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RESUMO 

 

Os microcarcinomas papilares da tiróide (mPTC) são definidos como carcinomas 

papilares da tiróide (PTC) que medem 1 centímetro ou menos na sua máxima dimensão. 

Estes tumores são muito comuns e são, muitas vezes, encontrados incidentalmente. As 

taxas de incidência dos mPTC têm aumentado constantemente em todo o mundo devido 

à melhoria dos métodos de diagnóstico. Na maioria dos casos, os mPTC têm um 

comportamento benigno com percurso indolente e um prognóstico excelente. No entanto, 

alguns casos apresentam características de agressividade e podem requerer tratamentos 

mais agressivos. A estratégia terapêutica padrão para estes tumores continua a ser um 

tema controverso. Com o objectivo de prever os casos que vão causar doença 

significativa muitos estudos têm tentado associar marcadores de mau prognóstico com 

alterações genéticas neste tipo de tumor.  

Os PTC frequentemente têm alterações genéticas que levam à activação da via 

de sinalização mitogen-activated protein kinase (MAPK). Essas alterações incluem as 

mutações pontuais do proto-oncogene B-Raf (BRAF) e RAS Viral Oncogene Homolog 

(RAS) e o rearranjo RET/PTC. As mutações envolvendo um destes genes são 

encontradas em 70% dos PTC e raramente se sobrepõe no mesmo tumor. Recentemente foram 

encontradas mutações no promotor do gene telomerase reverse transcriptase (TERT), com 

uma prevalência de 10% em cancro da tiróide. 

O objectivo principal deste trabalho era avaliar o perfil genético dos mPTC. Para 

isso, planeámos avaliar a prevalência das mutações do BRAF (exão 15, região do codão 

600), NRAS (exão 3, região do codão 61) e promotor do TERT, numa série de mPTC. 

Também planeámos investigar as possíveis associações entre estas alterações genéticas 

com características clinicopatológicas clássicas. 

A caracterização genética desta série revelou a ausência de mutações no gene 

NRAS. Foi também possível ver, como esperado, um grande número de casos 

multifocais, incidentais e um maior número de casos a afectar as mulheres do que os 

homens. Curiosamente, a arquitectura folicular foi predominante nesta série e isso poderá 

estar relacionado com as características de agressividade destes casos. O trabalho 

apresentado nesta tese é parte de um trabalho que ainda está a decorrer, com mais 

casos para serem analisados em relação às alterações genéticas do BRAF, NRAS e 

promotor do TERT. Os resultados que vierem desta análise futura são de grande 

importância para melhor perceber a relação entre as alterações genéticas e o resultado 

clínico neste tipo de tumores. Continua por ser encontrado um marcador que consiga 

distinguir quais dos mPTC vão de facto apresentar um mau prognóstico e requerer uma 
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abordagem mais radical para os tratar. Para além disso, como observado em alguns 

países, o aumento dos casos de detecção destas pequenas lesões representa um grande 

encargo económico. Assim, é fundamental identificar marcadores que nos permitam 

reconhecer os casos que vão causar doença significativa para que uma atitude 

terapêutica mais adequada seja tomada. 
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ABSTRACT 

  

Papillary microcarcinoma of the thyroid (mPTC) is defined as a papillary thyroid 

carcinoma (PTC) that measures 1 centimeter or less in its maximum dimension. These 

tumors are very common and are often found incidentally. mPTC incidence rates have 

been steadily increasing all over the world due to improvement of diagnostic methods. In 

most of the cases, mPTC has a benign behaviour with an indolent course and excellent 

prognosis. However, some have aggressive features and may require aggressive 

treatment. The standard therapeutic approach for these tumors remains controversial. 

With the purpose of predicting those that will cause significant disease, many studies have 

been trying to associate poor prognostic markers with genetic alterations in this type of 

cancer.  

PTC frequently has genetic alterations leading to the activation of the mitogen-

activated protein kinase (MAPK) signalling pathway. Those include B-Raf Proto-

Oncogene, Serine/Threonine Kinase (BRAF) and RAS Viral Oncogene Homolog (RAS) 

point mutations and RET/PTC rearrangements. Mutations involving one of these genes 

are found in >70% of PTC and they rarely overlap in the same tumor. Recently, mutations 

in telomerase reverse transcriptase (TERT) gene promoter were found in thyroid cancer 

with an overall prevalence of near 10%. 

The general aim of this work was to evaluate the mPTC genetic profile. In order to 

do that, we intended to evaluate the prevalence of BRAF (exon 15, codon 600 region), 

NRAS (exon 3, codon 61 region) and TERT promoter mutations in a series of mPTC. We 

also intended to investigate possible associations of those genetic alterations with 

classical clinicopathological features. 

The genetic characterization of this series revealed no mutations in NRAS gene. It 

was also possible to see a high number of multifocal, incidental and female cases, as 

expected. Interestingly, follicular architecture was predominant in this series and that can 

be related with the aggressive features of these cases. The work presented on this thesis 

is still part of an ongoing work with more cases to be analysed for genetic alterations in 

BRAF, NRAS and TERT promoter. The results arising from this future analysis are of 

major importance for better understanding the relationship between genetic alterations 

and clinical outcome in this type of tumors. It remains to be found a marker that could 

distinguish which of these mPTC will indeed present a worse prognosis and will require a 

more radical approach in order to treat them. Additional, as observed in some countries, 

the increased detection of these small lesions represents an economic burden. Therefore, 
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we aim to identify those that will cause significant disease so an aggressive therapeutic 

approach can be taken.  
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INTRODUCTION 

 

 

THE THYROID GLAND 

 

Thyroid anatomy 

The thyroid gland (Figure 1) is composed of two lobes connected by an isthmus 

and is located in the trachea approximately at the level of the second tracheal ring [3]. 

Each lobe is about 4 cm in length and 2 cm thickness and resides in a bed between the 

trachea and larynx medially and the carotid sheath and the sternocleidomastoid muscles 

laterally [3, 4]. The strap muscles are anterior to the thyroid lobes, and the parathyroid 

glands and recurrent laryngeal nerves are associated with the posterior surface of each 

lobe [3]. The gland is enveloped by the deep cervical fascia and is attached firmly to the 

trachea by the ligament of Berry [3]. Weighing approximately 20g, is one of the largest 

endocrine glands in the body and receives a high blood supply from the superior and 

inferior thyroid arteries [4]. A rich plexus of lymph vessels is in close proximity of the 

individual follicles, but no unique role in the thyroid function has been assigned to the 

system [5]. The major, if not only, secretory pathway for thyroid hormone is through the 

venous drainage of the thyroid rather than through the lymphatics, nonetheless 

thyroglobulin is mainly secreted in the lymph [5]. 

 

Figure 1 - Macro and microscopic structure of the thyroid gland. The gland is located in the lower anterior 

neck across the front of the trachea. A single layer of follicular cells outlines each of the basic units, the follicle, 
and colloid is present in their lumen. In the interfollicle space there can be seen blood vessels and a couple of 
C cells grouped together (Boron et al. (2012) Section VIII: The endocrine system, in Medical Physiology: A 
cellular and molecular approach). 
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The adult thyroid is composed of follicles, or acini, that are considered as the 

primary and secretory units of the organ. The cells of the follicles participate in hormone 

synthesis: tri-iodothyronine (T3) and tetra-iodothyronine or thyroxine (T4); and the lumina 

are the storage depots. In the normal adult gland, the follicles are roughly spherical and 

vary considerably in size with an average diameter of 300 microns. Their walls consist of a 

continuous epithelium one cell deep, the parenchyma of the thyroid. Within the follicle and 

filling its lumen is the homogeneous colloid, composed of a mixture of proteins, principally 

thyroglobulin [5].  

In addition to the acinar cells, there are individual cells or small groups of cells 

which may appear as clusters between follicles. These light cells, or C-cells, are a distinct 

category that was believed to be derived from the neural crest via the ultimobranchial 

body; recently, the neural crest-derived theory has been challenged and an endoderm 

stem cell-derived differentiation has been proposed [6]. These cells secrete calcitonin in 

response to an increase in serum calcium [5]. 

