

INFLUÊNCIA DE CICLOS DE EMBEBIÇÃO E SECAGEM DE SOLUÇÕES AQUOSAS SALINAS EM ELEMENTOS MULTICAMADA

ANA PATRÍCIA RESENDE ALBUQUERQUE

Dissertação submetida para satisfação parcial dos requisitos do grau de MESTRE EM ENGENHARIA CIVIL — ESPECIALIZAÇÃO EM CONSTRUÇÕES

Orientadora: Professora Doutora Ana Sofia Moreira dos Santos Guimarães Teixeira

Coorientador: Doutor João Manuel do Paço Quesado Delgado

JUNHO DE 2016

MESTRADO INTEGRADO EM ENGENHARIA CIVIL 2012/2013

DEPARTAMENTO DE ENGENHARIA CIVIL

Tel. +351-22-508 1901

Fax +351-22-508 1446

⊠ <u>miec@fe.up.pt</u>

Editado por

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Rua Dr. Roberto Frias

4200-465 PORTO

Portugal

Tel. +351-22-508 1400

Fax +351-22-508 1440

☑ <u>feup@fe.up.pt</u>

http://www.fe.up.pt

Reproduções parciais deste documento serão autorizadas na condição que seja mencionado o Autor e feita referência a *Mestrado Integrado em Engenharia Civil - 2015/2016 -Departamento de Engenharia Civil, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal, 2016.*

As opiniões e informações incluídas neste documento representam unicamente o ponto de vista do respetivo Autor, não podendo o Editor aceitar qualquer responsabilidade legal ou outra em relação a erros ou omissões que possam existir.

Este documento foi produzido a partir de versão eletrónica fornecida pelo respetivo Autor.

Aos meus Pais

"Engineering stimulates the mind. Kids get bored easily. They have got to get out and get their hands dirty: make things, dismantle things, fix things. When the schools can offer that, you'll have an engineer for life."

Bruce Dickinson

AGRADECIMENTOS

Ao terminar esta dissertação quero manifestar o meu sincero agradecimento a todos os que de alguma forma contribuíram para a sua concretização, não podendo deixar de salientar as pessoas que tiveram um papel primordial na sua realização:

Á Professora Doutora Ana Sofia Guimarães, orientadora deste projeto, pela oportunidade oferecida, pela amabilidade, disponibilidade, contínuo incentivo e acompanhamento desde o início do desenvolvimento desta dissertação e sem a qual a mesma não teria sido concretizada.

Ao Doutor João Delgado, pela coorientação, simpatia e disponibilidade demonstradas.

À Engenheira Joana Maia pela simpatia, companhia e apoio prestado durante a fase experimental deste trabalho.

Aos meus pais pelo exemplo, educação e transmissão de valores, assim como pelo o apoio total e incondicional em todas as etapas da minha vida.

À Inês e à Filipa pelas vivências de irmãs que não teria de outro modo.

Ao Francisco, o mais pequenino e adorável apoiante.

À Sara, Mafalda e Mariama, pelo apoio e bons momentos de uma vida.

À minha família pelo apoio, amor e carinho que sempre me deram.

RESUMO

O recurso a materiais porosos na construção, aliado ao efeito da humidade ascensional e a presença de sais solúveis é um dos grandes problemas na conservação. A água por si só pode causar danos a nível estético, mas quando combinada com sais solúveis pode comprometer os edifícios quer a nível de conforto e das condições de habitabilidade, como a nível do seu comportamento estrutural. Este processo ocorre devido à migração de iões de sais solúveis dissolvidos na água, para a estrutura porosa dos materiais porosos. Após a evaporação da água, estes iões de sais permanecerem nos poros, cristalizando e fraturando os materiais depois de vários ciclos de cristalização/dissolução.

Este trabalho teve como objetivo estudar o efeito destes ciclos nos materiais através de ensaios de capilaridade por absorção e ensaio de secagem, de dois sais solúveis. Os provetes de tijolo utilizados neste trabalho, do tipo monolítico ou com interface, foram previamente sujeitos a um ensaio de absorção de água, solução saturada de sulfato de sódio e solução saturada de cloreto de potássio. Os provetes monolíticos e a água foram usados como referência, perfazendo um total de doze combinações estudadas.

Esta dissertação permitiu tirar conclusões sobre a influência dos ciclos de cristalização/dissolução no coeficiente de capilaridade, no índice de secagem e na degradação dos materiais.

PALAVRAS-CHAVE: humidade ascensional, sais solúveis, materiais porosos, absorção capilar, secagem.

ABSTRACT

Due to the use of porous materials in construction, the combined effect of rising damp with soluble salts is one major problem in the industry. Rising damp alone can cause aesthetical problems, but when allied with soluble salts it can degrade the health conditions inside the buildings and in extreme situations may endanger the structural performance of the building. This phenomenon is caused by the migration of the salt ions dissolved in water into the porous network of the construction materials in the building (walls). After the water evaporates, the salt ions remain in the porous network, creating great pressure in the pores and fracturing the materials after several cycles of crystallization/dissolution.

This study is aimed to register the results of this cycles in the materials, and included the capillarity absorption and drying tests. The red brick samples used were previously submitted to capillarity absorption tests with two different saturated solutions (sodium sulphate and potassium chloride). These samples also included the added variable of three different interfaces in their middle: air space, perfect contact and hydraulic continuity (using a mortar layer), all common interfaces in construction. Both the monolithic sample and the pure water were used as reference, fulfilling a total of twelve different combinations tests.

KEYWORDS: rising damp, soluble salts, porous materials, capillary absorption, drying.

ÍNDICE GERAL

	i
Resumo	iii
ABSTRACT	V

1. INTRODUÇÃO ______1

1.1. ENQUADRAMENTO	1	1
1.2. ÂMBITO E OBJETIVOS	1	1
1.3. ESTRUTURA DA DISSERTAÇÃO	2	2

2. A AÇÃO DOS SAIS SOLÚVEIS E O FENÓMENO DA INTERFACE

2.1. INTRODUÇÃO
2.2. OS SAIS E OS MATERIAIS POROSOS
2.2.1. Soluções aquosas salinas
2.2.2. Solubilidade
2.2.3. Cristalização
2.2.4. Mecanismos de degradação
2.2.5. Porosidade e Higroscopicidade
2.3. TRANSPORTE DE HUMIDADE E SECAGEM
2.3.1. Transporte de água na fase líquida 12
2.3.2. Transporte de água na fase de vapor 15
2.3.3. Secagem
2.4. A DEGRADAÇÃO POR SAIS SOLÚVEIS
2.5. ANÁLISE DO FENÓMENO DE INTERFACE
2.5.1. introdução
2.5.2. Tipos de interface
2.5.3. Contacto hidráulico
2.5.4. Contacto Perfeito
2.5.5. Espaço de ar entre camadas
2.6. SÍNTESE DO CAPÍTULO

3. EFEITO DA ABSORÇÃO DE SOLUÇÕES AQUOSAS SALINAS EM ELEMENTOS COM MÚLTIPLAS CAMADAS – PRIMEIRO CICLO DE REABSORÇÃO _____27

3.1. INTRODUÇÃO	27
3.2. PROVETES E MATERIAIS UTILIZADOS	27
3.2.1. Provetes	27
3.2.2. Materiais	28
3.3. Soluções	30
3.3.1. Soluções aquosas salinas utilizadas	30
3.3.2. Preparação das soluções aquosas salinas	30
3.4. ENSAIO DE ABSORÇÃO POR CAPILARIDADE	32
3.4.1. Procedimento	32
3.4.2. Apresentação e análise dos resultados obtidos	33
3.4.2.1. Efeito das soluções aquosas salinas	33
3.4.2.2. Cálculo e análise dos coeficientes de capilaridade por absorção – Primeiro ciclo	de reabsorção 34
3.4.2.3. Determinação do fluxo máximo transmitido - FLUMAX	46
3.5. SÍNTESE DO CAPÍTULO	57

4. EFEITO DE SOLUÇÕES AQUOSAS SALINAS NA SECAGEM DE ELEMENTOS COM MÚLTIPLAS CAMADAS ... 60

4.1. INTRODUÇÃO	60
4.2. PROCEDIMENTO ADOTADO	60
4.3. APRESENTAÇÃO E ANÁLISE DOS RESULTADOS	61
4.3.1. Apresentação e análise dos resultados obtidos	61
4.3.1.1. Curva de Secagem e Índice de Secagem	61
4.3.1.2. Provetes monolíticos	63
4.3.1.3. Provetes espaço de ar	67
4.3.1.3. Provetes pasta de contacto	71
4.3.1.4. Provetes contacto perfeito	75
4.3.2. Comparação de resultados entre provetes monolíticos e provetes com interface	78
4.4. SÍNTESE DO CAPÍTULO	79

5. EFEITO DA ABSORÇÃO DE SOLUÇÕES AQUOSAS SALINAS EM DE ELEMENTOS COM MÚLTIPLAS CAMADAS – SEGUNDO CICLO DE REABSORÇÃO 80

5.1. INTRODUÇÃO	80
5.2. ENSAIO DE ABSORÇÃO POR CAPILARIDADE	80
5.2.1. Procedimento	80
5.2.2. Apresentação e análise dos resultados obtidos	81
5.2.2.1. Efeito das soluções aquosas salinas – Segundo ciclo de reabsorção	81
5.2.2.2. Cálculo e análise dos coeficientes de capilaridade por absorção – Segundo ciclo de reabso	orção 82
5.3. SÍNTESE DO CAPÍTULO	. 107

6. CONCLUSÃO 110 6.1. Considerações finais 110 6.2. DESENVOLVIMENTOS FUTUROS 111 6.3. Publicações realizadas no Âmbito desta dissertação 111

ANEXO 1	114
ANEXO 2	128
ANEXO 3	146
ANEXO 4	154
ANEXO 5	173
ANEXO 6	191
ANEXO 7	

ÍNDICE DE FIGURAS

Fig. 2.1 - Dissolução do composto iónico NaCl em água, adaptado [2] 4
Fig. 2.2 - Curvas de solubilidade de alguns compostos iónicos, adaptado [2] 5
Fig. 2.3 - Cristalização de uma solução supersaturada de acetato de sódio. A solução da esquerda formou-se após a dissolução de 170g de sal em 100mL de água, a 100°C, e deixou-se arrefecer até 20°C. Como a solubilidade do acetato de sódio em água, a 20°C, é de 46g por 100mL de água, a solução é supersaturada. A adição de cristais de acetato de sódio provoca a cristalização do excesso de soluto na solução, adaptado [2]
Fig. 2.4 - Evolução da concentração de uma solução supersaturada até à saturação, adaptado [4] 7
Fig. 2.5 - Estados de estabilização, adaptado [4] 8
Fig. 2.6 - Porosidade Aberta (esquerda) e Porosidade Fechada (Direita) [8]
Fig. 2.7 - Comportamento Higroscópico de materiais de construção em função da humidade relativa [8]
Fig. 2.8 – Higroscopicidade [8]
Fig. 2.9 - Transporte de água por capilaridade [8] 12
Fig. 2.10 - Pressão capilar num tubo cilíndrico, adaptado [1] 13
Fig. 2.11 - Ângulos de contato para materiais hidrófilos e hidrófugos [9] 13
Fig. 2.12 - Ensaio de Absorção [1]14
Fig. 2.13 - Curva absorção por capilaridade típica de um material poroso, adaptado [11] 14
Fig. 2.14 - Ensaio de permeabilidade ao vapor de água, método da tina húmida, adaptado [11] 16
Fig. 2.15 - Secagem unidirecional de materiais porosos, adaptado [1] 17
Fig. 2.16 - Curva típica de um material poroso, adaptado [1] 18
Fig. 2.17 – Exemplos de diferentes padrões de degradação por sais em edifícios [1] 19
Fig. 2.18 - Degradação por ação dos sais, adaptado [1] 20
Fig. 2.19 -Tipos de Interface: a) Contacto hidráulico; b) Contacto Perfeito; c) Espaço de ar 21
Fig. 2.20 - Princípio de cálculo da relação R(Pc), adaptado [18] 22
Fig. 2.21 – Influência da interface de contacto hidráulico real na absorção de água por capilaridade, adaptado [19]
Fig. 2.22 - Representação de provetes fraturados (a) e cortados (b), adaptado [3] 24
Fig. 2. 23 - Princípio de cálculo da relação S(φ), adaptado [18]25
Fig. 3.1 - Provetes ensaiados, adaptado [3]

Fig. 3.2 - Apoio de base de polietileno e pioneses	29
Fig. 3.3 - Sensor de temperatura e HR	29

Fig. 3.4 - Curva de solubilidade de KCl e Na2SO4, [3]
Fig. 3.5 - Preparação das soluções
Fig. 3.6 - Combinações Solução vs Interface, adaptado [3] 32
Fig. 3.7 - Diferença de massa seca (M0) dos provetes imersos em água, solução saturada de sulfato de sódio (Na2SO4) e solução saturada de cloreto de potássio (KCI), respetivamente
Fig. 3.8 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes monolíticos parcialmente imersos em água
Fig. 3.9 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes monolíticos parcialmente imersos em solução saturada de Na ₂ SO ₄
Fig. 3.10 - Provetes monolíticos imersos em solução saturada de sulfato de sódio, antes do início do ensaio de absorção
Fig. 3.11 - Placas de Cristais de Na ₂ SO ₄ libertadas durante o ensaio
Fig. 3.12 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes monolíticos parcialmente imersos em solução saturada de KCI
Fig. 3.13 - Provetes monolíticos imersos em solução saturada de cloreto de potássio, antes do início do ensaio de absorção
Fig. 3.14 - Coeficientes de capilaridade para provetes monolíticos, no primeiro ciclo de reabsorção. 39
Fig. 3.15 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes espaço de ar parcialmente imersos em água
Fig. 3.16 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes pasta de contacto parcialmente imersos em água
Fig. 3.17 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes contacto perfeito parcialmente imersos em água
Fig. 3.18 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes espaço de ar parcialmente imersos em solução saturada de Na ₂ SO ₄
Fig. 3.19 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes pasta de contacto parcialmente imersos em solução saturada de Na ₂ SO ₄
Fig. 3.20 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes contacto perfeito parcialmente imersos em solução saturada de Na ₂ SO ₄
Fig. 3.21 - Provetes de contacto perfeito, imersos em solução saturada de sulfato de sódio, no final do ciclo de absorção (2014) [3]
Fig. 3.22 - Provetes de contacto perfeito, imersos em solução saturada de sulfato de sódio, no final do primeiro ciclo de reabsorção (2015)
Fig. 3.23 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes espaço de ar parcialmente imersos em solução saturada de KCI
Fig. 3.24 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes pasta de contacto parcialmente imersos em solução saturada de KCI

Fig. 3.25 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes contacto perfeito parcialmente imersos em solução saturada de KCI
Fig. 3.26 - Provetes espaço de ar, em contacto com solução saturada de cloreto de potássio, no final do ciclo de absorção (2014) [3]
Fig. 3.27 - Provetes espaço de ar, em contacto com solução saturada de cloreto de potássio, no final do ciclo de reabsorção (2015)
Fig. 3.28 - Curvas de absorção por capilaridade, em função do tempo, dos provetes espaço de ar parcialmente imersos em água
Fig. 3.29 - Curvas de absorção por capilaridade, em função do tempo, dos provetes espaço de ar parcialmente imersos em Na ₂ SO ₄
Fig. 3.30 - Provete EA2.2 no final do primeiro ciclo de reabsorção
Fig. 3.31 - Ocupação da camada de espaço de ar (Esquerda) e aparecimento de cristais na superfície superior do provete (Direita) - 2ªSemana de Absorção
Fig. 3.32 - Fases de avanço da frente húmida no provete de espaço de ar
Fig. 3.33 - Curvas de absorção por capilaridade, em função do tempo, dos provetes espaço de ar parcialmente imersos em KCI
Fig. 3.34 - Curvas de absorção por capilaridade, em função do tempo, dos provetes pasta de contacto parcialmente imersos em água
Fig. 3.35 -Curvas de absorção por capilaridade, em função do tempo, dos provetes pasta de contacto parcialmente imersos em Na ₂ SO ₄
Fig. 3.36 - Curvas de absorção por capilaridade, em função do tempo, dos provetes pasta de contacto parcialmente imersos em KCI
Fig. 3.37 - Descolagem (Esquerda) e rotura da resina epóxi pelos cristais de Na ₂ SO ₄
Fig. 3.38 - Curvas de absorção por capilaridade, em função do tempo, dos provetes contacto perfeito parcialmente imersos em água
Fig. 3.39 - Curvas de absorção por capilaridade, em função do tempo, dos provetes pasta de contacto parcialmente imersos em Na ₂ SO ₄
Fig. 3.40 - Fases de avanço da frente húmida no provete contacto perfeito e barreira de cristais (Fase 2)
Fig. 3.41 - Evolução da absorção no provete CP2.2 ao longo do tempo (2ªSemana, 3ªSemana, 4ªSemana
Fig. 3.42 - Curvas de absorção por capilaridade, em função do tempo, dos provetes contacto perfeito parcialmente imersos em KCI

Fig. 4.1 - Provete de espaço de ar, previamente em contacto com solução saturada de Na ₂ SO	₄, com a
base selada com folha de polietileno, no início do ensaio de secagem	61
Fig. 4.2 - Provetes, previamente em contacto com solução saturada de KCl, no início do er	saio de
secagem	61

Fig. 4.3 - Relação entre áreas - cálculo do índice de secagem, adaptado [11]	62
Fig. 4.4 - Curvas de secagem dos provetes monolíticos parcialmente imersos em água	64
Fig. 4.5 - Curvas de secagem dos provetes monolíticos parcialmente imersos em solução saturada Na ₂ SO ₄	a de 64
Fig. 4.6 - Provetes monolíticos parcialmente imersos em água, na 1ª semana de secagem (cima) 36ª semana de secagem (baixo)	e na 65
Fig. 4.7 - Curvas de secagem dos provetes monolíticos parcialmente imersos em solução saturada KCI	a de 65
Fig. 4.8 – Provetes monolíticos parcialmente imersos em solução saturada de KCI, na 1ªsemana secagem (cima) e na 33ªsemana de secagem (baixo)	a de 66
Fig. 4.9 - Comparação dos valores do índice de secagem para os provetes monolíticos parcialme imersos nas três soluções estudadas	ente 67
Fig. 4.10 - Curvas de secagem dos provetes espaço de ar parcialmente imersos em água	67
Fig. 4.11 - Curvas de secagem dos provetes espaço de ar parcialmente imersos em solução satur de Na ₂ SO ₄	rada 68
Fig. 4.12 - Provetes espaço de ar parcialmente imersos em solução saturada de Na ₂ SO ₄ , na 1 ^a sem de secagem (em cima) e na 36 ^a semana de secagem (em baixo)	1ana 68
Fig. 4.13 - Curvas de secagem dos provetes espaço de ar parcialmente imersos em solução satur de KCI	rada 69
Fig. 4.14 - Provetes espaço de ar parcialmente imersos em solução saturada de KCI, na 1ªsemana secagem (em cima) e na 33ªsemana de secagem (em baixo)	a de 69
Fig. 4.15 - Comparação dos valores do índice de secagem para os provetes espaço de ar imersos três soluções estudadas	nas 70
Fig. 4.16 - Curvas de secagem dos provetes pasta de contacto parcialmente imersos em água	71
Fig. 4.17 - Curvas de secagem dos provetes pasta de contacto parcialmente imersos em solu saturada de Na ₂ SO ₄	ıção 71
Fig. 4.18 - Provetes pasta de contacto parcialmente imersos em solução saturada de Na2SO4, n semana de secagem (em cima) e na 36ª semana de secagem (em baixo)	a 1ª 72
Fig. 4.19 - Curvas de secagem dos provetes pasta de contacto parcialmente imersos em solu saturada de KCI	ıção 72
Fig. 4.20 - Provetes pasta de contacto parcialmente imersos em solução saturada de KCI, na 1ªsem de secagem (em cima) e na 33ªsemana de secagem (em baixo)	iana 73
Fig. 4.21 - Descolagem da camada superior do provete PC2.1 devido à pressão criada pelos cris de sulfato de sódio	stais 74
Fig. 4.22 - Comparação dos valores do índice de secagem para os provetes pasta de contacto ime nas três soluções estudadas	rsos 74
Fig. 4.23 - Curvas de secagem dos provetes contacto perfeito parcialmente imersos em água	75

Fig. 4.24 - Curvas de secagem dos provetes contacto perfeito parcialmente imersos em solução saturada de Na ₂ SO ₄
Fig. 4.25 - Provetes contacto perfeito parcialmente imersos em solução saturada de Na ₂ SO ₄ , na 1 ^a semana de secagem (em cima) e na 36 ^a semana de secagem (em baixo)
Fig. 4.26 - Curvas de secagem dos provetes contacto perfeito parcialmente imersos em solução saturada de KCI
Fig. 4.27 - Provetes contacto perfeito parcialmente imersos em solução saturada de KCI, na 1ªsemana de secagem (em cima) e na 33ªsemana de secagem (em baixo)
Fig. 4. 28 - Comparação dos valores do índice de secagem para os provetes contacto perfeito imersos nas três soluções estudadas
Fig. 4.29 - Comparação dos índices de secagem
Fig. 5.1 - Diferença de massa seca (M₀) dos provetes imersos em água, solução saturada de sulfato de sódio e solução saturada de cloreto de potássio (2014, 2015 e 2016)
Fig. 5.2 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes monolíticos parcialmente imersos em água
Fig. 5.3 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes monolíticos parcialmente imersos em solução saturada de Na ₂ SO ₄
Fig. 5.4 - Placas de tijolo libertadas para a folha de polietileno, no final do ensaio de secagem 83
Fig. 5.5 - Provetes monolíticos parcialmente imersos em solução saturada de Na ₂ SO ₄ no início do segundo ciclo de reabsorção (em cima) e na 5ªsemana de reabsorção (em baixo), com perda de placas de cristais
Fig. 5.6 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes monolíticos parcialmente imersos em solução saturada de KCI
Fig. 5.7 – Variação dos coeficientes de capilaridade nos provetes monolíticos, para as três soluções em estudo, ao longo dos ciclos de absorção/reabsorção
Fig. 5.8 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes espaço de ar parcialmente imersos em água
Fig. 5.9 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes pasta de contacto parcialmente imersos em água
Fig. 5.10 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes contacto perfeito parcialmente imersos em água
Fig. 5.11 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes espaço de ar parcialmente imersos em solução saturada de Na ₂ SO ₄
Fig. 5.12 - Provetes espaço de ar, antes do início do segundo ciclo de reabsorção 89
Fig. 5.13 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes pasta de contacto parcialmente imersos em solução saturada de Na ₂ SO ₄ 89

Fig. 5.14 - Descolagem do tijolo superior da pasta de contacto devido à pressão exercida pelos cristais de sulfato de sódio (Esquerda) e libertação de placa de cristais durante o ensaio de reabsorção (Direita)
Fig. 5.15 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes pasta de contacto parcialmente imersos em solução saturada de Na ₂ SO ₄ 90
Fig. 5.16 – Fratura na base do provete CP2.3 (Esquerda) e desvio do tijolo superior devido à pressão criada pelos cristais na zona da interface (Direita)
Fig. 5.17 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes espaço de ar parcialmente imersos em solução saturada de KCI
Fig. 5.18 – Provetes espaço de ar, parcialmente imersos em solução saturada de cloreto de potássio, antes do início do segundo ciclo de absorção
Fig. 5.19 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes pasta de contacto parcialmente imersos em solução saturada de KCI
Fig. 5.20 – Provetes pasta de contacto, parcialmente imersos em solução saturada de cloreto de potássio, antes do início do segundo ciclo de absorção
Fig. 5.21 - Fratura da base do provete PC3.2
Fig. 5.22 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes contacto perfeito parcialmente imersos em solução saturada de KCI
Fig. 5.23 - Provetes contacto perfeito, parcialmente imersos em solução saturada de cloreto de potássio, antes do início do segundo ciclo de absorção
Fig. 5.24 - Descolagem da resina epóxi do provete CP3.1
Fig. 5.25 - Variação dos coeficientes de capilaridade nos provetes com interface, para as três soluções em estudo, ao longo dos ciclos de reabsorção
Fig. 5.26 - Curvas de absorção por capilaridade, do segundo ciclo, em função do tempo, dos provetes espaço de ar parcialmente imerso em água
Fig. 5. 27 - Curvas de absorção por capilaridade, do segundo ciclo, em função do tempo, dos provetes espaço de ar parcialmente imerso em Na ₂ SO ₄
Fig. 5.28 - Provetes espaço de ar, parcialmente imersos em solução saturada de sulfato de sódio, na 5ª semana do segundo ciclo de absorção
Fig. 5.29 - Curvas de absorção por capilaridade, do segundo ciclo, em função do tempo, dos provetes espaço de ar parcialmente imerso em KCI
Fig. 5. 30 - Provetes espaço de ar, parcialmente imersos em solução saturada de cloreto de potássio, na 4ªsemana do segundo ciclo de reabsorção
Fig. 5.31 - Variação do fluxo máximo transmitido nos provetes espaço de ar, para as três soluções em estudo, ao longo dos ciclos de absorção
Fig. 5.32 - Curvas de absorção por capilaridade, do segundo ciclo, em função do tempo, dos provetes pasta de contacto parcialmente imerso em água 100
Fig. 5.33 - Curvas de absorção por capilaridade, do segundo ciclo, em função do tempo, dos provetes pasta de contacto parcialmente imerso em Na ₂ SO ₄ 101

Fig. 5.34 - Provetes pasta de contacto, parcialmente imersos em solução saturada de sulfato de sódio, antes do início do segundo ciclo de reabsorção
Fig. 5.35 - Curvas de absorção por capilaridade, do segundo ciclo, em função do tempo, dos provetes pasta de contacto parcialmente imerso em KCI
Fig. 5.36 - Rotura da resina nos provetes pasta de contacto parcialmente imersos em solução saturada de KCl (em cima) e fratura na base do provete PC3.1 (em baixo)
Fig. 5.37 - Variação do fluxo máximo transmitido nos provetes pasta de contacto, para as três soluções em estudo, ao longo dos ciclos de absorção
Fig. 5.38 - Curvas de absorção por capilaridade, do segundo ciclo, em função do tempo, dos provetes contacto perfeito parcialmente imerso em água
Fig. 5.39 - Curvas de absorção por capilaridade, do segundo ciclo, em função do tempo, dos provetes contacto perfeito parcialmente imerso em Na ₂ SO ₄
Fig. 5.40 - Curvas de absorção por capilaridade, do segundo ciclo, em função do tempo, dos provetes contacto perfeito parcialmente imerso em KCI
Fig. 5.41 - Variação do fluxo máximo transmitido nos provetes contacto perfeito, para as três soluções em estudo, ao longo dos ciclos de absorção

ÍNDICE DE TABELAS

Tabela 2.1 - Humidade relativa de equilíbrio de alguns sais à temperatura de 20°C, adaptado [10] .. 12

Tabela 3.1 - Estatística descritiva dos valores registados para a temperatura e HR 29
Tabela 3.2 - Coeficiente de absorção por capilaridade de provetes monolíticos imersos em água 35
Tabela 3.3 - Coeficiente de absorção por capilaridade de provetes monolíticos imersos em solução saturada de Na ₂ SO ₄
Tabela 3.4 - Coeficiente de absorção por capilaridade de provetes monolíticos imersos em soluçãosaturada de KCI
Tabela 3.5 - Coeficiente de absorção por capilaridade de provetes com interface imersos em água. 41
Tabela 3.6 - Coeficiente de absorção por capilaridade de provetes com diferentes tipos de interface em contacto com uma solução saturada de Na ₂ SO ₄
Tabela 3.7 - Coeficiente de absorção por capilaridade de provetes com diferentes tipos de interface em contacto com uma solução saturada de KCI
Tabela 3.8 - FLUMAX em provetes espaço de ar em contacto com água
Tabela 3.9 - FLUMAX em provetes espaço de ar, imersos em Na₂SO₄
Tabela 3.10 - FLUMAX em provetes espaço de ar, imersos em KCI
Tabela 3.11 - FLUMAX em provetes pasta de contacto imersos em água
Tabela 3.12 - FLUMAX em provetes pasta de contacto, parcialmente imersos em Na ₂ SO ₄ 52
Tabela 3.13 - FLUMAX em provetes pasta de contacto, parcialmente imersos em KCI 54
Tabela 3.14 - FLUMAX em provetes contacto perfeito em contacto em água
Tabela 3.15 - FLUMAX em provetes contacto perfeito em contacto com Na ₂ SO ₄ 55
Tabela 3.16 - FLUMAX em provetes contacto perfeito em contacto com KCI
Tabela 3.17 - Resumo dos resultados obtidos58
Tabela 4.1 - Tempo de secagem, em horas, dos provetes monolíticos parcialmente imersos em água
Tabela 4.2 - Índice de secagem dos provetes monolíticos, parcialmente imersos nas três soluções estudadas
Tabela 4.3 - Índice de secagem dos provetes espaço de ar, parcialmente imersos nas três soluções estudadas
Tabela 4.4 - Índice de secagem dos provetes pasta de contacto, parcialmente imersos nas três soluções estudadas
Tabela 4.5 - Índice de secagem dos provetes contacto perfeito, parcialmente imersos nas três soluções estudadas 76

Tabela 5.1 - Estatística descritiva dos valores registados para a temperatura e HR
Tabela 5.2 - Coeficiente de absorção por capilaridade de provetes monolíticos parcialmente imersos em água – segundo ciclo
Tabela 5.3 - Coeficiente de absorção por capilaridade de provetes monolíticos parcialmente imersos em solução saturada de Na₂SO₄ – segundo ciclo
Tabela 5.4 - Coeficiente de absorção por capilaridade de provetes monolíticos imersos em solução saturada de KCI – segundo ciclo
Tabela 5.5 - Coeficiente de absorção por capilaridade de provetes com interface imersos em água – segundo ciclo
Tabela 5.6 - Coeficiente de absorção por capilaridade de provetes com interface imersos em solução saturada de Na₂SO₄ – segundo ciclo91
Tabela 5.7 - Coeficiente de absorção por capilaridade de provetes com interface imersos em solução saturada de KCI
Tabela 5.8 - FLUMAX em provetes espaço de ar, imersos em água – segundo ciclo
Tabela 5.9 - FLUMAX em provetes espaço de ar, imersos em Na₂SO₄ – segundo ciclo
Tabela 5.10 - FLUMAX em provetes espaço de ar, imersos em KCI
Tabela 5.11 - FLUMAX em provetes pasta de contacto, imersos em água – segundo ciclo 101
Tabela 5.12 - FLUMAX em provetes pasta de contacto, imersos em Na $_2$ SO $_4$ – segundo ciclo 101
Tabela 5.13 - FLUMAX em provetes pasta de contacto, imersos em KCI – segundo ciclo 103
Tabela 5.14 - FLUMAX em provetes contacto perfeito, imersos em água – segundo ciclo 105
Tabela 5.15 - FLUMAX em provetes contacto perfeito, imersos em Na $_2$ SO $_4$ – segundo ciclo 106
Tabela 5.16 - FLUMAX em provetes contacto perfeito, imersos em KCI – segundo ciclo 106
Tabela 5.17 - Resumo dos resultados obtidos no segundo ciclo de reabsorção

SÍMBOLOS, ACRÓNIMOS E ABREVIATURAS

- δ Constrictividade [-]
- δ_v Coeficiente de difusão do vapor de água no ar [kg/(m.s.Pa)]
- Δp Pressão de cristalização [MPa]
- ε Porosidade [%]
- η Viscosidade dinâmica da água [kg/(m.s)]
- θ Ângulo de contacto [º]
- µ Fator de resistência à difusão de vapor de água [-]
- π Coeficiente de permeabilidade ao vapor de água [kg/(m.s.Pa)]
- ρ Peso volúmico da água [kg/m3]
- σ Tensão superficial do líquido [N/m]
- T Tortuosidade [-]
- A Coeficiente de absorção de água por capilaridade [kg/(m2.s1/2)]
- B Coeficiente de penetração de água por capilaridade [m/s1/2]
- C Concentração da solução [M]
- Cs Concentração correspondente ao estado de saturação para um determinado sal [M]
- Dv Coeficiente de difusão [m2/s]
- g Constante gravitacional [m2/s]
- Ho-Altura de ascensão capilar em condições de equilíbrio [m]
- j Fluxo de difusão [kg/(m2.s)]
- pc- Pressão capilar [Pa]
- pv-Pressão de vapor de água [Pa]
- q Fluxo de humidade [kg/(m2.s)]
- r Raio de curvatura principal [m]
- R Constante dos gases ideiais [MPa.cm₃/(mol.K)]
- tind período de indução da cristalização [s]
- T Temperatura [K]
- Vc-Volume molar do sal cristalizado [l/mol]
- Vv Volume de vazios [m3]
- V Volume total aparente [m3]

- M Provetes monolíticos
- CP Provetes com interface de contacto perfeito
- EA Provetes com espaço de ar entre camadas
- PC Provetes com pasta de contacto
- FLUMAX Fluxo máximo Transmitido [kg/(m2.s)]
- HR Humidade relativa [%]
- HR_{eq} Humidade relativa de equilíbrio [%]
- I.S. Índice de Secagem
- LFC Laboratório de Física das Construções

1 INTRODUÇÃO

1.1. ENQUADRAMENTO

A humidade ascensional pode reduzir a qualidade estética, de conforto e saúde dos edifícios. Combinada com a existência de sais solúveis nos materiais porosos dos edifícios e a água presente, por exemplo, nos solos, pode conduzir a deterioração desses materiais e comprometer o correto comportamento funcional dos edifícios. Os edifícios antigos, maioritariamente construídos em alvenaria, com recurso a materiais porosos como tijolo cerâmico, argamassas e materiais pétreos, apresentam maior incidência deste problema.

A origem dos sais pode ser do ambiente que envolve o edifício, como nos próprios materiais de construção, no entanto a sua presença constitui um fator agravante na degradação dos edifícios. Os sais acompanham a migração da água durante a sua ascensão, no entanto permanecem na estrutura porosa dos materiais porosos após a evaporação da água, cristalizando e criando elevadas pressões nos poros.

Os edifícios antigos, baseiam a sua eficiência estrutural na combinação de diferentes camadas de materiais com características distintas, pelo que a análise dos fenómenos de transferência de humidade é mais complexa, impondo o conhecimento das suas características individuais e das condições de continuidade da interface que separa os materiais.

A absorção capilar de soluções aquosas salinas e a secagem dos elementos construtivos contaminados com sais, envolvem complexos mecanismos de transporte de água no estado líquido e de vapor. O seu estudo e compreensão é de extrema importância, por forma a consensualizar a comunidade científica relativamente a estes fenómenos e os seus efeitos.

Este trabalho baseia-se principalmente na extensa campanha experimental, onde se determinaram as diferentes curvas de absorção para as combinações solução vs interface em dois ciclos de reabsorção, assim como as suas curvas de secagem. Pretende contribuir para uma melhor compreensão do efeito de ciclos de absorção nos diferentes materiais porosos e as suas ligações de continuidade.

1.2. ÂMBITO E OBJETIVOS

No âmbito de contribuir para a contínua compreensão da degradação dos edifícios por ação dos sais, esta dissertação procurou avaliar a influência de dois tipos de sais no coeficiente de capilaridade e no índice de secagem de provetes monolíticos e de provetes com três tipos de interface apresentados, e, ainda, a avaliação quantitativa da resistência hídrica que essas interfaces oferecem.

1.3. ESTRUTURA DA DISSERTAÇÃO

A presente dissertação divide-se em seis capítulos:

- O capítulo 1, corresponde ao atual capítulo, sendo este introdutório, onde se enquadra o tema, se descrevem o âmbito e objetivos e se apresenta a estrutura da dissertação;
- O capítulo 2, sobre a ação dos sais e humidade nos edifícios, abordam-se os conhecimentos mais relevantes para a compreensão deste trabalho, com incidência nas principais características dos sais solúveis e dos materiais porosos e os mecanismos de degradação. Descreve-se ainda o fenómeno de interface e os seus diferentes tipos entre camadas, a sua influência nos processos de transferência de humidade e o conceito de fluxo máximo transmitido;
- O capítulo 3, de carácter experimental, apresenta todo o estudo realizado com o objetivo de analisar o efeito da absorção de soluções aquosas salinas num primeiro ciclo de reabsorção. São calculados e, posteriormente, comparados e analisados os diferentes coeficientes de capilaridade e fluxo máximo transmitidos para as diferentes combinações solução vs interface ensaiadas;
- O capítulo 4, apresenta a campanha experimental realizada relativamente ao efeito de soluções aquosas salinas na secagem. É feita a avaliação do índice de secagem, assim como a apresentação e análise de todos os resultados obtidos;
- O capítulo 5, similarmente ao capítulo 3, descreve a campanha experimental realizada com o intuito de calcular, comparar e analisar o efeito das soluções aquosas salinas, neste caso no segundo ciclo de reabsorção;
- O capítulo 6, apresenta as considerações finais da dissertação e as principais conclusões resultantes da extensa campanha experimental.

2 A AÇÃO DOS SAIS SOLÚVEIS E O FENÓMENO DA INTERFACE

2.1. INTRODUÇÃO

A ação da humidade ascensional é um dos grandes problemas nos materiais e componentes dos edifícios, especialmente em edifícios antigos, constituídos maioritariamente por materiais porosos, o que pode levar a efeitos nocivos quer a nível estético, como a nível de conforto e das condições de habitabilidade, levando à decomposição dos materiais e em casos extremos podendo comprometer o correto funcionamento estrutural dos edifícios.

A água por si só não é o maior problema, uma vez que neste processo ocorre migração e os iões de sais solúveis dissolvidos na água, para a rede porosa dos elementos estruturais. É nessa rede porosa que os iões permanecem e cristalizam depois da evaporação da água da solução, criando pressões elevadas nos poros em vários elementos, nomeadamente nas paredes, e eventualmente conduzem à fratura após vários ciclos de cristalização/dissolução.

A presença de sais nos edifícios pode ter origem na água do mar, no solo, no nevoeiro salino, na poluição atmosférica, nos próprios materiais de construção ou até em produtos armazenados nas proximidades (produtos alimentares salgados, pesticidas, dejetos de animais, etc). [1]

2.2. OS SAIS E OS MATERIAIS POROSOS

2.2.1. SOLUÇÕES AQUOSAS SALINAS

As soluções aquosas salinas são misturas homogéneas de duas ou mais substâncias. A substância presente em maior quantidade designa-se de solvente, e a substância presente em menor quantidade denomina-se soluto, que se encontra dissolvida no solvente. Quando se dissolve um sal (soluto) em água (solvente), resulta uma solução aquosa salina.

Os sais são compostos iónicos que resultam da reação de neutralização entre um ácido e uma base. São constituídos por catiões (iões de carga positiva) e de aniões (iões de carga negativa), sendo por isso eletricamente neutros. Quando dissolvidos em água os iões dissociam-se, formando catiões e aniões livres, obtendo-se uma solução aquosa salina (equação 2.1). O nível molecular este processo ocorre devido à ação atrativa exercida pelas moléculas de água em cada um dos iões, sobrepondo-se à força atrativa exercida entre si.

A título de exemplo, quando um composto iónico, como o cloreto de sódio NaCl, se dissolve em água, as moléculas de água (H₂O) separam os iões de sódio (Na⁺) e os iões de cloreto (Cl⁻), rodeando e dispersando-os uniformemente pelo líquido – hidratação (Fig. 2.1) [2].

$$NaCl(s) + H_2O(l) \to H_2O(l) + Na^+(aq) + Cl^-(aq)$$
 (2.1)

Fig. 2.1 - Dissolução do composto iónico NaCl em água, adaptado [2]

Utiliza-se o termo concentração para designar a quantidade de soluto dissolvido numa determinada quantidade de solvente, ou quantidade de solução. Quanto maior a quantidade de soluto dissolvido numa determinada quantidade de solvente, mais concentrada é a solução resultante. A molaridade é a unidade mais utilizada para quantificar a concentração de uma solução, e corresponde à razão entre as moles de soluto e o volume de solução (equação 2.2).

$$Molaridade = \frac{Soluto (moles)}{Volume de solução (litros)}$$
(2.2)

2.2.2. SOLUBILIDADE

A solubilidade de uma substância, a uma determinada temperatura, é a quantidade dessa mesma substância que pode ser dissolvida numa determinada quantidade de solvente. Em estado sólido, o soluto começa a dissolver-se no solvente, até que atinge um ponto em que começa a depositar-se, atingindo a sua concentração máxima. A uma solução que se encontre nesta situação designa-se de saturada, deixando de ter capacidade de dissolver o soluto. A quantidade necessária de soluto para se formar uma solução saturada num determinado solvente é a solubilidade desse soluto.

A solubilidade de uma solução depende das condições de temperatura e pressão a que está sujeita, assim como o do soluto em questão. A solubilidade de sólidos e líquidos não é consideravelmente afetada pela pressão, pelo que no contexto deste trabalho não será relevante. No caso dos sólidos, na sua maioria, a solubilidade aumenta com o aumento de temperatura, como ilustrado na Fig. 2.2, onde se apresenta também uma das exceções a esta regra $(Ce_2(SO_4)_3)$.

Fig. 2.2 - Curvas de solubilidade de alguns compostos iónicos, adaptado [2]

2.2.3. CRISTALIZAÇÃO

Á medida que um soluto sólido começa a dissolver-se no solvente, a concentração de partículas de soluto na solução aumenta, aumentando também a probabilidade de algumas dessas partículas colidirem com a superfície do sólido juntando-se ao mesmo. A este processo, inverso ao de criação de uma solução, designa-se cristalização. Estes dois processos inversos ocorrem numa solução em contacto com um soluto não dissolvido, como representado na equação química 2.3.

Quando os rácios destes processos se igualam, atinge-se um equilíbrio dinâmico e a quantidade de soluto na solução atingiu o seu máximo, sendo uma solução saturada.

Em condições favoráveis é possível formar-se uma solução que contenha maior quantidade de soluto que a necessária para se criar uma solução saturada, criando-se assim uma solução supersaturada (Fig. 2.3).

Existem dois métodos que podem levar à formação de uma solução supersaturada:

- Cristalização por evaporação do solvente e aumento da concentração;
- Diminuição da solubilidade do soluto devido a alterações de temperatura da solução.

O estado de supersaturação é um requerimento essencial para operações de cristalização. No entanto, soluções supersaturadas não estão em equilíbrio. Como qualquer sistema procura atingir o equilíbrio, as soluções supersaturadas acabam por cristalizar. A cristalização de uma solução pode ser subdividida em duas etapas cinéticas:

- Nucleação;
- Crescimento dos cristais.

Fig. 2.3 - Cristalização de uma solução supersaturada de acetato de sódio. A solução da esquerda formou-se após a dissolução de 170g de sal em 100mL de água, a 100°C, e deixou-se arrefecer até 20°C. Como a solubilidade do acetato de sódio em água, a 20°C, é de 46g por 100mL de água, a solução é supersaturada. A adição de cristais de acetato de sódio provoca a cristalização do excesso de soluto na solução, adaptado [2]

A primeira fase é uma fase de separação, onde se formam os primeiros núcleos de cristais e consequentemente estes vão crescendo, formando novos núcleos (segunda fase). Estas fases acabam por ocorrer simultaneamente enquanto a solução permanecer no estado de supersaturação [2], [3].

Inicialmente as moléculas de soluto dispersas no solvente começam a agregar-se em aglomerados atómicos, constituindo núcleos de cristais. Estes núcleos vão estabilizar quando atingirem uma determinada dimensão, dependente das condições de operação (temperatura, supersaturação, irregularidades, etc). Assim, consequentemente, estes núcleos vão atuar como ponto de convergência para as restantes moléculas de soluto, possibilitando a sua aglomeração e crescimento dos cristais. [3]

Segundo Strege [4] o rácio de nucleação, isto é, o número de núcleos formador por unidade de tempo e unidade de volume é negligenciável para pequenas supersaturações. Apenas quando um estado crítico de supersaturação é atingido, este valor aumenta drasticamente. Esta é a explicação para a denominada fase metaestável, que consiste no intervalo de valores de concentração para as operações de cristalização.

O intervalo de tempo entre o estado de supersaturação e o início da formação de cristais, é denominado de período de indução. Este tempo pode ser dividido em várias partes:

- t_r, tempo de relaxação necessário para o sistema atingir o estado de "quase uniforme" distribuição de aglomerados moleculares;
- t_n, tempo de nucleação necessário para a formação de núcleos estáveis;
- t_g, tempo necessário para o crescimento suficiente dos cristais de modo a serem detetáveis.

Na prática torna-se muito difícil isolar estas quantidades separadamente, já que o tempo de relaxação depende da viscosidade da solução. O tempo de nucleação depende do estado de supersaturação que afeta a dimensão dos núcleos críticos, e o tempo de crescimento depende do tamanho a que os núcleos podem ser detetados, logo da técnica de medição.

Em alguns sistemas, particularmente em estados de baixa supersaturação, verifica-se um atraso considerável entre a fase de deteção de cristais e o momento em que a concentração da solução começa a reduzir drasticamente. O intervalo de tempo total até ocorrer esse decréscimo de concentração designa-se de período latente (Fig. 2.4).

Fig. 2.4 - Evolução da concentração de uma solução supersaturada até à saturação, adaptado [4]

Na Fig. 2.5, observam-se os estados de estabilização existentes na cristalização de soluções para nucleação primária. Abaixo da curva de solubilidade todas as soluções se encontram insaturadas, pelo que não é possível haver cristalização, sendo, portanto, esta região estável.

A curva de solubilidade representa o estado de equilíbrio onde o processo de dissolução e de cristalização ocorrem na mesma ordem de grandeza, sendo o seu tempo de indução infinito. Acima da curva de solubilidade encontra-se o estado metaestável, sendo que, quanto mais distante desta curva estiver o ponto correspondente ao estado de supersaturação, menor será o período de indução, ocorrendo mais rapidamente a cristalização. Quando se atinge o limite metaestável, onde o tempo de indução é igual a zero, atinge-se o estado de saturação crítica iniciando-se instantaneamente a cristalização [4],[3].

Fig. 2.5 - Estados de estabilização, adaptado [4]

2.2.4. MECANISMOS DE DEGRADAÇÃO

A ação dos sais solúveis é uma frequente causa de degradação física dos materiais de construção, podendo causar problemas a vários níveis: estéticos; mecânicos; estruturais, conforto. No entanto, é um assunto que ainda suscita muita discussão na comunidade científica, havendo variadas explicações para este fenómeno. Geralmente são considerados três teorias principais:

Pressão de cristalização

Os cristais confinados no meio poroso do material crescem, provocando danos no mesmo. Quando os cristais atingem aproximadamente o tamanho dos poros, criam-se forças repulsivas entre os cristais e o meio poroso que promovem tensões que podem danificar a estrutura porosa. Correns (1949) traduziu este mecanismo na equação 2.4, que ainda hoje é utilizada para o cálculo da pressão exercida pelo cristal em crescimento, em função das características dos sais e do estado de supersaturação da solução [1], [3], [5].

$$\Delta p = p_{cr} - p_l = \frac{RT}{V_C} \ln\left(\frac{C}{C_s}\right) \tag{2.4}$$

Nesta equação Δp (Mpa) é a pressão de cristalização, p_{cr} (Mpa) a pressão na face pressionada pelo crescimento do cristal, p_1 (Mpa) a pressão ambiente, T (K) a temperatura absoluta, V_c (cm³.mol⁻¹) o volume molar do cristal sólido, R (8,3145 MPa.cm³.mol⁻¹.K⁻¹) a constante de gases ideais, Cs a concentração de soluto na solução saturada e C a concentração de soluto na solução supersaturada.

Assim, de acordo com a equação de Correns, quanto maior o rácio de supersaturação (C/C_s), maior a pressão exercida pelos cristais sobre a rede porosa. A principal crítica a esta teoria vem do facto de esta não considerar os efeitos da pressão na solubilidade dos sais, que levaria a um decréscimo no rácio de supersaturação e consequentemente na pressão. Esta equação apenas é aplicável para baixos valores do rácio de supersaturação. Para rácios de supersaturação superiores a 1,2, verificaram-se desvios significativos relativamente aos valores teóricos [6], [3].

