
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

WebProcessPAIR: Recommendation

System of Improvement Actions

Luis Amaro

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: João Carlos Pascoal Faria

June 27, 2016

WebProcessPAIR: Recommendation System of
Improvement Actions

Luis Amaro

Mestrado Integrado em Engenharia Informática e Computação

June 27, 2016

i

Abstract

To help in the development of high-integrity software it is recommended the use of proper

processes, such as PSP (Personal Software Process) or TSP (Team Software Process). PSP/TSP

are software development processes of high maturity used to improve the ability of estimating

and planning projects, manage their quality as well as reduce defects.

Processes like PSP/TSP generate large amounts of data about the performance of a user

which can be periodically analysed to identify performance problems, identify the causes of the

problems and devise improvement actions.

However, the manual analysis of the data generated by these processes is time-consuming

and tiring, due to its large quantity and the time and expertise required to perform the analysis.

To solve this problem, it was developed in previous work a tool in java, called ProcessPAIR,

that automatically analyses performance data, identifies performance problems, and identifies

and ranks their root causes.

The main objective of this dissertation is to extend the ProcessPAIR tool to the web,

WebProcessPAIR, with a new feature, recommend improvement actions. This functionality is

based on building a catalogue of possible improvement actions to address the causes of

performance problems. For this purpose, it was used not only the existing literature but also used

methods such as crowdsourcing, i.e., appeal to the knowledge of a community of users and

experts. Thus, WebProcessPAIR aims to help software developers analyse their performance data

with less effort, and to identify potential performance problems, causes and improvement actions

to address those causes.

The dissertation follows an organization that presents clearly the topics covered. Initially it

is presented the context and the expected objectives in this dissertation, followed by the

background and state of the art about software process improvement, crowdsourcing, and

recommendation systems. Regarding the development of WebProcessPAIR, it is discussed the

implementation, design and testing, as well as the WebProcessPAIR usage and validations.

Finally, it is presented the conclusions and future work, followed by the references.

ii

Resumo

Para ajudar no desenvolvimento de software de elevada integridade é recomendado o uso de

processos apropriados, como por exemplo, o PSP (personal software process) ou o TSP (team

software process). O PSP/TSP é um processo de desenvolvimento de software de elevada

maturidade usado para melhorar a capacidade de estimativa e planeamento de projetos, gerir a

sua qualidade, assim como reduzir defeitos. Processos como PSP e TSP geram grandes

quantidades de dados sobre o desempenho do utilizador que periodicamente podem ser analisados

para identificar problemas de desempenho, determinar as causas dos problemas, e desenvolver

ações de melhoria. No entanto, a análise manual dos dados gerados por estes processos é uma

tarefa demorada e cansativa, devido à quantidade de dados a analisar e ao tempo e conhecimento

especializado necessários para realizar a análise. Para resolver este problema, foi desenvolvida

uma ferramenta em java, denominada ProcessPAIR, que analisa automaticamente os dados de

desempenho, identifica possíveis problemas de desempenho e determina e prioritiza as causas

desses problemas.

O principal objetivo desta dissertação é estender a abordagem e ferramenta ProcessPAIR

para a web, WebProcessPAIR, com uma nova funcionalidade, recomendar ações de melhoria.

Esta funcionalidade baseia-se na construção prévia de um catálogo de possíveis ações de melhoria

para abordar as causas dos problemas de desempenho. Para esse efeito recorreu-se não só à

literatura existente, mas também ao uso de métodos como crowdsourcing, ou seja, ao

conhecimento de uma comunidade de utilizadores e especialistas. Sendo assim, o

WebProcessPAIR permite ajudar os desenvolvedores de software a analisar os seus dados de

desempenho com menos esforço, e a obter indicações sobre possíveis problemas de desempenho,

causas e ações de melhoria para as mesmas.

A dissertação obedece a uma organização própria que pretende apresentar de forma clara os

temas abordados. Assim, foram inicialmente apresentados o contexto e os objetivos esperados

nesta dissertação, seguido do estado da arte sobre processos de melhoria de software,

crowdsourcing e sistemas de recomendação. Sobre o desenvolvimento do WebProcessPAIR, foi

abordada a implementação, design e testes, assim como explicadas as instruções de uso e

validações. Por último foram apresentadas as conclusões e trabalho futuro, seguido das

referências.

iii

Contents

Introduction ... 1

1.1 Context and motivation ... 1

1.2 Objectives .. 2

1.3 Dissertation’s structure .. 4

Background and State of the Art ... 5

2.1 Software process improvement with ProcessPAIR and PSP PAIR 5

2.1.1 ProcessPAIR ... 5

2.1.2 PSP PAIR .. 10

2.2 Crowdsourcing .. 12

2.2.1 Definition of crowdsourcing ... 12

2.2.2 Types of crowdsourcing .. 12

2.2.3 Motivations and incentives .. 18

2.2.4 Benefits and challenges of crowdsourcing 21

2.2.5 Examples of crowdsourcing services .. 22

2.2.6 Type of crowdsourcing in WebProcessPAIR 24

2.3 Recommendation systems ... 25

2.3.1 Recommendation systems for e-commerce: 25

2.3.2 Recommendation systems for problem solving: 27

2.3.3 Examples of recommendation systems for problem solving 28

2.3.4 Type of recommendation system in WebProcessPAIR................. 32

WebProcessPAIR Design, Implementation and Testing ... 34

3.1 Use cases ... 34

3.2 Conceptual model .. 36

3.3 Architecture and technologies ... 37

3.4 Database structure ... 39

3.5 MVC components ... 42

3.6 Gems installed ... 46

3.7 Navigation map ... 46

3.8 Integration with ProcessPAIR ... 49

iv

3.9 Acceptance tests .. 50

WebProcessPAIR Usage ... 52

4.1 How to access WebProcessPAIR .. 52

4.2 User registration .. 53

4.3 Definition of performance indicators .. 54

4.3.1 Usage instructions ... 54

4.3.2 Performance indicators loaded to the system 57

4.4 Recommend actions .. 61

4.4.1 Usage instructions ... 61

4.4.2 Recommendations loaded to the system 62

4.5 Performance analysis... 63

4.5.1 Usage instructions ... 63

4.5.2 Case study ... 66

Conclusion and Future Work... 70

5.1 Conclusions ... 70

5.2 Future Work .. 71

References .. 72

Appendix A .. 75

List of figures

Figure 1 - Steps of the WebProcessPAIR approach 2

Figure 2 - Example of performance problem and causes 2

Figure 3 - Functionality scheme of WebProcessPAIR 3

Figure 4 - UML activity diagram depicting the main activities and artefacts in

the approach 6

Figure 5 - ProcessPAIR main menu 7

Figure 6 - ProcessPAIR table view with list of performance indicators 8

Figure 7 - ProcessPAIR report view with a list of performance problems and

causes 9

Figure 8 - ProcessPAIR my profile filter 9

Figure 9 - Result of the profile filtering 10

Figure 10 - Four types of crowdsourcing by David Geiger [8] 15

Figure 11 - Self-determination continuum [10] 18

Figure 12 – Homepage of Yahoo answers 23

Figure 13 - Homepage of Quora 23

Figure 14 - Structure of question and answer in StackOverflow 29

Figure 15 - Example of linked and related questions 30

Figure 16 - Example of badges in StackOverflow 30

Figure 17 - Structure of WebMD symptom checker 31

Figure 18 - Analysis of a possible condition 32

Figure 19 – UML use case diagram for WebProcessPAIR 35

Figure 20 - UML class diagram depicting the main concepts of

WebProcessPAIR 36

Figure 21 – Deployment diagram of WebProcessPAIR 38

Figure 22 – Diagram of relational database model of WebProcessPAIR 40

Figure 23 - UI state diagram for unregistered users 47

Figure 24 – UI state diagram extention for registered users 48

Figure 25 – UI state diagram extention for administrator 48

file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918938
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918939
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918940
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918941
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918941
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918942
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918943
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918944
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918944
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918945
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918946
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918947
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918948
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918949
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918950
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918951
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918952
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918953
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918954
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918955
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918956
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918957
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918957
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918958
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918959
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918960
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918961
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918962

Figure 26 - Scheme of integration with ProcessPAIR 49

Figure 27 - Example of report.xml generated by ProcessPAIR 50

Figure 28 - WebprocessPAIR homepage 53

Figure 29 - Registration form 54

Figure 30 - Registered user homepage 54

Figure 31 - Performance indicators page (tab “tree”) 55

Figure 32 - Performance indicators found using the search form 55

Figure 33 - Performance indicators page (admin) 56

Figure 34 - New performance indicator page (admin) 56

Figure 35 - Performance indicator with improvement actions page 61

Figure 36 - Improvement actions for performance indicator "Design Review

Quality" 62

Figure 37 - Analyse personal performance page 63

Figure 38 - Analyse personal performance page with an uploaded file 63

Figure 39 - Performance problems page (top level indicators) 64

Figure 40 - Performance problems page (expanded with potential root causes) 65

Figure 41 - Highlighted recommendation accessed through performance

problems page 66

Figure 42 – Case study: ProcessPAIR personal problems results (report view) 66

Figure 43 - Case study: WebProcessPAIR personal problems results (top-level

indicators) 67

Figure 44 - Case study: WebProcessPAIR personal problems results

(expanded first top-level indicator) 67

Figure 45 - Case study: WebProcessPAIR personal problems results

(expanded second top-level indicator) 68

Figure 46 - Case study: WebProcessPAIR personal problems results

(expanded third top-level indicator) 69

Figure 47 - Current improvement actions for PI "Defects injected in design" 75

Figure 48 - Current improvement actions for PI "Design review quality" 76

Figure 49 - Current improvement actions for PI "Code review quality" 76

Figure 50 - Current improvement actions for PI "Code review yield" 76

Figure 51 – Current improvement actions for PI “Defects injected in code” 76

Figure 52 - Current improvement actions for PI "Code productivity" 76

Figure 53 - Current improvement actions for PI "Design productivity" 76

Figure 54 - Current improvement actions for PI "Design quality" 76

file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918963
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918964
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918965
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918966
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918967
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918968
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918969
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918970
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918971
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918972
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918973
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918973
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918974
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918975
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918976
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918977
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918978
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918978
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918979
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918980
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918980
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918981
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918981
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918982
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918982
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918983
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918983
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918984
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918985
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918986
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918987
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918988
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918989
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918990
file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/relatorio%20DISS%20-%20versao%20feup.docx%23_Toc455918991

List of tables

Table 1 – Example of identified problems and recommended improvement

actions in PSP PAIR [4] 11

Table 2 – Overview of crowdsourcing typologies 17

Table 3 - Motivations in the crowdsourcing community [12] 20

Table 4 - Motives and incentives in crowdsourcing platforms [14] 20

Table 5 - Crowdsourcing typologies used in WebProcessPAIR 24

Table 6 – Description of classes in the conceptual model 37

Table 7 – Description of classes of the database diagram 41

Table 8 - MVC components for each class 42

ix

Abbreviations

AIMS2 Accelerated Improvement Method Strongstep 2

CRUD Create, Read, Update, Delete

IA Improvement action

MVC Model, Views, Controllers

navbar Navigation bar

PI Performance indicator

PSP Personal Software Process

SEI Software Engineering Institute

TSP Team Software Process

UI User interface

Introduction

 1

Chapter 1

Introduction

In this chapter is introduced the dissertation work, presenting the context and motivation for

its development and explaining the objectives to be achieved. Finally, it is presented the structure

of the dissertation.

