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Summary 

Global warming is being intensively studied and temperature is considered one of the 

most important abiotic stress factors. The rocky intertidal,  one of the most thermally 

complex environments on Earth, is inhabited by marine organisms which are 

periodically exposed to stressful terrestrial conditions during emersion. Therefore the 

intertidal is ideal to study the thermal response of organisms. Although this ecosystem 

harbours numerous microhabitats, the thermal variability between sun-exposed and 

shaded microhabitats has already been described. Our study uses robolimpets and 

thermal images to confirm that sun-exposed microhabitats are consistently hotter than 

shaded microhabitats. The mechanism that translates thermal stress into differential 

physiological and behavioral performance and fitness is poorly understood. Even 

though several physiologic studies have been carried out on intertidal organisms, most 

are not based on actual thermal data collected on the field. Our study aimed at 

studying the cardiac response and behavior of individuals from shaded and sun-

exposed microhabitats, using a realistic heat stress treatment (peaking at 40 °C). The 

difference on cardiac response between microhabitats was non-significant, although 

there was a higher proportion of individuals from shaded microhabitats having a 

cardiac failure than individuals from sun-exposed microhabitats. The behavior 

response showed a decrease on the proportion of individuals moving with the increase 

of temperature but an increase of the mushrooming behavior after being exposed to 

the maximum temperature. This highlights the importance of realistic studies to avoid 

under- or over-estimating the organism’s responses to thermal stress. 

 

Key words: Patella vulgata, thermal stress, cardiac activity, behavior, realistic studies. 
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Resumo 

O estudo do aquecimento global tem sido bastante aprofundado e a temperatura é 

considerada um dos stresses abióticos mais importantes. O intertidal rochoso, um dos 

ecossistemas mais complexos do planeta a nível térmico, é habitado por organismos 

que estão expostos periodicamente a condições terrestres stressantes durante a 

emersão. Daí o intertidal ser ideal para o estudo da resposta térmica dos organismos. 

Apesar deste ecossistema ter bastantes microhabitats, a variabilidade térmica entre os 

microhabitats expostos ao sol e os microhabitats na sombra já foi descrita. Este estudo 

usa robolapas e imagens térmicas para confirmar que os microhabitats expostos ao 

sol são mais quentes que os da sombra. O mecanismo que traduz o stress térmico a 

uma performance fisiológica e comportamental é pouco conhecido. Apesar de muitos 

estudos fisiológicos terem sido elaborados com organismos intertidais, a maioria não é 

baseada em dados térmicos recolhidos no campo. Este estudo tem como objetivo 

estudar a resposta cardíaca e comportamental de indivíduos de microhabitats 

expostos ao sol e microhabitats na sombra, usando um stress térmico realista (com 

um máximo de 40 °C). A diferença da resposta cardíaca entre microhabitats não foi 

significativa, no entanto uma maior proporção de indivíduos provenientes de 

microhabitats na sombra tiveram um falha cardíaca comparativamente aos 

provenientes de microhabitats expostos ao sol. A nível comportamental, se por um 

lado houve uma diminuição na proporção de indivíduos em movimento com o aumento 

da temperatura, por outro lado houve um aumento do comportamento de 

“mushrooming” após estarem expostos à temperatura máxima. Este estudo destaca a 

importância de estudos realistas de maneira a evitar a sub- ou sobre- estimação da 

resposta térmica dos organismos.    

 

 

 

Palavras-chaves: Patella vulgata, stress térmico, atividade cardíaca, comportamento, 

estudos realistas. 
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1. Introduction 

Earth has undergone many major climatic changes over the course of history, including 

glaciations and warm periods. However, over the past 250 years, there has been an 

anthropogenically-induced increase in the frequency of extreme climatic events 

worldwide, such as heat waves and storms (Coumou and Rahmstorf, 2012). The 

current rate of warming exceeds anything recorded over the past 10,000 years (Marcott 

et al., 2013) and has led to unprecedented sea level change and sea ice loss over the 

past several decades (IPCC, 2007). In the last three decades, 71% of the world’s 

coastlines have been significantly warming (Lima and Wethey, 2012). Climate change 

is currently considered one of the major threats upon biodiversity and the sustainability 

of both terrestrial and marine systems (Burrows et al., 2011; Sala et al., 2000). One of 

the main concerns is the ability of species to adapt to these rapid changes, especially 

since distribution shifts and extinctions have already been observed (IPCC, 2007). 