Pressão de Hidratação

Esta teoria baseia-se no facto de alguns sais, quando sujeitos a determinadas variações da temperatura e humidade relativa, hidratarem e desidratarem. A hidratação resulta num aumento de volume da estrutura cristalina, devido à incorporação de moléculas de água na mesma, provocando um aumento da pressão nas paredes dos poros. Esta teoria tem vindo a ser refutada, já que foi demonstrado experimentalmente que a transição dos cristais para um estado mais hidratado resulta da dissolução dos sais e posterior recristalização, sugerindo que a pressão resultante desta transição é, na realidade, explicada pela pressão de cristalização [3], [7].

Dilatação térmica diferencial

Esta teoria, inicialmente proposta por Cooke e Smalley (1968), baseia-se na diferença entre os coeficientes de dilatação térmica do meio poroso e dos cristais como justificação para a existência de tensões entre os mesmos. Como exemplo, a halite (NaCl) tem um coeficiente de dilatação térmica de $4,4 \times 10^{-5}$ °C⁻¹, enquanto o granito e o tijolo apresentam, respetivamente, valores de $0,8 \times 10^{-5}$ °C⁻¹ e $0,6 \times 10^{-5}$ °C⁻¹. Assim, a halite vai sofrer variações volumétricas superior ás do granito e do tijolo. Este é um mecanismo que irá surgir em edifícios que sofram variações de temperatura entre o período do dia e o da noite. No entanto, este mecanismo, não explica os danos causados por sais a temperaturas constantes, verificados experimentalmente [3],[5].

2.2.5. POROSIDADE E HIGROSCOPICIDADE

Os materiais de construção como a pedra, o tijolo, as argamassas ou o betão contêm pequenos espaços vazios designados de poros, sendo por isso denominados de materiais porosos. Uma parte significativa desses poros está interligada, formando uma rede porosa pela qual a água migra, quer no estado líquido quer no estado gasoso. A porosidade de um material é obtida pela razão entre o volume de vazios (%) e o volume total aparente (%) (equação 2.5)

$$\varepsilon = \frac{V_{\nu}}{V} \tag{2.5}$$

A grande maioria dos materiais de construção apresenta porosidade aberta, ou seja, onde os poros do material comunicam entre si, formando uma rede porosa, sendo a facilidade de embebição dos materiais pela água diretamente relacionada com a sua porosidade. Em materiais que apresentam porosidade fechada, os poros não comunicam entre si, sendo o material impermeável, não permitindo a transferência de água no seu interior [3], [8].

Fig. 2.6 - Porosidade Aberta (esquerda) e Porosidade Fechada (Direita) [8]

Os poros podem ser classificados em três tipos, de acordo com o seu tamanho e a sua influência nas propriedades de transporte de humidade dos materiais:

- Microporos: são os poros mais pequenos. Estes poros não têm influência, já que devido à sua pequena dimensão, as forças capilares que se desenvolvem são tão elevadas que, em situações correntes, não permitem a movimentação da água.
- Mesoporos: são os poros de dimensão intermédia. Também são designados de poros capilares ou, simplesmente, capilaridades. É através deles que a água em estado líquido migra devido às forças capilares, sendo que também pode ocorrer o transporte de água em estado gasoso.
- Macroporos: são os poros de maior tamanho. São muito relevantes no transporte de água em estado gasoso. Pelo contrário, o transporte de água no estado líquido não é muito significativo neste tipo de poros, já que as forças de capilaridade não são suficientemente fortes [1].

Os materiais de construção são higroscópicos, isto é, quando colocados numa ambiência em que varia a humidade relativa, o seu teor de humidade também varia. A humidade relativa define-se como sendo a razão entre a pressão de vapor existente e a pressão de saturação, para uma dada temperatura. O fenómeno é representado na Fig. 2.7, e é atribuído às forças intermoleculares (ou de *Van Der Waals*) que atuam na interface sólido-fluído, no interior dos poros [8].

Fig. 2.7 - Comportamento Higroscópico de materiais de construção em função da humidade relativa [8]

Na primeira fase ocorre a fixação de uma camada de moléculas de água na superfície interior do poro (*adsorção monomolecular*) a que se segue, numa segunda fase, a deposição de várias camadas de moléculas (*adsorção plurimolecular*). Quando o diâmetro dos poros é suficientemente pequeno, há a junção das camadas plurimoleculares (condensação capilar), sendo este fenómeno descrito pela teoria de Kelvin (Fig. 2.8) [9].

Fig. 2.8 - Higroscopicidade [8]

Os sais têm um comportamento higroscópico, sendo que geralmente os sais solúveis apresentam um nível de adsorção de humidade elevado e superior ao verificado nas argamassas, tijolos e a maioria dos materiais pétreos. Os sais também são deliquescentes, isto é, os cristais quando adsorvem a humidade do ar, começam a mudar o seu estado físico, diluindo-se nas moléculas de água adsorvidas e formando soluções aquosas salinas. Assim compreende-se que a variação da humidade relativa (HR) tenha uma determinante influência nos ciclos de cristalização/dissolução que provocam danos evidentes nos materiais porosos [1], [3].

Quando se atinge o equilíbrio entre as trocas de moléculas de água entre o ar e a superfície de água, estáse perante a humidade relativa de equilíbrio (HR_{eq}).

A HR_{eq} sobre uma superfície lisa de água pura é de 100% a qualquer temperatura. Porém, nas soluções aquosas salinas, dependendo da concentração, da temperatura e do tipo de sais dissolvidos, o valor de HR_{eq} é variável e inferior aos 100%. Isto deve-se à menor pressão de vapor de água das soluções aquosas salinas, estas têm maior tendência de condensar o vapor de água da ambiência para atingir o equilíbrio [1], [3], [6].

Assim, percebe-se a influência da HR da ambiência nos ciclos de cristalização/dissolução dos sais. Considerando HR_{eq} de um dado sal a sua humidade relativa de equilíbrio, se:

- HR < HR_{eq}, o sal encontra-se dissolvido, verifica-se a evaporação de moléculas de água da solução, estando a mesma num estado de supersaturação e consequente cristalização dos sais. Se o sal estiver cristalizado, este não é capaz de adsorver a humidade do ambiente que o rodeia;
- HR=HR_{eq} verifica-se evaporação caso a solução esteja não saturada até se atingir a saturação e o equilíbrio de pressões. Os cristais tendem a dissolver-se e a formar uma solução saturada.
- HR>HR_{eq} verifica-se a dissolução dos sais e/ou aumento do solvente e consequente diluição da solução. Para um valor de HR de 100% a solução tende para um estado infinitamente diluído. [1], [3].

Na Tabela 2.1 encontram-se representados os valores da HR_{eq} , à temperatura de 20°C, de alguns dos sais mais comuns [10].

	HR _{eq} (%)	
NaCl	Cloreto de Sódio	75,47
KC1	Cloreto de Potássio	85,11
NaNO ₃	Nitrato de Sódio	75,36
KNO ₃	Nitrato de Potássio	94,62
K ₂ SO ₄	Sulfato de Potássio	97,59
K ₂ CO ₃	Carbonato de Potássio	43,16
Na ₂ SO ₄	Sulfato de Sódio	93,60
Na ₂ CO ₃	Carbonato de Sódio	91,60
CaSO ₄ .2H ₂ O	Sulfato de Cálcio	99,60

Tabela 2.1 - Humidade relativa de equilíbrio de alguns sais à temperatura de 20°C, adaptado [10]

2.3. TRANSPORTE DE HUMIDADE E SECAGEM

2.3.1. TRANSPORTE DE ÁGUA NA FASE LÍQUIDA

Os materiais de construção, materiais porosos, absorvem água. Quando a mesma se encontra no seu estado líquido, penetra e percorre a rede capilar do material. A absorção capilar de um líquido por um material poroso vai depender não só da microestrutura (quantidade, disposição e tamanho dos poros) como também de três propriedades características do líquido: tensão superficial σ , viscosidade η e densidade ρ [11], [12], [13].

Nos materiais de construção o transporte de água na fase líquida ocorre, essencialmente, por capilaridade. O mecanismo de capilaridade ocorre quando as forças atrativas entre o líquido e o material sólido são mais fortes que as forças coesivas do líquido (Fig. 2.9).

Fig. 2.9 - Transporte de água por capilaridade [8]

As primeiras forças resultam da atração das moléculas do líquido pelas moléculas do sólido. As segundas resultam da coesão do próprio líquido, atuando no sentido contrário das forças atrativas. Assim, as moléculas da superfície livre do líquido estão sujeitas à resultante destas forças.

O transporte de água por capilaridade forma interfaces curvas entre o líquido e o ar presente no meio de propagação. É nestas interfaces que se desenvolve a pressão capilar. Através da lei de Jurin (equação 2.6) é possível calcular o valor dessa pressão, sendo que apenas é aplicável a tubos cilíndricos. Nesta equação p_c (Pa) representa a pressão capilar, σ (N/m) a tensão superficial do líquido, r (m) o raio de curvatura principal e θ o ângulo de contacto (Fig. 2.10) [1].

$$p_{c} = \frac{2 \times \sigma \times \cos \theta}{r}$$
(2.6)

Fig. 2.10 - Pressão capilar num tubo cilíndrico, adaptado [1]

O ângulo de contacto é o ângulo a que a superfície do líquido faz com a superfície do sólido. Quando estamos perante um material hidrófugo, este ângulo vai ser superior a 90°, enquanto que no caso dos materiais hidrófilos não ultrapassa os 90° (Fig. 2.11) [1], [9].

Fig. 2.11 - Ângulos de contato para materiais hidrófilos e hidrófugos [9]

Num tubo cilíndrico, onde o ângulo de contacto θ é inferior a 90° (Fig. 2.10), a água ascende até a pressão capilar ser equilibrada pelo peso da coluna de água. Assim, obtém-se a equação 2.7, onde *p* (N/m²) é a pressão gerada pela coluna de água, ρ (kg/m³) a densidade da água, *g* (m/s²) a constante da gravidade e H_0 (m) a altura de ascensão capilar em condições de equilíbrio [1].

$$p = -\rho \times g \times H_0 \tag{2.7}$$

Quando o equilíbrio entre a pressão capilar e a pressão exercida pela coluna de água é atingido, obtêmse o valor máximo da altura de ascensão capilar. Combinando as equações 2.6 e 2.7, obtém-se a equação 2.8, onde se pode verificar que a altura máxima atingida pela frente húmida é inversamente proporcional ao raio do poro, tal como acontece com a pressão capilar [1].

$$p_c + p = 0 \Leftrightarrow H_0 = \frac{2 \times \sigma}{r \times \rho \times g} \times \cos \theta$$
 (2.8)

A distância, em metros, percorrida pela água em função do tempo, em segundos, é calculada através da equação de Washburn (equação 2.9), que deriva da lei experimental de Poiseuille [1].

$$d(t) = \sqrt{\frac{\sigma \times r \times \cos \theta}{2 \times \eta}} \times t$$
(2.9)

Nesta equação, d (m) é a distância percorrida pela água durante o tempo t(s), η (kg.m⁻¹.s⁻¹) a viscosidade dinâmica da água, σ (N/m) a tensão da superfície da água, r(m) o raio do tubo e θ o ângulo de contacto.

No entanto, como esta equação foi idealizada para tubos cilíndricos verticais, a mesma não pode ser aplicada no cado dos materiais de construção, devido à sua complexa rede porosa, que impede a análise individual dos poros. Neste caso é necessária uma abordagem macroscópica do transporte de água líquida, através da determinação dos coeficientes globais que se obtêm através do ensaio de capilaridade. Este ensaio consiste em colocar um provete de um material poroso impermeabilizado nas faces laterais, em imersão parcial, para que ocorra a absorção capilar pela sua base (Fig. 2.12) e a partir de pesagens periódicas, determina-se a quantidade de água absorvida, geralmente expressa por um gráfico semelhante ao da Fig. 2.13 [1], [11].

Nesta curva de absorção capilar, o primeiro segmento reto corresponde ao preenchimento da maior parte dos poros interligados, e o segundo corresponde ao preenchimento dos restantes poros, através da difusão do ar retido no sistema poroso. O ponto de inflexão entre os dois segmentos de reta corresponde ao momento em que a franja capilar atinge a superfície superior do provete [1].

No ensaio de capilaridade a massa total de água absorvida, $W(kg/m^2)$ (equação 2.10), e a altura da ascensão capilar, H(m), são diretamente proporcionais à raiz quadrada do tempo, $\sqrt{t(s)}$ (equação 2.11).

Os coeficientes A, o coeficiente de absorção capilar (kg/(m²s^{1/2})9, e B, o coeficiente de penetração capilar (m/s^{1/2}), caracterizam a capacidade de transporte de água dos materiais. É também necessário considerar os valores iniciais de massa e de altura capilar, w_0 e h_0 respetivamente, que mesmo em provetes secos em estufa são observados [1].

$$W(t) = A.\sqrt{t} + w_0 \tag{2.10}$$

$$H(t) = B.\sqrt{t} + h_0 \tag{2.11}$$

2.3.2. TRANSPORTE DE ÁGUA NA FASE DE VAPOR

O transporte de água na fase de vapor, em materiais de construção, pode ser descrito como um processo de difusão, devido à existência de gradientes de pressão de vapor de água e de temperatura. No entanto, após análise de vários estudos relacionados com a difusão de vapor de água, verificou-se que a influência dos gradientes de temperatura na difusão de vapor de água pode ser negligenciada [14].

A difusão de vapor de água implica a existência de um gradiente de concentração de vapor de água, promovendo o fluxo de moléculas de água a locais onde a concentração de vapor de água é inferior, até à homogeneização da concentração. Este fenómeno pode ser expresso pela lei de Fick (equação 2.12), que define o fluxo de difusão j (kg.m⁻².s⁻¹) em função do coeficiente de difusão D_v (m².s⁻¹) e do gradiente de concentração ∇c (kg.m⁻³) [1].

$$\vec{j} = -D_{\nu}.\vec{\nabla}_c \tag{2.12}$$

Assumindo que o ar se comporta como um gás ideal (equação 2.13), o fluxo de difusão de vapor de água no ar pode ser representado pela equação 2.14.

$$p_{v} = \frac{C_{v.R.T}}{M_{w}} \tag{2.13}$$

$$\vec{j} = -\delta_{\nu}.\,\vec{\nabla}p_{\nu} \tag{2.14}$$

A difusão de vapor de água, nos materiais porosos, processa-se através do ar presente nos poros, mas não depende apenas da interação entre as moléculas de vapor de água. Como o vapor de água se difunde num meio de dimensões reduzidas, as suas moléculas colidem com as paredes dos poros (difusão de Knudsen) [3]. Os efeitos de adsorção e a tortuosidade do meio poroso provocam ainda uma significativa diminuição do fluxo de difusão, pelo que se deve ter em conta um fator de resistência à difusão de vapor de água µ. A difusão de vapor de água varia apenas de acordo com o tipo de material de propagação e as suas características porosas, sendo independente das variações térmicas e do teor de humidade (para baixos valores do mesmo). Para valores elevados de teor de humidade, a presença de água líquida, nos poros pode acelerar o transporte de vapor de água, já que o líquido diminui o caminho que o vapor de água efetivamente tem de percorrer por difusão [1], [3].

O coeficiente de permeabilidade ao vapor de água π (kg.m⁻¹.s⁻¹.Pa⁻¹) de um material, corresponde ao quociente entre o coeficiente de difusão de vapor de água no ar e o fator de resistência ao vapor de água. Assim, o fluxo de difusão em materiais porosos pode ser calculado pela equação 2.15 [1].

$$\vec{j} = \pi \times \frac{p_{vi} - p_{ve}}{e} \tag{2.15}$$

O ensaio laboratorial que permite determinar a permeabilidade ao vapor de água de um material é denominado de método da tina. É criado um regime estacionário de transporte de vapor unidirecional através de um material. Coloca-se solução salina, capaz de criar uma determinada HR à temperatura de ensaio, numa tina, onde posteriormente é colocado um provete do material. A interface provete/tina é vedada para se garantir que o transporte de humidade apenas ocorra através do provete (Fig. 2.14). O conjunto tina/provete é armazenado numa câmara climática, sendo periodicamente pesado até o fluxo de vapor que atravessa o provete seja constante. Pode apresentar-se este método com duas variantes: HR no interior da tina inferior à do ambiente (fluxo do exterior para o interior da tina – método da "tina seca"), ou HR no interior da tina superior à do ambiente (fluxo do interior para o exterior – método da "tina húmida") [1], [11].

No caso de o provete ser constituído por um material higroscópico, os resultados do ensaio de permeabilidade podem ser afetados devido à condensação capilar e a difusão à superfície, que não são em geral tidos em conta nos ensaios laboratoriais. De facto, quanto maior for a HR do ar a que o material está exposto, maior será o seu teor de humidade devido à adsorção de moléculas de água. Quando a espessura da película criada pelas moléculas de água preenche completamente os poros verifica-se a condensação capilar. A posterior migração da água líquida para a face em contacto com o ambiente de menor HR, promove o aumento do fluxo de humidade. A difusão de superfície também se deve ao gradiente de HR que acontece no ensaio de permeabilidade ao vapor de água. A espessura da camada de moléculas de água adsorvidas varia com a HR do ar, gerando-se um gradiente de concentração. A difusão de superfície é o processo difusivo que tende a homogeneizar esse gradiente, adicionando-se ao transporte de vapor por difusão molecular [11], [15].

Fig. 2.14 - Ensaio de permeabilidade ao vapor de água, método da tina húmida, adaptado [11]

2.3.3. SECAGEM

A secagem de materiais porosos pode ser descrita como o processo pelo qual a água abandona um material poroso. Ao nível macroscópico, considerando um provete saturado e selado em todas as faces, exceto numa (para se garantir um fluxo unidirecional), a secagem pode ser dividida em três fases:

- Fase I Inicialmente o material está saturado, existindo uma continuidade de água líquida na rede porosa. O transporte dessa água até à superfície superior é feito, maioritariamente, por capilaridade devido à elevada pressão capilar existente na superfície. A evaporação ocorre nesta superfície, diminuindo o teor de humidade do material. É consensualmente aceite que a taxa de secagem nesta fase depende apenas de fatores externos, como a HR do ar, a temperatura e a velocidade do ar. É expectável existir homogeneidade na distribuição de humidade pelo material, durante esta primeira fase,
- Fase II Quando o fluxo capilar deixa de ser suficiente para compensar a quantidade de água evaporada, existe uma regressão da frente húmida e a Fase II inicia-se. O transporte de humidade para a superfície do material dá-se através da difusão de vapor acima da frente húmida e por capilaridade abaixo da frente húmida. A regressão da frente húmida corresponde a uma quebra na continuidade do líquido nos poros próximos da superfície e à medida que esta evolui, o teor de água na zona húmida vai diminuindo progressivamente;
- Fase III Quando se verifica a descontinuidade do líquido abaixo da zona húmida inicia-se a terceira e última fase de secagem. A partir deste momento, o transporte na forma de vapor controla o transporte de água no material. Assim, o teor de humidade vai diminuir significativamente. Nesta fase, apesar de o material estar tecnicamente seco, partículas húmidas vão permanecer no material, nos poros de menores dimensão, durante algum tempo. O teor de humidade vai reduzir muito lentamente, à medida que o material se aproxima do equilíbrio higroscópico (Fig. 2.15) [1].

Fig. 2.15 - Secagem unidirecional de materiais porosos, adaptado [1]

Um método prático para avaliar a secagem nos materiais porosos de construção é através da curva de secagem em ambiente condicionado, onde são representadas as diferentes fases do processo de secagem, acima descrito.

Fig. 2.16 - Curva típica de um material poroso, adaptado [1]

A curva de secagem exprime o teor de água do provete, dado em percentagem da massa seca, em função do tempo. A taxa de secagem é dada pelo declive da curva. A transição entre a Fase II e a Fase III é geralmente difícil de identificar na curva de secagem. No entanto, a transição entre a Fase I e a Fase II é, geralmente, bastante clara (Fig. 2.16). Esta transição corresponde ao ponto de inflexão entre o segmento reto (diminuição linear do teor de água) e o segmento côncavo (decrescimento do teor de água). Ao ponto de inflexão entre estes dois segmentos denomina-se de teor de humidade crítico. Este teor de humidade crítico é tipicamente mais elevado para materiais com menos homogeneização da dimensão dos poros. Esta situação deve-se ao fato de quando a fase líquida contínua é interrompida em poros de maiores dimensões, os poros mais pequenos ainda conterem uma significativa quantidade de água [1].

É geralmente aceite pela comunidade científica que a diminuição do teor de humidade na Fase I, depende das condições externas. Ainda assim, a inclinação do segmento reto pode variar nos diferentes materiais porosos, em situações semelhantes de evaporação. Isto deve-se ao fato de diferentes porosidades poderem conduzir a diferentes superfícies de evaporação efetivas em provetes de semelhantes dimensões, condicionando as diferentes inclinações.

A posição da frente húmida vai determinar a localização dos processos de cristalização no material, pelo que o modo como decorre a secagem é determinante em relação às formas que essa degradação assume.

A taxa de evaporação de água num material poroso pode ser muito afetada quando este está contaminado por sais solúveis, influenciando a taxa de secagem [16]. Uma das principais causas desta redução da taxa de secagem é o facto dos sais terem uma HR_{eq}^{sat} menor do que a água pura, o que resultará num gradiente de pressão de vapor mais baixo entre a frente húmida e o ar circundante, tendo como consequência uma diminuição da taxa de evaporação [11], [16]. O bloqueio dos poros do material pelos cristais do sal, é outro dos fatores prováveis.

O posicionamento mais superficial da frente húmida, como consequência de uma reduzida taxa de evaporação, traz consequências graves, como problemas de humidade induzida pelos sais. No entanto nesta situação não há tanta tendência para a formação de subeflorescências. [17]

2.4. A DEGRADAÇÃO POR SAIS SOLÚVEIS

A degradação dos materiais porosos, por sais solúveis, deve-se à presença simultânea de sais e água e aos respetivos ciclos de saturação. Alterações climáticas podem levar à evaporação da água que transporta os sais dentro da rede porosa dos materiais. A solução torna-se mais concentrada, podendo transformar-se em supersaturada, e consequentemente levando à cristalização dos sais, originando eflorescências e/ou criptoflorências (Fig. 2.18).

As eflorescências ocorrem quando, no material, o fluxo de solução salina é suficiente para compensar as perdas por evaporação. Neste caso, a solução consegue atingir a superfície exterior dos materiais, onde evapora e se desenvolvem os cristais.

As criptoflurescências formam-se quando, ao contrário das eflorescências, o fluxo de solução salina é inferior à taxa de evaporação, desenvolvendo-se os cristais no interior da rede porosa. Esta cristalização é considerada como a principal causa da degradação dos materiais, devido às tensões internas que se criam no interior dos poros [1], [3].

Os processos de degradação por ação dos sais são condicionados por fatores muito complexos e variados. No entanto, podem destacar-se os três principais fatores, aliados a fatores ambientes (temperatura, HR do ar, radiação e a velocidade e direção do vento):

- Meio físico onde os processos ocorrem (material de construção);
- Características hígricas (permeabilidade ao vapor de água e absorção capilar), que condicionam a migração das soluções;
- Resistência mecânica, que condiciona a forma como o material resiste ás tensões internas que se criam nos poros.

A degradação por ação dos sais pode manifestar-se de diversas formas (Fig. 2.17), como alterações superficiais (eflorescências ou manchas de humidade), fendilhação, formação de crostas, separação dos materiais de alvenaria em camadas (delaminação, esfoliação, destacamento de camadas de rebocos, etc.), perda de coesão (pulverulência de tijolo cerâmico ou de pedra, arenização de argamassas, etc.) ou formação de vazios (alveolização) [1], [11].

Fig. 2.17 - Exemplos de diferentes padrões de degradação por sais em edifícios [1]

Existe uma relação entre a solubilidade dos sais e a sua ação destrutiva nos materiais porosos:

- Sais praticamente insolúveis: não conduzem a perigosos fenómenos de cristalização. Mesmo que a sua solubilidade lhes permita atingir a saturação dentro dos materiais, a sua concentração é mínima e insuficiente para causar danos.
- Sais pouco solúveis: geralmente mais perigosos. Dada a sua baixa solubilidade, geralmente cristalizam na camada interior à de superfície, criando empolamentos, destacamentos e esfoliação.
- Sais altamente solúveis: podem acumular-se e atingir elevadas concentrações. A sua higroscopicidade leva a que permaneçam em solução em ambientes húmidos, originando manchas escuras nos paramentos.

Fig. 2.18 - Degradação por ação dos sais, adaptado [1]

2.5. ANÁLISE DO FENÓMENO DE INTERFACE

2.5.1. INTRODUÇÃO

A adoção de materiais multicamada é uma necessidade no processo de construção, de modo a se poderem satisfazer as exigências a nível estrutural, conforto, térmica, acústica, entre outras. Assim, os edifícios, até mesmo os mais antigos, são compostos por elementos de variadas camadas, dispostas verticalmente e horizontalmente, com diferentes características, sendo mais complexo o estudo dos mecanismos de transferência de humidade. As alvenarias destacam-se no setor da construção, já que se tratam do sistema construtivo mais comum.

2.5.2. TIPOS DE INTERFACE

De acordo com V. Freitas [18] podem considerar-se três tipos de interfaces (Fig. 2.19):

- "Contacto Hidráulico" quando há interpenetração da estrutura porosa das duas camadas;
- "Contacto Perfeito" quando há contacto sem interpenetração da estrutura porosa das duas camadas;
- "Espaço de ar entre camadas" quando há um espaço ar de alguns milímetros de espessura.

Fig. 2.19 -Tipos de Interface: a) Contacto hidráulico; b) Contacto Perfeito; c) Espaço de ar

2.5.3. CONTACTO HIDRÁULICO

A interface *Contacto hidráulico ou continuidade hidráulica* ocorre quando nas camadas executadas *in situ*, a segunda camada penetra a primeira, existindo uma continuidade das estruturas porosas. Esta situação verifica-se em camadas do tipo betão, argamassa, gesso, etc [18]. Esta interface é abordada, por alguns autores, apenas na sua execução perfeita, ou seja, quando se obtém uma continuidade hidráulica entre dois materiais. Na prática é praticamente impossível essa perfeição [3].

A continuidade hidráulica perfeita caracteriza-se pela interpenetração perfeita entre dois materiais ao ponto de, caso os materiais sejam suficientemente idênticos, comportar-se-ão como uma estrutura monolítica, não havendo perturbações na interface entre camadas. No caso de materiais de características distintas, a pressão capilar assume o mesmo valor a montante e a jusante da interface. Contudo o teor de humidade dos materiais será diferente, variando consoante as características porosas

de cada material e do valor de pressão capilar (Fig. 2.20). A igualdade da pressão capilar permite estabelecer uma relação entre os valores do teor de humidade dos dois materiais na interface ($W_1=R\times W_2$) a partir de uma função R(p_c), cujo princípio de cálculo é apresentado na Fig. 2.20 [3], [18].

Fig. 2.20 - Princípio de cálculo da relação R(Pc), adaptado [18]

Esta configuração é caracterizada pela continuidade da pressão capilar (p_c) e a igualdade do fluxo de humidade (q) através da interface (equação 2.16 e 2.17).

$$p_{c,ch1}(w_1) = p_{c,ch2}(w_2) \tag{2.16}$$

$$q_{ch1} = q_{ch2} \tag{2.17}$$

A criação de uma interface de contacto hidráulico real, implica a colocação de uma argamassa fresca em contacto com um material poroso seco, como por exemplo o tijolo. Após a colocação da argamassa fresca entre duas camadas de tijolo, parte da água presente na argamassa será extraída por sucção pelo tijolo. Esta transferência transporta pequenas partículas da argamassa para a rede porosa do tijolo. Esta migração de água provoca uma diminuição no rácio água/cimento da argamassa próxima da interface durante a cura, resultando em diferentes características porosas, assim como de transporte de humidade da argamassa. Consequentemente, deixa de existir uma interface, mas sim uma zona "interfacial" que oferece resistência à migração da água. A porosidade e a permeabilidade à água da argamassa diminuem com o decréscimo do rácio água/cimento [3], [19].

As curvas de absorção por capilaridade em função do tempo de provetes com contacto hidráulico perfeito e com contacto hidráulico real, apresentadas como exemplo na Fig. 2.21, traduzem a resistência hídrica na interface de contacto hidráulico real.

Tijolo cerâmico - argamassa de cimento

Fig. 2.21 – Influência da interface de contacto hidráulico real na absorção de água por capilaridade, adaptado [19]

2.5.4. CONTACTO PERFEITO

A interface *Contacto perfeito* corresponde a duas camadas justapostas. A superfície de contacto, mesmo que seja perfeita, terá sempre uma descontinuidade da estrutura porosa havendo uma maior dificuldade de transmissão dos fluxos.

É importante referir que quando se colocam duas metades de um determinado material em contacto direto, de modo a formarem um só bloco, o seu comportamento difere quando essas metades foram cortadas e fraturadas. O bloco fraturado exibe um comportamento muito próximo do de um provete monolítico, no entanto o bloco cortado apresenta uma notável resistência hídrica na zona de interface. Esta diferença é atribuída ao facto de a continuidade da estrutura porosa do bloco fraturado, na interface, ser quase perfeita, situação que não se verifica no bloco cortado [20]. A Fig. 2.22 ilustra as diferenças entre os dois tipos de contacto perfeito. Assim, o corte do tijolo com rebarbadora conduz a uma pequena perda de material, pelo que apesar das duas partes aparentemente encaixarem uniformemente, as estruturas porosas das suas superfícies não coincidem na perfeição, havendo uma descontinuidade que condiciona a transferência de humidade. Foi esta a ligação escolhida para o estudo deste tipo de interface, uma vez que é o tipo de ligação utilizada na construção, na existência de materiais justapostos.

Nesta interface verifica-se uma continuidade da temperatura e igualdade de fluxos térmicos na entrada e à saída. Devido à resistência hídrica criada pela descontinuidade da estrutura porosa é imposto um fluxo máximo (FLUMAX). Este fluxo máximo transmitido, expresso em kg/m².s, é calculado experimentalmente através da curva de absorção de água em função do tempo, correspondendo ao declive da curva após atingida a interface [3], [21].

Fig. 2.22 - Representação de provetes fraturados (a) e cortados (b), adaptado [3]

Assim, apesar da descontinuidade na estrutura porosa, o fluxo de humidade que sai da camada inferior é igual ao fluxo que entra na camada superior, e não superior ao fluxo máximo (equação 2.19). Relativamente à pressão capilar, o mesmo já não ocorre (equação 2.18) [3], [18].

$$p_{c,pc1}(w_1) \neq p_{c,cp2}(w_2)$$
 (2.18)

$$q_{cp1} = q_{cp2} (2.19)$$

2.5.5. ESPAÇO DE AR ENTRE CAMADAS

A interface Espaço de ar traduz a situação em que as duas camadas não têm nenhum contacto físico, existindo um espaço de ar de alguns milímetros a separá-las. Esta interface é muito corrente entre camadas de paredes de edifícios [18].

No caso do transporte de humidade, o espaço de ar traduz-se num corte hígrico que impede a transferência de humidade na fase líquida, passando todo o transporte de água a fazer-se em fase de vapor [3], [18].

Num regime isotérmico, o fluxo de humidade que sai da camada inferior é igual ao fluxo de humidade que entra na camada superior, mas limitado pelo fluxo máximo de vapor transmitido pelo espaço de ar. O fluxo máximo de vapor transmitido pelo ar é dependente da espessura do espaço de ar e da pressão de vapor nas duas superfícies [3], [21].

Considera-se que existe continuidade da humidade relativa ($HR_1=HR_2$) se o teor de humidade crítico (w_{cr}) for superior ao teor de humidade da camada com maior humidade. No entanto, se o teor de humidade de uma das camadas é superior ao w_{cr} , a camada com menor teor de humidade tende para o w_{cr} desse material. O teor de humidade crítico (w_{cr}) representa o teor de humidade de um material quando em contacto com uma ambiência saturada e abaixo do qual o transporte de água por capilaridade é praticamente impossível. [3], [18], [21]

Devido a esta igualdade da humidade relativa é possível estabelecer uma ligação de teor de humidade entre ambos os materiais na interface (equação 2.20), através da relação de $S(\phi)$ (Fig. 2. 23).

Fig. 2. 23 - Princípio de cálculo da relação S(φ), adaptado [18]

2.6. SÍNTESE DO CAPÍTULO

Os efeitos nocivos da presença de sais nos materiais porosos de construção, aliados ao fenómeno de humidade ascensional são um dos grandes fatores para a degradação dos edifícios, principalmente os mais antigos, tanto no seu exterior como no seu interior. A dissolução dos sais na água não apresenta, isoladamente, um fator de risco. No entanto, após a evaporação da água, estes sais cristalizam criando severos mecanismos de degradação nos materiais porosos.

Os materiais de construção são maioritariamente porosos, favorecendo a fixação e transporte de humidade, quer na fase líquida como na fase de vapor (difusão do vapor de água). Assim, a compreensão dos mecanismos de degradação devidos à cristalização dos sais e o seu comportamento são de extrema importância. Estes sais são deliquescentes, ou seja, são capazes de absorver água do ambiente envolvente, já que a sua pressão de vapor de água é inferior à pressão do vapor de água do ar, pelo que são extremamente ofensivos. As oscilações climáticas levam a ciclos de cristalização/dissolução, originando severas degradações nos edifícios a longo prazo.

A origem dos sais solúveis pode ser devida a fonte externa ao edifício (solo, água do mar, nevoeiro salino, poluição atmosférica, etc.), como pode surgir nos próprios materiais de construção ou produtos armazenados nas proximidades.

Os conhecimentos das condições de continuidade entre camadas são de extrema importância para o estudo da transferência de humidade, uma vez que os sistemas construtivos são, na sua maioria, constituídos por várias camadas de materiais com diferentes estruturas porosas. Esta é uma matéria que, aliada à ação dos sais solúveis, não tem vindo a ser muito aprofundada pela comunidade científica.

Na construção são considerados três tipos de condições de contacto: contacto hidráulico, caraterizado pela existência de interpenetração da rede porosa das duas camadas; contacto perfeito, que compreende a justaposição de duas camadas com a existência de contacto físico perfeito entre as superfícies, sem interpenetração da rede porosa e espaço de ar entre camadas, impondo um corte hígrico que impede a transferência de humidade na fase líquida.

3

EFEITO DA ABSORÇÃO DE SOLUÇÕES AQUOSAS SALINAS EM ELEMENTOS COM MÚLTIPLAS CAMADAS – PRIMEIRO CICLO DE REABSORÇÃO

3.1. INTRODUÇÃO

O trabalho desenvolvido, de carácter laboratorial, teve como objetivo principal avaliar o efeito de ciclos de embebição de duas soluções aquosas salinas, em provetes de tijolo cerâmico com diferentes tipos de interface, a partir de ensaios de absorção unidirecional por capilaridade.

Os ensaios foram realizados em provetes de tijolo maciço impermeabilizados nas faces laterais, de modo a assegurar a transferência unidirecional da humidade, efetuando-se a absorção apenas pela base e a evaporação pela face superior.

O ensaio de absorção por capilaridade permite o cálculo do coeficiente de absorção, que define a massa de água absorvida por um material quando em contacto com água, sob a atuação de forças de sucção capilar.

Na sequência do trabalho realizado por T. Rego [3], é esperado confirmar-se algumas das suas conclusões, assim como melhor compreender como o efeito do fenómeno de cristalização/dissolução nos materiais porosos.

Por outro lado, será importante avaliar o que acontece num primeiro ciclo de reabsorção, admitindo uma prévia alteração da estrutura porosa do material por ação de sais absorvidos numa primeira fase realizada por T. Rego [3].

3.2. PROVETES E MATERIAIS UTILIZADOS

3.2.1. PROVETES

Os provetes utilizados para os ensaios tratam-se de amostras de tijolo onde para os provetes monolíticos, foram utilizados nove amostras de tijolo com as dimensões de 5 cm x 5 cm x 10 cm, impermeabilizados nas faces laterais com uma resina epóxi.

No caso dos nove provetes de contacto hidráulico, este são constituídos por dois tijolos de dimensões 5 cm x 5 cm, com uma camada intermédia de argamassa de 7 mm de espessura e com as faces laterais impermeabilizadas com uma resina epóxi.

Os nove provetes de contacto perfeito, constituídos por dois tijolos de 5 cm x 5 cm x 5 cm em contacto directo, foram rigidamente ligados com fita-cola de alumínio para evitar movimentos relativos entre os dois cubos de tijolo.

Por último, os nove provetes de espaço de ar são compostos por dois tijolos de 5 cm x 5 cm x 5 cm distanciados de um espaço de ar de 3 mm, sendo as ligações materializadas por pequenas plaquetas de alumínio (material metálico não higroscópico) coladas às faces laterais dos provetes.

A representação esquemática dos quatro tipos de provetes é apresentada na Fig. 3.1.

Fig. 3.1 - Provetes ensaiados, adaptado [3]

3.2.2. MATERIAIS

Para a realização do ensaio de absorção foram necessários alguns equipamentos do LFC da FEUP, assim como a adaptação de outros, para as condições necessárias ao ensaio.

Reservatórios

Os reservatórios utilizados têm as dimensões suficientes para permitir o ensaio de seis provetes em simultâneo e garantir que a área da base do reservatório é pelo menos duas vezes superior à área total dos seis provetes.

Apoios

Os apoios utilizados para os provetes nos ensaios tratam-se de bases de polietileno perfuradas por pioneses, por forma a garantir o mínimo contacto com a base do provete (Fig. 3.2).

Fig. 3.2 - Apoio de base de polietileno e pioneses

• Sensor de Temperatura e HR

A pressão capilar diminui linearmente com a temperatura, e existem estudos que verificam oscilações nos coeficientes de absorção capilar em função da temperatura.

Quanto à HR, visto tratarem-se de ensaios com soluções aquosas salinas, e estes sais serem materiais higroscópicos, facilmente se compreende a necessidade de controlar este parâmetro, recorrendo a um sensor de temperatura e HR (Fig. 3.3), por forma a obter resultados controlados.

Os ensaios foram realizados numa sala climatizada por forma a minimizar a influência da temperatura e da HR (Tabela 3.1).

Fig. 3.3 - Sensor de temperatura e HR

	Temperatura(°C)	Humidade relativa (%)
Valor médio	23,46	52,15
Valor máximo	27,17	80,85
Valor mínimo	19,58	34,82
Desvio padrão	1,89	6,01
Coeficiente de variação	8,07%	11,53%

Tabela 3.1 - Estatística descritiva dos valores registados para a temperatura e HR

Cronómetro

O cronómetro foi utilizado para garantir a uniformidade das pesagens, num intervalo de 15 segundos entre os três provetes de cada combinação solução vs interface.

Balança

As pesagens periódicas, para a avaliação da quantidade de água absorvida, foram realizadas numa balança com resolução de 0,1g.

Folhas de polietileno

As folhas de polietileno foram utilizadas para cobrir os reservatórios, entre pesagens, de modo a evitar a evaporação da solução.

Água destilada

Na preparação das soluções saturadas de sulfato de sódio e de cloreto de potássio, requer a utilização de água como solvente, tendo-se utilizado água destilada, de modo a minimizar a presença de impurezas ao longo do ensaio.

Sais

O soluto das soluções saturadas foram o sulfato de sódio e o cloreto de potássio, pelos motivos mencionados a seguir nesta dissertação.

Panos limpos e húmidos

Os panos foram utilizados para a limpeza quer da base dos provetes como da balança, entre cada uma das pesagens.

3.3. SOLUÇÕES

3.3.1. SOLUÇÕES AQUOSAS SALINAS UTILIZADAS

Os provetes foram previamente sujeitos ao ensaio de absorção em soluções salinas. A escolha das soluções baseou-se no limite temporal imposto e o elevado número de provetes a ensaiar, tendo sido opção ensaiar dois tipos de soluções salinas para além da solução de referência, a água. A seleção dos sais a utilizar recaiu então sobre o sulfato de sódio (Na2SO4) e o cloreto de potássio (KCl).

O nível de degradação provocado pelo sulfato de sódio foi um fator determinante na sua escolha. Existe um consenso entre autores ([1], [15], [22]), que referem este sal como um dos que maior degradação provoca nos edifícios. A sua presença promove o aparecimento de eflorescências nas superfícies exteriores e é um dos principais causadores de ciptoflorescências, conduzindo a elevadas pressões nos poros da rede porosa levando à desintegração do material.

O cloreto de potássio foi o segundo sal escolhido. Esta escolha incidiu tanto no facto de os iões de cloreto se encontrarem frequentemente nos edifícios, assim como aos interessantes resultados obtidos por J. Azevedo [11], quer a nível dos valores obtidos para o coeficiente de capilaridade nos ensais com solução saturada de cloreto de potássio, como a nível das cristalizações obtidas após o ensaio de secagem.

3.3.2. PREPARAÇÃO DAS SOLUÇÕES AQUOSAS SALINAS

A preparação das soluções aquosas salinas implica um estudo da curva de solubilidade dos sais. A solubilidade das soluções varia com o soluto, com o solvente e com a temperatura da mesma. Como se

pode verificar na Fig. 3.4, a curva de solubilidade do Na2SO4 aumenta de uma forma significativa em temperaturas mais baixas, mas ao atingir uma temperatura de 33°C existe um declínio. Assim, para a preparação da solução, aumentou-se a temperatura da água até cerca de 30°C, por forma a acelerar a reação.

A curva de solubilidade do KCl, apresenta um aumento constante, em função da temperatura, e a sua reação com a água é endotérmica, pelo que foi necessário aumentar a temperatura da água para cerca de 40°C.

Fig. 3.4 - Curva de solubilidade de KCI e Na2SO4, [3]

Na impossibilidade de preparar as soluções com o auxílio de um agitador magnético, as soluções foram preparadas em "banho-maria" (Fig. 3.5), sendo a temperatura controlada com um termómetro de líquidos. Os sais foram adicionados em excesso, de forma a garantir a saturação, quando a água atingiu a temperatura necessária e realizando-se agitação manual. De seguida deixaram-se as soluções em repouso até formação de depósito e estabilização da temperatura. Antes de se utilizarem as soluções nos ensaios, as mesmas foram filtradas, por forma a garantir a ausência de impurezas e cristais.

Fig. 3.5 - Preparação das soluções

3.4. ENSAIO DE ABSORÇÃO POR CAPILARIDADE

3.4.1. PROCEDIMENTO

O ensaio de absorção por capilaridade foi baseado no Procedimento nºII.6 "Water Absorption Coefficient (Capillarity)" da RILEM [17], tal como já havia sido feito por T. Rego [3]. O ensaio teve como objetivo a determinação, avaliação e comparação (com os valores previamente obtidos) do coeficiente de capilaridade dos provetes de tijolo com diferentes interfaces na presença de água (ensaio utilizado como referência) e das soluções aquosas salinas saturadas previamente referidas.

Sinteticamente foram ensaiados um total de 36 provetes: 3 provetes para cada uma das combinações solução vs interface, tal como representado na Fig. 3.6.

Fig. 3.6 - Combinações Solução vs Interface, adaptado [3]

Para a execução dos ensaios, foi efetuada uma sequência de operações, que permitem a correta pesagem e registo dos valores experimentais:

- 1. Iniciar o temporizador ao mesmo tempo que se colocam sobre os apoios os 3 provetes (da mesma combinação solução vs interface), com um intervalo de 15 segundos;
- 2. Cobrir o reservatório com película aderente para evitar a evaporação;
- 3. Pesagem do provete:
 - 3.1. Retirar o provete;
 - 3.2. Limpar a base submersa com pano limpo e húmido;
 - 3.3. Pesar o provete e registar valor;
 - 3.4. Colocar o provete no apoio;
 - 3.5. Cobrir o reservatório.
- 4. Verificar o nível do reservatório regularmente e adicionar água/solução quando necessário;
- 5. Repetir as pesagens na periodicidade prevista.

3.4.2. APRESENTAÇÃO E ANÁLISE DOS RESULTADOS OBTIDOS

3.4.2.1. Efeito das soluções aquosas salinas

Para a avaliar o efeito dos diferentes sais nos provetes de tijolo, foi efetuada uma comparação dos valores do coeficiente de absorção por capilaridade de referência e os valores do coeficiente de absorção por capilaridade em soluções salinas.

O coeficiente de absorção por capilaridade corresponde ao declive do primeiro troço linear da curva de absorção que representa a variação da massa do provete, durante o processo de absorção, em função da raiz quadrada do tempo.

A quantidade de água absorvida por unidade de área, $M_{w,i}$ (kg/m²) é calculada a partir da equação 4.1, onde M_i (kg) corresponde à massa do provete no instante ti, M_0 (kg) à massa seca do provete e S(m²) à área da base do provete.

$$M_{w,i} = \frac{M_i - M_0}{S}$$
(4.1)

A figura Fig. 3.7 apresenta as diferenças de pesos registadas no início do primeiro ciclo de reabsorção (2015), comparando com os valores da massa seca dos provetes antes dos ensaios efetuados por T.Rego [3] (2014). Nos gráficos pode observar-se que os provetes imersos em água apresentam diferenças muito pequenas no seu peso, podendo dever-se a pequenas impurezas. No caso dos provetes imersos nas soluções saturadas, a diferença de peso já é significativa, distingindo a presença de cristais de sais existentes na sequência do primeiro ensaio.

Fig. 3.7 - Diferença de massa seca (M0) dos provetes imersos em água, solução saturada de sulfato de sódio (Na2SO4) e solução saturada de cloreto de potássio (KCI), respetivamente

3.4.2.2. Cálculo e análise dos coeficientes de capilaridade por absorção – Primeiro ciclo de reabsorção

Na análise dos coeficientes de capilaridade por absorção, organizaram-se os valores dos provetes por solução: água, solução saturada de sulfato de sódio e solução saturada de cloreto de potássio. Numa primeira fase, foi realizada a análise de cada provete monolítico para casa uma das três soluções estudadas, sendo estes valores considerados como referência. Deste modo foi possível compreender o efeito de cada sal, ao longo dos ciclos de cristalização/dissolução.

Provetes Monolíticos

As curvas de absorção de água por capilaridade, em função da raiz quadrada do tempo, obtidas nos ensaios com provetes monolíticos imersos em água, solução saturada de sulfato de sódio e solução saturada de cloreto de potássio, estão representadas nas Fig. 3.8, Fig. 3.9 e Fig. 3.12, respetivamente.

As tabelas Tabela 3.2, Tabela 3.3 e Tabela 3.4, representam o resumo dos valores obtidos nos ensaios dos provetes monolíticos, imersos em água, solução saturada de sulfato de sódio e solução saturada de cloreto de potássio, respetivamente.

Fig. 3.8 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes monolíticos parcialmente imersos em água

Tabela 3.2 - Coeficiente de absorção por capilaridade de provetes monolíticos imersos em água

	Coeficiente de Capilaridade (kg/(m².s¹/²))				
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)
M1.1	0,0675	Sim			
M1.2	0,0738	Sim	0,0664	0,00801	12,06%
M1.3	0,0579	Sim			

Os coeficientes de capilaridade dos provetes monolíticos parcialmente imersos em água registados foram muito satisfatórios, havendo uma baixa dispersão dos seus valores. Por este motivo não foi necessário excluir nenhum dos valores obtidos.

Fig. 3.9 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes monolíticos parcialmente imersos em solução saturada de Na₂SO₄

	Coeficiente de Capilaridade (kg/(m².s¹/²))				
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)
M2.1	0,0856	Não			
M2.2	0,0522	Sim	0,0554	0,0045	8,05%
M2.3	0,0585	Sim			

Tabela 3.3 - Coeficiente de absorção por capilaridade de provetes monolíticos imersos em solução saturada de Na₂SO₄

Fig. 3.10 - Provetes monolíticos imersos em solução saturada de sulfato de sódio, antes do início do ensaio de absorção

Os provetes previamente imersos em solução de Na₂SO₄ apresentam maior volume de cristalização (Fig. 3.10), manifestando-se em pulverulências sobre toda a face superior, que pela sua fragilidade, tornaram o manuseio dos provetes mais delicado.