1.1 Context and motivation

To help software engineers in the development of high-integrity software, it is recommended

the use of processes, such as the PSP (Personal Software Process)/ TSP (Team Software Process).

The Personal Software Process (PSP) [1] is an example of a process framework that was

specifically designed by the Software Engineering Institute (SEI) to help individual software

engineers improve their performance and become effective team members following the

additional team building and team management practices of the Team Software Process (TSP).

High-maturity processes like the PSP generate large amounts of data about the developer

performance. This data can be analysed to identify performance problems (for example, a high

density of defects in delivered products), identify the causes of the problems (for example, high

number of defects that reach the testing phase of the system) and develop improvement actions

(for example, introducing unit testing and code reviews).

However, the manual analysis of the data generated by these processes is a time-consuming

and tiring task, due to the large quantity of data to analyse, and the time and expertise required to

perform the analysis. To solve this problem, it was developed in a PhD thesis, a tool in java, called

ProcessPAIR [1], which identifies and ranks performance problems and their root causes.

This dissertation will be held in partnership with the project AIMS2, promoted by

Strongstep, FEUP and Match Profiler, with the objective of developing a tool (Scraim) to help

Introduction

 2

organizations increase their productivity and reduce their expenses, through the provision of a

service of integrated project management, supported by turnkey development processes.

1.2 Objectives

Like is shown in Figure 1, so far the ProcessPAIR tool identifies performance problems,

identifies root causes and ranks root causes. The main objective of this dissertation is the

development of a web application, named WebProcessPAIR, that extends the previous approach

and tool with a new feature, the recommendation of improvement actions. Incorporating the

ProcessPAIR tool in the website, WebProcessPAIR, allows users to analyse automatically their

performance data generated by PSP and Scraim (future work), presenting them performance

problems, their causes and possible improvement actions.

To better illustrate the approach of ProcessPAIR, in Figure 2 is shown an example of a

common identified problem in project management, “Project behind schedule”, that is identified

through metrics such as the Schedule Performance Index (SPI), which calculates the deviation of

the deadline (reference value: deviation of 20%). For this problem were presented three possible

causes: effort under-estimation, under-allocation of resources and blocked tasks. Based on

identified causes and expert knowledge we can recommend improvement actions (e.g.

1. Identify performance
problems

2. Identify root
causes

3. Rank root
causes

4. Recommend
improvement

actions

ProcessPAIR

(previous work)

WebProcessPAIR

(current work)

Recommend improvement actions

Project behind
schedule

Performance problem

Effort under
estimation

Cause

Under allocation of
resources

Cause

Blocked tasks

Cause

Figure 1 - Steps of the WebProcessPAIR approach

Figure 2 - Example of performance problem and causes

Introduction

 3

recommend the usage of reliable estimation techniques). These improvement actions should

prevent or reduce subsequent occurrences of the same type of problem.

WebProcessPAIR allows to do this in a practical and quick way, helping users to improve

their performance in software development. For a better understanding of the approach, in Figure

3 is shown a scheme of the functionality of WebProcessPAIR. This functionality is divided into

two parts, building a catalogue of improvement actions, and recommending improvement actions

to the problems encountered.

The construction of the catalogue refers to the highest-ranked causes of performance

problems found by the tool, and to this end, the objective is to appeal not only to existing literature

but also to the use of methods such as crowdsourcing, i.e., appeal to the knowledge of a

community of users and experts to propose solutions to these causes. In the website is presented

a list of performance problems from many developers, where the community will contribute to

the solution of the identified problems through comments or votes. As new recommendations are

made, the system will update the catalogue with the recommendations with the most positive

votes given by users, thus maintaining a catalogue updated with the best solutions for various

types of problems.

Later, this catalogue will be used for the recommendation of improvement actions. For each

performance problem and respective cause presented in the platform, are recommended

improvement actions from the catalogue, suggested by the community of WebProcessPAIR. For

each improvement action suggested to a user, the user can leave his feedback, accepting the

proposal or not.

Contributor

Propose

Vote

Catalogue of

improvement actions

(for performance

problems)

User

System recommends

improvement actions

Feedback (accept proposals)

Figure 3 - Functionality scheme of WebProcessPAIR

Introduction

 4

1.3 Dissertation’s structure

The rest of this dissertation is organized as follows. Chapter 2 describes the background and

state of art regarding software process improvement, crowdsourcing and recommendation

systems based on crowdsourcing. Chapter 3 presents the WebProcessPAIR design,

implementation and testing such as use cases, conceptual model, architecture and technologies,

database structure, MVC components, navigation map, integration with ProcessPAIR and

acceptance tests. Chapter 4 describes the WebProcessPAIR usage, such as how to access

WebProcessPAIR, user registration, definition of performance indicators, recommend actions and

performance analysis. Chapter 5, last chapter, describes the conclusions and future work. Finally,

Appendix A presents the current status of WebProcessPAIR regarding the improvement actions

created by WebProcessPAIR users.

Background and State of the Art

 5

Chapter 2

Background and State of the Art

This chapter describes the state of the art in order to contextualize the topic of work. This

way it will be discussed the following topics: software process improvement, crowdsourcing, and

recommendation systems based on crowdsourcing.

2.1 Software process improvement with ProcessPAIR and PSP

PAIR

In order to better understand what the ProcessPAIR tool is and how it works, in this section

will be presented a detailed analysis of ProcessPAIR, as well as its previous version, PSP PAIR.

2.1.1 ProcessPAIR

ProcessPAIR is a novel tool for automated model-based analysis of performance data

produced in the context of high-maturity software processes, such as the Personal Software

Process (PSP) and the Team Software Process (TSP). The tool is currently able to analyse the

performance data produced by PSP users, to identify performance problems and rank their root

causes. The analysis is based on a performance model calibrated based on a large dataset from

the Software Engineering Institute (SEI), referring to more than 30,000 projects. The tool is

currently freely available at https://blogs.fe.up.pt/processpair/ [2].

Background and State of the Art

 6

Overall approach

For enabling the automated analysis of performance data of PSP developers, i.e., the

identification of performance problems and root causes, it was conceived a performance model.

The performance model comprises a set of performance indicators (PI) and cause-effect

relationships, for identifying root causes of performance problems.

An overview of the artefacts and steps involved in the approach for automated performance

analysis is shown in Figure 4. In order to enable the automated identification of performance

problems (B1), one has to first decide on the relevant performance indicators (A1) and ranges

(A3). In order to enable the automated identification of root causes of performance problems (B2),

one has to first decide on the relevant cause-effect relationships (A2). When multiple root causes

are identified for a performance problem, it is important to rank them according to a cost-benefit

estimate of improvement efforts (B3). In our approach, the cost of improving an affecting PI (root

cause) is estimated based on its approximate statistical distribution (A4), and the benefit on the

affected PI is estimated based on a sensitivity coefficient (A5). The proposed work for this

dissertation is to develop a recommendation system which will recommend improvement actions

for the highest ranked causes identified in the previous work (B4). [3]

Figure 4 - UML activity diagram depicting the main activities and artefacts in the approach

ProcessPAIR

(previous work)

WebProcessPAIR

(current work)

Background and State of the Art

 7

Tool overview

Launch and file view

By launching ProcessPAIR tool (Figure 5) [2] the user can choose the type of input file to

analyse. Currently, the tool is able to analyse the export files, with “.mdb” extension, generated

from the SEI’s PSP Student Workbook, or the “data.xml” files exported from Process Dashboard1.

By selecting the input file and pressing the “Analyze file” button the user will get the detailed

analysis of the performance data.

Performance indicators

In the ProcessPAIR tool the user can check in the “Table view” (Figure 6) the values of the

performance indicators for the data analysed, as well as summarized performance information.

Each cell is coloured green, yellow or red, in case its value suggests no performance

problem, a potential performance problem, or a clear performance problem, respectively. This

way, the Table View helps quickly identifying performance problems. The exact ranges

considered can be consulted in the “Indicator View”. To skip to a specific indicator in the

“Indicator View”, the user can click on the indicator name in the first column.

The “Summary” column shows an overall rating between 1 and 5 stars for each performance

indicator, computed from the per project values (with higher importance for the last projects), and

coloured according to the number of stars.

1 www.processdash.com/

Figure 5 - ProcessPAIR main menu

Background and State of the Art

 8

The performance indicators are organized hierarchically, starting from three top-level

indicators (Time Estimation Accuracy, Process Quality Index, and Productivity), and descending

to lower level indicators (child indicators) that affect the higher level ones according to a formula

or statistical evidence [1]. This way, by drilling down from the top-level indicators to the lower

level ones, focusing on the red (or yellow) coloured cells, the user can easily identify potential

root causes of performance problems.

Report view

The objective of Report View (Figure 7) is to indicate in a simple way, overall or project by

project, the most relevant top-level performance problems (coloured red or yellow in the previous

views) and potential root causes. To see all the intermediate causes, the user needs to uncheck the

“Show only leaf causes” checkbox; to see information related to a single project, the user needs

Figure 6 - ProcessPAIR table view with list of performance indicators

Background and State of the Art

 9

to select the project on the top left combobox, and to get detailed information about a performance

indicator, need to press the link.

Profile filtering

It is also possible for the user to filter the data points used for calibration based on his profile

(Figure 8). This way, only the projects from subjects with most similar profiles to the one

indicated will be selected. After the calibration process, the user will get an information message

(Figure 9). In this example, only 50 most similar subjects were selected (the minimum number

required by the tool for statistical significance), with a similarity coefficient greater than 0.889

(the similarity coefficient ranges between 0 and 1).

Figure 7 - ProcessPAIR report view with a list of performance problems and causes

Figure 8 - ProcessPAIR my profile filter

Background and State of the Art

 10

2.1.2 PSP PAIR

PSP PAIR [4], an earlier version of the current ProcessPAIR tool, calibrated based only on

student data from FEUP, has an initial attempt for implementing the recommendation of

improvement actions for the time estimation performance problem, shown in Table 1.

The initial attempt towards a recommendation system was based on hardcoded suggestions

from a single process expert.

Our current approach for a recommendation system for the ProcessPAIR tool (a complete

model and tool, calibrated based on a large data set from the SEI, having not only time estimation

but also quality and productivity) is based on crowdsourcing.

Figure 9 - Result of the profile filtering

Background and State of the Art

 11

Table 1 – Example of identified problems and recommended improvement actions in PSP PAIR [4]

Indicator Problems identified and suggested improvement actions

Missing parts The problem with the identification of the parts.

Recommended actions:

 A more careful Conceptual Design is recommended, with more detail or time

spent in design.

Expurious

Parts

The problem with the identification of the parts.

Recommended actions:

 A more careful Design is recommended, with more detail or time spent in

design.

Part

Estimation

Error

The problem in the relative size table and/or problem with the identification of

the parts.

Recommended actions:

 Review the types of the parts, their relative size and related topics.

Productivity

Stability –

Plan and

Postmortem

(same for

other phases)

The problem with changes in the way of working.

Recommended actions:

 Try to keep a stable productivity and check what has been modified lately.

 If the productivity has increased try to keep it stable at that new value in

future projects.

Process

Stability
Recommended actions:

 Try to keep the process stable, changing the process usually leads to a

variation in productivity.

Total Defect

Density

Recommended actions:

 Improve the process quality.

 Do an analysis of the more frequent and more expensive errors in order to

not repeat them, define preventive actions.

Review Rate Recommended actions:

 If the value is too high, it is necessary to reduce it by doing the review more

carefully and slowly.

 If it is too slow (low value), do the review in a more focused and efficient

way.

