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Abstract We address the problem of dynamically switching the geometry of a for-
mation of a number of undistinguishable agents. Given the current and the final
desired geometries, there are several possible allocations between the initial and
final positions of the agents as well as several combinations for each agent veloc-
ity. However, not all are of interest since collision avoidance is enforced. Collision
avoidance is guaranteed through an appropriate choice of agent paths and agent ve-
locities. Therefore, given the agent set of possible velocities and initial positions,
we which to find their final positions and traveling velocities such that agent trajec-
tories are apart, by a specified value, at all times. Among all the possibilities we are
interested in choosing the one that minimizes a predefined performance criteria, e.g.
minimizes the maximum time required by all agents to reach the final geometry. We
propose here a dynamic programming approach to solve optimally such problems.
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1 Introduction

In this paper, we study the problem of switching the geometry of a formation of
undistinguishable agents by minimizing some performance criterion. The questions
addressed are, given the initial positions and a set of final desirable positions, which
agent should go a specific final position, how to avoid collision between the agents,
and which should be the traveling velocities of each agent between the initial and
final positions. The performance criterion used in the example explored is to mini-
mized the maximum traveling time, but the method developed – based on dynamic
programming — is sufficiently general to accommodate many different criteria.

Formations of undistinguishable agents arise frequently both in nature and in mo-
bile robotics. The specific problem of switching the geometry of a formation arises
in many cooperative agents missions, due to the need to adapt to environmental
changes or to adapt to new tasks. An example of the first type is when a formation
has to go through a narrow passage, or deviate from obstacles, and must reconfig-
ure to a new geometry. Examples of adaption to new tasks arise in robot soccer
teams: when a team is in an attack formation and looses the ball, it should switch
to a defence formation more appropriate to the new task. Another example is in the
detection and containment of a chemical spillage, the geometry of the formation for
the initial task of surveillance, should change after detection occurs, switching to a
formation more appropriate to determine the perimeter of the spill.

Research in coordination and control of teams of several agents (that may be
robots, ground, air or underwater vehicles) has been growing fast in the past few
years. Application areas include unmanned aerial vehicles (UAVs) [4, 18], au-
tonomous underwater vehicles (AUVs) [16], automated highway systems (AHSs)
[3, 17] and mobile robotics [20, 21]. While each of these application areas poses its
own unique challenges, several common threads can be found. In most cases, the ve-
hicles are coupled through the task they are trying to accomplish, but are otherwise
dynamically decoupled, meaning the motion of one does not directly affect the oth-
ers. For a survey in cooperative control of multiple vehicles systems, see for example
the work by Murray [11]. Regarding research on the optimal formation switching
problem, it is not abundant, although it has been addressed by some authors. De-
sai et al., in [5], model mobile robots formation as a graph. The authors use the
so-called “control graphs” to represent the possible solutions for formation switch-
ing. In this method, for a graph having n vertices there are n!(n−1)!/2n−1 control
graphs, and switching can only happen between predefined formations. The authors
do not address collision or velocity issues. Hu and Sastry [9] study the problems of
optimal collision avoidance and optimal formation switching for multiple agents on
a Riemannian manifold. However, no choice of agent traveling velocity is consid-
ered. It is assumed that the underlying manifold admits a group of isometries, with
respect to which the Lagrangian function is invariant. A reduction method is used
to derive optimality conditions for the solutions. In [19] Yamagishi describes a de-
centralized controller for the reactive formation switching of a team of autonomous
mobile robots. The focus is on how a structured formation of agents can reorganize
into a non-rigid formation based on changes in the environment. The controller uti-
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lizes nearest-neighbor artificial potentials (social rules) for collision-free formation
maintenance and environmental changes act as a stimulus for switching between
formations. A similar problem, where a set of agents must perform a fixed number
of different tasks on a set of targets, has been addressed by several authors. The
methods developed include exhaustive enumeration (see Rasmussen et al. [13]),
branch-and-bound (see Rasmussen and Shima [12]), network models (see Schu-
macher et al. [14, 15]), and dynamic programming (see Jin et al. [10]). None of
these works address velocity issues.