Many of the recent climate-change induced distribution shifts have been related to 

changes in the availability of specific thermal habitats (Helmuth et al., 2006; Bennie et 

al., 2008). Temperature is considered as one of the most important abiotic factor since 

it affects biological processes at all levels of biological organization (Pörtner et al., 

2006). For instance, thermal stress has been shown to cause a decrease in growth 

rates (Somero, 2002, 2010; Woodin et al., 2013) and aerobic capacity (Pörtner, 2010), 

a reduction in body size (Gardner et al., 2011), and an increase of oxygen consumption 

rates (Sinclair et al., 2006).  

A challenge faced by researchers nowadays is to determine which species are more 

vulnerable to climate change, and in particular to rising temperatures, in order to 

anticipate the ecological consequences of distribution changes. In this respect, 

knowledge on the physiological and behavioral responses of ectothermic species to 

heat stress is critical as their temperature is less independent from environmental 

conditions, and thus, they have higher probabilities of being affected. Extreme and 

highly heterogeneous ecosystems such as intertidal habitats are excellent and complex 

test bed systems since their inhabitants are periodically exposed to stressful abiotic 

factors (e.g. desiccation) during low tide. Therefore, it is not unreasonable to assume 

that they are already at or close to their thermal tolerance (Pincebourde et al., 2008). 

Intertidal species are thus expected to respond rapidly to climate changes and could 

provide information on how other species will respond to the future climate. Due to the 

physical complexity of most rocky intertidal ecosystems, they harbor numerous 

microhabitats (Seabra et al., 2011; Lathlean and Minchinton, 2012). The 

http://www.nature.com/nclimate/journal/v2/n7/full/nclimate1452.html
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characterization of such microhabitats offers major opportunities to understand the 

mechanisms driving individual thermal stress. Recent studies by Seabra et al. (2011) 

and Lima et al. (2015) focused on the importance of solar exposition on the patterns of 

intertidal thermal stress. Seabra et al. (2011) concluded that differences in temperature 

between sun-exposed and shaded microhabitats were larger than the variability 

associated with seasons or even with shore level. Lima et al. (2015) took a step further, 

and showed that these thermal differences imply differential physiological performance 

in the limpet Patella vulgata – individuals collected from sun-exposed microhabitats 

were consistently more stressed than those ones collected from shaded microhabitats. 

These differences were attributed to a combination of factors, from the metabolic cost 

of replacing heat damaged proteins to the heat-shock response itself.  

Several studies have been performed relating the physiological response of intertidal 

organisms to thermal stress. Besides microhabitat (e.g., Gedan et al. 2011), other 

environmental factors such as seasonality (e.g., Chapperon et al. submitted) and the 

cumulative stress caused by increasing water and air temperature (Seabra et al., in 

press) have also been demonstrated to impact physiology at different levels. 

Additionally, species-specific traits, such as physiological tolerance, (e.g., Dong et al., 

2008), mobility (Huey et al., 1989; Chapperon and Seuront, 2011b; Marshall et al., 

2013), behavior (e.g., Chapperon and Seuront, 2011a) or the ability to acclimate (e.g., 

Meng et al., 2009) have also been shown to modulate the thermal response. Although 

these studies have been informative, the conditions simulated in the laboratory were in 

most cases,  not very realistic (e.g., warming was frequently simulated in water baths 

instead of using infra-red heating, the thermal ramps lacked realism, but see Seabra et 

al., in press). Consequently, physiological responses to climatic variation and change 

may still be far from understood.  