 Check if the artefacts are understandable.

Review to

Development

Ratio

Recommended actions:

 If the value is too high, it is necessary to do the review more carefully and

slowly or code faster and more efficiently.

 If the value is too low, do the review in a more focused and efficient way or

take your time coding.

 Check if the artefacts are understandable.

Background and State of the Art

 12

2.2 Crowdsourcing

In this section, an overview of the concept of crowdsourcing and its different types applied

by different authors over the years is discussed in sub-sections 2.2.1 and 2.2.2, how to motivate

and incentive people in a crowdsourcing platform is discussed in sub-section 2.2.3, the benefits

and challenges are discussed in sub-section 2.2.4, some examples of services that use

crowdsourcing are discussed in sub-section 2.2.5, and how crowdsourcing approach will work for

developing a recommendation system for ProcessPAIR is discussed in sub-section 2.2.6.

2.2.1 Definition of crowdsourcing

The word “crowdsourcing” comes from a portmanteau of "crowd" and "outsourcing”; by

joining ideas from a group of people (crowd) and the practice of outsourcing tasks, we can

introduce new and more developed skill sets or a larger workforce to achieve a specific goal. [5]

Crowdsourcing can take place on many different levels, due to the growth of digital

innovation, it is now easier than ever for people to contribute, whether with ideas, improvements,

learnings, funds or anything useful, to a project or a cause. Crowdsourcing works for a common

goal, to share knowledge between communities.

The first introduction to Crowdsourcing was in 2006 by the journalist Jeff Howe from the

Wired magazine, where he published an article that sets the definition of crowdsourcing as:

“Simply defined, crowdsourcing represents the act of a company or institution taking a function

once performed by employees and outsourcing it to an undefined (and generally large) network

of people in the form of an open call”. [5]

2.2.2 Types of crowdsourcing

Since the introduction of the concept of crowdsourcing by Howe, it has evolved over the

years, through several different practices. In this topic will be presented several types of

crowdsourcing approached by different authors over the years.

2.2.2.1 Jeff Howe typology

In 2008 [6], Howe distinguished four types of crowdsourcing based on how various

applications function:

 Crowd Creation

Crowd creation happens when the company turns to its users to actually create, or co-create,

a product or service. For example, activities such as asking the crowd to film TV commercials,

Background and State of the Art

 13

perform language translation or solve challenging scientific problems. This strategy is combined

with crowd voting to create marketing campaigns.

 Crowd Voting

Crowd voting is the most popular form of crowdsourcing, which generates the highest levels

of participation. Crowd voting leverages the community’s judgment to organize, filter and stack-

rank content such as brainstorming ideas, newspaper articles, music and movies. It allows the

crowd to express their opinion through voting or rating.

 Crowd Wisdom

Howe defined the “Wisdom of Crowds” principle as the attempt to gather many people’s

knowledge in order to solve problems, predict future outcomes or help direct corporate strategy.

Howe understands that a larger group of diverse people can make better decisions, and display

more intelligence than any smaller collection of experts.

 Crowd Funding

Crowdfunding differs from other types of crowdsourcing since it does not depend on the

skills, knowledge, creativity or feelings of the crowd but on the funding of them, establishing a

connection between people that have money with those that need it. This way it allows people to

fund projects in which they have an interest. Crowd funding is a great example of a process

innovation.

Based on the typology approached by Jeff Howe in 2008, were created other types that

synthesize crowdsourcing initiatives. Below are described the typologies of Daren Brabham [7],

David Geiger [8] and Estellés-Arolas[9].

2.2.2.2 Daren Brabham typology

In 2011 Brabham [7] defined crowdsourcing as: "Crowdsourcing is an online, distributed

problem-solving and production model that leverages the collective intelligence of online

communities to serve specific organizational goals."

According to Daren Brabham, the problems that crowdsourcing is best suited to solve are:

 Knowledge Discovery and Management

An organization tasks a crowd with finding and collecting information into a common

format. Ideal for information gathering, organization and reporting problems.

Background and State of the Art

 14

 Broadcast Search

Organizations tasks a crowd with solving empirical problems. Ideal for ideation problems

with empirically provable solutions such as scientific challenges.

 Peer-Vetted Creative Production

Organizations tasks a crowd with creating and selecting creative ideas.

 Distributed Human Intelligence Tasking

Large data problems are decomposed into small tasks requiring human intelligence, and

individuals in the crowd are compensated for processing bits of data. Monetary compensation is

a common motivator for participation.

2.2.2.3 David Geiger typology

In 2011, David Geiger [8] with the combination of two different crowdsourcing systems,

one that treat the external elements as homogenous, and the other that explicitly seeks the

participation of heterogeneous elements, created four different types of crowdsourcing (Figure

10). Every type represents a prototypical system that provides a distinct service to a

crowdsourcing organisation.

 Crowd rating

Crowd rating makes use of large quantities of homogeneous contributions, seeking the value

of an emerging property. These contributions are made in a collective way since they are

aggregated to a collective response to the given problem. In crowd rating, every contribution

represents a specific vote, so there is no prior or wrong result. These systems are often used to

collect reviews, like for example, TripAdviser or eBay reputation system.

 Crowd creation

Crowd creation makes use of a variety of heterogeneous external contributions. In crowd

creation, the contributions need to be put in relation to each other since the objective of these

systems is to produce satisfying outcome for the tasks, where the variety of contributions increases

with size and diversity of the crowd. A known service of a user-generated content system that

uses crowd creation is Wikipedia.

Background and State of the Art

 15

 Crowd processing

Crowd processing, like crowd rating, makes use of large quantities of homogeneous external

contributions, without aiming for an emerging property. These contributions are independent of

each other and can be evaluated individually. The objective of crowd processing is to combine

individual contributions to deliver the best solution for the given problem.

 Crowd solving

Crowd solving refers to a qualitative approach using heterogeneous stimuli that represent

the solution to a specific problem. The external elements in crowd solving systems are evaluated

individually on the basis of objective and well-defined criteria. The objective in crowd solving is

to get as close as possible to the best solution of a problem, where the process can terminate when

the best solution is found and every additional contribution potentially increases the quality of the

results.

2.2.2.4 Estellés-Arolas typology

In 2012, Estellés [9] analysed the different typologies made by different authors (Howe,

Brabham, Kleeman et al., Greets, Reichwald & Piller and Burger-Helmchen & Penin) to develop

a new integrated typology.

Figure 10 - Four types of crowdsourcing by David Geiger [8]

Background and State of the Art

 16

 Crowdcasting

In this type of crowdsourcing, a problem or a task is presented to the crowd and who settle

first or provide the best solution is rewarded.

 Crowdcollaboration

In this type the communication occurs between individuals of the crowd, while the company

which initiates the process stays out. In these tasks, individuals contribute through their

knowledge to solve problems or raise ideas collaboratively and usually there is no financial

reward. This type of crowdsourcing is divided into two subtypes that differ in the final goal:

o Crowdstorming: Consists in brainstorming online sessions, in which the crowd

can propose ideas, or comment or vote on other ideas.

o Crowdsupport: In this case, the customers or users themselves are the ones who

solve the questions or problems of others, so that they don’t need to contact the

official support of the company.

 Crowdcontent

In these tasks, the crowd use their labour and knowledge to create or find the content of

various kinds. In Crowdcontent, each individual works individually and at the end, the outcomes

of all the participants comes together. This type of crowdsourcing is divided into three subtypes:

 Crowdproduction. The crowd is responsible for creating content. For example,

the translation of short extracts of text or identification of images.

 Crowdsearching. The crowd is responsible for looking for content on the

internet according to a particular task.

 Crowdanalyzing. This case is similar to crowdsearching, with the difference that

the search is not done with Internet text documents, but with multimedia

documents like images or videos

 Crowdfunding

In crowdfunding, an individual, organization or company seeks to fund from the crowd in

exchange for a reward. It allows the financing of projects through small contributions made by a

broad group of people.

Background and State of the Art

 17

 Crowdopinion

This type of crowdsourcing aims to meet users' opinion about a particular problem or

question, or on products through, for example, comments or votes. In other words, the crowd

gives his opinion or judgment to make assessments.

2.2.2.5 Overview of crowdsourcing typologies

To conclude this subsection, an overview of crowdsourcing typologies approached by

different authors and grouped by the most common practices in the use of crowdsourcing, such

as, problem-solving, creative input, opinion, outsourcing tasks and search information is shown

in Table 2.

Table 2 – Overview of crowdsourcing typologies

 Author

Aim

Jeff Howe Daren

Brabham

David

Geiger

Estellés & Guvara

Problem

solving

Crowd

wisdom

Broadcast

Search

Crowd

solving

Crowdcollaboration

Crowdcasting

Creative input Crowd

creation

Peer-Vetted

Creative

Production

Crowd

creation

Crowdcontent

Opinion Crowd

voting

 Crowd rating Crowdopinion

Outsourcing

tasks

 Distributed

Human

Intelligence

Tasking

Crowd

processing

Raising money Crowd

funding

 Crowdfunding

Search

information

 Knowledge

Discovery and

Management

 Crowdsearching

(crowdcontent)

Background and State of the Art

 18

2.2.3 Motivations and incentives

2.2.3.1 Self-determination theory

Crowdsourcing has many benefits and advantages, however for crowdsourcing to happen

and be successful, there needs to be a group of people involved and with willingness to contribute

and participate, as they are the basis of the success of crowdsourcing. For this, it is essential to

know what motivates and encourages people who constitute the crowd.

Ryan & Deci [10] state that “to be motivated means to be moved to do something”. Self-

Determination Theory (SDT), distinguishes different types of motivation (Figure 11). Motivation

can be defined as the force or set of interior forces that drive the behaviour of the subject to

achieve a particular goal. Represents the needs, interests and expectations that make us feel

motivated for a particular action. We can then distinguish three types of motivation: intrinsic,

extrinsic and amotivation.

The self-determination continuum indicates also the levels of internalisation increasing from

left to right, which is the process of adopting a value or regulation, and the degree to which this

has been integrated to be a part of the self.

Amotivation is the least self-determined and refers to the lack of intention to perform a task,

as a result of not valuing an activity, not feeling competent to do it, or not believing it would

amount to anything.

Figure 11 - Self-determination continuum [10]

Background and State of the Art

 19

Extrinsic motivation refers to behaviour that is driven by external sources. These rewards

provide satisfaction and pleasure that the task itself may not provide.

Ryan and Deci developed the Organismic Integration Theory as a sub-theory of SDT, to

explain the different ways that extrinsically motivated behaviour is regulated.

Organismic Integration Theory describes that extrinsic motivation should be divided into

four types of behaviour regulation that often differ in terms of their relative autonomy: external,

introjected, identified and integrated.

External regulation is the least autonomous, it is performed because of external demand or

possible reward.

Introjected regulation introjection is associated with ego involvement, in which a person

performs an act in order to enhance or maintain self-esteem and the feeling of worth.

Identified regulation is a more autonomously driven form of extrinsic motivation. It is

related to the personal importance of a behaviour.

Integrated regulation is the most autonomous extrinsic motivation. Integration occurs

when regulations are fully assimilated with self so they are included in a person's self-evaluations

and beliefs on personal needs. It is the most related to intrinsic motivation but still classified as

extrinsic because the motivation in performing the task is extrinsic to the self, rather than the

inherent enjoyment or interest in the task.

Hossain [11] states that in crowdsourcing platforms, the significant extrinsic motivational

factors are reputation, status, peer pressure, fame, community identification and fun.

