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RESUMO 

As relações evolutivas em anfisbenídeos (sub-ordem Amphisbaenia) desde sempre 

foram controversas. Um dos motivos mais plausíveis para tal está relacionado com o seu 

comportamento fossorial, o que os torna difíceis de encontrar e examinar em número 

suficiente. Na Bacia Mediterrânica existem dois géneros de anfisbenídeos – Blanus 

(Amphisbaenia: Blanidae) e Trogonophis (Amphisbaenia: Trogonophidae). Actualmente 

estão descritas cinco espécies para o género Blanus, que tem uma distribuição circum-

mediterrânica: B. cinereus e B. mariae ocorrem na Península Ibérica; B. tingitanus e B. 

mettetali estão distribuídos pelo norte e oeste de Marrocos, respectivamente; e B. strauchi 

está presente na Turquia, Grécia e Médio Oriente. T. wiegmanni é o único representante da 

família  Trogonophidae no Norte de África. É um género monotípico, com duas 

subespécies: T. w. elegans é endémico do oeste de Marrocos e T. w. wiegmanni está 

distribuído no este de Marrocos, na zone norte da Argélia e no oeste da Tunísia. Estudos 

genéticos recentes encontraram níveis elevados de diferenciação genética entre taxa 

morfologicamente semelhantes. No entanto, estes resultados são principalmente baseados 

em sequências mitocondriais e é necessária mais pesquisa com marcadores nucleares. Os 

objectivos desta dissertação são avaliar os níveis de diversidade genética, identificar 

relações filogenéticas e padrões filogeográficos nos géneros Blanus e Trogonophis, e 

verificar se a actual taxonomia está de acordo com os resultados obtidos. O estudo foi 

realizado com a análise de fragmentos de múltiplos marcadores mitocondriais e nucleares. 

Nos Blanus, os resultados demonstaram três clados principais de acordo com as espécies 

Ibéricas, do Norte de África e da Anatólia, sendo a última basal às restantes espécies do 

género. Redes de haplótipos nucleares suportam a distinção genética da espécie 

recentemente descrita para a Península Ibérica B. mariae, e também indicam que a sua 

distribuição é maior. Adicionalmente, os resultados revelam que B. tingitanus tem duas 

linhagens em Marrocos – uma a norte e outra restrita a sul do Rif e a norte do Atlas Médio. 

Também em B. mettetali e B. strauchi grandes variações genéticas foram detectadas, 

apesar das poucas amostras disponíveis para o estudo, sugerindo a existência de espécies 

crípticas nestes taxa e a necessidade de mais pesquisa. Relativamente ao género 

Trogonophis, a estimativa de relações entre T. wiegmanni revelaram três clados – dois 

correspondentes a T. w. elegans e T. w. wiegmanni em Marrocos, e um clado basal com 

amostras de T. w. wiegmanni da Argélia e Tunísia. Em Marrocos, a variação morfológica, a 

variação genética e os requisitos ecológicos aparentemente diferentes de T. w. elegans e T. 

w. wiegmanni são indicadores de que estas duas formas poderão ser consideradas 

diferentes espécies, e por isso deverão ser consideradas para revisão taxonómica. Para 
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além disso, as amostras da Argélia e Tunísia, são consideradas T. w. wiegmanni, e por isso 

esta subspécie é parafilética. A divergência genética entre as amostras da Argélia e da 

Tunísia dos restantes clados de Marrocos mostra a necessidade de produzir estudos 

morfológicos para que características morfológicas de diagnóstico possam ser 

identificadas. Os resultados desta tese apontam para a presenca de linhagens crípticas e a 

necessidade de fazer uma revisão taxonómica nestes géneros. No entanto, mais análises 

moleculares e morfológicas, especialmente nas potenciais zonas de contacto, irão ser 

necessárias para obter informações adicionais sobre a história evolutiva de anfisbenídeos 

da Bacia Mediterrânica. 

 

PALAVRAS-CHAVE 

Bacia Mediterrânica, Amphisbaenia, Blanidae, Trogonophidae, DNA mitocondrial, DNA 

nuclear 
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ABSTRACT 

The evolutionary relationships of worm lizards (sub-order Amphisbaenia) have long 

been controversial – possibly due to their fossorial habits – which make them difficult to 

examine in large numbers. In the Mediterranean Basin, two genera of amphisbaenids 

occur – Blanus (Amphisbaenia: Blanidae) and Trogonophis (Amphisbaenia: 

Trogonophidae). Currently, there are five species recognized for the genus Blanus, which 

has a circum-Mediterranean distribution: B. cinereus and B. mariae, occur in the Iberian 

Peninsula; B. tingitanus and B. mettetali, are distributed across northern and western 

Morocco, respectively; and B. strauchi occurs in Turkey, Greece and the Middle East. T. 

wiegmanni is the only representative of the family Trogonophidae in North Africa. It is a 

monotypic genus, with two subspecies: T. w. elegans is endemic to western Morocco and T. 

w. wiegmanni is distributed in central and eastern Morocco, northern Algeria and western 

Tunisia. Recent genetic studies have revealed high levels of genetic differentiation 

between morphologically similar forms in these taxa. However, these results are mainly 

based on mitochondrial sequence data and need to be further investigated with nuclear 

markers. The aim of this thesis was to identify levels of genetic diversity, phylogenetic 

relationships and phylogeographic patterns in the genera Blanus and Trogonophis, also to 

assess if the current taxonomy is congruent with the results obtained, and highlight key 

matters to be addressed in future studies. Phylogenetic relationships were determined by 

analysing multiple mitochondrial and nuclear gene fragments. For Blanus, results showed 

three main clades in agreement with the Iberian, North African and Anatolian species, with 

the latter species being the most basal within the genus. Nuclear network analyses 

supported the genetic distinctiveness of the recently described B. mariae, and there is also 

indication that its distribution is wider than previously known. Moreover, the results 

revealed that B. tingitanus in Morocco has two lineages – one in northern Morocco and 

another confined to the south of the Rif and north of the Middle Atlas. Also within B. 

mettetali and B. strauchi, high genetic variation was found despite the few samples 

available, suggesting the existence of cryptic species in these taxa and thus the need for 

further research.  Regarding the genus Trogonophis, the estimate of relationships within T. 

wiegmanni revealed three clades within this taxon – two clades corresponding to T. w. 

elegans and T. w. wiegmanni from Morocco, and a basal clade with T. w. wiegmanni 

samples from Algeria and Tunisia. In Morocco, the morphological variation, genetic 

divergence and apparently different ecological requirements of T. w. elegans and T. w. 

wiegmanni indicate that these two forms might correspond to different species, and thus 

could be considered for taxonomical revision. Also, the analysed samples from Algeria and 
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Tunisia are currently considered to be T. w. wiegmanni, thus making this form 

paraphyletic. The divergence between Algerian and Tunisian samples from the remaining 

Moroccan clades indicates that further morphological assessment is required to determine 

if diagnostic characters can be identified. This thesis results highlight the cryptic nature of 

these lineages and the need to perform a taxonomic revision in these genera. Further 

molecular and morphological analyses, particularly in potential contact zones, will also be 

advisable to provide further insights into the evolutionary history of amphisbaenians from 

the Mediterranean Basin. 

 

KEYWORDS 

Mediterranean Basin, Amphisbaenia, Blanidae, Trogonophidae, mitochondrial DNA, 

nuclear DNA 
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1. SPECIES AND CRYPTIC DIVERSITY 

Up until this day the definition of ‘species’ still remains a controversial topic in 

evolutionary biology. However, nowadays it is broadly accepted that this term is not fixed 

and contemporary biological diversity has discontinuities along morphological, genetic 

and ecological axes (Niemiller et al., 2012). For a long time morphology has been used as 

the main tool for taxonomists to describe and identify species (Mayr, 1949). Nevertheless, 

the development of molecular techniques has uncovered unexpectedly high levels of 

genetic diversity. Even though biodiversity is mostly discussed at species or even higher 

taxonomical level, intraspecific genetic variation is also an integral part of biodiversity 

(Taberlet et al., 1998). Therefore, the level of genetic diversity is an important tool to be 

used as a complementary strategy to more traditional conservation approaches, when 

prioritizing populations for protection purposes (Bonin et al., 2007). 

Indeed, molecular data have changed the way biodiversity is perceived. For instance, it 

has enabled the discovery of cryptic species, i.e., species which are morphologically similar 

but genetically well differentiated and reproductively isolated (Bickford et al., 2007). In 

some cases, morphological similarity may be due to convergence and genetic markers can 

provide powerful information for disentangling evolutionary relationships. Even though 

the concept of cryptic species is not new (Winker, 2005), in the last decades molecular 

tools have been effective in identifying cryptic diversity, and the number of described 

cryptic species has been significantly increasing (Bickford et al., 2007 and references 

therein). 

Particularly interesting cases are phylogenetic studies which have found discordance 

between morphological and genetic differentiation in subterranean taxa. Fossorial 

organisms have evolved in extreme environmental settings, limiting possible adaptive 

responses in which organisms are able to adapt (Nevo, 2001). Thus, morphological 

changes associated with speciation may often be reduced or non-existant (Bickford et al., 

2007), or there may be morphological convergence of adaptive characters. Therefore in 

subterranean taxa, species delimitation based on morphology is particularly difficult due 

to the possible occurrence of morphological convergence (Niemiller et al., 2012). In these 

cases, biodiversity assessment based only on morphological traits could be strongly biased 

(Lefébure et al., 2006). 

Amphisbaenians are a group of squamate burrowing reptiles which have been recently 

the focus of molecular analyses with mitochondrial markers. Recent studies have 

recovered highly complex phylogenetic relationships, revealing the existence of cryptic 

diversity, with high genetic variation in morphologically indistinguishable taxa. However, 
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these results are based mainly on mitochondrial data. Even though it used to be a common 

practice in phylogenetic studies, setbacks to the use of only this type of molecular marker 

to infer diversity and phylogenetic patterns are currently known. 

2. MOLECULAR MARKERS IN THE ASSESSMENT OF CRYPTIC DIVERSITY 

In the last decades, many phylogenetic and phylogeographic studies of herpetofauna 

have relied only on mitochondrial DNA (mtDNA) sequence variation. In fact, mtDNA 

analyses have been considered to be adequate to assess cryptic species with similar 

morphology (Slade and Moritz, 1998). Mitochondrial DNA has several properties that 

make it suitable to infer evolutionary relationships (Avise, 2000; Avise et al., 1987). It can 

be easily obtained due to high copy number in cells; it has a small genome size and simple 

sequence organization; it is transmitted maternally, having a non-recombining mode of 

inheritance; evolves rapidly in animal populations and has extensive intraspecific 

polymorphism (Avise, 2000). Even though mtDNA may be extremely useful to address 

phylogenetic studies because of its characteristics, the application of a single locus 

approach may lead to misleading interpretations. The representation of a single locus may 

not necessarily reflect species evolutionary history, which could lead to a biased 

interpretation of the results. Also, it may not detect introgression and incomplete lineage 

sorting phenomena (reviewed in Ballard and Whitlock, 2004; Bazin et al., 2006; Zhang and 

Hewitt, 2003).  

Due to the downsides of the use of only mtDNA sequences, recently it has been a more 

common approach the inference of phylogenies based on multilocus datasets, constituted 

by a combination of multiple mitochondrial and nuclear markers. These are more valuable 

to perform more robust phylogenies and give further insights on the evolutionary 

relationships of the taxa under study. 

3. PHYLOGENETIC INFERENCE ANALYSES 

The progress of laboratory procedures to amplify DNA fragments has led to an 

increase of DNA data in the last decades. Also, an interest on the estimation of taxa 

evolutionary history has arisen and improved methodologies and computational 

procedures have been designed to make phylogenetic inferences based on DNA sequences. 

There are currently several methods available to reconstruct phylogenetic trees such as 

maximum parsimony, maximum likelihood and Bayesian inference. These methods are 

used for depicting relationships on a deeper level, among species. 
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Maximum likelihood (ML) is a method of statistical inference to estimate an 

evolutionary tree from DNA sequences (Felsenstein, 1981) based on a chosen model of 

sequence evolution. It assigns quantitative probabilities to mutational events to compare 

possible phylogenetic trees and find the evolutionary tree which best predicts the 

observed data (Felsenstein, 1981; Makarenkov et al., 2006). There are various software 

available to perform ML analysis – PAUP (Swofford, 2003), GARLI (Zwickl, 2006), PHYML 

(Guindon and Gascuel, 2003) and RAXML (Stamatakis, 2006). 