Outside the follicles other types of cells populate the thyroid: the endothelial cells, 

the fibroblasts and immune cells [5]. 

 

 Thyroid Physiology 

 

The synthesis of thyroid hormones (Figure 2) is a complex process that occurs 

between the follicle cells and the colloid. Iodide is actively transported by the Sodium-

Iodide (Na+/I-) symporter (NIS) against an electrical gradient at the basal membrane of 

follicular cells [5]. There, it is oxidized to active iodine in a reaction catalysed by thyroid 

peroxidase (TPO) [4]. At the apical-colloid interface, iodine is immediately incorporated 

into the tyrosine residues of thyroglobulin molecules [4]. Thyroglobulin is a large 

glycoprotein synthesized in follicular cells and about one quarter of its residues can be 

iodinated [4]. Once iodinated, thyroglobulin is taken up into the colloid of the follicle where 

a coupling reaction, catalysed by TPO, between pairs of iodinated tyrosine molecules 

occurs [4]. The coupling of two tyrosine residues each iodinated at two positions (di-

iodotyrosine, DIT) produces T4, whereas the combination of DIT with mono-iodotyrosine 

produces T3 [4]. Thyroid hormones are therefore stored in this state and are only released 

when the thyroglobulin molecule is uptake into the follicular cells [4]. Secretion of thyroid 

hormones is stimulated by the thyroid stimulating hormone (TSH), also called thyrotropin, 

and  requires endocytosis of thyroglobulin, its hydrolysis and release of thyroid hormones 
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from the cell [5]. The active uptake of iodide appears to be the main control point for 

hormone synthesis and is stimulated by TSH [4]. 

 

Figure 2 - Synthesis of thyroid hormones as seen on an individual thyroid follicular cell - 

Thyroglobulin is synthesized in the endoplasmic reticulum and secreted into the lumen of thyroid 
follicle by exocytosis. At the same time, iodide (I

-
) is brought into the cell by a sodium-iodide (Na

+
/I

-
) symporter. 

This iodide is brought out of the follicular cells and into the lumen by the transporter pendrin. In the lumen, 
iodide (I

-
) is oxidized to iodine (I

0
) by an enzyme called thyroid peroxidase. Iodine (I

0
) is very reactive and 

iodinates the thyroglobulin at tyrosyl residues. Adjacent tyrosyl residues are paired together. The entire 
complex re-enters the follicular cell by endocytosis. Proteolysis liberates thyroxine and triiodothyronine 
molecules, which enter the bloodstream [1] (Häggström et al (2014.) Medical gallery of Mikael Häggström 
2014, in Wikiversity Journal of Medicine). 

 

 

THYROID TUMORS  

Thyroid carcinoma represents a very heterogeneous disease being composed of 

distinct and clinically different entities, namely differentiated thyroid carcinoma (DTC), 

poorly differentiated thyroid cancer (PDTC), anaplastic thyroid carcinoma (ATC), and 

medullary thyroid carcinoma (MTC) [7] [8]. Based in tumour morphology DTC can be 

further stratified in papillary thyroid carcinoma (PTC) and follicular thyroid carcinoma (FTC) 

[9]. ATC, arising from follicular cells comprehend the rarest but the most lethal thyroid 

cancer affecting elderly patients and being characterized by an high aggressiveness and a 

very poor prognosis [10]. Poorly differentiated thyroid carcinomas and ATC are believed to 

mainly develop as a result of dedifferentiation of a well-differentiated papillary or follicular 

thyroid carcinoma [7]. MTC represents a neuroendocrine tumor derived from the 

parafollicular C-cells of the thyroid gland and is irresponsive to radioiodine therapy (RAI) 

[8] [11]. 

 

https://en.wikipedia.org/wiki/Thyroglobulin
https://en.wikipedia.org/wiki/Thyroid_follicle
https://en.wikipedia.org/wiki/Thyroid_follicle
https://en.wikipedia.org/wiki/Exocytosis
https://en.wikipedia.org/wiki/Sodium-iodide_symporter
https://en.wikipedia.org/wiki/Pendrin
https://en.wikipedia.org/wiki/Redox
https://en.wikipedia.org/wiki/Thyroid_peroxidase
https://en.wikipedia.org/wiki/Tyrosine
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Presentation, diagnosis and treatment 

 

At the time of initial assessment, most patients with thyroid cancer have a palpable 

neck mass, either a primary intrathyroidal tumor or metastatic regional lymphadenopathy 

[12]. In some patients, however, the tumor may be clinically occult, and the impalpable 

lesion may first be recognised on a high-resolution neck imagiological study or at the time 

of surgical intervention for presumed benign thyroid disease [12]. Therefore, thyroid 

ultrasonography is the first imaging study to perform in any patient with a possible thyroid 

malignancy [13]. After identification of a lesion by ultrasound imaging, fine-needle 

aspiration biopsy (FNAB) is performed [13]. FNAB is considered the best first-line 

diagnostic procedure for a thyroid nodule, being a minimally invasive procedure, safe and 

with near 80% of sensitivity and near 100% of specificity [14, 15]. FNAB will allow 

cytological or histological analysis for diagnostic confirmation [12]. Before the advent of 

FNAB, thyroid scintigraphy performed with Technetium Tc 99m pertechnetate (99mTc) or 

radioactive iodine (I131 or I123) was the initial diagnostic procedure [13]. Benign nodules 

appear as hot nodules in scintigraphy images because they are more frequently 

hyperfunctioning and have a high captation rate of radionuclide, and physiologically, 

iodine [13]. By contrast, malignant nodules usually appear as cold in scintigraphy images 

because, frequently,  they are not functioning [13]. However, this procedure is not as 

sensitive or specific as FNAB [13]. 

 

The diagnosis of papillary carcinoma is based on the nuclear morphology of the 

thyroid neoplasms [16]. By definition, PTC (Figure 3), has enlarged and elongated nuclei 

with crowding and overlap, irregular nuclear contour, chromatin clearing with peripheral 

margination of chromatin, giving rise to what has been described as Orphan Annie Eye 

nuclei; multiple micronucleoli located immediately underneath the nuclear membrane; 

nuclear grooves resulting from irregularity of nuclear contour; and intranuclear cytoplasmic 

pseudoinclusions from the accumulation of cytoplasm in prominent nuclear grooves [16]. 

Macroscopically, the lesions are firm and usually white in colour with an invasive 

appearance; lesional calcification is a common feature and cyst formation may be 

observed [17]. Microscopically, the neoplastic papillae contains a central core of 

fibrovascular tissue lined by one or several layers of cells with crowded oval nuclei [17].  
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Figure 3 – Papillary thyroid carcinoma histologic features (Schularick et al (2013) Pathology of papillary 

thyroid carcinoma, in Iowa Head and Neck protocols). 

 

About 90% of the DTC are effectively cured by surgery (total or partial 

thyroidectomy) followed, when adequate,  by RAI ablation therapy with 131 Iodine  [8] (131I 

is a β and γ emitting radionuclide and chemically identical to the non-radioactive form of 

iodine [7]). DTC of follicular origin retain, to varying degrees, the ability of normal 

thyrocytes to uptake and retain iodine [18]. The iodine trapping depends on the availability 

of NIS, which is an energy-dependent transport system regulated by the thyroid 

stimulating hormone (TSH) [7]. Since NIS is only present in thyroid follicular cells and 

DTCs, undifferentiated thyroid cancer and medullary thyroid cancer (parafollicular cell 

origin) are not responsive to RAI treatment [7]. In the absence of thyroid tissue (after 

surgical excision), serum thyroglobulin can be used as an excellent tumor marker for the 

detection of persistent or recurrent disease [19]. To achieve sufficient iodine uptake into 

tumor cells, RAI therapy requires high levels of TSH that can be achieved through thyroid 

hormone withdrawal or by injection of  human recombinant TSH [18]. 