Intrinsic motivation is the most self-determined and refers to behaviour that is driven by

internal rewards, which comes from the pleasure that someone gets by the task itself, the resulting

satisfaction in completing or even working on a task.

In the crowdsourcing context, Hossain understands that intrinsic motivation mainly depends

on members and their motivation to participate. The motivation is considered as a process to

control, release and maintain physical and mental activities

Being that, it is very important to know what motivate people to participate, since the quality

and the quantity of contributions can be determined by knowing insight about incentives required

to increase motivation.

In Table 3 is shown the variation of different factors that motivate people in the communities

of crowdsourcing [12], according to the types of motivation in the Self-determination theory.

In order to increase motivation, it is important to incentive the users of the crowdsourcing

platform. While the motivational factors correspond to factors that induce a certain behaviour,

incentives correspond to rewards, which are offered to the participants of these platforms, in order

to stimulate their participation in carrying out the tasks [13].

Background and State of the Art

 20

Table 3 - Motivations in the crowdsourcing community [12]

 Motivation

type

Motivations in crowdsourcing community

E
x

tr
in

si
c

m
o
ti

v
a

ti
o

n

External

regulation

To make money by contributing creative ideas or solutions.

To share profit by sell creative ideas to firms.

To improve job prospect.

Introjected

regulation

To burnish reputation in specific field.

To demonstrate own ability.

To alleviate peer pressure.

Identified

regulation

Identify the value of sponsored firms.

Identify the value of crowdsourcing community.

Desire to increase the welfare of other people.

Integrated

regulation

Believe that he belongs in the crowdsourcing community.

Past success makes participants sense of belonging to the sponsored

company.

The challenge of solving difficult problems.

 Intrinsic

motivation

Feel happy to express creative ideas freely.

Be interested in the firms’ new product development process.

Addiction to the tasks proposed and love to the community.

Leimeister [14] in his research summarizes this interplay between motives and incentives

that imply requirements for incentive-supporting components. In Table 4 are presented some

examples of incentives that can be provided according to the motive associated. The first column

contains the motives as mentioned before. The second column contains the incentives assigned to

the motives in the first column. Each motive can be activated by one or more of these incentives.

Table 4 - Motives and incentives in crowdsourcing platforms [14]

Motives Incentives

Learning Access to the knowledge of experts

Access to the knowledge of mentors

Access to the knowledge of peers

Direct compensation Prizes

Career options

Self-marketing Profiling options

Social motives Appreciation by the organizer

Appreciation by peers

Background and State of the Art

 21

2.2.4 Benefits and challenges of crowdsourcing

Analysing the concept of crowdsourcing and its existing literature, it can be concluded that

the advantages and disadvantages of their use will be very dependent on the type of crowdsourcing

used since this concept is heterogeneous. Thus, the benefits and challenges presented in this

section are in compliance with the WebProcessPAIR platform.

2.2.4.1 Benefits

Quality

Quality refers to the characteristics and originality of a solution proposed by contributors

and the way it matches the asker tastes and expectations. Addressing a mass of skilled individuals

through an open call is a relatively proven approach for problem solving.

Reduce costs

One of the major benefits of crowdsourcing is its relatively low cost, although the amounts

involved differ according to the type of crowdsourcing [15].

Since WebProcessPAIR participants are contributors (instructors, coaches, teachers, etc.)

and users (students, developers, etc.), the remunerations can be relatively low, however, voluntary

work is not a rule in Crowdsourcing.

Network externalities

Positive network externalities occur when the value of a system increases dependent on the

number of other people using it. Crowdsourcing is a way to foster network externalities and the

adoption of new technologies [15].

Access to a diverse set of people

Through crowdsourcing, companies have access to a large number of people who have a

diversity of skills and abilities, and that can contribute to the multiplicity and innovation of

solutions [6].

2.2.4.2 Challenges

Quality control

By creating an online environment in which people can engage with each other directly, trust

and safety, as well as quality control, can be highly challenging and given that this is a base

expectation for most users, needs to be managed well from the outset.

How to ensure the quality of the contributions?

Background and State of the Art

 22

Information-activism [16] understands that there is no right solution for this problem,

however, there are ways in which it’s possible to alleviate the possibility of false or unusable

information. The most reliable contributions are those which are confirmed by multiple sources

and collected through different types of media, or validated by a trusted source on the ground.

Another way is to identify different tiers of contributors, and attribute them a level of trust.

Trusted community members with good reputation and which gave credible information over the

time would rate higher on this scale, than other unknown members.

The best way to ensure verification of the contributions, is to designate one or more trusted

members of the community as moderators. For example, in cases where the contribution can

defame other members or simply be irrelevant, the moderator can report this contribution as well

as report the user who made it. A mutual incentive system ensures more reliable reports.

Lack of contributors

While crowdsourcing is likely to benefit from network externalities, it’s also possible that

the platform fails to attract sufficient contributors, and since crowdsourcing is about having a

crowd, that could be a serious problem. This concept relies on voluntary participation of people

so reaching a good number of contributors is not guaranteed. One possible solution is to rely on

financial rewards in order to increase incentives for individual’s participation, however it will

reduce the cost advantage of crowdsourcing [10].

2.2.5 Examples of crowdsourcing services

In this section will be presented two examples of solution finding platforms that use the

concept of crowdsourcing for the same purpose of WebProcessPAIR, to offer solutions to

proposed problems, through the use of knowledge of people willing to help.

Yahoo answers

Yahoo Answers is an online question-and-answer community launched by Yahoo!, where

members can share their questions and seek answers from the community, like is shown in Figure

12. Yahoo Answers differentiate the questions into several categories such as Art & Humanities,

Beauty & Style, Business & Finance and Consumer Electronics.

Questions are initially open to answers for four days. However, the asker can choose to pick

a best answer for the question after a minimum of one hour. However, comments and answers

can still be posted after this time. To ask a question, the person must have a Yahoo! account with

a positive score balance of five points or more. Users also receive ten points for contributing the

"Best Answer" which is selected by the question's asker. [17].

Background and State of the Art

 23

Quora

Quora is another solution finding platform where people seek help for any questions from

people who have proper background or have the first-hand experience, like is shown in Figure

13. Besides this, people can also post short blogs on Quora to share knowledge or experience on

any topic. Unlike InnoCentive or Yahoo Answers, Quora requires its users to register with their

real names and backgrounds in order to ensure the qualities and trustworthiness of answers and

shares [17].

Figure 12 – Homepage of Yahoo answers

Figure 13 - Homepage of Quora

Background and State of the Art

 24

2.2.6 Type of crowdsourcing in WebProcessPAIR

As mentioned previously the WebProcessPAIR platform uses the concept of crowdsourcing

to appeal to the knowledge of a community of users and experts. The community participates

indirectly in the construction of a catalogue of possible improvement actions for the performance

problems described in the application.

For each performance problem, the contributors are able to suggest improvement actions in

order to address the problem.

From the analysis of various types of crowdsourcing, taking into account the purpose of

using it in WebProcessPAIR, the most appropriate typology from each author is given in Table

5.

Table 5 - Crowdsourcing typologies used in WebProcessPAIR

WebProcessPAIR

Author Typologies

Howe Crowd wisdom

Bradham Broadcast search

Geiger Crowd solving

Estélles-Arolas Crowdcollaboration

Regarding the typologies of Howe, the most appropriated is crowd wisdom, because the goal

is to use the crowd community to contribute with solutions to problems proposed by other users.

As regards the types addressed by Bradham, the closest would be the Broadcast search

because it is related to "problem-solving" through ideas provided by the crowd.

The typology “crowd solving” from Geiger is quite in accordance with the aim pursued in

WebProcessPAIR, since the objective is to get as close as possible to the best solution of a

problem and every additional contribution potentially increases the quality of the results

At last, from Estélles-Arolas typologies, WebProcessPAIR use the crowdcollaboration and

its subtype crowdstorming; like in the other typologies chosen, the goal is to let users contribute

with their knowledge to solve problems, through brainstorming online sessions, where the crowd

can propose ideas, or comment or vote on other ideas.

Background and State of the Art

 25

2.3 Recommendation systems

In this section it will be presented the analysis of recommendation systems and their different

approaches. In context with the previous section, will also be analysed recommendation systems

for problem-solving based on crowdsourcing and explained what kind of recommendation system

is best suited to be used in WebProcessPAIR. To better illustrate the use of these systems, will be

presented two examples of websites that use problem-solving recommendation systems,

StackOverflow and WebMD-symptom checker, having been made a detailed analysis of the

functioning of StackOverflow, since it has many characteristics similar to WebProcessPAIR.

Recommendation systems (or recommender systems) are a subclass of information filtering

systems which aim to predict the “rating” or “preference” that a user would give to an item. Over

the past years, vast advancements in recommendation systems have been done, becoming this an

extremely common feature on the internet since it can be applied in a variety of applications.

Many websites use recommendation techniques to increase users’ experience or to help

improving the information overload problem. The techniques are based on similar ones found in

information retrieval and, until recently, recommendation systems were commonly classified

together with information retrieval systems.

Recommendation systems are normally used in two ways, for e-commerce and for problem

solving. In e-commerce, recommendation systems typically produce a list of recommendations,

through collaborative filtering, content-based filtering, or a combination of both, hybrid

recommendation systems. In problem solving, the recommendations are made based on expert

knowledge or are based on crowdsourcing.

2.3.1 Recommendation systems for e-commerce:

Collaborative filtering recommendation systems

Collaborative filtering recommendation attempts to identify similarities between entities

(users or items) based on the interaction history of these entities. Being that, it recommends data

that were previously ranked by a number of users who presumably have similar interests as the

user who requested the recommendation. The great advantage of the collaborative filtering

approach is that it is capable of making recommendations without requiring previous knowledge

about the content of the data recommended, for example movies or music.

For measuring user similarity or item similarity, many algorithms have been used, for

example, the k-nearest neighbourhood (k-NN) approach and the Pearson Correlation [18].

Background and State of the Art

 26

One of the most famous examples of collaborative filtering is item-to-item collaborative

filtering (people who buy x also buy y), an algorithm used by Amazon.com's recommender

system. Other examples are Facebook, MySpace, LinkedIn, and other social networks that use

collaborative filtering to recommend new friends, groups, and other social connections (by

examining the network of connections between a user and his friends).

Content-based filtering recommendation systems

In content-based filtering the recommendations are based on the content of the items,

expressing the content of each data in a form that can be objectively evaluated, and filtering out

data whose content doesn’t match the user’s preferences. In a content-based recommender system,

keywords are used to describe the items and a user profile is built to indicate the type of item the

user likes [18]. To build the user profile the system mostly focuses on two types of information,

a model of the user's preference, and a history of the user's interaction with the recommendation

system. Direct feedback from a user, usually in the form of a like or dislike button, can be used

to assign higher or lower weights on the importance of certain attributes.

A common example where it is used content-based filtering is the recommendation of

movies, used for example in known websites like IMDb (Internet Movie Database) or Rotten

Tomatoes.

Hybrid recommendation systems

Recent researches have demonstrated that a hybrid approach, combining collaborative

filtering and content-based filtering could be more effective in some cases. Hybrid approaches

can be implemented in several ways. Several studies empirically compare the performance of the

hybrid with the pure collaborative and content-based methods and demonstrate that the hybrid

methods can gain better system optimization and fewer weaknesses than pure approaches [18].

A good example of a company that uses a hybrid recommendation system is Netflix. They

make recommendations by comparing the watching and searching habits of similar users

(collaborative filtering) as well as they suggest movies that share characteristics with films that a

user has rated highly (content-based filtering).