A problem of formation switching has also been addressed in [6] and [7] using
dynamic programming. However, the possible use of different velocities for each
agent was not addressed. But the possibility of slowing down some of the agents
might, as we will show in an example, achieve better solutions while avoiding col-
lision between agents. We propose a dynamic programming approach to solve the
problem of formation switching with collision avoidance and agents velocities se-
lection, that is the problem of deciding which agent moves to which place in the
next formation guaranteeing that at any time the distance between any two of them
is at least some predefined value. In addition, each agent can also explore the pos-
sibility of modifying its velocity to avoid collision, which is a main distinguishing
feature from previous work. The formation switching performance is given by the
time required for all agents to reach their new position, which is given by the max-
imum traveling time amongst individual agent traveling times. Since we want to
minimize the time required for all agents to reach their new position, we have to
solve a minmax problem. However, the methodology we propose can be used with
any separable performance function. The problem addressed here should be seen
as a component of a framework for multiagent coordination, incorporating also the
trajectory control component [8], that allows to maintain or change formation while
following a specified path in order to perform cooperative tasks.

This paper is organized as follows. In the next section, the problem of optimal
reorganization of agent formations with collision avoidance is described and for-
mally defined. In Section 3, a dynamic programming formulation of the problem is
given and discussed. In Section 4, we discuss computational implementation issues
of the dynamic programming algorithm, namely an efficient implementation of the
main recursion as well as efficient data representations. A detailed description of the
algorithms is also provided. Next, an example is reported to show the solution modi-
fications when using velocities selection and collision avoidance. Some conclusions
are drawn in the final section.

2 The Problem

In our problem a team of N identical agents has to switch from their current for-
mation to some other formation (i.e agents have a specific goal configuration not
related to the positions of the others), possibly unstructured, with collision avoid-
ance. To address collision avoidance, we impose that the trajectories of the agents
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must satisfy the separation constraint that at any time the distance between any two
of them is at least ε , for some positive ε . The optimal (joint) trajectories are the ones
that minimize the maximum trajectory time of individual agents.

Our approach can be used either centralized or decentralized, depending on the
agents capabilities. In the latter case, all the agents would have to run the algorithm,
which outputs an optimal solution, always the same if many exist, since the proposed
method is deterministic.

Regarding the new formation, it can be either a pre-specified formation or a for-
mation to be defined according to the information collected by the agents. In both
cases, we do a pre-processing analysis that allows us to come up with the desired
locations for the next formation.

This problem can be restated as the problem of allocating to each new position
exactly one of the agents, located in the old positions, and determine each agent
velocity. From all the possible solutions we are only interested in the ones where
agent collision is prevented. Among these, we want to find one that minimizes the
time required for all agents to move to the target positions, that is an allocation
which has the least maximum individual agent traveling time.

To formally define the problem, consider a set of N agents moving in a space Rd ,
so that at time t, agent i has position qi(t) in Rd (we will refer to qi(t) = (xi(t),yi(t))
when our space is the plane R2). The position of all agents is defined by the N-tuple
Q(t) = [qi(t)]Ni=1 in Rd×N . We assume that each agent is holonomic and that we are
able to choose its velocity, so that its kinematic model is a simple integrator

q̇i(t) = ϑi(t) a.e. t ∈ R+.

The initial positions at time t = 0 are known and given by A = [ai]Ni=1 = Q(0).
Suppose a set of M (with M ≥ N) final positions in Rd is specified as F =
{ f1, f2, . . . , fM}.

The problem is to find an assignment between the N agents and N final positions
in F . That is, we want to find a N-tuple B = [bi]Ni=1 of different elements of F ,
such that at some time T > 0, Q(T ) = B and all bi ∈ F , with bi 6= bk. There are(

M
N

)
·N! such N-tuples (the permutations of a set of N elements chosen from a set

of M elements) and we want to find a procedure to choose an N-tuple minimizing a
certain criterion that is more efficient than total enumeration.

The criterion to be minimized can be very general since the procedure developed
is based on dynamic programming which is able to deal with general cost functions.
Examples can be minimizing the total distance traveled by the agents

Minimize
N

∑
i=1
‖bi−ai‖,

the total traveling time

Minimize
N

∑
i=1
‖bi−ai‖/‖ϑi‖,
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or the maximum traveling time

Minimize max
i=1,...,N

‖bi−ai‖/‖ϑi‖.

