

MESTRADO

MULTIMÉDIA - ESPECIALIZAÇÃO EM MÚSICA INTERACTIVA E DESIGN DE SOM

Procedural Generation of Musical

Metrics Based on Lyrics Analysis

Urbano Ferreira

M
2016

FACULDADES PARTICIPANTES:

FACULDADE DE ENGENHARIA

FACULDADE DE BELAS ARTES

FACULDADE DE CIÊNCIAS

FACULDADE DE ECONOMIA

FACULDADE DE LETRAS

Procedural Generation of Musical

Metrics Based on Lyrics Analysis

Urbano Ferreira

Mestrado em Multimédia da Universidade do Porto

Orientador: Rui Penha (Doutor)

Coorientador: George Sioros (Doutor)

Junho de 2016

© Urbano Ferreira, 2016

Procedural Generation of Musical Metrics Based on Lyrics

Analysis

Urbano Ferreira

Mestrado em Multimédia da Universidade do Porto

Aprovado em provas públicas pelo Júri:

Presidente: Professor Doutor Rui Rodrigues

Vogal Externo: Professor Doutor Dimitris Andrikopoulos

Orientador: Professor Doutor Rui Penha

Resumo

Mais do que a componente semântica e discursiva, as letras musicais contêm geralmente outro

tipo de informação, que mais do que com o ato da escrita, tem que ver com o ato da pronúncia.

Assumindo que uma letra musical é escrita para posteriormente ser reproduzida, há um cuidado

para que esse processo nos transmita algo também, completamente diferente daquilo que nos

é transmitido pela letra no papel. A sincronia das acentuações fonéticas e lexicais da letra com

as componentes musicais em que se insere é disso o maior exemplo. A ideia nasce da vontade

de criar um sistema capaz de devolver informação musical para uma dada letra. Neste projeto,

proponho-me a dar um primeiro passo sólido para um futuro desenvolvimento dessa ideia,

devolvendo uma estrutura métrica unicamente baseada na análise da letra. Para o efeito,

utilizarei o CMUdict, um dicionário de informação fonética para a língua inglesa que contém,

para cada palavra, a divisão por fonemas com os respectivos marcadores referentes à sua

acentuação lexical. Todo o funcionamento do sistema será baseado na linguagem de

programação Python, tendo sido todo o código desenvolvido para o projeto. Para cada letra

introduzida, é executada uma análise por versos e encontrada a estrutura métrica que melhor

se adapta a todos eles.

Abstract

More than semantic and discursive components, lyrics often contain other kind of information.

This information has to do not with the act of writing, but with the act of pronunciation.

Assuming that lyrics are written to later be reproduced, there is a care for this process to pass

us something too, completely different from what is conveyed by the lyrics on paper. The

synchrony of phonetic and lexical accents of the lyrics with musical events is a great example of

that. The idea rises from the will to create a system able to return music information for a given

lyric. In this project, the purpose was to take a solid first step for a future development of this

idea. To this end, it was used the CMUdict, a phonetic information dictionary for English

language that contains, for each word, the division of its phonemes with the respective markers

related to their stress. The entire operation of the system is based on Python programming

language, having all the code been developed for the project. For each lyric, it analyses all the

verses and finds an appropriate metric structure.

Agradecimentos

Ao Professor Doutor Rui Penha,

pela orientação e disponibilidade apresentadas.

Ao Doutor George Sioros,

pelo interesse e sabedoria que demonstrou.

Aos meus pais,

por serem a base que me suporta.

Aos meus amigos.

 Index

1 Introduction .. 1

1.1 Motivation .. 1

1.2 Description of the Work .. 1

1.3 Why Lullabies? .. 2

1.4 The research ... 2

1.5 Structure of the Dissertation .. 2

2 State of the Art .. 4

2.1 Introduction .. 4

2.2 Musical Rhythm and Meter ... 4

2.3 Prosody .. 5

2.4 Related Work ... 5

3 From the Lyrics Input to the Metric Output ... 7

3.1 Introduction .. 7

3.2 Lyrics Analysis .. 7

3.2.1 Lexical Stress extraction .. 8

3.3 Mapping of Prosodic Accents to the Metric Grid .. 9

3.3.1 Generation of Metrical Templates for Prosody ... 10

3.3.2 Recursive Alignment of Verses in the Templates ... 11

3.3.3 Selection of the Best Template .. 14

3.4 Results Analysis and Output .. 17

4 Implementation ... 19

4.1 CMUdict .. 19

4.2 Natural Language Toolkit (NLTK) .. 20

4.3 Python .. 21

4.3.1 Brief Explanation of Python Code ... 21

5 Application to six lyrics/poems .. 23

5.1 Lullabies .. 23

5.1.1 All the Pretty Horses .. 23

5.1.2 Hush, Little Baby ... 26

5.2 Children’s Poetry ... 30

5.2.1 All Things Bright and Beautiful .. 30

5.2.2 Bed in Summer .. 34

5.2.3 The Fieldmouse ... 38

5.2.4 The Lamb ... 43

6 Conclusion ... 47

6.1 Summary .. 48

6.2 Contribution of the Work ... 49

6.3 Future Work ... 49

6.3.1 The Analysis .. 49

6.3.2 The Output ... 50

6.3.3 User Interaction ... 51

7 Bibliography ... 53

8 Appendix ... 55

8.1 Python Code ... 55

1

1 Introduction

1.1 Motivation

The access to music creation tools has been democratized in the last decades, increasing

the opportunities of amateur musicians to create and explore in the music universe. It

was in this line of thinking that this project was first thought.

The process of musical creation is multidisciplinary and complex. And it doesn’t stick to

the basic musical dimensions. In most of the cases, it explores fields as psychology and

linguistics and this can be challenging, mainly when you’re creating music alone and you

don’t have the needed expertise in some of these disciplines.

Due to this multidisciplinary approach, the music creation process can be developed in

several ways. There are musicians who choose to first create the musical arrangement

and then from it, generate an appropriate lyric. Other first set a mood and create through

it the lyrics and arrangement. There is another method that is widely used, which is to

create a musical accompaniment to a particular lyric.

1.2 Description of the Work

The main idea behind this thesis project is to create a tool to help those who start the

musical creation process by/from the lyrics. Assuming that the lyrics and the musical

arrangement are directly related, I created a system able to return a musical metric

distribution for a given lyric. The project was designed as a starting point to something

bigger, such as a complete system of musical generation from lyrics. And, independently

of what comes next, it was with this idea as motivation that I faced this challenge.

The prototype was developed to analyze lyrics (in English) that respect some basic format

rules and extract some prosodic information from it, based on a specific toolkit for

language processing. After the text file is parsed, it stops working with words and starts

working with numbers. These numbers (markers) represent the lexical stress levels of the

words and are organized in sequences, by verses. Each one of these sequences then

2

becomes a metric template. Based on the operations that are explained in the chapter 3,

one of this templates is chosen as the best and all the verses are distributed in the metric

grid according to it.

An important and time-consuming part was the study of programming language, Python.

This step has been set in the initial schedule and allowed a greater workflow later.

1.3 Why Lullabies?

The lyrics used as test while developing the system were lullabies, because of their simple

and constant structure. From verse to verse, the length and number of lexical stress does

not change that much and generally they don’t have a chorus. And even if they do, it

usually has the same format of the remaining stanzas.

Nevertheless, I also performed some tests with other poems in the end, to test how the

system could adapt, and the results were highly positive (as you can see in chapter 5).

1.4 The research

The main aspects I tried to achieve with my literature research has to do with the

following: trying to understand the related work that had already been developed, seeing

the text analysis rules that should be followed, knowing the main metric and prosody

notions and, above all, finding the best tools to use in the process. On these tools, I will

speak later in the chapter of Implementation (4).

1.5 Structure of the Dissertation

In this chapter, the theme and the motivation for the work are introduced. After this, in

chapter 2, the literature is presented and the key terms and notions are referred. The

system operations from the input to the output are explained in the chapter 3, in the next

chapter (chapter 4 – Implementation) contains basic information about the tools that

were used and the system’s code itself. The chapter 5 has some examples of the

3

application of the system in different lyrics, while the conclusion (chapter 6) has the main

ideas that this work lead to, as well as my personal evaluation of it. The future work is

also described. All the written code is in the appendix (chapter 8).

4

2 State of the Art

2.1 Introduction

The initial idea for this project came from a major concept: to create a system that

automatically generates musical contents based only on text analysis. Once I proposed

myself to take the first step, developing a system to analyze a lyric and generate a metrical

structure, I think that the best way to start this system could only be one: a good text

analysis.

Unlike the conventional approach to text analysis, what’s important to the system to

extract from the text is not its meaning. At least not at this stage. What it really needs to

extract is the phonetic and lexical information.

The analysis of the text is performed using a phonetic information dictionary, the

CMUdict. This dictionary is an open-source machine-readable pronunciation dictionary

for North American English that contains over 134,000 words and their pronunciations. It

was originally created by the Speech Group at Carnegie Mellon University (CMU) for use

in speech recognition research. Despite being used in most cases in speech recognition

and generation systems, this is not the first approach to this tool as a way of analyzing

musical lyrics, as I will explain later in the Related Work chapter (2.4).

2.2 Musical Rhythm and Meter

The terms meter and rhythm are fundamental in this project as the ultimate goal of the

system is to create a musical rhythm based on the stress of the verses that the user enters.

The basis for a definition of meter as a cognitive mechanism is the fact that some pulses

in a musical rhythm are perceived as stronger than others (George Sioros, 2016). Rhythm

and meter are different concepts, but that connect directly. And this connection is made

by a cognitive process in the listener's mind. By identifying a repetitive pattern of pulses

with different intensities in the rhythm, the listener mentally draws the limits of the

metric structure, creating an expectation for the rest of the song. From here, composers

can work with this expectation, in most cases keeping a constant metric as a way to please

the listener. They can also, however, challenge this expectation by changing the meter,

5

which when well done can give even more pleasure to the listener. In this project, the

metric structure was kept constant for the sake of simplicity of the system.

2.3 Prosody

Prosody is a dimension of linguistics that’s concerned with the elements of language that

are responsible for its acoustic and rhythmic parameters. Technically, it’s a field that

covers more the spoken component of the language than the written one. And that's

exactly why it's useful to the goal of the project. As mentioned in the abstract, one of the

purposes of a musical lyric is being recited, and that's the focus of this work. Hence my

greatest interest in linguistics than in grammar.

Digging deeper, the characteristic that matters most to my system within the prosody is

the lexical stress, which carries information about accentuation levels. The production

and perception of this stress are affected by acoustic variables as duration, intensity and

frequency.

As seen in the previous section, the metrical structure is the periodic alternation of strong

and weak beats, usually forming a nested hierarchy of accent levels and as in speech, the

accentuation of musical meter involves change in the acoustic variables. Because of this,

musical events aligned with higher metrical levels usually receive strong accent, are

emphasized by performers and are better remembered by listeners (Palmer & Kelly,

1992).

2.4 Related Work

The Computer Science Department of Brigham Young University has looked at the issue

of the musical creation from lyrics and carried out some research on it. In “Automatic

Generation of Melodic Accompaniments for Lyrics”, Monteith, Martinez & Ventura (2012)

describe a system for automatic composition of musical accompaniment for lyrics.

Besides the rhythm, the system addresses the melody and the musical style too. Rhythms

are generated based on patterns of syllabic stress in the lyrics. The system then attempts

to find the best position for downbeats. The number of measures is always assumed as

6

four and only four syllables are selected to carry a downbeat. For each line, one hundred

random assignments are created, being then scored to pick the best. This part of the

project has several similarities to this one I’m presenting.