Background and State of the Art

 27

2.3.2 Recommendation systems for problem solving:

Knowledge-based recommendation system

Knowledge-based recommendation systems provide the user with advice about a decision

to make or an action to take. These systems rely on knowledge provided by human experts,

encoded in the system and applied to input data, in order to generate recommendations.

Most knowledge-based systems use a case-based approach as their recommendation

technique. Normally in these systems, the user enters his problem description. The cases in the

case base are then ranked accordingly, and the most appropriate case is retrieved as a solution to

the user problem.

In the case-based recommendation, the knowledge acquisition approach amounts to store the

known cases into a knowledge base (or case base). A step of knowledge evolution is usually

present. The human experts provide explanations on the application of a particular case as the

solution to the user problem. These explanations constitute knowledge added to the case base. In

parallel, some sort of user profile needs to be created or the user behaviour needs to be modelled.

Information about the user has to be collected: his/her preferences, interests, or any other elements

characterizing his situation requiring advice [19].

Recommendation systems based on crowdsourcing

Like knowledge-based recommendation system, recommendation systems based on

crowdsourcing provide the user with advice about the decision to make or an action to take.

However, this refers to the knowledge of a group of people who are willing to contribute with

solutions to the problems.

In 2014, Geiger [20] explains that almost all of the contributor profiles that are built in

existing task recommendation approaches based on crowdsourcing, are limited to information that

is collected internally. By perceiving a contributor not only as an isolated component of one

particular system but as a connected individual that is part of many systems, a recommendation

can incorporate a rich variety of digital information already present on the Web, thus mitigating

sparse data and creating more exact profiles. External information may come, for example, from

other crowdsourcing systems, knowledge communities, social networks, blogs, expert directories,

and research publications.

Most recommendation systems research provides an extensive body of knowledge on all

stages of recommendation development. Based on the concept of crowdsourcing, the design of

personalized task recommendation systems could benefit from a more substantial application of

foundational knowledge. By adapting this knowledge to a crowdsourcing context, researchers can

draw on insights regarding, for instance, the selection and implementation of suitable techniques.

Recommendation system approaches based on crowdsourcing have at least two exclusive

Background and State of the Art

 28

characteristics that differentiate them from most traditional recommendation scenarios. The first

is that they implicitly or explicitly model their users' capabilities in addition to their interests. And

the second is that they have the ability to draw on their users' contributions as an additional source

of knowledge.

2.3.3 Examples of recommendation systems for problem solving

In this section will be presented two examples of systems that have characteristics that go in

accordance to the objectives of WebProcessPAIR: Stack Overflow and WebMD-Symptom

Checker.

Stack Overflow

Stack Overflow [21] is a good example to be analysed in detail, since its structure and use

of the concept of crowdsourcing in a problem-solving recommendation system is very similar to

WebProcessPAIR. In order to better understand how it works, let's look at the following analysis.

Stack Overflow is a privately held Q&A (questions & answers) website, the flagship site of

the Stack Exchange Network, created in 2008 by Jeff Atwood and Joel Spolsky.

It features questions and answers on a wide range of topics in computer programming that

are tightly focused on a specific problem. Questions that are of a broader nature or invite answers

that are inherently a matter of opinion are usually closed by a process carried out by the site's

participants.

The four most common forms of participation are question asking, question answering,

commenting, and voting/scoring. Experts are motivated to answer questions because they enjoy

helping, and because good answers increase their prominently advertised reputation score.

Each question, answer, and comment someone makes can be voted up or down by anyone

with a certain minimum reputation score.

Background and State of the Art

 29

To better understand how this system works, it is shown in Figure 14 an example of a

question and their answers.

In (1) users can give their feedback on the question, through a system of upvote/downvote,

in case they find it interesting or otherwise. In (2), it is possible to mark the question as

"favourite". The user can check all his favourite questions in his profile section. In (3) are the tags

chosen by the user that made the question.

Figure 14 - Structure of question and answer in StackOverflow

Background and State of the Art

 30

With respect to answers, in (4), users can leave their vote to an answer via the up/down vote

system. In (5) the user who asked the question, pointed that answer as the best one (only the user

who asked the question can indicate the best answer). In (6) are the comments made to an answer.

To each questions and answers it is possible to comment and also to vote (up/down) on other

comments. Finally, in (7) it is possible to sort all the answers by the best rating (votes), or by the

data that was submitted (oldest) or that have been discussed recently (active).

For each question (Figure 15) it is possible to view related questions (related) with similar

tags for example, or questions that were provided through answers or comments (linked).

Users have an overall reputation score. Answers earn their author 10 points per up-vote,

questions earn 5, and comments earn 2. As users gain reputation, they earn administrative

privileges, and more importantly, respect in the community. Administrative privileges include

the ability to edit, tag, or even delete other people’s responses. These and other administrative

contributions also earn reputation, but most reputation is earned through questions and answers.

Users also earn badges (Figure 16), which focuses attention on the different types of

contributions.

Figure 15 - Example of linked and related questions

Figure 16 - Example of badges in StackOverflow

Background and State of the Art

 31

Crowdsourcing is based on the idea that knowledge is diffuse, but web technology makes it

much easier to harvest distributed knowledge. A voting and reputation system isn’t necessary for

all forms of crowdsourcing, but as the web matures, we’re seeing voting and reputation systems

being applied in more and more places with amazing results [22].

Even having the recommendation system for problem solving based on crowdsourcing and

other similar characteristics to WebProcessPAIR, StackOverflow lacks a very important feature,

the automatic recommendation of solutions. While at StackOverflow recommended solutions

have to be made through a question proposed by a user, in WebProcessPAIR, the recommended

improvement actions are proposed automatically to users that run their performance data in the

application. WebProcessPAIR recommend the best improvement actions for each problem, based

on a catalogue of improvement actions. The construction of the catalogue is similar to

StackOverflow, where users can check the list of problems encountered, and write

recommendations for each problem.

WebMD - Symptom Checker

Another example that has some similar characteristics with the intended objectives of

WebProcessPAIR is the WebMD - symptom checker [23]. In this case the system does not use

the concept of crowdsourcing, but like WebProcessPAIR, from causes and their problems,

presents possible solutions. In order to better understand how it works, let's look at the following

analysis.

Symptom checker is a tool from WebMD intended for informational purposes on the

symptoms provided by the user.

Figure 17 - Structure of WebMD symptom checker

Background and State of the Art

 32

In Figure 17 it is presented the structure of the system, including the choice of symptoms in

section 1, selecting first the part of the body with the problem (one or more parts), and then

choosing the symptoms from the list. In section 2 we can see the list of symptoms chosen. In point

3 are presented the solutions to the problem, in this case, the possible conditions, listed in order

of how closely the symptoms match those conditions. Finally, by clicking in a condition it is

presented a detailed analysis of the condition (Figure 18).

2.3.4 Type of recommendation system in WebProcessPAIR

Based on the types of recommendation systems analysed, WebProcessPAIR uses

recommendation system based on crowdsourcing, for building the catalogue, on the side of

contributors, and recommend improvement actions, on the side of users with identified problems.

For building the catalogue of improvement actions, this type of recommendation system

permits the contributors to comment with solutions, for the problems exposed by the platform,

which can be voted on (up/down voting system) by other users. The best proposed solutions, i.e.

those which have the highest number of votes, are used as improvement actions for similar

problems in the future.

For recommending improvement actions, WebProcessPAIR selects the best

recommendations on the catalogue (those with the most votes), for each problem encountered in

Figure 18 - Analysis of a possible condition

Background and State of the Art

 33

the personal performance data of the user, and presents a list with the most appropriate

improvement actions for those problems. For each improvement action recommended, the user

can leave his feedback (accept answer, vote or comment).

WebProcessPAIR Design, Implementation and Testing

 34

Chapter 3

WebProcessPAIR Design,

Implementation and Testing

This chapter describes the design and implementation of WebProcessPAIR, presenting the

use case model, conceptual model, architecture and technologies, database structure, MVC

components, gems installed, navigation map and integration with ProcessPAIR.

3.1 Use cases

Like is shown in the use case diagram in Figure 19, WebProcessPAIR counts with 3 types

of user: contributors, developers and administrators.

The contributors may contribute to the catalogue, proposing improvement actions for the

problems exposed in the website. In addition to proposing, the contributors can also vote in other

contributions. Examples of contributors are instructors, coaches, and members of PSP/TSP

community (Tsp-psP Heroes group of LinkedIn).

The developers, through the submission of their performance data, generated by PSP or

Scraim (future work), can automatically analyse their performance problems and causes. For the

identified problems are presented the best three improvement actions (from the catalogue of

improvement actions). For the improvement actions recommended, the user can give his

feedback, accepting the proposal or not. Examples of developers are students in training courses

and software developers.

The aim of the administrator is to validate the improvement actions, checking if the proposal

is in accordance with the rules of the website. The administrator can also create performance

indicators and manage all users.

WebProcessPAIR Design, Implementation and Testing

 35

Figure 19 – UML use case diagram for WebProcessPAIR

WebProcessPAIR Design, Implementation and Testing

 36

3.2 Conceptual model

The conceptual structure of the classes involved in WebProcessPAIR approach is depicted

in Figure 20. For a better understating of the presented conceptual model, it is shown in Table 7

a description of all classes involved.

Figure 20 - UML class diagram depicting the main concepts of WebProcessPAIR

WebProcessPAIR Design, Implementation and Testing

 37

3.3 Architecture and technologies

In Figure 21 it is shown the deployment diagram of architecture and technologies of

WebProcessPAIR. The diagram is composed by two nodes, client and server. The client needs a

web browser to run the application. The server hosts the WebProcessPAIR application, that is

developed in Ruby on Rails, which implements the MVC architecture (models, views,

controllers). The application is connected to the WebProcessPAIR database, developed in

PostgreSQL and to the ProcessPAIR java tool, which needs the Java Runtime Environment. The

connection to the tool is done by running the business logic of the tool for identification of

Class Description

PerformanceModel A performance model comprises a set of performance indicators (top

level or child) allowing that the performance data of individual

developers can be automatically analysed by ProcessPAIR, to identify

performance problems and identify and rank potential causes for those

problems.

PerformanceIndicator List of performance indicators considered in the performance model to

analyse the data. Affecting indicators can be filtered and sorted when

drilling down from higher-level (parent) to lower-level (child). To

control which are the most frequent problems, it is counted how many

times the PI was analysed and how many times were identified

problems in the PI. Performance indicators are related by parent-child

relationships, meaning the child (lower level) PI’s affect the parent

(higher level) PI’s.

ImprovementAction Improvement actions (IA) for the performance indicators, proposed by

the users. All IA have a voting system (upvote/downvote), resulting in

a voting score. For controlling the best IAs, it is counted the number of

times an IA is recommended and accepted. The moderator can delete

an IA if it’s inappropriate.

User The user can recommend, vote or comment improvement actions.

Comment Comments are made by users with respect to proposed improvement

actions. The user can also respond to a comment.

Vote Votes are made by users with respect to proposed improvement

actions. The type of vote is: upvote or downvote.

Table 6 – Description of classes in the conceptual model

WebProcessPAIR Design, Implementation and Testing

 38

problems and causes implemented in a jar library. A more detailed information about the

integration with ProcessPAIR is done in section 3.7.

The web deployment is done in a virtual machine provided by FEUP and accessed via SSH.

On the virtual machine are installed all the necessary tools for running a Ruby on Rails2

application, as well as all the project code. The web server is deployed with Thin3 gem and Nginx4,

that are running on the VM. Nginx receives every request, then serves static files (css, js, images,

cached files) directly. If the request requires processing, then it hands the request off to a rails

process (Thin).

