
Collaborative learning based on a
micro-webserver remote test controller

J. M. Ferreira1, E. Sousa1 and A. Nafalski2, J. Machotka2, Z. Nedic2
1 Faculdade de Engenharia (DEEC), Porto, Portugal

2 University of South Australia (SEIE), Adelaide, South Australia

Abstract— This paper presents a remote test workbench
that was developed to support on-line assignments dealing
with the IEEE 1149.1 standard test access port and
boundary-scan architecture. The remote test controller is
based on the DS80C400 networked microcontroller from
Maxim-Dallas, which offers a very cost-effective solution to
the development of micro-webservers enabling low-
complexity data acquisition and control tasks. All remote
experiments are integrated into Moodle in exactly the same
way as the remaining courseware that is made available to
the students. The use of Moodle facilitates the
implementation of collaborative learning activities based on
the remote test workbench, and the development of the
workbench itself is the subject of a collaborative learning
project involving students from the universities of Porto in
Portugal and South Australia at Adelaide.

Index Terms— Collaborative learning, e-learning, remote

laboratories, micro-webservers.

I. INTRODUCTION
Remote laboratories, also known under the name of

on-line laboratories, remote workbenches, etc., found a
widespread acceptance during the last decade [1:3]. It is
important to distinguish remote labs from virtual labs,
the difference being that the former deal with real
physical devices accessible through a communications
network, while the latter deal with simulation models and
may or may not require an Internet connection. Remote
labs do not replace real labs (they are not meant to), but
they offer a range of benefits that can significantly
improve pedagogical success: 1) they adapt to the pace of
each student; 2) an experiment may be concluded from
home, if the time available at the lab was not sufficient;
3) it can be repeated to clarify doubtful measurements
obtained at the lab; 4) the student may improve the
effectiveness of the time spent at the lab by rehearsing the
experiment beforehand; 5) safety and security are
improved, since there is no risk of catastrophic failures.
These and other reasons explain why remote labs
captured the attention of the academic community, and
originated much research and development effort in
recent years.

This paper presents a remote workbench that supports
a set of lab assignments belonging to a digital electronics
test course. The technological context underlying this
remote test workbench is presented in the following
section, which describes the knowledge domain
addressed by the course and the technology used to set up
the remote experiments. Section III presents the system
architecture, and comprises three subsections, describing

the remote test controller, its initialization, and the test
operations and closing procedures. Section IV presents
the software layer, addressing the client side and the
server side separately. The integration of the remote test
workbench into Moodle, and the collaborative learning
opportunities offered, are addressed in section V. Finally,
the main conclusions and directions for further
development are presented in section VI.

II. THE TECHNOLOGICAL CONTEXT

The remote labs project described in this paper uses
Maxim-Dallas micro-webserver technology [4] to
develop a remote workbench supporting IEEE 1149.1
boundary-scan test [5] lab assignments. This section
summarises how our proposed solution works and what it
does.

A. Brief description of the IEEE 1149.1 standard

The widespread usage of surface mount technology
and the increasing complexity of microelectronics
technology led in the mid-1980s to the development of
embedded test technology that was able to complement
(and in some cases even replace) in-circuit and functional
test solutions. A consortium initiated by Philips NL
developed a test logic infrastructure that is equivalent to
an electronic bed-of-nails, providing control and
observation of every functional pin, without requiring
physical access to internal nodes of the board under test.
This test infrastructure is represented in Fig. 1 and was
quickly approved by the IEEE under the name of
Standard Test Access Port and Boundary-Scan
Architecture, providing a simple and effective solution to
detect structural faults in digital printed circuit boards.

As seen in Fig. 1, each IEEE 1149.1 chip comprises a
boundary-scan (BS) register (highlighted path) that
associates a boundary-scan test cell to each functional pin
of the device. Detection of structural faults is done as
illustrated in Fig. 2, by using the BS cells to decouple the
internal logic from the pins, and shifting an appropriate
test vector to the suspected fault location. If a short-
circuit is present, as represented in Fig. 2, one of the logic
values captured at the receiving BS cells will be different
from the values shifted into the driving cells. A single 4-
pin test connector (the Test Access Port – TDI and TDO
for scanning Test Data In and Out, TMS for Test Mode
Select, and TCK for Test Clock) allows direct access to
every BS pin in the printed circuit board, enabling test

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143398589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1. The IEEE 1149.1 boundary-scan infrastructure

Figure 2. Structural fault detection via IEEE 1149.1.