In “Lyric-Based Rhythm Suggestion”, Eric Nichols (2009) describes a system whose

algorithm is composed of three main components: a scoring function used to judge the

relative success of candidate rhythms, a database of English pronunciation to determine

syllable stress levels, and traditional search techniques to find highscoring rhythms in a

large space of candidate rhythms. Beyond the lyrics, this system require two extra inputs:

desired total duration and time signature.

7

3 From the Lyrics Input to the Metric

Output

3.1 Introduction

This prototype I’m presenting can’t read as we humans do, but it was developed to

interpret numbers, so the original text must be converted to a phonetic and lexical

representation of itself, based on numbers. This numbers are markers and identify

different lexical stress levels on the words.

3.2 Lyrics Analysis

One of the most important flags of this project is to create a system that deals only with

text, without further input of any kind. Thus, the end result rather than generated, it will

be found. The introduced lyrics gives us several verses with many different forms, and one

of them will stand out as the best, taking into account several factors.

The system’s approach to the text is the most humane possible. From left to right, line by

line, every word is individually understood and converted to a machine-readable format.

Of course, only filled rows will be handled, while the remaining are markers between

paragraphs. Every word of every line is crossed with a phonetic dictionary, which returns

the information associated with the word. The text has now a different appearance, as

shown in the Figure 1.

8

Figure 1: Conversion of the first two stanzas to its phonetic representation.

3.2.1 Lexical Stress extraction

The first resource to be used is the lexical stress. As it is possible to see in the Figure 1,

some phones have a number at the end. Only the vowels contain this markers, which

represent the lexical stress level. For the next step, this is the information that will be

used.

The idea is to find a common metrical form. Or the most common possible, since it

would be virtually impossible that all lines have the same accentuations in the same

order. There are three markers of lexical stress in this dictionary:

0 - No Stress

1 - Primary Stress

2 - Secondary Stress

9

The 0 stands for vowels with a weak lexical stress and the 1 and 2 for vowels with a

strong stress. If it’s a compound word (as “mockingbird” in the Figure 1) the primary

stress (1) is assigned to the leftmost word and the second word is assigned with a

secondary stress (2), as it was established by the Compound Word Rule of English

(Chomsky and Halle, 1968). There is no hypothesis that there is a 2 if not already there

is a 1 in the same word. For each line of text, the markers will be counted and separated.

The 1 and 2 are treated equally, because the system is only labeling the phones as weak

(0) or strong (1 and 2).

3.3 Mapping of Prosodic Accents to the Metric Grid

For each line the stress markers are counted and a metric grid is generated. The number

of beats is defined by the amount of strong stress markers in each line. Assuming at this

first phase of the project the 4/4 as a standard meter, the duration of the meter will be

the lowest power of 2 that is greater than the number of strong stress markers.

Therefore, they will always be 4, 8, 16, 32, etc.

The metric grids are built by levels. The highest level, whose number of beats are defined

by the duration of the meter, is hosting the 1's. Between each beat, spaces will be

created to accommodate the 0's (this is the second level. It may be necessary to create

more empty spaces, creating more levels).

For structural reasons, the last beat of each measure can’t be filled, in order to always

leave a minimum pause between each verse. To make sure that the first beat is always

a strong stressed phone, for each line all the weak markers before the first strong will

be removed and stored. These phones are the anacrusis (like an introduction of the

verse), and will be always assigned to the end of the previous one. The number of strong

accents will be distributed in a simple way. The first takes the first beat, the second is

the second beat, and so on. In order to respect the rule of never occupy the last beat, if

the number of strong accents is exactly equal to certain power of 2, the immediately

higher will be used.

After properly distributed the strong accents, the weak stress markers are placed in the

spaces between the beats. There are some rules that cannot be broken. The zeros

10

cannot occupy the first level beats, and they must be placed exactly between the strong

accents they belong to. Although at this stage they are numbers, they represent vowels

in words, so if the order is changed in the process, at the end the text won't make sense.

3.3.1 Generation of Metrical Templates for Prosody

The sequence of stress markers of each verse must be converted into a template to be

tested. For this, the system applies the transformation explained in chapter 3.3. In Figure

2, we can see how a sequence of markers from a verse will be transformed into a metric

template

Figure 2: Distribution of the lexical stress markers of the first verse by the metric grid. Once that has six
strong accents, the grid was built with eight beats on the first level (the first power of two bigger than six).

In order to be easier to use the templates for the purpose of comparison, a new value

will be introduced (3) to represents the rests. From here all the templates have the same

length. So, the first verse which until now was represented by the numbers of their

accents (110101101), shall also contain 3's. These new values will take up all the blanks

of the Figure 2. Thus, the first verse representation will be:

“13331303130313331303133333333333”.

11

3.3.2 Recursive Alignment of Verses in the Templates

After converting all the verses to metrical templates, it is time to start the alignments. I

developed an algorithm that allows the system to do a recursive analysis to all

templates, crossing each one with all the verses. And by crossing, I mean to distribute

the lexical markers of each verse within the limits of each template. As each verse is

different in general, several modifications must be made to each one so that it can adjust

to the templates, giving us in most cases several results for each operation. There are

also some rules on this operation. The first metric level of the template that’s being

tested is not modifiable. So, if it has six first level beats filled (as in Figure 2), all the

strong stress markers of each verse must be aligned in this same six beats. If they are

more, some of them are downgraded to the second level. If they are less, a rest is

assigned to the template’s filled beats that don’t have any strong accent to its place. In

both cases, all the possible alignment hypothesis are generated and stored in a

multidimensional array.

Once the number of templates and the number of verses is set (which may not be the

same, as I will explain later in this chapter), a multidimensional array is created to further

accommodate the possibilities generated for each crossing between them. This array

will be created with two dimensions, the first being the templates and the second the

verses.

i,j=len(templatesMetrics),len(verseStress)

resultsArray=[[None for x in range(j)] for y in range(i)]

In this lines above, we can see the array being created and filled with empty dimensions

(None means empty). y dimensions are created inside each x dimension, being x the

number (range) of templates and y the number of verses.

Each time one runs the recursive operation, a third dimension is added to the y

dimensions of the array, containing the alignment possibilities.

12

Figure 3: Exemplification of the multidimensional array construction. Each verse inside each template will
store each alignment possibility.

After the full analysis is done, if one wants to see the alignment possibilities of the fifth

verse in the second template, it can be accessed as follows: resultsArray[2][5].

The recursive function is performed n times, where n is the multiplication of the verses

with the verses themselves. Although, technically, it may not be so because duplicate

templates will be removed, increasing the efficiency of the system, since it does not

need to repeat an entire process to get the same results (even if a duplicate template is

removed, the verses will all remain, so the score is not affected). The function takes two

inputs, the first being the template verse (X) and the second the verse to be tested

within this template (Y).

13

for t in range(len(templatesMetrics)):

 for v in range(len(verseStress)):

rhythm[t][v]=recursive(templatesMetrics[t],verseStress[v])

In the first step of each operation, the strong accents are aligned. Let's imagine that the

current template (X) has six strong accents. If the verse to be tested (Y) has eight, only

six will stay in the upper level and 2 have to be set at the lower level. This will return

several possibilities, because these two strong stresses will be placed in the second level

of all possible ways.

To make it clear, I will present two examples of strong lexical markers distributions. The

template is the same in both instances, although in the first case the verse has one

strong marker less, while in the second has one more.

Template: 1 _ 0 _ 1 _ 0 _ 1 _ _ _ 1 _ _ _ 1 _ 0 _ 1 _ 0 _ 1 _ _ _ _ _ _

_

Verse: 1 1 0 1 0 1 1 0 1

Alignment possibilities:

1 _ _ _ 3 _ _ _ 1 _ _ _ 1 _ _ _ 1 _ _ _ 1 _ _ _ 1_ _ _ _ _ _ _

1 _ _ _ 1 _ _ _ 3 _ _ _ 1 _ _ _ 1 _ _ _ 1 _ _ _ 1_ _ _ _ _ _ _

1 _ _ _ 1 _ _ _ 1 _ _ _ 3 _ _ _ 1 _ _ _ 1 _ _ _ 1_ _ _ _ _ _ _

1 _ _ _ 1 _ _ _ 1 _ _ _ 1 _ _ _ 3 _ _ _ 1 _ _ _ 1_ _ _ _ _ _ _

1 _ _ _ 1 _ _ _ 1 _ _ _ 1 _ _ _ 1 _ _ _ 3 _ _ _ 1_ _ _ _ _ _ _

Template: 1 _ 0 _ 1 _ 0 _ 1 _ _ _ 1 _ _ _ 1 _ 0 _ 1 _ 0 _ 1 _ _ _ _ _ _

_

Verse: 1 1 1 1 0 1 0 1 0 1 0 0 1

Alignment possibilities:

1 _ 1 _ 1 _ _ _ 1 _ _ _ 1 _ _ _ 1 _ _ _ 1 _ _ _ 1_ _ _ _ _ _ _

1 _ _ _ 1 _ 1 _ 1 _ _ _ 1 _ _ _ 1 _ _ _ 1 _ _ _ 1_ _ _ _ _ _ _

1 _ _ _ 1 _ _ _ 1 _ 1 _ 1 _ _ _ 1 _ _ _ 1 _ _ _ 1_ _ _ _ _ _ _

1 _ _ _ 1 _ _ _ 1 _ _ _ 1 _ 1 _ 1 _ _ _ 1 _ _ _ 1_ _ _ _ _ _ _

1 _ _ _ 1 _ _ _ 1 _ _ _ 1 _ _ _ 1 _ 1 _ 1 _ _ _ 1_ _ _ _ _ _ _

1 _ _ _ 1 _ _ _ 1 _ _ _ 1 _ _ _ 1 _ _ _ 1 _ 1 _ 1_ _ _ _ _ _ _

14

In the first operation of the recursive function, the input X is the template[0] and the

input Y is the verse[0], and only one alignment is returned because they are the same.

The second operation is done with the template[0] being X again, but now the input Y is

the verse[1], and it can return several possible alignments, depending on the difference

of lexical stress markers between them. Once all verses are aligned with the template[0],

the operation is repeated to all the other templates.

The greater the difference of strong accents from Y to X, more alignments will be

returned. Once completed this phase, the systems has a set of alignments (or just one,

in some cases) for each crossing, but only with the strong stress markers. It is now time

to place the weak stress markers in all this alignments.

This is done by a different function that receives also two inputs, but not the template

X anymore. The first input is each alignment of the previous function and the second is

the Y they belong to. As mentioned earlier in the chapter explaining the construction of

metric templates, zeros cannot occupy the spaces on the upper level, even if the verse

Y has fewer strong markers than the template X. Each weak stress markers (0) of Y is

analyzed individually and the strong markers (1) that precede it are counted. Then, for

each alignment, the same number of 1’s is counted and the 0 is placed in the next second

level space. If there are consecutive weak stress markers in the verse Y, they will have

the same number of preceding strong markers. In this case, a new lower level is created

(if it does not already exist) to accommodate these zeros.

3.3.3 Selection of the Best Template

It is now time to choose the best template, starting by first selecting the best alignment

possibility for each second dimension of the array. Since we now have an array

organized as follows: [template] [verse] [alignment possibilities], we need to convert it

to this: [template] [verse] [best alignment for this crossing]. For each of the possibilities

presented, a score will be assigned. The more changes you need to make for a verse fit

a template, more points are added to its score. Furthermore, different types of changes

will add a different numbers of points.

15

The function “Scoring” receives a first dimension template and each of the possibilities

from the third dimension regarding this same template and each of the verses. This can

be a bit confusing, but I will try to explain it in Figure 4.

Figure 4: Explanation of the scoring function process with verse 2 of template 1.