We are also interested in selecting the traveling velocities of each agent. Assum-
ing constant velocities, these are given by

ϑi(t) = ϑi = vi
bi−ai

‖bi−ai‖
,

where the constant speeds are selected from a discrete set ϒ = {Vmin, . . . ,Vmax}.
Moreover, we are also interested in avoiding collision between agents. We say

that two agents i, k (with i 6= k), do not collide if their trajectories maintain a certain
distance apart, at least ε , at all times. The non-collision conditions is

‖qi(t)−qk(t)‖ ≥ ε ∀t ∈ [0,T ] (1)

where the trajectory is given by

qi(t) = ai +ϑi(t)t, t ∈ [0,T ].

We can then define a logic-valued function c as

c(ai,bi,vi,ak,bk,vk) =
{

1 if collision between i and k ocurs
0 otherwise

With these considerations, the problem (in the case of minimizing the maximum
traveling time) can be formulated as follows

min
b1,...,bN ,v1,...,vN

max
i=1,...,N

‖bi−ai‖/vi,

Subject to
bi ∈ F ∀i,
bi 6= bk ∀i,k with i 6= k,
vi ∈ϒ , ∀i,
c(ai,bi,vi,ak,bk,vk) = 0, ∀i,k with i 6= k,

Instead of using the set F of d-tuples, we can define a set J = {1,2, . . . ,M} of indexes
to such d-tuples, and also a set I = {1,2, . . . ,M} of indexes to the agents. Let ji in
J be the target position for agent i, that is bi = f ji . Define also the distances di j =
‖ f j − ai‖ which can be pre-computed for all i ∈ I and j ∈ J. Redefining, without
changing the notation, the function c to take as arguments the indexes to the agent
positions instead of the positions (i.e. c(ai, f ji ,vi,ak, f jk ,vk) is simply represented as
c(i, ji,vi,k, jk,vk)), the problem can be reformulated into the form
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min
j1,..., jN ,v1,...,vN

max
i=1,...,N

di j/vi,

Subject to
ji ∈ J ∀i ∈ I,
ji 6= jk ∀i,k ∈ I with i 6= k,
vi ∈ϒ , ∀i ∈ I,
c(i, ji,vi,ak, jk,vk) = 0, ∀i,k with i 6= k,

3 Dynamic programming formulation

Dynamic Programming (DP) is an effective method to solve combinatorial prob-
lems of a sequential nature. It provides a framework for decomposing an optimiza-
tion problem into a nested family of subproblems. This nested structure suggests
a recursive approach for solving the original problem using the solution to some
subproblems. The recursion expresses an intuitive principle of optimality [2] for
sequential decision processes; that is, once we have reached a particular state, a
necessary condition for optimality is that the remaining decisions must be chosen
optimally with respect to that state.

3.1 Derivation of the dynamic programming recursion: the
simplest problem

We start by deriving a DP formulation for a simplified version of problem: where
collision is not considered and different velocities are not selected. The collision
avoidance and the selection of velocities for each agent are introduced later.

Consider that there are N agents i = 1,2, . . . ,N to be relocated from known ini-
tial location coordinates to a target locations indexed by set J. We want to allocate
exactly one of the agents to each position in the new formation. In our model a stage
i contains all states S such that |S| ≥ i, meaning that i agents have been allocated to
the targets in S. The DP model has N stages, with a transition occurring from a stage
i−1 to a stage i, when a decision is made about the allocation of agent i.

Define f (i,S) to be the value of the best allocation of agents 1,2, . . . , i to i targets
in set S, that is, the allocation requiring the least maximum time the agents take to
go to their new positions. Such value is found by determining the least maximum
agent traveling time between its current position and its target position. For each
agent, i, the traveling time to the target position j is given by di j/vi. By the previous
definition, the minimum traveling time of the i− 1 agents to the target positions
in set S \ { j} is given by f (i−1,S\{ j}). From the above, the minimum traveling
time of all i agents to the target positions in S they are assigned to, given that agent i
travels at velocity vi, without agent collisions, is obtained by examining all possible
target locations j ∈ S (see Fig. 1 ).