 

Contrarily to the majority of DTC that have a good prognosis, in 10% of the cases 

of DTC patients are diagnosed in an advanced stage of the disease, with local invasion 

and/or distant metastases and curing these cases with surgery and RAI therapy might be 

unlikely since these tumors tend to have a very low avidity for iodine [20]. The same 

happens with ATC and PDTC, whose tumoral cells are so dedifferentiated that they are no 

longer able to express NIS and  uptake radioiodine; MTC, for biological reasons, a tumor 

derived from parafollicular C-cells, does not have ability to trap iodine [20]. For these 

cases, where there is not a rationale for using RAI therapy, there are other treatment 
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strategies. External beam radiation therapy (EBRT) and chemotherapy with cisplatin or 

doxorubicin can also be employed [13].  

In the last decade, the increased understanding of the molecular mechanisms 

underlying thyroid tumors (see below) allowed the development of targeted therapies. The 

mitogen activated protein kinase (MAPK) pathway is one of the most studied pathways in 

the thyroid pathology and there are several therapies, approved or in clinical trials, that 

target this pathway [8]. Cabozantinib and Vandetanib are tyrosine kinase inhibitors (TKI) 

approved for treatment of MTC [21]. Sorafenib is also a TKI that targets BRAF, RET, 

VEGFR, PDGFRA and c-KIT, approved for treatment of late-stage metastatic DTC [8].  

 

Papillary Thyroid Carcinoma histopathology and variants 

 

There are several variants of PTC. The classic variant is characterized by complex 

papillae with thin fibrovascular cores. The papillae are covered by cuboidal and columnar 

cells with eosinophilic cytoplasm; psamomma bodies can also be identified and present a 

characteristic purple colour with laminated calcification [16].  

The follicular variant of PTC presents a follicular architecture with nuclear features 

of papillary carcinoma. It is observed hypereosinophilia of colloid with peripheral 

scalloping, as well as, intrafollicular multinucleate giant cells and rare psamomma bodies 

[16]. Because these tumors can be confused with follicular adenomas and follicular 

carcinomas, the use of immunohistochemical and molecular markers are useful in the 

differential diagnosis [22]. 

The oncocytic variant is recognized by the presence of cells with abundant 

eosinophilic and granular cytoplasm as a consequence of mitochondrial accumulation. 

The cells can be arranged in classic papillae or in follicles, either with microfollicular ou 

macrofollicular architecture [16]. These tumors tend to have a distinct brown colour on 

gross examination [22].  

The clear cell variant presents a papillary architecture and cytological features of 

PTC constituted by clear cells [22]. It is related to the oncocytic variant and tumors with 

clear cells usually have oncocytic cells as well [16].  

The solid variant is characterized by unencapsulated and invasive borders. Cells 

are arranged in sheets intervened by fibrous stroma. Papillary formations are rare and the 

follicular pattern is partly maintained [16]. Vascular invasion and extrathyroidal extension 

are present in about a third of cases [22], that justifies the known aggressive behaviour of  

this variant, also associated with a high frequency of distant metastasis [16]. 

The tall cell variant is an uncommon and infiltrative tumor composed predominantly 

of cells whose length is at least 3 times their width. The cells usually have an abundant 
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eosinophilic cytoplasm and nuclear morphology that is typical of PTC [16]. These tumors 

tend to be larger than the classical PTC and necrosis, mitotic activity and extrathyroidal 

extensions are more frequently observed [22]. 

The columnar cell variant is a rare variant that is made up of pseudo stratified 

columnar cells. These cells may have supranuclear and subnuclear cytoplasmic vacuoles 

and some tumors may resemble endometrial or colonic adenocarcinomas [22]. This 

variant may be identical to the tall cell variant. The major difference is that tall cell variant 

has papillae that are delineated by a single layer of tall cells with an abundant eosinophilic 

cytoplasm and the presence of granules that give an oncocytic appearance [23]. 

The cribriform-morular variant is associated with familial adenomatous polyposis 

and Gardner Syndrome [22]. This variant is characterized by lobules of tumor separated 

by fibrous septa that have cribriform architecture characterized by rigid spaces in the 

lobules formed by arches of cells with no fibrovascular cores. Spindle cells and squamous 

morules can also be identified [16].  

The diffuse sclerosing variant is more frequent in young adults [17]. It is 

characterized by diffuse involvement of the thyroid and both lobes are typically involved. 

Papillary structures in dilated lymphovascular spaces are often present; the tumor shows 

extensive squamous metaplasia, abundant psamomma bodies, stromal fibrosis and 

prominent lymphocytic thyroiditis [22].  

Papillary microcarcinoma (mPTC) is defined as a papillary carcinoma that 

measures 1 cm or less in its maximum dimension [16]. These tumors are often found 

incidentally and are very common; the pattern of growth can be infiltrative or encapsulated; 

mPTC are frequently multiple (multifocal) [16]. mPTC incidence rates have been steadily 

increasing all over the world due to improvement of diagnostic methods [24]. In most of 

the cases, mPTC has a benign behaviour with an indolent course and excellent prognosis 

[24]. However, some have aggressive features and may require aggressive treatment [24]. 

The standard therapeutic approach for these tumors remains controversial. With the 

purpose of predicting those that will cause significant disease, many studies have been 

trying to associate poor prognostic markers with genetic alterations in this type of cancer. 
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EPIDEMIOLOGY 

 

Thyroid carcinoma is the most frequent endocrine neoplasia and accounts for 1% 

of all malignancies, having an incidence higher in women than in men (3 times more 

frequent) [25].  

The most frequent type of thyroid cancer is PTC (75-85%), followed by FTC (10-15%) and 

poorly differentiated/undifferentiated thyroid cancers (<5%) represent a minority of thyroid 

neoplasias [7, 26]. The overall 5 and 10-year survival rates of PTC are approximately 97% 

and 93%, respectively [7]. For FTC, the overall 5 and 10-year survival rates are 91% and 

85%, respectively [7]. ATC is uncommon and very lethal. Its mean survival time is usually 

less than 6 months from the time of diagnosis and this outcome is not altered by current 

treatments [7]. MTC (~4%) is more aggressive than follicular cell derived thyroid 

carcinoma, being responsible for 8% to 15% of all thyroid cancer-related deaths and with 

a 10-year survival rate of 75-85% [27, 28]. Thyroid cancers can occur at any age but the 

risk peak for women is between their 40s and 50s and for men between their 60s and 70s 

[25]. 

According to RORENO (Registo Oncológico Regional do Norte), the incidence of 

thyroid cancer in the north of Portugal is 15 cases per 100 000 individuals and it is the 

third most prevalent cancer in women (8.2% of all cancers in women with 23.9 cases per 

100 000 individuals) [29]. In Portugal, the overall mortality rate was 0,7 per 100 000 

individuals [30]. The 5-year survival rate is 97.9% (women with slightly increase when 

compared with men), being the cancer with the best survival rate in Portugal [31]. 

 

Thyroid cancer incidence has continuously increased in the last three decades all 

over the world [32]. The increase is nearly exclusively due to increases in the incidence of 

the papillary histotype and small tumors rather than large tumors [32]. In spite of the 

steadily increased incidence, thyroid cancer mortality is reported stable at approximately 

0.5 deaths per 100,000 persons [33]. Explanations for the worldwide increase of thyroid 

cancer incidence are controversial, with some experts believing that it is due to the 

increased diagnostic intensity [34]. In particular, the incidence rate in South Korea in 2011 

was 15 times higher than in 1993 [35]. This increase resulted when providers added 

thyroid screening with ultrasonography to other cancer-screening tests paid by the 

government [36]. When the screening was stopped the incidence of thyroid cancer started 

to decreased.  Overdiagnosis detects diseases that will not affect patient health and 

survival. Detecting these diseases not only will confer little benefit to the patient but may 
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also cause potential damage in terms of avoidable distress, possible adverse 

consequences of unnecessary treatment, and increasing economic cost [37]. 

Nevertheless, other experts believe that a true increase, due to environment and lifestyle 

changes, is also a possibility [32] [38]. 