2 http://rubyonrails.org/
3 https://rubygems.org/gems/thin/versions/1.7.0
4 https://nginx.org/

Figure 21 – Deployment diagram of WebProcessPAIR

WebProcessPAIR Design, Implementation and Testing

 39

3.4 Database structure

The database implementation was made from the Ruby on Rails application. For configuring

the database it’s needed the PostgreSQL gem and the following configuration in

config/database.yml.

production:
 adapter: postgresql
 host: localhost
 encoding: unicode
 database: WebProcessPAIR_production
 pool: 5
 username: *****
 password: *****
 template: template0

After configuring the connection with Ruby on Rails and PostgreSQL, the following

command creates the database.

rake db:create

To create a table, the following commands are used:

rails generate scaffold User name:string email:string image:string
personal_file:string admin:boolean

rake db:migrate

The above commands, create a model, view and controller for user interaction as well as the

table in the database with the inputted fields.

WebProcessPAIR Design, Implementation and Testing

 40

Database diagram

In Figure 22 is presented the database diagram followed by an explanation of all tables in

Table 8.

Figure 22 – Diagram of relational database model of WebProcessPAIR

WebProcessPAIR Design, Implementation and Testing

 41

Table 7 – Description of classes of the database diagram

Table Description

User The original fields created for the user are: name, password, email,

image, personal file and admin. The image field permits the user to

use a profile picture. The personal file field permits the user to

upload his performance data. The admin boolean field is set to true

if the user has moderator previleges and the remaining fields are

generated by devise gem, used to perform various functionalities

related to the user, such as sending email with the confirmation of

registration or to reset the password.

PerformanceIndicator To control which are the most frequent problems, it is counted how

many times the PI was analysed in numberTimesAnalysed, and

how many times were identified problems in the PI in

numberTimesIdentifiedProblems. For listing only analysed PI’s,

the table has an “analysed” boolean that changes to true when the

PI his analysed the first time. For ordering the PI by number of

improvement actions and by votes, the table has the columns

improvement_actions_count and improvement_actions_votes_

count. For opening or closing PI recommendations, the table has an

open_for_recommendation boolean. To represent the performance

indicators in the hierarchical tree, the parent nodes are saved in

ancestry columns and, for multiple parents, in parent_id2/3.

ImprovementAction To control wich are the best recommendations, it is counted how

many times the (Improvement Action) IA was recommended in

numberTimesRecommended, and how many times the IA was

accepted in numberTimesAccepted. For listing the best

recommendations, the table has a column “score” that is updated if

the IA gets an upvote/downvote or accepted. The IA table has also

vote columns generated by the acts_as_votable gem, which permits

a user to vote on an improvement action.

Comment The table comment consists of a body that represents the comment,

associated with a user_id and improvement_action_id.

Vote The vote table is generated by acts_as_votable gem.

Reputation/Evaluation The reputation and evaluation tables are generated by activerecord-

reputation-system gem, that permits the user to accept an

improvement action that was recommended to him.

WebProcessPAIR Design, Implementation and Testing

 42

3.5 MVC components

In this section will be presented all MVC components for each class. For each component it

is presented if it was reused, modified or new.

Table 8 - MVC components for each class

 Model View Controller

User  devise

 acts_as_voter

 has_reputation: accepts

 has_many:

improvement_actions

 has_many: comments

 mount_uploader: image

 mount_uploader:

personal_file

 Devise views

 Show

 Edit

 Index

 Devise controller

 CRUD

 update_user

 bat_file

 copy_file

Performance

Indicator

 has_many:

improvement_actions

 has_ancestry

 belongs_to:parent,

class_name:

"PerformanceIndicator

", :foreign_key =>

'parent_id2'

 has_many:childrenN,

class_name:

"PerformanceIndicator

", :foreign_key =>

'parent_id2'

 has_many:childrenN2,

class_name:

"PerformanceIndicator

", :foreign_key =>

'parent_id3'

 CRUD

 tab_tree

 CRUD

Improvement

Action

 belongs_to:

performance_indicator,

:touch => true

 belongs_to: user

 has_many: comments

 acts_as_votable

 belongs_to: user

 has_reputation: accepts

 CRUD  CRUD

 accept

 upvote

 downvote

 recommendations_update_s

core

WebProcessPAIR Design, Implementation and Testing

 43

Comments  belongs_to:

improvement_action,

:touch => true

 belongs_to: user

 CRUD  CRUD

Analyse  personal_perf

ormance

 upload_file

 upload_file

 personal_performance

 destroy

 parse_xml

CRUD (create, read, update, destroy): Ruby on rails actions - Index, show, create, new, edit,

update, destroy.

 Reused

 Modified

 New

Components description

In the following list it’s presented the description of the actions of each class in the MVC

components.

Models

 User:
o Devise - devise gem functionalities for the user
o acts_as_voter - acts_as_votable gem that defines the user as the voter
o has_reputation: accepts - activerecord-reputation-system gem that permits

the user to “accept” some object

o has_many: improvement_actions – each user can have many improvement

actions

o has_many: comments – each user can have many comments

o mount_uploader: image – each user can upload an image to his profile

picture

o mount_uploader: personal_file – each user can upload his personal

performance data to be analysed. The upload file will be stored on the

database

 Performance indicator:
o has_many: improvement_actions – each PI can have many improvement

actions
o has_ancestry – ancestry gem for the parent/child association between

performance indicators, used for representing the tree of PI’s.

o belongs_to:parent, class_name: "PerformanceIndicator", :foreign_key =>

'parent_id2' – extension for the parent/child association for children with

multiple parents.

WebProcessPAIR Design, Implementation and Testing

 44

o has_many:childrenN, class_name: "PerformanceIndicator", :foreign_key

=> 'parent_id2' – extension for the parent/child association for children with

multiple parents.

o has_many:childrenN2, class_name: "PerformanceIndicator", :foreign_key

=> 'parent_id3' – extension for the parent/child association for children with

multiple parents.

 Improvement actions:
o belongs_to: performance_indicator, :touch => true – each improvement

action (IA) belongs to a performance indicator. Touch saves the last IA

creation date, and is used for ordering the PI’s by recent activity.

o belongs_to: user – each IA belongs to a user

o has_many: comments – each IA can have many comments

o acts_as_votable – acts_as_votable gem that defines each IA as votable

o belongs_to: user – each IA belong to some user

o has_reputation: accepts – activerecord-reputation-system gem that permits

an IA to be accepted

 Comments:

o belongs_to: improvement_action, :touch => true – each comment belongs

to an IA. Touch saves the last comment creation date, and is used for

ordering the PI’s by recent activity.

o belongs_to: user – each comment belongs to a user

Views:

 User:

o Devise views – login page, edit user, registration
o Index – List all users (only for admin)

o Show – Show user profile page (admin can also check other profiles)

o Edit – Edit profile information (admin can also edit other users)

 Performance indicators:

o CRUD – index, form, show, edit pages

o Tab_tree – Partial view for the tree representation of performance indicators

in the tab tree.

 Improvements actions:

o CRUD – the CRUD pages from improvement actions are all partials from

PI. Inside PI show are the IA’s index

 Comments:

o CRUD – the CRUD pages from comments are all partials from IA. Inside

IA partial are the comments index

 Analyse:

o Upload_file – Upload file page where the user can see his uploaded files,

upload a file or delete a file.

o Personal_performance – Report view of the upload file, where the user can

check his performance problems and the best recommendations for each

problem.

WebProcessPAIR Design, Implementation and Testing

 45

Controllers:

 User:

o Devise controller – hardcoded devise controller that gives access to many

functionalities related to the user

o CRUD – index, show, edit, create, new, update, destroy actions

o update_user – this action is for admins only, allowing them to update the

data of other users

o copy_file – this action is called after uploading a file, and copies the

uploaded file to the folder where processpair is.

o bat_file – after copying the file, this action runs a batch file which runs

processpair.jar with the copied file as the data input. This generates the final

report (xml), with the performance problems found in the input file.

 Performance indicators:

o CRUD – index, show, edit, create, new, update, destroy actions

 Improvement actions:

o CRUD – index, show, edit, create, new, update, destroy actions

o accept – permits the user to accept a recommended IA.

o upvote - permits the user to upvote an IA.

o downvote – permits the user to downvote an IA

o recommendations_update_score – after each upvote/downvote/accept the

score of the IA is updated, depending on the user action. This is used for

ordering the best recommendations in the user performance report

 Comments:

o CRUD – index, show, edit, create, new, update, destroy actions

 Analyse:

o upload_file – permits the user to upload his performance data file (xml)

o parse_xml – Uses the nokogiri gem to read the report (xml) generated by

the batch file of processpair.jar and to parse it to html

o personal_performance – after the user uploading a file redirects the user to

the personal performance view, running the parse_xml action to parse the

uploaded xml file to html

o destroy – the action permits the user to remove his uploaded data file

WebProcessPAIR Design, Implementation and Testing

 46

3.6 Gems installed

In this section will be presented the list of gems installed in WebProcessPAIR, followed by

the description of each gem (the Ruby on Rails default gems are not listed).

 bootstrap-sass – Sass-powered version of Bootstrap 3, for using Bootstrap front-end

framework.

 pg – PostgreSQL gem for running the database in the application.

 devise – gem for authentication system.

 acts_as_votable – gem for implementing the vote system in the application.

 carrierwave – gem for implementing the upload files and profile picture system for users.

 thin – gem for running the web server in the virtual machine.

 activerecord-reputation-system – gem for implementing the accept recommendations system.

 will_paginate – gem for paginate the list of performance indicators.

 trix – gem for using WYSIWYG editor (e.g. bold, italic) for writing recommendations.

 ancestry – gem for the parent-child relation of performance indicators for building the tree.

 Nokogiri – gem for parsing ProcessPAIR output xml file to html.

3.7 Navigation map

In this section will be presented UML state diagrams for all the available navigation options

in WebprocessPAIR, for an unregistered user, registered user and administrator.

Unregistered user

In Figure 23 is shown the UI state diagram for an unregistered user. When an unregistered

user enters WebProcessPAIR, he can access from anywhere on the website, the registration page,

login page, about page, and list performance indicators page by using the search form or by

clicking on the link to access the page. If the user accesses the performance indicators page, and

selects one performance indicator, he is redirected to that performance indicator page, with its

description, improvement actions and improvement actions comments.

WebProcessPAIR Design, Implementation and Testing

 47

Registered user

In Figure 24 is shown the UI state diagram extension for registered users. A registered user,

in addition to all the features an unregistered user has access, can also access his profile page as

well as the edit profile page. In the performance indicators page, a registered user can make an

improvement action (or edit/remove his IA's), comment improvement actions (or edit/remove his

comments) and vote/unvote IA's. The registered user also has access from anywhere in the

website to the analyse performance page. If the user uploads his personal data, he’s redirected to

the personal performance page (report view of his data). In the personal performance page, the

user can accept the recommendations to his problems or select a PI and see the PI page.

Figure 23 - UI state diagram for unregistered users

WebProcessPAIR Design, Implementation and Testing

 48

Administrator

In Figure 25 is shown the UI state diagram extension for administrators. An administrator,

in addition to all the features a registered user has access, can also access from anywhere in the

website, the list users page, where he can view or edit a user. In the performance indicators page,

Figure 25 – UI state diagram extention for administrator

Figure 24 – UI state diagram extention for registered users

WebProcessPAIR Design, Implementation and Testing

 49

the admin can create, edit or remove a PI. Inside the PI page, he can edit that PI, edit or remove

improvement actions and edit or remove comments.