The dynamic programming recursion is then defined as
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Fig. 1 Dynamic Programming Recursion for an example with N = 5 and stage i = 4 .

f (i,S) = min
j∈S

{
di j/vi∨ f (i−1,S\{ j})

}
, (2)

where X ∨Y denotes the maximum between X and Y .
The initial conditions for the above recursion are provided by

f (1,S) = min
j∈S

{
d1 j/v1

}
, ∀S⊆ J, (3)

and all other states are initialized as not yet computed.
Hence, the optimal value for the performance measure, that is the minimum trav-

eling time needed for all N agents to assume their new positions in J, is given by

f (N,J). (4)

3.2 Considering collision avoidance and velocities selection

Recall function c for which c(i, j,vi,a,b,va) takes value 1 if there is collision be-
tween pair of agents i and a traveling to positions j and b with velocities vi and va,
respectively, and takes value 0 otherwise. To analyze if the agent traveling through
a newly defined trajectory collides with any agent traveling through previously de-
termined trajectories, we define a recursive function. This function checks the satis-
faction of the collision condition, given by equation (1), in turn, between the agent
which had the trajectory defined last and each of the agents for which trajectory
decisions have already been made. We note that by trajectory we understand not
only the path between the initial and final positions but also a timing law and an
implicitly defined velocity.

Consider that we are in state (i,S) and that we are assigning agent i to target j.
Further let vi−1 be the traveling velocity for agent i− 1. Since we are solving state
(i,S) we need state (i−1,S\{ j}), which has already been computed. (If this is not
the case, then we must compute it first.) In order to find out if this new assignment
is possible, we need to check if at any point in time agent i, traveling with veloc-
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ity vi, will collide with any of the agents 1,2, . . . , i− 1 for which we have already
determined the target assignment and traveling velocities.

Let us define a recursive function C (i,vi, j,k,V,S) that assumes the value one
if a collision occurs between agent i traveling with velocity vi to j and any of the
agents 1,2, . . .k , with k < i, traveling to their targets, in set S, with their respective
velocities V = [v1v2 . . .vk] and assumes the value zero if no such collisions occurs.
This function works in the following way (see Fig. 2):

1. first it verifies c(i,vi, j,k,vk,B j), that is, it verifies if there is collision between
trajectory i−→ j at velocity vi and trajectory k −→B j at velocity vk, where B j
is the optimal target for agent k when targets in set S\{ j} are available for agents
1,2, . . . ,k. If this is the case it returns the value 1.

2. Otherwise, if they do not collide, it verifies if trajectory i −→ j at velocity vi
collides with any of the remaining agents. That is, it calls the collision function
C (i,vi, j,k−1,V ′,S′), where S′ = S\{B j} and V = [V ′vk]

Fig. 2 Collision recursion.

The collision recursion is therefore written as:

C (i,vi, j,k,V,S) =
{

c(i,vi, j,k,vk,B j)∨C (i,vi, j,k−1,V ′,S′)
}

(5)

where B j = Best j(k,V ′,S′), V = [V ′ vk], S′ = S\{ j}
The initial conditions for recursion (5) are provided by

C (i,vi, j,1,v1,{k}) = {c(i,vi, j,1,v1,k)} ,

∀i ∈ I;∀ j,k ∈ J with j 6= k;∀vi,v1 ∈ ϒ . All other states are initialized as not yet
computed.

The dynamic programming recursion for the minimal time switching problem
with collision avoidance and velocities selection is then
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f (i,V,S) = min
j∈S

{
d(i, j)/vi∨ f (i−1,V ′,S′)∨M ∗C (i,vi, j, i−1,V ′,S′)

}
.

where V = [V ′vi], S′ = S\{ j}, and C is the collision function.
The initial conditions are given by

f (1,v1,{ j}) = {d(1, j)/v1} ,∀ j ∈ J and ∀v1 ∈ϒ .

All other states being initialized as not computed (∞).
To determine the optimal value for our problem we have compute

min
all N-tuples V

f (N,V,J)

.

4 Computational implementation

The DP procedure we have implemented exploits the recursive nature of the DP
formulation by using a backward-forward procedure. Although a pure forward Dy-
namic Programming (DP) algorithm can be easily derived from the DP recursion,
equations (2) and (6), such implementation would result in considerable waste of
computational effort since, generally, complete computation of the state space is not
required. Furthermore, since the computation of a state requires information con-
tained in other states, rapid access to state information should be seek.