In a Bayesian inference (BI) analysis, the inference on phylogeny is based on the 

posterior probabilities of a tree (Huelsenbeck and Bollback, 2001b; Huelsenbeck and 

Ronquist, 2001). MRBAYES (Huelsenbeck and Ronquist, 2001) implements this analysis 

with a Markov chain Monte Carlo (MCMC) approach to approximate the posterior 

probabilities of a tree distribution of topologies. 

Most ML and BI analyses employ models of DNA substitution, so that the appropriate 

model for each alignment is used in the phylogenetic analysis. To select the appropriate 

model, there is software available, such as MODELTEST (Posada and Crandall, 1998) or 

JMODELTEST (Posada, 2008). 

For more shallow phylogenies, at the intraspecific level, phylogenetic relationships are 

better represented by networks, because they offer more resolution of the relationships 

among haplotypes, than phylogenetic trees. This is also an important tool for dealing with 

genes at population level (Makarenkov et al., 2006). 

There are many methods and software available that produce networks, being often 

used in phylogenetic and population genetics studies. For instance, median-joining in 

NETWORK (Fluxus Technology; Bandelt et al., 1999), or statistical parsimony approach 

implemented in TCS (Clement et al., 2000). The method developed by Templeton et al. 

(1992) (TCS) collapses identical sequences into haplotypes and calculates the haplotypes’ 

frequency. Missing intermediates are also estimated. The statistical parsimony algorithm 

estimates the maximum number of differences among haplotypes which are caused by 

single substitution events with a 95% parsimony connection limit (by default the limit of 

parsimony is 95%, but it can it can be used a cut-off between 90 to 99%). This translates 

into the maximum number of single nucleotide mutations that can be connected in a single 

haplotype network; haplotypes separated by more mutational steps remain disconnected. 

The statistical parsimony method implemented in TCS connects haplotypes with small 

differences, displaying the similarities rather than the dissimilarities between the 

haplotypes (Clement et al., 2000; Makarenkov et al., 2006). 
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4. AMPHISBAENIANS 

Amphisbenians are an ancient group of fossorial squamate reptiles, morphologically 

adapted to a burrowing lifestyle. These reptiles often superficially resemble earthworms, 

thus being commonly known as worm lizards. They belong to the sub-order 

Amphisbaenia, constituted by six families and over 160 species (Gans, 2005; Hembree, 

2006; Vidal et al., 2008) (Figure 1). Presently, this is a widespread reptile group present in 

North and South America, Africa, southern Europe and western Asia (Hembree, 2006; 

Kearney, 2003; Kearney and Stuart, 2004). The known fossil record shows an ancient 

broader distribution of this group in North America, Africa and Europe (Hembree, 2006; 

Kearney, 2003). 

 

 

 

 

 

 

 

Amphisbaenians have had an early evolutionary origin, predating the geological 

separation of Pangea 200 million years ago (MYA). This was first suggested by Gans 

(1990),  based on their modern biogeography. The author proposed a western 

Mediterranean origin and the necessity for faunal exchange between Africa and South 

America before these continents separated. More recently, this hypothesis has been 

supported by morphological (Kearney, 2003) and molecular phylogenies (Kearney and 

Stuart, 2004; Macey et al., 2004), and paleobiogeographic studies (Hembree, 2006). 

Even though these vertebrates have low dispersal abilities (Albert et al., 2007; 

Hembree, 2006; Kearney, 2003; Macey et al., 2004; Navas et al., 2004), it has been 

suggested that oceanic dispersal may have had a considerable impact on their current 

distribution on both sides of the Atlantic (Vidal et al., 2008). 

Amphisbaenia evolutionary origins and relationships have long been under study 

(Gans, 1978). Molecular data indicate a relationship between amphisbaenians with 

Figure 1 Higher-level phylogeny of amphisbaenids based on Vidal et al. (2008), with additional data from 

Kearney and Stuart (2004). African amphisbaenids are paraphyletic. (Vidal and Hedges, 2009) 
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lacertids, a clade of Old World terrestrial lizards, while morphological evidence groups 

them with snakes and other limbless squamates (reviewed in Müller et al., 2011). 

Recently, Müller et al. (2011) found a new lacertid-like lizard from the Eocene in Germany, 

being the first morphological evidence for lacertid-amphisbaenian monophyly. This 

discovery supported the view that body elongation and limblessness in amphisbaenians 

and snakes evolved independently. Their results also indicated that head-first burrowing 

evolved before body elongation, thus being an exceptional first step in the evolution of 

burrowing behaviour in amphisbaenians. 

Amphisbenids live in subterraneous environments, exhibiting several morphological 

traits which indicate extreme adaptations to a burrowing behaviour. Worm lizards have a 

strongly reinforced skull for head-first burrowing and there are different head shapes 

associated with specific tunnelling behaviours (Gans, 1974; Kearney, 2003; Kearney and 

Stuart, 2004). Their eyes are covered with skin, having a reduced vision, but still are 

sensitive to light (Schleich et al., 1996). Amphisbaenians have an elongated body with a 

short tail (Schleich et al., 1996) and are limbless, with the exception of the three species of 

the genus Bipes, which have front limbs (Kearney, 2003; Kearney and Stuart, 2004; 

Schleich et al., 1996). Also, it has been noted that Bipes and Blanus have internal vestiges of 

hind-limbs (Renous et al., 1991; Zangerl, 1945). 

Subterraneous environments constitute onerous conditions for animals to evolve in, 

producing morphological pressures on burrowing taxa in order to adapt to that habitat 

(Lefébure et al., 2006). Diversity of possible adaptive responses tend to decline with stress 

intensity (Nevo, 2001), a factor that may be responsible for convergent evolution of 

morphological traits in amphisbenians. In general, the geographic separation of the 

selective environment should favour multiple origins of a trait. In other words, the trait 

may evolve wherever the selective environment is encountered, and the spread of a 

lineage to different geographically isolated regions containing this same selective 

environment may lead to multiple origins (Wiens et al., 2006). There are several squamate 

clades that have suffered limb loss or reduction. Studies have shown that this has occurred 

at least 25 times during squamate evolution (Wiens et al., 2006) and at least three times in 

amphisbaenids (Kearney and Stuart, 2004). There also are difference cranial types 

associated with distinct burrowing behavior (Gans, 1974), having evolved independently 

on different continents (Kearney, 2003; Kearney and Stuart, 2004).  

In cases of extreme environments with adaptive morphological evolution, it may be 

observed a disjunction between molecular and morphological data. Levels of genetic 

diversity of fossorial taxa may be underestimated due to morphological convergence 

(Lefébure et al., 2006). Additionally, the inference of squamates – and amphisbaenians in 
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particular – evolutionary history based on homoplastic morphological characters such as 

limb reduction or cranium shape may lead to misleading phylogenetic interpretations 

(Kearney, 2003; Kearney and Stuart, 2004; Mott and Vieites, 2009; Wiens et al., 2006). In 

such cases, molecular phylogenies are more informative than morphology to infer 

evolutionary history of taxa (Avise, 2004). 

Reptiles have relatively limited dispersal ability and are very dependent on 

environmental conditions, thus being more susceptible than other groups to changes in 

temperature and humidity. Hence, they are considerate as good models to infer 

biogeographic scenarios. Moreover, amphisbaenids early evolutionary ancestry and 

unique habits make them an interesting group to study evolutionary patterns and are a 

candidate group for cryptic species to occur.  

However, worm lizards remain a poorly studied group of reptiles, with sparse 

knowledge on ecology and geographic distribution (Kearney, 2003). Besides that, models 

of speciation and phylogeographic patterns and the evolutionary relationships of 

amphisbaenians are still under investigation (Albert et al., 2007; Bezy et al., 1977; Macey 

et al., 2004; Mulvaney et al., 2005; Pearse and Pogson, 2000). This lack of knowledge is 

mainly due to their digging and secretive behaviour, which makes them animals quite 

challenging to find (Kearney and Stuart, 2004). That is possibly why so far not many 

studies have been conducted to infer levels of genetic diversity and intraspecific 

phylogenies on amphisbaenids. Nevertheless, evidence of cryptic diversity has been found 

in several amphisbaenids studied using mitochondrial markers. In a recent study on the 

only amphisbaenian in the United States, the Florida worm lizard Rhineura floridana 

(Baird, 1858) (Amphisbaenia: Rhineuridae), Mulvaney et al. (2005) found divergent 

evolutionary lineages within R. floridana, with high mtDNA differentiation between south-

central and in the north-central and northern Florida populations, suggesting a future 

taxonomic revision. Besides this case, more recent studies on Mediterranean 

amphisbaenids taxa have revealed interesting molecular results, pointing out to the 

existence of cryptic species complexes (Albert and Fernández, 2009; Albert et al., 2007; 

Mendonça and Harris, 2007; Vasconcelos et al., 2006). Nevertheless, those phylogenies 

have been inferred based mainly on mitochondrial data and require further investigation 

with nuclear genes.  
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4.1.  CASE STUDIES 

4.1.1.  BLANUS WORM LIZARDS 

There are currently five species described in the genus Blanus Wagler, 1830 (Figure 2), 

which has a Mediterranean distribution (Kearney, 2003) (Figure 3) – Blanus cinereus 

(Vandelli, 1797); Blanus mariae Albert and Fernández, 2009; Blanus tingitanus Busack, 

1988; Blanus mettetali Bons, 1963; and Blanus strauchi Bedriaga, 1884. 

 

 

 

 

 

 

 

In North Africa occur B. tingitanus and B. mettetali. The former is endemic to north 

Morocco, occupying all the Tingitana peninsula, north of Rabat, in areas with humid and 

sub-humid climate (Bons and Geniez, 1996). It has three pre-anal pores on each side and 

has a sepia colouration (Schleich et al., 1996). B. mettetali is endemic to west Morocco, 

south of Rabat and west Atlas, in habitats with temperate to warm winters and sub-humid 

and semi-arid climate (Bons and Geniez, 1996; Schleich et al., 1996). This species has a 

violet brown to light pink colouration and four, five or six pre-anal pores on each side 

(Schleich et al., 1996). B. tingitanus and B. mettetali can be distinguished by morphological 

Figure 2 Blanus specimens. 

Figure 3 Map with the region where Blanus species occur. Distribution range of each species according to IUCN 

(2012). 
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characters, while B. tingitanus can only be differentiated from the Iberian Blanus 

genetically (Schleich et al., 1996). 

B. cinereus is commonly known as the Iberian worm lizard, where it occurs. Recent 

studies on this taxon (Albert and Fernández, 2009; Albert et al., 2007; Vasconcelos et al., 

2006) have led to the description of a new species for the southwestern region of the 

Iberian Peninsula – B. mariae – by Albert and Fernández (2009), based on molecular and 

morphological evidences. Morphologically, B. mariae is similar in colour and patterns to B. 

cinereus (Albert and Fernández, 2009). 

B. strauchi has three subspecies described – B. strauchi strauchi (Bedriaga, 1884), B. s. 

bedriagae Boulenger, 1884 and B. s. aporus Werner, 1898. This species has a discontinuous 

range of distribution across Asia Minor, being separated by mountain ranges and the 

Mediterranean, in Turkey, Greece, and the Middle East, including Lebanon, Palestine and 

eastern Iraq (Alexander, 1966; Sindaco et al., 2000). 

Even though the fossil record on Blanus is limited, it shows a wider distribution in 

Europe than the one presently observed (Albert et al., 2007; Alexander, 1966; Hembree, 

2006). The current separation between eastern and western Mediterranean Blanus may 

be the consequence of the extinction of populations located in the geographically 

intermediate regions, before the mid-Miocene (Albert et al., 2007).  The presently existing 

groups may constitute the southernmost extreme European range of a glacier-forced 

migration and the distribution gap present nowadays may represent areas that are not 

ecologically suitable for amphisbaenids (Alexander, 1966). 

Although initially the differentiation of the Iberian and North African species was 

proposed to have occurred after the opening of the Strait of Gibraltar in the late Miocene, 

approximately 5.3 MYA (Vasconcelos et al., 2006), Albert et al. (2007) considered that the 

divergence between the Iberian and African lineages could be more ancient, having 

occurred during the reopening of the Betic corridor, 8-9 MYA. 