3.8 Integration with ProcessPAIR

In Figure 26 it is presented a scheme of the integration between WebprocessPAIR and

ProcessPAIR.

The process starts when a user uploads his performance data (XML format). After the file

submission, the ProcessPAIR application runs via a batch file, which receives the following

parameters:

ProcessPAIR.jar ProcessPairCalibration.xml data.xml report.xml

 ProcessPAIR.jar: Business logic of the application for identification of problems and causes

implemented in a jar library.

 ProcessPairCalibration.xml: Required calibration file used to calibrate the performance

model. For this calibration, the recommended performance ranges and statistical distribution

were derived from a large PSP data set from the SEI referring to more than 3,000 PSP

developers and 30,000 projects.

 Data.xml: User’s uploaded file with his performance data.

 Report.xml: After processpair.jar runs, it exports the personal data report to a xml file. In

Figure 27 it’s presented an example of a report.xml.

After generating the report.xml, it is made the conversion from xml to html via the Nokogiri

gem. Then the user is redirected to his performance analysis report, being presented the

performance problems and causes and recommended improvement actions.

Upload ProcessPAIR Report Parser

(xml-html)

Personal

performance

Figure 26 - Scheme of integration with ProcessPAIR

WebProcessPAIR Design, Implementation and Testing

 50

3.9 Acceptance tests

In this section will be presented the acceptance tests made for WebProcessPAIR, in order to

verify if the final product meets the requirements and specification of the original proposal.

The tests we’re made by the following types of users:

 Developer tests – Tests performed by the author to check if the final product is in accordance

to the proposal.

 Customer tests – Tests performed by others (supervisor, co-supervisor), with scenarios and

defined case tests, in order to provide feedback and to verify compliance with the

requirements.

 Usability tests – Test performed by real users (e.g. PSP community). These tests are

conditioned by the delivery date of the dissertation, because to users start using the product it

may be required more time, however, a request was made for the group in Linkedin, PSP

Heroes, and PSP teachers at Tecnológico de Monterrey, Mexico to test the final product.

List of acceptance tests:

 Register user

 Login after registration

 Edit profile

 List performance indicators (orber by recent, recommendations, votes, tree)

 Search performance indicators

 List improvement actions (order by votes, recent, oldest)

Figure 27 - Example of report.xml generated by ProcessPAIR

WebProcessPAIR Design, Implementation and Testing

 51

 Create improvement action

 Comment on improvement action

 Edit/delete improvement actions/comments

 Vote on improvement actions

 Submit personal performance file

 Check performance problems

 Accept recommended actions

WebProcessPAIR Usage

 52

Chapter 4

WebProcessPAIR Usage

This chapter describes how to use WebProcessPAIR, presenting the following topics: how

to access WebProcessPAIR, user registration, definition of performance indicators, recommend

actions and performance analysis with usage instructions and validation case studies.

4.1 How to access WebProcessPAIR

In order to access WebProcessPAIR, the user must do the following steps:

1. Visit: webprocesspair.fe.up.pt (Figure 28).

2. To have full access to the website, the user must enter his email and password in the

login form in the homepage or by clicking in “Log in” in the navigation bar.

file:///C:/Users/luis/Documents/FEUP/2015-2016/DISS/RELATORIO%20FINAL/webprocesspair.fe.up.pt

WebProcessPAIR Usage

 53

4.2 User registration

To create an account in WebProcessPAIR, the user must do the following steps:

1. Access the registration form by clicking on “Sign up” on the navbar, or in sign up

tab in homepage (Figure 29).

2. Complete the registration form and click on Sign Up. After completing the

registration, an email with a link token, is send to the email address provided, in

order to confirm the registration.

3. Click on the token link in the received email. After confirming the link in the email,

the user is registered in WebProcessPAIR (Figure 30). After registration, the user

can see and edit his profile by clicking on his name in the navbar followed by

“profile”.

Figure 28 - WebprocessPAIR homepage

WebProcessPAIR Usage

 54

4.3 Definition of performance indicators

4.3.1 Usage instructions

To access the performance indicators list, the user must do the following steps:

1. Click “Recommend Improvement Actions” on the homepage or “Recommend

Actions” on the navbar.

Figure 29 - Registration form

Figure 30 - Registered user homepage

WebProcessPAIR Usage

 55

2. The user can order the list of PI in different ways by clicking on the tabs (Figure

31):

a. Recent: PI’s are ordered by the ones with the most recent improvement

action or comment.

b. Recommendations: PI’s are ordered by number of recommendations.

c. Votes: PI’s are ordered by number of votes.

d. Tree: Like is shown in Figure 31, the tab tree shows all PI’s in a hierarchical

order, showing the parent-child relation of performance indicators. In

recent, recommendations and votes, are shown only the PI’s that have

already been analysed in user’s personal performance.

The user can also search for performance indicators, by submitting the desired text on the

search form, like is shown in Figure 32. After submitting, the performance indicators found will

appear (the search form looks for performance indicators name or description equal to the

submitted text).

Figure 31 - Performance indicators page (tab “tree”)

Figure 32 - Performance indicators found using the search form

WebProcessPAIR Usage

 56

To create, edit or remove a performance indicator, the user must be an administrator. If the

user has administrator privileges, he can create a new PI in the PI’s page, by doing the following

steps:

1. Access the performance indicators page.

2. Click on “New Performance Indicator” (Figure 33).

3. Enter name, description, open or closed for recommendation and select the indicator

parent (nil if it’s a top level indicator; if the indicator has multiple parents, the

administrator must select parent 2 or 3) for the performance indicator (Figure 34).

4. Click on “Create Performance Indicator”.

Figure 33 - Performance indicators page (admin)

Figure 34 - New performance indicator page (admin)

WebProcessPAIR Usage

 57

4.3.2 Performance indicators loaded to the system

With an administrator account were added to the system the following performance

indicators (hierarchy list, showing 58 parent/children performance indicators):

 Time estimation accuracy

o Productivity Estimation Accuracy

 Estim. to Hist. Productivity Ratio

 Productivity Stability

 Plan Productivity Stability

 Design Productivity Stability

 Design Review Productivity Stability

 Code Productivity Stability

 Code Review Productivity Stability

 Compile Productivity Stability

 Unit Test Productivity Stability

 Postmortem Productivity Stability

o Size Estimation Accuracy

 Process Quality Index

o Code Quality

 Defect Density in Compile

 Defects Injected

o Defects Injected in Plan

o Defects Injected in Design

o Defects Injected in Design Review

o Defects Injected in Code

o Defects Injected in Code Review

o Defects Injected in Compile

o Defects Injected in Unit Test

o Defects Injected in Postmortem

 ProcessYield

WebProcessPAIR Usage

 58

o Code Review Yield

 Code Review Productivity

o Design Review Yield

 Design Review Productivity

o Code Review Quality

o Design Quality

o Design Review Quality

o Program Quality

 Defect Density in Unit Test

 Defects Injected*

o Defects Injected in Plan*

o Defects Injected in Design*

o Defects Injected in Design Review*

o Defects Injected in Code*

o Defects Injected in Code Review*

o Defects Injected in Compile*

o Defects Injected in Unit Test*

o Defects Injected in Postmortem*

 ProcessYield

o Code Review Yield*

 Code Review Productivity*

o Design Review Yield*

 Design Review Productivity*

 Productivity

o Plan Productivity

o Design Productivity

o Design Review Productivity

o Code Productivity

o Code Review Productivity

WebProcessPAIR Usage

 59

o Compile Productivity

 Defect Density in Compile*

 Defects Injected*

o Defects Injected in Plan*

o Defects Injected in Design*

o Defects Injected in Design Review*

o Defects Injected in Code*

o Defects Injected in Code Review*

o Defects Injected in Compile*

o Defects Injected in Unit Test*

o Defects Injected in Postmortem*

 ProcessYield*

o Code Review Yield*

 Code Review Productivity*

o Design Review Yield*

 Design Review Productivity*

o Unit Test Productivity

 Defect Density in Unit Test*

 Defects Injected*

o Defects Injected in Plan*

o Defects Injected in Design*

o Defects Injected in Design Review*

o Defects Injected in Code*

o Defects Injected in Code Review*

o Defects Injected in Compile*

o Defects Injected in Unit Test*

o Defects Injected in Postmortem*

 ProcessYield*

o Code Review Yield*

WebProcessPAIR Usage

 60

 Code Review Productivity*

o Design Review Yield*

 Design Review Productivity*

o Postmortem Productivity

 DRL of Reviews or Compile versus Unit Testing

o DRL of Design Review versus Unit Test

o DRL of Code Review versus Unit Test

o DRL of Compile versus Unit Test

 Defects Removed

o Defect Density in Design Review

o Defect Density in Code Review

o Defect Density in Compile*

o Defect Density in Unit Test*

 Defect Removal Rate

o Defect Removal Rate in Design Review

o Defect Removal Rate in Code Review

o Defect Removal Rate in Compile

o Defect Removal Rate in Unit Test

 Cost of Quality

o Appraisal Cost of Quality

o Failure Cost of Quality

 Appraisal to Failure Ratio

*Repeated performance indicators (with multiple parents) were inserted in the system only once.

WebProcessPAIR Usage

 61

4.4 Recommend actions

4.4.1 Usage instructions

If the user clicks on a performance indicator from the list, the description of the PI, followed

by the recommended actions will appear. The recommendations with the most votes and accepted

answers are used to recommend in the personal performance (section 4.5).

In the PI page the user can:

1. Order the improvement actions by clicking on the tabs (1 on Figure 35):

a. Votes: IA’s are ordered by number of votes.

b. Recent: IA’s are ordered by creation date.

c. Oldest: IA’s are ordered by oldest creation date.

2. Vote, downvote or unvote recommendations, by clicking on the thumbs up/down

buttons to vote, or by clicking again on the previous vote to unvote (cancel vote)

(2).

3. Comment a recommendation, by clicking on the “Comments” button to expand

comments area and submit his comment. The user can edit or remove his comments

(3).

4. Recommend an improvement action for that performance indicator. The user can

edit or remove his recommendations (4).

1

2 3

4

Figure 35 - Performance indicator with improvement actions page

WebProcessPAIR Usage

 62

4.4.2 Recommendations loaded to the system

In this section will be presented an example of the current status of WebProcessPAIR

regarding the improvement actions created by real users. For that, it was requested to the group

of Linkedin, “PSP Heroes”, and to professors at Tecnológico de Monterrey, Mexico, to start using

the website and to write improvement actions for the performance indicators. However, that could

take time, so at the moment, the current improvement actions are from supervisor João Pascoal

Faria and co-supervisor Mushtaq Raza.

In Figure 36 is shown the current improvement actions created for performance indicator

“Design review quality”. The full current status is presented in Appendix A, with all the

performance indicators that have improvement actions.

Design review quality:

Figure 36 - Improvement actions for performance indicator "Design Review Quality"

WebProcessPAIR Usage

 63

4.5 Performance analysis

4.5.1 Usage instructions

To analyse the performance data, the user must do the following steps:

1. Click on “Analyse personal performance” on the homepage, or in “analyse

performance” on the navbar.

2. Click on browse and select his personal data file (xml) (Figure 37).

3. Click on upload and be redirected to the performance problems analysis of his

uploaded file (Figure 39).

If the user has already uploaded a personal data file, the analyse personal performance page

should look like Figure 38. In this case to check his performance problems the user must click on

his file name. The user can also upload other file or remove an uploaded file.