Durante a realização do ensaio os provetes foram soltando placas de sal cristalizado (Fig. 3.11) pelo que no início dos ensaios existem valores negativos da variação da massa.

Fig. 3.11 - Placas de Cristais de Na₂SO₄ libertadas durante o ensaio

Nos primeiros ensaios realizados por T. Rego [3], os provetes M2.1 e M2.2 apresentaram um atraso em relação ao provete M2.3, pelo que os valores dos mesmos não foram considerados. Este atraso foi atribuído à diferença nas bases dos provetes, já que algumas mantinham a superfície original do tijolo, e outras apresentavam a superfície cortada do tijolo. No entanto, durante este novo ciclo os provetes que apresentam atraso na absorção são os M2.1 e M2.3.

O provete M2.1 continua a apresentar um significativo atraso na absorção, mais uma vez confirmando que a superfície da base pode influenciar a velocidade de absorção. O provete M2.2 foi o que mais rapidamente absorveu a solução. Esta situação pode dever-se ao facto de os provetes apresentarem, após a secagem, placas de cristais na sua base. Estas placas apresentavam-se em maior dimensão em alguns provetes em relação a outros, assim como na superfície superior dos provetes, podendo isto indicar uma maior ou menor presença de espaços vazios podendo ser um fator relevante na absorção, permitindo que alguns provetes absorvam mais rapidamente a solução.

Relativamente ao coeficiente de capilaridade, verifica-se que o provete M2.1 apresenta um valor que se afasta dos restantes. Assim, foram considerados como corretos os valores dos provetes M2.2. e M2.3. uma vez que, apesar da diferença de tempo no início da absorção, estes apresentam valores mais próximos entre si e em relação ao valor registado por T. Rego [3].

Fig. 3.12 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes monolíticos parcialmente imersos em solução saturada de KCI

Tabela 3.4 - Coeficiente de absorção por capilaridade de provetes monolíticos imersos em solução saturada de KCI

		Coeficiente de Capilaridade (kg/(m ² .s ^{1/2}))			
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)
M3.1	0,0505	Sim			
M3.2	0,0503	Sim	0,05007	0,00059	1,17%
M3.3	0,0494	Sim			

Fig. 3.13 - Provetes monolíticos imersos em solução saturada de cloreto de potássio, antes do início do ensaio de absorção

Os provetes monolíticos imersos em solução saturada de cloreto de potássio apresentavam, antes do primeiro ciclo do ensaio de absorção, uma crosta de eflorescências com empolametos sobre toda a face superior dos provetes (Fig. 3.13). As eflorescências destes provetes são significativamente mais resistentes do que as observadas os provetes imersos em solução saturada de sulfato de sódio, pelo que a diferença de pesos inicial (Fig. 3.7) é aqui mais significativa.

Relativamente à curva de absorção, uma vez mais existem alguns valores negativos no início do ensaio devido à libertação de cristais de cloreto de potássio na solução. Todos os provetes apresentam valores de coeficiente de capilaridade semelhantes, pelo que não se excluiu nenhum dos valores. No entanto, o coeficiente de capilaridade para os provetes monolíticos imersos em solução saturada de cloreto de potássio no primeiro ciclo de reabsorção, é bastante inferior ao registado por T. Rego [3]. Esta situação pode ser explicada pelo facto de a presença de sais nos provetes, preenchendo e ocupando os poros do material, tornar os provetes menos porosos, e consequentemente diminuindo o seu coeficiente de capilaridade.

Na Fig. 3.14, apresentam-se os diferentes valores do coeficiente de capilaridade dos provetes monolíticos, para as três soluções estudadas, no primeiro ciclo de reabsorção.

Fig. 3.14 - Coeficientes de capilaridade para provetes monolíticos, no primeiro ciclo de reabsorção

Provetes com interface e solução H₂O

Da análise dos resultados obtidos, relativa os coeficientes de capilaridade de provetes com diferentes interfaces em contacto com a água, verificou-se que não existem diferenças significativas entre o coeficiente de capilaridade para as diferentes interfaces. Assim, optou-se por agrupar os resultados obtidos e compará-los com os valores obtidos para os coeficientes de capilaridade para os provetes monolíticos. As Fig. 3.15, Fig. 3.16 e Fig. 3.17, apresentam as curvas de absorção em função da raiz quadrada do tempo para os provetes em contacto com a água, para a interface espaço de ar, pasta de contacto e contacto perfeito, respetivamente. Na Tabela 3.5 apresentam-se os coeficientes de capilaridade obtidos para cada ensaio, o valor médio, o desvio padrão e o coeficiente de variação.

Fig. 3.15 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes espaço de ar parcialmente imersos em água

Fig. 3.16 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes pasta de contacto parcialmente imersos em água

Fig. 3.17 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes contacto perfeito parcialmente imersos em água

	Coeficiente de Capilaridade (kg/(m ² .s ^{1/2}))				
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)
EA1.1	0,0653	Sim			
EA1.2	0,0412	Não			
EA1.3	0,0681	Sim			
PC1.1	0,0366	Não			
PC1.2	0,0603	Sim	0,0664	0,00334	5,03
PC1.3	0,0335	Não			
CP1.1	0,0669	Sim			
CP1.2	0,0680	Sim			
CP1.3	0,0698	Sim			

Tabela 3.5 - Coeficiente de absorção por capilaridade de provetes com interface imersos em água

No cálculo do coeficiente de capilaridade médio dos provetes com interface parcialmente submersos em água, foram excluídos os provetes EA1.2, PC1.1 e PC1.3, já que estes se afastavam significativamente dos restantes. Os restantes provetes apresentam valores muito próximos entre si, do valor calculado para o provete monolítico e dos valores obtidos por T. Rego [3].

Provetes com interface e solução saturada de Na₂SO₄

As Fig. 3.18, Fig. 3.19 e Fig. 3.20 apresentam as curvas de absorção em função da raiz quadrada do tempo para todas as combinações de diferentes tipos de interface estudadas e a Tabela 3.6 apresenta os coeficientes de capilaridade obtidos em cada ensaio.

Fig. 3.18 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes espaço de ar parcialmente imersos em solução saturada de Na₂SO₄

Fig. 3.19 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes pasta de contacto parcialmente imersos em solução saturada de Na₂SO₄

Fig. 3.20 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes contacto perfeito parcialmente imersos em solução saturada de Na₂SO₄

Os valores do coeficiente de capilaridade calculados para o primeiro ciclo de reabsorção (Tabela 3.6) são bastante inferiores aos obtidos por T. Rego [3] e ao valor obtido para os provetes monolíticos imersos em água. As Fig. 3.21 e Fig. 3.22 demonstram a diferença no volume de cristalização, nos provetes de contacto perfeito, entre o ciclo de absorção (2014) e o primeiro ciclo de reabsorção (2015). Novamente, a acrescida presença de sais nos provetes leva a que a sua estrutura se torne menos porosa, conduzindo a uma redução do coeficiente de capilaridade.

	Coeficiente de Capilaridade (kg/(m².s¹/²))				
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)
EA2.1	0,0410	Sim			
EA2.2	0,0406	Sim			
EA2.3	0,0326	Sim			
PC2.1	0,0532	Não			
PC2.2	0,0355	Sim	0,03535	0,00498	14,08
PC2.3	0,0312	Sim			
CP2.1	0,0342	Sim			
CP2.2	0,0403	Sim			
CP2.3	0,0274	Sim			

Tabela 3.6 - Coeficiente de absorção por capilaridade de provetes com diferentes tipos de interface em contacto com uma solução saturada de Na₂SO₄

Fig. 3.21 - Provetes de contacto perfeito, imersos em solução saturada de sulfato de sódio, no final do ciclo de absorção (2014) [3]

Fig. 3.22 - Provetes de contacto perfeito, imersos em solução saturada de sulfato de sódio, no final do primeiro ciclo de reabsorção (2015)

Provetes com interface e solução saturada de KCI

As Fig. 3.23, Fig. 3.24 e Fig. 3.25 apresentam as curvas de absorção em função da raiz quadrada do tempo para todas as combinações com diferentes tipos interface estudadas.

A Tabela 3.7 apresenta os coeficientes de capilaridade obtidos em cada ensaio.

Fig. 3.23 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes espaço de ar parcialmente imersos em solução saturada de KCI

Fig. 3.24 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes pasta de contacto parcialmente imersos em solução saturada de KCI

Fig. 3.25 - Curvas de absorção por capilaridade, em função da raiz quadrada do tempo, dos provetes contacto perfeito parcialmente imersos em solução saturada de KCI

Tabela 3.7 - Coeficiente de absorção por capilaridade de provetes com diferentes tipos de interface em contact	to
com uma solução saturada de KCl	

	Coeficiente de Capilaridade (kg/(m ² .s ^{1/2}))				
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)
EA3.1	0,0053	Não			
EA3.2	0,0293	Sim			
EA3.3	0,0296	Sim			
PC3.1	0,0247	Sim			
PC3.2	0,0233	Sim	0,02777	0,00298	10,73
PC3.3	0,0304	Sim			
CP3.1	0,0293	Sim			
CP3.2	0,0539	Não			
CP3.3	0,0538	Não			

Os valores do coeficiente de capilaridade para os provetes com interface em contacto com solução saturada de cloreto de potássio são, à semelhança do que foi registado para os provetes em contacto com solução saturada de sulfato de sódio, bastante inferiores aos valores registados por T. Rego [3] e do valor obtido para os provetes monolíticos imersos em água. Novamente esta situação deve-se ao facto dos vazios estarem a ser ocupados por cristais de cloreto de potássio, tornando-os menos porosos e diminuindo o seu coeficiente de capilaridade. Esta diferença é mais significativa nos provetes parcialmente imersos em solução saturada de cloreto de potássio, apresentando uma forte crosta de cristais na sua superfície. Os valores dos provetes EA3.1, CP3.2 e CP3.3 não foram considerados por se afastarem significativamente dos restantes.

As figuras Fig. 3.26 e Fig. 3.27 demonstram a diferença no volume de cristalização, nos provetes espaço de ar, entre o ciclo de absorção (2014) e o primeiro ciclo de reabsorção (2015). Novamente, a acrescida presença de sais nos provetes leva a que a sua estrutura porosa se torne menos porosa, reduzindo o coeficiente de capilaridade.

Fig. 3.26 - Provetes espaço de ar, em contacto com solução saturada de cloreto de potássio, no final do ciclo de absorção (2014) [3]

Fig. 3.27 - Provetes espaço de ar, em contacto com solução saturada de cloreto de potássio, no final do ciclo de reabsorção (2015)

3.4.2.3. Determinação do fluxo máximo transmitido - FLUMAX

A avaliação da influência dos diferentes tipos de interface na cinética de embebição dos provetes de tijolo em água, foi feita com base no cálculo dos fluxos máximos transmitidos (FLUMAX) para cada tipo de interface.

O FLUMAX, tal como referido no capítulo 2, corresponde ao declive da curva de absorção por capilaridade em função do tempo, após se verificar a descontinuidade – depois de se atingir a interface.

Provetes espaço de ar

As Fig. 3.28, Fig. 3.29 e Fig. 3.33, apresentam as curvas de absorção de água por capilaridade em função do tempo, de provetes com espaço de ar parcialmente imersos em água, sulfato de sódio e cloreto de potássio, respetivamente.
As tabelas Tabela 3.8, Tabela 3.9 e Tabela 3.10, apresentam o resumo dos valores obtidos nos ensaios dos provetes de espaço de ar parcialmente imersos em água, sulfato de sódio e cloreto de potássio, respetivamente.

Fig. 3.28 - Curvas de absorção por capilaridade, em função do tempo, dos provetes espaço de ar parcialmente imersos em água

	FLUMAX (kg/(m ² .s))						
Provete	Valor individual Valor considerado		Média	Desvio Padrão	Coeficiente de variação (%)		
EA1.1	1,70×10 ⁻⁶	Sim					
EA1.2	1,58×10 ⁻⁶	Sim	1,56×10 ⁻⁶	1,46×10 ⁻⁷	9,32		
EA1.3	1,41×10 ⁻⁶	Sim					

Tabela 3.8 - FLUMAX em provetes espaço de ar em contacto com água

Fig. 3.29 - Curvas de absorção por capilaridade, em função do tempo, dos provetes espaço de ar parcialmente imersos em Na₂SO₄

	FLUMAX (kg/(m ² .s))						
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)		
EA2.1	1,93×10 ⁻⁶	Sim					
EA2.2	1,32×10⁻⁵	Não	1,67×10⁻ ⁶	3,78×10 ⁻⁷	22,7		
EA2.3	1,41×10 ⁻⁶	Sim					

Tabela 3.9 - FLUMAX em provetes espaço de ar, imersos em Na₂SO₄

Os provetes de espaço de ar parcialmente imersos em solução saturada de sulfato de sódio, apresentam um pequeno aumento no valor de FLUMAX, comparativamente aos resultados obtidos nos provetes de espaço de ar parcialmente imersos em água, mas em comparação com os resultados obtidos por T. Rego [3], regista-se uma diminuição do FLUMAX. Novamente se confirma a teoria de que os provetes têm um comportamento menos permeável (redução da porosidade), com os ciclos de absorção, uma vez que o FLUMAX diminui para materiais menos porosos. O valor obtido para o provete EA2.2 não foi considerado por se afastar consideravelmente dos restantes, sendo esta situação compreensível na análise visual do provete no final do ensaio de absorção (Fig. 3.30).

Fig. 3.30 - Provete EA2.2 no final do primeiro ciclo de reabsorção

Como se pode observar nas curvas de absorção por capilaridade, em função do tempo, dos provetes espaço de ar parcialmente imersos em solução saturada de sulfato de sódio, a determinação de um

patamar para a descontinuidade torna-se bastante complexa. Esta situação deve-se ao facto de durante o ensaio de absorção, os cristais de Na_2SO_4 terem atingido a camada superior de tijolo, ocupando a totalidade da camada de espaço de ar e atingindo a superfície superior do provete (Fig. 3.31).

Fig. 3.31 - Ocupação da camada de espaço de ar (Esquerda) e aparecimento de cristais na superfície superior do provete (Direita) - 2ªSemana de Absorção

Apesar da irregularidade da curva de absorção, é possível distinguir no gráfico três fases distintas do avanço da frente húmida (Fig. 3.32):

- 1. Nesta fase, a frente húmida situa-se na primeira camada de tijolo, ocupando os espaços vazios e hidratando os cristais de sal presentes no provete.
- 2. A frente húmida atinge a superfície superior da primeira camada de tijolo e começa a hidratar os cristais de sais aí presentes. Devido às características higroscópicas do sal, os cristais vão expandir, havendo sempre simultaneamente, dos mesmos. Esta situação ao fim de algum tempo permite que os cristais ocupem por completo a camada de espaço de ar e atinjam a camada superior de tijolo. A partir deste momento, os provetes têm uma "ponte" de cristais que permite a embebição da camada superior de tijolo e a ocupação dos espaços vazios da mesma, por cristais.
- 3. A última fase consiste na embebição da camada superior do tijolo. Apesar da "ponte" que agora existe entre as camadas, pela sensibilidade do sal ao ambiente envolvente, existem oscilações na velocidade de avanço da frente húmida, assim como a ocupação das laterais do provete por cristais.

Fig. 3.32 - Fases de avanço da frente húmida no provete de espaço de ar

Fig. 3.33 - Curvas de absorção por capilaridade, em função do tempo, dos provetes espaço de ar parcialmente imersos em KCl

Гаbela 3.10 - FLUMAX em provetes espa	aço de ar, imersos em KCI
---------------------------------------	---------------------------

	FLUMAX (kg/(m ² .s))							
Provete	Provete Valor Valor considerado individual		Média	Desvio Padrão	Coeficiente de variação (%)			
EA3.1	2,78×10 ⁻⁷	Não						
EA3.2	1,15×10 ⁻⁶	Sim	1,09×10 ⁻⁶	9,19×10 ⁻⁸	8,47			
EA3.3	1,02×10 ⁻⁶	Sim						

Os provetes de espaço de ar parcialmente imersos em solução saturada de cloreto de potássio apresentam uma pequena diminuição do valor do FLUMAX, tanto em relação aos valores obtidos para os provetes parcialmente imersos em água, como em relação aos valores obtidos por T. Rego [3]. O valor de FLUMAX obtido para o provete EA3.1 não foi considerado por se afastar consideravelmente dos valores obtidos para os restantes provetes.

Provetes pasta de contacto

As figuras Fig. 3.34, Fig. 3.35 e Fig. 3.36, apresentam as curvas de absorção por capilaridade em função do tempo, de provetes pasta de contacto parcialmente imersos em água, sulfato de sódio e cloreto de potássio, respetivamente.

As Tabela 3.11, Tabela 3.12 e Tabela 3.13 apresentam o resumo dos valores obtidos nos ensaios dos provetes pasta de contacto parcialmente imersos em água, sulfato de sódio e cloreto de potássio, respetivamente.

Fig. 3.34 - Curvas de absorção por capilaridade, em função do tempo, dos provetes pasta de contacto parcialmente imersos em água

	FLUMAX (kg/(m ² .s))						
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)		
PC1.1	57,9×10 ⁻⁶	Sim					
PC1.2	13,9×10 ⁻⁶	Não	56,3×10 ⁻⁶	2,26×10 ⁻⁶	4,02		
PC1.3	54,7×10 ⁻⁶	Sim					

Tabela 3.11 - FLUMAX em provetes pasta de contacto imersos em água

Os provetes pasta de contacto parcialmente imersos em água apresentam um resultado de FLUMAX inferior aos resultados obtidos por T. Rego [<u>3</u>]. No entanto, este facto pode ser explicado pela dificuldade

de se conseguir registar as pesagens no momento em que se atinge a descontinuidade, comprometendo a precisão dos valores obtidos.

Fig. 3.35 -Curvas de absorção por capilaridade, em função do tempo, dos provetes pasta de contacto parcialmente imersos em Na₂SO₄

	FLUMAX (kg/(m ² .s))							
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)			
PC2.1	2,24×10 ⁻⁶	Sim						
PC2.2	1,85×10 ⁻⁶	Sim	2,05×10⁻ ⁶	2,76×10 ⁻⁷	13,5			
PC2.3	4,38×10 ⁻⁶	Não						

Tabela 3.12 - FLUMAX em provetes pasta de contacto, parcialmente imersos em Na₂SO₄

Os provetes pasta de contacto imersos em solução saturada de sulfato de sódio, apresentam valores muito inferiores aos obtidos para os provetes imersos em água e aos resultados obtidos por T. Rego [3]. Mais uma vez estes resultados comprovam as alterações que os materiais estão a sofrer com os ciclos de absorção, assim como a natureza destrutiva deste sal nos materiais de construção. O valor do provete PC 2.3 não foi considerado pela sua discrepância em relação aos restantes.

A curva de absorção por capilaridade, em função do tempo, dos provetes pasta de contacto parcialmente imersos em solução saturada de sulfato de sódio, apresenta muitas irregularidades, devido a algumas inevitáveis perdas de cristais durante o manuseio dos provetes.

As curvas de absorção por capilaridade, em função do tempo, dos provetes de pasta de contacto parcialmente imersos em soluço saturada de cloreto de potássio apresentam alguma instabilidade durante o processo de absorção. Inicialmente o atraso na absorção pode, mais uma vez, dever-se à dificuldade de a solução infiltrar as placas de cristais que se formaram durante a secagem. Atingida a descontinuidade, continua a verificar-se instabilidade. Esta situação pode dever-se ao facto de os cristais de cloreto de potássio presentes no provete, terem conseguido danificar a resina epóxi. É então difícil definir se as condições de impermeabilidade se mantêm (Fig. 3.37).

Fig. 3.36 - Curvas de absorção por capilaridade, em função do tempo, dos provetes pasta de contacto parcialmente imersos em KCI

Relativamente aos valores de FLUMAX, apesar de os provetes PC3.1 e PC3.2 apresentarem valores próximos entre si, uma análise à sua curva de capilaridade, em função do tempo, e o facto de ser possível a rotura da resina, os seus valores não foram considerados, uma vez que essa rotura permitiu uma pequena percentagem de evaporação simultaneamente ao ensaio de absorção, aumentando o fluxo máximo transmitido na interface. Assim, considerou-se como correto o valor de FLUMAX do provete PC3.3 que, ainda assim, é muito inferior aos valores obtidos nos provetes de água e aos obtidos por T. Rego [3].

Fig. 3.37 - Descolagem (Esquerda) e rotura da resina epóxi pelos cristais de Na₂SO₄

	FLUMAX (kg/(m ² .s))							
Provete	Valor Valor considerado individual		Média	Desvio Padrão	Coeficiente de variação (%)			
PC3.1	7,87×10 ⁻⁷	Não						
PC3.2	7,46×10 ⁻⁷	Não	6,02×10 ⁻⁶	-	-			
PC3.3	6,02×10 ⁻⁶	Sim						

Tabela 3.13 - FLUMAX em provetes pasta de contacto, parcialmente imersos em KCI

Provetes contacto perfeito

As figuras Fig. 3.38, Fig. 3.39 e Fig. 3.42, apresentam as curvas de absorção por capilaridade em função do tempo, de provetes pasta de contacto parcialmente imersos em água, sulfato de sódio e cloreto de potássio, respetivamente.

As tabelas Tabela 3.14, Tabela 3.15 e Tabela 3.16, apresentam o resumo dos valores obtidos nos ensaios dos provetes pasta de contacto parcialmente imersos em água, sulfato de sódio e cloreto de potássio, respetivamente.

Fig. 3.38 - Curvas de absorção por capilaridade, em função do tempo, dos provetes contacto perfeito parcialmente imersos em água

abela 3.14 - FLUMAX em p	provetes contact	to perfeito em	contacto em água
--------------------------	------------------	----------------	------------------

	FLUMAX (kg/(m ² .s))							
Provete	Provete Valor Valor considerado individual		Média	Desvio Padrão	Coeficiente de variação (%)			
CP1.1	6,49×10 ⁻⁶	Não						
CP1.2	81,6×10 ⁻⁶	Sim	71,2×10 ⁻⁶	1,47×10⁻⁵	20,7			
CP1.3	60,8×10 ⁻⁶	Sim						

O provete CP1.1 apresenta um valor de fluxo máximo bastante baixo, demonstrando apresentar uma elevada resistência hídrica na interface, tal como o sucedido no primeiro ensaio de absorção (2014), pelo que o seu valor não foi considerado. Relativamente aos provetes CP1.2 e CP1.3, verifica-se um aumento do valor do fluxo máximo comparativamente ao registado por T. Rego [3]. Uma possível explicação para este facto é que tenham ocorrido pequenos desvios da camada superior de tijolo, havendo um alinhamento das estruturas porosas, mais próximo do contacto efetivamente perfeito.

Fig. 3.39 - Curvas de absorção por capilaridade, em função do tempo, dos provetes pasta de contacto parcialmente imersos em Na₂SO₄

	FLUMAX (kg/(m ² .s))							
Provete	Provete Valor Valor considerad		Média	Desvio Padrão	Coeficiente de variação (%)			
CP2.1	1,46×10 ⁻⁶	Sim						
CP2.2	7,35×10 ⁻⁷	Não	2,58×10 ⁻⁶	1,58×10 ⁻⁶	61,4			
CP2.3	3,70×10 ⁻⁶	Sim						

Tabela 3.15 - FLUMAX em provetes contacto perfeito em contacto com Na₂SO₄

Os provetes de contacto perfeito imersos em solução saturada de sulfato de sódio, apresentam valores de FLUMAX muito inferiores aos obtidos nos provetes imersos em água e aos valores de T. Rego [3]. Estes valores podem ser explicados, não só pela redução da porosidade do material, devido à ocupação dos espaços vazios por cristais de sais, mas também pelo facto de apesar de se tratarem de provetes de contacto perfeito, na realidade existe uma quebra da rede porosa. Assim, existem 3 fases no processo de absorção:

- 1. Nesta fase, a frente húmida situa-se na primeira camada de tijolo, ocupando os espaços vazios e hidratando os cristais de sal presentes no provete.
- 2. A frente húmida atinge a descontinuidade, deparando-se com uma "barreira" de cristais. Esta barreira cria-se devido às eventuais irregularidades das duas superfícies de contacto, havendo sempre algum espaço entre si. No caso dos provetes parcialmente imersos em soluções saturadas

salinas, este espaço permite a criação de uma resistência hígrica muito severa, diminuindo consequentemente o valor do FLUMAX.

3. A última fase consiste na embebição da camada superior do tijolo.

Na figura Fig. 3.40, identificam-se as 3 fases, assim como a localização da barreira de cristais mencionada na Fase 2, ainda que de um modo exagerado. Na curva de absorção por capilaridade, em função do tempo, também é possível distinguir as três fases (Fig. 3.39).

Fig. 3.40 - Fases de avanço da frente húmida no provete contacto perfeito e barreira de cristais (Fase 2)

Durante os ensaios foi também possível fazer o registo fotográfico da evolução da absorção do provete CP2.2 (Fig. 3.41).

Fig. 3.41 - Evolução da absorção no provete CP2.2 ao longo do tempo (2ªSemana, 3ªSemana, 4ªSemana

Fig. 3.42 - Curvas de absorção por capilaridade, em função do tempo, dos provetes contacto perfeito parcialmente imersos em KCI

	FLUMAX (kg/(m ² .s))						
Provete	vrovete Valor Valor considerado individual		Média	Desvio Padrão	Coeficiente de variação (%)		
CP3.1	9,84×10 ⁻⁶	Não					
CP3.2	26,3×10 ⁻⁶	Sim	25,5×10 ⁻⁶	11,4×10 ⁻⁷	4,44		
CP3.3	24,7×10 ⁻⁶	Sim					

Tabela 3.16 - FLUMAX em provetes contacto perfeito em contacto com KCI

Os provetes de contacto perfeito imersos em solução saturada de cloreto de potássio apresentam valores inferiores aos obtidos nos provetes imersos em água e aos valores obtidos por T. Rego [3]. Mais uma vez, as fases descritas para os provetes imersos em solução saturada de sulfato de sódio, voltam a justificar esta diferença de valores. O valor obtido para o provete CP3.1 foi desprezado por se afastar significativamente dos restantes. Assim, apenas se consideraram os valores de CP3.2 e CP3.3 para o cálculo do FLUMAX.

3.5. SÍNTESE DO CAPÍTULO

Neste capítulo, de carácter experimental, foram calculados os coeficientes de capilaridade dos quatro tipos de provete parcialmente imersos em água, solução saturada de sulfato de sódio e solução saturada de cloreto de potássio. Foi também feita a comparação dos valores obtidos para os coeficientes de capilaridade no primeiro ciclo de reabsorção (2015) e os valores obtidos por T. Rego [3], no primeiro ciclo de absorção. Ainda foram calculados os fluxos máximos transmitidos nos provetes com interface, parcialmente imersos nas mesmas soluções, sendo ainda feita a comparação com os valores do primeiro ciclo de absorção (2014). Na Tabela 3.17apresentam-se os resultados obtidos nos ensaios efetuados.

		Tipo de Provete						
		Monolítico	Contact	o perfeito	Pasta	de contacto	Esp	aço de ar
	H2O	Α	Α	FLUMAX	Α	FLUMAX	Α	FLUMAX
acto		0,0664	0,0682	71,2×10 ⁻⁶	0,0603	56,3×10 ⁻⁶	0,0667	1,56×10⁻ ⁶
n cont	SO₄	A	Α	FLUMAX	Α	FLUMAX	Α	FLUMAX
Solução em	Na ₂ 9	0,0554	0,0340	2,58×10 ⁻⁶	0,0334	2,05×10 ⁻⁶	0,0381	1,67×10⁻ ⁶
	5	А	Α	FLUMAX	Α	FLUMAX	Α	FLUMAX
	Ŕ	0,05007	0,0293	25,5×10 ⁻⁶	0,0261	6,02×10 ⁻⁶	0,0295	1,09×10 ⁻⁶

Tabela 3.17 - Resumo dos resultados obtidos

4 EFEITO DE SOLUÇÕES AQUOSAS SALINAS NA SECAGEM DE ELEMENTOS COM MÚLTIPLAS CAMADAS

4.1. INTRODUÇÃO

O ensaio de secagem foi realizado na sequência do ensaio de primeiro ciclo de reabsorção por capilaridade, iniciando-se logo que atingido o estado de saturação no final do ensaio de capilaridade. Apesar de graficamente alguns dos provetes aparentemente não terem atingido este ponto de saturação, foi considerado que as diferenças de peso já eram suficientemente pequenas para se poder concluir o ensaio de capilaridade e iniciar o ensaio de secagem.

4.2. PROCEDIMENTO ADOTADO

O ensaio de secagem baseou-se no Procedimento nºII.5 "Evaporation Curve" da RILEM 1980 [17], tendo como objetivo a caracterização da influência das soluções salinas na secagem de provetes de tijolo. Durante este ensaio, foi também possível observar e registar a evolução da degradação da superfície dos provetes.

O ensaio foi realizado com os mesmos provetes utilizados para o ensaio de capilaridade, provetes esses utilizados por T. Rego [3] e neste trabalho – 1°ciclo (Capítulo 3) e 2°ciclo (Capítulo 5). Atingido o estado de saturação, no final do ensaio de capilaridade, os provetes foram retirados da imersão parcial e a sua face inferior foi selada com uma folha de polietileno por forma a garantir que a secagem seja unidirecional, ocorrendo apenas pela face superior (Fig. 4.1).

O ensaio ocorreu numa sala climatizada, com reduzida velocidade do ar, a aproximadamente 20°C e humidade relativa 60%. Os provetes foram dispostos com alguma distância entre si, em cima de uma bancada, tal como se pode observar na Fig. 4.2.

Fig. 4.1 - Provete de espaço de ar, previamente em contacto com solução saturada de Na₂SO₄, com a base selada com folha de polietileno, no início do ensaio de secagem

Fig. 4.2 - Provetes, previamente em contacto com solução saturada de KCI, no início do ensaio de secagem

Para a determinação da quantidade de água evaporada durante este ensaio, foram periodicamente efetuadas pesagens. Durante o primeiro dia do ensaio, foram efetuadas pesagens de 1h em 1h, seguidamente foram efetuadas pesagens três vezes por dia até ao final da primeira semana, uma vez por dia durante as duas semanas seguintes, uma vez por semana até ao final do primeiro mês de secagem e de 3 em 3 semanas até ao final do ensaio.

4.3. APRESENTAÇÃO E ANÁLISE DOS RESULTADOS

- 4.3.1. APRESENTAÇÃO E ANÁLISE DOS RESULTADOS OBTIDOS
- 4.3.1.1. Curva de Secagem e Índice de Secagem

A curva de evaporação representa o teor de água do provete em função do tempo. O teor de água é calculado em percentagem de massa seca (equação 4.1), onde W_i é o teor de água (%), M_i a massa (g) do provete no instante t_i e M_0 a massa (g) do provete no início do ensaio de absorção (2015) [11].

$$W_i = \frac{M_i - (M_i - M_0)}{(M_i - M_0)} \times 100 \tag{4.1}$$

O índice de secagem é determinado pela equação 4.2, onde $f(W_i)$ expressa a variação do teor de água (%) do provete em função do tempo (h), W_0 é o teor de água inicial (%) e t_i é o tempo total do ensaio (h).

$$I.S. = \frac{\int_{t_0}^{t_i} f(W_i) \times dt}{W_0 \times t_i}$$
(4.2)

A equação do índice de secagem representa a relação de áreas da curva de secagem (Fig. 4.3).

Fig. 4.3 - Relação entre áreas - cálculo do índice de secagem, adaptado [11]

A Normal 29/88 [23] estipula que a primeira etapa é a determinação do tempo de secagem, ti, que corresponde ao instante em que a curva de evaporação se torna horizontal, ou seja quando a equação 4.3. é respeitada. Nesta equação m_0 corresponde à massa (g) do provete no início do ensaio, m_{i-1} é a massa (g) do provete no instante t_{i-1} (h) e m_i é a massa (g) do provete no instante t_i .

$$1,0 \ge \frac{m_0 - m_{i-1}}{m_0 - m_i} \ge 0,90 \tag{4.3}$$

O recurso a esta equação demonstrou ser um critério que nem sempre é coerente com o troço horizontal da curva, pelo que tem vindo a ser modificado por alguns autores. A título de exemplo, V. Brito [24] considerou que a curva de secagem se torna horizontal quando se verifica a equação 4.4, em que m_i é a massa (g) do provete no instante t_i (h), m_{i-1} é a massa (g) do provete no instante t_{i-1} (h).

$$\frac{m_i - m_{i-1}}{t_i - t_{i-1}} \le 0,05 \tag{4.4}$$

A Normal 29/88 [23] define que quando se pretende comparar vários materiais, deverá considerar-se o mesmo tempo final de ensaio para todos os materiais, correspondendo o mesmo ao tempo final do material que demora mais tempo a secar. No entanto, a norma não considera a possibilidade de se testar o mesmo material com diferentes soluções aquosas salinas, considerando a possibilidade de testar um determinado material antes e depois de um determinado tratamento (hidrófugos, consolidantes, etc) e, para esse caso, refere que se deve considerar o tempo final do material antes do tratamento. Assim, à semelhança dos ensaios realizados por J. Azevedo [11], tomou-se a opção de nesta dissertação se considerar o tempo final do material não contaminado com sal, ou seja, os provetes parcialmente imersos em água. Neste caso, já se poderia calcular o índice de secagem para todos os provetes, mesmo para aqueles que ainda não estivessem completamente secos, uma vez que é considerado o tempo de secagem dos provetes parcialmente imersos em água [11]. Deste modo, comparou-se sempre o índice de secagem de cada solução, para cada tipo de interface, em relação ao tempo de secagem do provete monolítico parcialmente imerso em água.

Pelo facto de a norma não considerar a secagem com soluções aquosas salinas, é natural que não esteja perfeitamente adaptada a processos mais lentos. O critério utilizado por V. Brito [24] não foi aplicado nesta dissertação, uma vez que alguns valores não seriam coincidentes com o troço horizontal da curva, devido a pequenas diferenças de peso quando na presença de sais. Por forma a adaptar o critério da equação 4.3 para esta situação em particular alterou-se o intervalo de valores da equação para [0,980; 1,000].

4.3.1.2. Provetes monolíticos

As figuras Fig. 4.4, Fig. 4.5 e Fig. 4.7 apresentam as curvas de secagem dos provetes monolíticos, parcialmente imersos em água, solução saturada de sulfato de sódio e cloreto de potássio.

A Tabela 4.1 apresenta o tempo de secagem determinado para provetes monolíticos parcialmente imersos em água, que foi utilizado como referência para o cálculo dos índices de secagem dos restantes provetes (

Tabela 4.2).

As figuras Fig. 4.6 e Fig. 4.8, apresentam os provetes monolíticos, no início e no final do ensaio de secagem, parcialmente imersos em solução saturada de sulfato de sódio e de cloreto de potássio, respetivamente.

Fig. 4.4 - Curvas de secagem dos provetes monolíticos parcialmente imersos em água

Provete	Valor individual	Média	Desvio Padrão	Coeficiente de variação (%)
M1.1	3949,27			
M1.2	4838,40	4245,65	513,34	12,09
M1.3	3949,27			

Fig. 4.5 - Curvas de secagem dos provetes monolíticos parcialmente imersos em solução saturada de Na₂SO₄

Fig. 4.6 - Provetes monolíticos parcialmente imersos em água, na 1ª semana de secagem (cima) e na 36ª semana de secagem (baixo)

Fig. 4.7 - Curvas de secagem dos provetes monolíticos parcialmente imersos em solução saturada de KCI

Fig. 4.8 - Provetes monolíticos parcialmente imersos em solução saturada de KCl, na 1ªsemana de secagem (cima) e na 33ªsemana de secagem (baixo)

Os provetes monolíticos parcialmente imersos em água apresentam um valor do índice de secagem muito satisfatório em relação ao valor calculado por J. Azevedo [11] (I.S=0,188), considerando que têm o dobro da altura dos utilizados pela autora, mantendo-se a secção transversal. Ainda assim o valor obtido para o provete M1.2 não foi considerado por se afastar significativamente dos restantes.

		Ín	Índice de Secagem			
Provete	Valor individual	Valor Considerado	Média	Desvio Padrão	Coeficiente de variação (%)	
M1.1	0,20422	Sim				
M1.2	0,34527	Não	0,21094	0,0095	4,50	
M1.3	0,21766	Sim				
M2.1	0,69228	Sim				
M2.2	0,67518	Sim	0,70043	0,0302	4,31	
M2.3	0,73383	Sim				
M3.1	0,67827	Sim				
M3.2	0,55977	Não	0,65679	0,0304	4,63	
M3.3	0,63531	Sim				

Tabela 4.7 - Índice de secagem dos provetes monolíticos, parcialmente imersos nas três soluções estudadas

Os valores do índice de secagem para os provetes monolíticos parcialmente imersos são muito semelhantes entre si, sendo que os provetes parcialmente imersos em solução saturada de sulfato de sódio apresentam um valor ligeiramente superior. Na figura Fig. 4.9, representa-se graficamente as diferenças do índice de secagem dos provetes monolíticos parcialmente imersos nas três soluções estudadas.

Fig. 4.9 - Comparação dos valores do índice de secagem para os provetes monolíticos parcialmente imersos nas três soluções estudadas

4.3.1.3. Provetes espaço de ar

As Fig. 4.10, Fig. 4.11 e Fig. 4.13 apresentam as curvas de secagem dos provetes espaço de ar, parcialmente imersos em solução saturada de água, sulfato de sódio e cloreto de potássio.

A Tabela 4.3 apresenta os índices de secagem dos provetes espaço de ar imersos nas três soluções estudadas.

As Fig. 4.12 e Fig. 4.14, apresentam os provetes espaço de ar, no início e no final do ensaio de secagem, parcialmente imersos em solução saturada de sulfato de sódio e de cloreto de potássio, respetivamente.

Fig. 4.10 - Curvas de secagem dos provetes espaço de ar parcialmente imersos em água

Fig. 4.11 - Curvas de secagem dos provetes espaço de ar parcialmente imersos em solução saturada de Na₂SO₄

Fig. 4.12 - Provetes espaço de ar parcialmente imersos em solução saturada de Na₂SO₄, na 1ª semana de secagem (em cima) e na 36ª semana de secagem (em baixo)

Fig. 4.13 - Curvas de secagem dos provetes espaço de ar parcialmente imersos em solução saturada de KCI

Fig. 4.14 - Provetes espaço de ar parcialmente imersos em solução saturada de KCl, na 1ªsemana de secagem (em cima) e na 33ªsemana de secagem (em baixo)

Tabela 4.8 - Índice de secagem dos provetes espaço de ar, parcialmente imersos nas três soluções estudadas

		Índ	lice de Secagem		
Provete	Valor individual	Valor Considerado	Média	Desvio Padrão	Coeficiente de variação (%)

EA1.1	0,11401	Sim			
EA1.2	0,14182	Sim	0,12845	0,0139	10,85
EA1.3	0,12952	Sim	_		
EA2.1	0,46225	Sim			
EA2.2	0,51402	Sim	0,50067	0,0338	6,75
EA2.3	0,52574	Sim	_		
EA3.1	0,87395	Sim			
EA3.2	0,92120	Sim	0,89758	0,0334	3,72
EA3.3	0,62947	Não	_		

Os provetes espaço de ar, parcialmente imersos em água apresentam um valor de índice de secagem próximo do obtido por J. Azevedo [11]. As diferenças nestes valores derivam do facto de os tempos de secagem serem diferentes, e das diferenças no tipo de provete ensaiado.

O índice de secagem dos provetes espaço de ar, parcialmente imersos em solução saturada de sulfato de sódio, é bastante superior ao calculado para os provetes espaço de ar parcialmente imersos em água. No entanto, contrariamente ao que foi registado para os provetes monolíticos, é muito inferior ao índice de secagem dos provetes espaço de ar parcialmente imersos em solução saturada de cloreto de potássio.

O índice de secagem do provete EA3.3 não foi considerado por ser bastante inferior aos restantes provetes espaço de ar, parcialmente imersos em solução saturada de cloreto de potássio.

A significativa diferença entre os valores do índice de secagem dos provetes espaço de ar parcialmente imersos em água e dos provetes espaço de ar parcialmente imersos em soluções aquosas salinas, comprova mais uma vez, que estes provetes deixam de se comportar como provetes de espaço de ar.

Na figura Fig. 4.15, representa-se graficamente as diferenças do índice de secagem dos provetes espaço de ar parcialmente imersos nas três soluções analisadas.

Fig. 4.15 - Comparação dos valores do índice de secagem para os provetes espaço de ar imersos nas três soluções estudadas

4.3.1.3. Provetes pasta de contacto

As figuras Fig. 4.16, Fig. 4.17 e Fig. 4.19 apresentam as curvas de secagem dos provetes pasta de contacto, parcialmente imersos em água, solução saturada de sulfato de sódio e cloreto de potássio.

Na tabela Tabela 4.4 apresentam-se os índices de secagem dos provetes pasta de contacto parcialmente imersos nas três soluções estudadas.

As figuras Fig. 4.18 e Fig. 4.20, apresentam os provetes pasta de contacto, no início e no final do ensaio de secagem, parcialmente imersos em solução saturada de sulfato de sódio e de cloreto de potássio, respetivamente.

A figura Fig. 4.22, representa graficamente as diferenças do índice de secagem dos provetes espaço de ar parcialmente imersos nas três soluções analisadas.

Fig. 4.16 - Curvas de secagem dos provetes pasta de contacto parcialmente imersos em água

Fig. 4.17 - Curvas de secagem dos provetes pasta de contacto parcialmente imersos em solução saturada de Na₂SO₄

Fig. 4.18 - Provetes pasta de contacto parcialmente imersos em solução saturada de Na2SO4, na 1ª semana de secagem (em cima) e na 36ª semana de secagem (em baixo)

Fig. 4.19 - Curvas de secagem dos provetes pasta de contacto parcialmente imersos em solução saturada de

Fig. 4.20 - Provetes pasta de contacto parcialmente imersos em solução saturada de KCI, na 1ªsemana de secagem (em cima) e na 33ªsemana de secagem (em baixo)

	Índice de Secagem				
Provete	Valor individual	Valor Considerado	Média	Desvio Padrão	Coeficiente de variação (%)
PC1.1	0,65591	Sim			
PC1.2	0,58205	Sim	0,61559	0,0376	6,11
PC1.3	0,60721	Sim			
PC2.1	0,62147	Sim			
PC2.2	0,62379	Sim	0,62263	0,0016	0,26
PC2.3	0,92463	Não	-		
PC3.1	0,95649	Sim			
PC3.2	0,84998	Sim	0,85724	0,0958	11,2
PC3.3	0,76526	Sim			

Tabela 4.9 - Índice de secagem dos provetes pasta de contacto, parcialmente imersos nas três soluções estudadas

Os provetes pasta de contacto parcialmente imersos em água apresentam um índice de secagem superior ao dos provetes monolíticos, sendo esta uma situação previsível, uma vez que a argamassa que separa as duas camadas de tijolo se apresenta com uma porosidade superior ao do tijolo, acumulando mais água durante o processo de absorção, e consequentemente apresentando uma secagem mais lenta.

O valor do índice de secagem do provete PC2.3 não foi considerado por se afastar dos valores obtidos para os provetes PC2.1 e PC2.2. É importante referir que alguns provetes pasta de contacto apresentam descolagem da camada superior de tijolo, devido à pressão criada pelos cristais de sulfato de sódio (Fig. 4.21).

Fig. 4.21 - Descolagem da camada superior do provete PC2.1 devido à pressão criada pelos cristais de sulfato de sódio

Fig. 4.22 - Comparação dos valores do índice de secagem para os provetes pasta de contacto imersos nas três soluções estudadas

4.3.1.4. Provetes contacto perfeito

As figuras Fig. 4.23, Fig. 4.24 e Fig. 4.26 apresentam as curvas de secagem dos provetes pasta de contacto, parcialmente imersos em água, solução saturada de sulfato de sódio e cloreto de potássio.

Na Tabela 4.5 apresentam-se os índices de secagem dos provetes pasta de contacto parcialmente imersos nas três soluções estudadas.

As figuras Fig. 4.25 e Fig. 4.27, apresentam os provetes espaço de ar, no início e no final do ensaio de secagem, parcialmente imersos em solução saturada de sulfato de sódio e de cloreto de potássio, respetivamente.

Fig. 4.23 - Curvas de secagem dos provetes contacto perfeito parcialmente imersos em água

Fig. 4.24 - Curvas de secagem dos provetes contacto perfeito parcialmente imersos em solução saturada de Na₂SO₄

Fig. 4.25 - Provetes contacto perfeito parcialmente imersos em solução saturada de Na₂SO₄, na 1^ª semana de secagem (em cima) e na 36^ª semana de secagem (em baixo)

Fig. 4.26 - Curvas de secagem dos provetes contacto perfeito parcialmente imersos em solução saturada de KCI

Fig. 4.27 - Provetes contacto perfeito parcialmente imersos em solução saturada de KCI, na 1ªsemana de secagem (em cima) e na 33ªsemana de secagem (em baixo)

	Índice de Secagem				
Provete	Valor individual	Valor Considerado	Média	Desvio Padrão	Coeficiente de variação (%)
CP1.1	0,35056	Sim			
CP1.2	0,33481	Sim	0,34268	0,0111	3,25
CP1.3	0,15375	Não	-		
CP2.1	0,7427	Sim			
CP2.2	0,8472	Sim	0,73566	0,07283	9,90
CP2.3	0,65956	Sim	-		
CP3.1	0,76676	Sim			
CP3.2	0,57681	Não	0,74045	0,0372	5,03
CP3.3	0,71414	Sim	-		

Tabela 4.10 - Índice de secagem dos provetes contacto perfeito, parcialmente imersos nas três soluções estudadas

Os provetes contacto perfeito parcialmente imersos em água, apresentam um índice de secagem superior aos provetes monolíticos imersos em água. Poder-se-ia pensar que os provetes contacto perfeito deveriam ter um comportamento muito semelhante aos provetes monolíticos, nomeadamente nos provetes parcialmente imersos em água. No entanto, na prática, este contacto perfeito permite sempre algum espaço que pode durante o ensaio de absorção ser ocupado pelas soluções, criando adicionalmente uma resistência hídrica, em cada caso. Assim, compreende-se que também no valor de índice de secagem existam diferenças entre os valores dos provetes monolíticos e os provetes contacto perfeito.

Relativamente aos provetes parcialmente imersos em soluções aquosas salinas, estes apresentam valores muito semelhantes e, superiores ao obtido para os provetes parcialmente imersos em água.

Fig. 4. 28 - Comparação dos valores do índice de secagem para os provetes contacto perfeito imersos nas três soluções estudadas

4.3.2. COMPARAÇÃO DE RESULTADOS ENTRE PROVETES MONOLÍTICOS E PROVETES COM INTERFACE

Os provetes parcialmente imersos em água apresentam sempre índices de secagem bastante inferiores aos provetes parcialmente imersos em soluções aquosas salinas, uma vez que a presença de sais atrasa o processo de secagem.

Em relação à influência da interface no processo de secagem os provetes pasta de contacto apresentam os valores mais elevados de índice de secagem, com exceção dos provetes espaço de ar parcialmente imersos em solução saturada de cloreto de potássio. Esta situação pode dever-se ao facto de os provetes espaço de ar já não se comportarem como tal, apresentando valores superiores aos previstos para este tipo de interface uma vez que o sal ocupou a totalidade do espaço de ar e progrediu para a camada superior de tijolo.