The phylogenetic position of Blanus among amphisbaenids familes has long been 

troublesome. This genus used to be grouped within the family Amphisbaenidae, until 

recent phylogenetic analyses based on morphological traits by Kearney (2003) concluded 

that Blanus is distantly related to other genera of Amphisbaenidae, creating a new family – 

Blanidae. Besides that, taxonomic history of the species within the genus has been 

suffering changes in the last couple of decades, based on genetic and morphological 

findings. Up until recently, Blanus was considered to have only two species, B. strauchi, 

restricted to Asia Minor, and B. cinereus with a western Mediterranean distribution in the 

Iberian Peninsula and Morocco. The latter had two subspecies – B. c. cinereus in the 

Iberian Peninsula and north Morocco, and B. c. mettetali for the rest of Morocco. Based on 
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high genetic distances of allozyme electrophoretic data and morphological comparisons, 

Busack (1988) distinguished Iberian from North African populations. European 

populations retained the name B. cinereus, while a new species was described endemic to 

north Morocco, B. tingitanus and southern Morocco populations were elevated to species 

status – B. mettetali. 

More recent phylogenetic studies were conducted, revealing unexpectedly high levels 

of genetic diversity within the western distribution of this genus. Vasconcelos et al. (2006) 

(Figure 4) found three well supported monophyletic clades based on mitochondrial 

sequences analyses: one for the northern Moroccan samples, corresponding to B. 

tingitanus, and two clades corresponding to B. cinereus samples. In Morocco, this study 

described two well supported mitochondrial lineages within B. tingitanus, between the 

northern samples from the Rif Mountains and the ones from Taza, with 4.2% sequence 

divergence based on ND4 sequences. The authors also found two clades within Iberian 

Peninsula, with 10-12% sequence divergence (ND4) between these two clades. A few 

samples were also analysed with the nuclear marker CMOS, which supported 

mitochondrial analyses results. Based on the levels of genetic divergence, the authors 

suggested this could represent a species complex in the Iberian Peninsula. 

Figure 4 (A) Maximum parsimony (MP) tree inferred from Blanus ND4 mitochondrial sequences. Bootstrap support for 

MP and maximum likelihood analyses are indicated above and below the nodes. (B) Map showing sampled localities. 

Figures adapted from Vasconcelos et al. (2006). 
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In fact, another study by Albert et al. (2007) (Figure 5) using 16S and ND4 

mitochondrial sequences and one anonymous nuclear marker revealed similar results. B. 

strauchi was recovered as a sister group to the remaining Blanus species; North African 

Blanus formed a monophyletic group, which is the sister group of another clade including 

all Iberian haplotypes. Within the Iberian clade, two distinct monophyletic groups were 

recovered with genetic distance (10.5–12.4% uncorrected p-distance for ND4) – as high 

has those found between B. mettetali and B. tingitanus (12.3%) (Albert et al., 2007). These 

results led to description of a new species for the south western region of the Iberian 

Peninsula – B. mariae – based on molecular and morphological evidence by Albert and 

Fernández (2009). While this was tentatively accepted in a recent checklist of European 

herpetofauna (Speybroeck et al., 2010), it was noted that it is “impossible to really 

evaluate the degree of concordance between nuclear and mtDNA data”, and further state 

that it is not clear if morphological differences are maintained near contact zones.  

 

Figure 5 (A) Maximum likelihood (ML) tree based on Iberian Blanus ND4 and 16S mitochondrial haplotypes. Numbers on 

each node represent from top to bottom, ML bootstrap values, Bayesian posterior probabilities, maximum parsimony 

(MP) and minimum evolution bootstrap values. Nodes with either ML or MP bootstrap values above 70% are shown, 

otherwise are collapsed. (B) Map of the Iberian Peninsula showing sampling localities of Blanus cinereus. Grey dots 

represent populations of the southwestern clade, and black dots represent populations of the central clade. Figures 

adapted from Albert et al. (2007) and Albert and Fernández (2009). 
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4.1.2. THE CHECKERBOARD WORM LIZARDS – TROGONOPHIS 

Trogonophis wiegmanni Kaup, 1830 (Figure 6) is the only representative of the 

Trogonophidae family in North Africa. This species is endemic to the Maghreb, ranging 

from southwest Morocco to northeast Tunisia, within a Mediterranean biome (Bons and 

Geniez, 1996) (Figure 7). T. wiegmanni is the only species of the genus, having two 

currently recognized subspecies: T. wiegmanni wiegmanni Kaup, 1830 and T. wiegmanni 

elegans (Gervais, 1835) (Bons and Geniez, 1996; Schleich et al., 1996). T. w. wiegmanni is 

distributed in central and eastern Morocco, northern Algeria and western Tunisia (Gans, 

2005). This subspecies inhabits relatively dry regions, being found in altitudes up to 1600 

meters (m) (Schleich et al., 1996).  T. w. elegans is endemic to western Morocco, ranging 

from the Rif to Souss Valley in southwest Morocco, except in the highest mountains, being 

seldom found higher than 900 m. It occupies relatively moist regions influenced by the 

temperate Atlantic climate (Bons and Geniez, 1996; Schleich et al., 1996). The apparently 

very different ecological demands of both forms suggest a considerable step towards 

speciation (Schleich et al., 1996). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7 Map with the region where Trogonophis wiegmanni occurs, with its distribution range 

according to IUCN (2012). 

Figure 6 Trogonophis wiegmanni specimens. 
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Morphologically, this eyeless worm-like lizard has scales arranged in annuli, a short 

and conical tail, and a chessboard pattern (Schleich et al., 1996), hence its common name – 

checkerboard worm lizard. Colouration is different in the two subspecies – T. w. 

wiegmanni has a ground yellow colour and T. w. elegans has a malve or pink colouration, 

particularly visible in juveniles (Bons and Geniez, 1996; Schleich et al., 1996). However, 

the yellow pigmentation of T. w. wiegmanni tends to disappear in preserved specimens, 

making it is impossible to distinguish morphologically between the two subspecies 

(Schleich et al., 1996). It has been observed specimens from Algeria (La Chiffaand Biskra) 

which were fuliginous grey and may represent a third subspecies (Schleich et al., 1996). 

Mendonça and Harris (2007) studied levels of genetic variation based on 

mitochondrial sequences of 12S and 16S rRNA (Figure 8). Phylogenetic analyses showed 

two monophyletic clades corresponding to T. w. elegans and T. w. wiegmanni from 

Morocco, separated by the Atlas Mountains, with high genetic distance (3.8% uncorrected 

p-distance for 16S). This result combined with different morphology and the seemingly 

distinct ecological needs of these two forms indicate that they could possibly be elevated 

to species status. Additionally, it was included in the analyses a T. w. wiegmanni sample 

from Tunisia, arising as a separate lineage, with a high level of genetic distance to all 

Moroccan samples (4.8% uncorrected p-distance for 16S). This Tunisian sample appeared 

to be more closely related to T. w. elegans (4.4%) than to Moroccan T. w. wiegmanni 

(4.8%) – however the analyses of this study did not support the inclusion of the Tunisian 

specimen in either Trogonophis clades. The authors further suggested that this Tunisian 

form may be a different subspecies or even species, given that some authors already 

recognize elegans as a full species (e.g. Gans, 2005). This study shows another exceptional 

example of an amphisbenid species complex in North Africa. Further studies including a 

larger sampling coverage – especially from Algeria and Tunisia – performing molecular 

analyses with nuclear markers, as well as assessing morphological variation in this genus, 

particularly between the Tunisian and Moroccan T. w. wiegmanni forms, are necessary in 

order to clarify the taxonomic status within this genus. 
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5. BIOGEOGRAPHY OF THE STUDY REGION 

The Mediterranean Basin (Figure 9) is considered to be one of the world’s biodiversity 

hotspots with many areas presenting significant high levels of endemism (Myers et al., 

2000). This region has suffered a series of events that have helped shaping the existing 

biodiversity and taxa genetic diversity. The European Southern Peninsulas, Anatolia and 

the Maghreb are fascinating areas to study phylogeographic patterns due to their complex 

geological and climatic histories, heterogeneous landscapes, diversity of habitats, well 

defined barriers and the known age for some geological events. 

 

Figure 8 (A) Maximum likelihood tree (ML) based on 12S and 16S rRNA sequences from Mendonça and Harris (2007). 

All analyses produced identical relationships to the one shown. Near the nodes, Bayesian posterior probabilities and ML 

bootstrap values. For both analyses, only bootstrap values above 50% are represented. (B) Map showing sampling 

locations of T. wiegmanni specimens analysed. Figures adapted from Mendonça and Harris (2007). 
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5.1.  HISTORICAL EVENTS – GEOLOGICAL AND CLIMATIC CHANGES 

The Mediterranean Basin between southern Europe and North Africa has had a 

complex geological history resulting from the movement to the north of the African plate 

towards western Eurasia. The eastern Mediterranean closed 15-19 MYA in the mid-

Miocene, allowing biotic dispersal between Eurasian and African taxa (Carranza et al., 

2004 and references therein). 

During the Tortonian stage it occurred the uplift of the Atlas Mountains. At that time 

there was an archipelago not colonisable by land, between the Iberian mainland and 

Northwest Africa, which nowadays corresponds to the Betic cordillera in southeastern 

Iberia and the Rif Mountains in northern Morocco (De Jong, 1998). Then, at the end of the 

Tortonian (7.2 MYA), the Betic strait closed (Duggen et al., 2003), which led to the 

Tortonian salinity crisis, coinciding with a global aridification of the climate (Krijgsman et 

al., 2000). The connection between the Atlantic Ocean and the Mediterranean Sea ceased 

5.96 MYA, leading to the Messinian salinity crisis, during which parts of the Mediterranean 

dried. At that time, North Africa and the Iberian Peninsula were connected, with extensive 

land-bridges allowing the dispersal of fauna all over the basin. This period ended 5.33 

MYA with the opening of the Strait of Gibraltar (Duggen et al., 2003; Hsü, 1973; Krijgsman 

et al., 1999). Even though it was first proposed that the reopening of the Strait of Gibraltar 

acted as a barrier promoting vicariant events in several organisms, recent 

phylogeographic studies, mainly on amphibians and reptiles, have advanced that the Strait 

may have acted as a dispersal channel rather than an impermeable barrier for these taxa 

(Santos et al., 2012 and references therein). 

Figure 9 Map of the study region - the Mediterranean Basin. 
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During the Quaternary, which occurred approximately 2.4 MYA, it took place a series 

of Ice Ages with successive cooling and warming of the Earth’s climate (Hewitt, 2000). 

These worldwide climatic changes have played a role on organisms’ phylogeographic 

patterns, being responsible for a major change of organisms’ demographic structure and 

distribution all over the world and providing opportunities for adaptation to occur 

(Hewitt, 2000; Hewitt, 2004). The interpretation of historical factors that have led to the 

present geographic distribution of evolutionary units, at the intra and interspecific level, 

has allowed the identification of glacial refugia, post-glacial colonization routes and 

secondary contact zones (Hewitt, 1996, 1999, 2000, 2001; Taberlet et al., 1998). 

Southern European peninsulas – Iberian, Apennine and Balkan peninsulas – Anatolia 

and the Maghreb have been considered important refugia areas of genetic diversity during 

the Pleistocenic climatic oscillations (Hewitt, 1996, 1999; Schmitt, 2007). These regions 

harbour large numbers of endemic taxa (Hewitt, 1996, 1999, 2000; Taberlet et al., 1998), 

including high amounts of herpetofauna diversity. 

In Africa, glaciations corresponded to humid periods (Prentice and Jolly, 2000), 

allowing species dependent of humid habitats to range widely, while interglacials would 

have restricted them to the mountains, more similar to the present distribution. In Europe, 

during glacial cycles, advancing ice and tundra in higher latitudes forced organisms to 

retreat to southern peninsular refugia, less affected and with a more stable climate. This 

was followed by expansion of persistent species from these refugia throughout interglacial 

warming periods to fastly recolonise newly deglaciated areas in northern and central 

Europe (Hewitt, 1996, 1999, 2000). Intrinsic to this perspective is the fact that southern 

refugia harbour higher levels of species richness, serving as a resource for later 

demographic expansions as well as evolutionary radiations (Hewitt, 1996, 2001). 

Populations in the northern region of the refugia would spread out over long distances, 

when the climate ameliorated, and colonise large, suitable and available habitats, forming 

areas of secondary contact after the expansion of divergent lineages. Interglacial periods 

represented a chance for interaction and introgression between lineages. High levels of 

genetic diversity have also been found in suture zones outside of refugia, where species or 

evolutionary lineages originating from different refugia met after the last glaciations (Petit 

et al., 2003; Taberlet et al., 1998). 