The aim of this study was to determine if Patella vulgata collected from sun-exposed 

and shaded microhabitats showed different capacities to cope with thermal stress. We 

hypothesized that individuals from sun-exposed are able to acclimate during thermal 

stress. We used a four year long dataset on high resolution body temperature data 

collected with robolimpets (Lima and Wethey, 2009) over the majority of the distribution 

range of Patella vulgata to obtain realistic temperature profiles for our experiments. 

Additionally, robolimpets together with thermal imaging, which has been demonstrated 

to be a powerful method for determining the body temperature of intertidal organisms 

(Lima and Wethey, 2009; Lathlean and Seuront, 2014), were used for the 

characterization of microhabitats in the field. Both methods have been proved useful in 
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identifying microhabitat thermal heterogeneity to determine individual thermal stress 

(Lima and Wethey, 2009; Lathlean and Seuront, 2014). Based on high resolution 

temperature data from robolimpets we simulated a low tide during one of the hottest 

days recorded (i.e., corresponding to the 95 percentile of the whole dataset). We used 

heart failure as a proxy for thermal stress and we monitored behavior during the 

heating experiment. Specifically, we expected that, in comparison with individuals from 

shaded microhabitats, animals from sun-exposed microhabitats would show less 

cardiac failure and less changes in behavior in face of thermal stress. We expect that 

the present work will present both a better understanding of the thermal characteristics 

of microhabitats and of the stress mechanisms that drive ecological changes at the 

individual level. 

 

2. Materials and Methods 

2.1. Field measurements of P. vulgata body temperatures 

To characterize the thermal history of Patella vulgata in situ in both microhabitats, a 

total of 4 robolimpets (two per microhabitat) (Lima and Wethey, 2009) were deployed 

on the rocky shore of Le Dellec, Plouzané (48°21’09’’N, 4°34’01’’W) for a total of 21 

days, during May 2015. Robolimpets consist of a lithium battery connected to a 

reprogrammed microchip that can measure temperature and store data (iButton 

DS1922L, Dallas semiconductor). They are inserted into a Patella spp. shell and 

isolated from the seawater with a plastic resin. There are two seawater-corrosion-

resistant external electric contacts  made of constantan that allow to program and 

collect data without opening the robolimpet (Lima and Wethey, 2009). Robolimpets 

were deployed in sun exposed (South facing) and shaded (North-facing) rock walls to 

capture the temperature differences associated with differences in solar exposure 

between these two microhabitats. A quick setting resin (Z-spar, Kop-Coat Inc., 

Pittsburgh, Pennsylvania, USA) was used to attach the loggers to the rock.  

Robolimpets were programmed in the field using an USB cable to connect the device 

to a laptop. They were programmed to record temperatures with a 30 minute interval 

and a resolution of 0.0625 °C. On each microhabitat, data from both robolimpet 

replicates was averaged. Since our study focused on emersion temperature profiles, all 

data except for the diurnal low tide was rejected from further analysis. The compilation 

of the temperature profiles of the diurnal low tide allowed us to calculate the maximum 
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temperature, the cooling and heating rates as well as the daily cumulative heat for this 

rocky shore. 

For comparison purposes, thermal pictures of individuals from both microhabitats were 

taken with a thermal camera (Optris PI 200) during midday low tide of the 19 of March 

and 8 and 12 of April. The thermal sensitivity of the thermal camera is 0.2 °C at 30 °C, 

and the temperature measurement accuracy is 2% or 2 °C, whichever is greater. 

Emissivity value considered was 0.95 (Chapperon, personal comm.). Data of each day 

was pooled in order to measure the average of individual’s body temperature for each 

microhabitat.  