  

Although the precise causes of thyroid cancer remain unclear, there are several 

observational studies that propose some factors that increase the risk of developing a 

thyroid cancer (TC), such as exposure to radiation, sex (women) and a diet low in iodine 

[25]. Radiation treatment of head and neck carcinomas and the exposure to radiation in 

Chernobyl accident have been two of the most studied risk factors for TC [39, 40]. In 2012, 

a meta-analysis of 7 cohort studies demonstrated the association of obesity and increased 

TC risk (by 18%) [41]. Diabetes mellitus have been also associated with increased TC risk 

[42-44]. Acromegaly, a rare syndrome that is caused by excess production of growth 

hormone, is highly associated with cancer risk, specifically TC [45-47]. Several studies 

propose that patients with benign thyroid diseases such as goiter, benign nodules, 

Hashimoto’s thyroiditis (autoimmune disease) and hyperthyroidism are also at high risk of 

developing TC [48-50]. Genetic susceptibility is also associated with the risk of developing 

TC. Some studies demonstrated that individuals with family history of TC have an 

increased risk of developing TC [51, 52]. More controversially, some studies, unlike the 

majority of cancers, suggested that cigarette smoking and alcohol consumption were 

associated with decreased risk of thyroid cancer [53]. A meta-analysis of 31 observational 

studies also concluded that the risk of thyroid cancer was decreased 21% in ever-smokers 

compared to never-smokers [54]. 

 

GENETIC ALTERATIONS 

 

PTC frequently has genetic alterations leading to the activation of the mitogen-

activated protein kinase (MAPK) signalling pathway (Figure 4). Those include B-Raf 

Proto-Oncogene, Serine/Threonine Kinase (BRAF) and RAS Viral Oncogene Homolog 

(RAS) point mutations and RET/PTC rearrangements. Mutations involving one of these 

genes are found in >70% of PTC and they rarely overlap in the same tumor [55]. Recently, 

mutations in telomerase reverse transcriptase (TERT) gene promoter were found in TC 

with an overall prevalence of near 10% [56] [57].   
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Figure 4 – Schematic representation of the MAPK signaling pathway. Physiologically, binding of growth 

factors to receptor TKs, results in receptor dimerization and activation via autophosphorylation of tyrosine 
residues in the intracellular domain. The activated receptor, through a series of adaptor proteins, leads to 
activation of RAS located at the inner face of the plasma membrane by substitution of GDP with GTP. The 
GTP-bound form of RAS binds to and recruits RAF proteins, mainly BRAF in thyroid follicular cells, to the 
plasma membrane. Activated BRAF is now able to phosphorylate and activate the MEK, which in turn 
phosphorylates and activates the ERK. Once activated, ERK phosphorylates cytoplasmic proteins and 
translocates into the nucleus, in which it regulates transcription of the genes involved in cell differentiation, 
proliferation, and survival. Alterations of this pathway in thyroid cancer can occur at different levels as a result 
of point mutations or rearrangement involving the RET, RAS and BRAF genes [2] (Ciampi et al. (2007) 
RET/PTC Rearrangements and BRAF mutations in thyroid tumorigenesis, Endocrinology). 

 

BRAF point mutations 

 

The BRAF gene on chromosome 7 (7q34) encodes the BRAF protein [58]. It 

belongs to the RAF protein family, being a serine-threonine protein kinase and a member 

of the RAS-RAF-MEK-ERK cell-signalling pathway (also known as the Mitogen Activated 

Protein Kinase (MAPK) pathway) [59]. This pathway regulates important cell functions 

including cellular growth, differentiation, proliferation, senescence and apoptosis [59]. 

BRAF phosphorylates and activates MEK, which in turn phosphorylates and  activates 

ERK and all the downstream effector molecules of the MAPK pathway [60]. Once 

activated, ERKs can be translocated into the nucleus where they phosphorylate 

transcription factors, regulating their activity [60]. The most common genetic alterations in 

PTC refers to point mutations of BRAF [7]. More than 95% of BRAF mutations detected in 

TC are thymine to adenine conversions at position 1799 (T1799A) at exon 15, resulting in 

the substitution of valine by glutamate at residue 600 (V600E) [61]. This mutation causes 

constitutive activation of BRAF kinase and, thus, activation of the MAPK signalling 
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pathway, which is relevant for thyroid tumorigenesis [62]. In its wild-type conformation, 

residues G597 to V601 form a hydrophobic interaction with residues G465 to V472 in the 

ATP-binding site, keeping it inactivated [63]. The BRAF V600E mutation disrupts the 

hydrophobic interaction, enabling the BRAF kinase to fold into a catalytically active 

formation, resulting in an almost 500-fold increase in kinase activity [63]. According to a 

recent meta-analysis, BRAF V600E mutation has an overall prevalence of 57% in mPTCs, 

being the most common genetic alteration in this type of tumors [64]. In small percentages 

of PTC, K601E point mutations, small deletions or insertions around codon 600 and 

AKAP9/BRAF rearrangement can also be observed [7].  

 

RAS point mutations 

 

The RAS gene encodes a family of three highly homologous genes: 

Neuroblastoma RAS Viral Oncogene Homolog (NRAS), Harvey Rat Sarcoma Viral 

Oncogene Homolog (HRAS) and Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS). 

These 21-kDa membrane-associated proteins play a central role in the transduction of 

signals from tyrosine kinase and G protein-coupled receptors to effectors of the MAPK 

and PI3K-AKT signalling pathways, that is, from cell membrane receptors to their 

intracellular effector molecules. [65]. RAS proteins exist as an active form with guanosine 

triphosphatase (GTPase) activity and an inactive form that is bound to guanosine 

diphosphate (GDP) [7]. Point mutations produce oncogenic alleles of RAS that exhibit 

either increased affinity for GTP (mutations in codons 12 and 13) or inhibition of 

autocatalytic GTPase function (mutation in codon 61) [65]. Both mechanisms result in 

constitutive, aberrant activation of the downstream MAPK and PI3K/AKT signalling 

pathways [65]. Most series demonstrate predominance of NRAS 61 (Q61R; c.182A>G) 

mutant isoform in thyroid neoplasms [65].  There are also increasing evidence that RAS-

positive PTC are mainly of the follicular variant subtype (FVPTC) [65]. According to a 

recent meta-analysis which evaluates this mutation in 106 tumors, the overall prevalence 

of RAS mutations in mPTCs is only 4% [64].  

 

RET/PTC Rearrangements 

 

Proto-oncogene RET (rearranged during transfection) encodes for a membrane-bound 

receptor tyrosine kinase and is highly expressed in calcitonin-producing parafollicular cells 

(C cells) in the thyroid gland [66]. RET gene is located on chromosome 10q11.2 [67] and 

contains three functional domains: an extracellular ligand-binding domain, a hydrophobic 

transmembrane domain and an intracellular tyrosine kinase domain [2]. In follicular cells it 
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can be activated by a chromosomal rearrangement know as RET/PTC rearrangement [68]. 

This rearrangement is characterized by a fusion of the 3’ portion of RET gene to the 5’ 

portion of several unrelated genes [2].  At least 12 different types of RET/PTC 

rearrangement have been identified [66]. The two most common are RET/PTC1 (formed 

by the fusion with H4 (D10S170) gene) and RET/PTC3 (formed by the fusion with NCOA4 

(ELE1) gene) [66]. In RET/PTC rearrangements, fusion with protein partners possessing 

protein-protein interaction motifs provides RET/PTC kinases with dimerizing interfaces, 

which results in ligand-independent autophosphorylation of the tyrosine kinase domain  

[66]. The loss of the transmembrane domain in the rearranged protein results in the 

cytoplasmic expression of the constitutively active fusion gene. A recent meta-analysis 

reported an overall prevalence of 44% in mPTC, being the second most common genetic 

alteration in this type of tumors [64]. 

 

TERT promoter mutations 

 

Telomeres are DNA-protein structures that protect chromosome ends which 

consist of arrays containing guanine-rich (G-rich) repeats (TTAGGG)n in vertebrates. 