5.2.  NORTH AFRICA 

The Maghreb region is constituted by Northwest African countries, including Morocco, 

Algeria and Tunisia (Bons and Geniez, 1996). This region is rich in herpetofauna diversity 

due to a complexity of geological and climatic factors (Schleich et al., 1996) – it has 
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Mediterranean climate, landscape and vegetation, and fauna is constituted by a mixture of 

African, Saharian and Mediterranean elements (Bons and Geniez, 1996). During the 

Miocene (23-5 MYA), geological changes have produced a massive impact on North 

Africa’s floral and faunal diversity, such as the uplift of the Atlas Mountains in the mid-

Holocene. Most of the recent studies regarding Maghrebian flora and fauna revealed 

unexpected patterns of genetic diversity. 

Morocco is an interesting area to study genetic diversity in reptiles because it is one of 

the most species-rich countries in North Africa (Bons and Geniez, 1996), having the 

highest percentage of endemic reptile species in the Mediterranean region (Pleguezuelos 

et al., 2010). This richness is due to several characteristics of the country. First of all, 

Morocco has a big area – 458 730 square kilometres (km²). It is delimited to the west by 

the Atlantic Ocean, to the north by the Mediterranean Sea, to the south by the Sahara 

desert, an arid zone and to the east by the Moulouya river basin (Bons and Geniez, 1996). 

In this country there are several geographical units, such as the Rif and Atlas Mountain 

systems, and the Moulouya river basin. The Rif Mountains, located in the north of the 

country, are oriented northwest to the northeast. The Atlas Mountains in Morocco, with 

three sub-systems – Anti-Atlas, High Atlas and Middle Atlas – are located in the centre and 

south of the country, and are oriented from the northeast to southwest. The Atlas 

mountainous barrier divides Morocco into two different bioclimatic regions: north and 

east Morocco have Mediterranean climate and South of the Atlas have Saharan climate 

(Bons and Geniez, 1996). Finally, the Moulouya River basin, located in eastern Morocco, 

may also act as a barrier to a great number of Moroccan and Algerian taxa (Bons and 

Geniez, 1996). Phylogeographic studies show patterns that reflect the influence that 

geological factors may have had on the biogeography of the region. For example, 

vicariance phenomena associated to the uplift of the Atlas Mountains and the existence of 

the Moulouya River have been proposed to be the causes of the phylogeographical 

patterns observed in Agama impalearis (Brown et al., 2002) and Testudo graeca (Álvarez 

et al., 2000), respectively. 

5.3.  IBERIAN PENINSULA 

The Iberian Peninsula is a species rich area, which may have worked as one of the 

foremost Pleistocene glacial refugia in Southern Europe (Hewitt, 1999, 2001). Its high 

habitat diversity and complex geological history may have made this region an ideal 

survival refuge during the Pleistocene. 

The Iberian Peninsula is formed by several mountain ranges and river systems, most 

of them being east-west orientated. These act as apparent barriers to gene flow to north-
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south dispersal for many species and at the same time provide a high variety of 

microclimates, allowing populations to move in altitude in response to the climate 

fluctuations (Hewitt, 1996). Because of its location, the Iberian Peninsula is under the 

influence of both the North Atlantic and Mediterranean, having a wide variety of climates – 

desert, Mediterranean, Alpine and Atlantic. At the same time, it has a large area of 580 000 

km2, which makes it improbable that it may have worked as a single homogenous and 

continual refugial area during the ice ages (Gómez and Lunt, 2007). The wide variety of 

climate and geological structures might have created a differential distribution and 

fragmented suitable habitats across Iberia that may have favoured the existence of 

multiple glacial refugia distant from each where species persisted during Pleistocene 

climatic cycles (Gómez and Lunt, 2007; Martínez-Solano et al., 2006). Two areas of 

deciduous forest became acknowledged as the Lusitanian and Andalucian refugia and have 

been considered as refugia for several species in the Iberian Peninsula (Paulo et al., 2001). 

Phylogeographic studies in the Iberian Peninsula showed extremely divergent lineages 

with strong correspondence with geography, due to deep population fragmentation 

related with isolation in glacial refugia. This observation led to a ‘refugia-within-refugia’ 

paradigm in this peninsula postulated by Gómez and Lunt (2007), suggesting that most 

species would have persisted across the Pleistocene Ice Ages in different and isolated 

locations in Iberia. Southwestern and southeastern Iberia revealed to be important 

refugial areas. Several Iberian endemic species show undeniable phylogeographic 

concordance with an alleged refugium located in or near the southern Betic Ranges 

(Gómez and Lunt, 2007). This is supported, for instance, by the high diversity found within 

Mauremys leprosa (Fritz et al., 2006), Lacerta schreiberi (Godinho et al., 2008; Paulo et al., 

2001), Alytes cisternasii (Gonçalves et al., 2009) and Lissotriton boscai (Martínez-Solano et 

al., 2006) in southern Portugal populations. 

5.4.  ANATOLIA 

Anatolia, also known as Asia Minor, is a region in western Asia, with an area of 755 

688 km2 and about 7 000 km2 additional coastal islands, including territories in Turkey, 

Greece, Asia Aegean and Mediterranean coast. It is limited by the Aegean, the 

Mediterranean and the Black Sea to the west, south and north, respectively, while to the 

northeast and the east by the Caucasus and the Armenian highlands (González, 2012).  

This region has a complex climatic and geological history which has shaped endemic 

taxa biogeographic patterns, being characterized by a rich species and taxonomic diversity 

of reptiles (Sindaco et al., 2000). During Pliocene and Pleistocene climatic oscillations, this 

region served as a major refuge, which led to successive vicariance and dispersal events in 
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interglacial periods and subsequent extinctions. Relict refugial populations established 

centres of endemism (Veith et al., 2003; Wilke et al., 2007). Due to its position and long 

palaeogeographic and palaeoclimatic history, in the past Anatolia acted as a bridge and as 

a barrier for species dispersal between Asia and Europe (Kornilios et al., 2011; Sindaco et 

al., 2000). It is situated in a mixture of European, Asian and African biomes, from where it 

experienced repeated invasions since the Late Oligocene and several present-day 

Anatolian endemics are relics of such invasion processes (Veith et al., 2003). 

It is mostly a mountainous region, with true low lands confined to coastal fringes. Four 

main relief regions can be identified: the northern and southern mountains, the central 

massif and the Arabian platform (Sindaco et al., 2000). The relief also affects the climate in 

this region, which is often much harder than might be expected for that latitude, producing 

different climatic regions (Sindaco et al., 2000). Therefore, Anatolian mountains may have 

played an important role in the speciation and definition of biogeographical subregions 

and have been defined as biodiversity hotspots (Kornilios et al., 2011). 

6. OBJECTIVES 

The high levels of mtDNA divergence within Iberian Blanus and North African 

Trogonophis lineages and the apparent occurrence of cryptic species (Albert and 

Fernández, 2009; Albert et al., 2007; Mendonça and Harris, 2007; Vasconcelos et al., 2006) 

may suggest similarly complex patterns in other worm lizards taxa. Particularly, North 

African and eastern Mediterranean Blanus await further phylogenetic studies to verify the 

occurrence of potential cryptic diversity in those taxa. Additionally, mitochondrial 

phylogenetic inferences ought to be further reassessed with nuclear markers, to 

corroborate previous results. 

The aim of this study was to estimate levels of genetic diversity and phylogenetic 

relationships within Blanus and Trogonophis wiegmanni, by analysing multiple 

mitochondrial and nuclear sequence data. In Blanus, by including nuclear markers and 

additional specimens for each one the five Blanus species it was further tested: i) whether 

nuclear DNA supports the phylogenetic relationships of the genus and the occurrence of 

cryptic species within the Iberian Blanus suggested by previous studies mostly based on 

mtDNA (Albert and Fernández, 2009; Albert et al., 2007; Vasconcelos et al., 2006); ii) 

whether the northern and southern clades of B. tingitanus, identified by Vasconcelos et al. 

(2006) based on mtDNA, constitute two allopatric clades both in mitochondrial and 

nuclear genealogies, thus suggesting that they may represent independent taxa; and iii) 

whether also B. mettetali and B. strauchi show high intraspecific differentiation and cryptic 

diversity.  
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Regarding Trogonophis, by adding more samples, particularly from the poorly studied 

eastern distribution of Trogonophis, and including nuclear sequences, it was intended to: i) 

corroborate the mitochondrial phylogenetic relationships within T. wiegmanni forms, 

inferred in a previous study (Mendonça and Harris, 2007); ii) analyse the differentiation 

among the Moroccan T. wiegmanni subspecies iii) test the variation between the Tunisian 

T. w. wiegmanni form and the remaining Moroccan Trogonophis and its inclusion in either 

clade by adding samples from Algeria and Tunisia.  

Additionally in this study, it was also briefly discussed the utility of the nuclear 

markers employed to uncover the levels of differentiation with are observed at the 

mitochondrial level. 
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1. SAMPLES, LOCALITIES AND OUTGROUPS SELECTION 

1.1.  BLANUS 

A total of 49 new Blanus samples from Portugal, Spain, Morocco and Greece were used 

in this study – eight B. cinereus, four B. mariae, 23 B. tingitanus, four B. mettetali and 10 B. 

strauchi (Figure 10). Additionally, 13 samples from a previous study (Albert et al., 2007) 

with published sequences retrieved from GenBank were added to the analyses, in order to 

have more lineages represented in the analyses. T. wiegmanni and Diplometopon zarudnyi 

were included in the analyses as outgroups, for being taxonomically related taxa (Kearney 

and Stuart, 2004). Information on samples’ codes, species, localities and GenBank 

accession numbers is listed in Table 1. 

Table 1 Blanus samples used in this study – sample code, species, country, sampling locality and 

GenBank accession number for sequences from Albert et al. (2007).  

Sample 
code 

Species Country Locality 
GenBank accession 

numbers (16S/ND4) 

B1 B. tingitanus Morocco Kenitra  

B2 B. cinereus Spain Alguazas  

B3 B. cinereus Spain Alguazas  

B4 B. cinereus Spain Córdoba  

B5 B. cinereus Spain Embalse de Camarillas  

B6 B. tingitanus Morocco Larache  

B7 B. tingitanus Morocco Kenitra  

B8 B. cinereus Spain Torca del Espino  

B9 B. mariae Spain Mazagón  

B10 B. tingitanus Morocco Tazzeka  

B11 B. mariae Spain Castrejon de Capote  

B12 B. mariae Portugal Carvalhão  

B13 B. mariae Portugal Carvalhão  

B14 B. cinereus Portugal Marvão  

B15 B. tingitanus Morocco South of Taza  

B16 B. tingitanus Morocco South of Taza  

B17 B. tingitanus Morocco South of Taza  

B18 B. cinereus Portugal Celorico da Beira  

B19 B. cinereus Portugal São Mamede  

B20 B. tingitanus Morocco South of Taza  

B21 B. tingitanus Morocco South of Taza  

B22 B. tingitanus Morocco Bab Bou Idir  

B23 B. tingitanus Morocco South of Taza  

B24 B. tingitanus Morocco South of Taza  

B25 B. tingitanus Morocco South of Taza  
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Sample 
code 

Species Country Locality 
GenBank accession 

numbers (16S/ND4) 

B26 B. strauchi Greece Nisuros Island  

B27 B. strauchi Greece Pserimos Island  

B28 B. tingitanus Morocco Taza Caves  

B29 B. tingitanus Morocco South of Bab Taza  

B30 B. tingitanus Morocco Zoumi  

B31 B. tingitanus Morocco Zoumi  

B32 B. mettetali Morocco El Ksiba  

B33 B. mettetali Morocco (unknown)  

B34 B. tingitanus Morocco (unknown)  