Figure 3. Architectural overview of an application based on the

evaluation kit.

vector application and response capturing, without
requiring physical contact to the interconnects under test.

Due to its quick acceptance by the industry, boundary-
scan is a prominent subject in every digital test course.
An on-line workbench offering remote access to a test
controller and demonstration boards with selectable fault
injection is therefore a valuable tool to support practical
classes in this domain. The functions that must be
supported by the test controller are essentially related to
scanning test vectors and test responses, and to the
application and capture of test data through the edge
connectors of the board under test. This functionality can
be achieved using dedicated test controllers and other
PXI equipment driven through LabVIEW interfaces [6],
but the high-cost of such solutions restricts a widespread
implementation. However, and since we’re dealing with
low-complexity data processing tasks, a low-cost solution
is feasible by using a networked microcontroller board.

B. The DSTINIm410 micro-webserver

A decade after its implementation, the Maxim-Dallas
TINI family offers a time and field-proven cheap solution
to the implementation of micro-webservers and other
Internet services [7]. Their DS80C400 evaluation kit
comprises a DSTINIm410 reference board and offers a
low-cost development solution for distributed low-
complexity control and data acquisition tasks, as
illustrated in Fig. 3.

The key features offered by the DS80C400 evaluation
kit are [8]:
• Hosts the TINI Runtime Environment in a

Validated Hardware Design (DSTINIm410)
• 10/100 Ethernet Interface Connects Directly to

Standard Networks
• Three Hardware Serial Ports
• One TTL Level Connectors
• Two RS-232 Level Connectors
• Integrated 1-Wire® Network Master
• Hardware CAN 2.0B Port
• Software Support for I²C and SPI™ Ports
• Real-Time Clock (RTC) for Time/Date Stamping

of Critical Transactions
• 1MB Flash ROM for Application Storage
• 1MB NV SRAM for Data Storage
• 5V Power Supply (Center Positive)

At a price of $109.00 USD at the time of writing, this

evaluation kit offers an impressive set of tools, including
APIs for I/O access and network configuration, and for
managing 1-wire bus communications. It greatly
simplified the implementation of the remote boundary-
scan test controller, by enabling all software development
tasks to be carried out in Java instead of assembly.

III. SYSTEM ARCHITECTURE
The overall representation of the proposed solution is

shown in Fig. 4. Notice that a single client is able to
deploy test procedures in multiple remote test controllers.

Figure 4. On-line workbench supporting remote test of boundary
boards – System architecture

Figure 5. Block diagram of the remote test controller

The case of hardware under test located in multiple
places is also considered in our solution. While this will
be an uncommon situation, it represents an interesting
scenario for collaborative learning case studies (where
the hardware is located in two or more laboratories), and
also when dealing with distributed systems that are
expected to follow time-driven sequences in
synchronized order.
A. The remote test controller

Each remote test controller may be represented
according to the diagram shown in Fig. 5, which
comprises the following main blocks.

• The DS80C400-Kit (the heart and brain of our

proposed solution). Four parallel input / output
pins of this microcontroller are used to ensure
synchronization with external test hardware
(SYNC channels A, B, C, and D).

• An 8-bit parallel input/output expander that
connects to one or two IEEE 1149.1 tes
ports (TAP1 and TAP2).

• An additional set of parallel I/O pins providing
test channels for the edge connectors of the board
under test.

Notice that all parallel input / output pins, other than

those of the microcontroller itself, are implemented u
the 1-wire bus and the DS2408 I/O expander, offering a
scalable low-cost solution that can easily adapt to the
number of test channels needed for each case. Physical

line workbench supporting remote test of boundary-scan

System architecture

Figure 5. Block diagram of the remote test controller Figure 6. Stacked implementation of the 1

The case of hardware under test located in multiple
on. While this will

be an uncommon situation, it represents an interesting
scenario for collaborative learning case studies (where
the hardware is located in two or more laboratories), and
also when dealing with distributed systems that are

driven sequences in

Each remote test controller may be represented
according to the diagram shown in Fig. 5, which

(the heart and brain of our
proposed solution). Four parallel input / output
pins of this microcontroller are used to ensure
synchronization with external test hardware
(SYNC channels A, B, C, and D).

bit parallel input/output expander that
connects to one or two IEEE 1149.1 test access

An additional set of parallel I/O pins providing
test channels for the edge connectors of the board

Notice that all parallel input / output pins, other than
those of the microcontroller itself, are implemented using

wire bus and the DS2408 I/O expander, offering a
cost solution that can easily adapt to the

number of test channels needed for each case. Physical

scalability was ensured by a stacked implementation of
each set of 32 I/O channels, as illustrated in Fig. 6.