2.2. Collection of individuals 
A week prior to experiments, 48 individuals of Patella vulgata with maximum length of 

30-35cm were collected from sun exposed (n=24) and shaded (n=24) microhabitats at 

Le Dellec, brought back to the laboratory within an hour and then labeled and placed 

into the experimental aquarium. Each experiment lasted three days and was repeated 

once in order to verify results and minimize technical errors, so in total 96 individuals 

were collected (48 from each microhabitat). 

2.3. Experimental Set-up 

The aquarium system consisted of an open-water circuit for which seawater was 

provided by a pumping station (Sainte-Anne de Portzic) nearby the laboratory and field 

site (< 4 km). A custom-made controller using the Arduino system, which is an open-

source electronic prototyping platform. This allowed us to program and simulate field 

conditions through the control of temperature (by using IR lights), tides and visible light. 

Temperature was controlled using robolimpets as feedback sensors, ensuring that the 

thermal conditions mimicked those registered in the field. Acclimation lasted three 

days, and consisted of a sequence of high and low tides, also mimicking the natural 

tidal cycle. Temperatures during acclimation were kept at low-stress levels:15 ºC 

during high tide and 16 ºC during low tide, which match the average minimum 

temperatures normally recorded at this rocky shore (Chapperon, personal comm.). The 

experiment consisted of exposing limpets during emersion to a single stress event of 

40 ºC with realistic heating and cooling rates (6 and 10 ºC/h, respectively), determined 

by averaging 4 year data collected by robolimpets throughout the distributional range of 

P. vulgata (Lima and Wethey, 2009), followed by one day of recover.  

2.4. Heart rate measurements 
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The day prior to the simulated thermal stress, sixteen of the twenty four individuals 

were fitted with an infra-red (IR) heart beat sensor in order to examine their 

physiological response to heat stress during the following three days of experiment. 

The heart rate measurements were done using a modified version of the system 

described by Burnett et al. (2013). The system is completely automatic and features a 

series of IR sensors, a signal amplifying circuit, a real-time clock, and is able to 

autonomously log up to eight channels simultaneously.  Each individual’s heart was 

logged at a frequency of 1/20 Hz for one minute every 30 minutes. The IR sensors 

combine an IR emitter and an IR detector. To record the heart rate of a limpet, the 

sensor is glued with cyanoacrilate cement to the exoskeleton, at a approximate location 

over the animal’s heart. In this position, the IR light can pass through the shell and 

illuminate the heart and nearby circulatory vessels. The IR light reflections vary with the 

changes in the shape or volume of the circulatory structures during a heart contraction 

and that information is received by the IR detector and processed by the software.  

All recordings with undetectable heartbeats were discarded. Thus, we kept 27% of 

individuals from sun-exposed and 16% from shaded microhabitats.  Because each 

animal has its characteristic basal frequency (i.e., the frequency when at rest and 

without the interference of external stressing factors), absolute differences among the 

cardiac frequencies of several animals do not necessarily mean that their metabolic 

performance is different. To overcome this issue, cardiac frequencies recorded 

throughout the experiment were normalized separately for each individual. This was 

done by dividing each individual’s cardiac frequency by its average heartbeat 

frequency during the last day of acclimation. 

Using only the data from the simulated thermal stress event, the normal logarithm (ln) 

transformation of the normalized heart rate was plotted against the inversion of 

temperature in Kelvin, in order to determine the Arrhenius break temperature (ABT), 

which is the thermal limit of cardiac function (Stillman and Somero 1996). For 

individuals for which this limit was reached, the ABT was calculated using regression 

analyses to generate the best fit line on both sides of a putative break point. Some 

individuals withstand the entire thermal stress treatment without showing any evidence 

for cardiac failure or loss of performance (thus, for these animals ABTs could not be 

computed). We computed the percentage of individuals that did not show signals of 

cardiac failure and used that value as an indication of the overall resilience of the 

sampled pool.  
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2.5. Behavior analyses 

During the simulated thermal stress event of all experiments, behavior of limpets was 

recorded using a GoPro Hero 3+. The behavior was classified into two categories: 

immobile and mobile. The mobile category was subdivided into three sub-categories: 

displacement- when the limpets moved from one position to another; rotation - when 

limpet rotated; and mushrooming behavior – when limpets raised its shell repeatedly. 