O tipo de sal presente nas soluções aquosas salinas não influencia igualmente os provetes, uma vez que os provetes monolíticos e com interface contacto perfeito, com comportamentos teoricamente semelhantes entre si, parcialmente imersos em solução saturada de sulfato de sódio apresentam os valores mais elevados para este sal. Esta situação pode evidenciar que a presença de uma forte descontinuidade (provetes pasta de contacto e espaço de ar), acelera o processo de secagem para este tipo de sal.

Os provetes com interface parcialmente imersos em cloreto de potássio apresentam um aumento do índice de secagem, demonstrando que para este sal, a presença de descontinuidade atrasa o processo de secagem.

As diferenças no índice de secagem entre os dois sais pode dever-se não só à rede porosa do tijolo de cada provete como também à forma como os dois sais reagem em contacto com o ambiente e a sua capacidade destrutiva.

4.4. SÍNTESE DO CAPÍTULO

Neste capítulo foi feita uma análise do efeito que os ciclos de dissolução/cristalização têm nos quatro tipos de provetes estudados, relativamente ao seu índice de secagem.

A Fig. 4.29 apresenta o resumo dos valores de índice de secagem obtidos durante o ensaio de secagem.

Os provetes parcialmente imersos em água apresentam sempre valores inferiores aos provetes parcialmente imersos em solução aquosa salina, independentemente do tipo de sal e do tipo de provete.

Os provetes monolíticos e com interface contacto perfeito, parcialmente imersos em solução saturada de sulfato de sódio, apresentam valores muito próximos e superiores aos provetes com interface espaço de ar e pasta de contacto, evidenciando um aceleramento da secagem dos provetes com forte descontinuidade. Pelo contrário, os índices de secagem dos provetes parcialmente imersos em solução saturada de cloreto de potássio apresentam índices de secagem superiores nos provetes com interface, pelo que a presença de descontinuidade atrasa o processo de secagem neste sal.

Fig. 4.29 - Comparação dos índices de secagem

5

EFEITO DA ABSORÇÃO DE SOLUÇÕES AQUOSAS SALINAS EM ELEMENTOS COM MÚLTIPLAS CAMADAS – SEGUNDO CICLO DE REABSORÇÃO

5.1. INTRODUÇÃO

O trabalho laboratorial teve como objetivo principal avaliar o efeito de ciclos de embebição de duas soluções aquosas salinas, em provetes de tijolo cerâmico com diferentes tipos de interface, a partir de ensaios de absorção unidirecional por capilaridade.

O ensaio de absorção por capilaridade permite o cálculo do coeficiente de absorção, que define a massa de água absorvida por um material quando em contacto com água, devido à atuação das forças de sucção capilar.

Na sequência do ensaio de secagem, descrito e analisado no capítulo anterior, procedeu-se a um novo ensaio de absorção, com o objetivo de compreender o efeito dos ciclos de cristalização/dissolução de sais em materiais porosos.

5.2. ENSAIO DE ABSORÇÃO POR CAPILARIDADE

5.2.1. PROCEDIMENTO

O ensaio de absorção por capilaridade foi, à semelhança do primeiro ciclo de absorção, baseado no Procedimento nºII.6 "Water Absorption Coefficient (Capillarity)" da RILEM [17]. O ensaio teve por objetivo a determinação, a avaliação e a comparação (com os valores previamente obtidos) do coeficiente de capilaridade dos provetes de tijolo com interface na presença de água (ensaio utilizado como referência) e das soluções aquosas salinas saturadas previamente referidas.

Tal como já foi referido anteriormente, foram ensaiados um total de 36 provetes: 3 provetes para cada uma das combinações: solução vs interface.

Os ensaios foram realizados numa sala climatizada, de modo a minimizar as oscilações de temperatura e HR, sendo estes parâmetros registados com recurso a um sensor (Tabela 5.1).

	Temperatura(°C)	Humidade relativa (%)
Valor médio	22,88	52,11
Valor máximo	25,05	57,91
Valor mínimo	21,00	51,39
Desvio padrão	1,04	1,52
Coeficiente de variação	4,56%	2,92%

Tabela 5.1 - Estatística descritiva dos valores registados para a temperatura e HR

5.2.2. APRESENTAÇÃO E ANÁLISE DOS RESULTADOS OBTIDOS

5.2.2.1. Efeito das soluções aquosas salinas - Segundo ciclo de reabsorção

A figura Fig. 5.1 representa as diferenças de pesos registadas no início do segundo ciclo de reabsorção (2016), o primeiro ciclo de reabsorção (2015) e os valores da massa seca dos provetes antes dos ensaios efetuados por T.Rego [3] (2014).

Nos gráficos pode observar-se que os provetes imersos em água têm diferenças muito pequenas no seu peso, podendo dever-se a pequenas impurezas. No caso dos provete imersos em soluções saturadas, as diferenças de pesos já são significativas. Os provetes no início do segundo ciclo de reabsorção apresentam um peso acrescido, com uma diferença mais notável do que a comparação feita entre o primeiro ciclo de reabsorção (2015) e o primeiro ensaio de absorção (2014). Esta situação pode ser explicável pela acumulação de cristais de sal, que pelas suas características higroscópicas se vão acumulando e crescendo de volume em cada ciclo de reabsorção.

Fig. 5.1 - Diferença de massa seca (M₀) dos provetes imersos em água, solução saturada de sulfato de sódio e solução saturada de cloreto de potássio (2014, 2015 e 2016)

5.2.2.2. Cálculo e análise dos coeficientes de capilaridade por absorção – Segundo ciclo de absorção

Provetes Monolíticos – Segundo ciclo de reabsorção

As curvas de absorção de água por capilaridade, em função da raiz quadrada do tempo, obtidas nos ensaios com provetes monolíticos parcialmente imersos em água, solução saturada de sulfato de sódio e solução saturada de cloreto de potássio, estão representadas nas Fig. 5.2, Fig. 5.3 e Fig. 5.6, respetivamente.

As Tabela 5. 2, Tabela 5.3 e Tabela 5.4 representam o resumo dos valores obtidos nos ensaios dos provetes monolíticos parcialmente imersos em água, solução saturada de sulfato de sódio e solução saturada de cloreto de potássio, respetivamente.

Fig. 5.2 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes monolíticos parcialmente imersos em água

Tabela 5. 2 - Coeficiente de absorção por capilaridade de provetes monolíticos parcialmente imersos em á	gua –
segundo ciclo	

		Coeficiente de Capilaridade (kg/(m².s¹/²))			
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)
M1.1	0,0668	Sim			
M1.2	0,0729	Sim	0,0661	0,0072	10,94
M1.3	0,0585	Sim			

À semelhança do primeiro ciclo de reabsorção, os provetes monolíticos parcialmente imersos em água, apresentam valores muito semelhantes entre si, pelo que foram todos considerados. O valor obtido para o coeficiente de capilaridade dos provetes monolíticos parcialmente imersos em água é muito semelhante ao obtido no primeiro ciclo de absorção, o que comprova a uniformidade na realização dos ensaios.

Fig. 5.3 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes monolíticos parcialmente imersos em solução saturada de Na₂SO₄

Relativamente aos provetes monolíticos parcialmente imersos em solução saturada de sulfato de sódio, logo no início do manuseio dos provetes para preparação dos mesmos para o ciclo, foi notória a sua fragilidade e o grande volume de sal cristalizado ao longo de todo o provete. Alguns provetes libertaram placas de tijolo (Fig. 5.4), antes do início do ciclo.

Fig. 5.4 - Placas de tijolo libertadas para a folha de polietileno, no final do ensaio de secagem

A curva de absorção, em função da raiz quadrada do tempo, apresenta muitas irregularidades ao longo do tempo, com decréscimos súbitos no gráfico. Estes decréscimos devem-se às placas de cristais que envolviam os provetes que com a sua reidratação se soltaram dos mesmos, caindo para a tina do ensaio (Fig. 5.5). A libertação das placas provocou uma curva de capilaridade muito irregular, dificultando o cálculo e análise dos coeficientes de capilaridade.

Fig. 5.5 - Provetes monolíticos parcialmente imersos em solução saturada de Na₂SO₄ no início do segundo ciclo de reabsorção (em cima) e na 5ªsemana de reabsorção (em baixo), com perda de placas de cristais

Tabela 5.3 - Coeficiente de absorção por capilaridade de provetes monolíticos parcialmente imersos em solução
saturada de Na ₂ SO ₄ – segundo ciclo

	Coeficiente de Capilaridade (kg/(m ² .s ^{1/2}))					
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)	
M2.1	0,0553	Sim				
M2.2	0,0451	Sim	0,0502	0,0072	14,37	
M2.3	0,0730	Não				

Apesar das dificuldades na análise às curvas de capilaridade dos provetes monolíticos parcialmente imersos em solução saturada de sulfato de sódio, foi possível calcular os valores do coeficiente de capilaridade nos troços mais regulares da curva. O valor do provete M2.3 não foi considerado por se afastar consideravelmente dos restantes. O coeficiente de capilaridade calculado neste segundo ciclo de reabsorção é inferior ao calculado no primeiro ciclo de reabsorção.

Os provetes monolíticos parcialmente imersos em solução saturada de cloreto de potássio, apresentam curvas de capilaridade muito semelhantes às obtidas durante o primeiro ciclo de absorção. Tal como já foi referido anteriormente, as cristalizações do cloreto de potássio apresentam-se significativamente mais resistentes do que as de sulfato de sódio. Assim, excetuando os valores negativos de variação da massa obtidos no início do ensaio (libertação dos cristais situados na base dos provetes), as curvas de capilaridade apresentam um crescimento contínuo (Fig. 5.6).

O valor obtido para o coeficiente de capilaridade é inferior ao valor obtido para o primeiro ciclo de reabsorção.

Fig. 5.6 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes monolíticos parcialmente imersos em solução saturada de KCI

Tabela 5.4 - Coeficiente de absorção por capilaridade de provetes monolíticos imersos em solução saturada de KCI – segundo ciclo

	Coeficiente de Capilaridade (kg/(m ² .s ^{1/2}))					
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)	
M3.1	0,0316	Não				
M3.2	0,0492	Sim	0,0451	0,0059	13,02	
M3.3	0,0409	Sim				

A figura Fig. 5.7 apresenta os diferentes coeficientes de capilaridade para os provetes monolíticos, parcialmente imersos em água, solução saturada de sulfato de sódio e solução saturada de cloreto de potássio. Os provetes parcialmente imersos em água apresentam variações desprezáveis, podendo as mesmas dever-se a pequenas oscilações na temperatura e HR do ambiente, ou pequenas impurezas.

Os provetes imersos em solução saturada de sulfato de sódio apresentam pequenas diferenças nos valores do coeficiente de capilaridade. No primeiro ciclo de absorção (2015) houve um ligeiro aumento do valor do coeficiente de capilaridade e uma pequena diminuição do mesmo no segundo ciclo de reabsorção. Estas variações não são significativas o suficiente para se poder concluir, ao nível de coeficiente de capilaridade, a ação deste sal nos provetes, no entanto ao nível de FLUMAX e destruição dos provetes é notório o seu efeito nocivo, sendo o mesmo detalhado de seguida neste capítulo.

Relativamente aos provetes parcialmente imersos em solução saturada de cloreto de potássio, a diferença entre os valores do coeficiente de capilaridade ao longo dos ciclos de absorção é bastante significativa. Este valor diminui significativamente a cada novo ciclo de reabsorção.

Fig. 5.7 - Variação dos coeficientes de capilaridade nos provetes monolíticos, para as três soluções em estudo, ao longo dos ciclos de absorção/reabsorção

Provetes com interface e solução H₂O – Segundo ciclo de reabsorção

Da análise dos resultados obtidos, relativos aos coeficientes de capilaridade de provetes com diferentes interfaces, verificou-se que não existem diferenças significativas entre o coeficiente de capilaridade das diferentes interfaces, tal como foi feito no capítulo 3. Assim, optou-se por agrupar os resultados obtidos e compará-los com os valores dos coeficientes de capilaridade obtidos para os provetes monolíticos.

As Fig. 5.8, Fig. 5.9 e Fig. 5.10 representam as curvas de absorção de capilaridade em função da raiz quadrada do tempo para os provetes imersos em água, para a interface espaço de ar, pasta de contacto e contacto perfeito, respetivamente. A Tabela 5.5 apresenta os coeficientes de capilaridade obtidos para cada ensaio, o seu valor médio, o desvio padrão e o coeficiente de variação.

Fig. 5.8 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes espaço de ar parcialmente imersos em água

Fig. 5.9 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes pasta de contacto parcialmente imersos em água

Fig. 5.10 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes contacto perfeito parcialmente imersos em água

Os valores do coeficiente de capilaridade para os provetes com interface parcialmente imersos em água foram ao encontro do esperado. Os provetes EA1.2, PC1.1 e PC1.3 apresentam coeficientes de capilaridade muito inferiores aos restantes. Assim, tal como o registado no primeiro ciclo de reabsorção, estes valores não foram considerados no cálculo do valor médio do coeficiente de capilaridade, uma vez que a análise está a ser feita tendo em conta os resultados obtidos para todas as interfaces.

	Coeficiente de Capilaridade (kg/(m².s¹/²))						
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)		
EA1.1	0,0619	Sim					
EA1.2	0,0407	Não					
EA1.3	0,0636	Sim					
PC1.1	0,0308	Não					
PC1.2	0,0605	Sim	0,0649	0,0034	5,28		
PC1.3	0,0314	Não					
CP1.1	0,0673	Sim	•				
CP1.2	0,0670	Sim					
CP1.3	0,0692	Sim					

Tabela 5.5 - Coeficiente de absorção por capilaridade de provetes com interface imersos em água – segundo ciclo

• Provetes com interface e solução saturada de Na₂SO₄ – Segundo ciclo

As Fig. 5.11, Fig. 5.13 e Fig. 5.15 representam as curvas de absorção de capilaridade em função da raiz quadrada do tempo para todas as combinações com interface estudadas e a Tabela 5.6 apresenta os coeficientes de capilaridade obtidos em cada ensaio.

Fig. 5.11 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes espaço de ar parcialmente imersos em solução saturada de Na₂SO₄

A figura Fig. 5.12 apresenta os provetes espaço de ar, antes do início do segundo ciclo de absorção, onde é possível verificar que todos os provetes apresentam o espaço de ar ocupado por cristais de sulfato de sódio. Assim, compreende-se a grande divergência das curvas de capilaridade apresentadas e as esperadas para provetes espaço de ar, já que estes deixam de ter um comportamento semelhante.

Fig. 5.12 - Provetes espaço de ar, antes do início do segundo ciclo de reabsorção

Os provetes pasta de contacto foram dos que mais evidenciaram os efeitos nocivos deste sal nos materiais porosos (Fig. 5.13). Além de, durante a análise dos provetes antes do início do segundo ciclo de absorção, apresentarem descolagem na zona da pasta de contacto e a camada superior de tijolo, também libertaram grandes placas de cristais de sais (Fig. 5.14). Esta situação dificultou o cálculo do coeficiente de capilaridade, pelo que apenas foi possível efetuar o cálculo para o provete PC2.1.

Fig. 5.13 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes pasta de contacto parcialmente imersos em solução saturada de Na₂SO₄

Fig. 5.14 - Descolagem do tijolo superior da pasta de contacto devido à pressão exercida pelos cristais de sulfato de sódio (Esquerda) e libertação de placa de cristais durante o ensaio de reabsorção (Direita)

Os provetes de contacto perfeito parcialmente imersos em solução saturada de sulfato de sódio, apesar de não apresentarem perdas tão significativas de placas de cristais, apresentam curvas de capilaridade muito irregulares. Estas irregularidades podem dever-se ao facto de alguns provetes estarem claramente danificados, apresentando fraturas e desvios do tijolo superior devido à pressão criada pelos cristais (Fig. 5.16).

Fig. 5.15 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes pasta de contacto parcialmente imersos em solução saturada de Na₂SO₄

Fig. 5.16 - Fratura na base do provete CP2.3 (Esquerda) e desvio do tijolo superior devido à pressão criada pelos cristais na zona da interface (Direita)

	Coeficiente de Capilaridade (kg/(m².s¹/²))						
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)		
EA2.1	0,0610	Não					
EA2.2	0,0679	Não					
EA2.3	0,0382	Sim					
PC2.1	0,0399	Sim					
PC2.2	-	-	0,0334	0,0070	20,90		
PC2.3	-	-					
CP2.1	0,0305	Sim					
CP2.2	0,0249	Sim					
CP2.3	0,0617	Não					

Tabela 5.6 - Coeficiente de absorção por capilaridade de provetes com interface imersos em solução saturada de Na₂SO₄ – segundo ciclo

Os provetes com interface parcialmente imersos em solução saturada de sulfato de sódio, apresentavam claras evidências da sua deterioração devido à ação deste sal, estando os mesmos fisicamente alterados, como se pode verificar pelas imagens apresentadas. Estas alterações também foram notórias nas curvas de capilaridade, com muitas irregularidades e perdas de placas de cristais, que dificultaram e limitaram a análise do coeficiente de capilaridade. Com os valores obtidos pode-se verificar uma pequena diminuição do valor do coeficiente, não sendo esta muito considerável, tal como foi registado para os provetes monolíticos imersos neste sal.

Provetes com interface e solução saturada de KCl – segundo ciclo de reabsorção

As Fig. 5.17, Fig. 5.19 e Fig. 5.22 apresentam as curvas de absorção de capilaridade em função da raiz quadrada do tempo para todas as combinações com os diferentes tipos de interface estudados.

A Tabela 5.7 apresenta os coeficientes de capilaridade obtidos em cada ensaio e as Fig. 5.18, Fig. 5.20 e Fig. 5.23 apresentam os provetes com interface e solução saturada de KCl, no antes do início do segundo ciclo de reabsorção.

Fig. 5.17 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes espaço de ar parcialmente imersos em solução saturada de KCI

À semelhança dos provetes espaço de ar parcialmente imersos em solução saturada de sulfato de sódio, os provetes espaço de ar parcialmente imersos em solução saturada de cloreto de potássio apresentaram ocupação do espaço de ar pelos cristais de cloreto de potássio (Fig. 5.18).

Fig. 5.18 - Provetes espaço de ar, parcialmente imersos em solução saturada de cloreto de potássio, antes do início do segundo ciclo de absorção

Fig. 5.19 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes pasta de contacto parcialmente imersos em solução saturada de KCI

Fig. 5.20 - Provetes pasta de contacto, parcialmente imersos em solução saturada de cloreto de potássio, antes do início do segundo ciclo de reabsorção

Fig. 5.21 - Fratura da base do provete PC3.2

Os provetes pasta de contacto parcialmente imersos em solução saturada de cloreto de potássio, à semelhança dos restantes provetes em contacto com este sal, apresentam curvas de absorção com menos irregularidades do que as obtidas para os provetes em contacto com sulfato de sódio. Tal como o sucedido no primeiro ciclo de reabsorção (2015), visualmente estes provetes não apresentam diferenças muito drásticas desde o primeiro ciclo de absorção (2014). A Fig. 5.21 apresenta a fratura na base do provete PC3.2, detetada no início do segundo ciclo de reabsorção (2016).

Fig. 5.22 - Curvas de absorção por capilaridade, do segundo ciclo, em função da raiz quadrada do tempo, dos provetes contacto perfeito parcialmente imersos em solução saturada de KCI

Fig. 5.23 - Provetes contacto perfeito, parcialmente imersos em solução saturada de cloreto de potássio, antes do início do segundo ciclo de reabsorção

Os provetes contacto perfeito, parcialmente imersos em solução saturada de cloreto de potássio, não apresentam, no início do segundo ciclo de reabsorção, diferenças muito significativas no seu volume de cristalização. Esta situação traduz-se nas curvas de absorção sem grandes irregularidades. O provete CP3.1 apresenta descolagem da resina epóxi perto da superfície superior, devido à pressão criada pelos cristais de cloreto de potássio (Fig. 5.24).

Fig. 5.24 - Descolagem da resina epóxi do provete CP3.1

Tabela 5.7 - Coeficiente de absorção por capilaridade de provetes com interface imersos em solução saturada de KCI

	Coeficiente de Capilaridade (kg/(m ² .s ^{1/2}))						
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)		
EA3.1	0,0063	Não	-				
EA3.2	0,0341	Sim					
EA3.3	0,0299	Sim					
PC3.1	0,0822	Não					
PC3.2	0,0361	Sim	0,0306	0,0044	14,51		
PC3.3	0,0259	Sim					
CP3.1	0,0131	Não					
CP3.2	0,0456	Não					
CP3.3	0,0269	Sim					

Os provetes com interface parcialmente imersos em água, apresentam valores muito semelhantes ao longo dos ciclos de reabsorção, tal como os provetes monolíticos (Fig. 5.25).

Os provetes com interface imersos em solução saturada de sulfato de sódio tiveram uma constante diminuição do seu coeficiente de capilaridade, ao longo dos ciclos de reabsorção. As diferenças foram mais expressivas do ciclo de absorção (2014) para o primeiro ciclo de reabsorção (2015), uma vez que no ciclo de absorção a solução iria ter um comportamento similar ao da água durante a absorção. No entanto, durante o primeiro ciclo de reabsorção, os materiais apresentam uma quantidade significativa de cristais de sais na sua rede porosa, o que altera o seu comportamento durante a absorção.

Os provetes com interface imersos em solução saturada de cloreto de potássio, apesar de não apresentarem deteriorações tão evidentes como os provetes parcialmente imersos em solução saturada de sulfato de sódio, apresentam significativas diferenças no valor do seu coeficiente de capilaridade. Novamente, tal como foi registado para os provetes parcialmente imersos em solução saturada de sulfato

de sódio, esta diferença é superior do ciclo de absorção (2014) para o primeiro ciclo de reabsorção (2015), o que comprova uma vez mais a alteração provocada pelos sais na capacidade de absorção dos materiais porosos. Relativamente ao segundo ciclo de reabsorção (2016), verifica-se para estes provetes um pequeno aumento do coeficiente de capilaridade, que pode dever-se às diferenças do ambiente (temperatura e humidade relativa) durante a realização do ensaio.

Fig. 5.25 - Variação dos coeficientes de capilaridade nos provetes com interface, para as três soluções em estudo, ao longo dos ciclos de reabsorção

5.2.2.3. Determinação do fluxo máximo transmitido: FLUMAX - segundo ciclo

Provetes com interface espaço de ar

As Fig. 5.26, Fig. 5. 27 e Fig. 5.29, apresentam as curvas de absorção de água por capilaridade em função do tempo, de provetes com espaço de ar parcialmente imersos em água, sulfato de sódio e cloreto de potássio, respetivamente.

A Tabela 5.8, apresenta o resumo dos valores obtidos nos ensaios dos provetes espaço de ar parcialmente imersos em água, sulfato de sódio e cloreto de potássio, respetivamente.

Fig. 5.26 - Curvas de absorção por capilaridade, do segundo ciclo, em função do tempo, dos provetes espaço de ar parcialmente imerso em água

	FLUMAX (kg/(m ² .s))					
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)	
EA1.1	1,72×10 ⁻⁶	Sim				
EA1.2	1,12×10 ⁻⁶	Sim	1,60×10 ⁻⁶	4,36×10 ⁻⁷	27,2	
EA1.3	1,96×10 ⁻⁶	Sim				

Fig. 5. 27 - Curvas de absorção por capilaridade, do segundo ciclo, em função do tempo, dos provetes espaço de ar parcialmente imerso em Na₂SO₄

Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)
EA2.1	2,90×10 ⁻⁶	Sim			
EA2.2	1,55×10⁻⁵	Não	2,90×10 ⁻⁶	-	-
EA2.3	5,50×10 ⁻⁶	Não			

Os valores do FLUMAX para os provetes parcialmente imersos em solução saturada de sulfato de sódio, apresentam valores muito díspares entre si e ao que seria esperado. O valor do provete EA2.1 foi o único que se aproximou dos valores obtidos para provetes espaço de ar. Esta diferença nos valores do FLUMAX comprova, uma vez mais, que estes provetes se comportam cada vez menos como provetes de espaço de ar. O FLUMAX do provete EA2.2 aproxima-se dos valores obtidos para provetes pasta de contacto. A Fig. 5.28 expõe as alterações sofridas pelos provetes espaço de ar imersos neste sal, onde se pode verificar que o provete EA2.2 se apresenta completamente coberto por cristais, pelo que o seu comportamento se afasta do original.

Fig. 5.28 - Provetes espaço de ar, parcialmente imersos em solução saturada de sulfato de sódio, na 5ª semana do segundo ciclo de absorção

Fig. 5.29 - Curvas de absorção por capilaridade, do segundo ciclo, em função do tempo, dos provetes espaço de ar parcialmente imerso em KCl

			-			
	FLUMAX (kg/(m ² .s))					
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)	
EA3.1	5,33×10 ⁻⁷	Não				
EA3.2	1,23×10⁻⁵	Sim	1,30×10 ⁻⁵	9,90×10 ⁻⁷	7,61	
EA3.3	1,37×10⁻⁵	Sim				

Tabela 5.10 - FLUMAX em provetes espaço de ar, imersos em KCI

O fluxo máximo dos provetes espaço de ar aumentou significativamente do primeiro ciclo para o segundo ciclo. Esta não seria uma situação esperada, no entanto, tal como tem vindo a ser referido ao longo desta dissertação, o comportamento dos sais é muito imprevisível e depende de vários fatores.

Fig. 5. 30 - Provetes espaço de ar, parcialmente imersos em solução saturada de cloreto de potássio, na 4ªsemana do segundo ciclo de reabsorção

Os provetes espaço de ar não apresentam variações muito significativas ao longo dos ciclos de reabsorção das soluções (Fig. 5.31). Apesar de os provetes parcialmente imersos em soluções aquosas salinas apresentarem ocupação do espaço de ar, esta descontinuidade permite aos cristais de sais a absorção de humidade presente no ar, permitindo manter valores muito baixos de FLUMAX. O valor obtido para os provetes espaço de ar parcialmente imersos em solução saturada de cloreto de potássio, neste segundo ciclo, distancia-se significativamente do observado nos restantes provetes, pelo que pode ter ocorrido algum erro no seu cálculo. De forma a compreender se a discrepância deste valor é devida a erro humano, ou à imprevisibilidade do comportamento dos sais, seria ideal fazer novo ensaio de modo a comprovar os valores obtidos.

Fig. 5.31 - Variação do fluxo máximo transmitido nos provetes espaço de ar, para as três soluções em estudo, ao longo dos ciclos de reabsorção

Provetes com interface pasta de contacto

As Fig. 5.32, Fig. 5.33 e Fig. 5.35, apresentam as curvas de absorção de água por capilaridade em função do tempo, de provetes pasta de contacto parcialmente imersos em água, sulfato de sódio e cloreto de potássio, respetivamente.

As Tabela 5.11, apresenta o resumo dos valores obtidos nos ensaios dos provetes pasta de contacto parcialmente imersos em água, sulfato de sódio e cloreto de potássio, respetivamente.

Fig. 5.32 - Curvas de absorção por capilaridade, do segundo ciclo, em função do tempo, dos provetes pasta de contacto parcialmente imerso em água

		FLUM	IAX (kg/(m².s)))	
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)
PC1.1	73,8×10 ⁻⁶	Sim			
PC1.2	11,2×10 ⁻⁶	Não	76,1×10 ⁻⁶	3,25×10 ⁻⁶	4,27
PC1.3	78,4×10 ⁻⁶	Sim			

Tabela 5.11 - FLUMAX em provetes pasta de contacto, imersos em água - segundo ciclo

Os provetes pasta de contacto parcialmente imersos em água apresentam um ligeiro aumento do valor de fluxo máximo transmitido, relativamente ao primeiro ciclo de reabsorção. O valor do FLUMAX do provete PC1.2 não foi considerado, uma vez que é bastante inferior aos restantes provetes.

Fig. 5.33 - Curvas de absorção por capilaridade, do segundo ciclo, em função do tempo, dos provetes pasta de contacto parcialmente imerso em Na₂SO₄

Tabela 5.12 - FLUMAX em provetes pasta de contacto, imersos em Na_2SO_4 - segundo ciclo

	FLUMAX (kg/(m ² .s))					
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)	
PC2.1	4,32×10 ⁻⁶	Sim				
PC2.2	5,91×10 ⁻⁶	Sim	5,11×10 ⁻⁶	1,12×10 ⁻⁶	22,00	
PC2.3	-	-				

Fig. 5.34 - Provetes pasta de contacto, parcialmente imersos em solução saturada de sulfato de sódio, antes do início do segundo ciclo de reabsorção

Os provetes pasta de contacto parcialmente imersos em solução saturada de sulfato de sódio, apresentam uma drástica diminuição do FLUMAX. Estes resultados, aliados à observação visual de rotura da resina epóxi, aumento de cristais na zona de interface e consequente descolamento da camada superior de tijolo (Fig. 5.34), evidenciam uma forte degradação da camada de argamassa. A camada de argamassa tem uma resistência inferior à do tijolo, pelo que se compreende que apresente sinais de degradação mais explícitos ao longo dos ciclos de reabsorção.

Fig. 5.35 - Curvas de absorção por capilaridade, do segundo ciclo, em função do tempo, dos provetes pasta de contacto parcialmente imerso em KCI

	FLUMAX (kg/(m ² .s))					
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)	
PC3.1	1,82×10 ⁻⁶	Sim				
PC3.2	1,95×10 ⁻⁶	Sim	1,89×10 ⁻⁶	9,19×10 ⁻⁸	4,88	
PC3.3	3,68×10 ⁻⁶	Não				

No início do segundo ciclo de reabsorção, todos os provetes pasta de contacto parcialmente imersos em solução saturada de KCl, apresentavam roturas na zona de interface e o provete PC3.1 apresentava uma fratura na sua base (Fig. 5.36). Esta situação cria descontinuidades no processo de absorção, uma vez que existe secagem em simultâneo. Os valores de FLUMAX calculados são significativamente diferentes dos calculados para o primeiro ciclo de reabsorção.

Fig. 5.36 - Rotura da resina nos provetes pasta de contacto parcialmente imersos em solução saturada de KCI (em cima) e fratura na base do provete PC3.1 (em baixo)

Fig. 5.37 - Variação do fluxo máximo transmitido nos provetes pasta de contacto, para as três soluções em estudo, ao longo dos ciclos de reabsorção

A Fig. 5.37 apresenta a variação do fluxo máximo transmitido nos provetes pasta de contacto, ao longo dos ciclos de reabsorção.

Tal como foi referenciado anteriormente, os provetes parcialmente imersos em solução aquosa salina apresentam uma redução muito significativa do FLUMAX, evidenciando uma forte degradação da pasta de contacto na interface.

Provetes com interface contacto perfeito

As Fig. 5.38, Fig. 5.39 e Fig. 5.40, apresentam as curvas de absorção de água por capilaridade em função do tempo, de provetes contacto perfeito parcialmente imersos em água, sulfato de sódio e cloreto de potássio, respetivamente.

A Tabela 5.14, apresenta o resumo dos valores obtidos nos ensaios dos provetes contacto perfeito parcialmente imersos em água, sulfato de sódio e cloreto de potássio, respetivamente.

Fig. 5.38 - Curvas de absorção por capilaridade, do segundo ciclo, em função do tempo, dos provetes contacto perfeito parcialmente imerso em água

Tabela 5.14 - FLUMAX e	n provetes contacto	perfeito, imersos em	água – segundo ciclo

	FLUMAX (kg/(m ² .s))					
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)	
CP1.1	7,70×10 ⁻⁶	Não				
CP1.2	80,1×10 ⁻⁶	Sim 67,5×10 ⁻⁶		1,79×10⁻⁵	26,5	
CP1.3	54,8×10 ⁻⁶	Sim				

Os provetes contacto perfeito parcialmente imersos em água, apresentam uma pequena diminuição do fluxo máximo, mantendo-se o mesmo na mesma ordem de grandeza. O valor do provete CP1.1 não foi considerado por ser significativamente inferior aos restantes.

Fig. 5.39 - Curvas de absorção por capilaridade, do segundo ciclo, em função do tempo, dos provetes contacto perfeito parcialmente imerso em Na₂SO₄

	FLUMAX (kg/(m ² .s))					
Provete	Valor individual	Valor considerado Média		Desvio Padrão	Coeficiente de variação (%)	
CP2.1	6,78×10 ⁻⁶	Sim				
CP2.2	5,14×10 ⁻⁶ Sim		5,96×10 ⁻⁶	1,16×10 ⁻⁶	19,5	
CP2.3	-	-				

Tabela 5.15 - FLUMAX em provetes contacto perfeito, imersos em Na₂SO₄ – segundo ciclo

Os provetes contacto perfeito, parcialmente imersos em solução saturada de sulfato de sódio, apresentam um pequeno aumento do fluxo máximo transmitido em relação ao primeiro ciclo de reabsorção. O FLUMAX para o provete CP2.3 não foi possível calcular-se, pelo facto de as irregularidades da curva não permitirem identificar a zona da descontinuidade.

Fig. 5.40 - Curvas de absorção por capilaridade, do segundo ciclo, em função do tempo, dos provetes contacto perfeito parcialmente imerso em KCI

	FLUMAX (kg/(m ² .s))					
Provete	Valor individual	Valor considerado	Média	Desvio Padrão	Coeficiente de variação (%)	
CP3.1	8,32×10 ⁻⁶	Sim				
CP3.2	3,25×10 ⁻⁶	Não	8,27×10 ⁻⁶	7,07×10 ⁻⁸	0,855	
CP3.3	8,22×10 ⁻⁶	Sim				

Tabela 5.16 - FLUMAX em provetes contacto perfeito, imersos em KCI - segundo ciclo

Os provetes contacto perfeito parcialmente imersos em solução saturada de cloreto de potássio, apresentam um decréscimo contínuo do fluxo máximo transmitido ao longo dos ciclos de reabsorção.

Fig. 5.41 - Variação do fluxo máximo transmitido nos provetes contacto perfeito, para as três soluções em estudo, ao longo dos ciclos de reabsorção

A Fig. 5.41 apresenta a variação do fluxo máximo transmitido nos provetes contacto perfeito, ao longo dos ciclos de reabsorção.

Os provetes parcialmente imersos em solução saturada de sulfato de sódio, apresentam fluxos máximos transmitidos mais díspares. No entanto, as curvas de capilaridade destes provetes retratam as irregularidades criadas pelas placas de cristais que foram sendo libertadas ao longo do ensaio.

No caso dos provetes parcialmente imersos em solução saturada de sulfato de sódio apresentam um ligeiro aumento do fluxo máximo neste segundo ciclo de reabsorção.

Os provetes parcialmente imersos em solução saturada de cloreto de potássio, apresentam uma diminuição muito significativa ao longo de cada novo ciclo de reabsorção.

5.3. SÍNTESE DO CAPÍTULO

Neste capítulo, de carácter experimental, foram calculados os coeficientes de capilaridade dos quatro tipos de provete parcialmente imersos em água, solução saturada de sulfato de sódio e solução saturada de cloreto de potássio. Foi também feita a comparação dos valores obtidos para os coeficientes de capilaridade no segundo ciclo de absorção, primeiro ciclo de reabsorção (2015) e os valores obtidos por T. Rego [3], no primeiro ciclo de absorção. Ainda foram calculados os fluxos máximos transmitidos nos provetes com interface, parcialmente imersos nas mesmas soluções, sendo ainda feita a comparação com os valores do primeiro ciclo de absorção (2014). Na Tabela 5.17 apresentam-se os resultados obtidos nos ensaios efetuados.

		Tipo de Provete							
		Monolítico	Contact	o perfeito	Pasta	de contacto	Esp	Espaço de ar	
					-┠-┠				
acto	H ₂ O	Α	Α	FLUMAX	Α	FLUMAX	Α	FLUMAX	
		0,0661	0,0678	67,5×10 ⁻⁶	0,0605	76,1×10 ⁻⁶	0,0628	1,60×10 ⁻⁶	
n cont	SO4	Α	Α	FLUMAX	А	FLUMAX	Α	FLUMAX	
Solução en	Na ₂ S	0,0502	0,0277	5,96×10 ⁻⁶	0,0399	5,11×10 ⁻⁶	0,0382	2,90×10 ⁻⁶	
	0	Α	Α	FLUMAX	А	FLUMAX	Α	FLUMAX	
	K	0,0451	0,0269	8,27×10 ⁻⁶	0,0310	1,89×10 ⁻⁵	0,0320	1,30×10 ⁻⁵	

Tabela 5.17 - Resumo dos resultados obtidos no segundo ciclo de reabsorção

6 CONCLUSÃO

6.1. CONSIDERAÇÕES FINAIS

Ao concluir esta dissertação é possível afirmar que os objetivos inicialmente propostos foram cumpridos, uma vez que se avançou na compreensão da influência de ciclos de embebição e secagem de soluções aquosas salinas em elementos multicamada.

Este trabalho foi bastante extenso, complexo e exigente, com uma elevada componente laboratorial, envolvendo vários provetes de diferentes tipos de interface e monolíticos, assim como duas soluções aquosas salinas. Realizaram-se três ensaios, dois de absorção por capilaridade e um se secagem, ao longo de cerca de um ano, assim como a análise de todos os resultados obtidos.

A partir dos ensaios experimentais realizados, foi possível concluir-se que:

- Os dois sais estudados influenciam de formas claramente distintas os materiais porosos e o seu coeficiente de capilaridade. A presença de sulfato de sódio conduziu, no geral, a uma diminuição do valor do coeficiente de capilaridade, sendo o volume de cristais e o nível de degradação muito elevados. Por outro lado, a presença de cloreto de potássio, conduziu a uma drástica diminuição do valor do coeficiente de capilaridade, principalmente entre o ciclo de absorção e o primeiro ciclo de reabsorção. O volume de cristais e o nível de degradação foram menos expressivos;
- Os três tipos de provetes com interface estudados apresentam resistência hídrica, durante o ensaio de absorção, alterando o fluxo máximo transmitido. Ao longo dos ciclos de cristalização/dissolução, o fluxo máximo vai diminuindo, demonstrando um aumento da resistência hídrica criada na interface;
- Os provetes imersos em água apresentam um índice de secagem mais baixo, ou seja, secam mais depressa;
- Os provetes parcialmente imersos em cloreto de sódio apresentam, geralmente, índices de secagem mais elevados do que os registados nos provetes parcialmente imersos em solução saturada de sulfato de sódio, demonstrando uma maior dificuldade de secagem;
- O sulfato de sódio foi o sal mais agressivo, em termos de deterioração, para todos os provetes ensaiados, sendo esta deterioração mais notória nos provetes pasta de contacto.

Os resultados obtidos na realização deste trabalho comprovam a influência dos sais na absorção capilar, na cinética de secagem e nas caraterísticas da rede porosa dos materiais. A degradação dos provetes não

foi uniforme para as combinações solução vs interface, ou seja, existem diferenças entre os três provetes de cada combinação.

6.2. DESENVOLVIMENTOS FUTUROS

Na sequência deste trabalho, surgem outros projetos de investigação que poderão ser realizados no âmbito da degradação de sais solúveis, ao longo dos ciclos de cristalização/dissolução, em elementos multicamada, tanto a nível de capilaridade, como de fluxo máximo e secagem. Assim, apresentam-se algumas propostas para o seu desenvolvimento:

- Efetuar ciclos de cristalização/dissolução, para provetes com interface e diferentes materiais porosos, assim como estudar o efeito de outros sais nos mesmos, possibilitando avaliar a variação do coeficiente de capilaridade e do fluxo máximo transmitido;
- Avaliar a influência da temperatura ambiente no coeficiente de capilaridade e no fluxo máximo transmitido em provetes ensaiados com água e com diferentes tipos de sais;
- Efetuar ensaios de secagem em provetes com interface e diferentes tipos de sais, de modo a melhor se compreender a influência dos sais e da interface no processo de secagem dos materiais porosos.

6.3. PUBLICAÇÕES REALIZADAS NO ÂMBITO DESTA DISSERTAÇÃO

Durante a realização desta dissertação, foram publicados os seguintes documentos, apresentados no anexo 7:

- Artigo "The Effect of Salt Solutions and Absorption Cycles in the Capillary and Drying Coefficient of Red Brick Samples with Different Joints" na revista ISI "Advances in Materials Science and Engineering" [25]
- Póster "Influence of immersion and drying cycles of aqueous salt solutions in multilayered elements" no congress IJUP – 9° Encontro de Jovens Investigadores da U. Porto [26]
- Artigo "Effect of Salts and Absorption Cycles in the Capillary Coefficient of Building Materials with Different Joints" no congress CESBP 2016 – Central European Symposium on Building Physics, 14-16 setembro 2016, Dresden, Alemanha [27]

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] T. C. D. Gonçalves, "Salt crystallization in plastered or rendered walls," Technical University of Lisbon, 2007.
- [2] T. L. Brown, *Chemistry: the central science*: Pearson Education, 2009.
- [3] T. S. M. R. Rego, (2014). Efeito de soluções aquosas salinas nos processos de embebição de paredes com múltiplas camadas.
- [4] C. Strege, (2004). On (pseudo-) polymorphic phase transformations. *Martin-Luther-Universitat Halle-Wittenberg, Germany*.
- [5] L. A. Rijniers, *Salt crystallization in porous materials: an NMR study*: Technische Universiteit Eindhoven, 2004.
- [6] A. E. Charola, (2000). Salts in the deterioration of porous materials: an overview. *Journal of the American institute for conservation. vol. 39*, pp. 327-343.
- [7] P. Puim, "Controlo e reparação de anomalias devidas à presença de sais solúveis em edifícios antigos," Dissertação de Mestrado em Engenharia Civil, IST, Lisboa, 2010.
- [8] V. P. de Freitas, *Humidade Ascencional* vol. 3: FEUP edições, 2008.
- [9] M. Janz, (1997). Methods of measuring the moisture diffusivity at high moisture levels. *Report TVBM 3076*.
- [10] T. D. Gonçalves and J. D. Rodrigues, (2006). Evaluating the salt content of salt-contaminated samples on the basis of their hygroscopic behavior. Part I: Fundamentals, scope and accuracy of the method. *Journal of Cultural Heritage. vol. 7*, pp. 79-84.
- [11] J. M. C. B. de Azevedo, (2013). Absorção por Capilaridade de Soluções Aquosas Salinas em Materiais Porosos.
- [12] M. A. Wilson *et al.*, (1995). Water movement in porous building materials—XIII. Absorption into a two-layer composite. *Building and Environment. vol. 30*, pp. 209-219.
- [13] M. A. Wilson *et al.*, (1995). Water movement in porous building materials—XIV. Absorption into a two-layer composite (S A< S B). *Building and environment. vol. 30*, pp. 221-227.
- [14] H. Janssen, (2011). Thermal diffusion of water vapour in porous materials: Fact or fiction? *International Journal of Heat and Mass Transfer. vol. 54*, pp. 1548-1562.
- [15] E. Ruiz-Agudo *et al.*, (2007). The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates. *Environmental geology. vol. 52*, pp. 269-281.
- [16] N. Shahidzadeh-Bonn *et al.*, (2010). Damage in porous media due to salt crystallization. *Physical Review E. vol.* 81, p. 066110.
- [17] T. RILEM, (1980). 25-PEM, Recommended tests to measure the deterioration of stone and to assess the efectiveness of treatment methods. Test nº II. 5–Evaporation curve. *Materials & Structures. vol. 13*, pp. 205-207.
- [18] V. d. Freitas, "Transferencia de humidade em paredes de edificios," Dissertation Universidade do Porto, 1992.
- [19] W. Depraetere *et al.*, (2000). Moisture transfer at interfaces of porous materials: measurements and simulations. *PRO. vol. 12*, pp. 249-59.
- [20] H. Derluyn *et al.*, (2011). Influence of the nature of interfaces on the capillary transport in layered materials. *Construction and building materials. vol. 25*, pp. 3685-3693.
- [21] M. L. da Cunha, (2013). Influência da interface da cinética de embebição e secagem de paredes com múltiplas camadas.
- [22] C. Rodriguez-Navarro *et al.*, (2000). How does sodium sulfate crystallize? Implications for the decay and testing of building materials. *Cement and concrete research. vol. 30*, pp. 1527-1534.
- [23] C. Normal, (1991). Misura dell'indice di asciugamento (drying index). *Roma, CNR/ICR, Doc. vol. 29*, p. 88.
- [24] V. P. S. Brito, "Influência dos revestimentos por pintura na secagem do suporte," Laboratório Nacional de Engenharia Civil, 2009.
- [25] A. Guimarães, The Effect of Salt Solutions and Absorption Cycles in the Capillary and Drying Coefficient of Red Brick Samples with Different Joints. *Advances in Materials Science and Engineering. vol. 2016.*

- [26] A. P. Albuquerque, Influence of immersion and drying cycles of aqueous salt solutions in multilayered elements. 9° Encontro de Jovens Investigadores da U. Porto, 2016.
- [27] A. Guimarães, Effect of Salts and Absorption Cycles in the Capillary Coefficient of Building Materials with Different Joints. *Central European Symposium on Building Physics*, 2016.

ANEXO 1

Neste anexo apresenta-se a evolução da cristalização ao longo do primeiro ciclo de reabsorção.

- Provetes com interface de espaço de ar e pasta de contacto parcialmente imersos em solução aquosa saturada de cloreto de potássio:
 - Antes do ensaio:

• 1^a semana de absorção:

• 3^a semana de absorção:

• 4^a semana de absorção:

• 5^a semana de absorção:

• 6^a semana de absorção:

• 7^a semana de absorção:

• 8^a semana de absorção:

• 9^a semana de absorção:

• 10^a semana de absorção:

- Provetes monolíticos e com interface contacto perfeito parcialmente imersos em solução aquosa saturada de sulfato de sódio:
 - Antes do ensaio:

• 1^a semana de absorção:

• 2^a semana de absorção:

• 3^a semana de absorção:

• 4^a semana de absorção:

• 5^a semana de absorção:

- Provetes parcialmente imersos em solução aquosa saturada de sulfato de sódio:
 - Antes do ensaio:

- 1^a semana de absorção
 - Provetes monolíticos e com interface contacto perfeito:

Provete EA2.2 (1°, 2° e 3° Dia):

• 5^a semana de absorção:

- EA2.4 EA 2.3
- 6^a semana de absorção:

• 7^a semana de absorção:

• 8^a semana de absorção:

ANEXO 2

Neste anexo apresenta-se a evolução da cristalização ao longo do ensaio de secagem.

- Provetes parcialmente imersos em solução aquosa saturada de cloreto de potássio:
 - 1^a semana de secagem:

• 2^a semana de secagem:

• 3^a semana de secagem:

• 7^a semana de secagem:

• 13^a semana de secagem:

• 20^a semana de secagem:

• 23^a semana de secagem:

• 29^a semana de secagem:

- Provetes parcialmente imersos em solução aquosa saturada de sulfato de sódio:
 - 1^a semana de secagem:

• 2^a semana de secagem:

• 3^a semana de secagem:

• 7^a semana de secagem:

• 15^a semana de secagem:

• 23^a semana de secagem:

• 29^a semana de secagem:

ANEXO 3

Neste anexo apresenta-se a evolução da cristalização ao longo do segundo ciclo de reabsorção.