The client application handles a single test program
that drives all remote test controllers. This test program is
generated from a template that comprises two main parts,
summarised in the following sections.

B. Server initialization

The IP addresses of each remote test controller initiate
the test program template and are indicated according to
the following syntax (for an example comprising two
remote test controllers):

IP TINI1 192.168.106.135
IP TINI2 192.168.104.154

Each of the above program lines instructs the client

application to open a connection to
remote test controller. All test variables are then reset,
and the connection is again closed, as illustrated in Fig. 7,
which represents the network protocol diagram. It is
important to remark that every request sent by the client
application originates an acknowledgment from the
remote test controllers, to ensure that any communication
problems will be detected.

Once the initialization process is complete, the remote
test controllers are ready to receive the sequence of
commands that will define the required test operations.

C. Test operations and closing

The test vectors and their expected responses, both for
the boundary-scan test access ports and for the edge
connectors’ inputs / outputs, are specified using a
superset of the SVF test specification format [9]. The
“SVF Code (TINI X)” sections in Fig. 8 correspond to
the test operations that are requested by the client
application. They will typically consist of scanning test
data and test responses, and will

SDR N TDI(…) TDO(…) MASK(…)

The SDR command Scans N

Data Register. The scan-in data follows TDI, the
expected responses follow TDO, and the MASK
information indicates when data is meaningful (in which

Figure 6. Stacked implementation of the 1-wire expander I/O channels

scalability was ensured by a stacked implementation of
s illustrated in Fig. 6.

The client application handles a single test program
that drives all remote test controllers. This test program is
generated from a template that comprises two main parts,
summarised in the following sections.

The IP addresses of each remote test controller initiate
mplate and are indicated according to

the following syntax (for an example comprising two

Each of the above program lines instructs the client
application to open a connection to the corresponding
remote test controller. All test variables are then reset,
and the connection is again closed, as illustrated in Fig. 7,
which represents the network protocol diagram. It is
important to remark that every request sent by the client

cation originates an acknowledgment from the
remote test controllers, to ensure that any communication

Once the initialization process is complete, the remote
llers are ready to receive the sequence of

commands that will define the required test operations.

Test operations and closing
The test vectors and their expected responses, both for

scan test access ports and for the edge
/ outputs, are specified using a

superset of the SVF test specification format [9]. The
“SVF Code (TINI X)” sections in Fig. 8 correspond to
the test operations that are requested by the client
application. They will typically consist of scanning test

will be specified as follows:

SDR N TDI(…) TDO(…) MASK(…)

N bits through the selected
in data follows TDI, the

expected responses follow TDO, and the MASK
ata is meaningful (in which

Figure 7. Network protocol diagram for initializing (two) remote test

controllers.

Figure 8. Network protocol diagram for the test operations and

closing sequence

Figure 9. Software layers (Client and Server sides)

Figure 10. Client application.

bit positions the expected data should match the scan-out
data).

Notice that Fig. 8 shows successive connect /
disconnect actions to the various remote test controllers.
The (dis)connection sequence is determined by
synchronisation requirements among the existing test
controllers / boundary-scan chains. When the suspected
fault locations include pins belonging to different
boundary-scan chains (eventually connected to different
remote test controllers), the test response sequence can
only be initiated after the test vectors are applied to all
scan chains. When the SVF test program completes its
execution, a closing sequence takes place to clean all test
variables and leave the remote test controllers in the reset
condition.

IV. THE SOFTWARE LAYER

As indicated by the system architecture represented in
Fig. 4, the software layer comprises two main
components – the client application and the code running
in the remote test controllers (the micro-webserver code).
A simplified structure depicting the main blocks residing
in the client and server sides is shown in Fig. 9.