16

To perform the scoring function in a recursive way, it is triggered the same way
“recursive function” was, and the results are stored in an identical array (this one is
called “score”, but has the same structure):

for t in range(len(templatesMetrics)):

 for p in range(len(verseStress)):

score[t][p]=scoring(templatesMetrics[t],resultsArray[t][p])

The first step in this function is to convert both the current template and alignment

possibility to the same length. This is done by adding rests to the shortest (or adding a

new layer, it’s basically the same). Different metric layers have different weights (W) -

the higher the level is, the heavier its weight will be - on this scoring process. After

converted to the same size, they can be compared each unit at a time. If they don’t

match, it means that was necessary to change the original template in order to align the

verse, and N points are assigned to the score of that possibility. Depending on the level

to which they belong, the assigned points will be defined by (N*W). After some tests, N

was set to be equivalent to 25. If the element to which the value is assigned belongs to

level 1, the number of points will be multiplied by 4 (W = 4). If its place is at level 2, W =

2. If none of the cases, then the weight will be 0 and it will be assigned 25 points.

For each alignment, the possibility with lowest score will be selected and stand out as

the best. So, we now have:

resultsArray[template][verse][minScore(alignment)]

The same process will be used to find the best template: the score of each template will

be defined by the sum of the selected possibility for each of its alignments with all the

verses, and the template with the lowest score will be selected.

17

3.4 Results Analysis and Output

After selecting the best template, the metric structure is created, which will consist on

the element with the lowest score of the third dimension related to that same template,

as follows:

resultsArray[best(template)][each(verse)][minScore(alignment)]

Finally, the numbers of each row must be substituted by its respective phonemes again.

For converting verses into a metrical representation some phones (especially consonants)

were omitted by not contain any lexical stress marker. These phones will now be grouped

with the more indicated lexical stressed phoneme for itself. Here is the two first verses

with all the phonemes.

[['HH', 'AH1', 'SH'], ['L', 'IH1', 'T', 'AH0', 'L'], ['B', 'EY1', 'B',

'IY0'], ['D', 'OW1', 'N', 'T'], ['S', 'EY1'], ['AH0'], ['W', 'ER1', 'D']]

[['M', 'AA1', 'M', 'AH0', 'Z'], ['G', 'AA1', 'N', 'AH0'], ['B', 'AY1'],

['Y', 'UW1'], ['AH0'], ['M', 'AA1', 'K', 'IH0', 'NG', 'B', 'ER2', 'D']]

In the first word, all the non-stressed phones will be assigned to the stressed one. But in

the second, the process is a little bit more complicated.

This process is executed based on a simple algorithm developed for this purpose, which

is explained in the Figure 5. Each word is treated individually and for each of its elements

(phone) is performed an operation. A storage is created to hold some be holding some

elements during the process. The first step is to check if the phone is stressed or not. If it

is, it’s assigned to its respective stress marker place. Every time a stressed phone is

assigned and there is content in the storage, it is added concatenated to the phone that’s

going to be assigned. If the phone is not stressed, two things can happen: if the storage is

empty, this phone is sent to it. If there’s already some phone in the storage, the existing

phone is concatenated to the last assigned element and the new phone is taking its place

18

in the storage. Only if there are no assigned phonemes yet, the storage can take both

phonemes in it, and will treat them as one.

Figure 5: Phones assignment algorithm explanation.

19

4 Implementation

4.1 CMUdict

CMUdict is a pronunciation dictionary for North American English. Its phoneme (or more

accurately, phone) set is based on the ARPAbet symbol set developed for speech

recognition uses and contains 39 phonemes, as we can see below.

 Phoneme Example Translation

 ------- ------- -----------

 AA odd AA D

 AE at AE T

 AH hut HH AH T

 AO ought AO T

 AW cow K AW

 AY hide HH AY D

 B be B IY

 CH cheese CH IY Z

 D dee D IY

 DH thee DH IY

 EH Ed EH D

 ER hurt HH ER T

 EY ate EY T

 F fee F IY

 G green G R IY N

 HH he HH IY

 IH it IH T

 IY eat IY T

 JH gee JH IY

 K key K IY

 L lee L IY

 M me M IY

 N knee N IY

 NG ping P IH NG

 OW oat OW T

 OY toy T OY

 P pee P IY

 R read R IY D

 S sea S IY

 SH she SH IY

 T tea T IY

 TH theta TH EY T AH

 UH hood HH UH D

 UW two T UW

 V vee V IY

 W we W IY

 Y yield Y IY L D

 Z zee Z IY

 ZH seizure S IY ZH ER

20

For each word, this lexicon provides a list of phonetic codes—distinct labels for each

contrastive sound—known as phones. The following example shows some entries of the

dictionary.

>>> entries = nltk.corpus.cmudict.entries()

>>> len(entries)

127012

>>> for entry in entries [39943:39947]:

... print entry

...

('fir', ['F', 'ER1'])

('fire', ['F', 'AY1', 'ER0'])

('firearm', ['F', 'AY1', 'ER0', 'AA2', 'R', 'M'])

('firearms', ['F', 'AY1', 'ER0', 'AA2', 'R', 'M', 'Z'])

('fireball', ['F', 'AY1', 'ER0', 'B', 'AO2', 'L'])

4.2 Natural Language Toolkit (NLTK)

NLTK is a leading platform for building Python programs to work with human language

data. It provides easy-to-use interfaces to over 50 corpora and lexical resources, along

with a suite of text processing libraries. It defines an infrastructure that can be used to

build Natural Language Processing programs in Python. It provides basic classes for

representing data relevant to natural language processing; standard interfaces for

performing tasks such as part-of-speech tagging, syntactic parsing, and text classification;

and standard implementations for each task that can be combined to solve complex

problems.

NLTK comes with extensive documentation. In addition to its book, the website at

http://www.nltk.org/ provides API documentation that covers every module, class, and

function in the toolkit, specifying parameters and giving examples of usage. The website

also provides many HOWTOs with extensive examples and test cases, intended for users,

developers, and instructors.

This toolkit includes the CMU Pronouncing Dictionary for U.S. English in its corpora, which

made the process of this project a lot easier and fast.

21

4.3 Python

All Python releases are open-source and it has a simple and pragmatic syntax, easy to

learn and to use. Other important features are its dynamic type system and the large and

comprehensive standard library.

4.3.1 Brief Explanation of Python Code

In this section, the code will be briefly explained.

o First text analysis and extraction of the stress markers (lines 1-74) – All the

words are crossed with the dictionary and their phonetic information is

added to [resultLine]. In the end of parsing each line, it appends the new

line with all the phonemes to [firstAnalysis]. If some of them is not found, it

returns the word along with the message: “word not recognized”.

o Cleaning up the verses: finding the anacrusis and removing their stress

markers (lines 75-108) – For each verse, the system checks if there is an

anacrusis and how many stress markers belong to it (In other words, how

many weak stress markers appear before the first strong one). All the verses

(without anacrusis) are added to [verseStress].

o Creating the templates (lines 109-140) – The function finalTemplate(x)

receives each of the sequences of stress markers of verses and from them

creates the metric templates. It finds the power of two of the amount of

strong markers and creates a metric grid with that duration. Between each

beat it creates a new space, rising a lower metric level. Strong markers are

distributed by the beats and weak markers are placed on the lower level. All

the templates are appended to [templatesMetrics].

o Creating all the alignments possibilities for the templates (lines 141-290) –

recursive function takes all the templates and for each of them intersects

with all the verses, generating several possibilities for each alignment.

22

Within this function there are other functions that distribute the different

stress markers. All the results are saved in a multidimensional array.

o Selecting the best template (lines 291-345) – the scoring function takes

each possibility hosted in the array and assigns it a score, based on how

much its alignment respects the structure of the template to which it

belongs. Based on this score it is chosen for each template the best

alignment of each verse, and their scores are combined all together to give

the template a general score. The template with best overall score is

selected as the best.

o Triggering all the functions, creation of the multidimensional arrays and

distribution of the lyrics by the metric grid and output (lines 346-500) –

Once the functions are created, it’s necessary to trigger them. The systems

creates the multidimensional arrays and then fill them by sending all the

templates and verses to the functions. This is what triggers the system. After

the best template is chosen, the system returns the result to each verse. The

non-stressed phonemes are grouped with the stressed ones they belong to

(by the assign function), and each group takes its place in metric structure,

making a visual presentation to the user.

23

5 Application to six lyrics/poems

In order to analyze the system performance, some tests were conducted with different

lullabies and children’s poems. Due to the above referenced limitations, mainly in terms

of vocabulary (many lullabies contain onomatopoeia) and lack of metric coherence of

the texts, some were rejected. Those that were correctly analyzed yielded very

interesting results, as I will show through a more musically conventional representation

of these results. The raw results are in appendix chapter (8).

5.1 Lullabies

5.1.1 All the Pretty Horses

 Lyrics

Hush a bye don't you cry

Go to sleep my little baby

When you wake you shall have

All the pretty little horses

Black and bays checkered grays

All the pretty little horses

Hush a bye don't you cry

Go to sleep my little baby

Hush a bye don't you cry

Go to sleep my little baby

When you wake you shall have

All the pretty little horses

24

 Stress markers metric distribution output

1ˍ0ˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ1ˍ1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍ0ˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ1ˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍˍˍ0ˍˍˍ1ˍ0ˍ1ˍ0ˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍˍˍ3ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍˍˍ0ˍˍˍ1ˍ0ˍ1ˍ0ˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ1ˍ1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍ0ˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ1ˍ1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍ0ˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ1ˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍˍˍ0ˍˍˍ1ˍ0ˍ1ˍ0ˍˍˍˍˍˍˍˍˍˍˍˍˍ

 Phones Assignment to the markers

HH|AH|SH.ˍAH.ˍB|AY.ˍˍˍD|OW|N|T.ˍˍˍY|UW.ˍˍˍK|R|AY.ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

G|OW.ˍT|UW.ˍS|L|IY|P.ˍˍˍM|AY.ˍˍˍL|IH.ˍT|AH|L.ˍB|EY.ˍˍB|IY.ˍˍˍˍˍˍˍˍˍˍˍˍ

W|EH|N.ˍY|UW.ˍW|EY|K.ˍˍˍY|UW.ˍˍˍSH|AE|L.ˍˍˍHH|AE|V.ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

AO|L.ˍDH|AH.ˍP|R|IH.ˍˍˍT|IY.ˍˍˍL|IH.ˍT|AH|L.ˍHH|AO|R.ˍS|AH|Z.ˍˍˍˍˍˍˍˍˍˍˍˍˍ

B|L|AE|K.ˍAH|N|D.ˍB|EY|Z.ˍˍˍˍˍˍˍCH|EH.ˍK|ER|D.ˍG|R|EY|Z.ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

AO|L.ˍDH|AH.ˍP|R|IH.ˍˍˍT|IY.ˍˍˍL|IH.ˍT|AH|L.ˍHH|AO|R.ˍS|AH|Z.ˍˍˍˍˍˍˍˍˍˍˍˍˍ

HH|AH|SH.ˍAH.ˍB|AY.ˍˍˍD|OW|N|T.ˍˍˍY|UW.ˍˍˍK|R|AY.ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

G|OW.ˍT|UW.ˍS|L|IY|P.ˍˍˍM|AY.ˍˍˍL|IH.ˍT|AH|L.ˍB|EY.ˍˍB|IY.ˍˍˍˍˍˍˍˍˍˍˍˍ

HH|AH|SH.ˍAH.ˍB|AY.ˍˍˍD|OW|N|T.ˍˍˍY|UW.ˍˍˍK|R|AY.ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

G|OW.ˍT|UW.ˍS|L|IY|P.ˍˍˍM|AY.ˍˍˍL|IH.ˍT|AH|L.ˍB|EY.ˍˍB|IY.ˍˍˍˍˍˍˍˍˍˍˍˍ

W|EH|N.ˍY|UW.ˍW|EY|K.ˍˍˍY|UW.ˍˍˍSH|AE|L.ˍˍˍHH|AE|V.ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

AO|L.ˍDH|AH.ˍP|R|IH.ˍˍˍT|IY.ˍˍˍL|IH.ˍT|AH|L.ˍHH|AO|R.ˍS|AH|Z.ˍˍˍˍˍˍˍˍˍˍˍˍˍ

25

 Musical Notation Transcription

Figure 6: Musical Notation Transcription of the results for the lyric “All Pretty Horses”.