- Provetes parcialmente imersos em solução aquosa saturada de cloreto de potássio:
 - 1^a semana de absorção:

• 2^a semana de absorção:

• 3^a semana de absorção:

• 4^a semana de absorção:

- Provetes parcialmente imersos em solução aquosa saturada de sulfato de sódio:
 - 1^a semana de absorção:

- C 2.
- 2^a semana de absorção:

- HZ. -EA 2.3
- 3^a semana de absorção:

ANEXO 4

Neste anexo apresentam-se as tabelas de cálculo do coeficiente de capilaridade, do primeiro ciclo de reabsorção.
Provetes parcialmente imersos em água

			M1.1				M1.2				M1.3	
√t (√s)	M₀(g)	M _i (g)	M _i -M ₀ (g)	M _{wi} (kg/m²)	M₀(g)	M _i (g)	M _i -M ₀ (g)	M _{wi} (kg/m²)	M₀(g)	M _i (g)	M _i -M₀ (g)	M _{wi} (kg/m²)
0,00	596,278	596,278	0,000	0,000	577,184	577,184	0,000	0,000	579,052	579,052	0,000	0,000
7,75	596,278	597,673	1,395	0,512	577,184	578,585	1,401	0,532	579,052	579,157	0,105	0,039
13,42	596,278	598,403	2,125	0,780	577,184	579,424	2,240	0,851	579,052	579,414	0,362	0,136
17,32	596,278	598,862	2,584	0,948	577,184	580,048	2,864	1,088	579,052	579,556	0,504	0,190
24,49	596,278	599,897	3,619	1,328	577,184	581,271	4,087	1,553	579,052	579,908	0,856	0,322
30,00	596,278	600,692	4,414	1,619	577,184	582,165	4,981	1,892	579,052	580,329	1,277	0,480
42,43	596,278	602,688	6,410	2,352	577,184	584,314	7,130	2,709	579,052	581,379	2,327	0,875
60,00	596,278	605,684	9,406	3,451	577,184	587,614	10,430	3,962	579,052	583,347	4,295	1,615
84,85	596,278	610,250	13,972	5,126	577,184	592,566	15,382	5,843	579,052	587,013	7,961	2,994
103,92	596,278	613,967	17,689	6,490	577,184	596,468	19,284	7,326	579,052	590,430	11,378	4,279
120,00	596,278	617,243	20,965	7,692	577,184	599,789	22,605	8,587	579,052	593,791	14,739	5,543
134,16	596,278	620,112	23,834	8,744	577,184	602,728	25,544	9,704	579,052	596,855	17,803	6,696
146,97	596,278	622,778	26,500	9,723	577,184	605,356	28,172	10,702	579,052	599,687	20,635	7,761
158,75	596,278	625,237	28,959	10,625	577,184	607,748	30,564	11,611	579,052	602,411	23,359	8,785
169,71	596,278	627,542	31,264	11,471	577,184	609,897	32,713	12,427	579,052	604,904	25,852	9,723
307,12	596,278	634,670	38,392	14,086	577,184	615,570	38,386	14,582	579,052	617,705	38,653	14,538
318,62	596,278	634,728	38,450	14,107	577,184	615,606	38,422	14,596	579,052	617,697	38,645	14,535
329,73	596,278	634,742	38,464	14,112	577,184	615,656	38,472	14,615	579,052	617,687	38,635	14,531
340,29	596,278	634,758	38,480	14,118	577,184	615,649	38,465	14,612	579,052	617,718	38,666	14,542
414,97	596,278	635,061	38,783	14,229	577,184	615,950	38,766	14,727	579,052	617,915	38,863	14,617
427,78	596,278	635,085	38,807	14,238	577,184	616,017	38,833	14,752	579,052	617,894	38,842	14,609
514,98	596,278	635,337	39,059	14,330	577,184	616,361	39,177	14,883	579,052	618,086	39,034	14,681
719,58	596,278	635,808	39,530	14,503	577,184	616,824	39,640	15,059	579,052	618,234	39,182	14,737

		I	EA1.1			I	EA1.2			E	EA1.3	
√t (√s)	M₀(g)	Mi(g)	Mi-Mo (g)	M _{wi} (kg/m²)	M₀(g)	Mi(g)	Mi-Mo (g)	M _{wi} (kg/m²)	M₀(g)	Mi(g)	Mi-Mo (g)	M _{wi} (kg/m²)
0,000	591,063	591,063	0,000	0,000	571,312	571,312	0,000	0,000	597,778	597,778	0,000	0,000
7,746	591,063	592,421	1,358	0,510	571,312	572,058	0,746	0,292	597,778	599,097	1,319	0,493
13,416	591,063	593,148	2,085	0,783	571,312	572,554	1,242	0,487	597,778	599,873	2,095	0,784
17,321	591,063	593,686	2,623	0,986	571,312	572,872	1,560	0,612	597,778	600,463	2,685	1,004
24,495	591,063	594,776	3,713	1,395	571,312	573,478	2,166	0,849	597,778	601,494	3,716	1,390
30,000	591,063	595,634	4,571	1,718	571,312	574,014	2,702	1,059	597,778	602,436	4,658	1,742
42,426	591,063	597,747	6,684	2,512	571,312	575,149	3,837	1,504	597,778	604,611	6,833	2,556
60,000	591,063	600,899	9,836	3,696	571,312	576,903	5,591	2,192	597,778	607,942	10,164	3,802
84,853	591,063	605,608	14,545	5,465	571,312	579,507	8,195	3,213	597,778	613,008	15,230	5,697
103,923	591,063	609,074	18,011	6,768	571,312	581,729	10,417	4,084	597,778	616,556	18,778	7,024
120,000	591,063	610,143	19,080	7,169	571,312	583,549	12,237	4,797	597,778	617,155	19,377	7,248
134,164	591,063	610,271	19,208	7,218	571,312	585,314	14,002	5,489	597,778	617,188	19,410	7,260
146,969	591,063	610,279	19,216	7,221	571,312	586,852	15,540	6,092	597,778	617,190	19,412	7,261
295,161	591,063	610,536	19,473	7,317	571,312	590,672	19,360	7,589	597,778	617,437	19,659	7,353
307,116	591,063	610,575	19,512	7,332	571,312	590,734	19,422	7,614	597,778	617,470	19,692	7,365
318,622	591,063	610,581	19,518	7,334	571,312	590,730	19,418	7,612	597,778	617,495	19,717	7,375
329,545	591,063	610,610	19,547	7,345	571,312	590,772	19,460	7,629	597,778	617,498	19,720	7,376
406,202	591,063	610,760	19,697	7,401	571,312	590,941	19,629	7,695	597,778	617,679	19,901	7,444
419,285	591,063	610,828	19,765	7,427	571,312	590,955	19,643	7,700	597,778	617,696	19,918	7,450
507,937	591,063	610,925	19,862	7,463	571,312	591,086	19,774	7,752	597,778	617,858	20,080	7,511
714,479	591,063	611,157	20,094	7,550	571,312	591,283	19,971	7,829	597,778	618,131	20,353	7,613

		I	PC1.1			I	PC1.2				PC1.3	
√t (√s)	M₀(g)	Mi(g)	Mi-Mo (g)	M _{wi} (kg/m²)	M₀(g)	Mi(g)	Mi-Mo (g)	M _{wi} (kg/m²)	M₀(g)	Mi(g)	Mi-M₀ (g)	M _{wi} (kg/m²)
0,000	607,709	607,709	0,000	0,000	597,162	597,162	0,000	0,000	614,046	614,046	0,000	0,000
7,746	607,709	608,442	0,733	0,295	597,162	598,458	1,296	0,497	614,046	614,657	0,611	0,231
13,416	607,709	608,789	1,080	0,434	597,162	599,167	2,005	0,768	614,046	614,947	0,901	0,340
17,321	607,709	609,043	1,334	0,536	597,162	599,702	2,540	0,973	614,046	615,183	1,137	0,429
24,495	607,709	609,582	1,873	0,753	597,162	600,703	3,541	1,357	614,046	615,542	1,496	0,565
30,000	607,709	610,076	2,367	0,952	597,162	601,625	4,463	1,710	614,046	615,920	1,874	0,708
42,426	607,709	611,046	3,337	1,342	597,162	603,534	6,372	2,442	614,046	616,807	2,761	1,043
60,000	607,709	612,645	4,936	1,985	597,162	606,474	9,312	3,569	614,046	618,369	4,323	1,633
84,853	607,709	615,053	7,344	2,953	597,162	610,699	13,537	5,188	614,046	620,837	6,791	2,565
103,923	607,709	617,029	9,320	3,748	597,162	613,787	16,625	6,371	614,046	623,011	8,965	3,386
120,000	607,709	618,721	11,012	4,428	597,162	615,497	18,335	7,027	614,046	624,765	10,719	4,048
282,701	607,709	628,162	20,453	8,224	597,162	617,866	20,704	7,935	614,046	634,252	20,206	7,631
295,161	607,709	628,356	20,647	8,302	597,162	618,010	20,848	7,990	614,046	634,381	20,335	7,680
307,116	607,709	628,595	20,886	8,399	597,162	618,185	21,023	8,057	614,046	634,555	20,509	7,746
318,434	607,709	628,780	21,071	8,473	597,162	618,336	21,174	8,115	614,046	634,716	20,670	7,806
397,240	607,709	630,340	22,631	9,100	597,162	619,403	22,241	8,524	614,046	635,801	21,755	8,216
410,609	607,709	630,639	22,930	9,220	597,162	619,557	22,395	8,583	614,046	635,962	21,916	8,277
500,799	607,709	633,045	25,336	10,188	597,162	620,819	23,657	9,066	614,046	637,305	23,259	8,784
709,380	607,709	640,613	32,904	13,231	597,162	624,429	27,267	10,450	614,046	641,536	27,490	10,382

		(CP1.1				CP1.2			(CP1.3	
√t (√s)	M₀(g)	Mi(g)	M _i -M ₀ (g)	M _{wi} (kg/m²)	M₀(g)	Mi(g)	Mi-Mo (g)	M _{wi} (kg/m²)	M₀(g)	Mi(g)	Mi-Mo (g)	M _{wi} (kg/m²)
0,000	568,084	568,084	0,000	0,000	584,457	584,457	0,000	0,000	588,771	588,771	0,000	0,000
7,746	568,084	568,965	0,881	0,353	584,457	585,411	0,954	0,364	588,771	589,498	0,727	0,275
13,416	568,084	569,633	1,549	0,620	584,457	586,192	1,735	0,662	588,771	590,146	1,375	0,520
17,321	568,084	570,174	2,090	0,836	584,457	586,784	2,327	0,888	588,771	590,701	1,930	0,730
24,495	568,084	571,327	3,243	1,298	584,457	587,882	3,425	1,308	588,771	591,831	3,060	1,157
30,000	568,084	572,248	4,164	1,666	584,457	588,766	4,309	1,645	588,771	592,792	4,021	1,521
42,426	568,084	574,305	6,221	2,489	584,457	590,897	6,440	2,459	588,771	595,068	6,297	2,382
60,000	568,084	577,306	9,222	3,690	584,457	594,246	9,789	3,737	588,771	598,616	9,845	3,723
84,853	568,084	581,746	13,662	5,467	584,457	599,182	14,725	5,622	588,771	603,895	15,124	5,720
103,923	568,084	585,120	17,036	6,817	584,457	602,593	18,136	6,924	588,771	607,164	18,393	6,956
120,000	568,084	586,274	18,190	7,279	584,457	603,660	19,203	7,331	588,771	607,994	19,223	7,270
134,164	568,084	586,415	18,331	7,336	584,457	604,451	19,994	7,633	588,771	608,592	19,821	7,496
146,969	568,084	586,516	18,432	7,376	584,457	605,310	20,853	7,961	588,771	609,184	20,413	7,720
158,745	568,084	586,625	18,541	7,420	584,457	606,260	21,803	8,324	588,771	609,835	21,064	7,967
301,198	568,084	587,656	19,572	7,832	584,457	620,837	36,380	13,889	588,771	620,354	31,583	11,945
312,922	568,084	587,769	19,685	7,877	584,457	621,903	37,446	14,296	588,771	621,417	32,646	12,347
324,222	568,084	587,845	19,761	7,908	584,457	622,472	38,015	14,513	588,771	622,463	33,692	12,742
334,963	568,084	587,952	19,868	7,951	584,457	622,731	38,274	14,612	588,771	623,473	34,702	13,124
410,609	568,084	588,910	20,826	8,334	584,457	623,293	38,836	14,827	588,771	627,716	38,945	14,729
423,556	568,084	589,084	21,000	8,404	584,457	623,346	38,889	14,847	588,771	627,807	39,036	14,764
511,468	568,084	590,156	22,072	8,833	584,457	623,716	39,259	14,988	588,771	628,284	39,513	14,944
717,036	568,084	592,722	24,638	9,860	584,457	624,242	39,785	15,189	588,771	629,042	40,271	15,231

			M3.1				M3.2				M3.3	
√t (√s)	M₀(g)	M _i (g)	M _i -M₀ (g)	M _{wi} (kg/m²)	M₀(g)	M _i (g)	M _i -M₀ (g)	M _{wi} (kg/m²)	M₀(g)	M _i (g)	M _i -M₀ (g)	M _{wi} (kg/m²)
0,000	618,257	618,257	0,000	0,000	597,097	597,097	0,000	0,000	581,073	581,073	0,000	0,000
7,746	618,257	614,413	-3,844	-1,416	597,097	600,393	3,296	1,254	581,073	577,369	-3,704	-1,440
13,416	618,257	612,674	-5,583	-2,057	597,097	595,548	-1,549	-0,589	581,073	574,715	-6,358	-2,472
17,321	618,257	612,048	-6,209	-2,288	597,097	592,120	-4,977	-1,894	581,073	574,395	-6,678	-2,597
24,495	618,257	612,279	-5,978	-2,203	597,097	590,962	-6,135	-2,334	581,073	574,557	-6,516	-2,534
30,000	618,257	612,509	-5,748	-2,118	597,097	591,046	-6,051	-2,303	581,073	574,755	-6,318	-2,457
42,426	618,257	613,325	-4,932	-1,817	597,097	591,841	-5,256	-2,000	581,073	575,664	-5,409	-2,103
60,000	618,257	614,741	-3,516	-1,296	597,097	593,522	-3,575	-1,360	581,073	577,221	-3,852	-1,498
84,853	618,257	617,294	-0,963	-0,355	597,097	596,714	-0,383	-0,146	581,073	579,932	-1,141	-0,444
103,923	618,257	619,519	1,262	0,465	597,097	599,522	2,425	0,923	581,073	582,305	1,232	0,479
134,164	618,257	623,468	5,211	1,920	597,097	604,585	7,488	2,849	581,073	586,582	5,509	2,142
146,969	618,257	625,323	7,066	2,604	597,097	606,958	9,861	3,752	581,073	588,614	7,541	2,933
158,745	618,257	627,039	8,782	3,236	597,097	609,158	12,061	4,589	581,073	590,533	9,460	3,679
169,706	618,257	628,592	10,335	3,808	597,097	611,155	14,058	5,349	581,073	592,265	11,192	4,352
290,861	618,257	648,214	29,957	11,038	597,097	625,372	28,275	10,759	581,073	609,801	28,728	11,172
307,116	618,257	649,880	31,623	11,652	597,097	625,394	28,297	10,767	581,073	609,971	28,898	11,238
318,622	618,257	650,534	32,277	11,893	597,097	625,454	28,357	10,790	581,073	610,089	29,016	11,284
329,727	618,257	650,872	32,615	12,018	597,097	625,542	28,445	10,824	581,073	610,164	29,091	11,313
414,970	618,257	651,576	33,319	12,277	597,097	625,849	28,752	10,941	581,073	610,574	29,501	11,472
427,785	618,257	651,694	33,437	12,320	597,097	625,902	28,805	10,961	581,073	610,604	29,531	11,484
511,762	618,257	651,999	33,742	12,433	597,097	626,076	28,979	11,027	581,073	610,841	29,768	11,576
719,124	618,257	652,302	34,045	12,544	597,097	626,506	29,409	11,191	581,073	611,169	30,096	11,704
881,884	618,257	652,648	34,391	12,672	597,097	626,800	29,703	11,302	581,073	611,492	30,419	11,829
929,581	618,257	652,717	34,460	12,697	597,097	626,892	29,795	11,338	581,073	611,552	30,479	11,853
1059,302	618,257	652,888	34,631	12,760	597,097	627,084	29,987	11,411	581,073	611,735	30,662	11,924
1099,300	618,257	653,046	34,789	12,819	597,097	627,212	30,115	11,459	581,073	611,881	30,808	11,981
1175,704	618,257	653,222	34,965	12,883	597,097	627,286	30,189	11,487	581,073	611,894	30,821	11,986
1314,329	618,257	653,622	35,365	13,031	597,097	627,639	30,542	11,622	581,073	612,125	31,052	12,075
1347,976	618,257	653,685	35,428	13,054	597,097	627,700	30,603	11,645	581,073	612,195	31,122	12,103
1409,808	618,257	653,737	35,480	13,073	597,097	627,776	30,679	11,674	581,073	612,353	31,280	12,164
1470,775	618,257	653,786	35,529	13,091	597,097	627,911	30,814	11,725	581,073	612,400	31,327	12,182
1555,069	618,257	653,807	35,550	13,099	597,097	627,853	30,756	11,703	581,073	612,511	31,438	12,225
1643,916	618,257	654,176	35,919	13,235	597,097	628,252	31,155	11,855	581,073	612,878	31,805	12,368
1739,879	618,257	654,219	35,962	13,251	597,097	628,324	31,227	11,882	581,073	612,996	31,923	12,414

Provetes parcialmente imersos em cloreto de potássio

			EA3.1				EA3.2				EA3.3	
√t (√s)	M₀(g)	M _i (g)	M _i -M₀ (g)	M _{wi} (kg/m²)	M₀(g)	M _i (g)	M _i -M ₀ (g)	M _{wi} (kg/m ²)	M₀(g)	M _i (g)	M _i -M₀ (g)	M _{wi} (kg/m ²)
0,000	589,900	589,900	0,000	0,000	578,036	578,036	0,000	0,000	608,973	608,973	0,000	0,000
7,746	589,900	593,145	3,245	0,130	578,036	581,184	3,148	1,296	608,973	610,550	1,577	0,604
13,416	589,900	593,754	3,854	0,154	578,036	578,520	0,484	0,199	608,973	609,193	0,220	0,084
17,321	589,900	592,953	3,053	0,122	578,036	577,607	-0,429	-0,177	608,973	608,301	-0,672	-0,258
24,495	589,900	594,119	4,219	0,169	578,036	577,735	-0,301	-0,124	608,973	608,167	-0,806	-0,309
30,000	589,900	592,872	2,972	0,119	578,036	577,405	-0,631	-0,260	608,973	608,228	-0,745	-0,286
42,426	589,900	593,050	3,150	0,126	578,036	577,923	-0,113	-0,047	608,973	608,928	-0,045	-0,017
73,485	589,900	596,932	7,032	0,281	578,036	580,110	2,074	0,854	608,973	611,231	2,258	0,865
84,853	589,900	598,470	8,570	0,343	578,036	580,936	2,900	1,194	608,973	612,252	3,279	1,257
103,923	589,900	601,642	11,742	0,469	578,036	582,750	4,714	1,940	608,973	614,039	5,066	1,942
120,000	589,900	604,225	14,325	0,573	578,036	584,458	6,422	2,643	608,973	615,605	6,632	2,542
134,164	589,900	606,115	16,215	0,648	578,036	585,933	7,897	3,250	608,973	617,108	8,135	3,118
146,969	589,900	606,542	16,642	0,665	578,036	587,489	9,453	3,891	608,973	618,519	9,546	3,659
279,285	589,900	606,934	17,034	0,681	578,036	594,438	16,402	6,751	608,973	626,980	18,007	6,902
291,890	589,900	606,349	16,449	0,658	578,036	593,961	15,925	6,555	608,973	626,684	17,711	6,788
303,974	589,900	606,196	16,296	0,652	578,036	593,903	15,867	6,531	608,973	626,629	17,656	6,767
315,595	589,900	606,176	16,276	0,651	578,036	593,887	15,851	6,524	608,973	626,579	17,606	6,748
326,803	589,900	606,173	16,273	0,651	578,036	593,872	15,836	6,518	608,973	626,580	17,607	6,749
414,246	589,900	606,348	16,448	0,658	578,036	594,073	16,037	6,601	608,973	626,780	17,807	6,825
427,083	589,900	606,337	16,437	0,657	578,036	594,061	16,025	6,596	608,973	626,764	17,791	6,819
434,741	589,900	606,344	16,444	0,657	578,036	594,084	16,048	6,606	608,973	626,774	17,801	6,823
500,200	589,900	606,503	16,603	0,664	578,036	594,366	16,330	6,722	608,973	626,943	17,970	6,888
585,833	589,900	606,646	16,746	0,670	578,036	594,337	16,301	6,710	608,973	627,018	18,045	6,916
772,075	589,900	607,032	17,132	0,685	578,036	594,691	16,655	6,855	608,973	627,310	18,337	7,028
777,110	589,900	606,977	17,077	0,683	578,036	594,655	16,619	6,841	608,973	627,374	18,401	7,053
826,136	589,900	607,087	17,187	0,687	578,036	594,752	16,716	6,880	608,973	627,432	18,459	7,075
834,985	589,900	607,086	17,186	0,687	578,036	594,782	16,746	6,893	608,973	627,381	18,408	7,056
841,427	589,900	607,124	17,224	0,689	578,036	594,768	16,732	6,887	608,973	627,381	18,408	7,056
878,920	589,900	607,262	17,362	0,694	578,036	594,946	16,910	6,960	608,973	627,453	18,480	7,083
926,769	589,900	607,635	17,735	0,709	578,036	595,093	17,057	7,021	608,973	627,543	18,570	7,118
1095,719	589,900	611,943	22,043	0,881	578,036	595,382	17,346	7,140	608,973	627,819	18,846	7,224
1143,547	589,900	613,308	23,408	0,936	578,036	595,554	17,518	7,211	608,973	628,010	19,037	7,297
1252,837	589,900	616,439	26,539	1,061	578,036	595,820	17,784	7,320	608,973	628,215	19,242	7,375
1343,227	589,900	619,947	30,047	1,201	578,036	596,296	18,260	7,516	608,973	628,535	19,562	7,498
1376,365	589,900	620,609	30,709	1,228	578,036	596,285	18,249	7,511	608,973	628,395	19,422	7,444
1409,213	589,900	621,528	31,628	1,264	578,036	596,344	18,308	7,536	608,973	628,481	19,508	7,477

1436,997	589,900	621,721	31,821	1,272	578,036	596,467	18,431	7,586	608,973	628,579	19,606	7,515
1469,000	589,900	622,012	32,112	1,284	578,036	596,483	18,447	7,593	608,973	628,644	19,671	7,540
1552,250	589,900	623,782	33,882	1,355	578,036	596,944	18,908	7,783	608,973	628,932	19,959	7,650
1580,443	589,900	625,303	35,403	1,415	578,036	597,039	19,003	7,822	608,973	629,166	20,193	7,740
1608,515	589,900	626,372	36,472	1,458	578,036	597,376	19,340	7,961	608,973	629,170	20,197	7,741
1633,683	589,900	627,458	37,558	1,502	578,036	599,320	21,284	8,761	608,973	629,307	20,334	7,794
1736,237	589,900	632,238	42,338	1,693	578,036	605,939	27,903	11,485	608,973	629,776	20,803	7,974
1761,812	589,900	634,023	44,123	1,764	578,036	607,739	29,703	12,226	608,973	629,867	20,894	8,008
1787,591	589,900	636,146	46,246	1,849	578,036	608,593	30,557	12,578	608,973	629,962	20,989	8,045
1809,508	589,900	637,228	47,328	1,892	578,036	610,034	31,998	13,171	608,973	630,068	21,095	8,086
1834,045	589,900	637,528	47,628	1,904	578,036	611,918	33,882	13,946	608,973	630,204	21,231	8,138
1902,183	589,900	638,975	49,075	1,962	578,036	614,565	36,529	15,036	608,973	630,590	21,617	8,286
1970,431	589,900	639,908	50,008	1,999	578,036	618,833	40,797	16,792	608,973	630,903	21,930	8,406
1992,235	589,900	640,170	50,270	2,010	578,036	620,176	42,140	17,345	608,973	631,017	22,044	8,449
2055,967	589,900	641,433	51,533	2,060	578,036	623,232	45,196	18,603	608,973	631,491	22,518	8,631
2076,858	589,900	641,763	51,863	2,073	578,036	624,896	46,860	19,288	608,973	631,723	22,750	8,720
2118,292	589,900	642,532	52,632	2,104	578,036	625,994	47,958	19,740	608,973	632,323	23,350	8,950
2198,258	589,900	643,832	53,932	2,156	578,036	627,710	49,674	20,446	608,973	633,163	24,190	9,272
2218,540	589,900	644,221	54,321	2,172	578,036	628,135	50,099	20,621	608,973	633,289	24,316	9,320
2256,644	589,900	644,419	54,519	2,180	578,036	628,374	50,338	20,720	608,973	633,368	24,395	9,350
2295,225	589,900	644,689	54,789	2,190	578,036	629,184	51,148	21,053	608,973	633,856	24,883	9,537
2327,041	589,900	646,193	56,293	2,251	578,036	631,141	53,105	21,859	608,973	634,859	25,886	9,922
2409,842	589,900	648,143	58,243	2,329	578,036	634,928	56,892	23,417	608,973	636,074	27,101	10,388
2476,300	589,900	649,423	59,523	2,380	578,036	636,927	58,891	24,240	608,973	654,602	45,629	17,489

			PC3.1				PC3.2				PC3.3	
√t (√s)	M₀(g)	M _i (g)	M _i -M₀ (g)	M _{wi} (kg/m ²)	M₀(g)	M _i (g)	M _i -M ₀ (g)	M _{wi} (kg/m ²)	M₀(g)	M _i (g)	M _i -M₀ (g)	M _{wi} (kg/m ²)
0,000	632,752	632,752	0,000	0,000	639,870	639,870	0,000	0,000	615,012	615,012	0,000	0,000
7,746	632,752	631,292	-1,460	-0,568	639,870	637,690	-2,180	-0,820	615,012	615,786	0,774	0,295
13,416	632,752	631,412	-1,340	-0,521	639,870	637,909	-1,961	-0,737	615,012	614,302	-0,710	-0,270
17,321	632,752	631,537	-1,215	-0,472	639,870	638,198	-1,672	-0,629	615,012	614,235	-0,777	-0,296
24,495	632,752	632,044	-0,708	-0,275	639,870	638,619	-1,251	-0,470	615,012	614,870	-0,142	-0,054
30,000	632,752	632,431	-0,321	-0,125	639,870	639,027	-0,843	-0,317	615,012	615,342	0,330	0,126
42,426	632,752	633,370	0,618	0,240	639,870	640,008	0,138	0,052	615,012	616,507	1,495	0,569
60,000	632,752	634,993	2,241	0,871	639,870	641,811	1,941	0,730	615,012	618,759	3,747	1,427
84,853	632,752	637,287	4,535	1,763	639,870	643,914	4,044	1,520	615,012	622,257	7,245	2,758
103,923	632,752	639,098	6,346	2,468	639,870	645,527	5,657	2,127	615,012	625,329	10,317	3,928
120,000	632,752	640,951	8,199	3,188	639,870	647,203	7,333	2,757	615,012	627,660	12,648	4,815
266,308	632,752	646,436	13,684	5,321	639,870	652,574	12,704	4,776	615,012	632,497	17,485	6,657
279,500	632,752	645,428	12,676	4,929	639,870	651,035	11,165	4,198	615,012	632,236	17,224	6,558
292,096	632,752	643,626	10,874	4,228	639,870	650,305	10,435	3,923	615,012	632,361	17,349	6,605
304,171	632,752	643,581	10,829	4,211	639,870	650,228	10,358	3,894	615,012	632,489	17,477	6,654
315,785	632,752	643,572	10,820	4,207	639,870	650,200	10,330	3,884	615,012	632,582	17,570	6,689
405,611	632,752	643,724	10,972	4,266	639,870	650,321	10,451	3,929	615,012	633,641	18,629	7,092
418,712	632,752	643,712	10,960	4,262	639,870	650,363	10,493	3,945	615,012	633,757	18,745	7,137
426,521	632,752	643,696	10,944	4,255	639,870	650,356	10,486	3,942	615,012	633,828	18,816	7,164
493,072	632,752	643,825	11,073	4,306	639,870	650,463	10,593	3,982	615,012	634,470	19,458	7,408
499,720	632,752	643,911	11,159	4,339	639,870	650,560	10,690	4,019	615,012	635,431	20,419	7,774
767,281	632,752	644,271	11,519	4,479	639,870	651,244	11,374	4,276	615,012	638,273	23,261	8,856
772,347	632,752	644,374	11,622	4,519	639,870	651,158	11,288	4,244	615,012	638,258	23,246	8,850
821,657	632,752	644,400	11,648	4,529	639,870	651,601	11,731	4,410	615,012	639,235	24,223	9,222
830,554	632,752	644,368	11,616	4,517	639,870	651,543	11,673	4,389	615,012	639,349	24,337	9,266
837,030	632,752	644,387	11,635	4,524	639,870	651,515	11,645	4,378	615,012	639,424	24,412	9,294
874,711	632,752	644,535	11,783	4,582	639,870	651,810	11,940	4,489	615,012	640,233	25,221	9,602
922,778	632,752	644,891	12,139	4,720	639,870	652,159	12,289	4,620	615,012	641,182	26,170	9,963
1092,346	632,752	645,261	12,509	4,864	639,870	653,408	13,538	5,090	615,012	644,847	29,835	11,359
1140,289	632,752	645,493	12,741	4,954	639,870	653,668	13,798	5,187	615,012	645,856	30,844	11,743
1249,888	632,752	646,376	13,624	5,297	639,870	655,645	15,775	5,931	615,012	648,366	33,354	12,699
1340,925	632,752	647,314	14,562	5,662	639,870	657,823	17,953	6,750	615,012	650,480	35,468	13,503
1373,681	632,752	647,548	14,796	5,753	639,870	658,895	19,025	7,153	615,012	651,029	36,017	13,712
1406,592	632,752	648,044	15,292	5,946	639,870	659,647	19,777	7,435	615,012	651,762	36,750	13,991
1434,427	632,752	648,482	15,730	6,116	639,870	660,939	21,069	7,921	615,012	652,400	37,388	14,234
1466,486	632,752	649,079	16,327	6,348	639,870	663,331	23,461	8,820	615,012	652,861	37,849	14,410

1549,852	632,752	650,593	17,841	6,937	639,870	674,107	34,237	12,872	615,012	654,073	39,061	14,871
1578,106	632,752	651,280	18,528	7,204	639,870	674,765	34,895	13,119	615,012	654,543	39,531	15,050
1606,219	632,752	652,225	19,473	7,572	639,870	675,339	35,469	13,335	615,012	654,870	39,858	15,175
1631,423	632,752	657,359	24,607	9,568	639,870	676,064	36,194	13,607	615,012	655,254	40,242	15,321
1734,111	632,752	663,034	30,282	11,775	639,870	676,723	36,853	13,855	615,012	656,400	41,388	15,757
1759,716	632,752	663,458	30,706	11,939	639,870	677,066	37,196	13,984	615,012	656,579	41,567	15,825
1785,155	632,752	664,050	31,298	12,170	639,870	677,181	37,311	14,027	615,012	656,876	41,864	15,938
1807,634	632,752	664,647	31,895	12,402	639,870	677,493	37,623	14,145	615,012	657,152	42,140	16,044
1832,015	632,752	665,477	32,725	12,725	639,870	677,903	38,033	14,299	615,012	657,360	42,348	16,123
1901,189	632,752	667,029	34,277	13,328	639,870	679,017	39,147	14,717	615,012	658,614	43,602	16,600
1967,628	632,752	668,308	35,556	13,825	639,870	679,831	39,961	15,023	615,012	659,542	44,530	16,953
1989,462	632,752	668,659	35,907	13,962	639,870	679,972	40,102	15,077	615,012	659,643	44,631	16,992
2053,280	632,752	669,815	37,063	14,411	639,870	680,613	40,743	15,317	615,012	660,862	45,850	17,456
2074,199	632,752	670,093	37,341	14,519	639,870	680,959	41,089	15,448	615,012	661,560	46,548	17,722
2115,684	632,752	670,746	37,994	14,773	639,870	681,428	41,558	15,624	615,012	662,642	47,630	18,134
2195,746	632,752	672,109	39,357	15,303	639,870	683,771	43,901	16,505	615,012	664,467	49,455	18,829
2216,051	632,752	672,418	39,666	15,423	639,870	684,461	44,591	16,764	615,012	665,475	50,463	19,212
2254,196	632,752	672,633	39,881	15,507	639,870	685,093	45,223	17,002	615,012	665,821	50,809	19,344
2292,819	632,752	673,107	40,355	15,691	639,870	685,684	45,814	17,224	615,012	666,450	51,438	19,583
2347,782	632,752	673,931	41,179	16,012	639,870	687,191	47,321	17,791	615,012	667,437	52,425	19,959
2407,551	632,752	674,893	42,141	16,386	639,870	689,121	49,251	18,516	615,012	668,416	53,404	20,332
2474,070	632,752	675,398	42,646	16,582	639,870	690,232	50,362	18,934	615,012	669,106	54,094	20,595

			CP3.1				CP3.2				CP3.3	
√t (√s)	M₀(g)	Mi(g)	Mi-M₀ (g)	M _{wi} (kg/m²)	M₀(g)	Mi(g)	Mi-Mo (g)	M _{wi} (kg/m ²)	M₀(g)	Mi(g)	M₁-M₀ (g)	M _{wi} (kg/m²)
0,000	601,594	601,594	0,000	0,000	593,673	593,673	0,000	0,000	606,838	606,838	0,000	0,000
7,746	601,594	595,484	-6,110	-2,296	593,673	589,681	-3,992	-1,529	606,838	602,223	-4,615	-1,729
13,416	601,594	594,607	-6,987	-2,626	593,673	588,578	-5,095	-1,951	606,838	601,498	-5,340	-2,001
17,321	601,594	594,582	-7,012	-2,635	593,673	588,407	-5,266	-2,016	606,838	601,571	-5,267	-1,973
24,495	601,594	594,699	-6,895	-2,591	593,673	588,881	-4,792	-1,835	606,838	602,062	-4,776	-1,789
30,000	601,594	594,828	-6,766	-2,543	593,673	589,458	-4,215	-1,614	606,838	602,428	-4,410	-1,652
42,426	601,594	595,317	-6,277	-2,359	593,673	591,555	-2,118	-0,811	606,838	603,620	-3,218	-1,206
60,000	601,594	596,224	-5,370	-2,018	593,673	594,580	0,907	0,347	606,838	605,643	-1,195	-0,448
84,853	601,594	597,993	-3,601	-1,353	593,673	598,968	5,295	2,027	606,838	609,123	2,285	0,856
120,000	601,594	601,165	-0,429	-0,161	593,673	603,300	9,627	3,686	606,838	614,957	8,119	3,042
134,164	601,594	602,272	0,678	0,255	593,673	603,272	9,599	3,675	606,838	617,483	10,645	3,989
146,969	601,594	604,092	2,498	0,939	593,673	603,333	9,660	3,699	606,838	619,153	12,315	4,614
158,745	601,594	605,423	3,829	1,439	593,673	603,438	9,765	3,739	606,838	619,749	12,911	4,838
284,605	601,594	614,206	12,612	4,740	593,673	606,616	12,943	4,956	606,838	623,963	17,125	6,416
301,198	601,594	614,481	12,887	4,843	593,673	607,115	13,442	5,147	606,838	624,496	17,658	6,616
312,922	601,594	614,727	13,133	4,935	593,673	607,553	13,880	5,315	606,838	624,929	18,091	6,778
324,222	601,594	615,004	13,410	5,040	593,673	608,081	14,408	5,517	606,838	625,413	18,575	6,960
410,609	601,594	617,373	15,779	5,930	593,673	613,097	19,424	7,437	606,838	629,648	22,810	8,547
423,556	601,594	617,740	16,146	6,068	593,673	613,983	20,310	7,777	606,838	630,288	23,450	8,786
508,232	601,594	620,527	18,933	7,115	593,673	618,386	24,713	9,463	606,838	635,178	28,340	10,619
717,161	601,594	627,597	26,003	9,772	593,673	619,121	25,448	9,744	606,838	638,518	31,680	11,870
879,807	601,594	633,118	31,524	11,847	593,673	619,510	25,837	9,893	606,838	638,917	32,079	12,019
927,610	601,594	633,377	31,783	11,944	593,673	619,564	25,891	9,914	606,838	638,956	32,118	12,034
1057,573	601,594	633,669	32,075	12,054	593,673	619,778	26,105	9,995	606,838	639,174	32,336	12,116
1097,634	601,594	633,802	32,208	12,104	593,673	619,925	26,252	10,052	606,838	639,326	32,488	12,173
1174,146	601,594	633,955	32,361	12,161	593,673	619,977	26,304	10,072	606,838	639,447	32,609	12,218
1312,936	601,594	634,437	32,843	12,343	593,673	620,325	26,652	10,205	606,838	639,812	32,974	12,355
1346,618	601,594	634,516	32,922	12,372	593,673	620,367	26,694	10,221	606,838	639,877	33,039	12,379
1408,510	601,594	634,553	32,959	12,386	593,673	620,440	26,767	10,249	606,838	639,936	33,098	12,401
1469,531	601,594	634,716	33,122	12,447	593,673	620,523	26,850	10,281	606,838	640,027	33,189	12,435
1553,892	601,594	634,767	33,173	12,467	593,673	620,540	26,867	10,287	606,838	640,158	33,320	12,484
1642,802	601,594	635,167	33,573	12,617	593,673	620,911	27,238	10,429	606,838	640,635	33,797	12,663
1738,827	601,594	635,353	33,759	12,687	593,673	621,014	27,341	10,469	606,838	640,752	33,914	12,707

			M2.1				M2.2				M2.3	
√t (√s)	M₀(g)	M _i (g)	M₁-M₀ (g)	M _{wi} (kg/m²)	M₀(g)	M _i (g)	M _i -M₀ (g)	M _{wi} (kg/m²)	M₀(g)	M _i (g)	M _i -M₀ (g)	M _{wi} (kg/m²)
0,000	579,191	579,191	0,000	0,000	588,128	588,128	0,000	0,000	579,516	579,516	0,000	0,000
7,746	579,191	580,867	1,676	0,635	588,128	590,112	1,984	0,751	579,516	582,246	2,730	1,059
13,416	579,191	580,597	1,406	0,533	588,128	589,658	1,530	0,579	579,516	580,290	0,774	0,300
17,321	579,191	580,629	1,438	0,545	588,128	589,685	1,557	0,589	579,516	579,434	-0,082	-0,032
24,495	579,191	580,500	1,309	0,496	588,128	589,645	1,517	0,574	579,516	579,403	-0,113	-0,044
30,000	579,191	580,446	1,255	0,476	588,128	589,775	1,647	0,623	579,516	579,460	-0,056	-0,022
42,426	579,191	580,464	1,273	0,482	588,128	590,007	1,879	0,711	579,516	579,511	-0,005	-0,002
60,000	579,191	580,643	1,452	0,550	588,128	590,392	2,264	0,857	579,516	579,338	-0,178	-0,069
84,853	579,191	580,700	1,509	0,572	588,128	590,940	2,812	1,064	579,516	579,460	-0,056	-0,022
103,923	579,191	580,611	1,420	0,538	588,128	590,852	2,724	1,031	579,516	579,590	0,074	0,029
120,000	579,191	580,579	1,388	0,526	588,128	591,596	3,468	1,313	579,516	579,926	0,410	0,159
134,164	579,191	580,324	1,133	0,429	588,128	592,267	4,139	1,567	579,516	579,930	0,414	0,161
146,969	579,191	580,289	1,098	0,416	588,128	593,088	4,960	1,877	579,516	579,892	0,376	0,146
158,745	579,191	580,163	0,972	0,368	588,128	594,157	6,029	2,282	579,516	579,907	0,391	0,152
169,706	579,191	579,162	-0,029	-0,011	588,128	595,362	7,234	2,738	579,516	579,974	0,458	0,178
180,000	579,191	579,032	-0,159	-0,060	588,128	596,310	8,182	3,097	579,516	579,979	0,463	0,180
189,737	579,191	579,094	-0,097	-0,037	588,128	597,417	9,289	3,516	579,516	580,068	0,552	0,214
290,138	579,191	579,268	0,077	0,029	588,128	612,752	24,624	9,320	579,516	580,842	1,326	0,515
302,291	579,191	579,220	0,029	0,011	588,128	614,730	26,602	10,068	579,516	580,562	1,046	0,406
313,975	579,191	579,342	0,151	0,057	588,128	616,764	28,636	10,838	579,516	580,746	1,230	0,477
325,238	579,191	579,336	0,145	0,055	588,128	618,691	30,563	11,567	579,516	580,786	1,270	0,493
336,125	579,191	579,234	0,043	0,016	588,128	620,374	32,246	12,204	579,516	580,693	1,177	0,457
419,643	579,191	579,475	0,284	0,108	588,128	631,940	43,812	16,582	579,516	581,171	1,655	0,642
424,193	579,191	579,516	0,325	0,123	588,128	632,122	43,994	16,651	579,516	581,166	1,650	0,640
436,463	579,191	579,515	0,324	0,123	588,128	632,412	44,284	16,760	579,516	581,231	1,715	0,666
448,665	579,191	579,513	0,322	0,122	588,128	632,562	44,434	16,817	579,516	581,167	1,651	0,641
516,372	579,191	579,810	0,619	0,235	588,128	633,182	45,054	17,052	579,516	585,024	5,508	2,138
718,123	579,191	580,952	1,761	0,667	588,128	634,845	46,717	17,681	579,516	624,244	44,728	17,358
724,734	579,191	580,869	1,678	0,636	588,128	635,017	46,889	17,746	579,516	625,168	45,652	17,716
729,685	579,191	580,833	1,642	0,622	588,128	635,301	47,173	17,854	579,516	625,831	46,315	17,974
734,602	579,191	580,887	1,696	0,643	588,128	635,256	47,128	17,837	579,516	626,083	46,567	18,072
739,486	579,191	580,876	1,685	0,638	588,128	635,331	47,203	17,865	579,516	626,277	46,761	18,147
777,689	579,191	581,216	2,025	0,767	588,128	635,711	47,583	18,009	579,516	626,925	47,409	18,398
782,304	579,191	581,154	1,963	0,744	588,128	635,666	47,538	17,992	579,516	626,928	47,412	18,400

Provetes parcialmente imersos em solução saturada de sulfato de sódio

786,893	579,191	581,241	2,050	0,777	588,128	635,831	47,703	18,054	579,516	627,163	47,647	18,491
791,454	579,191	581,271	2,080	0,788	588,128	635,800	47,672	18,043	579,516	627,165	47,649	18,491
795,990	579,191	581,225	2,034	0,771	588,128	635,778	47,650	18,034	579,516	627,213	47,697	18,510
835,272	579,191	581,497	2,306	0,874	588,128	636,381	48,253	18,263	579,516	627,875	48,359	18,767
841,713	579,191	581,532	2,341	0,887	588,128	636,281	48,153	18,225	579,516	627,839	48,323	18,753
845,624	579,191	581,548	2,357	0,893	588,128	636,410	48,282	18,274	579,516	627,929	48,413	18,788
881,068	579,191	581,737	2,546	0,965	588,128	636,798	48,670	18,420	579,516	628,257	48,741	18,915
884,805	579,191	586,751	7,560	2,865	588,128	637,256	49,128	18,594	579,516	628,235	48,719	18,907
1059,330	579,191	624,021	44,830	16,987	588,128	638,389	50,261	19,023	579,516	628,902	49,386	19,166
1063,005	579,191	624,079	44,888	17,009	588,128	638,286	50,158	18,984	579,516	628,919	49,403	19,172
1099,354	579,191	624,377	45,186	17,122	588,128	638,383	50,255	19,020	579,516	629,104	49,588	19,244
1106,020	579,191	624,559	45,368	17,191	588,128	638,450	50,322	19,046	579,516	629,362	49,846	19,344
1110,892	579,191	624,536	45,345	17,182	588,128	638,374	50,246	19,017	579,516	629,348	49,832	19,339
1139,553	579,191	624,757	45,566	17,266	588,128	638,662	50,534	19,126	579,516	629,645	50,129	19,454
1176,852	579,191	624,943	45,752	17,337	588,128	638,473	50,345	19,054	579,516	629,656	50,140	19,458
1314,032	579,191	625,596	46,405	17,584	588,128	639,611	51,483	19,485	579,516	630,866	51,350	19,928
1354,083	579,191	625,822	46,631	17,670	588,128	639,661	51,533	19,504	579,516	630,958	51,442	19,963
1447,481	579,191	626,606	47,415	17,967	588,128	640,199	52,071	19,708	579,516	631,773	52,257	20,280
1526,545	579,191	626,864	47,673	18,065	588,128	640,623	52,495	19,868	579,516	632,732	53,216	20,652
1555,551	579,191	627,005	47,814	18,118	588,128	640,909	52,781	19,976	579,516	632,804	53,288	20,680
1584,689	579,191	627,208	48,017	18,195	588,128	641,212	53,084	20,091	579,516	633,096	53,580	20,793
1609,447	579,191	627,283	48,092	18,223	588,128	641,351	53,223	20,144	579,516	633,529	54,013	20,961
1638,084	579,191	627,566	48,375	18,331	588,128	641,849	53,721	20,332	579,516	634,139	54,623	21,198
1713,102	579,191	628,897	49,706	18,835	588,128	645,382	57,254	21,669	579,516	637,946	58,430	22,675
1738,724	579,191	629,077	49,886	18,903	588,128	645,286	57,158	21,633	579,516	638,147	58,631	22,753
1764,279	579,191	629,374	50,183	19,016	588,128	645,808	57,680	21,831	579,516	638,862	59,346	23,031
1787,255	579,191	629,839	50,648	19,192	588,128	646,931	58,803	22,256	579,516	639,655	60,139	23,339
1881,425	579,191	631,085	51,894	19,664	588,128	649,955	61,827	23,400	579,516	642,368	62,852	24,391
1905,083	579,191	631,222	52,031	19,716	588,128	650,349	62,221	23,549	579,516	642,831	63,315	24,571
1928,948	579,191	632,083	52,892	20,042	588,128	652,455	64,327	24,346	579,516	643,892	64,376	24,983
1949,277	579,191	632,936	53,745	20,365	588,128	652,333	64,205	24,300	579,516	644,820	65,304	25,343
1972,105	579,191	632,438	53,247	20,177	588,128	653,121	64,993	24,598	579,516	645,976	66,460	25,792
2035,819	579,191	634,238	55,047	20,859	588,128	656,632	68,504	25,927	579,516	649,258	69,742	27,065
2098,800	579,191	635,313	56,122	21,266	588,128	659,842	71,714	27,142	579,516	651,626	72,110	27,984
2119,283	579,191	635,693	56,502	21,410	588,128	660,618	72,490	27,436	579,516	652,200	72,684	28,207
2179,303	579,191	636,920	57,729	21,875	588,128	663,995	75,867	28,714	579,516	654,151	74,635	28,964

|--|

√t (√s)	M₀(g)	M _i (g)	M _i -M₀ (g)	M _{wi} (kg/m²)	M₀(g)	M _i (g)	M _i -M₀ (g)	M _{wi} (kg/m²)	M₀(g)	M _i (g)	M _i -M₀ (g)	M _{wi} (kg/m ²)
0,000	594,277	594,277	0,000	0,000	584,911	584,911	0,000	0,000	593,018	593,018	0,000	0,000
7,746	594,277	595,327	1,050	0,402	584,911	587,018	2,107	0,839	593,018	593,932	0,914	0,349
13,416	594,277	595,005	0,728	0,279	584,911	586,644	1,733	0,690	593,018	593,764	0,746	0,285
17,321	594,277	594,939	0,662	0,254	584,911	586,595	1,684	0,671	593,018	593,517	0,499	0,191
24,495	594,277	594,882	0,605	0,232	584,911	586,606	1,695	0,675	593,018	593,468	0,450	0,172
30,000	594,277	594,844	0,567	0,217	584,911	586,595	1,684	0,671	593,018	593,505	0,487	0,186
42,426	594,277	594,973	0,696	0,267	584,911	586,941	2,030	0,808	593,018	593,487	0,469	0,179
60,000	594,277	594,936	0,659	0,253	584,911	587,509	2,598	1,034	593,018	593,583	0,565	0,216
84,853	594,277	595,489	1,212	0,464	584,911	588,701	3,790	1,509	593,018	594,045	1,027	0,392
103,923	594,277	595,466	1,189	0,456	584,911	589,329	4,418	1,759	593,018	594,219	1,201	0,459
120,000	594,277	595,642	1,365	0,523	584,911	590,429	5,518	2,197	593,018	594,119	1,101	0,421
134,164	594,277	596,043	1,766	0,677	584,911	591,484	6,573	2,617	593,018	594,284	1,266	0,484
146,969	594,277	596,245	1,968	0,754	584,911	592,387	7,476	2,977	593,018	594,196	1,178	0,450
158,745	594,277	596,589	2,312	0,886	584,911	593,542	8,631	3,437	593,018	594,441	1,423	0,544
280,357	594,277	608,034	13,757	5,271	584,911	608,426	23,515	9,363	593,018	600,228	7,210	2,755
293,428	594,277	610,337	16,060	6,154	584,911	609,630	24,719	9,842	593,018	601,468	8,450	3,228
305,450	594,277	612,371	18,094	6,933	584,911	610,307	25,396	10,112	593,018	602,580	9,562	3,653
317,017	594,277	614,374	20,097	7,700	584,911	610,722	25,811	10,277	593,018	603,792	10,774	4,116
328,177	594,277	615,799	21,522	8,246	584,911	611,063	26,152	10,413	593,018	605,203	12,185	4,655
338,969	594,277	616,441	22,164	8,492	584,911	611,413	26,502	10,552	593,018	606,638	13,620	5,203
403,906	594,277	616,729	22,452	8,603	584,911	613,284	28,373	11,297	593,018	614,549	21,531	8,226
412,723	594,277	616,949	22,672	8,687	584,911	613,572	28,661	11,412	593,018	615,044	22,026	8,415
425,605	594,277	616,937	22,660	8,683	584,911	613,786	28,875	11,497	593,018	615,169	22,151	8,463
438,110	594,277	617,033	22,756	8,719	584,911	614,128	29,217	11,633	593,018	615,256	22,238	8,496
505,035	594,277	617,313	23,036	8,827	584,911	616,266	31,355	12,484	593,018	615,545	22,527	8,606
529,339	594,277	617,351	23,074	8,841	584,911	617,544	32,633	12,993	593,018	615,530	22,512	8,601
587,878	594,277	617,677	23,400	8,966	584,911	619,602	34,691	13,813	593,018	615,899	22,881	8,742
771,142	594,277	619,025	24,748	9,483	584,911	627,151	42,240	16,818	593,018	616,741	23,723	9,063
777,303	594,277	619,061	24,784	9,496	584,911	627,413	42,502	16,923	593,018	616,777	23,759	9,077
781,921	594,277	619,108	24,831	9,514	584,911	627,970	43,059	17,145	593,018	616,840	23,822	9,101
786,511	594,277	619,273	24,996	9,578	584,911	628,651	43,740	17,416	593,018	616,916	23,898	9,130
791,075	594,277	619,430	25,153	9,638	584,911	629,091	44,180	17,591	593,018	616,859	23,841	9,108
826,462	594,277	620,594	26,317	10,084	584,911	631,135	46,224	18,405	593,018	616,981	23,963	9,155
830,807	594,277	620,555	26,278	10,069	584,911	631,342	46,431	18,487	593,018	616,937	23,919	9,138
835,129	594,277	620,599	26,322	10,086	584,911	631,605	46,694	18,592	593,018	617,012	23,994	9,167
839,428	594,277	620,687	26,410	10,119	584,911	632,011	47,100	18,754	593,018	616,971	23,953	9,151
843,706	594,277	620,805	26,528	10,165	584,911	632,554	47,643	18,970	593,018	616,996	23,978	9,161