B35 B. tingitanus Morocco Al Hoceima  

B36 B. strauchi Greece Nisyros Island  

B37 B. strauchi Greece Nisyros Island  

B38 B. strauchi Greece Kalymnos Island  

B39 B. strauchi Greece Kalymnos Island  

B40 B. strauchi Greece Kalymnos Island  

B41 B. strauchi Greece Pserimos Island  

B42 B. strauchi Greece Telendos Island  

B43 B. strauchi Greece Nisyros Island  

B44 B. mettetali Morocco Talaïnt   

B45 B. mettetali Morocco Aghanaje  

B46 B. tingitanus Morocco Jebel Beni Ider  

B47 B. tingitanus Morocco Boumattach  

B48 B. tingitanus Morocco Sidi Ali Ben Ali  

B49 B. tingitanus Morocco Sidi Ali Ben Ali  

BC10 B.  cinereus Spain Avila, Casavieja EF36326/EF36398 

BC24 B. mariae Spain Cádiz, San José del Valle EF36338/EF36410 

BC25 B. mariae Spain Badajoz, Oliva de la Frontera EF36339/EF36411 

BC37 B. cinereus Spain Toledo, Cortijos de Abajo EF36348/EF36420 

BC40 B. cinereus Portugal Campo Maior EF36350/EF36422 

BC48 B. cinereus Spain Málaga, Teba EF36356/EF36428 

BC58 B. mariae Spain Sevilla, Alanis EF36365/EF36437 

BC63 B. cinereus Spain Almería, San José del Valle EF36370/EF36442 

BC74 B. mariae Portugal Évora EF36375/EF36447 

BC93 B. mariae Spain Badajoz, Pallares EF36388/EF36460 

Bt68 B. tingitanus Spain  Ceuta EF36465/EF36315 

Bm B. mettetali Morocco Rabat EF36461/EF36462 

Bs B. strauchi Turkey (unknown) EF36464/EF36463 
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1.2.  TROGONOPHIS 

A total of 28 T. wiegmanni samples from Morocco, Algeria and Tunisia were included 

in this study (Figure 14), including 11 samples with published sequences (Mendonça and 

Harris, 2007). Two outgroups of taxonomically related taxa were included in the analyses 

(Kearney and Stuart, 2004) – D. zarudnyi and B. mettetali. Samples code names, 

subspecies, localities and GenBank accession numbers are listed in Table 2. 

Table 2 Trogonophis samples used in this study, sample code, subspecies, country, sampling 

locality and GenBank accession number for sequences from Mendonça and Harris (2007). 

Sample 
code 

Subspecies Country Locality 
GenBank accession 
numbers (12S/16S) 

T1 T. w. wiegmanni Morocco Ich  

T2 T. w. wiegmanni Morocco Taourirt  

T3 T. w. wiegmanni Tunisia Bulla Regia  

T4 T. w. elegans Morocco Paysage d'Ito  

T5 T. w. elegans Morocco Paysage d'Ito  

T6 T. w. elegans Morocco Tizi-n-Test  

T7 T. w. elegans Morocco Imouzzer Kandar to Annoceur  

T8 T. w. elegans Morocco Ouazzane  

T9 T. w. elegans Morocco Iminifri  

T10 T. w. elegans Morocco Oulad Brahim EF545712/EF545713 

T11 T. w. elegans Morocco Oulad Brahim EF545716/EF545717 

T12 T. w. elegans Morocco Assilah EF545718/EF545719 

T13 T. w. elegans Morocco Al Jadida EF545726/EF545727 

T14 T. w. wiegmanni Tunisia Le Kef EF545628/EF545729 

T15 T. w. wiegmanni Morocco Moulouya river mouth EF545734/EF545735 

T16 T. w. wiegmanni Morocco Berkane Oujda EF545732/EF545733 

T17 T. w. wiegmanni Morocco Berkane Oujda EF545730/EF545731 

T18 T. w. elegans Morocco Moulay Idriss EF545720/EF545721 

T19 T. w. wiegmanni Morocco Ain Beni Mathar EF545722/EF545723 

T20 T. w. wiegmanni Morocco Tirnest EF545724/EF545725 

T21 T. w. wiegmanni Morocco Cap de l'Eau  

T22 T. w. elegans Morocco Oued -Rharg  

T23 T. w. wiegmanni Argelia Algiers  

T24 T. w. elegans Morocco Oued -Rharg  

T25 T. w. elegans Morocco Sidi Kaouki  

T26 T. w. wiegmanni Morocco Jerada  

T27 T. w. wiegmanni Morocco El Aouinet  

T28 T. w. wiegmanni Morocco Ifrane  
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2. MOLECULAR MARKERS SELECTION 

For this study it was assembled a multilocus dataset, with mitochondrial and nuclear 

gene fragments. Mitochondrial markers included 12S ribosomal RNA (12S), 16S ribosomal 

RNA (16S), cytochrome b (CYTB) and NADH dehydrogenase subunit 4 (ND4). Nuclear 

markers included melanocortin-1 receptor (MC1R), proopiomelanocortin (POMC), oocyte 

maturation factor (CMOS) and recombination activation gene 2 (RAG2). 

Mitochondrial markers such as 12S and 16S rRNA and protein coding genes CYTB and 

ND4 are fast evolving genes that have been broadly used to infer phylogenetic 

relationships in several herpetofauna taxa (Perera and Harris, 2010; Salvi et al., 2010) as 

well in amphisbaenians (Mott and Vieites, 2009; Mulvaney et al., 2005; Vidal et al., 2008). 

Besides their characteristics – universal primers, useful and informative for an initial 

phylogenetic assessment, hence being widely used – most mitochondrial genes were 

chosen for this study because they had already been used for Blanus and Trogonophis in 

previous studies (Albert et al., 2007; Mendonça and Harris, 2007; Vasconcelos et al., 

2006), with sequences available on GenBank. 

Nuclear markers were selected after trials with an extended set of primers. Selected 

nuclear markers are protein-coding single-copy genes, which vary in degree of 

conservation. CMOS is a slow-evolving proto-oncogene that encodes a protein that 

regulates meiotic maturation (Saint et al., 1998). It is a useful maker to test relationships 

within and among squamate families (Harris et al., 1999; Saint et al., 1998). It has been 

found to be appropriate at both deep and shallow divergences (Saint et al. 1998), being 

informative among taxa that diverged up to 400 MYA (Graybeal, 1994). MC1R is a critical 

regulator of melanin synthesis. When developed by Pinho et al. (2010) it showed high 

levels of polymorphism, being useful in population genetics and phylogenetic analyses for 

a variety of taxa. Even though this marker has not been used in amphisbaenians 

phylogenetic assessments, it has been used to infer other squamata phylogenies (Barata et 

al., 2012; Gonçalves et al., 2012). POMC is a polypeptide hormone precursor only found in 

vertebrates, which undergoes post-translational modification to produce multiple 

hormones. It has both conserved and variable regions, suggesting it may be a useful 

phylogenetic marker (reviewed in Becker et al., 2011). Even though it has not been used to 

estimate amphisbaenians phylogenies, it has been selected based on its proven 

phylogenetic utility for other groups of squamate reptiles  (Vieites et al., 2011). RAG2 is a 

slow-evolving and highly conserved nuclear marker in vertebrates. It encodes components 

of the recombinase involved in recombination of immunoglobin and T-cell receptor genes 

(reviewed in Lovejoy et al., 2001). It has been used both in the inference of amphisbaenian 
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relationships (Vidal et al., 2008), as well of other squamate reptiles (Crottini et al., 2009; 

Rato et al., 2010). 

3. LABORATORY PROCEDURES – DNA EXTRACTION, AMPLIFICATION AND 

SEQUENCING 

Genomic DNA was extracted from tails preserved in ethanol using a standard saline 

method (Sambrook et al., 1989). Small amounts of tissue were digested in extraction 

buffer with proteinase K solution, occurring lysis of cell membranes. Then, ammonium 

acetate was added to precipitate proteins, which were removed. To the supernatant, ice-

cold isopropanol was added to precipitate DNA, forming a pellet after centrifugation. DNA 

pellets were washed with ethanol and then air dried and hydrated in 70µL of ultra-pure 

water. The obtained DNA was then ready to be used as template in Polymerase Chain 

Reaction (PCR). However, if the amount of tissue were too small, DNA was extracted using 

a commercial kit, QIAmp® DNeasy Blood & Tissue kit (Quiagen, Valencia, California), 

following the manufacturer’s instructions.  The advantage of this method is that it allows 

the rapid isolation of highly pure genomic DNA from a small piece of tissue. Nevertheless, 

it is more expensive than the standard saline method often used in DNA extraction. 

Two mitochondrial markers – 16S and ND4 were amplified for all 49 Blanus samples. 

Additionally, two nuclear markers – POMC and MC1R – were amplified for 26 and 21 

samples, respectively. After genetically analysing mitochondrial fragments, samples were 

selected from each lineage to be amplified for the nuclear fragments POMC and MC1R. The 

primers used for MC1R failed to amplify that fragment for B. strauchi and outgroups. 

For Trogonophis, three mitochondrial – 12S, 16S and CYTB – and three nuclear 

markers – CMOS, POMC and RAG2 were amplified. Twenty eight T. wiegmanni samples 

were amplified only for 12S and 16S and 22 samples were amplified for all genes. 

For both Blanus and Trogonophis samples, amplifications were performed in final 

volumes of 25µL with a thermocycler, containing 5µL 5x reaction buffer, 2-3mM MgCl2, 

0.2-0.4µM each dNTP, 0.2µM each primer, 2U of Taq polymerase and 0.5-1µL DNA 

template. When necessary, annealing temperatures and/or the amount of magnesium ions 

were adjusted to increase amplification yield and specificity on a case by case basis. For 

further detail on primer names, sequences and references, and specific PCR conditions 

temperatures for each marker consult Table 3. Amplified products were visualized with 

2% agarose gel electrophoresis, in order to confirm if the PCR reactions were successful. 

Amplified products were sequenced by a commercial sequencing facility (Macrogen Inc.) 

using the same primers used for amplification.  
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Table 3 Gene, primer name, sequence, source and PCR conditions (temperature, time and number of cycles). Amplification of RAG2 fragments was done with a nested PCR with two 

sets of primers - first PCR using external primers 31FN.Venk and Lung.460R and a second PCR with internal primers Lung.35F and Lung.320R. The latter ones were used for 

sequencing. 

Gene Primer Sequence (5’ → 3’) Reference PCR condition 

12S 
12Sa AAACTGGGATTAGATACCCCACTAT Kocher et al. (1989)  

92ºC(2m), [30x 92ºC(30s), 48ºC(40s), 72ºC(45s)], 72ºC(5m) 
12Sb GAGGGTGACGGGCGGTGTGT Kocher et al. (1989) 

16S 
16SL CGCCTGTTTATCAAAAACAT Palumbi et al. (1996) 

92ºC(2m), [30x 92ºC(30s), 48ºC(40s), 72ºC(45s)], 72ºC(5m) 
16SH CCGGTCTGAACTCAGATCACGT Palumbi et al. (1996) 

ND4 
ND4 CACCTATGACTACCAAAAGCTCATGTAGAAGC Arévalo et al. (1994) 

94ºC(3m), [40x 94ºC(30s), 50ºC(30s), 72ºC(45s)], 72ºC(4m) 
LEU CATTACTTTTACTTGGATTTGCACCA Arévalo et al. (1994) 

CYTB 
CYTB1 CCATCCAACATCTCAGCATGATGAAA Kocher et al. (1989) 

94ºC(3m), [30x 94ºC(30s), 48ºC(30s), 72ºC(1s)], 72ºC(5m) 
CYTB2 CCCTCAGAATGATATTTGTCCTCA Kocher et al. (1989) 

CMOS 
CMOS 

G73 GCGGTAAAGCAGGTGAAGAAA Saint et al. (1998) 
94ºC(3m), [35x 94ºC(45s), 48ºC(45s), 72ºC(1m30s)], 72ºC(5m) 

G74 TGAGCATCCAAAGTCTCCAATC Saint et al. (1998) 

RAG2 

31FN.Venk TTYGGICARAARGGITGGCC Venkatesh et al. (2001) 
94ºC(5m), [35x 94ºC(30s), 50ºC(50s), 68ºC(1m30s)], 68ºC(5m) 

Lung.460R  GCATYGRGCATGGACCCARTGCC Brinkmann et al. (2004) 

Lung.35F GGCCAAAGAGRTCYTGTCCIACTGG Hoegg et al. (2004) 
94ºC(5m), [35x 94ºC(30s), 50ºC(50s), 68ºC(1m30s)], 68ºC(5m) 

Lung.320R AYCACCCATATYRCTACCAAACC Hoegg et al. (2004) 

MC1R 
MC1RF GGCNGCCATYGTCAAGAACCGGAACC Pinho et al. (2010) 

94ºC(3m), [30x 94ºC(30s), 50ºC(30s), 72ºC(1m)], 72ºC(5m) 
MC1RR CTCCGRAAGGCRTAAATGATGGGGTCCAC Pinho et al. (2010) 

POMC 
POMCF ATATGTCATGASCCAYTTYCGCTGGAA Vieites et al. (2007) 

94ºC(3m), [30x 94ºC(30s), 50ºC(45s), 72ºC(1m)], 72ºC(5m)  
POMCR GGCRTTYTTGAAWAGAGTCATTAGWGG Vieites et al. (2007) 

 

3
0
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4. PHYLOGENETIC INFERENCE ANALYSES 

4.1.  DATA ANALYSES 

DNA sequences’ chromatographs were checked and sequences were edited in 

GENEIOUS v5.3.6 (Drummond et al., 2010). For nuclear sequences, nucleotide ambiguities 

with similar peak size in chromatograms were considered heterozygous positions. 