26

5.1.2 Hush, Little Baby

 Lyrics

Hush little baby don't say a word

Mama's gonna buy you a mockingbird

And if that mockingbird don't sing

Mama's gonna buy you a diamond ring

And if that diamond ring turns brass

Mama's gonna buy you a looking glass

And if that looking glass gets broke

Mama's gonna buy you a billy goat

And if that billy goat don't pull

Mama's gonna buy you a cart and bull

And if that cart and bull turn over

Mama's gonna buy you a dog named Rover

And if that dog named Rover won't bark

Mama's gonna buy you a horse and cart

And if that horse and cart fall down

Well you'll still be the sweetest little baby in town

 Stress markers metric distribution output

1ˍˍˍ1ˍ0ˍ1ˍ0ˍ1ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍ0ˍ1ˍˍˍ1ˍ0ˍ1ˍ0ˍ1ˍˍˍˍˍˍˍ0ˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍ0ˍ1ˍˍˍ1ˍ0ˍ1ˍ0ˍ1ˍˍˍˍˍˍˍ0ˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍ0ˍ1ˍˍˍ1ˍ0ˍ1ˍ0ˍ1ˍˍˍˍˍˍˍ0ˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍ0ˍ1ˍˍˍ1ˍ0ˍ1ˍ0ˍ1ˍˍˍˍˍˍˍ0ˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍ0ˍ1ˍˍˍ1ˍ0ˍ1ˍ0ˍ1ˍˍˍˍˍˍˍ0ˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍˍˍ1ˍˍˍ1ˍˍ0ˍˍˍˍˍˍˍˍ

1ˍ0ˍ101ˍ1ˍ0ˍ1ˍˍˍ1ˍˍˍ1ˍˍ0ˍˍˍˍ0ˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ101ˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍ0ˍ1ˍ1ˍ1ˍ0ˍ1ˍ0ˍ1ˍˍˍˍˍˍˍ0ˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍ1ˍ1ˍ0ˍ10101ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍ

27

 Phones Assignment to the markers

HH|AH|SH.ˍˍˍL|IH.ˍT|AH|L.ˍB|EY.ˍB|IY.ˍD|OW|N|T.ˍˍˍS|EY.ˍAH.ˍW|ER|D.ˍˍˍˍˍˍˍˍˍˍˍ

M|AA.ˍM|AH|Z.ˍG|AA.ˍN|AH.ˍB|AY.ˍˍˍY|UW.ˍAH.ˍM|AA.ˍK|IH|NG.ˍB|ER|D.ˍˍˍˍˍˍˍAH0|N|D.ˍˍˍ

IH|F.ˍˍˍDH|AE|T.ˍˍˍM|AA.ˍK|IH|NG.ˍB|ER|D.ˍˍˍD|OW|N|T.ˍˍˍS|IH|NG.ˍˍˍˍˍˍˍˍˍˍˍ

M|AA.ˍM|AH|Z.ˍG|AA.ˍN|AH.ˍB|AY.ˍˍˍY|UW.ˍAH.ˍD|AY.ˍM|AH|N|D.ˍR|IH|NG.ˍˍˍˍˍˍˍAH0|N|D.ˍˍˍ

IH|F.ˍˍˍDH|AE|T.ˍˍˍD|AY.ˍM|AH|N|D.ˍR|IH|NG.ˍˍˍT|ER|N|Z.ˍˍˍB|R|AE|S.ˍˍˍˍˍˍˍˍˍˍˍ

M|AA.ˍM|AH|Z.ˍG|AA.ˍN|AH.ˍB|AY.ˍˍˍY|UW.ˍAH.ˍL|UH.ˍK|IH|NG.ˍG|L|AE|S.ˍˍˍˍˍˍˍAH0|N|D.ˍˍˍ

IH|F.ˍˍˍDH|AE|T.ˍˍˍL|UH.ˍK|IH|NG.ˍG|L|AE|S.ˍˍˍG|EH|T|S.ˍˍˍB|R|OW|K.ˍˍˍˍˍˍˍˍˍˍˍ

M|AA.ˍM|AH|Z.ˍG|AA.ˍN|AH.ˍB|AY.ˍˍˍY|UW.ˍAH.ˍB|IH.ˍL|IY.ˍG|OW|T.ˍˍˍˍˍˍˍAH0|N|D.ˍˍˍ

IH|F.ˍˍˍDH|AE|T.ˍˍˍB|IH.ˍL|IY.ˍG|OW|T.ˍˍˍD|OW|N|T.ˍˍˍP|UH|L.ˍˍˍˍˍˍˍˍˍˍˍ

M|AA.ˍM|AH|Z.ˍG|AA.ˍN|AH.ˍB|AY.ˍˍˍY|UW.ˍAH.ˍK|AA|R|T.ˍAH|N|D.ˍB|UH|L.ˍˍˍˍˍˍˍAH0|N|D.ˍˍˍ

IH|F.ˍˍˍDH|AE|T.ˍˍˍK|AA|R|T.ˍAH|N|D.ˍB|UH|L.ˍˍˍT|ER|N.ˍˍˍOW.ˍˍV|ER.ˍˍˍˍˍˍˍˍ

M|AA.ˍM|AH|Z.ˍG|AA.N|AH.B|AY.ˍY|UW.ˍAH.ˍD|AO|G.ˍˍˍN|EY|M|D.ˍˍˍR|OW.ˍˍV|ER.ˍˍˍˍAH0|N|D.ˍˍ

ˍ

IH|F.ˍˍˍDH|AE|T.ˍˍˍD|AO|G.ˍˍˍN|EY|M|D.ˍˍˍR|OW.V|ER.W|OW|N|T.ˍB|AA|R|K.ˍˍˍˍˍˍˍˍˍˍˍ

M|AA.ˍM|AH|Z.ˍG|AA.ˍN|AH.ˍB|AY.ˍˍˍY|UW.ˍAH.ˍHH|AO|R|S.ˍAH|N|D.ˍK|AA|R|T.ˍˍˍˍˍˍˍAH0|N|D.ˍ

ˍˍ

IH|F.ˍˍˍDH|AE|T.ˍˍˍHH|AO|R|S.ˍAH|N|D.ˍK|AA|R|T.ˍˍˍF|AO|L.ˍˍˍD|AW|N.ˍˍˍˍˍˍˍˍˍˍˍ

W|EH|L.ˍˍˍY|UW|L.ˍS|T|IH|L.ˍB|IY.ˍDH|AH.ˍS|W|IY.T|AH|S|T.L|IH.T|AH|L.B|EY.ˍB|IY.ˍIH|N.ˍT

|AW|N.ˍˍˍˍˍˍˍˍˍ

28

 Musical Notation Transcription

29

30

5.2 Children’s Poetry

5.2.1 All Things Bright and Beautiful

 Lyrics

All things bright and beautiful

All creatures great and small

All things wise and wonderful

The Lord God made them all

Each little flower that opens

Each little bird that sings

He made their glowing colors

He made their tiny wings

The purple headed mountain

The river running by

The sunset and the morning

That brightens up the sky

The cold wind in the winter

The pleasant summer sun

The ripe fruits in the garden

He made them every one

He gave us eyes to see them

And lips that we might tell

How great is God Almighty

Who has made all things well

 Stress markers metric distribution output

1ˍˍˍ3ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍ0ˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ0ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ3ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍ0ˍˍˍˍˍˍˍˍˍˍˍ0ˍ

1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍ0ˍ1ˍ0ˍ1ˍˍˍ1ˍ0ˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍ0ˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍ0ˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍ0ˍ

1ˍˍˍ3ˍ0ˍ3ˍˍˍ1ˍ0ˍ1ˍ0ˍˍˍˍˍˍˍˍˍˍˍ0ˍ

1ˍˍˍ3ˍ0ˍ3ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍ0ˍ

1ˍˍˍ3ˍˍˍ3ˍˍˍ1ˍ0ˍ1ˍ0ˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ0ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍ0ˍ

1ˍˍˍ3ˍˍˍ3ˍˍˍ1ˍ0ˍ1ˍ0ˍˍˍˍˍˍˍˍˍˍˍ0ˍ

1ˍˍˍ3ˍ0ˍ3ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍ0ˍ

1ˍˍˍ3ˍˍˍ3ˍˍˍ1ˍ0ˍ1ˍ0ˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍ1ˍ1ˍˍˍ1ˍ1ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍ0ˍ

1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍ0ˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍ1ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

31

 Phones Assignment to the markers

AO|L.ˍˍˍˍˍˍˍTH|IH|NG|Z.ˍˍˍB|R|AY|T.ˍAH|N|D.ˍB|Y|UW.ˍT|AH.ˍˍˍˍˍˍˍˍˍˍˍˍˍ

AO|L.ˍˍˍK|R|IY.ˍˍˍCH|ER|Z.ˍˍˍG|R|EY|T.ˍAH|N|D.ˍS|M|AO|L.ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

AO|L.ˍˍˍˍˍˍˍTH|IH|NG|Z.ˍˍˍW|AY|Z.ˍAH|N|D.ˍW|AH|N.ˍD|ER.ˍˍˍˍˍˍˍˍˍˍDH|AH0.ˍˍ

L|AO|R|D.ˍˍˍG|AA|D.ˍˍˍM|EY|D.ˍˍˍDH|EH|M.ˍˍˍAO|L.ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

IY|CH.ˍˍˍL|IH.ˍT|AH|L.ˍF|L|AW.ˍER.ˍDH|AE|T.ˍˍˍOW.ˍˍP|AH|N|Z.ˍˍˍˍˍˍˍˍˍˍˍˍ

IY|CH.ˍˍˍL|IH.ˍT|AH|L.ˍB|ER|D.ˍˍˍDH|AE|T.ˍˍˍS|IH|NG|Z.ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

HH|IY.ˍˍˍM|EY|D.ˍˍˍDH|EH|R.ˍˍˍG|L|OW.ˍIH|NG.ˍK|AH.ˍˍL|ER|Z.ˍˍˍˍˍˍˍˍˍˍˍˍ

HH|IY.ˍˍˍM|EY|D.ˍˍˍDH|EH|R.ˍˍˍT|AY.ˍN|IY.ˍW|IH|NG|Z.ˍˍˍˍˍˍˍˍˍˍˍˍDH|AH0.ˍˍ

P|ER.ˍˍˍˍˍP|AH|L.ˍˍˍˍˍHH|EH.ˍD|AH|D.ˍM|AW|N.ˍT|AH|N.ˍˍˍˍˍˍˍˍˍˍDH|AH0.ˍˍ

R|IH.ˍˍˍˍˍV|ER.ˍˍˍˍˍR|AH.ˍN|IH|NG.ˍB|AY.ˍˍˍˍˍˍˍˍˍˍˍˍDH|AH0.ˍˍ

S|AH|N.ˍˍˍˍˍˍˍˍˍˍˍS|EH|T.ˍAH|N|D.ˍDH|AH.ˍM|AO|R.ˍˍˍˍˍˍˍˍˍˍˍˍˍ

DH|AE|T.ˍˍˍB|R|AY.ˍˍˍT|AH|N|Z.ˍˍˍAH|P.ˍDH|AH.ˍS|K|AY.ˍˍˍˍˍˍˍˍˍˍˍˍDH|AH0.ˍˍ

K|OW|L|D.ˍˍˍˍˍˍˍˍˍˍˍW|AY|N|D.ˍIH|N.ˍDH|AH.ˍW|IH|N.ˍˍˍˍˍˍˍˍˍˍDH|AH0.ˍˍ

P|L|EH.ˍˍˍˍˍZ|AH|N|T.ˍˍˍˍˍS|AH.ˍM|ER.ˍS|AH|N.ˍˍˍˍˍˍˍˍˍˍˍˍDH|AH0.ˍˍ

R|AY|P.ˍˍˍˍˍˍˍˍˍˍˍF|R|UW|T|S.ˍIH|N.ˍDH|AH.ˍG|AA|R.ˍˍˍˍˍˍˍˍˍˍˍˍˍ

HH|IY.ˍˍˍM|EY|D.ˍˍˍDH|EH|M.ˍˍˍEH.ˍV|ER.ˍIY.ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