881.272	594.277	621.583	27.306	10.463	584.911	634,789	49.878	19.860	593.018	617.008	23,990	9,165
887.378	594.277	621.724	27.447	10,517	584.911	635.090	50.179	19.979	593.018	616.925	23.907	9,133
891,089	594,277	621,641	27,364	10,485	584,911	635,202	50,291	20,024	593,018	616,910	23,892	9,128
924,792	594,277	622,075	27,798	10,651	584,911	638,006	53,095	21,141	593,018	617,064	24,046	9,187
973,776	594,277	622,356	28,079	10,759	584,911	639,415	54,504	21,702	593,018	617,124	24,106	9,210
1095,965	594,277	624,316	30,039	11,510	584,911	641,912	57,001	22,696	593,018	617,267	24,249	9,264
1099,518	594,277	624,373	30,096	11,532	584,911	642,116	57,205	22,777	593,018	617,288	24,270	9,272
1134,698	594,277	624,878	30,601	11,725	584,911	642,629	57,718	22,981	593,018	617,441	24,423	9,331
1141,157	594,277	625,176	30,899	11,839	584,911	642,906	57,995	23,092	593,018	617,450	24,432	9,334
1145,880	594,277	625,547	31,270	11,982	584,911	642,935	58,024	23,103	593,018	617,382	24,364	9,308
1173,686	594,277	626,439	32,162	12,323	584,911	643,683	58,772	23,401	593,018	617,396	24,378	9,313
1209,934	594,277	626,821	32,544	12,470	584,911	644,715	59,804	23,812	593,018	617,476	24,458	9,344
1343,741	594,277	628,000	33,723	12,921	584,911	647,407	62,496	24,884	593,018	617,870	24,852	9,495
1382,975	594,277	628,361	34,084	13,060	584,911	648,297	63,386	25,238	593,018	618,007	24,989	9,547
1474,666	594,277	629,071	34,794	13,332	584,911	650,708	65,797	26,198	593,018	618,353	25,335	9,679
1552,192	594,277	629,925	35,648	13,659	584,911	652,843	67,932	27,048	593,018	619,027	26,009	9,937
1580,728	594,277	630,294	36,017	13,800	584,911	654,034	69,123	27,522	593,018	619,126	26,108	9,974
1609,410	594,277	631,357	37,080	14,208	584,911	655,184	70,273	27,980	593,018	619,106	26,088	9,967
1633,793	594,277	631,990	37,713	14,450	584,911	656,185	71,274	28,379	593,018	620,836	27,818	10,628
1662,011	594,277	633,784	39,507	15,138	584,911	657,280	72,369	28,815	593,018	622,720	29,702	11,347
1736,065	594,277	639,586	45,309	17,361	584,911	660,323	75,412	30,026	593,018	623,690	30,672	11,718
1761,284	594,277	640,467	46,190	17,698	584,911	661,636	76,725	30,549	593,018	623,719	30,701	11,729
1786,516	594,277	641,550	47,273	18,113	584,911	663,394	78,483	31,249	593,018	623,940	30,922	11,814
1809,210	594,277	642,474	48,197	18,467	584,911	665,299	80,388	32,008	593,018	624,140	31,122	11,890
1902,325	594,277	645,811	51,534	19,746	584,911	670,648	85,737	34,137	593,018	625,302	32,284	12,334
1925,695	594,277	646,960	52,683	20,186	584,911	672,300	87,389	34,795	593,018	625,700	32,682	12,486
1949,308	594,277	648,572	54,295	20,804	584,911	674,412	89,501	35,636	593,018	626,531	33,513	12,803
1970,340	594,277	649,675	55,398	21,227	584,911	676,285	91,374	36,382	593,018	626,860	33,842	12,929
1992,009	594,277	651,113	56,836	21,778	584,911	678,306	93,395	37,186	593,018	627,355	34,337	13,118
2054,244	594,277	653,199	58,922	22,577	584,911	682,470	97,559	38,844	593,018	630,030	37,012	14,140
2117,555	594,277	654,558	60,281	23,098	584,911	685,388	100,477	40,006	593,018	631,906	38,888	14,857
2137,859	594,277	654,951	60,674	23,248	584,911	686,908	101,997	40,611	593,018	632,430	39,412	15,057
2197,371	594,277	656,723	62,446	23,927	584,911	690,102	105,191	41,883	593,018	633,882	40,864	15,612

			PC2.1				PC2.2				PC2.3	
√t (√s)	M₀(g)	Mi(g)	M _i -M ₀ (g)	M _{wi} (kg/m²)	M₀(g)	Mi(g)	Mi-M₀ (g)	M _{wi} (kg/m ²)	M₀(g)	Mi(g)	M₁-M₀ (g)	M _{wi} (kg/m ²)
0,000	623,513	623,513	0,000	0,000	631,957	631,957	0,000	0,000	623,320	623,320	0,000	0,000
7,746	623,513	624,513	1,000	0,378	631,957	632,703	0,746	0,277	623,320	622,222	-1,098	-0,396
13,416	623,513	624,821	1,308	0,495	631,957	632,815	0,858	0,318	623,320	622,309	-1,011	-0,365
17,321	623,513	624,746	1,233	0,467	631,957	632,960	1,003	0,372	623,320	622,480	-0,840	-0,303
24,495	623,513	624,618	1,105	0,418	631,957	633,018	1,061	0,393	623,320	622,337	-0,983	-0,355
30,000	623,513	624,669	1,156	0,437	631,957	633,129	1,172	0,434	623,320	622,338	-0,982	-0,354
42,426	623,513	624,871	1,358	0,514	631,957	633,536	1,579	0,585	623,320	622,341	-0,979	-0,353
60,000	623,513	624,863	1,350	0,511	631,957	633,367	1,410	0,523	623,320	622,374	-0,946	-0,341
84,853	623,513	624,883	1,370	0,518	631,957	633,561	1,604	0,595	623,320	622,407	-0,913	-0,329
103,923	623,513	624,809	1,296	0,490	631,957	632,544	0,587	0,218	623,320	622,282	-1,038	-0,374
120,000	623,513	624,816	1,303	0,493	631,957	632,204	0,247	0,092	623,320	622,300	-1,020	-0,368
134,164	623,513	624,698	1,185	0,448	631,957	631,980	0,023	0,009	623,320	622,423	-0,897	-0,324
146,969	623,513	624,627	1,114	0,422	631,957	631,679	-0,278	-0,103	623,320	622,307	-1,013	-0,365
273,861	623,513	624,781	1,268	0,480	631,957	632,177	0,220	0,082	623,320	624,114	0,794	0,286
286,915	623,513	624,178	0,665	0,252	631,957	632,026	0,069	0,026	623,320	624,485	1,165	0,420
299,199	623,513	623,874	0,361	0,137	631,957	631,989	0,032	0,012	623,320	624,813	1,493	0,539
310,998	623,513	623,343	-0,170	-0,064	631,957	631,931	-0,026	-0,010	623,320	624,960	1,640	0,592
322,366	623,513	623,247	-0,266	-0,101	631,957	632,032	0,075	0,028	623,320	625,529	2,209	0,797
333,347	623,513	623,128	-0,385	-0,146	631,957	632,067	0,110	0,041	623,320	626,198	2,878	1,038
399,199	623,513	623,301	-0,212	-0,080	631,957	632,461	0,504	0,187	623,320	632,154	8,834	3,187
408,118	623,513	623,262	-0,251	-0,095	631,957	632,700	0,743	0,275	623,320	633,150	9,830	3,546
421,141	623,513	623,345	-0,168	-0,064	631,957	632,530	0,573	0,212	623,320	634,861	11,541	4,163
433,774	623,513	623,349	-0,164	-0,062	631,957	632,279	0,322	0,119	623,320	636,626	13,306	4,800
501,578	623,513	627,652	4,139	1,566	631,957	632,779	0,822	0,305	623,320	643,444	20,124	7,259
526,042	623,513	632,400	8,887	3,363	631,957	632,772	0,815	0,302	623,320	643,584	20,264	7,310
584,654	623,513	644,628	21,115	7,991	631,957	633,173	1,216	0,451	623,320	644,375	21,055	7,595
768,062	623,513	646,098	22,585	8,547	631,957	634,074	2,117	0,785	623,320	645,146	21,826	7,873
774,326	623,513	646,158	22,645	8,570	631,957	634,108	2,151	0,797	623,320	645,203	21,883	7,894
778,961	623,513	646,164	22,651	8,572	631,957	634,280	2,323	0,861	623,320	645,520	22,200	8,008
783,569	623,513	646,183	22,670	8,579	631,957	634,317	2,360	0,875	623,320	645,572	22,252	8,027
788,150	623,513	646,176	22,663	8,576	631,957	634,403	2,446	0,907	623,320	645,640	22,320	8,051
826,353	623,513	646,434	22,921	8,674	631,957	634,732	2,775	1,029	623,320	646,149	22,829	8,235
830,699	623,513	646,458	22,945	8,683	631,957	634,725	2,768	1,026	623,320	646,083	22,763	8,211
835,021	623,513	646,630	23,117	8,748	631,957	634,853	2,896	1,074	623,320	646,172	22,852	8,243
839,321	623,513	646,471	22,958	8,688	631,957	634,765	2,808	1,041	623,320	646,164	22,844	8,240
843,599	623,513	646,571	23,058	8,726	631,957	635,031	3,074	1,140	623,320	646,381	23,061	8,319

879,125	623,513	646,794	23,281	8,810	631,957	635,455	3,498	1,297	623,320	646,248	22,928	8,271
885,246	623,513	646,796	23,283	8,811	631,957	635,711	3,754	1,392	623,320	646,160	22,840	8,239
888,966	623,513	646,895	23,382	8,849	631,957	635,842	3,885	1,440	623,320	646,222	22,902	8,261
922,746	623,513	647,165	23,652	8,951	631,957	638,369	6,412	2,377	623,320	646,416	23,096	8,331
971,617	623,513	647,470	23,957	9,066	631,957	646,747	14,790	5,483	623,320	646,618	23,298	8,404
1094,239	623,513	648,370	24,857	9,407	631,957	655,722	23,765	8,810	623,320	647,216	23,896	8,620
1097,798	623,513	648,324	24,811	9,389	631,957	655,645	23,688	8,782	623,320	647,785	24,465	8,825
1133,031	623,513	648,706	25,193	9,534	631,957	656,038	24,081	8,927	623,320	647,766	24,446	8,818
1139,500	623,513	648,759	25,246	9,554	631,957	656,060	24,103	8,936	623,320	647,717	24,397	8,800
1144,229	623,513	648,840	25,327	9,585	631,957	656,111	24,154	8,955	623,320	647,627	24,307	8,768
1172,075	623,513	649,145	25,632	9,700	631,957	656,320	24,363	9,032	623,320	648,066	24,746	8,926
1208,371	623,513	649,523	26,010	9,843	631,957	656,453	24,496	9,081	623,320	648,070	24,750	8,928
1342,334	623,513	651,019	27,506	10,409	631,957	657,251	25,294	9,377	623,320	650,230	26,910	9,707
1381,586	623,513	651,342	27,829	10,531	631,957	657,348	25,391	9,413	623,320	650,362	27,042	9,755
1473,384	623,513	652,524	29,011	10,979	631,957	658,030	26,073	9,666	623,320	650,863	27,543	9,935
1550,974	623,513	653,293	29,780	11,270	631,957	658,317	26,360	9,772	623,320	651,372	28,052	10,119
1579,532	623,513	653,690	30,177	11,420	631,957	658,552	26,595	9,859	623,320	651,409	28,089	10,132
1608,235	623,513	654,339	30,826	11,666	631,957	659,632	27,675	10,260	623,320	653,247	29,927	10,795
1632,636	623,513	655,105	31,592	11,955	631,957	660,437	28,480	10,558	623,320	654,388	31,068	11,207
1660,873	623,513	655,902	32,389	12,257	631,957	660,804	28,847	10,694	623,320	655,979	32,659	11,781
1734,976	623,513	657,808	34,295	12,978	631,957	661,031	29,074	10,778	623,320	658,188	34,868	12,578
1760,210	623,513	658,640	35,127	13,293	631,957	661,115	29,158	10,810	623,320	658,315	34,995	12,623
1785,458	623,513	659,600	36,087	13,657	631,957	661,327	29,370	10,888	623,320	661,523	38,203	13,781
1808,165	623,513	660,611	37,098	14,039	631,957	661,691	29,734	11,023	623,320	661,460	38,140	13,758
1901,331	623,513	663,197	39,684	15,018	631,957	663,088	31,131	11,541	623,320	665,647	42,327	15,268
1924,713	623,513	663,680	40,167	15,201	631,957	664,033	32,076	11,891	623,320	666,023	42,703	15,404
1948,338	623,513	664,504	40,991	15,512	631,957	664,392	32,435	12,024	623,320	666,551	43,231	15,594
1968,466	623,513	665,517	42,004	15,896	631,957	664,727	32,770	12,149	623,320	667,490	44,170	15,933
1991,060	623,513	667,064	43,551	16,481	631,957	665,208	33,251	12,327	623,320	668,343	45,023	16,241
2054,201	623,513	674,723	51,210	19,380	631,957	666,861	34,904	12,940	623,320	670,858	47,538	17,148
2116,648	623,513	681,710	58,197	22,024	631,957	667,966	36,009	13,349	623,320	672,683	49,363	17,806
2136,960	623,513	683,904	60,391	22,854	631,957	668,433	36,476	13,523	623,320	673,153	49,833	17,976
2196,497	623,513	686,920	63,407	23,995	631,957	670,031	38,074	14,115	623,320	675,779	52,459	18,923

			CP2.1				CP2.2				CP2.3	
t^0,5 (s^0,5)	M0(g)	Mi(g)	Mi-M0 (g)	Mwi (kg/m2)	M0(g)	Mi(g)	Mi-M0 (g)	Mwi (kg/m2)	M0(g)	Mi(g)	Mi-M0 (g)	Mwi (kg/m2)
0,000	584,544	584,544	0,000	0,000	591,185	591,185	0,000	0,000	562,287	562,287	0,000	0,000
7,746	584,544	586,648	2,104	0,798	591,185	594,039	2,854	1,107	562,287	564,673	2,386	0,965
13,416	584,544	586,415	1,871	0,710	591,185	591,723	0,538	0,209	562,287	564,207	1,920	0,776
17,321	584,544	586,313	1,769	0,671	591,185	591,542	0,357	0,138	562,287	564,178	1,891	0,765
24,495	584,544	586,313	1,769	0,671	591,185	591,367	0,182	0,071	562,287	564,063	1,776	0,718
30,000	584,544	586,365	1,821	0,691	591,185	591,119	-0,066	-0,026	562,287	563,955	1,668	0,675
42,426	584,544	586,405	1,861	0,706	591,185	590,835	-0,350	-0,136	562,287	564,391	2,104	0,851
60,000	584,544	586,792	2,248	0,852	591,185	590,956	-0,229	-0,089	562,287	565,027	2,740	1,108
84,853	584,544	586,867	2,323	0,881	591,185	590,994	-0,191	-0,074	562,287	565,347	3,060	1,238
103,923	584,544	586,914	2,370	0,899	591,185	590,949	-0,236	-0,092	562,287	566,215	3,928	1,589
120,000	584,544	586,836	2,292	0,869	591,185	590,885	-0,300	-0,116	562,287	567,044	4,757	1,924
134,164	584,544	586,677	2,133	0,809	591,185	590,805	-0,380	-0,147	562,287	568,015	5,728	2,317
146,969	584,544	586,724	2,180	0,827	591,185	590,929	-0,256	-0,099	562,287	569,120	6,833	2,763
158,745	584,544	586,566	2,022	0,767	591,185	590,813	-0,372	-0,144	562,287	570,072	7,785	3,148
169,706	584,544	586,711	2,167	0,822	591,185	590,783	-0,402	-0,156	562,287	571,123	8,836	3,574
179,499	584,544	586,517	1,973	0,748	591,185	590,762	-0,423	-0,164	562,287	572,111	9,824	3,973
283,549	584,544	586,342	1,798	0,682	591,185	591,790	0,605	0,235	562,287	583,087	20,800	8,412
295,973	584,544	585,160	0,616	0,234	591,185	591,119	-0,066	-0,026	562,287	583,478	21,191	8,570
307,896	584,544	585,109	0,565	0,214	591,185	591,020	-0,165	-0,064	562,287	583,966	21,679	8,768
319,374	584,544	585,159	0,615	0,233	591,185	590,951	-0,234	-0,091	562,287	584,494	22,207	8,981
330,454	584,544	585,126	0,582	0,221	591,185	590,884	-0,301	-0,117	562,287	584,961	22,674	9,170
415,114	584,544	585,734	1,190	0,451	591,185	590,737	-0,448	-0,174	562,287	589,329	27,042	10,936
419,714	584,544	585,934	1,390	0,527	591,185	590,793	-0,392	-0,152	562,287	589,616	27,329	11,053
432,181	584,544	586,599	2,055	0,779	591,185	590,867	-0,318	-0,123	562,287	590,373	28,086	11,359
444,500	584,544	587,374	2,830	1,073	591,185	590,820	-0,365	-0,142	562,287	591,165	28,878	11,679
512,699	584,544	595,406	10,862	4,119	591,185	591,136	-0,049	-0,019	562,287	595,757	33,470	13,536
715,444	584,544	614,563	30,019	11,384	591,185	591,856	0,671	0,260	562,287	606,046	43,759	17,697
722,122	584,544	614,848	30,304	11,492	591,185	591,941	0,756	0,293	562,287	606,004	43,717	17,680
727,090	584,544	615,290	30,746	11,660	591,185	591,907	0,722	0,280	562,287	606,039	43,752	17,694
732,025	584,544	615,609	31,065	11,781	591,185	591,947	0,762	0,295	562,287	606,299	44,012	17,800
736,926	584,544	615,745	31,201	11,832	591,185	591,954	0,769	0,298	562,287	606,270	43,983	17,788
774,790	584,544	618,078	33,534	12,717	591,185	592,297	1,112	0,431	562,287	606,719	44,432	17,969
779,423	584,544	618,361	33,817	12,824	591,185	592,236	1,051	0,408	562,287	606,783	44,496	17,995
784,028	584,544	618,710	34,166	12,957	591,185	592,340	1,155	0,448	562,287	606,860	44,573	18,026
788,606	584,544	619,108	34,564	13,107	591,185	592,459	1,274	0,494	562,287	606,958	44,671	18,066
793,158	584,544	619,305	34,761	13,182	591,185	592,385	1,200	0,465	562,287	606,931	44,644	18,055

833,007	584,544	622,136	37,592	14,256	591,185	592,807	1,622	0,629	562,287	607,576	45,289	18,316
839,464	584,544	622,543	37,999	14,410	591,185	592,676	1,491	0,578	562,287	607,505	45,218	18,287
843,386	584,544	622,923	38,379	14,554	591,185	592,836	1,651	0,640	562,287	607,562	45,275	18,310
878,920	584,544	625,881	41,337	15,676	591,185	593,084	1,899	0,736	562,287	608,126	45,839	18,538
882,666	584,544	630,479	45,935	17,420	591,185	594,690	3,505	1,359	562,287	608,843	46,556	18,828
1055,557	584,544	633,654	49,110	18,624	591,185	615,658	24,473	9,489	562,287	610,781	48,494	19,612
1061,226	584,544	633,801	49,257	18,679	591,185	615,921	24,736	9,591	562,287	610,897	48,610	19,659
1095,719	584,544	634,072	49,528	18,782	591,185	619,301	28,116	10,902	562,287	611,498	49,211	19,902
1102,406	584,544	634,219	49,675	18,838	591,185	619,852	28,667	11,115	562,287	611,665	49,378	19,970
1107,294	584,544	634,278	49,734	18,860	591,185	620,192	29,007	11,247	562,287	611,823	49,536	20,034
1136,046	584,544	634,589	50,045	18,978	591,185	622,674	31,489	12,209	562,287	612,601	50,314	20,348
1173,456	584,544	634,863	50,319	19,082	591,185	627,473	36,288	14,070	562,287	613,312	51,025	20,636
1312,593	584,544	636,061	51,517	19,536	591,185	636,756	45,571	17,670	562,287	616,358	54,071	21,868
1352,664	584,544	636,369	51,825	19,653	591,185	636,897	45,712	17,724	562,287	617,251	54,964	22,229
1446,444	584,544	637,157	52,613	19,952	591,185	637,439	46,254	17,934	562,287	620,090	57,803	23,377
1525,307	584,544	637,793	53,249	20,193	591,185	637,876	46,691	18,104	562,287	622,262	59,975	24,255
1555,378	584,544	638,187	53,643	20,343	591,185	637,971	46,786	18,141	562,287	622,980	60,693	24,546
1583,496	584,544	638,292	53,748	20,383	591,185	638,245	47,060	18,247	562,287	624,169	61,882	25,027
1608,272	584,544	638,537	53,993	20,475	591,185	638,351	47,166	18,288	562,287	623,855	61,568	24,900
1636,930	584,544	639,055	54,511	20,672	591,185	638,900	47,715	18,501	562,287	624,665	62,378	25,227
1712,051	584,544	640,204	55,660	21,108	591,185	640,608	49,423	19,163	562,287	627,065	64,778	26,198
1737,636	584,544	640,082	55,538	21,061	591,185	640,697	49,512	19,198	562,287	627,329	65,042	26,305
1763,207	584,544	641,849	57,305	21,731	591,185	641,504	50,319	19,511	562,287	628,074	65,787	26,606
1786,197	584,544	642,916	58,372	22,136	591,185	642,509	51,324	19,900	562,287	629,511	67,224	27,187
1880,452	584,544	645,994	61,450	23,303	591,185	645,560	54,375	21,083	562,287	632,819	70,532	28,525
1904,090	584,544	646,074	61,530	23,334	591,185	645,841	54,656	21,192	562,287	633,017	70,730	28,605
1927,968	584,544	647,211	62,667	23,765	591,185	646,875	55,690	21,593	562,287	633,998	71,711	29,002
1948,307	584,544	647,338	62,794	23,813	591,185	647,111	55,926	21,685	562,287	635,030	72,743	29,419
1971,132	584,544	648,053	63,509	24,084	591,185	647,718	56,533	21,920	562,287	636,275	73,988	29,923
2034,891	584,544	650,540	65,996	25,027	591,185	651,479	60,294	23,378	562,287	638,496	76,209	30,821
2097,541	584,544	652,535	67,991	25,784	591,185	654,599	63,414	24,588	562,287	641,888	79,601	32,193
2118,037	584,544	653,276	68,732	26,065	591,185	655,355	64,170	24,881	562,287	642,501	80,214	32,441
2178,091	584,544	654,841	70,297	26,658	591,185	657,467	66,282	25,700	562,287	644,488	82,201	33,244

ANEXO 5

Neste anexo apresentam-se as tabelas de cálculo do índice de secagem.

		ľ	W1.1			Ν	M1.2			Ν	M1.3	
t(h)	M₀(g)	Mi(g)	M₁-M₀ (g)	W i(%)	M₀(g)	Mi(g)	M₁-M₀ (g)	W i(%)	M₀(g)	Mi(g)	M₁-M₀ (g)	Wi(%)
0,000	596,278	637,371	41,093	6,892	577,184	618,372	41,188	7,136	579,052	619,625	40,573	7,007
1,000	596,278	637,018	40,740	6,832	577,184	618,326	41,142	7,128	579,052	619,468	40,416	6,980
2,000	596,278	636,754	40,476	6,788	577,184	618,248	41,064	7,115	579,052	619,354	40,302	6,960
3,000	596,278	636,436	40,158	6,735	577,184	618,163	40,979	7,100	579,052	619,211	40,159	6,935
5,000	596,278	635,840	39,562	6,635	577,184	618,043	40,859	7,079	579,052	618,984	39,932	6,896
6,000	596,278	635,530	39,252	6,583	577,184	617,991	40,807	7,070	579,052	618,865	39,813	6,876
7,000	596,278	635,204	38,926	6,528	577,184	617,930	40,746	7,059	579,052	618,746	39,694	6,855
8,000	596,278	634,915	38,637	6,480	577,184	617,888	40,704	7,052	579,052	618,641	39,589	6,837
23,000	596,278	630,518	34,240	5,742	577,184	617,122	39,938	6,919	579,052	616,920	37,868	6,540
26,167	596,278	629,708	33,430	5,606	577,184	616,988	39,804	6,896	579,052	616,623	37,571	6,488
29,000	596,278	628,986	32,708	5,485	577,184	616,866	39,682	6,875	579,052	616,354	37,302	6,442
47,667	596,278	625,434	29,156	4,890	577,184	616,154	38,970	6,752	579,052	614,873	35,821	6,186
50,667	596,278	624,757	28,479	4,776	577,184	616,045	38,861	6,733	579,052	614,635	35,583	6,145
143,667	596,278	617,482	21,204	3,556	577,184	612,559	35,375	6,129	579,052	608,370	29,318	5,063
168,283	596,278	616,619	20,341	3,411	577,184	611,705	34,521	5,981	579,052	606,981	27,929	4,823
194,267	596,278	615,831	19,553	3,279	577,184	610,795	33,611	5,823	579,052	605,603	26,551	4,585
216,100	596,278	615,229	18,951	3,178	577,184	610,024	32,840	5,690	579,052	604,471	25,419	4,390
240,900	596,278	614,631	18,353	3,078	577,184	609,183	31,999	5,544	579,052	603,271	24,219	4,183
311,833	596,278	613,234	16,956	2,844	577,184	607,028	29,844	5,171	579,052	600,366	21,314	3,681
384,133	596,278	612,106	15,828	2,654	577,184	605,025	27,841	4,824	579,052	598,076	19,024	3,285
503,717	596,278	610,460	14,182	2,378	577,184	601,826	24,642	4,269	579,052	595,313	16,261	2,808
551,867	596,278	609,917	13,639	2,287	577,184	600,670	23,486	4,069	579,052	594,502	15,450	2,668
647,750	596,278	608,835	12,557	2,106	577,184	598,409	21,225	3,677	579,052	593,086	14,034	2,424
672,633	596,278	608,597	12,319	2,066	577,184	597,885	20,701	3,587	579,052	592,765	13,713	2,368
720,000	596,278	608,384	12,106	2,030	577,184	597,420	20,236	3,506	579,052	592,486	13,434	2,320
768,783	596,278	607,871	11,593	1,944	577,184	596,403	19,219	3,330	579,052	591,883	12,831	2,216
839,633	596,278	607,108	10,830	1,816	577,184	595,001	17,817	3,087	579,052	590,972	11,920	2,059
918,583	596,278	606,242	9,964	1,671	577,184	593,515	16,331	2,829	579,052	589,959	10,907	1,884
1008,783	596,278	605,614	9,336	1,566	577,184	592,537	15,353	2,660	579,052	589,210	10,158	1,754
1033,933	596,278	605,467	9,189	1,541	577,184	592,307	15,123	2,620	579,052	589,024	9,972	1,722
1058,100	596,278	605,315	9,037	1,516	577,184	592,081	14,897	2,581	579,052	588,837	9,785	1,690
1153,883	596,278	604,692	8,414	1,411	577,184	591,253	14,069	2,438	579,052	588,128	9,076	1,567
1324,033	596,278	603,741	7,463	1,252	577,184	590,016	12,832	2,223	579,052	587,019	7,967	1,376

Provetes parcialmente imersos em água

1563,500	596,278	602,516	6,238	1,046	577,184	588,493	11,309	1,959	579,052	585,646	6,594	1,139
1758,900	596,278	601,585	5,307	0,890	577,184	587,383	10,199	1,767	579,052	584,621	5,569	0,962
3034,217	596,278	600,184	3,906	0,655	577,184	585,732	8,548	1,481	579,052	583,110	4,058	0,701
3949,267	596,278	597,916	1,638	0,275	577,184	581,716	4,532	0,785	579,052	580,174	1,122	0,194
4358,400	596,278	597,902	1,624	0,272	577,184	580,236	3,052	0,529	579,052	580,166	1,114	0,192
4838,400	596,278	597,915	1,637	0,275	577,184	578,978	1,794	0,311	579,052	580,175	1,123	0,194
5318,400	596,278	597,935	1,657	0,278	577,184	578,833	1,649	0,286	579,052	580,195	1,143	0,197
5870,400	596,278	597,917	1,639	0,275	577,184	578,812	1,628	0,282	579,052	580,187	1,135	0,196
7454,400	596,278	597,920	1,642	0,275	577,184	578,800	1,616	0,280	579,052	580,183	1,131	0,195

Influência de ciclos de embebicão	e secadem de solucões aduc	osas salinas em elementos multicamada

		E	A1.1			E	A1.2			E	A1.3	
t(h)	M₀(g)	M _i (g)	M _i -M₀ (g)	Wi(%)	M₀(g)	M _i (g)	M _i -M₀ (g)	Wi(%)	M₀(g)	M _i (g)	M _i -M₀ (g)	Wi(%)
0,000	591,063	611,836	20,773	3,515	571,312	592,126	20,814	3,643	597,778	619,015	21,237	3,553
1,000	591,063	611,690	20,627	3,490	571,312	591,997	20,685	3,621	597,778	618,880	21,102	3,530
2,000	591,063	611,542	20,479	3,465	571,312	591,872	20,560	3,599	597,778	618,741	20,963	3,507
3,000	591,063	611,419	20,356	3,444	571,312	591,758	20,446	3,579	597,778	618,610	20,832	3,485
5,000	591,063	611,161	20,098	3,400	571,312	591,534	20,222	3,540	597,778	618,358	20,580	3,443
6,000	591,063	611,035	19,972	3,379	571,312	591,422	20,110	3,520	597,778	618,229	20,451	3,421
7,000	591,063	610,901	19,838	3,356	571,312	591,307	19,995	3,500	597,778	618,100	20,322	3,400
8,000	591,063	610,780	19,717	3,336	571,312	591,199	19,887	3,481	597,778	617,984	20,206	3,380
22,967	591,063	608,822	17,759	3,005	571,312	589,475	18,163	3,179	597,778	616,047	18,269	3,056
26,133	591,063	608,474	17,411	2,946	571,312	589,171	17,859	3,126	597,778	615,693	17,915	2,997
28,967	591,063	608,150	17,087	2,891	571,312	588,888	17,576	3,076	597,778	615,358	17,580	2,941
47,633	591,063	606,349	15,286	2,586	571,312	587,305	15,993	2,799	597,778	613,557	15,779	2,640
50,633	591,063	606,024	14,961	2,531	571,312	587,028	15,716	2,751	597,778	613,229	15,451	2,585
143,633	591,063	599,582	8,519	1,441	571,312	580,947	9,635	1,686	597,778	606,446	8,668	1,450
168,250	591,063	598,930	7,867	1,331	571,312	580,310	8,998	1,575	597,778	605,727	7,949	1,330
194,233	591,063	598,341	7,278	1,231	571,312	579,726	8,414	1,473	597,778	605,085	7,307	1,222
216,067	591,063	597,862	6,799	1,150	571,312	579,284	7,972	1,395	597,778	604,612	6,834	1,143
240,867	591,063	597,410	6,347	1,074	571,312	578,858	7,546	1,321	597,778	604,146	6,368	1,065
311,800	591,063	596,366	5,303	0,897	571,312	577,924	6,612	1,157	597,778	603,104	5,326	0,891
384,100	591,063	595,542	4,479	0,758	571,312	577,187	5,875	1,028	597,778	602,281	4,503	0,753
503,683	591,063	594,375	3,312	0,560	571,312	576,180	4,868	0,852	597,778	601,104	3,326	0,556
551,833	591,063	593,987	2,924	0,495	571,312	575,854	4,542	0,795	597,778	600,721	2,943	0,492
647,717	591,063	593,227	2,164	0,366	571,312	575,225	3,913	0,685	597,778	599,960	2,182	0,365
672,600	591,063	593,061	1,998	0,338	571,312	575,080	3,768	0,660	597,778	599,795	2,017	0,337
719,967	591,063	592,913	1,850	0,313	571,312	574,961	3,649	0,639	597,778	599,647	1,869	0,313
768,750	591,063	592,559	1,496	0,253	571,312	574,662	3,350	0,586	597,778	599,282	1,504	0,252
839,600	591,063	592,091	1,028	0,174	571,312	574,227	2,915	0,510	597,778	598,810	1,032	0,173
918,550	591,063	591,832	0,769	0,130	571,312	573,777	2,465	0,431	597,778	598,770	0,992	0,166
1008,750	591,063	591,844	0,781	0,132	571,312	573,451	2,139	0,374	597,778	598,787	1,009	0,169
1033,900	591,063	591,857	0,794	0,134	571,312	573,374	2,062	0,361	597,778	598,788	1,010	0,169
1058,067	591,063	591,850	0,787	0,133	571,312	573,282	1,970	0,345	597,778	598,791	1,013	0,169
1153,850	591,063	591,841	0,778	0,132	571,312	572,967	1,655	0,290	597,778	598,786	1,008	0,169
1324,000	591,063	591,835	0,772	0,131	571,312	572,513	1,201	0,210	597,778	598,802	1,024	0,171
1563,467	591,063	591,87 <u>3</u>	0,810	0,137	571,312	572,228	0,916	0,160	597,778	598,816	1,038	0,174
1758,867	591,063	591,871	0,808	0,137	571,312	572,255	0,943	0,165	597,778	598,843	1,065	0,178

3034,183	591,063	591,862	0,799	0,135	571,312	572,227	0,915	0,160	597,778	598,806	1,028	0,172
3949,233	591,063	591,865	0,802	0,136	571,312	572,237	0,925	0,162	597,778	598,821	1,043	0,174
4358,367	591,063	591,869	0,806	0,136	571,312	572,225	0,913	0,160	597,778	598,816	1,038	0,174
4838,367	591,063	591,889	0,826	0,140	571,312	572,257	0,945	0,165	597,778	598,839	1,061	0,177
5318,367	591,063	591,910	0,847	0,143	571,312	572,272	0,960	0,168	597,778	598,852	1,074	0,180
5870,367	591,063	591,908	0,845	0,143	571,312	572,266	0,954	0,167	597,778	598,858	1,080	0,181
7454,367	591,063	591,901	0,838	0,142	571,312	572,268	0,956	0,167	597,778	598,851	1,073	0,179

Influência de ciclos de embebicão	e secadem de solucões aduc	osas salinas em elementos multicamada

	PC1.1					P	PC1.2		PC1.3			
t(h)	M₀(g)	M _i (g)	M _i -M₀ (g)	Wi(%)	M₀(g)	M _i (g)	M₁-M₀ (g)	W _i (%)	M₀(g)	M _i (g)	M _i -M₀ (g)	Wi(%)
0,000	607,709	643,870	36,161	5,950	597,162	626,285	29,123	4,877	614,046	643,804	29,758	4,846
1,000	607,709	643,817	36,108	5,942	597,162	626,254	29,092	4,872	614,046	643,766	29,720	4,840
2,000	607,709	643,769	36,060	5,934	597,162	626,216	29,054	4,865	614,046	643,735	29,689	4,835
3,000	607,709	643,751	36,042	5,931	597,162	626,199	29,037	4,862	614,046	643,700	29,654	4,829
5,000	607,709	643,711	36,002	5,924	597,162	626,172	29,010	4,858	614,046	643,688	29,642	4,827
6,000	607,709	643,697	35,988	5,922	597,162	626,157	28,995	4,855	614,046	643,675	29,629	4,825
7,000	607,709	643,654	35,945	5,915	597,162	626,133	28,971	4,851	614,046	643,653	29,607	4,822
8,000	607,709	643,654	35,945	5,915	597,162	626,133	28,971	4,851	614,046	643,653	29,607	4,822
22,950	607,709	643,341	35,632	5,863	597,162	625,897	28,735	4,812	614,046	643,433	29,387	4,786
26,117	607,709	643,292	35,583	5,855	597,162	625,863	28,701	4,806	614,046	643,390	29,344	4,779
28,950	607,709	643,248	35,539	5,848	597,162	625,828	28,666	4,800	614,046	643,351	29,305	4,772
47,617	607,709	642,960	35,251	5,801	597,162	625,600	28,438	4,762	614,046	643,125	29,079	4,736
50,617	607,709	642,911	35,202	5,793	597,162	625,561	28,399	4,756	614,046	643,081	29,035	4,728
143,617	607,709	641,462	33,753	5,554	597,162	624,319	27,157	4,548	614,046	641,861	27,815	4,530
168,233	607,709	641,100	33,391	5,495	597,162	623,998	26,836	4,494	614,046	641,551	27,505	4,479
194,217	607,709	640,692	32,983	5,427	597,162	623,637	26,475	4,433	614,046	641,215	27,169	4,425
216,050	607,709	640,335	32,626	5,369	597,162	623,325	26,163	4,381	614,046	640,916	26,870	4,376
240,850	607,709	639,964	32,255	5,308	597,162	623,006	25,844	4,328	614,046	640,602	26,556	4,325
311,783	607,709	638,972	31,263	5,144	597,162	622,118	24,956	4,179	614,046	639,770	25,724	4,189
384,083	607,709	638,050	30,341	4,993	597,162	621,322	24,160	4,046	614,046	638,985	24,939	4,061
503,667	607,709	636,546	28,837	4,745	597,162	620,031	22,869	3,830	614,046	637,692	23,646	3,851
551,817	607,709	635,996	28,287	4,655	597,162	619,554	22,392	3,750	614,046	637,218	23,172	3,774
647,700	607,709	634,890	27,181	4,473	597,162	618,612	21,450	3,592	614,046	636,249	22,203	3,616
672,583	607,709	634,637	26,928	4,431	597,162	618,388	21,226	3,554	614,046	636,016	21,970	3,578
719,950	607,709	634,398	26,689	4,392	597,162	618,190	21,028	3,521	614,046	635,810	21,764	3,544
768,733	607,709	633,845	26,136	4,301	597,162	617,719	20,557	3,442	614,046	635,319	21,273	3,464
839,583	607,709	632,989	25,280	4,160	597,162	616,970	19,808	3,317	614,046	634,521	20,475	3,334
918,533	607,709	631,989	24,280	3,995	597,162	616,103	18,941	3,172	614,046	633,593	19,547	3,183
1008,733	607,709	631,187	23,478	3,863	597,162	615,428	18,266	3,059	614,046	632,866	18,820	3,065
1033,883	607,709	630,981	23,272	3,829	597,162	615,255	18,093	3,030	614,046	632,683	18,637	3,035
1058,050	607,709	630,775	23,066	3,796	597,162	615,092	17,930	3,003	614,046	632,489	18,443	3,004
1153,833	607,709	629,987	22,278	3,666	597,162	614,421	17,259	2,890	614,046	631,780	17,734	2,888
1323,983	607,709	628,711	21,002	3,456	597,162	613,350	16,188	2,711	614,046	630,598	16,552	2,696
1563,450	607,709	626,966	19,257	3,169	597,162	611,891	14,729	2,466	614,046	629,021	14,975	2,439
1758,850	607,709	625,612	17,903	2,946	597,162	610,736	13,574	2,273	614,046	627,769	13,723	2,235

3034,167	607,709	623,526	15,817	2,603	597,162	608,932	11,770	1,971	614,046	625,900	11,854	1,930
3949,217	607,709	618,500	10,791	1,776	597,162	604,426	7,264	1,216	614,046	621,819	7,773	1,266
4358,350	607,709	616,840	9,131	1,503	597,162	602,807	5,645	0,945	614,046	620,521	6,475	1,054
4838,350	607,709	615,384	7,675	1,263	597,162	601,347	4,185	0,701	614,046	619,399	5,353	0,872
5318,350	607,709	614,321	6,612	1,088	597,162	600,356	3,194	0,535	614,046	618,561	4,515	0,735
5870,350	607,709	613,387	5,678	0,934	597,162	599,737	2,575	0,431	614,046	617,798	3,752	0,611
7454,350	607,709	611,132	3,423	0,563	597,162	598,965	1,803	0,302	614,046	616,337	2,291	0,373

Influência de ciclos de embebi	cão e secadem	de solucões aquosa	as salinas err	n elementos multicamada

		C	P1.1			C	CP1.2	CP1.3				
t(h)	M₀(g)	M _i (g)	M _i -M₀ (g)	Wi(%)	M₀(g)	M _i (g)	M _i -M₀ (g)	Wi(%)	M₀(g)	M _i (g)	M _i -M₀ (g)	Wi(%)
0,000	568,084	594,770	26,686	4,698	584,457	625,728	41,271	7,061	588,771	629,995	41,224	7,002
1,000	568,084	594,707	26,623	4,686	584,457	625,635	41,178	7,046	588,771	629,739	40,968	6,958
2,000	568,084	594,680	26,596	4,682	584,457	625,563	41,106	7,033	588,771	629,514	40,743	6,920
3,000	568,084	594,647	26,563	4,676	584,457	625,474	41,017	7,018	588,771	629,246	40,475	6,874
5,000	568,084	594,601	26,517	4,668	584,457	625,348	40,891	6,996	588,771	628,754	39,983	6,791
6,000	568,084	594,578	26,494	4,664	584,457	625,286	40,829	6,986	588,771	628,514	39,743	6,750
7,000	568,084	594,560	26,476	4,661	584,457	625,227	40,770	6,976	588,771	628,265	39,494	6,708
8,000	568,084	594,539	26,455	4,657	584,457	625,172	40,715	6,966	588,771	628,033	39,262	6,668
22,983	568,084	594,226	26,142	4,602	584,457	624,307	39,850	6,818	588,771	624,471	35,700	6,063
26,150	568,084	594,176	26,092	4,593	584,457	624,154	39,697	6,792	588,771	623,835	35,064	5,955
28,983	568,084	594,125	26,041	4,584	584,457	624,021	39,564	6,769	588,771	623,256	34,485	5,857
47,650	568,084	593,783	25,699	4,524	584,457	623,250	38,793	6,637	588,771	620,319	31,548	5,358
50,650	568,084	593,747	25,663	4,517	584,457	623,121	38,664	6,615	588,771	619,826	31,055	5,275
143,650	568,084	591,951	23,867	4,201	584,457	619,951	35,494	6,073	588,771	609,959	21,188	3,599
168,267	568,084	591,494	23,410	4,121	584,457	618,660	34,203	5,852	588,771	608,871	20,100	3,414
194,250	568,084	590,999	22,915	4,034	584,457	617,768	33,311	5,699	588,771	607,946	19,175	3,257
216,083	568,084	590,553	22,469	3,955	584,457	617,029	32,572	5,573	588,771	607,273	18,502	3,142
240,883	568,084	590,078	21,994	3,872	584,457	616,250	31,793	5,440	588,771	606,622	17,851	3,032
311,817	568,084	588,855	20,771	3,656	584,457	614,222	29,765	5,093	588,771	605,106	16,335	2,774
384,117	568,084	587,772	19,688	3,466	584,457	612,407	27,950	4,782	588,771	603,863	15,092	2,563
503,700	568,084	585,899	17,815	3,136	584,457	609,704	25,247	4,320	588,771	601,999	13,228	2,247
551,850	568,084	585,258	17,174	3,023	584,457	608,728	24,271	4,153	588,771	601,348	12,577	2,136
647,733	568,084	583,930	15,846	2,789	584,457	606,835	22,378	3,829	588,771	600,074	11,303	1,920
672,617	568,084	583,619	15,535	2,735	584,457	606,392	21,935	3,753	588,771	599,790	11,019	1,872
719,983	568,084	583,343	15,259	2,686	584,457	605,986	21,529	3,684	588,771	599,540	10,769	1,829
768,767	568,084	582,686	14,602	2,570	584,457	605,070	20,613	3,527	588,771	598,957	10,186	1,730
839,617	568,084	581,617	13,533	2,382	584,457	603,656	19,199	3,285	588,771	598,061	9,290	1,578
918,567	568,084	580,416	12,332	2,171	584,457	602,004	17,547	3,002	588,771	597,092	8,321	1,413
1008,767	568,084	579,491	11,407	2,008	584,457	600,774	16,317	2,792	588,771	596,385	7,614	1,293
1033,917	568,084	579,264	11,180	1,968	584,457	600,476	16,019	2,741	588,771	596,213	7,442	1,264
1058,083	568,084	579,036	10,952	1,928	584,457	600,180	15,723	2,690	588,771	596,043	7,272	1,235
1153,867	568,084	578,176	10,092	1,776	584,457	599,132	14,675	2,511	588,771	595,352	6,581	1,118
1324,017	568,084	576,868	8,784	1,546	584,457	597,554	13,097	2,241	588,771	594,293	5,522	0,938
1563,483	568,084	575,324	7,240	1,274	584,457	595,666	11,209	1,918	588,771	592,969	4,198	0,713
1758,883	568,084	574,209	6,125	1,078	584,457	594,337	9,880	1,690	588,771	591,967	3,196	0,543