These two components will be briefly described in the
following sections.

A. The client side
The client application was developed in Java and

comprises two text boxes, as illustrated in Fig. 10. The
upper box shows the SVF test program, and indicates
which line is being executed at each moment. The lower
box logs status information retrieved after the execution
of each SVF command. The client application supports
the following functions:
• New file (to initiate a new SVF test program from

scratch)
• Open an existing SVF test program / template file
• Save / Save as... the current SVF test program
• Syntax check (for the SVF test program lines)
• Run all SVF test program lines
• Single-step through the sequence of SVF test

program lines
The client application works as an interpreter,

requesting specific test operations from the remote test

Figure 11. Class diagrams of the software residing in the server side

controller, in accordance to the sequence of SVF program
lines. Some SVF commands will not send any requests to
the remote test controller, e.g. all I/O mapping
commands. Our implementation extended the original
SVF set to enable additional test operations that are
occasionally needed, such as conditional and
unconditional jumps (which are also local to the client).

B. The server side

The micro-webserver code residing in the
DSTINIm410 remote test controller board processes all
requests from the client application. It
according to the diagram represented in Fig. 11, and
comprises the following classes:

• The INIT class, with the main method
• The Server class, with the methods to manage

communications using sockets
• The Interpreter class has one method that

receives and analyses a string
corresponding SVF command
parameters

• The Executor class contains
implement and execute each SVF

• The Sync class that manages the Sync port
• The OneWire class that contains

to manage 1-wire devices
• Finally, the TAP class that manages the

access ports (TAP1 and TAP2)

V. INTEGRATION INTO MOODLE AND COLLABORATIVE
LEARNING

Any remote lab developed for academic purposes is
essentially an extension of the e-learning platform
already used to deliver other pedagogical contents. In that
sense, all remote experiments are basically learning
objects that will be integrated into Mood
learning platform. Their interaction with Moodle, and
particularly the tools and resources made available to
exploit collaborative learning activities supported by the
on-line workbench hosting those remote experiments,
assumes a vital importance towards a successful
pedagogical outcome.

A. Session scheduling

In most situations, the number of students or student
groups will be higher than the number of remote test
controller workbenches available. This mismatch calls for

Figure 11. Class diagrams of the software residing in the server side

Figure 12. Weekly view of MRBS adapted to schedule access to the
remote test controller

Figure 13. Public view (shared by all course participants) showing that a
one-hour slot has been reserved

controller, in accordance to the sequence of SVF program
SVF commands will not send any requests to

the remote test controller, e.g. all I/O mapping
commands. Our implementation extended the original
SVF set to enable additional test operations that are
occasionally needed, such as conditional and

jumps (which are also local to the client).

code residing in the
DSTINIm410 remote test controller board processes all

 may be described
diagram represented in Fig. 11, and

with the main method
with the methods to manage

communications using sockets
class has one method that

a string, to determine the
command and its

 the methods that
SVF command

class that manages the Sync port
contains the methods

class that manages the two test
(TAP1 and TAP2)

LE AND COLLABORATIVE

Any remote lab developed for academic purposes is
learning platform

already used to deliver other pedagogical contents. In that
sense, all remote experiments are basically learning
objects that will be integrated into Moodle or any other e-
learning platform. Their interaction with Moodle, and
particularly the tools and resources made available to
exploit collaborative learning activities supported by the

line workbench hosting those remote experiments,
portance towards a successful

In most situations, the number of students or student
groups will be higher than the number of remote test
controller workbenches available. This mismatch calls for

a tool to facilitate coordinated sharing of the existing
remote resources. Solutions to this problem have been
presented in the past, but they will outdate rapidly if the
manpower for recoding is not able to cope with upgrades
to the e-learning platform [10]. This is particul
case of Moodle, where new versions are frequently
released.