HH|IY.ˍˍˍG|EY|V.ˍAH|S.ˍAY|Z.ˍˍˍT|UW.ˍS|IY.ˍDH|EH|M.ˍˍˍˍˍˍˍˍˍˍˍˍAH0|N|D.ˍˍ

L|IH|P|S.ˍˍˍDH|AE|T.ˍˍˍW|IY.ˍˍˍM|AY|T.ˍˍˍT|EH|L.ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

HH|AW.ˍˍˍG|R|EY|T.ˍˍˍIH|Z.ˍˍˍG|AA|D.ˍAO|L.ˍM|AY.ˍˍT|IY.ˍˍˍˍˍˍˍˍˍˍˍˍ

HH|UW.ˍˍˍHH|AE|Z.ˍˍˍM|EY|D.ˍˍˍAO|L.ˍTH|IH|NG|Z.ˍW|EH|L.ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

32

 Musical Notation Transcription

33

34

5.2.2 Bed in Summer

 Lyrics

In Winter I get up at night

And dress by yellow candle light

In Summer quite the other way

I have to go to bed by day

I have to go to bed and see

The birds still hopping on the tree

Or hear the grown up people's feet

Still going past me in the street

And does it not seem hard to you

When all the sky is clear and blue

And I should like so much to play

To have to go to bed by day

 Stress markers metric distribution output

ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ0ˍ

1ˍˍˍ0ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍ0ˍ

1ˍˍˍ1ˍˍˍ3ˍˍˍ1ˍˍˍ0ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍ0ˍ

1ˍ0ˍ1ˍˍˍ3ˍˍˍ0ˍˍˍ3ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍ1ˍ1ˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍ0ˍ

1ˍˍˍ1ˍˍˍ3ˍˍˍ1ˍˍˍ0ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ0ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ0ˍˍˍ1ˍˍˍ1ˍˍˍ0ˍ0ˍ1ˍˍˍˍˍ0ˍ

1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ0ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍ0ˍ

1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍ1ˍ1ˍˍˍˍˍˍˍ

35

 Phones Assignment to the markers

ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍIH0|Nˍ

W|IH|N.ˍˍˍT|ER.ˍˍˍAY.ˍˍˍG|EH|T.ˍˍˍAH|P.ˍˍˍAE|T.ˍˍˍN|AY|T.ˍˍAH0|N|D.ˍˍˍˍ

D|R|EH|S.ˍˍˍB|AY.ˍˍˍˍˍˍˍY|EH.ˍL|OW.ˍK|AE|N.ˍˍˍD|AH|L.ˍˍˍL|AY|T.ˍ'IH0|N.ˍˍˍˍ

S|AH.ˍˍˍM|ER.ˍˍˍK|W|AY|T.ˍˍˍDH|AH.ˍˍˍAH.ˍˍˍDH|ER.ˍˍˍW|EY.ˍˍˍˍˍˍˍ

AY.ˍHH|AE|V.ˍT|UW.ˍˍˍG|OW.ˍˍˍT|UW.ˍˍˍB|EH|D.ˍˍˍB|AY.ˍˍˍD|EY.ˍˍˍˍˍˍˍ

AY.ˍˍˍHH|AE|V.ˍˍˍT|UW.ˍˍˍG|OW.ˍˍˍT|UW.ˍˍˍB|EH|D.ˍAH|N|D.ˍS|IY.ˍˍDH|AH0.ˍˍˍˍ

B|ER|D|Z.ˍˍˍS|T|IH|L.ˍˍˍˍˍˍˍHH|AA.ˍP|IH|NG.ˍAA|N.ˍˍˍDH|AH.ˍˍˍT|R|IY.ˍˍˍˍˍˍˍ

AO|R.ˍˍˍHH|IY|R.ˍˍˍDH|AH.ˍˍˍG|R|OW|N.ˍˍˍAH|P.ˍˍˍP|IY.ˍP|AH|L|Z.ˍF|IY|T.ˍˍˍˍˍˍˍ

S|T|IH|L.ˍˍˍG|OW.ˍˍˍIH|NG.ˍˍˍP|AE|S|T.ˍˍˍM|IY.ˍˍˍIH|N.ˍDH|AH.ˍS|T|R|IY|T.ˍˍAH0

|N|D.ˍˍˍˍ

D|AH|Z.ˍˍˍIH|T.ˍˍˍN|AA|T.ˍˍˍS|IY|M.ˍˍˍHH|AA|R|D.ˍˍˍT|UW.ˍˍˍY|UW.ˍˍˍˍˍˍˍ

W|EH|N.ˍˍˍAO|L.ˍˍˍDH|AH.ˍˍˍS|K|AY.ˍˍˍIH|Z.ˍˍˍK|L|IH|R.ˍAH|N|D.ˍB|L|UW.ˍˍAH0|N|

D.ˍˍˍˍ

AY.ˍˍˍSH|UH|D.ˍˍˍL|AY|K.ˍˍˍS|OW.ˍˍˍM|AH|CH.ˍˍˍT|UW.ˍˍˍP|L|EY.ˍˍˍˍˍˍˍ

T|UW.ˍHH|AE|V.ˍT|UW.ˍˍˍG|OW.ˍˍˍT|UW.ˍˍˍB|EH|D.ˍˍˍB|AY.ˍˍˍD|EY.ˍˍIH0|N.ˍˍˍˍ

36

 Musical Notation Transcription

37

38

5.2.3 The Fieldmouse

 Lyrics

Where the acorn tumbles down

Where the ash tree sheds its berry

With your fur so soft and brown

With your eye so round and merry

Scarcely moving the long grass

Fieldmouse I can see you pass

Little thing in what dark den

Lie you all the winter sleeping

Till warm weather comes again

Then once more I see you peeping

Round about the tall tree roots

Nibbling at their fallen fruits

Fieldmouse fieldmouse do not go

Where the farmer stacks his treasure

Find the nut that falls below

Eat the acorn at your pleasure

But you must not steal the grain

He has stacked with so much pain

Make your hole where mosses spring

Underneath the tall oak's shadow

Pretty quiet harmless thing

Play about the sunny meadow

Keep away from corn and house

None will harm you little mouse

39

 Stress markers metric distribution output

1ˍ0ˍ1ˍˍˍ0ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍˍˍ1ˍˍˍ1ˍ1ˍ1ˍ0ˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ1ˍ1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ1ˍ1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍ0ˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍˍˍ0ˍ0ˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ1ˍ1ˍˍˍ1ˍˍˍ1ˍ1ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍ0ˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍ0ˍ1ˍ0ˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ1ˍ1ˍˍˍ1ˍˍˍ1ˍ1ˍ1ˍ0ˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍ0ˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ1ˍ1ˍˍˍ1ˍˍˍ1ˍ1ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍ0ˍ1ˍˍˍ1ˍˍˍ1ˍ0ˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍ0ˍ1ˍˍˍ1ˍˍˍ1ˍ0ˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ1ˍ1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ1ˍ1ˍˍˍ1ˍˍˍ1ˍ1ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ1ˍ1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍ0ˍ1ˍˍˍ1ˍ1ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍˍˍ0ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍ0ˍ1ˍ0ˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ0ˍ1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