These structures prevent the eventual loss of coding DNA due to the end replication 

problem, a limitation that causes telomere shortening within each cell division and leading, 

eventually, to cellular senescence or apoptosis [69]. Human adult somatic cells usually 

repress telomerase expression, although the enzyme continues to be expressed in 

proliferative cells (germ cells and tissue stem cells) [70].  

Human TERT gene encodes the catalytic subunit of telomerase that together with a RNA 

component, TERC, maintains genomic integrity by telomere elongation [71]. Reactivation 

of telomerase is present in up to 90% of human cancers, and it allows proliferative cancer 

cells to maintain telomere length [70]. Mutations in the coding region of telomerase are 

very rare in human cancer [72]. In 2013, mutations in the promoter of the telomerase gene 

were reported for the first time, in melanoma [73, 74]. In the same year, TERT promoter 

mutations were reported in thyroid (follicular cell-derived tumors) with an overall 

prevalence of 10% [57]. A recent meta-analysis reported an overall prevalence of 4,6% in 

mPTC [64]. TERT promoter mutations occur in two hotspot positions, located -124 and -

146 bp upstream from the ATG start site (-124 G>A and -146 G>A, C>T on the opposite 

strand) and confer enhanced TERT promoter activity, by putatively generating a novel 

consensus binding site (GGAA) for E-twenty six transformation-specific (ETS)  

transcription factors family within the TERT promoter region [57, 73, 74]. 
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AIMS OF THE STUDY 

 

 

The general aim of this work was to evaluate the mPTC genetic profile. In order to 

do that, we intended to evaluate the prevalence of BRAF (exon 15, codon 600 region), 

NRAS (exon 3, codon 61 region) and TERT promoter mutations in a series of mPTC.  

We also intended to investigate possible associations of those genetic alterations 

with classical clinicopathological features. 
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MATERIALS AND METHODS 

Samples 

All the procedures described in this study were performed according to national 

ethical rules and with the approval of the ethic committee of Centro Hospitalar de São 

João (CHSJ).  

Tumor samples were obtained from CHSJ between 1996 and 2013 and were 

stored as formalin-fixed paraffin-embedded (FFPE) tissue samples. Diagnosis and 

clinicopathological data were obtained by a pathologist and endocrinologist, both from 

CHSJ. This series included 113 patients and was selected according to outcome, 

specifically a worse outcome when compared to the majority of mPTC. Some cases are 

composed of more than one sample, as mPTC has frequently multifocality. Unfortunately, 

it was not possible to analyse all 113 patients due to lack of time. 

The clinicopathological variables studied were gender, age, age at diagnosis, initial 

diagnosis, tumor size, histologic architecture variant, tumor localization in thyroid (left lobe, 

right lobe, isthmus, diffuse and pyramidal lobe), localization (central or peripheral), 

presence of thyroiditis (yes or no), vascular invasion (yes, suggestive or no), capsular 

invasion (yes or no), extrathyroidal invasion (yes, suggestive or no), presence of 

psammoma bodies (yes or no), lymph node metastasis (yes or no), multifocality (yes or 

no), tumor capsule (yes or no), tumor capsular invasion (yes or no), growth pattern 

(infiltrative, expansive or mixed), tumor margins (well defined or poorly defined), presence 

of necrosis (yes or no), intratumoral inflammatory infiltration (none, lymphocytic-scarce or 

lymphocytic), local metastasis (no or lymph node), number of lymph node metastasis, 

histologic relapse (yes or no) and years to relapse. 

 

DNA extraction 

Tumor areas were delimited, by a pathologist, in the haematoxylin and eosin (H&E) 

stained slides of each sample. The corresponding unstained slides were used for DNA 

extraction. The paraffin from FFPE slides was removed by immersion in xylene (Atom 

Scientific Ltd, United Kingdom) for 2 x 10 minutes and 2 x 5 minutes in ethanol 100% (Aga 

– Álcool e Géneros Alimentares, S.A., Portugal). Tumor areas, which were previously 

delimited by comparison with respective H&E slides, were macrodissected and transferred 

to a microcentrifuge tube. DNA was isolated using the GRS genomic DNA kit (GRiSP®, 

Portugal) and according to manufacturer’s instructions. Finally, DNA was quantified by 

Nanodrop N-1000 Spectrophotometer (Thermo Scientific®, USA) and stored at 4 ºC.  
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Genetic alterations 

 

Polymerase chain reaction (PCR) was performed using QIAGEN® Multiplex PCR 

kit in a final volume of 14 µl. This final mixture was composed of 6,25 µl of 2x QIAGEN 

PCR Master Mix (QIAGEN); 1,25 µl of Q-solution, 5x (QIAGEN); 3,5 µl of DNase and 

RNase free water; 0,25 µl each primer 100 uM (forward and reverse) and 2,5 µl of DNA 

template. PCR reaction was run in MyCycler™ thermal cycler (BIO RAD®, USA). The 

temperature conditions of PCR reaction consisted in an initial denaturation at 95ºC for 15 

minutes, followed by 40 cycles with denaturation at 95ºC for 30 seconds, annealing of 

primers at 61ºC for 90 seconds and polymerase extension at 72ºC for 1 minute. After the 

40 cycles the samples were subjected to a final extension at 72ºC for 10 minutes. In all 

PCR reactions it was used negative controls differing from the normal samples only by not 

having DNA template.  

To confirm the efficiency of the PCR reaction, the products were run in a 2% 

agarose gel electrophoresis, using the SGTB 1x buffer (ref. GB01.0520, GRiSP, Portugal). 

The samples were mixed with 1μL of Loading Buffer with Gel Red® Nucleic Acid Gel 

Stain 3X (ref. 41003, Biotium, Inc, USA), where the loading buffer provides density to the 

sample and include colored dyes used to monitor the progress of the electrophoresis and 

the Gel Red® intercalate into the major grooves of the DNA and will be fluorescent under 

UV light, according to the manufacturer guidelines. To evaluate the size of the PCR 

products in the electrophoresis gel, 1kb Plus DNA Ladder (ref 10787-026, Invitrogen, USA) 

was used. The gel was analysed in ChemiDoc™ XRS Imaging System, BIORAD in an UV 

filter lamp (Model: Universal Hood II, Hercules, CA, USA - 50/60 Hz). 

Before sequencing, all PCR products were purified to remove excess of primers, 

salts, dNTPs and enzymes from the PCR reaction, using the ExoSap method. ExoSap is 

composed by two hydrolytic enzymes, Exonuclease I 20U/μL (ref. #ENO582, Thermo 

Scientific) and Shrimp Alkaline Phosphatase (Fast AP Thermosensitive Alkaline 

Phosphatase 1U/μL, ref. #EF0651, Thermo Scientifics). For that purpose, it was added 

1,5 µl of ExoSap to the PCR product, followed by incubation at 37ºC for 30 minutes, 

optimal temperature for the enzymes action, and 80 ºC for 15 minutes for their inactivation. 

The PCR products were analysed by DNA sequencing (Sanger sequencing) using 

ABI Prism BigDye Terminator Kit v3.1 Cycle Sequencing (ref 4337455, Applied 

Biosystems®, United Kingdom). The final mixture had 2,5 µl of PCR product, 0,25 µl of 

BigDye, 3,4 µl of Sequencing buffer (Big Dye® Terminator v1.1, v1.3 5x sequencing buffer, 

ref 4336697, Applied Biosystems®), 0,3 µl of one of the primers (forward or reverse) and 
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3,4 µl of DNase and RNase free water. The final mixture was amplified in MyCycler™ 

thermal cycler (BIO RAD®) with an annealing temperature of 55ºC. 

PCR sequencing products were purified using Zetadex-50 Superfine Gel Filtration 

Matrix (ref. TM-0104-E100.0-001, Biotech GmbH, Germany) columns to remove all 

ddNTPs not incorporated during sequencing reaction. After this step, it was added 15 µl of 

Hi-DiTM Formamide (ref 1403305, Applied Byosystems®) to the samples. Finally, samples 

were run in an ABI prism 3100 Genetic Analyzer (Perkin-Elmer, USA). Electropherograms 

of each sample were analysed with the Sequencing Analysis Software v5.4 (Applied 

Biosystems).  

