsScheduled Minimum 1,00 1,00 1,00 0,00
Vehicle1 UnitsUtilized Average 0,59 0,57 0,60 0,01
Vehicle1 UnitsUtilized Maximum 1,00 1,00 1,00 0,00
Vehicle1 UnitsUtilized Minimum 0,00 0,00 0,00 0,00

Vehicle1[1] ScheduledUtilization Percent 58,69 57,25 59,95 1,29
Vehicle1[1] UnitsAllocated Total 5541,40 5444,00 5631,00 83,39
Vehicle1[1] UnitsScheduled Average 1,00 1,00 1,00 0,00
Vehicle1[1] UnitsScheduled Maximum 1,00 1,00 1,00 0,00
Vehicle1[1] UnitsScheduled Minimum 1,00 1,00 1,00 0,00
Vehicle1[1] UnitsUtilized Average 0,59 0,57 0,60 0,01
Vehicle1[1] UnitsUtilized Maximum 1,00 1,00 1,00 0,00
Vehicle1[1] UnitsUtilized Minimum 0,00 0,00 0,00 0,00
Vehicle1[1] IdleTime Average (Hours) 0,01 0,01 0,01 0,00
Vehicle1[1] IdleTime Occurrences 2397,20 2291,00 2481,00 76,60
Vehicle1[1] IdleTime Percent 41,31 40,05 42,75 1,29
Vehicle1[1] IdleTime Total (Hours) 16,53 16,02 17,10 0,52
Vehicle1[1] TransportingTime Average (Hours) 0,01 0,01 0,01 0,00
Vehicle1[1] TransportingTime Occurrences 2397,40 2291,00 2481,00 76,71
Vehicle1[1] TransportingTime Percent 58,69 57,25 59,95 1,29
Vehicle1[1] TransportingTime Total (Hours) 23,47 22,90 23,98 0,52
Vehicle1[1] NumberInStation Average 0,29 0,29 0,30 0,01
Vehicle1[1] NumberInStation Maximum 1,00 1,00 1,00 0,00
Vehicle1[1] NumberInStation Minimum 0,00 0,00 0,00 0,00
Vehicle1[1] TimeInStation Average (Hours) 0,00 0,00 0,00 0,00
Vehicle1[1] TimeInStation Maximum (Hours) 0,00 0,00 0,00 0,00
Vehicle1[1] TimeInStation Minimum (Hours) 0,00 0,00 0,00 0,00
Vehicle1[1] NumberEntered Total 5541,40 5444,00 5631,00 83,39
Vehicle1[1] NumberExited Total 5541,20 5444,00 5631,00 83,33
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