3034,200	568,084	572,580	4,496	0,791	584,457	592,448	7,991	1,367	588,771	590,488	1,717	0,292
3949,250	568,084	569,612	1,528	0,269	584,457	587,952	3,495	0,598	588,771	589,699	0,928	0,158
4358,383	568,084	569,596	1,512	0,266	584,457	586,426	1,969	0,337	588,771	589,693	0,922	0,157
4838,383	568,084	569,607	1,523	0,268	584,457	585,955	1,498	0,256	588,771	589,704	0,933	0,158
5318,383	568,084	569,608	1,524	0,268	584,457	585,958	1,501	0,257	588,771	589,714	0,943	0,160
5870,383	568,084	569,627	1,543	0,272	584,457	585,940	1,483	0,254	588,771	589,715	0,944	0,160
7454,383	568,084	569,611	1,527	0,269	584,457	585,941	1,484	0,254	588,771	589,714	0,943	0,160

			/ 13.1		M3.2 M3.3							
t(h)	M₀(g)	Mi(g)	Mi-M₀ (g)	W i(%)	M₀(g)	Mi(g)	M₁-M₀ (g)	W i(%)	M₀(g)	Mi(g)	M₁-M₀ (g)	W i(%)
0,000	618,257	654,219	35,962	5,817	597,097	628,324	31,227	5,230	581,073	612,996	31,923	5,494
2,000	618,257	653,986	35,729	5,779	597,097	628,013	30,916	5,178	581,073	612,793	31,720	5,459
4,000	618,257	653,844	35,587	5,756	597,097	627,838	30,741	5,148	581,073	612,684	31,611	5,440
5,667	618,257	653,782	35,525	5,746	597,097	627,768	30,671	5,137	581,073	612,643	31,570	5,433
24,467	618,257	653,297	35,040	5,668	597,097	627,240	30,143	5,048	581,073	612,044	30,971	5,330
27,333	618,257	653,272	35,015	5,664	597,097	627,202	30,105	5,042	581,073	612,010	30,937	5,324
30,667	618,257	653,232	34,975	5,657	597,097	627,156	30,059	5,034	581,073	611,974	30,901	5,318
48,633	618,257	652,978	34,721	5,616	597,097	626,824	29,727	4,979	581,073	611,766	30,693	5,282
51,400	618,257	652,955	34,698	5,612	597,097	626,804	29,707	4,975	581,073	611,745	30,672	5,279
54,367	618,257	652,916	34,659	5,606	597,097	626,764	29,667	4,969	581,073	611,708	30,635	5,272
72,250	618,257	652,722	34,465	5,575	597,097	626,613	29,516	4,943	581,073	611,514	30,441	5,239
144,417	618,257	652,227	33,970	5,494	597,097	626,095	28,998	4,856	581,073	610,991	29,918	5,149
168,450	618,257	652,092	33,835	5,473	597,097	625,937	28,840	4,830	581,073	610,848	29,775	5,124
193,867	618,257	651,967	33,710	5,452	597,097	625,759	28,662	4,800	581,073	610,720	29,647	5,102
217,200	618,257	651,845	33,588	5,433	597,097	625,580	28,483	4,770	581,073	610,588	29,515	5,079
241,000	618,257	651,716	33,459	5,412	597,097	625,415	28,318	4,743	581,073	610,456	29,383	5,057
314,467	618,257	651,314	33,057	5,347	597,097	624,930	27,833	4,661	581,073	610,039	28,966	4,985
553,933	618,257	650,154	31,897	5,159	597,097	623,569	26,472	4,433	581,073	608,800	27,727	4,772
749,333	618,257	649,014	30,757	4,975	597,097	622,446	25,349	4,245	581,073	607,648	26,575	4,573
1034,067	618,257	646,648	28,391	4,592	597,097	620,126	23,029	3,857	581,073	605,482	24,409	4,201
1973,117	618,257	638,606	20,349	3,291	597,097	611,979	14,882	2,492	581,073	598,570	17,497	3,011
2382,250	618,257	635,570	17,313	2,800	597,097	608,672	11,575	1,939	581,073	595,532	14,459	2,488
2838,250	618,257	633,697	15,440	2,497	597,097	606,788	9,691	1,623	581,073	593,400	12,327	2,121
3318,250	618,257	632,451	14,194	2,296	597,097	605,665	8,568	1,435	581,073	592,194	11,121	1,914
3870,250	618,257	631,251	12,994	2,102	597,097	604,619	7,522	1,260	581,073	591,081	10,008	1,722
5454,250	618,257	627,831	9,574	1,549	597,097	601,905	4,808	0,805	581,073	588,181	7,108	1,223

Provetes parcialmente imersos em solução saturada de cloreto de potássio

Influência de ciclos de embebica	io e secadem	n de solucões aquo	osas salinas err	n elementos	multicamada

		E	A3.1			E	A3.2			EA3.3			
t(h)	M₀(g)	M _i (g)	M₁-M₀ (g)	Wi(%)	M₀(g)	M _i (g)	M _i -M₀ (g)	Wi(%)	M₀(g)	M _i (g)	M _i -M₀ (g)	Wi(%)	
0,000	589,900	649,423	59,523	10,090	578,036	636,927	58,891	10,188	608,973	654,602	45,629	7,493	
2,000	589,900	648,730	58,830	9,973	578,036	636,356	58,320	10,089	608,973	653,908	44,935	7,379	
4,000	589,900	648,353	58,453	9,909	578,036	635,952	57,916	10,019	608,973	653,533	44,560	7,317	
5,667	589,900	648,178	58,278	9,879	578,036	635,780	57,744	9,990	608,973	653,341	44,368	7,286	
24,467	589,900	647,149	57,249	9,705	578,036	634,809	56,773	9,822	608,973	652,530	43,557	7,153	
27,333	589,900	647,068	57,168	9,691	578,036	634,728	56,692	9,808	608,973	652,461	43,488	7,141	
30,667	589,900	646,969	57,069	9,674	578,036	634,637	56,601	9,792	608,973	652,365	43,392	7,125	
48,633	589,900	646,507	56,607	9,596	578,036	634,172	56,136	9,712	608,973	651,875	42,902	7,045	
51,400	589,900	646,445	56,545	9,586	578,036	634,117	56,081	9,702	608,973	651,811	42,838	7,034	
54,367	589,900	646,365	56,465	9,572	578,036	634,037	56,001	9,688	608,973	651,733	42,760	7,022	
72,250	589,900	645,994	56,094	9,509	578,036	633,670	55,634	9,625	608,973	651,353	42,380	6,959	
144,417	589,900	644,681	54,781	9,286	578,036	632,706	54,670	9,458	608,973	649,938	40,965	6,727	
168,450	589,900	644,312	54,412	9,224	578,036	632,503	54,467	9,423	608,973	649,520	40,547	6,658	
193,867	589,900	644,023	54,123	9,175	578,036	632,328	54,292	9,392	608,973	649,125	40,152	6,593	
217,200	589,900	643,677	53,777	9,116	578,036	632,156	54,120	9,363	608,973	648,736	39,763	6,530	
241,000	589,900	643,296	53,396	9,052	578,036	631,983	53,947	9,333	608,973	649,686	40,713	6,686	
314,467	589,900	642,175	52,275	8,862	578,036	631,480	53,444	9,246	608,973	647,239	38,266	6,284	
553,933	589,900	639,044	49,144	8,331	578,036	629,983	51,947	8,987	608,973	644,066	35,093	5,763	
749,333	589,900	637,123	47,223	8,005	578,036	628,665	50,629	8,759	608,973	641,744	32,771	5,381	
1034,067	589,900	634,407	44,507	7,545	578,036	626,160	48,124	8,325	608,973	638,004	29,031	4,767	
1973,117	589,900	630,499	40,599	6,882	578,036	621,009	42,973	7,434	608,973	629,448	20,475	3,362	
2382,250	589,900	629,177	39,277	6,658	578,036	620,821	42,785	7,402	608,973	628,256	19,283	3,166	
2838,250	589,900	627,921	38,021	6,445	578,036	618,475	40,439	6,996	608,973	627,460	18,487	3,036	
3318,250	589,900	627,099	37,199	6,306	578,036	617,759	39,723	6,872	608,973	626,892	17,919	2,942	
3870,250	589,900	626,526	36,626	6,209	578,036	613,991	35,955	6,220	608,973	626,325	17,352	2,849	
5454,250	589,900	624,810	34,910	5,918	578,036	613,991	35,955	6,220	608,973	624,872	15,899	2,611	

					•							
		P	PC3.1			P	C3.2			P	C3.3	
t(h)	M₀(g)	M _i (g)	M _i -M ₀ (g)	W i(%)	M₀(g)	M _i (g)	M _i -M₀ (g)	W i(%)	M₀(g)	M _i (g)	M _i -M₀ (g)	W i(%)
0,000	632,752	675,398	42,646	6,740	639,870	690,232	50,362	7,871	615,012	669,106	54,094	8,796
2,000	632,752	675,247	42,495	6,716	639,870	690,029	50,159	7,839	615,012	668,694	53,682	8,729
4,000	632,752	675,086	42,334	6,690	639,870	689,814	49,944	7,805	615,012	668,416	53,404	8,683
5,667	632,752	675,003	42,251	6,677	639,870	689,722	49,852	7,791	615,012	668,342	53,330	8,671
24,467	632,752	674,296	41,544	6,566	639,870	689,035	49,165	7,684	615,012	667,767	52,755	8,578
27,333	632,752	674,231	41,479	6,555	639,870	688,984	49,114	7,676	615,012	667,722	52,710	8,571
30,667	632,752	674,163	41,411	6,545	639,870	688,916	49,046	7,665	615,012	667,659	52,647	8,560
48,633	632,752	673,877	41,125	6,499	639,870	688,568	48,698	7,611	615,012	667,320	52,308	8,505
51,400	632,752	673,846	41,094	6,494	639,870	688,534	48,664	7,605	615,012	667,286	52,274	8,500
54,367	632,752	673,807	41,055	6,488	639,870	688,484	48,614	7,597	615,012	667,230	52,218	8,491
72,250	632,752	673,599	40,847	6,455	639,870	688,230	48,360	7,558	615,012	666,971	51,959	8,448
144,417	632,752	672,989	40,237	6,359	639,870	687,500	47,630	7,444	615,012	666,191	51,179	8,322
168,450	632,752	672,823	40,071	6,333	639,870	687,305	47,435	7,413	615,012	665,973	50,961	8,286
193,867	632,752	672,683	39,931	6,311	639,870	687,132	47,262	7,386	615,012	665,767	50,755	8,253
217,200	632,752	672,542	39,790	6,288	639,870	686,961	47,091	7,359	615,012	665,560	50,548	8,219
241,000	632,752	672,402	39,650	6,266	639,870	686,794	46,924	7,333	615,012	665,347	50,335	8,184
314,467	632,752	672,029	39,277	6,207	639,870	686,340	46,470	7,262	615,012	664,681	49,669	8,076
553,933	632,752	671,129	38,377	6,065	639,870	685,039	45,169	7,059	615,012	662,482	47,470	7,719
749,333	632,752	670,462	37,710	5,960	639,870	682,997	43,127	6,740	615,012	660,025	45,013	7,319
1034,067	632,752	669,428	36,676	5,796	639,870	679,952	40,082	6,264	615,012	655,236	40,224	6,540
1973,117	632,752	666,498	33,746	5,333	639,870	674,769	34,899	5,454	615,012	647,122	32,110	5,221
2382,250	632,752	665,242	32,490	5,135	639,870	672,995	33,125	5,177	615,012	645,140	30,128	4,899
2838,250	632,752	663,829	31,077	4,911	639,870	671,426	31,556	4,932	615,012	643,433	28,421	4,621
3318,250	632,752	662,693	29,941	4,732	639,870	670,149	30,279	4,732	615,012	642,186	27,174	4,418
3870,250	632,752	661,467	28,715	4,538	639,870	668,459	28,589	4,468	615,012	640,971	25,959	4,221
5454,250	632,752	656,111	23,359	3,692	639,870	662,213	22,343	3,492	615.012	638.043	23,031	3,745

Influência de ciclos de embebição e secagem de soluções aquosas salinas em elementos multicamada

Influência de ciclos de embebica	io e secadem	n de solucões aquo	osas salinas err	n elementos	multicamada

		C	P3.1			C	P3.2		CP3.3			
t(h)	M₀(g)	M _i (g)	M₁-M₀ (g)	Wi(%)	M₀(g)	M _i (g)	M _i -M₀ (g)	Wi(%)	M₀(g)	M _i (g)	M _i -M₀ (g)	Wi(%)
0,000	601,594	635,353	33,759	5,612	593,673	621,014	27,341	4,605	606,838	640,752	33,914	5,589
2,000	601,594	635,211	33,617	5,588	593,673	620,889	27,216	4,584	606,838	640,568	33,730	5,558
4,000	601,594	635,064	33,470	5,564	593,673	620,789	27,116	4,567	606,838	640,434	33,596	5,536
5,667	601,594	635,009	33,415	5,554	593,673	620,697	27,024	4,552	606,838	640,391	33,553	5,529
24,467	601,594	634,520	32,926	5,473	593,673	620,087	26,414	4,449	606,838	639,941	33,103	5,455
27,333	601,594	634,491	32,897	5,468	593,673	620,054	26,381	4,444	606,838	639,893	33,055	5,447
30,667	601,594	634,452	32,858	5,462	593,673	619,895	26,222	4,417	606,838	639,860	33,022	5,442
48,633	601,594	634,200	32,606	5,420	593,673	619,787	26,114	4,399	606,838	639,632	32,794	5,404
51,400	601,594	634,182	32,588	5,417	593,673	619,766	26,093	4,395	606,838	639,610	32,772	5,400
54,367	601,594	634,149	32,555	5,411	593,673	619,726	26,053	4,388	606,838	639,578	32,740	5,395
72,250	601,594	633,999	32,405	5,387	593,673	619,582	25,909	4,364	606,838	639,398	32,560	5,366
144,417	601,594	633,535	31,941	5,309	593,673	619,064	25,391	4,277	606,838	638,744	31,906	5,258
168,450	601,594	633,399	31,805	5,287	593,673	618,924	25,251	4,253	606,838	638,541	31,703	5,224
193,867	601,594	633,273	31,679	5,266	593,673	618,801	25,128	4,233	606,838	638,341	31,503	5,191
217,200	601,594	633,148	31,554	5,245	593,673	618,676	25,003	4,212	606,838	638,142	31,304	5,159
241,000	601,594	633,012	31,418	5,222	593,673	618,539	24,866	4,189	606,838	637,944	31,106	5,126
314,467	601,594	632,623	31,029	5,158	593,673	618,110	24,437	4,116	606,838	637,437	30,599	5,042
553,933	601,594	631,544	29,950	4,978	593,673	616,788	23,115	3,894	606,838	636,218	29,380	4,841
749,333	601,594	630,564	28,970	4,816	593,673	615,547	21,874	3,685	606,838	635,111	28,273	4,659
1034,067	601,594	628,643	27,049	4,496	593,673	613,262	19,589	3,300	606,838	632,761	25,923	4,272
1949,117	601,594	622,222	20,628	3,429	593,673	606,651	12,978	2,186	606,838	625,943	19,105	3,148
2358,250	601,594	620,631	19,037	3,164	593,673	604,404	10,731	1,808	606,838	624,232	17,394	2,866
2838,250	601,594	619,349	17,755	2,951	593,673	602,910	9,237	1,556	606,838	622,887	16,049	2,645
3318,250	601,594	618,395	16,801	2,793	593,673	602,004	8,331	1,403	606,838	621,989	15,151	2,497
3870,250	601,594	617,431	15,837	2,633	593,673	601,110	7,437	1,253	606,838	621,093	14,255	2,349
5454,250	601,594	614,492	12,898	2,144	593,673	598,686	5,013	0,844	606,838	618,564	11,726	1,932

	M2.1				M2.2				M2.3			
t(h)	M₀(g)	Mi(g)	M₁-M₀ (g)	W i(%)	M₀(g)	Mi(g)	M _i -M ₀ (g)	Wi(%)	M₀(g)	Mi(g)	Mi-Mo (g)	W i(%)
0,000	579,191	639,182	59,991	10,358	588,128	666,119	77,991	13,261	579,516	656,769	77,253	13,331
1,967	579,191	638,797	59,606	10,291	588,128	665,691	77,563	13,188	579,516	656,298	76,782	13,249
3,967	579,191	638,455	59,264	10,232	588,128	665,312	77,184	13,124	579,516	655,954	76,438	13,190
7,200	579,191	638,032	58,841	10,159	588,128	664,838	76,710	13,043	579,516	655,503	75,987	13,112
23,217	579,191	636,805	57,614	9,947	588,128	663,362	75,234	12,792	579,516	654,378	74,862	12,918
26,967	579,191	636,663	57,472	9,923	588,128	663,153	75,025	12,757	579,516	654,253	74,737	12,896
71,433	579,191	635,716	56,525	9,759	588,128	661,907	73,779	12,545	579,516	653,199	73,683	12,715
74,683	579,191	635,644	56,453	9,747	588,128	661,820	73,692	12,530	579,516	653,121	73,605	12,701
78,883	579,191	635,563	56,372	9,733	588,128	661,715	73,587	12,512	579,516	653,033	73,517	12,686
95,100	579,191	635,193	56,002	9,669	588,128	661,246	73,118	12,432	579,516	652,629	73,113	12,616
167,317	579,191	633,742	54,551	9,418	588,128	659,433	71,305	12,124	579,516	651,057	71,541	12,345
192,200	579,191	633,305	54,114	9,343	588,128	658,885	70,757	12,031	579,516	650,579	71,063	12,262
239,567	579,191	632,910	53,719	9,275	588,128	658,393	70,265	11,947	579,516	650,145	70,629	12,188
288,350	579,191	631,848	52,657	9,091	588,128	657,058	68,930	11,720	579,516	648,967	69,451	11,984
359,200	579,191	629,923	50,732	8,759	588,128	654,626	66,498	11,307	579,516	646,782	67,266	11,607
438,150	579,191	627,975	48,784	8,423	588,128	652,096	63,968	10,877	579,516	644,513	64,997	11,216
528,350	579,191	626,611	47,420	8,187	588,128	650,329	62,201	10,576	579,516	642,918	63,402	10,941
553,500	579,191	626,293	47,102	8,132	588,128	649,918	61,790	10,506	579,516	642,549	63,033	10,877
577,667	579,191	625,969	46,778	8,076	588,128	649,509	61,381	10,437	579,516	642,176	62,660	10,812
673,450	579,191	624,643	45,452	7,847	588,128	647,799	59,671	10,146	579,516	640,687	61,171	10,556
843,683	579,191	622,510	43,319	7,479	588,128	645,086	56,958	9,685	579,516	638,289	58,773	10,142
1083,150	579,191	619,727	40,536	6,999	588,128	641,580	53,452	9,088	579,516	635,156	55,640	9,601
1278,550	579,191	617,576	38,385	6,627	588,128	638,756	50,628	8,608	579,516	632,592	53,076	9,159
1563,283	579,191	613,674	34,483	5,954	588,128	633,661	45,533	7,742	579,516	628,124	48,608	8,388
2478,333	579,191	606,317	27,126	4,683	588,128	622,320	34,192	5,814	579,516	617,376	37,860	6,533
2887,467	579,191	604,370	25,179	4,347	588,128	618,968	30,840	5,244	579,516	613,599	34,083	5,881
3367,467	579,191	602,730	23,539	4,064	588,128	616,503	28,375	4,825	579,516	611,273	31,757	5,480
3847,467	579,191	601,779	22,588	3,900	588,128	615,287	27,159	4,618	579,516	610,127	30,611	5,282
4399,467	579,191	600,861	21,670	3,741	588,128	614,167	26,039	4,427	579,516	609,044	29,528	5,095
5983,467	579,191	598,145	18,954	3,272	588,128	611,656	23,528	4,000	579,516	605,914	26,398	4,555

Provetes parcialmente imersos em solução saturada de sulfato de sódio

	EA2.1				EA2.2				EA2.3			
t(h)	M₀(g)	Mi(g)	M _i -M ₀ (g)	Wi(%)	M₀(g)	Mi(g)	M _i -M ₀ (g)	Wi(%)	M₀(g)	Mi(g)	Mi-Mo (g)	Wi(%)
0,000	594,277	657,855	63,578	10,698	584,911	691,729	106,818	18,262	593,018	635,768	42,750	7,209
2,000	594,277	657,134	62,857	10,577	584,911	690,520	105,609	18,056	593,018	635,445	42,427	7,154
4,000	594,277	656,419	62,142	10,457	584,911	689,249	104,338	17,838	593,018	635,157	42,139	7,106
7,233	594,277	655,455	61,178	10,295	584,911	687,340	102,429	17,512	593,018	634,752	41,734	7,038
23,250	594,277	652,475	58,198	9,793	584,911	679,540	94,629	16,178	593,018	633,259	40,241	6,786
27,000	594,277	652,070	57,793	9,725	584,911	678,113	93,202	15,934	593,018	632,995	39,977	6,741
71,467	594,277	648,639	54,362	9,148	584,911	666,661	81,750	13,976	593,018	630,809	37,791	6,373
74,717	594,277	648,402	54,125	9,108	584,911	666,100	81,189	13,881	593,018	630,651	37,633	6,346
78,917	594,277	648,097	53,820	9,056	584,911	665,380	80,469	13,757	593,018	630,466	37,448	6,315
95,133	594,277	646,874	52,597	8,851	584,911	662,962	78,051	13,344	593,018	629,685	36,667	6,183
167,350	594,277	642,629	48,352	8,136	584,911	656,843	71,932	12,298	593,018	627,050	34,032	5,739
192,233	594,277	641,417	47,140	7,932	584,911	655,363	70,452	12,045	593,018	626,388	33,370	5,627
239,600	594,277	640,485	46,208	7,775	584,911	654,016	69,105	11,815	593,018	625,809	32,791	5,530
288,383	594,277	638,074	43,797	7,370	584,911	650,819	65,908	11,268	593,018	624,332	31,314	5,280
359,233	594,277	633,998	39,721	6,684	584,911	645,723	60,812	10,397	593,018	621,928	28,910	4,875
438,183	594,277	630,490	36,213	6,094	584,911	641,181	56,270	9,620	593,018	619,741	26,723	4,506
528,383	594,277	628,415	34,138	5,744	584,911	638,482	53,571	9,159	593,018	618,379	25,361	4,277
553,533	594,277	627,986	33,709	5,672	584,911	637,927	53,016	9,064	593,018	618,099	25,081	4,229
577,700	594,277	627,541	33,264	5,597	584,911	637,369	52,458	8,969	593,018	617,808	24,790	4,180
673,483	594,277	625,825	31,548	5,309	584,911	635,024	50,113	8,568	593,018	616,580	23,562	3,973
843,717	594,277	623,550	29,273	4,926	584,911	631,699	46,788	7,999	593,018	614,789	21,771	3,671
1083,183	594,277	621,225	26,948	4,535	584,911	628,131	43,220	7,389	593,018	612,816	19,798	3,339
1278,583	594,277	619,387	25,110	4,225	584,911	625,789	40,878	6,989	593,018	611,629	18,611	3,138
1563,317	594,277	616,411	22,134	3,725	584,911	622,568	37,657	6,438	593,018	610,187	17,169	2,895
2478,367	594,277	610,882	16,605	2,794	584,911	618,630	33,719	5,765	593,018	607,008	13,990	2,359
2887,500	594,277	610,537	16,260	2,736	584,911	618,612	33,701	5,762	593,018	605,988	12,970	2,187
3367,500	594,277	609,906	15,629	2,630	584,911	618,631	33,720	5,765	593,018	605,319	12,301	2,074
3847,500	594,277	609,730	15,453	2,600	584,911	618,648	33,737	5,768	593,018	605,090	12,072	2,036
4399,500	594,277	609,718	15,441	2,598	584,911	618,637	33,726	5,766	593,018	604,986	11,968	2,018
5983,500	594,277	609,705	15,428	2,596	584,911	618,621	33,710	5,763	593,018	604,970	11,952	2,015
Influência de ciclos de embebi	ão e secaqem de solucões a	aquosas salinas em elementos multicamada										
--------------------------------	----------------------------	--										

		P	PC2.1			P	C2.2			P	PC2.3	
t(h)	M₀(g)	M _i (g)	M₁-M₀ (g)	Wi(%)	M₀(g)	M _i (g)	M₁-M₀ (g)	Wi(%)	M₀(g)	M _i (g)	M _i -M₀ (g)	Wi(%)
0,000	623,513	689,623	66,110	10,603	632,157	672,322	40,165	6,354	593,018	678,225	85,207	14,368
1,983	623,513	689,190	65,677	10,533	632,157	671,941	39,784	6,293	593,018	677,774	84,756	14,292
3,983	623,513	688,783	65,270	10,468	632,157	671,617	39,460	6,242	593,018	677,417	84,399	14,232
7,217	623,513	688,249	64,736	10,382	632,157	671,244	39,087	6,183	593,018	677,043	84,025	14,169
23,233	623,513	686,983	63,470	10,179	632,157	670,544	38,387	6,072	593,018	676,359	83,341	14,054
26,983	623,513	686,846	63,333	10,157	632,157	670,456	38,299	6,058	593,018	676,245	83,227	14,034
71,450	623,513	685,668	62,155	9,969	632,157	669,728	37,571	5,943	593,018	675,267	82,249	13,870
74,700	623,513	685,576	62,063	9,954	632,157	669,665	37,508	5,933	593,018	675,190	82,172	13,857
78,900	623,513	685,463	61,950	9,936	632,157	669,596	37,439	5,922	593,018	675,094	82,076	13,840
95,117	623,513	684,997	61,484	9,861	632,157	669,265	37,108	5,870	593,018	674,687	81,669	13,772
167,333	623,513	683,220	59,707	9,576	632,157	667,930	35,773	5,659	593,018	673,105	80,087	13,505
192,217	623,513	682,702	59,189	9,493	632,157	667,529	35,372	5,595	593,018	672,632	79,614	13,425
239,583	623,513	682,243	58,730	9,419	632,157	667,184	35,027	5,541	593,018	672,220	79,202	13,356
288,367	623,513	681,035	57,522	9,225	632,157	666,271	34,114	5,396	593,018	671,128	78,110	13,172
359,217	623,513	678,872	55,359	8,879	632,157	664,609	32,452	5,134	593,018	669,128	76,110	12,834
438,167	623,513	676,669	53,156	8,525	632,157	662,934	30,777	4,869	593,018	667,060	74,042	12,486
528,367	623,513	675,138	51,625	8,280	632,157	661,785	29,628	4,687	593,018	665,663	72,645	12,250
553,517	623,513	674,792	51,279	8,224	632,157	661,527	29,370	4,646	593,018	665,347	72,329	12,197
577,683	623,513	674,436	50,923	8,167	632,157	661,258	29,101	4,603	593,018	665,023	72,005	12,142
673,467	623,513	672,977	49,464	7,933	632,157	660,193	28,036	4,435	593,018	663,694	70,676	11,918
843,700	623,513	670,619	47,106	7,555	632,157	658,620	26,463	4,186	593,018	661,699	68,681	11,582
1083,167	623,513	667,590	44,077	7,069	632,157	656,595	24,438	3,866	593,018	659,228	66,210	11,165
1278,567	623,513	665,074	41,561	6,666	632,157	654,974	22,817	3,609	593,018	657,115	64,097	10,809
1563,300	623,513	660,655	37,142	5,957	632,157	652,402	20,245	3,203	593,018	653,280	60,262	10,162
2478,350	623,513	650,567	27,054	4,339	632,157	648,563	16,406	2,595	593,018	646,210	53,192	8,970
2887,483	623,513	646,690	23,177	3,717	632,157	647,062	14,905	2,358	593,018	644,385	51,367	8,662
3367,483	623,513	643,916	20,403	3,272	632,157	645,845	13,688	2,165	593,018	642,961	49,943	8,422
3847,483	623,513	642,921	19,408	3,113	632,157	645,304	13,147	2,080	593,018	642,235	49,217	8,299
4399,483	623,513	642,064	18,551	2,975	632,157	644,818	12,661	2,003	593,018	641,630	48,612	8,197
5983,483	623,513	640,026	16,513	2,648	632,157	643,535	11,378	1,800	593,018	640,263	47,245	7,967

Influência de ciclos de e	mbebicão e seca	aem de solucões a	auosas salinas em	elementos multicamada
		J		

		C	CP2.1			C	P2.2			C	P2.3	
t(h)	M₀(g)	M _i (g)	M _i -M₀ (g)	Wi(%)	M₀(g)	M _i (g)	M₁-M₀ (g)	Wi(%)	M₀(g)	M _i (g)	M _i -M₀ (g)	Wi(%)
0,000	584,544	658,231	73,687	12,606	591,185	660,349	69,164	11,699	562,287	647,073	84,786	15,079
1,950	584,544	657,721	73,177	12,519	591,185	659,992	68,807	11,639	562,287	646,339	84,052	14,948
3,950	584,544	657,202	72,658	12,430	591,185	659,674	68,489	11,585	562,287	645,550	83,263	14,808
7,183	584,544	656,516	71,972	12,313	591,185	659,313	68,128	11,524	562,287	644,500	82,213	14,621
23,200	584,544	654,181	69,637	11,913	591,185	658,712	67,527	11,422	562,287	640,837	78,550	13,970
26,950	584,544	653,772	69,228	11,843	591,185	658,607	67,422	11,405	562,287	640,249	77,962	13,865
71,417	584,544	651,206	66,662	11,404	591,185	657,697	66,512	11,251	562,287	636,636	74,349	13,223
74,667	584,544	651,099	66,555	11,386	591,185	657,630	66,445	11,239	562,287	636,497	74,210	13,198
78,867	584,544	650,976	66,432	11,365	591,185	657,550	66,365	11,226	562,287	636,320	74,033	13,166
95,083	584,544	650,469	65,925	11,278	591,185	657,194	66,009	11,166	562,287	635,609	73,322	13,040
167,300	584,544	648,619	64,075	10,962	591,185	655,766	64,581	10,924	562,287	633,290	71,003	12,628
167,300	584,544	648,090	63,546	10,871	591,185	655,322	64,137	10,849	562,287	632,654	70,367	12,514
239,550	584,544	647,605	63,061	10,788	591,185	654,926	63,741	10,782	562,287	632,087	69,800	12,414
288,333	584,544	646,313	61,769	10,567	591,185	653,874	62,689	10,604	562,287	630,572	68,285	12,144
359,183	584,544	644,019	59,475	10,175	591,185	651,945	60,760	10,278	562,287	627,869	65,582	11,663
438,133	584,544	641,761	57,217	9,788	591,185	649,958	58,773	9,942	562,287	625,196	62,909	11,188
528,333	584,544	640,212	55,668	9,523	591,185	648,552	57,367	9,704	562,287	623,362	61,075	10,862
553,483	584,544	639,820	55,276	9,456	591,185	648,228	57,043	9,649	562,287	622,951	60,664	10,789
577,650	584,544	639,467	54,923	9,396	591,185	647,894	56,709	9,592	562,287	622,536	60,249	10,715
673,433	584,544	637,993	53,449	9,144	591,185	646,526	55,341	9,361	562,287	620,823	58,536	10,410
843,667	584,544	635,716	51,172	8,754	591,185	647,396	56,211	9,508	562,287	618,180	55,893	9,940
1083,133	584,544	633,127	48,583	8,311	591,185	641,871	50,686	8,574	562,287	614,908	52,621	9,358
1278,533	584,544	630,981	46,437	7,944	591,185	639,690	48,505	8,205	562,287	612,200	49,913	8,877
1563,267	584,544	627,215	42,671	7,300	591,185	635,833	44,648	7,552	562,287	607,879	45,592	8,108
2478,317	584,544	621,741	37,197	6,363	591,185	629,027	37,842	6,401	562,287	600,699	38,412	6,831
2887,450	584,544	619,682	35,138	6,011	591,185	627,203	36,018	6,093	562,287	597,633	35,346	6,286
3367,450	584,544	617,888	33,344	5,704	591,185	625,452	34,267	5,796	562,287	594,726	32,439	5,769
3847,450	584,544	616,959	32,415	5,545	591,185	624,160	32,975	5,578	562,287	593,304	31,017	5,516
4399,450	584,544	616,015	31,471	5,384	591,185	622,666	31,481	5,325	562,287	591,975	29,688	5,280
5983,450	584,544	613,193	28,649	4,901	591,185	617,915	26,730	4,521	562,287	588,480	26,193	4,658

ANEXO 6

Neste anexo apresentam-se as tabelas de cálculo do coeficiente de capilaridade, do segundo ciclo de reabsorção.

Provetes parcialmente imersos em água

			M1.1				M1.2				M1.3	
√t (√s)	M₀(g)	Mi(g)	M _i -M ₀ (g)	M _{wi} (kg/m²)	M₀(g)	Mi(g)	M _i -M₀ (g)	M _{wi} (kg/m ²)	M₀(g)	Mi(g)	Mi-Mo (g)	M _{wi} (kg/m²)
0,000	596,525	596,525	0,000	0,000	577,442	577,442	0,000	0,000	578,889	578,889	0,000	0,000
7,746	596,525	597,341	0,816	0,299	577,442	578,432	0,990	0,376	578,889	579,176	0,287	0,108
13,416	596,525	597,951	1,426	0,523	577,442	579,022	1,580	0,600	578,889	579,371	0,482	0,181
17,321	596,525	598,373	1,848	0,678	577,442	579,455	2,013	0,765	578,889	579,515	0,626	0,235
24,495	596,525	599,243	2,718	0,997	577,442	580,384	2,942	1,118	578,889	579,861	0,972	0,366
30,000	596,525	599,958	3,433	1,260	577,442	581,192	3,750	1,425	578,889	580,137	1,248	0,469
42,426	596,525	601,780	5,255	1,928	577,442	583,281	5,839	2,218	578,889	580,966	2,077	0,781
60,000	596,525	604,714	8,189	3,004	577,442	586,581	9,139	3,472	578,889	582,629	3,740	1,407
84,853	596,525	609,348	12,823	4,705	577,442	591,549	14,107	5,359	578,889	585,779	6,890	2,591
103,923	596,525	613,131	16,606	6,093	577,442	595,467	18,025	6,847	578,889	588,764	9,875	3,714
120,000	596,525	616,476	19,951	7,320	577,442	598,904	21,462	8,153	578,889	591,654	12,765	4,801
134,164	596,525	619,452	22,927	8,412	577,442	601,882	24,440	9,284	578,889	594,343	15,454	5,812
146,969	596,525	622,158	25,633	9,405	577,442	604,590	27,148	10,313	578,889	596,920	18,031	6,782
158,745	596,525	624,721	28,196	10,345	577,442	607,067	29,625	11,254	578,889	599,447	20,558	7,732
162,481	596,525	625,549	29,024	10,649	577,442	607,874	30,432	11,561	578,889	600,298	21,409	8,052
293,939	596,525	634,860	38,335	14,065	577,442	615,744	38,302	14,550	578,889	617,782	38,893	14,628
305,941	596,525	634,865	38,340	14,067	577,442	615,758	38,316	14,556	578,889	617,792	38,903	14,632
317,490	596,525	634,884	38,359	14,074	577,442	615,775	38,333	14,562	578,889	617,808	38,919	14,638
334,066	596,525	634,860	38,335	14,065	577,442	615,769	38,327	14,560	578,889	617,818	38,929	14,641
420,000	596,525	635,036	38,511	14,129	577,442	616,031	38,589	14,659	578,889	618,004	39,115	14,711
432,666	596,525	635,077	38,552	14,144	577,442	616,068	38,626	14,673	578,889	618,015	39,126	14,715
600,000	596,525	635,467	38,942	14,287	577,442	616,640	39,198	14,891	578,889	618,460	39,571	14,883

			EA1.1				EA1.2				EA1.3	
√t (√s)	M₀(g)	Mi(g)	Mi-M₀ (g)	M _{wi} (kg/m²)	M₀(g)	Mi(g)	M₁-M₀ (g)	M _{wi} (kg/m²)	M₀(g)	Mi(g)	Mi-M₀ (g)	M _{wi} (kg/m²)
0,000	591,314	591,314	0,000	0,000	571,558	571,558	0,000	0,000	598,031	598,031	0,000	0,000
7,746	591,314	592,255	0,941	0,354	571,558	571,950	0,392	0,154	598,031	598,925	0,894	0,334
13,416	591,314	592,853	1,539	0,578	571,558	572,276	0,718	0,281	598,031	599,501	1,470	0,550
17,321	591,314	593,344	2,030	0,763	571,558	572,478	0,920	0,361	598,031	599,916	1,885	0,705
24,495	591,314	594,244	2,930	1,101	571,558	572,955	1,397	0,548	598,031	600,836	2,805	1,049
30,000	591,314	595,035	3,721	1,398	571,558	573,343	1,785	0,700	598,031	601,638	3,607	1,349
42,426	591,314	597,070	5,756	2,163	571,558	574,387	2,829	1,109	598,031	603,649	5,618	2,101
58,992	591,314	599,935	8,621	3,239	571,558	575,811	4,253	1,667	598,031	606,642	8,611	3,221
84,143	591,314	604,702	13,388	5,031	571,558	578,340	6,782	2,659	598,031	611,733	13,702	5,125
103,923	591,314	608,350	17,036	6,401	571,558	580,442	8,884	3,483	598,031	615,728	17,697	6,619
119,499	591,314	610,122	18,808	7,067	571,558	582,271	10,713	4,200	598,031	617,143	19,112	7,148
133,716	591,314	610,342	19,028	7,150	571,558	583,945	12,387	4,856	598,031	617,292	19,261	7,204
138,130	591,314	610,379	19,065	7,164	571,558	584,490	12,932	5,070	598,031	617,281	19,250	7,200
281,212	591,314	610,638	19,324	7,261	571,558	590,823	19,265	7,552	598,031	617,605	19,574	7,321
293,735	591,314	610,623	19,309	7,256	571,558	590,827	19,269	7,554	598,031	617,618	19,587	7,326
305,745	591,314	610,652	19,338	7,266	571,558	590,866	19,308	7,569	598,031	617,633	19,602	7,332
322,924	591,314	610,671	19,357	7,274	571,558	590,889	19,331	7,578	598,031	617,620	19,589	7,327
411,193	591,314	610,742	19,428	7,300	571,558	591,016	19,458	7,628	598,031	617,761	19,730	7,380
424,123	591,314	610,765	19,451	7,309	571,558	591,043	19,485	7,638	598,031	617,744	19,713	7,373
593,869	591,314	611,087	19,773	7,430	571,558	591,289	19,731	7,735	598,031	618,130	20,099	7,518

			PC1.1				PC1.2				PC1.3	
√t (√s)	M₀(g)	Mi(g)	Mi-Mo (g)	M _{wi} (kg/m²)	M₀(g)	Mi(g)	Mi-Mo (g)	M _{wi} (kg/m ²)	M₀(g)	Mi(g)	Mi-Mo (g)	M _{wi} (kg/m²)
0,000	608,807	608,807	0,000	0,000	597,925	597,925	0,000	0,000	614,888	614,888	0,000	0,000
7,746	608,807	609,130	0,323	0,130	597,925	598,841	0,916	0,351	614,888	615,131	0,243	0,092
13,416	608,807	609,297	0,490	0,197	597,925	599,434	1,509	0,578	614,888	615,246	0,358	0,135
17,321	608,807	609,445	0,638	0,257	597,925	599,883	1,958	0,750	614,888	615,350	0,462	0,174
24,495	608,807	609,751	0,944	0,380	597,925	600,763	2,838	1,088	614,888	615,548	0,660	0,249
30,000	608,807	609,942	1,135	0,456	597,925	601,573	3,648	1,398	614,888	615,740	0,852	0,322
42,426	608,807	610,656	1,849	0,744	597,925	603,343	5,418	2,076	614,888	616,177	1,289	0,487
58,481	608,807	611,733	2,926	1,177	597,925	605,966	8,041	3,082	614,888	616,987	2,099	0,793
84,853	608,807	613,681	4,874	1,960	597,925	610,300	12,375	4,743	614,888	618,617	3,729	1,408
103,053	608,807	615,333	6,526	2,624	597,925	613,367	15,442	5,918	614,888	620,064	5,176	1,955
119,248	608,807	616,850	8,043	3,234	597,925	615,721	17,796	6,820	614,888	621,475	6,587	2,488
124,177	608,807	617,336	8,529	3,430	597,925	616,118	18,193	6,972	614,888	621,937	7,049	2,662
274,627	608,807	628,340	19,533	7,854	597,925	618,057	20,132	7,715	614,888	634,390	19,502	7,365
287,437	608,807	628,492	19,685	7,916	597,925	618,199	20,274	7,770	614,888	634,550	19,662	7,426
299,700	608,807	628,658	19,851	7,982	597,925	618,318	20,393	7,815	614,888	634,709	19,821	7,486
317,207	608,807	628,912	20,105	8,084	597,925	618,513	20,588	7,890	614,888	634,852	19,964	7,540
406,719	608,807	630,262	21,455	8,627	597,925	619,466	21,541	8,255	614,888	636,068	21,180	7,999
419,786	608,807	630,466	21,659	8,709	597,925	619,628	21,703	8,318	614,888	636,257	21,369	8,070
590,779	608,807	634,024	25,217	10,140	597,925	621,829	23,904	9,161	614,888	638,957	24,069	9,090

		(CP1.1				CP1.2				CP1.3	
√t (√s)	M₀(g)	Mi(g)	Mi-Mo (g)	M _{wi} (kg/m ²)	M₀(g)	Mi(g)	M₁-M₀ (g)	M _{wi} (kg/m ²)	M₀(g)	Mi(g)	M _i -M ₀ (g)	M _{wi} (kg/m ²)
0,000	568,343	568,343	0,000	0,000	584,709	584,709	0,000	0,000	589,017	589,017	0,000	0,000
7,746	568,343	569,231	0,888	0,355	584,709	585,542	0,833	0,318	589,017	589,660	0,643	0,243
13,416	568,343	569,864	1,521	0,609	584,709	586,116	1,407	0,537	589,017	590,130	1,113	0,421
17,321	568,343	570,353	2,010	0,804	584,709	586,535	1,826	0,697	589,017	590,551	1,534	0,580
24,495	568,343	571,264	2,921	1,169	584,709	587,358	2,649	1,011	589,017	591,407	2,390	0,904
30,000	568,343	572,022	3,679	1,472	584,709	588,114	3,405	1,300	589,017	592,167	3,150	1,191
42,426	568,343	573,896	5,553	2,222	584,709	589,973	5,264	2,010	589,017	594,106	5,089	1,925
59,498	568,343	576,664	8,321	3,330	584,709	592,882	8,173	3,120	589,017	597,129	8,112	3,068
84,499	568,343	581,037	12,694	5,080	584,709	597,677	12,968	4,951	589,017	602,172	13,155	4,975
103,634	568,343	584,562	16,219	6,490	584,709	601,578	16,869	6,440	589,017	606,232	17,215	6,511
119,750	568,343	586,334	17,991	7,200	584,709	603,519	18,810	7,181	589,017	607,876	18,859	7,133
133,940	568,343	586,586	18,243	7,300	584,709	604,257	19,548	7,463	589,017	608,452	19,435	7,350
146,765	568,343	586,699	18,356	7,346	584,709	605,027	20,318	7,757	589,017	609,021	20,004	7,566
150,798	568,343	586,717	18,374	7,353	584,709	605,296	20,587	7,860	589,017	609,197	20,180	7,632
287,646	568,343	587,853	19,510	7,807	584,709	617,873	33,164	12,661	589,017	617,872	28,855	10,913
299,900	568,343	587,921	19,578	7,835	584,709	619,252	34,543	13,188	589,017	618,869	29,852	11,290
311,673	568,343	588,018	19,675	7,873	584,709	620,541	35,832	13,680	589,017	619,849	30,832	11,661
328,542	568,343	588,097	19,754	7,905	584,709	622,035	37,326	14,250	589,017	621,244	32,227	12,188
415,620	568,343	588,815	20,472	8,192	584,709	623,000	38,291	14,619	589,017	627,667	38,650	14,618
428,416	568,343	588,939	20,596	8,242	584,709	623,421	38,712	14,780	589,017	627,949	38,932	14,724
596,942	568,343	590,419	22,076	8,834	584,709	624,012	39,303	15,005	589,017	628,684	39,667	15,002

Provetes parcialmente imersos em solução saturada de cloreto de potássio

			M3.1				M3.2				M3.3	
√t (√s)	M₀(g)	Mi(g)	M₁-M₀ (g)	M _{wi} (kg/m²)	M₀(g)	Mi(g)	M₁-M₀ (g)	M _{wi} (kg/m²)	M₀(g)	Mi(g)	Mi-Mo (g)	M _{wi} (kg/m²)
0,000	625,539	625,539	0,000	0,000	599,962	599,962	0,000	0,000	585,932	585,932	0,000	0,000
7,746	625,539	630,251	4,712	1,736	599,962	604,651	4,689	1,784	585,932	591,370	5,438	2,115
13,416	625,539	627,559	2,020	0,744	599,962	602,629	2,667	1,015	585,932	587,504	1,572	0,611
17,321	625,539	626,563	1,024	0,377	599,962	601,531	1,569	0,597	585,932	586,305	0,373	0,145
24,495	625,539	626,661	1,122	0,413	599,962	601,479	1,517	0,577	585,932	586,612	0,680	0,264
30,000	625,539	626,222	0,683	0,252	599,962	601,281	1,319	0,502	585,932	586,166	0,234	0,091
42,426	625,539	626,048	0,509	0,188	599,962	601,561	1,599	0,608	585,932	586,043	0,111	0,043
60,000	625,539	625,965	0,426	0,157	599,962	602,641	2,679	1,019	585,932	586,486	0,554	0,215
84,853	625,539	626,474	0,935	0,345	599,962	605,010	5,048	1,921	585,932	587,171	1,239	0,482
103,923	625,539	626,961	1,422	0,524	599,962	606,151	6,189	2,355	585,932	588,205	2,273	0,884
120,000	625,539	627,598	2,059	0,759	599,962	608,322	8,360	3,181	585,932	589,172	3,240	1,260
134,164	625,539	627,880	2,341	0,863	599,962	610,033	10,071	3,832	585,932	590,235	4,303	1,673
157,417	625,539	628,900	3,361	1,238	599,962	613,375	13,413	5,104	585,932	592,013	6,081	2,365
293,428	625,539	637,605	12,066	4,446	599,962	632,107	32,145	12,232	585,932	606,693	20,761	8,073
305,450	625,539	638,557	13,018	4,797	599,962	632,331	32,369	12,317	585,932	608,215	22,283	8,665
316,923	625,539	639,682	14,143	5,211	599,962	632,491	32,529	12,378	585,932	609,840	23,908	9,297
328,177	625,539	640,584	15,045	5,544	599,962	632,553	32,591	12,401	585,932	611,282	25,350	9,858
336,927	625,539	641,320	15,781	5,815	599,962	632,572	32,610	12,409	585,932	612,350	26,418	10,273
415,331	625,539	649,678	24,139	8,894	599,962	633,020	33,058	12,579	585,932	616,615	30,683	11,932
426,732	625,539	650,948	25,409	9,362	599,962	633,137	33,175	12,624	585,932	616,754	30,822	11,986
436,257	625,539	652,083	26,544	9,781	599,962	633,176	33,214	12,638	585,932	616,806	30,874	12,006
726,966	625,539	659,467	33,928	12,501	599,962	634,034	34,072	12,965	585,932	617,912	31,980	12,436
836,277	625,539	659,873	34,334	12,651	599,962	634,650	34,688	13,199	585,932	618,355	32,423	12,609
883,448	625,539	659,944	34,405	12,677	599,962	634,809	34,847	13,260	585,932	618,454	32,522	12,647
1143,705	625,539	660,454	34,915	12,865	599,962	635,808	35,846	13,640	585,932	619,188	33,256	12,932
1408,744	625,539	661,176	35,637	13,131	599,962	636,915	36,953	14,061	585,932	620,338	34,406	13,380