All positive cases for mutation were validated by a new independent analysis (this 

independent analysis was not performed as no positive cases for mutation were obtained). 

 

Statistical analysis 

 Statistical analysis was performed using IBM SPSS Statistics version 24 (IBM, 

USA).  

 For the analysis of relationship between the continuous variables tumor size and 

age with clinicopathological characteristics, unpaired t-test and variance analysis was 

used. Chi-square test was used, with Fisher’s correction when eligible, for analysis of 

relationship between the other clinicopathological characteristics. Frequency tables for 

each of the variables, expressed in frequency and percentage were also obtained. We 

considered statistically significant P-value<0.05. 
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RESULTS 

 

This series included a total of 113 patients with the diagnosis of mPTC. A total of 

66 DNA slides from 45 patients were analysed for molecular characterization. 

It was our intention to classify molecularly these tumors, analysing the prevalence 

of BRAF, NRAS and TERT promoter mutations. However, only the analysis of NRAS 

mutations was successful.  

Of the 45 patients, the mean age was 50, ranging from 21 to 77 years. The 

majority of the patients were older than 45 years (66.7%). There were a total of 3 male 

cases (6.7%), with a mean age of 57 (41-75) years, and 42 female cases (93.3%), with a 

mean age of 50 (21-77) years. 

Of the 45 patients, 13 (28.9%) were incidental cases, which means that the 

microcarcinoma was not diagnosed per se but during pathologic examination of thyroid 

specimens after surgery for benign thyroid diseases or other malignant diseases (follicular 

thyroid tumor, papillary thyroid tumor and hurthle cell thyroid tumor).  

In the 45 patients, 81 mPTCs were diagnosed. 21 patients (46.7%) had only 1 

microcarcinoma and the remaining 24 (53.3%) patients had multifocality. Multifocality had 

the same number of unilateral and bilateral cases. Within the 24 cases with multifocality, 

16 (66.7%) presented equal histotype architecture variant among all the microcarcinomas 

of the same case. Regarding the number of lesions in the cases presenting multifocality 

18 patients (40.0%) had 2 microcarcinomas, 2 patients (4.4%) had 3 microcarcinomas, 2 

patients (4.4%) 4 microcarcinomas and 2 (4.4%) patients presented 5 microcarcinomas. 

Tumors presented a maximum of 10 millimetres (mm) and a minimum of 1 mm in their 

maximum diameter, with a mean maximum diameter of 5.5 mm.  

From the 81 mPTCs, 44 (54.3%) had follicular architecture, 25 (30.9%) classical 

architecture, 9 (11.1%) mixed architecture (half follicular and half classical) and 3 (3.7%) 

solid architecture – Table 1. 42 (51.9%) mPTCs were located in the right lobe, 38 (46.9%) 

in the left lobe and 1 (1.2%) in the pyramidal lobe.  

 

Table 1 – Diagnosis of the architecture of the papillary thyroid microcarcinoma 

Predominant 

architecture diagnosis 

Frequency (n=81) Percentage (%) 

Follicular  44 54.3 

Classical 25 30.9 

Mixed  9 11.1 

Solid  3 3.7 
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Of the 45 patients, 4 (8.9%) had tumor encapsulation and of those 4 all (100%) 

had invasion of the capsule. Furthermore, 21 (46.7%) patients had vascular invasion 

(cases with suggestive vascular invasion were included), 33 (73.3%) had extrathyroidal 

invasion (cases with suggestive extrathyroidal invasion were included) and 19 (42.2%) of 

the patients had tumor lymphocytic infiltrate (cases with scarce tumor lymphocytic infiltrate 

were included). The majority of the patients had an infiltrative tumor growth pattern 

(82.2%), poorly defined tumor margins (93.3%) and had no lymph node metastasis 

(91.1%). Only 2 patients (4.4%) had histologic relapse, which means that their relapse 

was confirmed by histologic analysis. 10 (22.2%) patients had Multinodular Goiter (MNG) 

and 16 (35.5%) colloid nodules. In 11 (24.4%) patients psammoma bodies were found – 

Table 2. 

 

Table 2 – Pathological and molecular characteristics of the mPTCs in the 45 patients 

Variables Frequency (n=45) Percentage (%) 

Age 

<45 years 15 33.3 

≥45 years 30 66.7 

Gender 

Male 3 6.7 

Female 42 93.3 

Incidental mPTC 13 28.9 

Multifocality 

No 21 46.7 

Yes 24 53.3 

Multifocality 

side 

Unilateral 12 50.0 

Bilateral 12 50.0 

MNG 10 22.2 

Colloid nodules 16 35.5 

Psammoma bodies 11 24.4 

Tumor capsule 4 8.9 

Tumor capsule invasion 4 8.9 
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Vascular invasion  

(cases with suggestive 

vascular invasion were 

included) 

 

21 46.7 

Extrathyroidal invasion 

(cases with suggestive 

extrathyroidal invasion were 

included) 

33  73.3 

Lymphocytic infiltrate 19  42.2 

Tumor 

margins 

Well-

defined 
3 6.7 

Poorly-

defined 
42 93.3 

Growth 

pattern 

infiltrative 37 82.2 

expansive 3 6.7 

mixed 5 11.1 

Lymph node metastasis 4 8.9 

Histologic relapse 2 4.4 

NRAS mutation 0 0 

 

We also did a comparative analysis between the 2 most prevalent mPTC 

architecture variants present in this series, classical (c-mPTC) and follicular (fv-mPTC), to 

see the distribution of the clinicopathological characteristics in those variants.– Table 3. 

Of the 45 patients, 13 were diagnosed with c-mPTC (single or multiple) with a 

mean age of 47 years and 20 with fv-mPTC (single or multiple) with a mean age of 51 

years. 

 

Table 3 – Pathological and molecular characteristics of c-mPTC and fv-mPTC. 

Variables 
c-mPTC  

(n=13) 

fv-mPTC  

(n=20)  

Age 

(%) 
<45 years 

4 

(30.8) 

8 

(40.0) 
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≥45 years 
9 

(69.2) 

12 

(60.0) 

Gender 

(%) 

Male 
1 

(7.7) 

2 

(10.0) 

Female 
12 

(92.3) 

18 

(90.0) 

Incidental mPTC 

(%) 

3 

(23.1) 

8 

(40.0) 

Multifocality 

(%) 

No 
8 

(61.5) 

10 

(50.0) 

Yes 
5 

(38.5) 

10 

(50.0) 

Tumor capsule 

(%) 

1 

(7.7) 

1 

(5.0) 

Tumor capsule invasion 

(%) 

1 

(7.7) 

1 

(5.0) 

Vascular invasion (cases with 

suggestive vascular invasion were 

included) 

(%) 

7  

(53.9) 

9 

(45) 

Extrathyroidal invasion (cases with 

suggestive extrathyroidal invasion were 

included) 

(%) 

6  

(46.2) 

17 

(85.0) 

Lymphocytic infiltrate (cases with 

scarce tumor lymphocytic infiltrate were 

included) 

(%) 

6 

(46.2) 

11 

(55.0) 

Tumor margins 

(%) 

 

Well-

defined 

1 

(7.7) 

1 

(5.0) 

Poorly-

defined 

12 

(92.3) 

19 

(95.0) 

Growth pattern 

(%) 

infiltrative 
7 

(53.8) 

19 

(95.0) 

expansive 
2 

(15.4) 

1 

(5) 
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mixed 
4 

(30.8) 

0 

(0) 

Lymph node metastasis 

(%) 

2 

(15.4) 

1 

(5) 

Histologic relapse 

(%) 

1 

(7.7) 

0 

(0) 

NRAS mutation 

(%) 

0 

(0) 

0 

(0) 

 

 

When the two most prevalent variants were compared, c-mPTC and fv-mPTC, 

statistical significant differences were observed. The c-mPTC group had more psammoma 

bodies (53.8% vs 15.0%) and less extrathyroidal invasion (41.7% vs 85.0%) when 

compared with the fv-mPTC group – Table 4. 