Fig. 12 and Fig. 13 demonstrate the solution that was
adopted to schedule access to our
workbench, consisting of an adapted version of a Moodle
optional module, entitled Meeting Room Booking System
(MRBS) [11]. Notice that scheduling access to an on
workbench is essentially the same problem faced by
various teams sharing one or more mee
adoption of the standard MRBS module eliminates
upgrading problems, since this module is a piece of open
source software maintained by a S

Since MRBS is a standard option that can be made
available in any Moodle installation, it also serves the
purpose of facilitating the integration of the remote test
controller experiments as embedded learning objects,
together with the remaining courseware. Fig. 14 shows
how the remote experiment is seen by the course
participants, in the form of a link to the scheduling

MRBS also plays an important role to support the
collaborative learning objectives underlying our proposed
solution. This role is reinforced by the social
constructivist nature of Moodle, which was develo
support learning activities addressing exploratory
approaches based on teamwork and interaction among the
students (notice that this model is very close to the
normal learning scenarios found in laboratory
assignments, where students organise themse
groups and have a reasonable degree of freedom to trial
and-error using the workbench equipment). Since Moodle

Figure 12. Weekly view of MRBS adapted to schedule access to the

remote test controller

course participants) showing that a

hour slot has been reserved

coordinated sharing of the existing
remote resources. Solutions to this problem have been
presented in the past, but they will outdate rapidly if the
manpower for recoding is not able to cope with upgrades

learning platform [10]. This is particularly the
case of Moodle, where new versions are frequently

Fig. 12 and Fig. 13 demonstrate the solution that was
dopted to schedule access to our remote test controller

workbench, consisting of an adapted version of a Moodle
optional module, entitled Meeting Room Booking System
(MRBS) [11]. Notice that scheduling access to an on-line
workbench is essentially the same problem faced by
various teams sharing one or more meeting rooms. The
adoption of the standard MRBS module eliminates
upgrading problems, since this module is a piece of open
ource software maintained by a Sourceforge team.

Since MRBS is a standard option that can be made
installation, it also serves the

purpose of facilitating the integration of the remote test
controller experiments as embedded learning objects,
together with the remaining courseware. Fig. 14 shows
how the remote experiment is seen by the course

f a link to the scheduling tool.
also plays an important role to support the

collaborative learning objectives underlying our proposed
solution. This role is reinforced by the social
constructivist nature of Moodle, which was developed to
support learning activities addressing exploratory
approaches based on teamwork and interaction among the
students (notice that this model is very close to the
normal learning scenarios found in laboratory
assignments, where students organise themselves in
groups and have a reasonable degree of freedom to trial-

error using the workbench equipment). Since Moodle

Figure 14. The link to the scheduling MRBS tool (integrating the
remote experiment into Moodle).

Figure 15. Dimdim – bringing videoconferencing, whiteboard sharing

and live presentations into Moodle.

supports the definition of groups, which are recognised
by the various resources and activities available to deliver
learning contents, this scheduling tool already handles the
reservations without distinguishing between members of
the same group (access to the experiment is granted to all
group members within the reserved time slot).

B. Synchronous teamwork

There are many applications available that allow
synchronous communication among the students when
using a remote workbench from their homes. Text-based
chat or video conferencing are freely available with
Windows Messenger [12], Skype [13], and various other
tools. Students’ acquaintance with one or more instant
communication tools, such as Messenger, is not
necessarily an advantage, because mixing friends and
team members in the same communication space will
traditionally impoverish the pedagogical effectiveness.
The learning outcome of a remote experiment will benefit
if the on-line workbench, the videoconferencing
application, and the e-learning platform, merge into an
integrated learning framework. The usage of a scheduling
tool that enables coordinated sharing of the workbench
among the students is a first step towards this framework.
The availability of a videoconferencing application
embedded into the e-learning platform is another
important step towards this same objective.

Dimdim’s open source web meeting module,
illustrated in Fig. 15, may be added to any Moodle 1.7.x+
installation, and was selected to support synchronous
communication among the students in our current
prototype [14]. Besides providing a powerful video-
conferencing environment, it also offers other valuable
contributions to support teamwork in remote
experimentation, such as live presentations and
whiteboard sharing. The integration of Dimdim into
Moodle closed the gap between at-the-lab and remote
experimentation, in what concerns team discussions and
result sharing, and opens the way to truly collaborative
learning via on-line workbenches.