Individuals that were out of the camera’s view were not accounted for. The proportion 

of individuals showing the three different types of behaviors was calculated for three 

phases of the experiment: before the temperature peak, at the peak (40 ºC), and after 

the peak. 

2.6. Statistical analyses 

Data from robolimpets and thermal imaging was analyzed for each microhabitat, the 

average and standard error were calculated and plotted.  

The effects of temperature on heart rate were assessed in two different ways: (1) a 

one-way ANOVA was performed using the values of ABT of individuals from both 

microhabitats to determine if they were statistically different; and (2) a Chi-square test 

was performed using the proportion of the occurrence of ABTs to determine if there 

were differences in the cardiac response of individuals from different microhabitats.  

The behavior data was assessed for each microhabitat distinguishing the three 

different types of behavior: rotation, displacement and mushrooming. The proportion of 

individuals performing each behavior in each step of the temperature profile (before the 

temperature peak, on the temperature peak and after) was plotted. 

All statistical analyses were carried out using Microsoft Office Excel 2007. 

 

3. Results 

3.1. Robolimpets 

Analysis of the temperature data collected from the two robolimpets deployed for 21 

days at Le Dellec in each microhabitat allowed us to distinguish them according to their 

solar exposure. 
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The thermal profile of both microhabitats was characterized by plotting the daily 

cumulative heat (Fig. 1.a), the maximum temperature (Fig. 1.b), heating rates (Fig. 1.c) 

and cooling rates (Fig. 1. d). All these analyses showed that sun-exposed 

microhabitats are hotter and have higher heating and cooling rates than shaded 

microhabitats. The difference in maximum temperatures between microhabitats was 8 

ºC and the difference in daily cumulative heat between microhabitats was 55 ºC. The 

heating and cooling rates were substantially higher in sun-exposed microhabitats  

when compared with their shaded counterparts. Heating rates were four times higher 

and cooling rates were three times higher (Fig 1c and d).  
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Fig.1. Data from robolimpets in shaded (blue) and sun-exposed (red) microhabitats. (a) Daily cumulative heat of shaded 

(238.05 ± 7.71 ºC, mean ± SE) and sun-exposed (292.88 ± 12.69 ºC, mean ± SE); (b) Maximum temperature of shaded 

(15.09 ± 0.23 ºC, mean ± SE) and sun-exposed (22.65 ± 0.83 ºC, mean ± SE); (c) Heating rate of shaded (0.65 ± 0.04 

ºC/h, mean ± SE) and sun-exposed (2.63 ± 0.22 ºC/h, mean ± SE); (d) Cooling rate of shaded (0.80 ± 0.07 ºC/h, mean ± 

SE) and sun-exposed (2.73 ± 0.28 ºC/h, mean ± SE).   

 



FCUP 
Does thermal microhabitat variability modulate thermal stress responses?                                               

A study focusing on the physiology and behavior of Patella vulgata 

18 

 

3.2. Thermal images 

Thermal images of a total of 283 and 317 limpets from shaded and sun-exposed 

microhabitats, respectively, were taken in three different days in order to assess the 

body temperature of P. vulgata.  

Thermal imaging confirmed that sun-exposed microhabitats are hotter than shaded 

microhabitats. Temperature from individuals inhabiting sun-exposed microhabitats was, 

in average, 1.82 times higher than the body temperature of individuals living in shaded 

microhabitats (Fig.2).  

 

Fig.2. Body temperature obtaining from thermal images of individuals from shaded (blue) (27.46 ± 0.37 ºC, mean ± SE, 

n= 283) and sun-exposed (red) microhabitats (15.05 ± 0.27 ºC, mean ± SE, n= 317).  