 

Table 4 – Comparison between the classical mPTC and follicular variant mPTC, in relation to the 
variables extrathyroidal invasion and psammoma bodies. 

Variables 
Variant diagnosis 

p-value 
c-mPTC fv-mPTC 

Extrathyroidal 

invasion 

(%) 

Yes 
5 

(41.7) 

17 

(85.0) 
0.018 

No 
7 

(58.3) 

3 

(15.0) 

Psammmoma 

bodies 

(%) 

Yes 
7 

(53.8) 

3 

(15.0) 
0.026 

No 
6 

(46.2) 

17 

(85.0) 

 

When the incidental cases of mPTC were compared with the non-incidental cases, 

it was possible to report statistical significant differences with the incidental cases being  

more frequentely associated with colloid nodules (76.9% vs 18.8%) and with multinodular 

goiter (MNG) (61.5% vs 6.3%) when compared with the non-incidental cases of mPTC. It 

is also possible to report a larger mean maximum diameter (mean of all tumors of each 

case) in the group of the non-incidental cases – Table 5. 
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Table 5 – Comparison between the incidental and non-incidental cases of mPTC, in relation to the 
variables colloid nodules, multinodular goiter (MNG) and mean maximum diameter of all tumors of the 
case. 

Variables 
Incidental mPTC 

p-value 
Yes No 

Colloid 

nodules (%) 

Yes 
10 

(76.9) 

6 

 (18.8) 
0.000 

No 
3 

(23.1) 

26 

(81.3) 

MNG 

(%) 

Yes 
8 

(61.5) 

2 

(6.3) 
0.000 

No 
5 

(38.5) 

30 

(93.8) 

Mean tumor size (mm) 5.12 6.57 0.033 

 

When the cases with and without multifocality were compared, it was possible to 

report a tendency, with the cases with multifocality being more frequent in females (100% 

vs 85.7%), having less lymph node metastasis (0% vs 19.0%)  and  the tumor margins 

being frequently poorly-defined (100% vs 85.7%) when compared with the cases without 

multifocality  – Table 6. 

 

Table 6 – Comparison between the cases with and without multifocality, in relation to the variables 
gender, lymph node metastasis and tumor margins 

Variables 
Multifocality 

p-value 
Yes No 

Gender 

(%) 

Male 
0 

(0) 

3 

(14.3) 
0.094 

Female 
24 

(100) 

18 

(85.7) 

Lymph node 

metastasis 

(%) 

Yes 
0 

(0) 

4 

(19.0) 
0.040 

No 
24 

(100) 

17 

(81.0) 

Tumor 

margins 

(%) 

Well-

defined 

0 

(0) 

3 

(14.3) 
0.094 

Poorly-

defined 

24 

(100) 

18 

(85.7) 
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When the group with and without lymph node metastasis were compared, it was 

possible to report statistical significant differences. The group with lymph node metastasis 

had more psammoma bodies (75.0% vs 19.5%) and less multifocality (0% vs 58.5%) 

when compared with the group without lymph node metastasis – Table 7. 

 

Table 7 – Comparison between the group with and without lymph node metastasis, in relation to the 
variables psammoma bodies and multifocality 

Variables 
Lymph node metastasis 

p-value 
Yes No 

Psammoma 

bodies (%) 

Yes 
3 

(75.0) 

8 

(19.5) 
0.040 

No 
1 

(25.0) 

33 

(80.5) 

Multifocality 

(%) 

Yes 
0 

(0) 

24 

(58.5) 
0.040 

No 
4 

(100) 

17 

(41.5) 

 

 When the group with and without tumor capsule were compared, it was possible to 

report some statistical significant differences, with the group with tumor capsule having all 

invasion of the tumor capsule (100 % vs 0%) and more well-defined tumor margins (50.0 

% vs 2.4%) when compared with the group with no tumor capsule. However, the group 

with tumor capsule had less poorly-defined tumor margins (50.0% vs 97.6%) – Table 8. 

 

Table 8 – Comparison between the group with and without tumor capsule, in relation to the variables 
Tumor capsule invasion and tumor margins. 

Variables 
Tumor capsule 

p-value 
Yes No 

Tumor 

capsule 

invasion 

(%) 

Yes 
4 

(100) 
 

0.000 

No 
0 

(0) 
 

Tumor Well- 2 1 0.018 
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margins 

(%) 

defined (50) (2.4) 

Poorly-

defined 

2 

(50) 

40 

(97.6) 

 

 When the group with tumors with a maximum diameter of less than 5 mm was 

compared with the group with at least one tumor with 5 mm or more, it was possible to 

report a tendency, although the difference is not statistically significant. 75.0% of the 

cases belonging to the group with at least one tumor with 5 mm or more are non-

incidental cases and 60.0% of the cases with a maximum diameter inferior to 5 mm are 

incidental cases – Table 9. 

 

Table 9 – Comparison between the group with tumors with maximum diameter inferior to 5 mm and 
the group with at least one tumor with maximum diameter of 5 mm or more, in relation to the variable 
Incidental mPTC. 

Variables 
Tumor size 

p-value 
<5 ≥5 

Incidental 

mPTC  

(%) 

Yes 
3 

(60.0) 

10 

(25.0) 
0.136 

No 
2 

(40.0) 

30 

(75.0) 

 

The 66 genotyped samples, from the 45 patients, analysed for the NRAS 

mutations were all (100%) wild-type, which included 63 tumor samples and 3 lymph node 

metastasis - Figure 5 and 6. 

 

 

Figure 5 – Representative results of an agaroses gel electrophoresis for the PCR of NRAS codon 61 
region, with a size of about 119 basepairs (1-DNA ladder; 2 & 3-negative control; 5 to 11-Positive case 
for amplification of NRAS. 
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Figure 6 – Wild-type representative results obtained through sequencing analysis of NRAS codon 61 
(bounded by 2 red lines) region, primer forward. 

 

 

  



The genetics of papillary microcarcinomas of the thyroid 
 

36 
 

 

  



The genetics of papillary microcarcinomas of the thyroid 
 

37 
 

 

 

 

 

 

 

 

 

 

 

 

DISCUSSION 

  



The genetics of papillary microcarcinomas of the thyroid 
 

38 
 

 

  



The genetics of papillary microcarcinomas of the thyroid 
 

39 
 

 

 

DISCUSSION 

 

Papillary thyroid microcarcinoma (mPTC) constitutes a topic of intense debate in 

endocrine oncology, as these cancers have a spectrum of behaviour that ranges from 

incidentally detected and clinically indolent tumours, a minority that behave more 

aggressively and a few that can become virtually untreatable neoplasms [24]. The 

importance of genetic characterization of mPTC is to obtain tools that can predict those 

that will cause significant disease. In this work we intend to evaluate the genetic profile of 

a series of mPTC from the North of Portugal, evaluating the prevalence of BRAF V600E, 

RAS and TERT promoter mutations. We also evaluated a number of clinicopathological 

features.  

In this study we have access to a series of mPTC that were selected based in the 

behaviour of the disease. The series is mainly composed of “worse” prognosis cases i.e.  

cases that, at presentation or in the follow-up period, showed vascular invasion, 

extrathyroidal invasion, metastasis or histologic relapse.   

We will start with the analysis of the clinicopathological characteristics of the 45 

mPTC cases included in in our study  [24].  

In this work, the female cases represented 93.3% of all cases. A recent meta-

analysis, addressing 75 studies, estimates that 82% of mPTC belong to women [24]. The 

reason(s) underlying the higher incidence of mPTCs and PTCs in women remains not 

explained. Some authors advanced the fact that estrogen is a potent growth factor for 

malignant thyroid cells [75]. In fact, it was demonstrated that estrogen has the ability to 

activate MAPK and PI3K signalling pathways, two pathways with major roles in thyroid 

oncogenesis [75-78].  

Multifocality is a common feature of mPTC and was also observed in this work. 