The main advantage of the backward-forward procedure implemented is that the
exploration of the state space graph, i.e. the solution space, is based upon the part of
the graph which has already been explored. Thus, states which are not feasible for
the problem are not computed, since only states which are needed for the computa-
tion of a solution are considered. The algorithm is dynamic as it detects the needs
of the particular problem and behaves accordingly.

States at stage 1 are either nonexistent or initialized as given in equation (6). The
DP recursion, equation (2), is then implemented in a backward-forward recursive
way. It starts from the final states (N,V,J) and while moving backward visits, with-
out computing, possible states until a state already computed is reached. Initially,
only states in stage 1, initialized by equation (6) are already computed. Then, the
procedure is performed in reverse order, i.e. starting from the state last identified in
the backward process, it goes forward through computed states until a state (i,V ′,S′)
is found which has not yet been computed. At this point, again it goes backward
until a computed state is reached. This procedure is repeated until the final states
(N,V,J) for all V are reached with a value that cannot be improved by any other
alternative solution. From these we choose the minimum one. The main advantage
of this backward-forward recursive algorithm is that only intermediate states needed
are visited and from these only the feasible ones that may yield a better solution are
computed.
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As said before, due to the recursive nature of equation (2), state computation
implies frequent access to other states. Recall that a state is represented by a number,
a sequence, and a set. Therefore, sequence operations like adding or removing an
element and set operations like searching, deletion, and insertion of a set element
must be performed efficiently.

Sequence representation and operation:

A sequence is a n-tuple with k possible values for each element, where n is the
number of agents and k the number of possible velocity values. Therefore, there are
kn possible sequences to be represented. If sequences are represented by integers
in the range 0 ∼ kn− 1 then it is easy to implement sequence operations such as
partitions. Thus, we represent a sequence as a numeral with n digits in the base
k. The partition of a sequence with l digits that we are interested on is the one
corresponding to the first l − 1 digits and the last digit. Such a partition can be
obtained by performing the integer division in the base k and taking the remainder
of such division.

Example: Consider a sequence of length n = 4 with k = 3 possible values v0,v1,
and v2. This is represented by numeral with n digits in the base k as

[v1,v0,v2,v1] is represented by1 0 2 13 = 1 ·33 +0 ·32 +2 ·31 +1 ·30 = 34

Partition of this sequence by the last element can be performed by integer division
in the base k and taking the remainder of such division,

V = 1 0 2 13 = 34 can be split into [V ′ vi] as follows

V ′ = 1 0 23 = 1 ·32 +2 ·30 = 11 = 34 DIV 3

and
vi = 13 = 1 = 34 MOD 3

Set representation and operation:

A computationally efficient way of storing and operating sets is the bit-vector rep-
resentation, also called the boolean array, whereby a computer word is used to keep
the information related to the elements of the set. In this representation a universal
set U = {1,2, . . . ,n} is considered. Any subset of U can be represented by a binary
string (a computer word) of length n in which the ith bit is set to 1 if i is an element
of the set, and set to 0 otherwise. So, there is a one-to-one correspondence between
all possible subsets of U (in total 2n) and all binary strings of length n. Since there is
also a one-to-one correspondence between binary strings and integers, the sets can
be efficiently stored and worked out simply as integer numbers. A major advantage
of such implementation is that the set operations, location, insertion or deletion of
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a set element can be performed by directly addressing the appropriate bit. For a de-
tailed discussion of this representation of sets see, for example, the book by Aho et
al. [1].

Example: Consider the Universal set U={1,2,3,4} of n = 4 elements. This set
and any of its susbsets can be represented by a binary string of length 4, or equiva-
lently its representation as an integer in the range 0 ∼ 15.

U = {1,2,3,4} is represented by 1111B = 15.