3.3. Heart Beat measurements 

The cardiac activity of a total of 26 individuals from sun exposed microhabitats and 16 

individuals from shaded microhabitats was assessed.  

A total of six individuals from each microhabitat reached the ABT. The value of ABT in 

sun-exposed and shaded microhabitats was  29.4 and 27.6  ºC, respectively (Fig.3a), 

but they were not statistically different (p = 0.399, df = 11, ANOVA). The proportion of 

occurrence of ABT in shaded microhabitats was 20% higher than in sun-exposed 

microhabitats (p = 0.002, chi-square test) (Fig.3b). 
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Fig.3. Data obtained from the cardiac activity of individuals from shaded (blue) and sun-exposed (red) microhabitats 
during the simulated thermal stress. (a) Arrhenius break temperatures (ABT) of heart rates of individuals from shaded 

(27.60 ± 1.24 ºC, mean ± SE) and sun-exposed microhabitats (29.38 ± 0.94 ºC, mean ± SE) were not significantly 

different (ANOVA, P = 0.399, df = 11, n = 6 for each species); (b) Proportion of individuals reaching ABT from shaded 

(75.00 %, n=16) and sun-exposed microhabitats (53.8 %, n=26) were significantly different (Chi-square test, P = 0.002). 

 

3.4. Behavior 

After removing all individuals that were not present, a total of 26 individuals from 

shaded microhabitats and 19 from sun-exposed microhabitats were considered for the 

behavior analyses. 

While before the temperature peak the behavior was mostly displacement and a higher 

proportion of individuals from shaded microhabitats were active, on the peak and after 

the peak, all the individuals exclusively performed mushrooming. Individuals from sun-

exposed started to be more active after the peak than individuals from the shaded 

microhabitat (Fig.4 a-c).  
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Fig.4. Behavior of individuals from shaded (blue) and sun-exposed (red) microhabitats during three phases of the 

simulated thermal stress: Before (B), on the temperature peak (P) and after (A). (a) Proportion of individuals from 

shaded (B: 1.96 ± 0.86; P: 0.00 ± 0.00; A: 0.00 ± 0.00, mean ± SE) and sun-exposed microhabitats (B: 2.26 ± 0.67; P: 

0.00 ± 0.00; A: 0.00 ± 0.00, mean ± SE) performing rotation; (b) Proportion of individuals from shaded (B: 22.56 ± 6.15,; 

P: 0.00 ± 0.00; A: 0.00 ± 0.00, mean ± SE) and sun-exposed microhabitats (B: 18.19 ± 8.68; P: 0.00 ± 0.00; A: 0.00 ± 

0.00, mean ± SE) performing displacement; (c) Proportion of individuals from shaded (6.80 ± 4.40; P: 10.00 ± 5.96; A: 

9.64 ± 3.49, mean ± SE) and sun-exposed microhabitats (B: 3.57 ± 3.19; P: 6.67 ± 5.96; A: 14.44 ± 5.63, mean ± SE) 

performing mushrooming. 

4.  Discussion 

This study aimed at determining the ability of individuals from different microhabitats to 

cope with thermal stress. Using robolimpets and thermal imaging, both microhabitats 

were characterized showing that sun-exposed microhabitats are consistently hotter 

than shaded microhabitats. Although there were differences in the physiological 

(cardiac activity) response to acute stress by Patella vulgata originating from different 

habitats, there were no differences in the behavior. 
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Microhabitat variability in thermal stress 

Data from present work confirm that Patella vulgata experience different thermal 

regimes according to their position in the shore.  Observed temperatures in shaded and 

sun exposed microhabitats were different, especially regarding heating and cooling 

rates. Previous studies already showed differences in temperature from high to low 

shore as well as at the microhabitat level, between crevices and flat rocks. 