1ˍ1ˍ1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍˍˍˍˍ

40

 Phones Assignment to the markers

W|EH|R.ˍˍˍDH|AH.ˍˍˍEY.ˍˍˍK|AO|R|N.ˍˍˍT|AH|M.ˍˍˍB|AH|L|Z.ˍˍˍD|AW|N.ˍˍˍˍˍˍˍ

W|EH|R.ˍˍˍDH|AH.ˍˍˍAE|SH.ˍˍˍT|R|IY.ˍˍˍSH|EH|D|Z.ˍˍˍIH|T|S.ˍˍˍB|EH.ˍR|IY.ˍˍˍˍˍ

W|IH|DH.ˍˍˍY|AO|R.ˍˍˍF|ER.ˍˍˍS|OW.ˍˍˍS|AA|F|T.ˍˍˍAH|N|D.ˍˍˍB|R|AW|N.ˍˍˍˍˍˍˍ

W|IH|DH.ˍˍˍY|AO|R.ˍˍˍAY.ˍˍˍS|OW.ˍˍˍR|AW|N|D.ˍˍˍAH|N|D.ˍˍˍM|EH.ˍR|IY.ˍˍˍˍˍ

S|K|EH|R|S.ˍˍˍL|IY.ˍˍˍM|UW.ˍV|IH|NG.ˍDH|AH.ˍˍˍˍˍˍˍˍˍˍˍL|AO|NG.ˍˍˍˍˍˍˍ

F|IY|L|D.ˍˍˍM|AW|S.ˍˍˍAY.ˍˍˍK|AE|N.ˍˍˍS|IY.ˍˍˍY|UW.ˍˍˍP|AE|S.ˍˍˍˍˍˍˍ

L|IH.ˍˍˍT|AH|L.ˍˍˍTH|IH|NG.ˍIH|N.ˍW|AH|T.ˍˍˍˍˍˍˍD|AA|R|K.ˍˍˍD|EH|N.ˍˍˍˍˍˍˍ

L|AY.ˍˍˍˍˍˍˍY|UW.ˍˍˍAO|L.ˍˍˍDH|AH.ˍˍˍW|IH|N.ˍT|ER.ˍS|L|IY.ˍP|IH|NG.ˍˍˍˍˍ

T|IH|L.ˍˍˍˍˍˍˍW|AO|R|M.ˍˍˍW|EH.ˍˍˍDH|ER.ˍˍˍK|AH|M|Z.ˍAH.ˍG|EH|N.ˍˍˍˍˍˍˍ

DH|EH|N.ˍˍˍW|AH|N|S.ˍˍˍM|AO|R.ˍˍˍAY.ˍˍˍS|IY.ˍˍˍY|UW.ˍˍˍP|IY.ˍˍP|IH|NG.ˍˍˍˍ

R|AW|N|D.ˍˍˍAH.ˍˍˍB|AW|T.ˍDH|AH.ˍT|AO|L.ˍˍˍˍˍˍˍT|R|IY.ˍˍˍR|UW|T|S.ˍˍˍˍˍˍˍ

N|IH.ˍB|AH.ˍL|IH|NG.ˍˍˍˍˍˍˍAE|T.ˍˍˍDH|EH|R.ˍˍˍF|AA.ˍˍˍL|AH|N.ˍˍˍˍˍˍˍ

F|IY|L|D.ˍˍˍM|AW|S.ˍˍˍF|IY|L|D.ˍˍˍM|AW|S.ˍˍˍD|UW.ˍˍˍN|AA|T.ˍˍˍG|OW.ˍˍˍˍˍˍˍ

W|EH|R.ˍˍˍDH|AH.ˍˍˍF|AA|R.ˍM|ER.ˍS|T|AE|K|S.ˍˍˍˍˍˍˍHH|IH|Z.ˍˍˍT|R|EH.ˍZH|ER.ˍˍ

ˍˍˍ

F|AY|N|D.ˍˍˍDH|AH.ˍˍˍN|AH|T.ˍˍˍDH|AE|T.ˍˍˍF|AO|L|Z.ˍˍˍB|IH.ˍˍˍL|OW.ˍˍˍˍˍˍˍ

IY|T.ˍˍˍDH|AH.ˍˍˍEY.ˍK|AO|R|N.ˍAE|T.ˍˍˍˍˍˍˍY|AO|R.ˍˍˍP|L|EH.ˍZH|ER.ˍˍˍˍˍ

B|AH|T.ˍˍˍY|UW.ˍˍˍM|AH|S|T.ˍˍˍN|AA|T.ˍˍˍS|T|IY|L.ˍˍˍDH|AH.ˍˍˍG|R|EY|N.ˍˍˍˍˍˍˍ

HH|IY.ˍˍˍHH|AE|Z.ˍˍˍS|T|AE|K|T.ˍˍˍW|IH|DH.ˍˍˍS|OW.ˍˍˍM|AH|CH.ˍˍˍP|EY|N.ˍˍˍˍˍˍˍ

M|EY|K.ˍˍˍY|AO|R.ˍˍˍHH|OW|L.ˍˍˍW|EH|R.ˍˍˍM|AO.ˍˍˍS|AH|Z.ˍˍˍS|P|R|IH|NG.ˍˍˍˍˍˍˍ

AH|N.ˍˍˍD|ER.ˍˍˍN|IY|TH.ˍDH|AH.ˍT|AO|L.ˍˍˍOW|K|S.ˍˍˍSH|AE.ˍˍˍD|OW.ˍˍˍˍˍˍˍ

P|R|IH.ˍˍˍT|IY.ˍˍˍK|W|AY.ˍˍˍAH|T.ˍˍˍHH|AA|R|M.ˍˍˍL|AH|S.ˍˍˍTH|IH|NG.ˍˍˍˍˍˍˍ

P|L|EY.ˍˍˍAH.ˍˍˍB|AW|T.ˍDH|AH.ˍS|AH.ˍˍˍN|IY.ˍˍˍM|EH.ˍˍˍD|OW.ˍˍˍˍˍˍˍ

K|IY|P.ˍˍˍAH.ˍˍˍW|EY.ˍˍˍF|R|AH|M.ˍˍˍK|AO|R|N.ˍˍˍAH|N|D.ˍˍˍHH|AW|S.ˍˍˍˍˍˍˍ

N|AH|N.ˍˍˍW|IH|L.ˍˍˍHH|AA|R|M.ˍˍˍY|UW.ˍˍˍL|IH.ˍˍˍT|AH|L.ˍˍˍM|AW|S.ˍˍˍˍˍˍˍ

41

 Musical Notation Transcription

42

43

5.2.4 The Lamb

 Lyrics

Little lamb who made thee

Dost thou know who made thee

Gave thee life and bid thee feed

By the stream and over the mead

Gave thee clothing of delight

Softest clothing woolly bright

Gave thee such a tender voice

Making all the vales rejoice

Little lamb who made thee

Dost thou know who made thee

Little lamb I'll tell thee

Little lamb I'll tell thee

He is called by thy name

For He calls Himself a lamb

He is meek and He is mild

He became a little child

I a child and thou a lamb

We are called by His name

Little lamb God bless thee

Little lamb God bless thee

 Stress markers metric distribution output

1ˍˍˍ0ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ0ˍˍˍ1ˍˍˍ0ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍˍˍ0ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ0ˍˍˍ1ˍˍˍ0ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍˍˍ0ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ0ˍˍˍ1ˍˍˍ0ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ0ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ0ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ0ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍˍˍ0ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍ0ˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ0ˍˍˍ1ˍˍˍ0ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ0ˍˍˍ1ˍˍˍ0ˍˍˍ1ˍ0ˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ0ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍ

1ˍˍˍ0ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍ1ˍˍˍˍˍˍˍˍˍˍˍ

44

 Phones Assignment to the markers

L|IH.ˍˍˍT|AH|L.ˍˍˍL|AE|M.ˍˍˍHH|UW.ˍˍˍM|EY|D.ˍˍˍDH|IY.ˍˍˍˍˍˍˍˍˍˍˍ

D|AA|S|T.ˍˍˍDH|AW.ˍˍˍN|OW.ˍˍˍHH|UW.ˍˍˍM|EY|D.ˍˍˍDH|IY.ˍˍˍˍˍˍˍˍˍˍˍ

G|EY|V.ˍˍˍDH|IY.ˍˍˍL|AY|F.ˍAH|N|D.ˍB|IH|D.ˍˍˍDH|IY.ˍˍˍF|IY|D.ˍˍˍˍˍˍˍˍˍˍˍ

B|AY.ˍˍˍDH|AH.ˍˍˍS|T|R|IY|M.ˍˍˍAH|N|D.ˍˍˍOW.ˍV|ER.ˍDH|AH.ˍˍˍˍˍˍˍˍˍˍˍ

G|EY|V.ˍˍˍˍˍˍˍDH|IY.ˍˍˍK|L|OW.ˍDH|IH|NG.ˍAH|V.ˍD|IH.ˍL|AY|T.ˍˍˍˍˍˍˍˍˍˍˍ

S|AO|F.ˍˍˍT|AH|S|T.ˍˍˍK|L|OW.ˍˍˍDH|IH|NG.ˍˍˍW|UH.ˍL|IY.ˍB|R|AY|T.ˍˍˍˍˍˍˍˍˍˍˍ

G|EY|V.ˍˍˍˍˍˍˍDH|IY.ˍˍˍS|AH|CH.ˍAH.ˍT|EH|N.ˍD|ER.ˍV|OY|S.ˍˍˍˍˍˍˍˍˍˍˍ

M|EY.ˍˍˍK|IH|NG.ˍˍˍAO|L.ˍˍˍDH|AH.ˍˍˍV|EY|L|Z.ˍR|IH.ˍJH|OY|S.ˍˍˍˍˍˍˍˍˍˍˍ

L|IH.ˍˍˍT|AH|L.ˍˍˍL|AE|M.ˍˍˍHH|UW.ˍˍˍM|EY|D.ˍˍˍDH|IY.ˍˍˍˍˍˍˍˍˍˍˍ

D|AA|S|T.ˍˍˍDH|AW.ˍˍˍN|OW.ˍˍˍHH|UW.ˍˍˍM|EY|D.ˍˍˍDH|IY.ˍˍˍˍˍˍˍˍˍˍˍ

L|IH.ˍˍˍT|AH|L.ˍˍˍL|AE|M.ˍˍˍAY|L.ˍˍˍT|EH|L.ˍˍˍDH|IY.ˍˍˍˍˍˍˍˍˍˍˍ

L|IH.ˍˍˍT|AH|L.ˍˍˍL|AE|M.ˍˍˍAY|L.ˍˍˍT|EH|L.ˍˍˍDH|IY.ˍˍˍˍˍˍˍˍˍˍˍ

HH|IY.ˍˍˍIH|Z.ˍˍˍK|AO|L|D.ˍˍˍB|AY.ˍˍˍDH|AY.ˍˍˍN|EY|M.ˍˍˍˍˍˍˍˍˍˍˍ

F|AO|R.ˍˍˍˍˍˍˍHH|IY.ˍˍˍK|AO|L|Z.ˍHH|IH|M.ˍS|EH|L|F.ˍAH.ˍL|AE|M.ˍˍˍˍˍˍˍˍˍˍˍ

HH|IY.ˍˍˍIH|Z.ˍˍˍM|IY|K.ˍAH|N|D.ˍHH|IY.ˍˍˍIH|Z.ˍˍˍM|AY|L|D.ˍˍˍˍˍˍˍˍˍˍˍ

HH|IY.ˍˍˍB|IH.ˍˍˍK|EY|M.ˍˍˍAH.ˍˍˍL|IH.ˍT|AH|L.ˍCH|AY|L|D.ˍˍˍˍˍˍˍˍˍˍˍ

AY.ˍˍˍAH.ˍˍˍCH|AY|L|D.ˍˍˍAH|N|D.ˍˍˍDH|AW.ˍAH.ˍL|AE|M.ˍˍˍˍˍˍˍˍˍˍˍ

W|IY.ˍˍˍAA|R.ˍˍˍK|AO|L|D.ˍˍˍB|AY.ˍˍˍHH|IH|Z.ˍˍˍN|EY|M.ˍˍˍˍˍˍˍˍˍˍˍ

L|IH.ˍˍˍT|AH|L.ˍˍˍL|AE|M.ˍˍˍG|AA|D.ˍˍˍB|L|EH|S.ˍˍˍDH|IY.ˍˍˍˍˍˍˍˍˍˍˍ

L|IH.ˍˍˍT|AH|L.ˍˍˍL|AE|M.ˍˍˍG|AA|D.ˍˍˍB|L|EH|S.ˍˍˍDH|IY.ˍˍˍˍˍˍˍˍˍˍˍ

45

 Musical Notation Transcription

46

47

6 Conclusion

In this project, I developed a system capable of analyzing a given musical lyric and

generate a consistent metric distribution for that same lyric. The main motivation was to

achieve an important starting point for the development of a complete system of musical

generation based only in lyrics and the results are encouraging. Through a focused and

reliable review of the literature, the principles inherent to the metric and rhythmic

dimensions of music were studied and absorbed, as well as the parameters that build the

relationship between music and lyrics. This research has led me to consider the phonetic

characteristics of the text, specifically the lexical accents of words, as the most important

pillar of the bridge between these two universes.

Therefore, I decided to redirect the focus of the research to the practical component. How

would it be possible to analyze any text and from this analysis be able to extract useful

data for generating musical content? What kind of tools would be available for this and

how much would they be credible? Since I had already determined Python as the

programming language to be used, the best tool to conduct the analysis of the text proved

to be NLTK, which was designed for Python and already contained in itself the CMUdict

module, a dictionary used for the phonetics analysis. Several tests were performed with

different musical lyrics, until reach the conclusion that the best type of musical lyrics to

be used as a basis for the development of the system would be lullabies. From then on, I

wrote the code by modules, facing and solving a challenge at a time.

In the next chapter, I will summarize every step of the work from the text input to the

final output. I will also be pointing the main obstacles and limitations of the project, as

well as the contribution that I believe have given to the subject and what remains to be

done in the future.

48

6.1 Summary

The practical process of this project was guided by the following principles:

 Lyrics and music can be directly connected and when aligned correctly tend to

be better received and remembered by the listener;

 In the field of literature, meter and rhythm of a text are defined based on its

phonetics features;

 The best musical metric structure for a given lyric is the one where all the verses

fits the best.

Some rules were also created in order to respect both the concept of the system and its

limitations:

 The text input will only be considered if written in English and if all its words are

recognized by the system, so as not to compromise the final result;

 The lyrics format must be consistent and organized so that the system can find

a good metric template for all of it. A musical lyric in which the difference of

length from verse to verse is abrupt, or the length of all the verses is just too

long or too short, will not be analyzed.

Once a lyric is received and accepted by the system, the operations which occur are the

following:

1. All words are translated into a representation of their phonemes and its lexical

stress markers are collected and stored in the order they appear on the verse.

2. Verses with an identical sequence of markers are removed and those who

remain are defined as possible templates.

3. It's counted the number of strong stress markers from each of the templates,

and its power of two is found and used to set the number of beats of the metric

grid where it will be distributed.

4. All these templates are sent to a function that attempts to align in them all

lexical stress markers from each of the verses in all possible ways. These

possibilities will be classified and the template whose result of its intersection

with every verse is the best, will be elected as the standard template for the

lyric.

49

5. The phonemes of each verse are distributed according to this standard template

and the results are returned by the system.

The main objective of the project was fully achieved: automatically generate a consistent

metrical structure for a given lyric. However, the limitations are still quite a few, especially

at the level of input. The system is not prepared to receive all kinds of lyrics, and at this

stage only uniform texts are perfectly interpreted, as poems or children's songs. Also at

the output level, there is a lot of work that can be done in order to make it more accessible

to future projects.