A subset A = {1,3} is represented by 0101B = 5

The flow of the algorithm is managed by Algorithm 1, which starts by labeling
all states (subproblems) as not yet computed, that is, it assigns to them a ∞ value.
Then, it initializes states in stage 1, that is subproblems involving 1 agent, as given
by equation (6). After that, it calls algorithms 2 with parameters (N,V,J). Algorithm
2, that implements recursion (2), calls algorithm 3 to check for collisions every time
it attempts to define one more agent-target allocation. This algorithm is used to find
out whether the newly established allocation satisfies the collision regarding all pre-
viously defined allocations or not, feeding the result back to algorithm 2. Algorithm
4, called after Algorithm 2 has finished,also implements a recursive function with
which the solution structure, i.e. agent-target allocation, is retrieved.
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Algorithm 1: DP for finding agent-target allocations and corresponding veloc-
ities.

Input: The agent set, locations and velocities, the
target set and locations, and the distance
function;

Compute the distance for every pair agent-target
(di j);

Label all states as not yet computed;
f (n,V,S) = ∞ ;
for all n = 1,2, . . . ,N, all V with n components, S ∈ J;

Initialize states at stage one as

f (1,V,{ j}) =
{

d1 j/v1
}

, ∀V ∈ϒ , j ∈ J.

Call Compute(N,V,J) for all sequences V with N
components;
Output: Solution performance;

Call Allocation(N,V∗,J);
Output: Agent targets and velocities;

Algorithm 2 is a recursive algorithm that computes the optimal solution cost, i.e.
it implements equation (2) . This function receives three arguments: the agents to be
allocated, their respective velocity values, and the set of target locations available to
them, all represented by integer numbers. It starts by checking whether the specific
state (i,V,S) has already been computed or not. If so, the program returns to the
point where the function was called, otherwise the state is computed. To compute
state (i,V,S), all possible target locations j∈ S that might lead to a better subproblem
solution are identified. The function is then called with arguments (i− 1,V ′,S′),
where V ′ = V DIV nvel (subsequence of v containing the first i− 1 elements and
S′ = S \{ j}, for every j such that allocating agent i to target j does not lead to any
collision with previously defined allocations. This condition is verified by algorithm
3.
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Algorithm 2: Recursive function: compute optimal performance.
Recursive Compute(i,V,S);
if f (i,V,S) 6= ∞ then

return f (i,V,S) to caller;
end
Set min = ∞;
for each j ∈ S′ do

S′ = S\{ j}; V ′ = V DIV nvel; vi = V MODnvel;
Call Collision(i,vi, j, i−1,V ′,S′)
if Col(i, j, i−1,S′) = 0 then

Call Compute(i−1,V ′,S′);
ti j = di j/vi;
aux = max( f (i−1,V ′,S′) , ti j);
if aux≤ min then

min = aux; best j = j;
end

end
end
Store information:target B j (i,V,S) = best j; value
f (i,V,S) = min;
Return: f (i,V,S);

Algorithm 3 is a recursive algorithm that checks the collision of a specific agent-
target allocation traveling at a specific velocity with the set of allocations and veloc-
ities previously established, i.e. it implements equation (5) . This function receives
six arguments: the newly defined agent-target allocation i −→ j and its traveling
velocity vi and the previously defined allocations and respective velocities to check
with, that is agents 1,2, . . . ,k, their velocities and their target locations S. It starts by
checking the collision condition, given by equation (1), for the allocation pair i−→ j
traveling at velocity vi and k−→B j traveling at velocity vk, where B j is the optimal
target for agent k when agents 1,2, . . . ,k are allocated to targets in S. If there is colli-
sion it returns 1; otherwise it calls itself with arguments (i,vi, j,k−1,V ′,S\{B j}).
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Algorithm 3: Recursive function: find if the trajectory of the allocation i→ j
at velocity vi collides with any of the existing allocations to the targets in S at
the specified velocities in V .

Recursive Collision(i,vi, j,k,V,S);

if Col (i,vi, j,k,V,S) 6= ∞ then
return Col (i,vi, j,k,V,S) to caller;

end
B j = B j(k,V,S);
if collision condition is not satisfied then

Col (i,vi, j,k,V,S) = 1;
return Col (i,vi, j,k,V,S) to caller;

end
S′ = S\{B j};
V ′ = V DIV nvel;
vk = V MODnvel;
Call Collision(i,vi, j,k−1,V ′,S′);

Store information: Col (i,vi, j,k,V,S) = 0;

Return: Col (i,vi, j,k,V,S);