Previously published sequences of 16S and ND4 for Blanus (Albert et al., 2007) and 12S 

and 16S for Trogonophis (Mendonça and Harris, 2007) were added to the analyses. 

DNA sequences for each gene independently were aligned using MAFFT v6.814b 

(Katoh et al., 2002) with default parameters (gap open penalty=1.53, gap extension=0.0). 

In case sequences were shorter than the rest of the alignment, the initial or end gaps were 

substituted by “N”, meaning that there is an equal probability for any nucleotide to be 

present in those positions. Before carrying out phylogenetic analyses, 12S and 16S 

alignments were analysed with GBLOCKS (online version 0.91b; Castresana, 2000) using a 

less stringent selection to remove regions that could not be unambiguously aligned. 

Summary statistics for all markers were calculated in DNASP v5 (Librado and Rozas, 

2009). 

For Blanus, networks were produced using 16S and ND4 mitochondrial sequences 

concatenated, including some sequences, mainly of Iberian species, from a previous study 

(Albert et al., 2007) to better represent the haplotype diversity and distribution coverage 

of these species. Representatives from the main lineages were selected and sequenced for 

nuclear genes MC1R and POMC, and further ML and BI analyses were conducted with 

mitochondrial and nuclear alignments combined. Then, nuclear sequences were used to 

produce individual gene networks. 

For Trogonophis, not all previously published samples were available to amplify for 

new markers. As a result, it was produced a mitochondrial network using 12S and 16S 

sequences combined, including sequences from Mendonça and Harris (2007), 

representing a larger distribution coverage dataset. Then, samples available for this study 

were sequenced for CYTB, CMOS, POMC and RAG2 and combined for further ML and BI 

inference analyses. Also, individual nuclear alignments were used to produce networks. 
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4.2.  PHYLOGENETIC ANALYSES 

Phylogenetic analyses were performed using maximum likelihood (ML) and Bayesian 

Inference (BI) methods to produce gene trees. Nuclear alignments had unphased 

sequences, with heterozygous positions coded as ambiguities (IUPAC codes). First, 

analyses on each gene were done independently to identify potential incongruence 

between partitions (results not presented) and then analyses were performed on 

concatenated datasets. Different sets of outgroups were tested – for Blanus phylogenetic 

analyses were conducted with D. zarudnyi and/or T. wiegmanni; for Trogonophis were 

tested D. zarudnyi and/or B. mettetali. For each, it was chosen and it is further presented 

the set of outgroups which provided a better resolution of the phylogenetic relationships 

with the best support values.  

For both Blanus and Trogonophis, BI and ML phylogenies were conducted with 

mitochondrial and nuclear alignments concatenated. Analyses were carried out as 

partitioned analyses of molecular data, since data from different DNA regions were 

combined. Gene by gene partitions were used for all concatenated analyses. 

JMODELTEST v0.1 (Posada, 2008) was used to select the best fitting models of 

nucleotide substitution for each gene for BI analyses, based on likelihood scores for 88 

different models under the Akaike Information Criterion corrected for small sample sizes 

(AICc). 

ML analyses were performed using a graphical user interface (GUI) for RAXML 

(Stamatakis, 2006) – RAXML GUI v1.2 (Silvestro and Michalak, 2010) – in individual 

sequences for the partitioned concatenated dataset under the GTR+G+I model and per-

partition branch lengths.  It was carried out a ML search and thorough bootstrapping, with 

1000 replications to evaluate the stability of nodes of the phylogenetic tree (BP) 

(Felsenstein, 1985). 

All partitioned Bayesian analyses were performed with MRBAYES v3.1.2 (Huelsenbeck 

and Ronquist, 2001), using the selected model of sequence evolution and model 

parameters for each partition, in individual sequences. Bayesian posterior probability 

(BPP) values were estimated using a Metropolis-coupled, Markov chain Monte Carlo (MC-

MCMC) sampling approach. Bayesian analyses started with randomly generated trees and 

ran for 2x106 generations, using four incrementally heated Markov chains with default 

heating values. Markov chains were sampled at intervals of 100 generations, producing 20 

000 trees. All analyses ended with the standard deviation of split frequencies less than 

0.01. Stabilization and convergence between runs were assessed in TRACER v1.5 

(Rambaut and Drummond, 2009), in terms of likelihood scores and parameters. The log-
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likelihood values of the 20 000 trees in each analysis were plotted against the generation 

time, using the “sump” command generated in MRBAYES. Burn-in data sampled from 

generations preceding the stationarity of the Markov Chain were discarded. Runs became 

stationary after 100 000 – 200 000 generations, and the corresponding first trees were 

discarded as burn-in to assess posterior probabilities for nodal support (BPP). Remaining 

trees were combined and 50% majority-rule consensus trees were generated. Two 

independent replicates were carried out to check that analyses were not trapped at local 

optima (Huelsenbeck and Bollback, 2001a). Nodes were considered strongly supported if 

they received BP≥70% and BBP≥0.95. 

Mitochondrial sequence variation was analysed by producing haplotype networks. For 

Blanus and Trogonophis combined mitochondrial alignments (16S and ND4, and 12S and 

16S, respectively), statistical parsimony haplotype networks were carried out in TCS 

v1.2.1 (Clement et al., 2000), under the 95% probability criterion. Net distances based on a 

p-distance method (the proportion of nucleotide sites at which two sequences being 

compared are different) were calculated between mtDNA clades sequences, and 

uncorrected p-distances were calculated within mtDNA clades haplotypes in MEGA v5 

(Tamura et al., 2011). 

Haplotype diversity and structure for each nuclear marker was represented by 

haplotype networks to compare the phylogenetic signal with the phylogenies produced. 

Nuclear markers sequences were computationally phased using a coalescent-based 

Bayesian method in PHASE v2.1.1 (Stephens and Donnelly, 2003; Stephens et al., 2001) 

using default parameters (thresholds: p=q=90%), as implemented in DNASP v5 (Librado 

and Rozas, 2009). Three runs were carried for each dataset to check for consistency of 

results. Output files were used to construct haplotype networks under the statistical 

parsimony approach implemented in TCS v1.2.1 (Clement et al., 2000), under the 95% 

probability criterion. 
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1. BLANUS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Maps of the study areas with the geographic location of the Blanus samples analysed. Samples are represented by 

circles coloured according to phylogenetic analyses results. Samples with (*) after code are from a published study (Albert et 

al., 2007). (Samples B33, B34 and Bs* are not displayed on the map since their exact locations are unknown.) Dashed areas 

in the central map represent the distribution range of each species according to IUCN (2012). 
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1.1.  MOLECULAR DATA 

A combined mitochondrial and nuclear genes fragment of 2303 base pairs (bp) was 

obtained for 28 Blanus samples and two outgroups (T. wiegmanni and D. zarudnyi), after 

eliminating poorly aligned positions using GBLOCKS, corresponding to 474 bp for 16S, 802 

bp for ND4, 461 bp for POMC and 566 bp for MC1R. Of the 474 bp for 16S, 110 bp were 

variable and 79 bp were parsimony informative; of the 802 bp for ND4, 307 bp were 

variable and 238 bp were parsimony informative; of the 461bp for POMC, 82 bp were 

variable and 48 bp  were parsimony informative; of the 536 bp for MC1R, 24 bp were 

variable and parsimony informative. 

Concerning mtDNA analysis (without outgroups), after eliminating poorly aligned 

positions using GBLOCKS, a fragment of 1294 bp was analysed (493 bp for 16S and 801 bp 

for ND4), of which 297 were variable and 261 were parsimony informative.  A total of 62 

sequences – 49 generated in this study and 13 published by Albert et al. (2007) – were 

included in the analysis. 

For the individual nuclear networks, 26 individuals were analysed for POMC (461 bp) 

and 21 for MC1R (566 bp). Nine heterozygotic individuals were analysed for MC1R and 

none for POMC. This resulted in individual statistical parsimony networks with seven 

haplotypes for POMC, with a connection limit of nine mutational steps, and 15 haplotypes 

for MC1R, with a connection limit of 10 mutational steps. 

1.2.  PHYLOGENETIC RELATIONSHIPS AND INTRASPECIFIC DIVERSITY 

For the combined mitochondrial and nuclear genes analyses the best fitting models of 

nucleotide substitution used for each gene fragment in the BI analyses were TIM2+I+G for 

16S, TIM1+G for ND4, TIM3+G for POMC and TrN for MC1R. BI and ML analyses using only 

one outgroup (T. wiegmanni or D. zarudnyi) were less resolved and had lower support 

values compared with the one using of two outgroups, therefore only results from the 

latter analyses are shown. Both ML and BI results were congruent and therefore only the 

BI topology is presented, with ML BP and BI BPP support values (Figure 11). 

The combined mitochondrial and nuclear phylogeny showed three main clades that 

grouped the Iberian, the Moroccan and the Anatolian species. The Iberian and North 

African clades are sister groups, while B. strauchi is basal to all the remaining Blanus in the 

analyses (Figure 11). 

In the Iberian clade there are two well supported monophyletic sub-clades with high 

genetic distance between them, one corresponding to B. cinereus and another to B. mariae 

(BPP=1.00/BP=98 and BPP=1.00/BP=100, respectively). These clades display high 
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mitochondrial differentiation among them with 10% distance (ND4) between B. cinereus 

and B. mariae (Table 4). In the North African clade, B. tingitanus and B. mettetali are 

grouped in two divergent monophyletic clades, with 6.7% distance for ND4 (Table 4). The 

combined phylogenetic tree further shows that B. tingitanus are divided in two distinct 

well-supported lineages, with 2.6% distance for ND4 (result not shown in Table 4). These 

lineages have geographic concordance (Figure 10), corresponding to samples from 

northern Morocco (northern lineage) and samples restricted to south of the Rif and north 

of the Middle Atlas (southern lineage). 

Figure 11 Phylogenetic tree representing the relationships within Blanus, derived from the Bayesian analysis 

of the combined markers for a total fragment of 2303 bp [16S (474 bp), ND4 (802 bp), POMC (461 bp) and 

MC1R (566 bp)]. The topology is similar in ML analysis (data not shown). For the major clades and lineages, 

Bayesian posterior probabilities (BPP) and ML bootstrap support (BP) are given above and below nodes, 

respectively. The tree was rooted using Diplometopon zarudnyi and Trogonophis wiegmanni. 
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Figure 12 Statistical parsimony networks representing relationships among Blanus. Haplotypes inferred from 

1294 bp mitochondrial sequences (16S and ND4 – 493 bp and 801 bp, respectively). Circles represent different 

haplotypes with size proportional to sample frequency. Small grey circles represent missing or extinct 

haplotypes. 
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Table 4 Net distance values between Blanus species and uncorrected p-distance values within Blanus species. 

Lower left values correspond to 16S and top right to ND4 net distance values between species sequences. 

Shaded diagonal values correspond to uncorrected p-distance values within species haplotypes. 

                ND4 
16S 

B. cinereus B. mariae B. tingitanus B. mettetali B. strauchi 

B. cinereus 
            0.027 
0.004 

0.100 0.102 0.093 0.160 

B. mariae 0.024 
           0.006 
0.002 

0.135 0.106 0.179 

B. tingitanus 0.047 0.059 
             0.028 
0.016 

0.067 0.170 

B. mettetali 0.046 0.050 0.024 
            0.049 
0.017 

0.137 

B. strauchi 0.089 0.096 0.097 0.083 
            0.046 
0.029 

 

 

The statistical parsimony mitochondrial network resulted in 41 mitochondrial 

haplotypes (Figure 12), with a connection limit of 15 mutational steps. The relationships 

inferred supported the tree results. Haplotype diversity in the Iberian Peninsula revealed 

high levels of diversity within the Iberian species B. cinereus and B. mariae. In the North 

African clade, the two divergent lineages found in the combined analyses for B. tingitanus 

are also evident in the mitochondrial network, with high levels of diversity. Within B. 

mettetali, the five samples analysed with mitochondrial markers appear in the network as 

being distantly related, with high genetic distances – 4.9% uncorrected p-distance for ND4. 