6.2 Contribution of the Work

The contribution of my work is based on the breakdown of a first barrier to the generation

of music content from a lyric. Since it assumes the text input as a unique source for this

generation, it is necessary to extract as much useful information as possible from it, which

in my experience the system is doing reasonably well, although it still has at its disposal

an almost unlimited set of tools regarding to textual analysis, since only the CMUdict

module was used from the NLTK's corpora, which contains hundreds of other modules.

About this, I will be talking in the next chapter.

6.3 Future Work

As for future work, it is divided into three parts: the upgrade of the analysis that is already

being done, the improvement of the output that is already being produced and addition

of user interactions.

6.3.1 The Analysis

The analysis, although it’s producing the expected results at this stage, has a lot to

improve. Not only by adding functions, but also by improving existing to reduce the

system's limitations. I will mention below some of these enhancements:

50

 Structure Analysis:

Recognizing structures and patterns within each lyric, not only in order to

perceive its full form (types of verses, bridges, chorus, etc ...), as well as

to find verses that are connected to other verses and stanzas with other

stanzas. For this, it would be necessary to create a pattern recognition

algorithm (word patterns but also phonetic accents patterns) and also

search for rhymes;

 Rhymes:

Once converted the verses into the phonetic representation, if we

execute an inverted analysis, from the end of each verse to the beginning,

we can compare the last phonemes of each verse. Defining a set of basic

rules of rhyme, and a score, one can find out the groups of verses that

rhyme and define how well they do it between them;

 Treatment of Unrecognized Words:

This is the most ambitious step of this part. The biggest limitation of the

system is the failure to recognize a few words. If they are misspelled it is

good that the analysis does not go ahead, but in other cases it is a pure

limitation and ignore those words do not seem to be the best option for

the reliability of the results. Therefore, the rules of the process of

conversion of words into phonemes would have to be carefully studied

so that the system could simulate a result identical to the dictionary

results for each new word it would receive.

6.3.2 The Output

 Syllabification:

Although this process may prove to be performed in the analysis, I am

putting it here because it's in the output that its result can be more useful.

51

Although being currently able to understand and clearly indicate where

in the metric grid each word analyzed will be placed, the system only can

create a presentation of this same distribution using phonemes. This is

because although it can treat the word in separate phonemes, it cannot

connect each of them to the characters of the word (the syllable) they

represent. Taking out a syllabification process it could designate each of

the phonetic accents to their respective syllable, making the output much

clearer;

 Visual Presentation:

The visualization of the results by the user is something that can also be

improved. Using some visual/musical programming software (such as

Processing, Max / MSP, etc.) one could create a dynamic presentation of

the results, in a dedicated environment and with the possibility of a user

interaction. This idea of user interaction will be better explained in the

next chapter.

6.3.3 User Interaction

 Subjective Decisions:

This feature would allow to the user make some decisions. The system

is designed to classify all the possibilities generated and always select

those that have the best rating. But sometimes there may be more than

a possibility with the same score, or scores with very little difference.

With this subjective decision, I am giving the user the opportunity to

also access these hypotheses in order to be able to choose the ones that

benefit them the most;

 Syncopation:

This idea of syncopation came from the work of George Sioros and I

think it might be interesting to apply it to my work as well. The

distribution generated by the system is too square and linear, and it

52

would be an advantage allow the user to apply some swing effect, again

depending on his taste. For this, it would be defined a priori a set of

limits and developed a practical user interface.

53

7 Bibliography

Chomsky, N., & Halle, M. (1968), The sound pattern of English. New York: Harper & Row.

Lerdahl, F., & Jackendoff, R. (1983). A Generative Theory of Tonal Music. Cambridge, MA:

The MIT Press.

Palmer, C., 86 Kelly, M. H. (1992), Linguistic prosody and musical meter in song. Journal

of Memory and Language, 31:525-542.

Dawe LA, Platt JR, Racine RJ (1993), Harmonic accents in inference of metrical

structure and perception of rhythm patterns. Percept Psychophys, 54:794–807.

J. P. G. Mahedero, A. Martinez, P. Cano, M. Koppen-berger, and F. Gouyon (2005),

Natural Language Processing of Lyrics, in Proceedings of the 13th Annual

ACMInternational Conference on Multimedia - MULTIME-DIA ’05, pp. 475–478

Nichols E., Morris, D., Basu, S., Christopher, S. (2009), Relationships between lyrics and

melody in popular music, Proceedings of the 10’th International Conference on Music

Information Retrieval (ISMIR)

Nichols, E. (2009), Lyric-Based Rhythm Suggestion, in Proceedings of the International

Computer Music Conference (ICMC).

Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural Language Processing with

Python. O’Reilly Media.

54

Monteith, K., Martinez, T. R., and Ventura, D. (2010), Automatic generation of music for

inducing emotive response, in Proceedings of the First International Conference on

Computational Creativity, 140–149.

S. Fukayama, K. Nakatsuma, S. Sako, T. Nishimoto and S. Sagayama, (2010), Automatic

Song Composition from the Lyrics Exploiting Prosody of Japanese Language. Proc. Int.

Conf. on Sound and Music Computing.

Monteith, K., Francisco, V., Martinez T., Gervas P., and Ventura D. (2011), Automatic

Generation of Emotionally-Targeted Soundtracks, in Proceedings of the 2nd

International Conference on Computational Creativity, pp. 60–62, Mexico City, Mexico,

Monteith, K., Martinez, T., Ventura, D. (2012), Automatic Generation of Melodic

Accompaniments for Lyrics, in Proceedings of the Third International Conference on

Computational Creativity, Dublin, Ireland

Sioros, G. (2016), "Syncopation as Transformation". Doctoral Dissertation, Universidade

do Porto, Faculdade de Engenharia

55

8 Appendix

8.1 Python Code

1

 1
 2
Importing libraries and defing variables and lists. 3
import itertools 4
import nltk 5
from nltk.corpus import cmudict 6
 7
prondict = cmudict.dict() 8
arpabet = nltk.corpus.cmudict.dict() 9
filename='Hush, Little Baby' 10
inputfile = open('letras/'+filename+'.txt') 11
output1 = open('results/' + filename + ' - ' + 'outputMetrics.txt', 'w') 12
output2 = open('results/' + filename + ' - ' + 'outputPhonemes.txt', 'w') 13
myˍtext = inputfile.readlines() 14
myˍtext = [w.lower() for w in myˍtext] 15
simbolo = '<' 16
punctuation = '?.!,' 17
numbers=[0,1,2,3,4,5,6,7,8,9] 18
va = 0 19
 20
res=[] 21
accents=[] 22
anacrusis=[] 23
anamount=[] 24
firstAnalysis=[] 25
temporaryStress=[] 26
templatesMetrics=[] 27
templates2test=[] 28
finalAssigns=[] 29
finalMetrics=[] 30
verseStress=[] 31
finalPhonemes=[] 32
phonemes=[] 33
systemOutput=[] 34
 35
Parsing the text file and finding the words in the dictionary 36
for line in myˍtext: 37
 resultLine = [] 38
 for word in line.split(): 39
 if word[0] in simbolo: 40
 resultLine.append(word) 41
 else: 42
 if word not in prondict: 43
 resultLine.append(word) 44
 print(word, ': ', 'word not recognized') 45
 else: 46
 resultLine.append(arpabet[word][0]) 47
 firstAnalysis.append(resultLine) 48
 49
Extracting the stress markers 50
for line in firstAnalysis: 51
 newLine = [] 52
 for word in line: 53
 newWord = [] 54
 for phone in word: 55
 for char in phone: 56
 if char.isdigit(): 57

2

 newWord.append(int(char)) 58
 newLine.append(newWord) 59
 accents.append(newLine) 60
 61
Getting the phonemes from the text. 62
for line in myˍtext: 63
 resultLine = [] 64
 for word in line.split(): 65
 if word[0] in simbolo: 66
 resultLine.append(word) 67
 else: 68
 if word not in prondict: 69
 resultLine.append(word) 70
 else: 71
 resultLine.append(arpabet[word][0]) 72
 finalPhonemes.append(resultLine) 73
 74
clean the line, keep only the numbers 75
for line in accents: 76
 newLine = [] 77
 if len(line) > 1: 78
 for token in line: 79
 for i in token: 80
 if i in numbers: 81
 newLine.append(i) 82
 else: 83
 pass 84
 temporaryStress.append(newLine) 85
 else: 86
 pass 87
 88
find the anacrusis and mark their verse number 89
for i in range(len(temporaryStress)): 90
 if temporaryStress[i][0]==0: 91
 r=0 92
 for x in temporaryStress[i]: 93
 if x==1 or x==2: 94
 break 95
 r=r+1 96
 anacrusis.append(i) 97
 anamount.append(r) 98
 verseStress.append(temporaryStress[i][r:]) 99
 else: 100
 verseStress.append(temporaryStress[i]) 101
 102
 103
Generate the templates. Duplicate verses will be removed. 104
for i in verseStress: 105
 if i not in templates2test: 106
 templates2test.append(i) 107
 108
Function to convert the templates to metrical grids, with rests 109
def finalTemplate(x): 110
 xacent1 = (x.count(1) + x.count(2)) 111
 p2 = 2**(xacent1-1).bitˍlength() 112
 newFormat = ['ˍ'] * (p2*4) 113
 div=int(len(newFormat)/p2) 114

3

 place1=0 115
 for char in range(len(x)): 116
 if x[char]==1 or x[char]==2: 117
 newFormat[place1] = 1 118
 place1 = place1 + div 119
 elif x[char]==0: 120
 lista = x[:char] 121
 car = x[char-1] 122
 if car == 1 or car == 2: 123
 valor = (((lista.count(1)+lista.count(2))*4)-124
(int(div/2))) 125
 newFormat[valor]=0 126
 else: 127
 valor = (((lista.count(1)+lista.count(2))*4)-128
(int(div/4))) 129
 newFormat[valor]=0 130
 finalFormat=[] 131
 for char in newFormat: 132
 if char == 0 or char == 1: 133
 finalFormat.append(char) 134
 else: 135
 finalFormat.append('ˍ') 136
 return finalFormat 137
for line in templates2test: 138
 templatesMetrics.append(finalTemplate(line)) 139
 140
Recursive function. Tries to fit every verse in every template and 141
returns all the possibilities for each fitting. X is the template, W is 142
the verse. 143
def recursive(x,w): 144
 145
 xstress = x.count(1) 146
 ystress = (w.count(1) + w.count(2)) 147
 dif = ystress - xstress 148
 newFormat = ['ˍ'] * len(x) 149
 div = int(len(newFormat) / 8) 150
 st = xstress 151
 first = 0 152
 format = [] 153
 tries = [] 154
 rest = [] 155
 result = [] 156
 possibilities = [] 157
 158
 # Specific operations for the cases when the verse has more primary 159
stresses (1) than the template. Tries to fit the remaining ones in all 160
the possible beats. 161
 def more(line): 162
 onset=int((len(format)/8)-2) 163
 possibilities=[] 164
 while onset<len(line): 165
 if line[onset]=='ˍ': 166
 line[onset]=1 167
 possibilities.extend(line) 168
 line[onset]='ˍ' 169
 onset=onset+div 170
 else: 171