CONCLUSION

The remote workbench presented in this paper is based
on low-cost remote webserver technology from Maxim-
Dallas. The DSTINIm410 boards offer an effective
solution for the development of remote test controllers
that are able to implement a wide set of on-line

experiments supporting a Moodle-based digital
electronics test course offered to computer and electrical
engineering students at the University of Porto in
Portugal, and the University of South Australia at
Adelaide. The development work was done
collaboratively between the two universities, and
provided in itself an excellent opportunity for
collaborative learning involving students in the two sides
of the globe. The client application and the DSTINIm410
remote micro-webserver code that support this remote
test workbench were both developed in Java.

Future development is envisaged in two main areas,
concerning the integration of the remote test workbench
into Moodle (by further customising the adapted MRBS
tool), and the customisation of the client application as an
optional module that can be added to any Moodle
installation.

ACKNOWLEDGMENT

The authors are grateful to Mário Pereira, who
developed an initial version of the remote test controller,
and to António Bandeira, who adapted the MRBS module
to be used as a scheduling tool.

REFERENCES

[1] J. Ma, J. V. Nickerson, “Hands-On, Simulated, and Remote
Laboratories: A Comparative Literature Review”, ACM Computing
Surveys, Vol. 38, No. 3, Article 7, September 2006.

[2] T. Abdel-Salam, P. Kauffman, G. Crossman, “Does the lack of
hands-on experience in a remotely delivered laboratory course affect
student learning?”, European Journal of Engineering Education, Vol.
31, No. 6, December 2006, pp. 747-756.

[3] D. Gillet, A. V. Nguyen, Y. Rekik, “Collaborative Web-Based
Experimentation in Flexible Engineering Education”, IEEE
Transactions on Education, Vol. 48, No. 4, November 2005.

[4] M. Auer, C. Klimbacher, A. Pester, “Embedded Web Server
Technology for Remote Online Labs”, Proceedings of the 2005 IEEE
International Symposium on Industrial Electronics (ISIE 2005), pp.
1673- 1676.

[5] IEEE 1149.1-2001 (Revision of IEEE Std 1149.1-1990) Standard
Test Access Port and Boundary-Scan Architecture, IEEE Computer
Society (Test Technology Standards Committee), 25 October 2001.

[6] J. M. Ferreira, A. M. Cardoso, M. G. Gericota, "An integrated
framework to support remote IEEE 1149.1 / 1149.4 design for test

experiments," 3rd Remote Engineering and Virtual Instrumentation
International Symposium (REV'06), Maribor (Slovenia), June 29-30,
2006.

[7] Don Loomis, The TINI™ Specification and Developer’s Guide,
Addison-Wesley, 2001, 365 pp., ISBN 0-201-72218-6.

[8] Maxim-Dallas DS80C400 evaluation kit [Online],
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4983 (visited on
April 16th, 2009).

[9] Serial Vector Format (SVF) [Online], http://www.asset-
intertech.com/support/svf.html (visited on April 16th 2009).

[10] J. M. Ferreira, A. M. Cardoso, "A Moodle extension to book
online labs," 2nd Remote Engineering and Virtual Instrumentation
International Symposium (REV'05), Brasov (Romania), June 30 - July
1, 2005.

[11] A web application for booking meeting rooms or other
resources, http://mrbs.sourceforge.net/ (visited on April 21st 2009).

[12] Videoconferencing Using Windows Messenger,
http://www.microsoft.com/windowsxp/using/windowsmessenger/learn
more/version45/v45videoconf.mspx (visited on April 20th 2009).

[13] Skype video calls, http://www.skype.com/allfeatures/videocall/
(visited on April 20th 2009).

[14] User Guide for Dimdim Web Meeting module in Moodle,
http://www.dimdim.com/documents/User
Guide_for_dimdim_Web_Meeting_module_in_Moodle_1_9.pdf
(visited on April 20th 2009).

AUTHORS

J. M. Ferreira and E. Sousa are with the Department
of Electrical and Computer Engineering of the Faculdade
de Engenharia da Universidade do Porto, 4200-465 Porto,
Portugal (e-mail jmf | eduardo.sousa @fe.up.pt).

Nafalski, J. Machotka, and Z. Nedic are with the
School of Electrical and Information Engineering of the
University of South Australia, Mawson Lakes 5095,
Adelaide, South Australia (e-mail Andrew.Nafalski |
Zorica.Nedic | Jan.Machotka @unisa.edu.au).

Manuscript received 23 April 2009.
Published as submitted by the author(s).