Among the Anatolian clade, the mitochondrial network shows that the B. strauchi sample 

from Turkey (Bs) appears to be distantly related to the remaining samples from Greece. In 

fact, it shows exceptionally high levels of genetic divergence, with 13% distance for ND4 

(net distance – result not showed in Table 4). 

The phylogenetic relationships found are further supported by the nuclear networks 

(Figure 13), with no sharing of haplotypes between species. Additionally, at the 

intraspecific level, nuclear networks also display some divergence between B. tingitanus 

northern and southern lineages. One B. tingitanus specimen from Kenitra (B1) is also a 

member of the southern lineage, meaning that both clades occur in this northern locality 

(Figure 10), which deserves further investigation. Also, both nuclear networks reveal that 

the specimens found in that locality share haplotypes with the southern samples. 
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2. TROGONOPHIS 

 

 

Figure 13 Haplotype networks recovered by statistical parsimony analyses representing relationships among Blanus, 

inferred from nuclear markers POMC (461 bp) and MC1R (566 bp). Circles represent different haplotypes with size 

proportional to sample frequency. Small grey circles represent missing or extinct haplotypes. Allelles from 

heterozygotes samples are represented by ‘i’ or ‘ii’ after the sample code. 

Figure 14 Map of the study area with the geographic location of the Trogonophis samples analysed. Samples are represented by 

circles coloured according to phylogenetic analyses results. Dashed area in the bottom right map represents the distribution range 

of this genus according to IUCN (2012). 
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2.1.  MOLECULAR DATA 

A combined mitochondrial and nuclear genes fragment of 2717 bp was obtained for 22 

Trogonophis samples and outgroups (D. zarudnyi and B. mettetali), after eliminating poorly 

aligned positions, corresponding to 353 bp for 12S, 465 bp for 16S, 284 bp for CYTB, 350 

bp for CMOS, 467 bp for POMC and 798 bp for RAG2. Of the 353 bp for 12S, 111 bp were 

variable and 43 bp were parsimony informative; of the 465 bp for 16S, 96 bp were 

variable and 52 bp were parsimony informative; of the 284 bp for CYTB, 114 bp were 

variable and 67 bp were parsimony informative; of the 350 bp for CMOS, 26 bp were 

variable and 25 bp were parsimony informative; of the 467 bp for POMC, 76 bp were 

variable and 75 bp were parsimony informative; of the 798 bp for RAG2, 51 bp were 

variable and 49 bp were parsimony informative. 

Regarding mtDNA analysis, after eliminating poorly aligned positions, a fragment of 

828 bp was analysed – 361 bp for 12S and 472 bp for 16S – of which 84 bp were variable 

and 66 bp were parsimony informative.  A total of 28 sequences – 17 generated in this 

study and 11 published by Mendonça and Harris (2007) – were included in the analysis.  

Individual nuclear statistical parsimony networks were constructed for 22 samples for 

CMOS (350 bp), POMC (467 bp) and RAG2 (798 bp). Two heterozygotic individuals were 

observed for CMOS, two for POMC and five for RAG2.  The analyses resulted in four 

haplotypes for CMOS, with a connection limit of seven mutational steps; five haplotypes 

for POMC, with a connection limit of nine mutational steps; and six haplotypes for RAG2, 

with a connection limit of 12 mutational steps. 

2.2.  PHYLOGENETIC RELATIONSHIPS  

The selected models of sequence evolution applied in the combined partitioned BI 

analysis were TIM2+G for 12S, TPM1uf+I+G for 16S, HKY+I for CYTB, K80+G for CMOS, 

TrN for POMC and TPM1uf+G for RAG2. BI and ML analyses using only one outgroup (D. 

zarudnyi or B. mettetali) were less resolved and had lower support values compared with 

the used of two outgroups, therefore only this result is shown. Both ML and BI results 

were congruent and therefore only the BI topology is presented, with the ML BP and BI 

BPP support values (Figure 15). 

T. wiegmanni samples clustered into three clades in the combined mitochondrial and 

nuclear analyses. These corresponded to two sister clades in Morocco and a distinct basal 

clade with samples from Algeria and Tunisia. In Morocco, there are two well supported 

clades, corresponding to T. w. elegans and T. w. wiegmanni samples (BPP=1.00/BP=99 and 

BPP=1.00/BP=99, respectively), separated by a genetic distance of 3.1% (net distance for 
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12S) (Table 5). The separation of these lineages has geographic concordance, with T. w. 

elegans occurring in western Morocco and T. w. wiegmanni occurring in the eastern region 

of the country (Figure 14). The basal lineage corresponding to the eastern distribution of 

T. w. wiegmanni in Algeria and Tunisia is well supported (BPP=1.00/BP=96). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 Phylogenetic tree representing the relationships within Trogonophis, derived from the Bayesian 

analysis of the combined markers [12S (353 bp), 16S (465 bp), CYTB (284 bp), CMOS (350 bp), POMC (467 

bp) and RAG2 (798 bp)] for a total fragment of 2717 bp. The topology is similar in ML analysis (data not 

shown). For the major clades and lineages, Bayesian posterior probabilities (BPP) and ML bootstrap 

support (BP) are given above and below nodes, respectively. The tree was rooted using Diplometopon 

zarudnyi and Blanus mettetali. 
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Table 5 Net distance between Trogonophis clades and uncorrected p-distances within Trogonophis clades. 

Lower left values correspond to 12S and top right to 16S values between clades sequences. Shaded diagonal 

values correspond to uncorrected p-distance values within clades haplotypes. 

                       16S 
12S       T. w. elegans 

T. w. wiegmanni 

Morocco 

T. w. wiegmanni 

Algeria-Tunisia 

T. w. elegans 
                    0.015 
0.010 

0.025 0.030 

T. w. wiegmanni 
Morocco 

0.031 
                    0.013 
0.015 

0.028 

T. w. wiegmanni 
Algeria-Tunisia 

0.031 0.042 
                    0.022 
0.006 

 

 

The mitochondrial statistical parsimony network resulted in 22 haplotypes, with a 

connection limit of 12 mutational steps (Figure 16). The networks supported the 

combined mitochondrial and nuclear phylogenetic relationships. They also showed that T. 

w. elegans has high levels of intraspecific diversity. Within T. w. wiegmanni in Morocco, the 

mitochondrial analysis – like the combined phylogeny – showed sub-structuring into two 

unconnected networks, revealing high distances between them. Among T. w. wiegmanni 

Figure 16 Haplotype networks recovered by statistical parsimony analysis representing relationships among 

Trogonophis wiegmanni, inferred from 828 bp mitochondrial sequences (12S and 16S – 361 bp and 472 bp, 

respectively). Circles represent different haplotypes with size proportional to sample frequency. Small grey 

circles represent missing or extinct haplotypes. 
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eastern samples from Algeria and Tunisia, there is a relatively high level of genetic 

divergence, with 2.2% uncorrected p-distance for 16S, among the three individuals 

analysed (Table 5). Both the combined phylogeny (Figure 15) and the mitochondrial 

haplotype networks (Figure 16) showed divergence between the Algerian and the 

Tunisian samples. 

Statistical parsimony analyses (Figure 17) revealed that for CMOS and RAG2 nuclear 

haplotype networks, the three different clades found in the phylogenetic tree analyses 

(Figure 15) shared haplotypes. In the POMC network, a clear structure separating the 

three lineages is evident, with the exception of the T. w. elegans sample T7, which shares 

the same haplotype with T. w. wiegmanni samples from Morocco. 
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Figure 17 Haplotype networks recovered by statistical parsimony analysis representing relationships among T. 

wiegmanni main clades, inferred from nuclear markers CMOS (350 bp), POMC (467 bp) and RAG2 (798 bp). Circles 

represent different haplotypes with size proportional to sample frequency. Small grey circles represent missing or 

extinct haplotypes. Heterozygotes were included as independent samples and are represented by ‘i’ or ‘ii’ after sample 

code. 
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IV. DISCUSSION 
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Cryptic genetic diversity is evident in the amphisbaenids occurring in the 

Mediterranean region, Blanus and Trogonophis. In these taxa, genetic analyses using 

mitochondrial and nuclear gene fragments revealed high levels of differentiation among 

apparently morphologically similar forms. Even though previous studies had already 

analysed genetic variation and phylogenetic relationships in these forms, they were based 

mainly on mitochondrial markers. New nuclear data revealed similar patterns to the ones 

previously recovered, with some markers found to be more informative than others. 

Moreover, the addition of samples from new localities revealed possible contact zones 

areas, previously unknown and that might be worthy to further investigate in the future. 

1. BLANUS 

The phylogenetic analyses of both mitochondrial and nuclear gene fragments support 

the monophyly of all currently described Blanus species. Furthermore, the analyses show 

the existence of three main clades grouping the Iberian, North African and Anatolian 

species, with the latter being basal to the other species of this genus. The monophyly of the 

North African clade had been questioned by Albert et al. (2007), stating the possibility of 

ancient paraphyletic lineages but, with the addition of more sampled Moroccan localities, 

this study found it to be a monophyletic clade. The phylogenetic relationships between 

species recovered in this study corroborate molecular findings by Vasconcelos et al. 

(2006) and Albert et al. (2007). The present study provides a more complete phylogenetic 

inference in terms of sampling and also number of analysed markers, thus providing new 

insights into the genetic diversity and differentiation among Blanus, which are discussed 

in the next sections. 

1.1.  IBERIAN BLANUS CRYPTIC SPECIES 

The combined mitochondrial and nuclear phylogeny recovered two distinct Blanus 

clades in the Iberian Peninsula, which is concordant with the previous results by 

Vasconcelos et al. (2006) and Albert et al. (2007) based mainly on mitochondrial data. 

Nevertheless, the description of B. mariae by Albert and Fernández (2009) made it difficult 

to make direct comparisons of patterns between mitochondrial and nuclear data, due to 

the use of an anonymous nuclear marker by Albert et al. (2007) (Speybroeck et al., 2010). 

Networks results from two nuclear markers (Figure 13) support the genetic distinction 

between B. mariae and B. cinereus, with no haplotype sharing between the two Iberian 

species. Moreover, this study results indicate that the distribution of B. mariae is wider 

than previously described by Albert and Fernández (2009). The authors suggested that 
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the limit to the distribution in western Iberian Peninsula was in the lower third of 

Portugal, from the Algarve up to Elvas. However, the new data analysed in this study 

extended the distribution range of the recently described B. mariae to central Portugal, in 

Carvalhão (samples B12-13) (Figure 10). This clearly indicates the need for further 

sampling and field observations, particularly in centre and north Portugal, in order to 

establish an accurate distribution of this species, of great relevance to establish adequate 

conservation policies. Also, the distribution of the two Iberian species may partially 

overlap in central Portugal – B. cinereus B19 from São Mamede and B. mariae B12-13 from 

Carvalhão (Figure 10). Detailed analyses in contact areas, using both mitochondrial and 

nuclear markers and morphology would be of great to evaluate the occurrence of 

introgression phenomena between the two forms, and understand the evolutionary 

history of the Iberian Blanus. 

1.2.  INTRASPECIFIC DIVERSITY WITHIN MOROCCAN B. TINGITANUS   

This study indicates that within B. tingitanus exists considerable genetic 

differentiation between northern and southern lineages, with 2.6% distance (net distance 

for ND4), although this is less than between currently accepted species. The finding of 

these two lineages with a combined mitochondrial and nuclear phylogeny corroborates 

results by Vasconcelos et al. (2006). Comparatively, this new study analyses a larger 

sampling coverage in Morocco, particularly for the western distribution of the species, 

providing a more accurate distribution of these two lineages. In Kenitra, a locality in 

northwestern Morocco, both lineages are in simpatry (samples B1 and B7) (Figure 10 and 

Figure 11) and nuclear networks reveal that these samples share haplotypes with 

southern samples (Figure 13). Also, in this area B. mettetali has also been reported (Bons 

and Geniez, 1996). Therefore, this ought to be an interesting region to be further 

investigated. 