Furthermore, thermal stress experienced by organisms was shown to be higher in sun-

exposed than in shaded microhabitats (Stirling 1982, Tomanek and Somero 1999, 

Stillman and Somero 1996, Davenport and Davenport 2005, Stenseng et al. 2005, 

Nguyen et al. 2011, Prusina et al. 2014, Chapperon et al. submitted). The present data 

unequivocally demonstrate that the maximum temperature (a proxy for chronic stress), 

the daily cumulative heat (a proxy for the degree of acute stress) and the heating and 

cooling rates of sun exposed and shaded microhabitats, are consistently higher in sun 

exposed habitats. The observed differences are likely to be responsible for the higher 

expression of heat shock proteins by P. vulgata from sun-exposed microhabitats 

described for Atlantic coast of Europe (see Lima et al., 2015).  

Physiological response to thermal stress 

Experimental temperature profiles based on realistic heating and cooling rates allowed 

the determination of the proportion of individuals from different microhabitats that are 

able to cope with thermal stress.  

However, a significantly higher proportion of individuals from shaded microhabitats 

reached Arrhenius breaking point temperature (ABT), the value of ABT were not 

significantly different from individuals from sun-exposed microhabitats. Still, these 

results seem to indicate that sun-exposed individuals are more acclimated and 

therefore are likely to better cope with acute heat stress than individuals from shaded 

microhabitats. Since intertidal organisms are daily exposed to stressful conditions and 

consequently are close to their thermal limit, an increase of temperature can lead to 

high mortalities rates as reported before (see Harley, 2008). Furthermore, these results 

indicate a potential for acclimation what can also suggest that individuals from sun-

exposed microhabitats, which are already exposed to higher temperatures than 

individuals from shaded microhabitats, have the capacity to cope with an acute stress, 

as also have been studied ( Chapperon et al. submitted).  

Behavioral response to thermal stress 
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Short-term acclimation and variability in heat stress are likely to be translated in 

different behavioral patterns. We hypothesize that a behavior such as mushrooming 

(shell raising), which has an important role in evaporative cooling (Denny and Harley, 

2006) and in reducing thermal stress (Williams et al., 2005), should  be more frequent 

in individuals less acclimated to high temperatures. This behavior is considered a 

short-term and a high-risk strategy since when raising their shell organisms lose water 

and therefore may become unable to maintain adhesion to the rock surface (Williams 

et al., 2005). Individuals that need to perform this behavior are more likely to not 

survive in extreme events. 

Our results show that at the beginning of the experiment a higher proportion of 

individuals were moving around when the rock of the aquarium was still wet. At this 

point the temperature was not restricting their behavior. With the increase of 

temperature and consequently the increase of heart rate all individuals changed their 

behavior. A low proportion of moving individuals on the temperature peak and after the 

peak is possibly due to some of them reaching the ABT. When the temperature 

reached its maximum, all individuals changed their behavior to mushrooming. Since a 

40ºC day is not common at the location where individuals were collected, it is not 

surprising that a high proportion of individuals would perform this behavior. There was 

a higher proportion of individuals from sun-exposed microhabitats performing 

mushrooming, although its significance cannot be assessed.   

Further prospects 

With ongoing climate change there is a major concern to understand the thermal stress 

mechanisms. The importance of performing realistic studies depends on having 

confidence to really understand these mechanisms. Therefore, studies that are not 

realistic can be misleading and may provide erroneous results. Even though our study 

used realistic heating and cooling rates, we acknowledge that the way we computed 

them (i.e., pooling temperature data from most of the distribution range of the species) 

may not be the most appropriated for the population that was used in the experimental 

trials. This study would undoubtedly benefit from temporal, and, especially, from spatial 

replication. It would be interesting to compare the responses of populations from the 

middle of the distribution range with those from the range edges, especially since 

recent studies have found that this species displays regional variations in thermal 

stress response (measured via Hsp expression, see Lima et al., 2015). Other 
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molecular tools, such as transcriptomic analysis could also help us to understand the 

mechanisms driving the thermal response of this species. 
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