Figure 37 - Analyse personal performance page

Figure 38 - Analyse personal performance page with an uploaded file

WebProcessPAIR Usage

 64

The goal of the Performance Problems page is to indicate the most relevant top-level

performance problems (collapsed top level problems, Figure 39) and potential root causes

(expanded top level problems, Figure 40). The top-level performance problems are ordered by

problem intensity (potential - red, moderate - yellow), and the root causes are ordered by relation

intensity (very high - red, high - orange, moderate - yellow).

In performance problems page the user can:

1. Check the top level problems and its problem intensity (Figure 39). If the user hovers

the mouse in the indicator name, he can see the indicator description.

2. Check the possible root causes for each problem and its problem and relation

intensity. By clicking on the top-level problem, the list will expand like as shown in

Figure 40. If the user hovers the mouse in the indicator name, he can see the indicator

description.

a. For each root cause, it is presented the best 3 recommendations (or less if it

has less than 3 recommendations), made by users to that performance

indicator. The recommendations are ordered by the following formula:

“score = 0.6*accepts + 0.4*votes”, prioritizing the number of accepts over

the number of votes. Every time a user accepts or vote/downvote (in PI

page) an action, the score to that recommended action is updated. If the top-

level problem has no root causes, the recommendations will be made to that

indicator.

3. Accept each recommended action (1 in Figure 40). Accepted answers appear in a

green button (2 in Figure 40). If the user likes the recommendation, he should click

on accept button to “thank” the user that recommended and to ensure that the best

recommendations are presented. Only users that got recommended can accept

answers.

4. Check the number of votes for each recommendation (3 in Figure 40).

Figure 39 - Performance problems page (top level indicators)

WebProcessPAIR Usage

 65

5. To go to the indicator page, the user can click on (Figure 40):

a. View all (4).

b. Indicator name (5).

c. On the recommendation (6) will redirect directly to that specific

recommendation, like is shown in Figure 41. The clicked recommendation

will appear highlighted for a few seconds.

6

2

4

5

1 3

Figure 40 - Performance problems page (expanded with potential root causes)

WebProcessPAIR Usage

 66

4.5.2 Case study

In this section will be presented a case study from a personal performance data file of a PSP

trainee at Tecnológico de Monterrey, Mexico, in order to compare the results obtained in the

ProcessPAIR tool and the WebProcessPAIR, as well as present the recommendations made by

WebProcessPAIR users for the problems encountered.

Case study – St01

ProcessPAIR performance problems results:

In Figure 42 is shown the report view of ProcessPAIR tool for the data file of case study

St01.

Figure 42 – Case study: ProcessPAIR personal problems results (report view)

Figure 41 - Highlighted recommendation accessed through performance problems page

WebProcessPAIR Usage

 67

WebProcessPAIR performance problems results:

In Figure 43 is shown the personal problems page in WebProcessPAIR, presenting the

results for the same personal file as above. A more detailed analysis is shown in Figures 44, 45

and 46, presenting all the top level indicators expanded, with the recommended improvement

actions for each performance indicator.

Figure 43 - Case study: WebProcessPAIR personal problems results (top-level indicators)

Figure 44 - Case study: WebProcessPAIR personal problems results (expanded first top-level indicator)

WebProcessPAIR Usage

 68

Figure 45 - Case study: WebProcessPAIR personal problems results (expanded second top-level indicator)

WebProcessPAIR Usage

 69

In this case study it’s possible to check that the same problem list was presented in

ProcessPAIR (Figure 42) and WebProcessPAIR (Figures 43/44/45/46) and also the same problem

intensity and relation intensity (“problem intensity” in WebProcessPAIR = “performance

problem with” in ProcessPAIR; “relation intensity” in WebProcessPAIR = “with … possibility

of being caused by” in ProcessPAIR). In addition, it’s presented a list of improvement actions,

made by WebProcessPAIR users, for the encountered problems. At the current moment, the

performance indicator “Time Estimation Accuracy” and his children have no recommendations.

Figure 46 - Case study: WebProcessPAIR personal problems results (expanded third top-level

indicator)

Conclusion and Future Work

 70

Chapter 5

Conclusion and Future Work

5.1 Conclusions

This dissertation had as main objective the development of the website WebProcessPAIR,

incorporating the ProcessPAIR tool, along with a recommendation system of improvement

actions for exposed problems. In this report, firstly it was presented an approach about the

contextualization of the theme of the dissertation and about the expected objectives. Afterwards,

it was discussed the background and state of the art on the topics of software process

improvement, crowdsourcing and recommendation systems, which represented the essential

bases for implementing the proposed objectives.

The topic about software process improvement was important to analyse in detail the

previous ProcessPAIR tool. In addition, the topic of crowdsourcing shows us that this is a concept

that brings many benefits to the development of systems such as the WebProcessPAIR, which

together with recommendation systems allows the recommendation of improvement actions

through the expert knowledge of a community, with the aim of solving problems. On

recommendation systems, was also presented what type of recommendation was used in

WebProcessPAIR.

For a more specific approach on the design and implementation, were presented the

conceptual model, database structure, MVC components and the gems installed, which show

more clearly what is the structure of WebProcessPAIR, as well as what is the architecture and

what technologies are used. For explaining the types of users in WebProcessPAIR and what role

they take in it, was presented a diagram of use cases and a website navigation map. Finally, was

Conclusion and Future Work

 71

explained the integration process with ProcessPAIR tool, and presented the acceptance tests for

validating the proposed objectives.

For a better understanding of the usage of WebProcessPAIR, were presented a detailed guide

with usage instructions of the application, as well as the current performance indicators and

improvement actions loaded on the website. In the conclusion of the section WebProcessPAIR

usage, was made an analysis of two case studies, where was used two different data files from

two students, in ProcessPAIR and WebProcessPAIR, and compared the results.

The objectives proposed in this dissertation were fully completed with positive results. The

results obtained in WebProcessPAIR are in accordance with the ProcessPAIR tool, as well as the

recommendation system is working flawless. This way, it’s now possible for users to

automatically analyse their performance data, identify performance problems, and get

recommended improvement actions for their problems. The next objective in WebProcessPAIR,

is to get more users and improvement actions, in order to help other software developers improve

their project quality.

5.2 Future Work

In the future work the objective is to extend the WebProcessPAIR application with Scraim,

allowing Scraim users to analyse their personal performance and get recommended actions on

possible problems.

References

 72

References

[1] Raza, M., Faria, J. A Model for Analyzing Performance Problems and Root Causes

in the Personal Software Process. Journal of Software: Evolution and Process, John

Wiley & Sons, (2015), 1-4.

[2] Process PAIR. (2016, 1 February). Available from http://blogs.fe.up.pt/processpair/

(2006); accessed 1 February 2016.

[3] Raza, M., Faria, J., Salazar, R. Experimental Assessment of the ProcessPAIR Tool

for Automated Performance Analysis. Conference’10, Month 1–2, (2016), 1-2.

[4] Duarte, C., Faria, J. and Raza, M. PSP PAIR: Automated Personal Software Process

Performance Analysis and Improvement Recommendation. 8th International

Conference on the Quality of Information and Communication Technologies (2012).

[5] Howe, J. Crowdsourcing: A Definition. Available from:

http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html (2015).

Accessed on 27 January 2016.

[6] Howe, J. Crowdsourcing: Why the Power of the Crowd Is Driving the Future of

Business. Crown Publishing Group, 1ª ed (2008).

[7] Brabham, D. Crowdsourcing: A Model for Leveraging Online Communities.

Retrieved 20 January 2016 from:

https://dbrabham.files.wordpress.com/2011/03/brabham_handbook_crowdsourcing

.pdf.

References

 73

[8] Geiger, D. Crowdsourcing Information Systems – A Systems

Theory Perspective. Proceedings of the 22nd Australasian Conference on

Information Systems, (2011), 5-6.

[9] Estélles, E. Types of crowdsourcing iniciatives. Crowdsourcing Blog Web site.

Retrieved 20 January 2016 from: http://www.crowdsourcing-blog.org/tipos-de-

iniciativas-de-crowdsourcing/?lang=en.

[10] Deci, E. and Ryan, M. Intrinsic and Extrinsic Motivations: Classic Definitions and

New Directions. Contemporary Educational Psychology, 25 (2000).

[11] Hossain, M. Crowdsourcing: Activities, incentives and users' motivations to

participate. International Conference on Innovation, Management and Technology

Research, (2012), 21-22.

[12] Zou, L., Ke, W., Zhang, J. and Kee, K. User creativity in crowdsourcing community:

from extrinsic motivation perspective. PACIS 2014 Proceedings. Paper 45 (2014).

[13] Barbosa, A. Recomendação de Boas Práticas no Crowdsourcing – um Caso de

Estudo (Master's dissertation). Faculdade de Engenharia da Universidade do Porto,

Porto (2015).

[14] Leimeister, J., Huber, M., Ulrich, B, and Krcmar, H. Leveraging Crowdsourcing:

Activation-Supporting Components for IT-Based Ideas Competition. Journal of

Management Information Systems, 26 (1) (2009), 197-224.

[15] Guittard, C. and Schenk, E. Towards a characterization of crowdsourcing practices.

Journal of innovation economics, 1 (7) (2011), 93-107.

[16] Engage Comunities in participative projects: Crowdsourcing. Available from

https://howto.informationactivism.org/content/engage-communities-participative-

projects-crowdsourcing; accessed on 20 January 2016

[17] Yuan, F., Liang, J. & Xue, Z. Crowdsourcing: Today and Tomorrow (Degree of

Bachelor of Science). Worcester Polytechnic Institute. Massachusetts (n.d).

[18] Chen, H. A Fashion Recommendation System Based on The Wisdom of Crowds.

(Master’s thesis). Faculty of Science and Engineering, Waseda University (2013).

[19] Bugara, S., Jureta, I., Faulkner, S. and Herssens, C. Knowledge-Based

Recommendation Systems: A Survey. International Journal of Intelligent

Information Technologies, Volume 10, Issue 2 (2014).

[20] Geiger, D. Personalized Task Recommendation in Crowdsourcing Systems.

Springer, 65 (2014).

[21] Stack Overflow. Available from http://stackoverflow.com/ (2016); accessed 28

January 2016.

References

 74

[22] The Success of Stack Exchange: Crowdsourcing + Reputation Systems. Available

from https://permut.wordpress.com/2012/05/03/the-success-of-stack-exchange-

crowdsourcing-reputation-systems/; accessed on 28 January 2016.

[23] WebMD. Available from http://symptoms.webmd.com/#introView (2016); accessed

28 January 2016.

Appendix A

 75

Appendix A

In appendix A will be presented all the current improvement actions created in

WebProcessPAIR. Each of the following figures represent a performance indicator with the

improvement actions.

Defects injected in design:

Figure 47 - Current improvement actions for PI "Defects injected in design"

Appendix A

 76

Design review quality:

Code review quality:

Figure 48 - Current improvement actions for PI "Design review quality"

Figure 49 - Current improvement actions for PI "Code review quality"

Appendix A

 77

Code review yield:

Defects injected in code:

Figure 50 - Current improvement actions for PI "Code review yield"

Figure 51 – Current improvement actions for PI “Defects injected in code”

Appendix A

 78

Code productivity:

Design productivity:

Design quality:

Figure 52 - Current improvement actions for PI "Code productivity"

Figure 53 - Current improvement actions for PI "Design productivity"

Figure 54 - Current improvement actions for PI "Design quality"