The distribution of the B. tingitanus lineages has geographic concordance, with the 

northern lineages including specimens restricted to the Rif region, and the southern 

lineages with samples restricted to south of the Rif and north of the Middle Atlas 

Mountains. The phylogeographic break observed in B. tingitanus may indicate that the 

Moroccan mountain systems, such as the Rif or the Atlas Mountains may have played a 

role in shaping the genetic diversity in this species. Indeed, the Atlas Mountains have been 

proposed as the cause for phylogeographical division for other reptile species, such as 

Agama impalearis (Brown et al., 2002) and Mauremys leprosa (Fritz et al., 2005). 
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1.3.  PRELIMINARY ASSESSMENT OF GENETIC DIVERSITY WITHIN B. METTETALI 

AND B. STRAUCHI 

Intraspecific genetic variation is high within B. mettetali, as revealed by high levels of 

mitochondrial divergence (4.9% uncorrected p-distance for ND4), despite only five 

samples were available to study across a wide range (Figure 10 and Figure 12).  

Within B. strauchi, variation was exceptionally high between the sample from Turkey 

and the remaining samples from Greece, as revealed by the mitochondrial network (Figure 

12) and a 13% net distance for ND4, a level of divergence similar or even higher to that 

observed between accepted species (e.g. 10% between B. cinereus and B. mariae) – but 

again few samples were available. Nevertheless, it seems possible that undescribed Blanus 

species may occur in the Anatolian region. This region is a crossroad between Palearctic, 

Oriental and Afrotropic ecozones, and was a climatic refugia during the quaternary 

climatic fluctuations (Hewitt, 2001; Kornilios et al., 2011; Sindaco et al., 2000). For these 

reasons, this still under-studied region is considered a hotspot of biodiversity. In effect, 

several recent studies confirm high levels of diversity in plants (Ansell et al., 2011). turtles 

(Fritz et al., 2009) or mammals (Gündüz et al., 2007). A recent genetic study on another 

Anatolian reptile, the burrowing snakes Typhlops vermicularis, also revealed high variation 

(up to 8.4% for ND2) (Kornilios et al., 2011). 

2. TROGONOPHIS 

As first suggested by Mendonça and Harris (2007) and confirmed in the present study, 

the phylogeny of T. wiegmanni is composed of three monophyletic clades in North Africa. 

This study inferences based on mitochondrial and nuclear sequences found two 

monophyletic clades in Morocco, correspondent to T. w. elegans in western Morocco and T. 

w. wiegmanni in eastern Morocco, and a third clade clustering T. w. wiegmanni samples 

from Algeria and Tunisia, forming a basal clade (Figure 14). This suggests that T. w. 

wiegmanni is a paraphyletic subspecies. 

2.1.  MOROCCAN T. WIEGMANNI FORMS 

Within the subspecies T. w. wiegmanni in Morroco, the mitochondrial analysis showed 

a sub-structuring into two lineages (Figure 16Figure 14). One of them seemed to be 

restricted to areas with lower altitude while the other one was found in mountainous 

areas (Figure 14). This suggests that within this subspecies there are two forms which 

may have different ecological requirements, but this will require further assessment. 
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Furthermore, the two forms T. w. elegans and T. w. wiegmanni present in Morocco 

show an apparent biogeographic structure, being geographically separated by the Atlas 

Mountains (Figure 14). This mountainous system may act as an apparent barrier to gene 

flow, causing deep separation between western and eastern T. wiegmanni populations in 

Morocco (net distance between these two clades is 2.8% for 16S and 3.1% for 12S). This 

possible role of the Atlas Mountains as a barrier promoting speciation phenomena has 

been already described in other reptile species (Brown et al., 2002; Fritz et al., 2005). 

Moreover, the level of genetic distinction between the two Moroccan subspecies is as high 

as between the species B. tingitanus and B. mettetali (2.4% net distance for 16S). Besides 

the level of genetic differentiation, these two forms display different morphology in 

coloration patterns and apparently different ecological requisites, as noted by Mendonça 

and Harris (2007). Some authors (e.g. Gans, 2005) have previously considered the 

possibility that these two forms could be upgraded to species level.  The new data 

presented in this thesis is not in conflict with this idea, although it would mean that three 

forms would need to be recognized. 

There is a zone in central Morocco where both T. wiegmanni forms occur (samples T7 

and T28), which was identified for the first time in this thesis (Figure 14). Furthermore, 

the POMC network shows a clear structure for the three lineages (Figure 17), except for T. 

w. elegans sample T7, which groups with a Moroccan T. w. wiegmanni haplotype. This is 

curious, since B7 is closely located from T. w. wiegmanni sample T28, which could be 

indicative of a potential contact zone in this region where some gene flow may be 

occurring.  This clearly warrants further investigation.  

2.2.  T. W. WIEGMANNI FROM ALGERIA AND TUNISIA 

Analyses by Mendonça and Harris (2007) found the Tunisian sample included in their 

study to be more divergent from Moroccan T. w. wiegmanni (4.8%), the subspecies it 

currently belongs to, than to T. w. elegans (4.4%). However, since the results were based 

on a single T. w. wiegmanni sample from Tunisia, their results were inconclusive regarding 

its possible inclusion in either one of the Moroccan clades. Our results have a similar 

outcome, with samples from the Algerian-Tunisian clade being genetically more distant to 

Moroccan T. w. wiegmanni (4.2%) than to T. w. elegans (3.1%) for 12S sequences, while 

their position in the phylogeny clearly indicates they belong to a third distinct clade. The 

level of genetic differentiation seems to be relatively high between the Moroccan and 

Algerian-Tunisian forms, and could possibly correspond to a different subspecies or be 

elevated to a species level, but further molecular and morphological assessment would be 
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valuable to confirm this hypothesis. Furthermore additional samples particularly from 

Algeria would be useful to better delimit the range of this form. 

Moreover, intraspecific genetic variation seems to be high within this clade, as revealed by 

the mitochondrial statistical parsimony network, which separated the Algerian sample – T. 

w. wiegmanni type locality – from the Tunisian samples. A more continuous sampling 

throughout this species range of distribution in Algeria and Tunisia would be useful to 

make further inferences. 

3. NUCLEAR MARKERS UTILITY 

Despite the high levels of genetic variation uncovered with mitochondrial markers for 

both Blanus and Trogonophis, not all nuclear markers used in this study confirm these high 

diversity levels. The nuclear markers used for Blanus, POMC and MC1R showed 

differentiation among the recently separated lineages within the Iberian Peninsula, 

revealing to be useful for genetic distinction in this group. However, while POMC showed 

little intraspecific diversity within each clade and separated the clades by a small number 

of mutational steps, the MC1R marker provided more resolution within and between 

clades. 

For Trogonophis, the POMC network also distinguished between taxa. On the other 

hand, CMOS and RAG2 showed lack of genetic structuring, with a high proportion of 

haplotype sharing between clades. These results do not corroborate the high levels of 

differentiation among clades obtained with mitochondrial data, which could be indicative 

that these markers may be too slow evolving to separate clades. However, this discrepancy 

between mitochondrial and nuclear results is not uncommon as noted by Ballard et al. 

(2002), and recognized for Tarentola mauritanica (Rato et al., 2010) and Podarcis wall 

lizards (Pinho et al., 2007). Generally CMOS and RAG2 are used to distinguish between 

clades at deeper phylogenetic levels rather than within or between species, so incomplete 

lineage sorting due to the slow evolving nature of these markers seems the most plausible 

explanation for these results. 
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1. CONCLUSION 

This study focused on the fact that currently described species are not always 

distinguishable by morphological traits, since high genetic variation between specimens 

with identical morphology has been observed in many groups from around the globe. 

However, assessments of genetic differentiation should not rely only on mitochondrial 

data, which has been a common artefact in many phylogenetic studies. The 

amphisbaenians Blanus and T. wiegmanni represent examples of cryptic taxa in the 

Mediterranean Basin, a biodiversity hotspot, in which conservative morphological 

evolution masks high genetic diversity. However, the differentiation previously identified 

using mtDNA still needed to be confirmed using nuclear markers which was the main aim 

of this thesis. 

The phylogenetic relationships among Blanus and Trogonophis and the high levels of 

mitochondrial sequence variation within these taxa reported in previous studies have 

been corroborated in this study with the addition of new sampling sites and nuclear 

sequences. Even though not all nuclear markers have revealed deep genetic structuring, 

their use constitutes a substantial improvement in the understanding of the phylogenetic 

relationships in these groups. When cryptic speciation is a recent event, the use of faster 

nuclear markers is important to corroborate or not the mitochondrial patterns of 

subdivision, while slow nuclear marker are more useful in cases when speciation is old 

enough for them to get monophyly and at the same time faster markers can be saturated. 

In the case of Blanus and Trogogonophis clearly faster nuclear markers such as POMC and 

MC1R were more informative than slow-evolving markers such as CMOS and RAG2. 

Furthermore, the levels of divergence between the studied taxa, particularly in 

Morocco, seems to be mostly related with biogeographical boundaries acting as apparent 

barriers to gene flow, which may explain the vicariance phenomena observed, caused by 

the Atlas Mountains uplift during the Miocene.  

This study analyses for the first time the genetic diversity of the genus Blanus, with 

representatives of both the western (B. cinereus, B. mariae, B. mettetali and B. tingitanus) 

and eastern Mediterranean (B. strauchi) species of Blanus. Even though only a small 

number of samples were  available for this study, this preliminary assessment has 

revealed high levels of genetic diversity in both eastern and western groups and the clear 

evidence of more amphisbaenid cryptic taxa present in the Mediterranean Basin. 

Understanding species diversity is fundamental in order to apply correct conservation 

policies. It is important to describe and preserve the existing natural diversity, which also 
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includes genetic diversity, and with the assistance of molecular tools it is possible to 

determine which areas deserve higher conservation priorities. 

Hopefully this study will be useful as a further stepping stone in the understanding of 

cryptic diversity in amphisbaenid taxa. 

2. FUTURE WORK 

Regarding Blanus and T. wiegmanni worm lizards, further sampling is necessary 

throughout the taxa distribution in order to obtain an accurate distribution of the different 

lineages and species. At this respect, sampling should be more intense on B. mettetali in 

southern Morocco, B. strauchi in Anatolia, and T. w. wiegmanni in Algeria and Tunisia. It 

would be particularly interesting to conduct more sampling around possible contact zones 

between the different lineages found in this study, in order to better understand the 

evolutionary processes occurring in areas of sympatry (if such areas exist). The addition of 

fieldwork on the presumable contact zone between B. mariae and B. cinereus in central 

Portugal, between B. tingitanus lineages and B. mettetali near Kenitra region in Morocco, 

and in central Morocco where both T. w. elegans and T. w. wiegmanni occur will be 

essential to understand the processes involved in the isolation and maintenance of the 

lineages in contact. This will be valuable not just for assessing the status of these taxa, but 

to draw comparisons with other similar species in this region. 

It is also planned to further investigate the correspondence between genetic and 

morphological variation in Trogonophis, particularly between the Tunisian and Moroccan 

T. w. wiegmanni forms, in order to clarify their taxonomic status. To do so, we have already 

contacted several museums to lend specimens to be morphologically analysed. 

To better understand phylogeographic patterns in these amphisbaenids, it can also be 

useful to estimate divergence times between lineages. This can be done by using 

mitochondrial or nuclear genes and several calibration points. Calibration can be obtained 

from fossil record – which is scarce for Blanus and Trogonophis and therefore may lead to 

unreliable results – or by biogeographical events, such as the formation of mountain 

ranges or volcanic islands (Weir and Schluter, 2008). 

Finally, the two genus of worm lizards studied here represent a challenge for 

delimiting species due to their cryptic nature.  The actual lack of diagnosable 

morphological characters makes species diagnosis difficult. The use of new approaches in 

taxonomy, such as an “integrative taxonomy” (Padial et al., 2010) might be useful in this 

case. Along with genetic studies using a multilocus approach, and a morphological 

reassessment, it would be also valuable to implement an ecological niche modelling 

approach to assess which climatic and physical factors, such as temperature, precipitation 
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or altitude, affect the distribution of genetic lineages driving to lineages divergence and 

also aid in species delimitation (Rissler and Apodaca, 2007). All these evidences could be 

integrated for taxonomic purposes.   
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