Algorithm 4 is also a recursive algorithm and it backtracks through the informa-
tion stored while solving subproblems, in order to retrieve the solution structure,
i.e. the actual agent-target allocation and agent velocity. This algorithm works back-
ward from the final state (N,V ∗,J), corresponding to the optimal solution obtained,
and finds the partition by looking at the agent traveling velocity vN = V ∗MODnvel
and at the target stored for this state B j(N,V ∗,J), with which it can build the struc-
ture of the solution found. Algorithm 3 receives three arguments: the agents, their
traveling velocity, and the set of target locations. It starts by checking whether the
agent current locations set is empty. If so, the program returns to the point where the
function was called; Otherwise the backtrack information of the state is retrieved
and the other needed states evaluated.
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Algorithm 4: Recursive function: retrieve agent-target allocation and agents
velocity.

Recursive Allocation(i,V,S);

if S 6= ∅ then
vi = V MODmvel;
j =targetB j(i,V,S);
V loc(i) = vi;
Alloc(i) = j;
V ′ = V DIV nvel;
S′ = S\{ j};
CALL Allocation(i−1,V ′,S′);

end

Return: Alloc;

5 An Example

An example is given to show how agent-target allocations are influenced by im-
posing that no collisions are allowed both with a single fixed velocity value for all
agents and with the choice of agent velocities from 3 different possible values. In
this example we have decided to use di j as the Euclidian distance although any other
distance measure may have been used.

The separation constraints impose, at any point in time, the distance between any
two agent trajectories to be at least 15 points; otherwise it is considered that those
two agents collide.

Consider 4 agents, A, B, C, and D with random initial positions as given in Table
1 and four target positions 1, 2, 3, and 4 in a diamond formation as given in Table 2.

Location
xi yi

Agent A 35 185
Agent B 183 64
Agent C 348 349
Agent D 30 200

Table 1 Agents random initial location.

In Fig. 3 we give the graphical representation of the optimal agent-target allo-
cation found, when a single velocity value is considered and collisions are allowed
and no collisions are allowed, respectively.
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Location
xi yi

Target 1 95 258
Target 2 294 258
Target 3 195 169
Target 4 195 347

Table 2 Target locations, in diamond formation.

Collisions allowed

No collisions allowed

Fig. 3 Comparison of solutions with and without collision for the single velocity case.
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As it can be seen in the top part of the Fig. 3, i.e. when collisions are allowed,
the trajectory of agents A and D do not remain apart, by 15 points, at all times.
Therefore, when no collisions are enforced the agent-target allocation changes with
an increase in the time that it takes for all agents to assume their new positions.

In Fig. 4 we give the graphical representation of the optimal agent-target alloca-
tion found, when there are 3 possible velocity values to choose from and collisions
are allowed and no collisions are allowed, respectively.

Collisions allowed

No collisions allowed

Fig. 4 Comparison of the solutions with and without collision for the velocity choice case.
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As it can be seen in the top part of the Fig.4, i.e. when collisions are allowed, the
trajectory of agents A and D do not remain apart, by 15 points, at all times, since
the agents move at the same velocity. Therefore, when no collisions are enforced
although the agent-target allocation remains the same, agent A has it velocity de-
creased and therefore its trajectory no longer collides with the trajectory of agent D.
Furthermore, since agents A trajectory is smaller this can be done with no increase
in the time that it takes for all agents to assume their new positions.

6 Conclusion

We have developed an optimization algorithm to decide how to reorganize a forma-
tion of vehicles into another formation of different shape with collision avoidance
and agent traveling velocity choice, which is a relevant problem in cooperative con-
trol applications. The method proposed here should be seen as a component of a
framework for multiagent coordination/cooperation, which must necessarily include
other components such as a trajectory control component.

The algorithm proposed is based on a dynamic programming approach that is
very efficient for small dimensional problems. As explained before, the original
problem is solved by combining, in an efficient way, the solution to some subprob-
lems. The method efficiency improves with the number of times the subproblems
are reused, which obviously increases with the number of feasible solutions.

Moreover, the proposed methodology is very flexible, in the sense that it easily
allows for the inclusion of additional problem features, e.g. imposing geometric con-
straints on each agent or on the formation as a whole, using nonlinear trajectories,
among others.
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