According to a recently published meta-analysis (2016) addressing 57 studies, 

multifocality prevalence in mPTCs is 28.0%. The multifocality prevalence of the series in 

this work was 53.0%. There are some studies that correlate the presence of multifocality 

with worse clinicopathological features, and that can be a possible explanation for the 

higher incidence of multifocality in this series. In fact, a recent work states that 

multifocality is an important factor for predicting tumor recurrence in mPTC [79]. Another 

study reports a higher capsular invasion, extrathyroidal invasion and lymph node 

metastasis in multifocal PTCs [80]. Interestingly, it was also reported an increase of these 

worse clinicopathological features in multifocal tumors that have a tumor diameter of less 
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than 10 mm, mPTCs, comparing with unifocal tumors with more than 10 mm [80]. 

Contrary to what a recent meta-analysis reports, in our results lymph node metastasis was 

more prevalent in unifocal tumors, with all four lymph node metastasis cases belonging to 

cases without multifocality [81]. Obviously, the numbers are too scarce to allow any 

meaningful tendency.  

mPTC are tumors frequently found during histopathological examination of the 

thyroid glands removed during necropsy or surgery for nonmalignant thyroid disease, 

which makes them incidental tumors [24]. A meta-analysis of 25 studies reports that 57% 

of mPTC are diagnosed incidentally. [24]. The fact that the mPTC series used in this work 

had only 28.9% of incidental cases can be associated to the fact that this is a series with 

aggressive features. Probably, most of the patients of this series had some symptoms and 

their mPTCs were diagnosed on clinical grounds, being non-incidental. This is confirmed 

by the observation that in the non-incidental cases 81.3% did not present colloid nodules 

and 93.8% did not have MNG (Table 5). It is also interesting to see that the non-incidental 

cases have a maximum diameter superior to the incidental cases, which is in accordance 

to the findings of a recent work that compared incidental with non-incidental mPTC and 

observed larger tumors in the non-incidental group [82]. 

When we compare cases with and without lymph node metastasis, it is interesting 

to see that 75.0% of the cases with lymph node metastasis had psammoma bodies and 

that 80.5% of the cases with no lymph node metastasis did not present psammoma 

bodies, showing that psamomma bodies are almost exclusive of cases with lymph node 

metastasis. A study that analysed 258 PTCs found that the presence of psammoma 

bodies was significantly correlated with lymph node metastasis [83]. It is also interesting to 

see that classical variant presents more frequently psammoma bodies (table 4). There is 

some evidence that psammoma bodies are much more prevalent in classical mPTC [23]. 

When we compare the prevalence of the different mPTC variants it is possible to 

report a higher prevalence of the follicular variant, 54.3%, comparing with 30.9% of the 

classical variant and a minority of the other two variants. The same meta-analysis 

reported before, accounts that classical variant is the most prevalent, with 71.0% and 

follicular variant the second most prevalent with 19.0% [24]. A recent study of 1990 cases 

that evaluated the outcome of mPTC, found an association between lymph node 

metastasis and follicular variant [84]. This finding suggests that this variant might be more 

aggressive and that can be a possible explanation for the higher prevalence of follicular 

variant in the series used in this work. The hypothesis that follicular variant is more 

aggressive was supported by the higher prevalence of extrathyroidal invasion in this 

variant when compared with classical variant (table 4).  
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The series included a total of 113 patients with the diagnosis of mPTC. 

Unfortunately, it was not possible to do the molecular analysis of all of them in time, as the 

molecular characterization was dependent on the analysed slides sent by the pathologist 

and the pathological features were also dependent on the pathologist’s analysis. For this 

reason only 45 cases were available for the molecular analysis. 

Although it was initially planned to analyse BRAF (exon 15, codon 600 region), 

TERT promoter and NRAS (exon 3, codon 61 region) mutations, only NRAS mutation 

analysis was successfully performed 

The TERT promoter sequence proved to be very difficult to amplify, as it is a gene 

promoter and it is known its high GC rich content. We failed to molecularly characterize 

TERT promoter in time for inclusion in this thesis. Since this sequence has successfully 

been genotyped in the past, in the research group were this work took place, it made us 

question about possible explanations for this problem. Due to the small size of 

microcarcinomas, the amount of DNA extracted from mPTC tissues was reduced, that 

could in part explain the increased difficulty in genotyping this sequence, although, 

previous mPTC have been studied in the group with similar amounts of material. Only two 

published studies report the analysis of TERT promoter mutations in mPTC, with an 

overall prevalence of 4.6%, ranging from 0%[57] to 4.7%[85]. One of these studies 

searched for associations between this mutation and unfavorable clinical features and 

nothing was found to be correlated [85]. This contrasts with the association found between 

TERT promoter mutations and worse outcome and disease-specific mortality in PTC [86]. 

Contrarily to TERT genotyping, BRAF amplification was successfully obtained. 

However, these results failed to be validated in a reliable way and therefore this data 

could not be used in order to not introduce biased or false results. BRAF V600E mutation 

is the most studied genetic alteration in mPTC and according to a recent-meta-analysis it 

has an overall prevalence of 57% (ranging from 0% to 90.7%) [64]. This prevalence is 

very similar to the 51% (ranging from 27.3% to 87.1%), reported in another recent meta-

analysis of 30 studies on PTC [87]. Many studies found association between BRAF 

mutation and some clinicopathological features predictive of tumor aggressiveness [85, 

88-102]. 

The fact that the sequence amplified of NRAS presented about 119 base pairs (bp) 

and the other two, BRAF and TERT promoter, have near 200 base pairs might explain the 

efficiency of this amplification, as a smaller sequence is more easily amplified. So, we did 

not face major complications in genotyping NRAS. 

  In this work, the prevalence of NRAS was 0% in the tumors and lymph node 

metastasis analysed. So far, there are only 4 published studies reporting the analysis of 

RAS mutations in mPTCs, with an overall prevalence of 3,8% (4/106), ranging from 0 to 
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5% [64, 103-106]. Interestingly, one of the studies that found RAS mutations stratified the 

series in two groups and reported no RAS mutations in the aggressive group, with all 

mutations belonging to the non-aggressive group [104]. This is an interesting result, as the 

analysis presented in this thesis was also done in an aggressive mPTC series and raises 

the question if aggressive mPTCs could have a lower frequency of RAS mutations. 

However, the absence of gene mutations precluded the search for associations of RAS 

with clinicopathological features of the mPTC. The general low prevalence of this mutation 

in mPTC contrasts with the observed frequency in normal PTCs that usually tend to affect 

10% of the cases studied, with follicular variants presenting an higher incidence [7].  

Genetic alterations of mPTC and the study of their association with 

clinicopathological features are of major importance to predict those cases that will cause 

significant disease. This series is composed by aggressive cases of mPTC. Their genetic 

characterization, when finished, will be an important tool for better understanding these 

uncommon cases with aggressive behavior. 
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CONCLUSIONS AND FUTURE PERSPECTIVES 

 

 Although the cases present in this series were selected based on their aggressive 

features, we confirmed the indolent clinical course of this type of tumor, with only 8.9% of 

lymph node metastasis and no distant metastasis or disease-specific mortality.  It was 

also possible to see a high number of multifocal, incidental and female cases, as expected. 

Interestingly, follicular architecture was predominant in this series and that can be related 

with the aggressive features of these cases. Furthermore, the genetic characterization of 

this series revealed no mutations in NRAS gene. The work presented on this thesis is still 

part of an ongoing work with more cases to be analysed for genetic alterations in BRAF, 

NRAS and TERT promoter. The results arising from this future analysis are of major 

importance for better understanding the relationship between genetic alterations and 

clinical outcome in this type of tumors. It remains to be found a marker that could 

distinguish which of these mPTC will indeed present a worse prognosis and will require a 

more radical approach in order to treat them. Additional, as observed in some countries, 

the increased detection of these small lesions represents an economic burden. Therefore, 

we aim to identify those that will cause significant disease so an aggressive therapeutic 

approach can be taken. 
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