4

 onset=onset+div 172
 results = [possibilities[x:x + len(line)] for x in range(0, 173
len(possibilities), len(line))] 174
 return results 175
 176
 # Specific operations for the cases when the verse has less primary 177
stresses (1) than the template. Tries to fit the missing ones (rests) in 178
all the possible beats. 179
 def less(line): 180
 onset = int((len(format) / 8)) 181
 possibilities = [] 182
 while onset < (len(line) - div): 183
 if line[onset] == 1: 184
 line[onset] = 3 185
 possibilities.extend(line) 186
 line[onset] = 1 187
 onset = onset + div 188
 else: 189
 onset = onset + div 190
 results = [possibilities[x:x + len(line)] for x in range(0, 191
len(possibilities), len(line))] 192
 return results 193
 194
 # Fill the possibilities generated from the previous functions (less 195
and more) with the respective zeros. 196
 def zeros(x,y): 197
 s1=[] 198
 s0=[] 199
 x1=[] 200
 for c in range(len(y)): 201
 if y[c]==1 or y[c]==2: 202
 s1.append(c) 203
 elif y[c]==0: 204
 s0.append(c) 205
 for n in range(len(x)): 206
 if x[n]==1: 207
 x1.append(n) 208
 if y[-1] == 0: 209
 n=0 210
 for c in reversed(y): 211
 if c==1 or c==2: 212
 break 213
 n=n+1 214
 del s0[-n:] 215
 for i in s0: 216
 y1=len([c for c in s1 if c<i]) 217
 spot=x1[y1-1:y1+1] 218
 midpoint=int((spot[0]+spot[1])/2) 219
 if x[midpoint]=='ˍ' or x[midpoint]==3: 220
 x[midpoint]=0 221
 else: 222
 try: 223
 if x[midpoint+2]=='ˍ': 224
 x[midpoint + 2] = 0 225
 except: 226
 if x[midpoint+1]=='ˍ': 227
 x[midpoint+1]=0 228

5

 else: 229
 return 'does not fit' 230
 return x 231
 232
 # find the difference of primary stress between the template and the 233
verse to decide which specific function (less or more) must be executed. 234
 if dif >= 0: 235
 while st > 0: 236
 newFormat[first] = 1 237
 first = first + div 238
 st = st - 1 239
 for char in newFormat: 240
 format.append(char) 241
 reducedformat = format[:((xstress - 1) * div) + 1] 242
 rest = format[((xstress - 1) * div) + 1:] 243
 n=0 244
 p=0 245
 for c in reversed(w): 246
 if c==1 or c==2: 247
 break 248
 n=n+1 249
 while n>0: 250
 sp=int(div / 2) 251
 rest[sp+p] = 0 252
 n=n-1 253
 p=p+div 254
 tries = [reducedformat] 255
 while dif > 0: 256
 tries = [more(s) for s in tries] 257
 tries = list(itertools.chain.fromˍiterable(tries)) 258
 dif = dif - 1 259
 elif dif < 0: 260
 while st > 0: 261
 newFormat[first] = 1 262
 first = first + div 263
 st = st - 1 264
 for char in newFormat: 265
 format.append(char) 266
 reducedformat = format[:((xstress - 1) * div) + 1] 267
 rest = format[((xstress - 1) * div) + 1:] 268
 if w[-1]==0: 269
 rest[int(div/2)-1]=0 270
 tries = [reducedformat] 271
 while dif < 0: 272
 tries = [less(s) for s in tries] 273
 tries = list(itertools.chain.fromˍiterable(tries)) 274
 dif = dif + 1 275
 276
 for line in tries: 277
 result.append(zeros(line, w)) 278
 279
 # output the results from this function (recursive). 280
 for line in result: 281
 if line == 'does not fit': 282
 pass 283
 else: 284
 possibilities.append(line+rest) 285

6

 if not possibilities: 286
 return 'does not fit' 287
 else: 288
 return possibilities 289
 290
Scoring function. Compare the template and each possibility inside each 291
fitting and select the best. 292
def scoring(x,y): 293
 def comparison(a,b): 294
 listfinal = [] 295
 listfinal2 = [] 296
 if len(a) != len(b): 297
 div = ((max(len(a), len(b)) / min(len(a), len(b))) / 2) 298
 d = [None] * div 299
 s = 'ˍ' 300
 if a < b: 301
 for c in a: 302
 listfinal.append(c) 303
 for i in d: 304
 listfinal.append(s) 305
 else: 306
 for c in b: 307
 listfinal2.append(c) 308
 for i in d: 309
 listfinal2.append(s) 310
 else: 311
 for i in a: 312
 listfinal.append(i) 313
 for j in b: 314
 listfinal2.append(j) 315
 sc=0 316
 firstLevel=[] 317
 secondLevel=[] 318
 ma=len(listfinal) 319
 di=int(len(verseStress)/4) 320
 f=0 321
 s=int(0+(di/2)) 322
 while f<ma: 323
 firstLevel.append(f) 324
 f=f+di 325
 while s<ma: 326
 secondLevel.append(s) 327
 s=s+int(di) 328
 329
 for i in range(len(listfinal)): 330
 if listfinal[i]!= listfinal2[i]: 331
 if i in firstLevel: 332
 sc=sc+100 333
 elif i in secondLevel: 334
 sc=sc+50 335
 else: 336
 sc=sc+25 337
 return sc 338
 339
 results=[] 340
 if y!= 'does not fit': 341
 for line in y: 342

7

 results.append(comparison(x,line)) 343
 return results 344
 345
Creating the multidimensional arrays to host the results. 346
i, j = len(templatesMetrics), len(verseStress) 347
resultsArray = [[None for x in range(j)] for y in range(i)] 348
score = [[None for a in range(j)] for b in range(i)] 349
maxim = [[None for c in range(j)] for d in range(i)] 350
index = [[None for e in range(j)] for f in range(i)] 351
 352
 353
Triggering the recursive function. 354
for t in range(len(templatesMetrics)): 355
 for v in range(len(verseStress)): 356
 resultsArray[t][v]=recursive(templatesMetrics[t],verseStress[v]) 357
 358
Triggering the scoring function. 359
for t in range(len(templatesMetrics)): 360
 for p in range(len(verseStress)): 361
 score[t][p]=scoring(templatesMetrics[t], resultsArray[t][p]) 362
 363
Drastically increasing the score values for possibilities that didn't 364
fit in the template (not very professional, but pragmatic solution. This 365
possiblities shall not be selected). 366
for line in range(len(templatesMetrics)): 367
 for i in range(len(verseStress)): 368
 if score[line][i]: 369
 maxim[line][i]=min(score[line][i]) 370
 else: 371
 score[line][i]=[100000] 372
 maxim[line][i]=100000 373
 374
for line in range(len(templatesMetrics)): 375
 for i in range(len(verseStress)): 376
 index[line][i]=[a for a, x in enumerate(score[line][i]) if x == 377
min(score[line][i])] 378
 379
for t in range(len(templatesMetrics)): 380
 sco=0 381
 for v in range(len(verseStress)): 382
 sco=sco+maxim[t][v] 383
 res.append(sco) 384
 sco=0 385
 386
Selecting the best template by finding the lowest score. 387
best=[i for i, x in enumerate(res) if x == min(res)] 388
select=best[0] 389
 390
Getting the results from the selected template again. 391
for i in range(len(verseStress)): 392
 finalMetrics.append(resultsArray[select][i][index[select][i][0]]) 393
 394
for line in finalPhonemes: 395
 phonemesTemp=[] 396
 if len(line)>1: 397
 for i in line: 398
 if i == ',' or i == '.': 399

8

 pass 400
 else: 401
 phonemesTemp.append(i) 402
 phonemes.append(phonemesTemp) 403
 404
Simple function to check if phonemes are stressed. 405
def phon(x): 406
 for s in x: 407
 if s.isdigit(): 408
 return 'yes' 409
 410
Joining the phonemes that belong together. 411
for line in phonemes: 412
 lineAssigns=[] 413
 for word in line: 414
 assigns=[] 415
 store=[] 416
 for i in range(len(word)): 417
 if phon(word[i])=='yes': 418
 if not store: 419
 assigns.append(word[i]) 420
 else: 421
 conc=store[0]+'|'+word[i] 422
 assigns.append(conc) 423
 store=[] 424
 else: 425
 if not store: 426
 store.append(word[i]) 427
 else: 428
 if len(assigns)<1: 429
 store[0]+='|'+word[i] 430
 else: 431
 assigns[-1]+='|'+store[0] 432
 store=[] 433
 store.append(word[i]) 434
 if store: 435
 assigns[-1]+='|'+store[0] 436
 lineAssigns.append(assigns) 437
 finalAssigns.append(lineAssigns) 438
 439
Assigning the phonemes to their respective place in the metrical grid. 440
def assign(x,y,w,r): 441
 output=[] 442
 newY=[] 443
 t=0 444
 if w==0: 445
 for i in y: 446
 for c in i: 447
 newY.append(c) 448
 else: 449
 for i in y[r:]: 450
 for c in i: 451
 newY.append(c) 452
 for char in range(len(x)): 453
 if x[char]=='ˍ': 454
 output.append(x[char]) 455
 elif x[char]==3: 456

9

 output.append('ˍ') 457
 else: 458
 f=[] 459
 for c in newY[t]: 460
 if c.isdigit(): 461
 pass 462
 else: 463
 f.append(c) 464
 output.append(''.join(str(elem) for elem in f)) 465
 t=t+1 466
 return output 467
 468
Triggering the assign function. 469
for s in range(len(finalMetrics)): 470
 if s in anacrusis: 471
 systemOutput.append(assign(finalMetrics[s], finalAssigns[s], 1, 472
anamount[va])) 473
 va=va+1 474
 else: 475
 systemOutput.append(assign(finalMetrics[s], finalAssigns[s], 0, 476
0)) 477
 478
Placing the anacrusis in the metrical grid 479
for i in range(len(anacrusis)): 480
 val=anacrusis[i] 481
 ind=anamount[i] 482
 cur=0 483
 sp=ind-1 484
 di=0 485
 while cur<ind: 486
 le=int((len(systemOutput[val-1])/(len(systemOutput)/2))+di) 487
 systemOutput[val-1][-le]=finalAssigns[val][sp] 488
 finalMetrics[val - 1][-le] = 0 489
 di=di+2 490
 cur=cur+1 491
 sp=sp-1 492
 493
Output the results to text files. 494
for line in systemOutput: 495
 print(' '.join(map(str, line))) 496
 output2.write("%s\n" % ' '.join(map(str, line))) 497
for line in finalMetrics: 498
 print(' '.join(map(str, line))) 499
 output1.write("%s\n" % ' '.join(map(str, line))) 500

	1 Introduction
	1.1 Motivation
	1.2 Description of the Work
	1.3 Why Lullabies?
	1.4 The research
	1.5 Structure of the Dissertation

	2 State of the Art
	2.1 Introduction
	2.2 Musical Rhythm and Meter
	2.3 Prosody
	2.4 Related Work

	3 From the Lyrics Input to the Metric Output
	3.1 Introduction
	3.2 Lyrics Analysis
	3.2.1 Lexical Stress extraction

	3.3 Mapping of Prosodic Accents to the Metric Grid
	3.3.1 Generation of Metrical Templates for Prosody
	3.3.2 Recursive Alignment of Verses in the Templates
	3.3.3 Selection of the Best Template

	3.4 Results Analysis and Output

	4 Implementation
	4.1 CMUdict
	4.2 Natural Language Toolkit (NLTK)
	4.3 Python
	4.3.1 Brief Explanation of Python Code

	5 Application to six lyrics/poems
	5.1 Lullabies
	5.1.1 All the Pretty Horses
	5.1.2 Hush, Little Baby

	5.2 Children’s Poetry
	5.2.1 All Things Bright and Beautiful
	5.2.2 Bed in Summer
	5.2.3 The Fieldmouse
	5.2.4 The Lamb

	6 Conclusion
	6.1 Summary
	6.2 Contribution of the Work
	6.3 Future Work
	6.3.1 The Analysis
	6.3.2 The Output
	6.3.3 User Interaction

	7 Bibliography
	8 Appendix
	8.1 Python Code