			EA3.1				EA3.2				EA3.3	
√t (√s)	M₀(g)	Mi(g)	Mi-Mo (g)	M _{wi} (kg/m²)	M₀(g)	Mi(g)	Mi-Mo (g)	M _{wi} (kg/m ²)	M₀(g)	Mi(g)	Mi-Mo (g)	M _{wi} (kg/m²)
0,000	622,476	622,476	0,000	0,000	610,986	610,986	0,000	0,000	623,972	623,972	0,000	0,000
7,746	622,476	625,220	2,744	0,110	610,986	614,440	3,454	1,422	623,972	624,927	0,955	0,366
13,416	622,476	624,964	2,488	0,099	610,986	613,771	2,785	1,146	623,972	623,534	-0,438	-0,168
17,321	622,476	624,481	2,005	0,080	610,986	611,490	0,504	0,207	623,972	622,685	-1,287	-0,493
24,495	622,476	624,304	1,828	0,073	610,986	610,906	-0,080	-0,033	623,972	622,528	-1,444	-0,553
30,000	622,476	624,376	1,900	0,076	610,986	610,683	-0,303	-0,125	623,972	622,308	-1,664	-0,638
42,426	622,476	625,329	2,853	0,114	610,986	611,072	0,086	0,035	623,972	622,504	-1,468	-0,563
60,000	622,476	626,912	4,436	0,177	610,986	611,643	0,657	0,270	623,972	622,831	-1,141	-0,437
84,853	622,476	630,117	7,641	0,305	610,986	613,110	2,124	0,874	623,972	623,449	-0,523	-0,200
103,923	622,476	633,185	10,709	0,428	610,986	614,551	3,565	1,467	623,972	623,924	-0,048	-0,018
120,000	622,476	636,074	13,598	0,544	610,986	616,019	5,033	2,072	623,972	624,429	0,457	0,175
134,164	622,476	638,431	15,955	0,638	610,986	617,515	6,529	2,687	623,972	624,981	1,009	0,387
146,969	622,476	640,160	17,684	0,707	610,986	618,912	7,926	3,262	623,972	625,490	1,518	0,582
158,745	622,476	641,082	18,606	0,744	610,986	620,258	9,272	3,816	623,972	626,010	2,038	0,781
292,916	622,476	650,726	28,250	1,129	610,986	631,837	20,851	8,582	623,972	636,289	12,317	4,721
305,450	622,476	651,209	28,733	1,149	610,986	632,303	21,317	8,774	623,972	637,544	13,572	5,202
317,017	622,476	651,546	29,070	1,162	610,986	632,843	21,857	8,997	623,972	638,721	14,749	5,653
333,257	622,476	651,846	29,370	1,174	610,986	633,532	22,546	9,280	623,972	639,997	16,025	6,142
414,970	622,476	652,408	29,932	1,197	610,986	635,356	24,370	10,031	623,972	642,035	18,063	6,923
431,972	622,476	652,686	30,210	1,208	610,986	637,071	26,085	10,737	623,972	642,562	18,590	7,125
440,227	622,476	652,694	30,218	1,208	610,986	637,778	26,792	11,028	623,972	642,937	18,965	7,269
446,990	622,476	652,746	30,270	1,210	610,986	638,298	27,312	11,242	623,972	643,262	19,290	7,394
508,527	622,476	654,837	32,361	1,294	610,986	642,601	31,615	13,013	623,972	649,903	25,931	9,939
525,928	622,476	655,217	32,741	1,309	610,986	642,838	31,852	13,111	623,972	654,667	30,695	11,765
784,066	622,476	656,212	33,736	1,349	610,986	643,923	32,937	13,557	623,972	666,654	42,682	16,360
886,363	622,476	656,687	34,211	1,368	610,986	644,400	33,414	13,754	623,972	667,182	43,210	16,562
930,999	622,476	656,916	34,440	1,377	610,986	644,682	33,696	13,870	623,972	667,474	43,502	16,674
1180,822	622,476	657,958	35,482	1,419	610,986	645,865	34,879	14,357	623,972	668,538	44,566	17,082
1439,041	622,476	659,229	36,753	1,469	610,986	647,299	36,313	14,947	623,972	669,944	45,972	17,621

			PC3.1				PC3.2				PC3.3	
√t (√s)	M₀(g)	Mi(g)	M₁-M₀ (g)	M _{wi} (kg/m²)	M₀(g)	Mi(g)	M₁-M₀ (g)	M _{wi} (kg/m ²)	M₀(g)	Mi(g)	M₁-M₀ (g)	M _{wi} (kg/m²)
0,000	652,067	652,067	0,000	0,000	657,010	657,010	0,000	0,000	631,213	631,213	0,000	0,000
7,746	652,067	655,717	3,650	1,419	657,010	659,323	2,313	0,870	631,213	634,697	3,484	1,326
13,416	652,067	657,365	5,298	2,060	657,010	659,270	2,260	0,850	631,213	633,058	1,845	0,702
17,321	652,067	658,540	6,473	2,517	657,010	658,287	1,277	0,480	631,213	632,621	1,408	0,536
24,495	652,067	660,637	8,570	3,332	657,010	658,499	1,489	0,560	631,213	632,156	0,943	0,359
30,000	652,067	661,934	9,867	3,837	657,010	659,048	2,038	0,766	631,213	632,340	1,127	0,429
42,426	652,067	664,401	12,334	4,796	657,010	660,389	3,379	1,270	631,213	633,032	1,819	0,693
58,481	652,067	666,957	14,890	5,790	657,010	662,057	5,047	1,897	631,213	633,661	2,448	0,932
83,785	652,067	670,594	18,527	7,204	657,010	664,663	7,653	2,877	631,213	635,139	3,926	1,495
103,053	652,067	671,657	19,590	7,617	657,010	666,800	9,790	3,681	631,213	636,882	5,669	2,158
119,248	652,067	672,400	20,333	7,906	657,010	668,643	11,633	4,373	631,213	638,111	6,898	2,626
133,492	652,067	673,065	20,998	8,165	657,010	670,270	13,260	4,985	631,213	639,270	8,057	3,067
146,356	652,067	673,562	21,495	8,358	657,010	671,653	14,643	5,505	631,213	640,332	9,119	3,472
286,705	652,067	678,961	26,894	10,457	657,010	683,423	26,413	9,930	631,213	649,420	18,207	6,932
299,199	652,067	678,769	26,702	10,383	657,010	684,479	27,469	10,327	631,213	649,509	18,296	6,966
310,998	652,067	678,692	26,625	10,353	657,010	685,473	28,463	10,701	631,213	649,605	18,392	7,002
327,445	652,067	678,768	26,701	10,382	657,010	686,986	29,976	11,270	631,213	649,570	18,357	6,989
410,609	652,067	679,437	27,370	10,642	657,010	693,158	36,148	13,590	631,213	649,925	18,712	7,124
427,785	652,067	679,600	27,533	10,706	657,010	693,711	36,701	13,798	631,213	650,061	18,848	7,176
436,119	652,067	679,652	27,585	10,726	657,010	693,909	36,899	13,872	631,213	650,083	18,870	7,184
442,877	652,067	679,704	27,637	10,746	657,010	694,059	37,049	13,929	631,213	650,066	18,853	7,178
504,975	652,067	680,892	28,825	11,208	657,010	697,190	40,180	15,106	631,213	650,730	19,517	7,431
522,437	652,067	681,171	29,104	11,317	657,010	697,488	40,478	15,218	631,213	650,906	19,693	7,498
781,997	652,067	682,649	30,582	11,891	657,010	699,133	42,123	15,836	631,213	654,820	23,607	8,988
884,534	652,067	683,487	31,420	12,217	657,010	700,092	43,082	16,197	631,213	657,502	26,289	10,009
929,258	652,067	683,780	31,713	12,331	657,010	700,432	43,422	16,325	631,213	658,930	27,717	10,552
1179,449	652,067	685,531	33,464	13,012	657,010	702,477	45,467	17,093	631,213	669,444	38,231	14,555
1437,915	652,067	687,614	35,547	13,822	657,010	705,114	48,104	18,085	631,213	674,002	42,789	16,291

			CP3.1				CP3.2				CP3.3	
√t (√s)	M₀(g)	Mi(g)	M₁-M₀ (g)	M _{wi} (kg/m²)	M₀(g)	Mi(g)	M₁-M₀ (g)	M _{wi} (kg/m ²)	M₀(g)	Mi(g)	M₁-M₀ (g)	M _{wi} (kg/m²)
0,000	611,941	611,941	0,000	0,000	596,746	596,746	0,000	0,000	616,385	616,385	0,000	0,000
7,746	611,941	613,484	1,543	0,580	596,746	602,565	5,819	2,228	616,385	619,068	2,683	1,005
13,416	611,941	612,907	0,966	0,363	596,746	601,123	4,377	1,676	616,385	617,920	1,535	0,575
17,321	611,941	611,947	0,006	0,002	596,746	600,872	4,126	1,580	616,385	617,769	1,384	0,519
24,495	611,941	611,440	-0,501	-0,188	596,746	600,288	3,542	1,356	616,385	617,287	0,902	0,338
30,000	611,941	611,142	-0,799	-0,300	596,746	600,112	3,366	1,289	616,385	617,216	0,831	0,311
42,426	611,941	611,217	-0,724	-0,272	596,746	600,970	4,224	1,617	616,385	617,431	1,046	0,392
58,481	611,941	611,275	-0,666	-0,250	596,746	602,846	6,100	2,336	616,385	618,291	1,906	0,714
83,785	611,941	611,579	-0,362	-0,136	596,746	605,529	8,783	3,363	616,385	619,451	3,066	1,149
103,053	611,941	611,874	-0,067	-0,025	596,746	607,580	10,834	4,148	616,385	620,656	4,271	1,600
119,248	611,941	612,056	0,115	0,043	596,746	609,477	12,731	4,875	616,385	622,029	5,644	2,115
144,707	611,941	612,708	0,767	0,288	596,746	614,259	17,513	6,706	616,385	624,477	8,092	3,032
286,915	611,941	616,863	4,922	1,850	596,746	619,657	22,911	8,773	616,385	635,140	18,755	7,027
299,099	611,941	617,472	5,531	2,079	596,746	619,460	22,714	8,697	616,385	635,393	19,008	7,122
310,902	611,941	617,866	5,925	2,227	596,746	619,771	23,025	8,816	616,385	635,493	19,108	7,159
322,366	611,941	618,471	6,530	2,454	596,746	620,514	23,768	9,101	616,385	635,808	19,423	7,277
331,180	611,941	618,762	6,821	2,563	596,746	620,654	23,908	9,154	616,385	635,936	19,551	7,325
410,755	611,941	622,873	10,932	4,108	596,746	623,392	26,646	10,203	616,385	637,633	21,248	7,961
422,280	611,941	623,566	11,625	4,369	596,746	623,458	26,712	10,228	616,385	637,899	21,514	8,061
432,111	611,941	624,145	12,204	4,586	596,746	624,106	27,360	10,476	616,385	638,118	21,733	8,143
724,320	611,941	631,629	19,688	7,399	596,746	626,978	30,232	11,576	616,385	645,297	28,912	10,833
833,978	611,941	633,701	21,760	8,178	596,746	627,617	30,871	11,820	616,385	646,064	29,679	11,120
881,272	611,941	634,731	22,790	8,565	596,746	627,645	30,899	11,831	616,385	646,377	29,992	11,237
1142,025	611,941	640,239	28,298	10,635	596,746	628,145	31,399	12,023	616,385	647,616	31,231	11,702
1407,381	611,941	642,482	30,541	11,478	596,746	628,515	31,769	12,164	616,385	649,185	32,800	12,290

Provetes parcialmente imersos em solução saturada de sulfato de sódio

			M2.1		M2.2			M2.3				
√t (√s)	M₀(g)	M _i (g)	M _i -M ₀ (g)	M _{wi} (kg/m²)	M₀(g)	M _i (g)	M _i -M₀ (g)	M _{wi} (kg/m²)	M₀(g)	M _i (g)	M _i -M ₀ (g)	M _{wi} (kg/m²)
0,000	588,125	588,125	0,000	0,000	601,094	601,094	0,000	0,000	595,756	595,756	0,000	0,000
7,746	588,125	590,645	2,520	0,955	601,094	608,099	7,005	2,651	595,756	604,052	8,296	3,219
13,416	588,125	591,204	3,079	1,167	601,094	608,579	7,485	2,833	595,756	604,237	8,481	3,291
17,321	588,125	591,162	3,037	1,151	601,094	608,698	7,604	2,878	595,756	604,179	8,423	3,269
24,495	588,125	591,464	3,339	1,265	601,094	610,030	8,936	3,382	595,756	604,844	9,088	3,527
30,000	588,125	592,021	3,896	1,476	601,094	610,615	9,521	3,603	595,756	605,936	10,180	3,951
42,426	588,125	592,432	4,307	1,632	601,094	614,975	13,881	5,254	595,756	607,434	11,678	4,532
60,000	588,125	592,774	4,649	1,762	601,094	617,229	16,135	6,107	595,756	608,906	13,150	5,103
84,853	588,125	593,161	5,036	1,908	601,094	619,623	18,529	7,013	595,756	609,681	13,925	5,404
103,923	588,125	593,187	5,062	1,918	601,094	620,915	19,821	7,502	595,756	609,728	13,972	5,422
120,000	588,125	593,422	5,297	2,007	601,094	622,049	20,955	7,931	595,756	610,175	14,419	5,596
134,164	588,125	593,533	5,408	2,049	601,094	623,031	21,937	8,303	595,756	610,676	14,920	5,790
146,969	588,125	593,638	5,513	2,089	601,094	623,870	22,776	8,620	595,756	609,255	13,499	5,239
157,417	588,125	593,754	5,629	2,133	601,094	624,609	23,515	8,900	595,756	608,730	12,974	5,035
293,428	588,125	595,284	7,159	2,713	601,094	639,984	38,890	14,719	595,756	611,508	15,752	6,113
305,450	588,125	595,194	7,069	2,679	601,094	641,528	40,434	15,303	595,756	611,497	15,741	6,109
317,017	588,125	595,342	7,217	2,735	601,094	643,560	42,466	16,072	595,756	611,603	15,847	6,150
326,986	588,125	595,479	7,354	2,787	601,094	645,499	44,405	16,806	595,756	611,727	15,971	6,198
414,536	588,125	596,648	8,523	3,230	601,094	658,512	57,418	21,731	595,756	612,638	16,882	6,552
427,364	588,125	596,878	8,753	3,317	601,094	658,841	57,747	21,856	595,756	612,907	17,151	6,656
443,892	588,125	597,185	9,060	3,433	601,094	659,160	58,066	21,977	595,756	612,783	17,027	6,608
520,941	588,125	602,130	14,005	5,307	601,094	661,063	59,969	22,697	595,756	615,196	19,440	7,544
719,792	588,125	631,130	43,005	16,296	601,094	661,394	60,300	22,822	595,756	652,582	56,826	22,053
777,187	588,125	632,338	44,213	16,753	601,094	661,224	60,130	22,758	595,756	653,639	57,883	22,463
830,915	588,125	632,705	44,580	16,892	601,094	663,563	62,469	23,643	595,756	654,630	58,874	22,848
881,374	588,125	633,279	45,154	17,110	601,094	666,723	65,629	24,839	595,756	634,061	38,305	14,865
1064,472	588,125	635,411	47,286	17,918	601,094	666,315	65,221	24,685	595,756	634,693	38,937	15,111
1141,919	588,125	633,987	45,862	17,378	601,094	666,930	65,836	24,917	595,756	636,108	40,352	15,660
1176,903	588,125	634,365	46,240	17,522	601,094	666,571	65,477	24,781	595,756	636,177	40,421	15,686
1382,997	588,125	635,382	47,257	17,907	601,094	672,931	71,837	27,189	595,756	638,966	43,210	16,769
1609,093	588,125	636,427	48,302	18,303	601,094	672,194	71,100	26,910	595,756	640,840	45,084	17,496

			EA2.1		EA2.2			EA2.3				
√t (√s)	M₀(g)	Mi(g)	M₁-M₀ (g)	M _{wi} (kg/m²)	M₀(g)	Mi(g)	Mi-Mo (g)	M _{wi} (kg/m ²)	M₀(g)	Mi(g)	M _i -M ₀ (g)	M _{wi} (kg/m ²)
0,000	604,227	604,227	0,000	0,000	607,401	607,401	0,000	0,000	598,030	598,030	0,000	0,000
7,746	604,227	604,802	0,575	0,220	607,401	608,082	0,681	0,271	598,030	598,743	0,713	0,272
13,416	604,227	604,839	0,612	0,234	607,401	608,031	0,630	0,251	598,030	598,748	0,718	0,274
17,321	604,227	605,131	0,904	0,346	607,401	607,932	0,531	0,211	598,030	598,585	0,555	0,212
24,495	604,227	605,393	1,166	0,447	607,401	608,133	0,732	0,291	598,030	598,566	0,536	0,205
30,000	604,227	605,540	1,313	0,503	607,401	608,281	0,880	0,350	598,030	598,570	0,540	0,206
42,426	604,227	605,746	1,519	0,582	607,401	608,595	1,194	0,475	598,030	598,645	0,615	0,235
60,000	604,227	605,939	1,712	0,656	607,401	608,932	1,531	0,610	598,030	598,946	0,916	0,350
84,853	604,227	607,008	2,781	1,066	607,401	609,905	2,504	0,997	598,030	598,971	0,941	0,360
103,923	604,227	607,469	3,242	1,242	607,401	610,358	2,957	1,177	598,030	598,933	0,903	0,345
120,000	604,227	607,865	3,638	1,394	607,401	610,498	3,097	1,233	598,030	598,892	0,862	0,329
134,164	604,227	608,281	4,054	1,553	607,401	610,881	3,480	1,386	598,030	598,936	0,906	0,346
146,969	604,227	608,563	4,336	1,661	607,401	611,206	3,805	1,515	598,030	599,001	0,971	0,371
156,844	604,227	608,852	4,625	1,772	607,401	611,424	4,023	1,602	598,030	599,253	1,223	0,467
286,705	604,227	614,584	10,357	3,968	607,401	620,151	12,750	5,077	598,030	600,103	2,073	0,792
299,500	604,227	615,025	10,798	4,137	607,401	621,157	13,756	5,477	598,030	600,056	2,026	0,774
311,288	604,227	615,519	11,292	4,327	607,401	622,047	14,646	5,832	598,030	600,140	2,110	0,806
322,645	604,227	615,761	11,534	4,419	607,401	622,820	15,419	6,139	598,030	600,113	2,083	0,796
410,609	604,227	620,311	16,084	6,163	607,401	637,931	30,530	12,156	598,030	600,661	2,631	1,005
423,556	604,227	621,336	17,109	6,556	607,401	639,966	32,565	12,966	598,030	600,750	2,720	1,039
435,637	604,227	622,535	18,308	7,015	607,401	641,061	33,660	13,402	598,030	602,394	4,364	1,667
504,381	604,227	634,070	29,843	11,435	607,401	644,294	36,893	14,689	598,030	602,666	4,636	1,771
525,357	604,227	636,562	32,335	12,390	607,401	645,959	38,558	15,352	598,030	602,901	4,871	1,861
594,374	604,227	639,374	35,147	13,467	607,401	648,765	41,364	16,470	598,030	604,921	6,891	2,633
774,984	604,227	641,243	37,016	14,183	607,401	657,482	50,081	19,940	598,030	622,999	24,969	9,539
828,565	604,227	642,412	38,185	14,631	607,401	663,576	56,175	22,367	598,030	623,620	25,590	9,776
879,159	604,227	646,480	42,253	16,190	607,401	669,697	62,296	24,804	598,030	625,989	27,959	10,682
926,995	604,227	649,837	45,610	17,476	607,401	672,955	65,554	26,101	598,030	626,346	28,316	10,818
1102,597	604,227	656,652	52,425	20,087	607,401	681,263	73,862	29,409	598,030	630,013	31,983	12,219
1177,540	604,227	659,838	55,611	21,308	607,401	682,167	74,766	29,769	598,030	635,659	37,629	14,376
1211,495	604,227	660,025	55,798	21,380	607,401	682,665	75,264	29,967	598,030	635,727	37,697	14,402
1412,551	604,227	661,674	57,447	22,012	607,401	685,310	77,909	31,021	598,030	636,729	38,699	14,785
1634,564	604,227	663,356	59,129	22,656	607,401	689,579	82,178	32,720	598,030	637,306	39,276	15,005

			PC2.1		PC2.2			PC2.3				
√t (√s)	M₀(g)	M _i (g)	M _i -M ₀ (g)	M _{wi} (kg/m²)	M₀(g)	M _i (g)	M _i -M₀ (g)	M _{wi} (kg/m ²)	M₀(g)	M _i (g)	M _i -M₀ (g)	M _{wi} (kg/m²)
0,000	630,191	630,191	0,000	0,000	642,999	642,999	0,000	0,000	639,700	639,700	0,000	0,000
7,746	630,191	631,624	1,433	0,542	642,999	640,503	-2,496	-0,925	639,700	640,913	1,213	0,438
13,416	630,191	631,012	0,821	0,311	642,999	640,662	-2,337	-0,866	639,700	642,383	2,683	0,968
17,321	630,191	630,934	0,743	0,281	642,999	640,709	-2,290	-0,849	639,700	642,500	2,800	1,010
24,495	630,191	631,107	0,916	0,347	642,999	641,458	-1,541	-0,571	639,700	642,584	2,884	1,040
30,000	630,191	631,197	1,006	0,381	642,999	641,846	-1,153	-0,427	639,700	643,110	3,410	1,230
42,426	630,191	631,370	1,179	0,446	642,999	643,371	0,372	0,138	639,700	645,878	6,178	2,229
60,000	630,191	631,501	1,310	0,496	642,999	644,058	1,059	0,393	639,700	646,866	7,166	2,585
83,785	630,191	631,655	1,464	0,554	642,999	644,704	1,705	0,632	639,700	647,420	7,720	2,785
103,923	630,191	632,091	1,900	0,719	642,999	644,656	1,657	0,614	639,700	647,971	8,271	2,984
120,000	630,191	632,109	1,918	0,726	642,999	644,992	1,993	0,739	639,700	648,124	8,424	3,039
134,164	630,191	632,235	2,044	0,774	642,999	645,345	2,346	0,870	639,700	648,557	8,857	3,195
144,291	630,191	632,147	1,956	0,740	642,999	645,787	2,788	1,034	639,700	648,743	9,043	3,262
280,036	630,191	635,408	5,217	1,974	642,999	651,082	8,083	2,997	639,700	652,848	13,148	4,743
293,121	630,191	635,360	5,169	1,956	642,999	651,658	8,659	3,210	639,700	653,219	13,519	4,877
305,156	630,191	635,718	5,527	2,092	642,999	652,332	9,333	3,460	639,700	653,371	13,671	4,931
316,733	630,191	636,263	6,072	2,298	642,999	653,023	10,024	3,716	639,700	654,020	14,320	5,166
405,980	630,191	644,863	14,672	5,552	642,999	655,035	12,036	4,462	639,700	656,357	16,657	6,009
419,070	630,191	646,908	16,717	6,326	642,999	656,522	13,523	5,013	639,700	656,748	17,048	6,150
431,277	630,191	649,801	19,610	7,421	642,999	657,850	14,851	5,506	639,700	656,785	17,085	6,163
500,620	630,191	656,897	26,706	10,106	642,999	662,883	19,884	7,372	639,700	657,912	18,212	6,569
521,747	630,191	657,396	27,205	10,295	642,999	663,501	20,502	7,601	639,700	657,839	18,139	6,543
591,692	630,191	658,664	28,473	10,775	642,999	663,055	20,056	7,435	639,700	657,926	18,226	6,574
772,541	630,191	661,210	31,019	11,739	642,999	662,645	19,646	7,283	639,700	632,104	-7,596	-2,740
826,281	630,191	663,045	32,854	12,433	642,999	664,417	21,418	7,940	639,700	632,616	-7,084	-2,555
877,006	630,191	664,832	34,641	13,109	642,999	665,927	22,928	8,500	639,700	633,027	-6,673	-2,407
924,954	630,191	665,681	35,490	13,431	642,999	666,723	23,724	8,795	639,700	634,263	-5,437	-1,961
1100,854	630,191	670,141	39,950	15,118	642,999	668,835	25,836	9,578	639,700	650,699	10,999	3,968
1175,908	630,191	672,693	42,502	16,084	642,999	670,443	27,444	10,174	639,700	654,813	15,113	5,452
1209,909	630,191	673,470	43,279	16,378	642,999	671,133	28,134	10,430	639,700	654,857	15,157	5,467
1411,191	630,191	678,239	48,048	18,183	642,999	673,641	30,642	11,360	639,700	657,526	17,826	6,430
1633,389	630,191	684,211	54,020	20,443	642,999	676,387	33,388	12,378	639,700	660,519	20,819	7,510

			CP2.1		CP2.2			CP2.3				
√t (√s)	M₀(g)	Mi(g)	Mi-M₀ (g)	M _{wi} (kg/m ²)	M₀(g)	M _i (g)	M _i -M₀ (g)	M _{wi} (kg/m ²)	M₀(g)	Mi(g)	Mi-M₀ (g)	M _{wi} (kg/m²)
0,000	603,194	603,194	0,000	0,000	605,367	605,367	0,000	0,000	573,680	573,680	0,000	0,000
7,746	603,194	606,231	3,037	1,152	605,367	609,371	4,004	1,552	573,680	576,539	2,859	1,156
13,416	603,194	605,229	2,035	0,772	605,367	609,291	3,924	1,521	573,680	576,604	2,924	1,183
17,321	603,194	605,217	2,023	0,767	605,367	609,237	3,870	1,501	573,680	576,594	2,914	1,178
24,495	603,194	606,139	2,945	1,117	605,367	609,379	4,012	1,556	573,680	576,520	2,840	1,149
30,000	603,194	606,832	3,638	1,380	605,367	609,722	4,355	1,689	573,680	576,181	2,501	1,011
42,426	603,194	607,784	4,590	1,741	605,367	610,719	5,352	2,075	573,680	576,064	2,384	0,964
58,481	603,194	609,859	6,665	2,528	605,367	611,600	6,233	2,417	573,680	575,801	2,121	0,858
83,785	603,194	610,372	7,178	2,722	605,367	612,068	6,701	2,598	573,680	575,532	1,852	0,749
103,053	603,194	610,579	7,385	2,801	605,367	612,424	7,057	2,736	573,680	575,774	2,094	0,847
119,248	603,194	610,472	7,278	2,760	605,367	612,698	7,331	2,843	573,680	575,992	2,312	0,935
128,919	603,194	610,543	7,349	2,787	605,367	612,239	6,872	2,665	573,680	576,182	2,502	1,012
144,914	603,194	610,703	7,509	2,848	605,367	612,282	6,915	2,681	573,680	576,348	2,668	1,079
286,915	603,194	611,107	7,913	3,001	605,367	614,426	9,059	3,513	573,680	582,508	8,828	3,570
299,199	603,194	611,423	8,229	3,121	605,367	614,052	8,685	3,367	573,680	583,385	9,705	3,925
310,998	603,194	610,877	7,683	2,914	605,367	614,113	8,746	3,391	573,680	584,543	10,863	4,393
321,621	603,194	610,953	7,759	2,942	605,367	614,253	8,886	3,445	573,680	585,627	11,947	4,832
410,171	603,194	609,769	6,575	2,493	605,367	615,896	10,529	4,082	573,680	599,443	25,763	10,419
417,205	603,194	609,751	6,557	2,487	605,367	616,264	10,897	4,225	573,680	600,369	26,689	10,794
439,613	603,194	609,455	6,261	2,374	605,367	616,682	11,315	4,387	573,680	601,200	27,520	11,130
517,301	603,194	609,859	6,665	2,528	605,367	626,473	21,106	8,184	573,680	606,517	32,837	13,280
717,161	603,194	622,646	19,452	7,377	605,367	635,748	30,381	11,780	573,680	619,110	45,430	18,373
774,752	603,194	632,040	28,846	10,939	605,367	636,575	31,208	12,100	573,680	621,186	47,506	19,213
828,637	603,194	634,335	31,141	11,809	605,367	636,991	31,624	12,262	573,680	622,262	48,582	19,648
879,227	603,194	636,123	32,929	12,487	605,367	638,258	32,891	12,753	573,680	620,617	46,937	18,983
1062,666	603,194	641,813	38,619	14,645	605,367	643,306	37,939	14,710	573,680	623,552	49,872	20,169
1140,237	603,194	645,058	41,864	15,876	605,367	636,320	30,953	12,002	573,680	624,312	50,632	20,477
1175,270	603,194	646,860	43,666	16,559	605,367	636,953	31,586	12,247	573,680	624,727	51,047	20,645
1381,608	603,194	655,372	52,178	19,787	605,367	642,955	37,588	14,574	573,680	627,235	53,555	21,659
1607,899	603,194	659,415	56,221	21,320	605,367	649,834	44,467	17,242	573,680	631,080	57,400	23,214

ANEXO 7

Neste anexo estão apresentados os documentos publicados no âmbito desta dissertação.

Research Article

The Effect of Salt Solutions and Absorption Cycles in the Capillary and Drying Coefficient of Red Brick Samples with Different Joints

A. S. Guimarães, J. M. P. Q. Delgado, V. P. de Freitas, and A. P. Albuquerque

CONSTRUCT-LFC, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

Correspondence should be addressed to J. M. P. Q. Delgado; jdelgado@fe.up.pt

Received 27 January 2016; Accepted 22 March 2016

Academic Editor: Luigi Nicolais

Copyright © 2016 A. S. Guimarães et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Rising damp can reduce building's aesthetical value, comfort, and health mark when combined with the existence of soluble salts in the building components and in the ground water can even lead to material decomposition and compromise its structural performance. This research work intended to study the effect of different absorption cycles of two saturated solutions of sodium sulphate and potassium chloride in the capillary absorption curves obtained through the partial immersion of red brick samples without and with different joints. The results revealed significant differences in the capillary coefficients obtained when samples were tested with salt solutions. In the end of this paper an evaluation of the drying kinetics was presented for all the tested samples. Four different first-order kinetics models, available in the literature, were adjusted to describe the drying process and the results point that the Page and Logarithmic models allow the best fit. The apparent molecular diffusion coefficient for solid red brick samples saturated with different solutions and joints was also estimated.

1. Introduction

Rising damp is one of construction's major problems especially in old, ancient, and historical buildings associated porous materials used in this industry. This happens due to the migration of the salt ions dissolved in water into the porous network of the building's walls where they remain and crystalize after water evaporates, dealing great pressures against the pore walls and eventually resulting in their fracture after many cycles of crystallization/dissolution [1, 2]. This mechanism has a massive influence on the degradation of historical buildings since they were built in a time when construction technologies made no effort to prevent this kind of pathologies.

The materials used in the construction industry exhibit porous characteristics that favour the moisture fixation through mechanisms like capillary, hygroscopicity, and condensation [3–7]. The experiments reported in this paper are directly related to rising damp, one of the moisture propagation phenomena that cause further deterioration in buildings. Rising damp may be explained by the capillary migration of water from the soil through the porous network of the materials that compose building elements. This kind of damp assumes a greater expression in old buildings, mostly constructed in masonry, in which porous materials such as ceramic bricks, mortars, and stones are used [1, 2].

The presence of dissolved salts in the water, which uprises through the porous network of building elements, constitutes an annoying factor for its degradation [8, 9]. If, on one hand, salts follow the water during its rise in liquid phase, the same does not occur when the water evaporates. Therefore, the salts remain in the porous structure of the building materials and eventually crystallize after the solution has reached its supersaturation state. Salt can crystallize on the surface of the materials developing efflorescence with aesthetical consequences for the building or inside the porous structure, inflicting great pressures over the pore walls that can disintegrate them when surpassing its mechanical resistance [10, 11]. Hygrothermal oscillation of the surrounding environment may promote cycles of crystallization/dissolution and potentially developing wrecking tensions in different pores in each cycle.

Adding to this, the constructive systems, elements, and components, particularly the masonry, base their functional efficiency on the combination of materials with different characteristics. However, this heterogeneity makes moisture transfer analysis much more complex, demanding the knowledge, not only about the individual characteristics of the materials but also about the continuity conditions of the interface that separates the distinct materials and that is why the knowledge about the joints influence in those transport phenomena is considered crucial [12–14].

This paper intends to report the experimental work carried out with brick specimens, aiming to evaluate the effect of salt solutions in the capillary absorption of monolithic brick specimens in comparison with water. Sodium sulphate and potassium chloride were the chosen salts to perform the experiments. The first is one of the salts that impose more degradation to buildings; the second was chosen for being very commonly found in building materials, especially the ion chloride. It also presents the drying kinetics and five models were adjusted to describe the drying process. Finally, in the capillary absorption and drying tests, different joints as perfect contact (just in contact), hydraulic continuity (with interpenetration of both materials), and air space (with an air layer between different materials) were also tested to evaluate the interface effect in moisture transference processes.

2. Materials and Methods

The test specimens used were nine red brick monolithic samples with the dimensions $5 \times 5 \times 10 \text{ cm}^3$ (three for each solution including water). All the specimens were sealed in the lateral faces with an epoxy coating to avoid the evaporation through these sides and assure the unidirectional moisture flow from the bottom to the specimens' top surface. Tests were performed only for pure water and two saturated salt solutions (KCl and Na₂SO₄). The solutions were saturated with salt excess in order to avoid the decrease of ions during the absorption process.

2.1. Capillary Coefficient. The capillary absorption tests followed the procedure n° II.6 "Water Absorption Coefficient (Capillary)" of RILEM [15]. The tests were preceded by the drying of the specimens in an oven at about 60° C until obtaining constant mass, in order to calculate the dry mass of the specimens. After this step, specimens were stored in the test room for some days, until they reach the hygrothermal equilibrium.

Mukhopadhyaya et al. [16] confirmed the temperature influence on capillary absorption coefficient of brick specimens in their study with different porous materials. In order to minimize the effect of temperature on our results, tests were performed in a room with controlled temperature. The values of temperature and relative humidity (RH) of the air were measured every ten minutes for 33 days using a sequential data recording device. The mean values obtained were 22.8°C for the temperature and 52.7% for the RH.

Tests began with the partial immersion of the specimens 5 mm deep. After the immersion, weightings were performed

periodically in order to determine the amount of water absorbed during the test. On the first day, weightings were performed on all samples at minutes 1, 3, 5, 10, 15, 30, and 60 and afterwards at least once an hour. In general, weightings were attempted every two hours on the second day, every three hours on the third day, and once a day for the remaining days of testing. This timing had yet to suffer some adjustments for some combinations tested. For instance, for the specimens with air space between layers, after the wet front has reached the interface the time between weightings was extended since the moisture transport at the interface took place in the vapor phase and was therefore much slower.

The amount of absorbed water per unit area at time *t* assay M_w (kg/m²) is calculated using (1), where M_0 (kg) is the dry mass of the sample, M_i (kg) is of the mass of sample at time *t*, and A (m²) is the area of the base of the specimen:

$$M_w = \frac{M_i - M_0}{A}.$$
 (1)

Once the amount of water absorbed over the time until the saturation of the porous media was determined, it was then possible to calculate the capillary absorption coefficient, A_w , and the maximum moisture flow through the interface. The earlier one corresponds to the slope of the first linear portion of the imbibition curve that expresses the amount of water absorbed per unit area (kg/m²) as a function of the root of time (s^{1/2}). The second corresponds to the slope of the linear approximation of the imbibition curve that expresses the amount of water absorbed per unit area (kg/m²) as a function of time (s) once reached the interface.

The results of capillary absorption are given by the sorptivity S (m/s^{0.5}). This property, which depends on both the material and the liquid, expresses the tendency of a building material to absorb and transmit a liquid by capillarity [6], as shown by

$$S = \left(\frac{\sigma}{\eta}\right)^{1/2} \dot{S},\tag{2}$$

where σ is the surface tension of the liquid, η is the viscosity of the liquid, and *S* is the intrinsic sorptivity of the material. It is important to be in mind that the relation between capillary absorption coefficient and sorptivity is given by $A_w = S \cdot \rho_w$, where ρ_w is the water density (kg/m³).

2.2. Drying Kinetics. Drying was assessed following the experimental procedure of RILEM [15]. It consists in soaking the specimens and then letting them dry through their top surface under controlled environmental conditions. Meanwhile, the loss of water is monitored by periodical weighing. The results are expressed by the so-called mass drying curve which depicts the variation in moisture content over time.

Frequently, quite simple models [17, 18] are presented to describe the drying curves that can provide an adequate representation of the experimental results. One of the most simplified models is the exponential model:

MR =
$$\frac{w - w_e}{w_0 - w_e} = e^{-kt}$$
, (3)

TABLE 1: Mathematical models given by various authors for drying curves.

Model equation	Model name
$MR = e^{-kt}$	Exponential
$MR = e^{-kt^n}$	Page
$MR = a \times e^{-kt} + b$	Logarithmic
$MR = a \times e^{-kt^n} + b \times t$	Midilli et al.

where w is the average moisture content at any time, w_0 is the initial moisture content, w_e is the equilibrium moisture content, k is the drying rate constant, and t is the drying time. Usually, this model does not provide an accurate simulation of drying curves of many building materials, underestimating the beginning of the drying curve and overestimating the later stages. To soften this minor accuracy, the Page model is applied with an empirical modification to the time term by introducing an exponent, n:

MR =
$$\frac{w - w_e}{w_0 - w_e} = e^{-kt^n}$$
. (4)

These empirical models derive a direct relationship between average moisture content and drying time. However, they neglect the fundamentals of the drying process and their parameters have no physical meaning.

In this work, the drying curves were fitted with four different empirical and semiempirical drying models (see Table 1). Regression analyses of these equations were done by using STATISTICA routine. The regression coefficient (R^2) was primary criterion for selecting the best equation to describe the drying curves of ETICS. The performance of derived new models was evaluated using various statistical parameters such as the mean bias error (MBE), the root mean square error (RMSE), and chi-square (χ^2), in addition to the regression coefficient (R^2). These parameters can be calculated as follows:

$$MBE = \frac{1}{N} \sum_{i=1}^{N} \left(MR_{\text{pre},i} - MR_{\exp,i} \right), \qquad (5a)$$

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(MR_{\text{pre},i} - MR_{\text{exp},i} \right)},$$
 (5b)

$$\chi^{2} = \frac{\sum_{i=1}^{N} \left(MR_{\exp,i} - MR_{\text{pre},i} \right)^{2}}{N - p}.$$
 (5c)

The mechanisms of mass transfer in building materials are complex and frequently the modelling of the drying curves during the falling rate period is carried out by assuming that the main mechanism is of diffusional nature. In accordance with this, the experimental drying data for determination of apparent molecular diffusion coefficient was interpreted by using Fick's diffusion model. In a onedimensional formulation with the diffusing substance moving in the direction normal to a sheet of medium of thickness *L*, the diffusion equation can be written as [19]

$$\frac{\partial w}{\partial t} = D_{\text{eff}} \frac{\partial^2 w}{\partial x^2} \tag{6}$$

subject to the following boundary conditions:

$$t = 0,$$

$$0 < x < \infty,$$
 (7a)

$$w = w_0,$$

$$x = 0,$$
 (7b)

$$w = w_e,$$

$$t > 0,$$

$$x \longrightarrow \infty,$$

$$w = w_0.$$

(7c)

The analytical solution of (6) with the initial and boundary conditions (7a)-(7c) is

t > 0.

$$\mathrm{MR} = \frac{w - w_0}{w_e - w_0} = 1 - \mathrm{erf}\left(\frac{x}{2\sqrt{D_{\mathrm{eff}}t}}\right). \tag{8}$$

Integrating in respect of t the rate of the penetration of sample face unit area (x = 0) by water vapor, the total amount of diffusing substance in time t is obtained; then the appropriate solution of the diffusion equation (8) may be written as follows:

$$MR = \frac{8}{\pi^2} \times \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} \exp\left[-(2n+1)^2 \pi^2 \frac{D_{\text{eff}}t}{L^2}\right]$$
(9)

and for long drying times (neglecting the higher order term by setting n = 0) it has been simplified as follows:

$$\ln (\mathrm{MR}) = \ln \left(\frac{8}{\pi^2}\right) - \left[\pi^2 \frac{D_{\mathrm{eff}} t}{L^2}\right]. \tag{10}$$

3. Results and Discussion

3.1. Capillary Coefficient. Figure 1 sketches a representation of the monolithic specimen, hydraulic continuity interface, perfect contact interface, and air space interface.

The capillary absorption curves obtained in those specimens for each one of the three solutions tested are represented in Figures 2 and 3. The capillary absorption coefficients determined from these curves are represented in Table 2.

The results exposed in this paper regarding the capillary absorption coefficient support the hypothesis that the presence of soluble salts dissolved in water influences the wetting kinetics of porous materials, at least of brick material as it

FIGURE 1: Virtual representation of the different types of specimen tested.

(c)

FIGURE 2: Illustration of some samples before the beginning of the 2° cycle tests: (a) monolithic specimens, (b) hydraulic continuity interface, and (c) perfect contact interface.

was the porous material in study. The capillary absorption coefficient determined for the specimens immersed in saturated solution of sodium sulphate was way lower than the one obtained for the reference test (pure water). On the other hand, potassium chloride appears to induce an increase in this coefficient in comparison with the reference solution. However, the difference between the capillary absorption coefficient of sodium sulphate solution and the reference solution is higher than the one between the potassium chloride and the latter. Our results are in line with that observed by Azevedo [11] who concluded that salts with potassium ion (K^+) lead to the decrease of the capillary absorption coefficient when compared with pure water, while salts with sodium ion (Na^+) induce a decrease in the capillary absorption coefficient.

In Figure 4 it is possible to see the capillary absorption curve of red brick samples as a function of the root of time, after 1 and 2 cycles, with pure water and saturated solutions of KCl and Na_2SO_4 , for each joint type. A more detailed analysis was done in Figure 5, and the results obtained show that comparing the 1st and 2nd absorption cycles, it is possible to conclude that the specimens immersed in water practically absorbed the same amount of water, but when the samples are immersed in salt solutions (Na_2SO_4 and KCl) the mass gain in the absorption process is lesser in the 2nd cycle than in the 1st cycle.

Figure 6 shows the mass gain by the samples tested in water and both salts solutions, for the three different joints analysed. For hydraulic continuity interface, the contact between layers was done with a mortar joint of 3 mm and with an interpenetration of both layers. Figure 6 shows slowing of the wetting process when the moisture reaches the interface due to the interface hygric resistance. This result reveals the existence of a resistance associated with the maximum

(b)

FIGURE 3: Illustration of some samples after several weeks of the 2° cycle tests: (a) monolithic specimens and (b) perfect contact interface.

TABLE 2: Capillary absorption coefficient of monolithic red brick specimens partially immersed in pure water and saturated solutions of KCl and Na_2SO_4 .

Solution		Capillary absorption coefficient [kg/(m	$(s^{1/2})$]
Solution	Mean	Standard deviation	Variation coeff (%)
Water	0.0675	0.0035	5.2%
Water + Na_2SO_4	0.0551	0.0025	4.5%
Water + KCl	0.0660	0.0025	10.6%

flow transmitted (FLUMAX) that presents the higher value FLUMAX, as showed in Figure 7. The maximum flow transmitted value is a parameter easy to obtain experimentally and an important input for the hygrothermal programs available in literature [20].

In the situation of perfect contact interface, the experiments detailed in Figure 6 show slowing of the wetting process when the moisture reaches the interface due to the interface hygric resistance. Once again, this result reveals the existence of resistance associated with the maximum flow transmitted, but the lower slow mass gain by the samples indicates a high hygric resistance and an expectable lower maximum flow transmitted value than the obtained one in the hydraulic continuity interface situation.

Finally, for the samples with air space interface, the samples are separated by about 3 mm of an air space in order to have hydric cut that prevents the moisture transfer in liquid phase. Figure 6 shows a slowing of the wetting process when the moisture reaches the interface due to the interface hygric resistance; however, this hygric resistance is higher than the resistance observed in the perfect contact interface. This phenomenon is observed by the extremely slow weight

gain presented in Figure 6, for the situation described, and once again reveals the existence of resistance associated with the maximum flow transmitted. This value is expected to be lower than the obtained one with a perfect contact interface (see Figure 7).

3.2. Drying Kinetics. Figure 8 shows the changes in the moisture variation with time during the drying process for different joints and liquid solutions. The common feature of the curves seen in Figure 8 is their similarity as being typical drying curve, as moisture content decreased exponentially with time.

Drying rate decreases continuously with time and decreasing moisture content. This result shows that dominant physical mechanism governing moisture movement in red brick samples is the second drying stage. During the second stage of the drying process the diffusion within the building material limits the rate of evaporation.

Five drying models have been used to describe drying curves and the applicability of these models is presented in Tables 3 and 4. The criterion used for selecting the models that better describe the drying process was the magnitude of

FIGURE 4: Continued.

FIGURE 4: Capillary absorption curve of red brick samples as a function of the root of time, after 1 and 2 cycles, with pure water and saturated solutions of KCl and Na_2SO_4 , for (a) monolithic specimens, (b) hydraulic continuity interface, (c) perfect contact interface, and (d) air space interface.

the relative error for each one (see Table 4). The Page and Logarithmic models presented the best results.

The results reported in Table 3 show that the drying constant obtained is greater for red brick samples with pure water than with the salt solution analysed. It is important to be in mind that with salt solutions the drying process is more complex considering the salt ions stays in the material and the difficult transport process. Another important conclusion is the influence of the joints in the drying process, and it is possible to observe that the monolithic samples and the samples with perfect contact present higher values of drying constant than the samples with hydraulic continuity. Figure 8 also shows that monolithic samples and samples with perfect contact interface present a similar drying process, which should be expected due to the nature of the perfect contact joint. The samples with air space interface present the higher drying constant value which, considering the highest contact with air that they have, to eliminate water, seems to be expected and a realistic result.

Finally, in order to establish the diffusional model, the effective diffusivity coefficient was identified by using (9) and the experimental drying curves of red brick samples were obtained. Effective diffusivity coefficient determination results from plot of dimensionless moisture ratio which is obtained from experimental data plotted against time on a semilogarithmic diagram. This plot is straight over the first falling period. The slope of this straight line is equal to quantity $\pi^2 D_{\text{eff}}/L^2$ in case of slab geometry.

The effective diffusivity coefficient $(D_{\rm eff})$ obtained is greater for the red brick samples with pure water than the samples with salt solutions, and the sample with hydraulic continuity interface presents lower values of $D_{\rm eff}$, as showed in Table 3.

4. Conclusions

In this work an extensive experimental campaign was presented to study the effect of different absorption cycles of two different saturated solutions of sodium sulphate and potassium chloride in the capillary absorption curves obtained through the partial immersion of red brick samples without and with different joints. The drying kinetic process was also analysed for all the samples tested.

The main conclusions were as follows:

- (i) Both salts influence the capillary absorption coefficient in a distinct way. The presence of sodium sulphate induces a decrease in this coefficient compared to tests performed with pure water, while the tests performed with potassium chloride showed an increase of the capillary absorption coefficient compared to pure water, despite presenting a lower difference.
- (ii) All three types of interface studied presented hydric resistance during the capillary absorption tests, although with different levels of magnitude. Specimens with air space between layers offered much more resistance to moisture transport through their interface compared to both perfect contact and hydraulic contact specimens due to the fact that moisture only flows in vapor phase unlike the other two which also support liquid phase transport.
- (iii) Comparing our results with those obtained by de Freitas [12] helped sustaining the author's theory that maximum moisture flow through the air space and perfect contact interfaces (individually) may be fixed within a close range of values for the same material,

		1				
Joints	Solution	Exponential	Page	Logarithmic	Midilli et al.	Diffusional
	Water	$k = 1.62 \times 10^{-3}$	$k = 9.24 \times 10^{-3}$ n = 0.726	$k = 1.95 \times 10^{-3}$ a = 0.881 $b = 9.12 \times 10^{-2}$	$k = 5.96 \times 10^{-3}$ n = 0.818 a = 1.05 $b = 1.73 \times 10^{-5}$	$D_{\rm eff} ({\rm m}^2/{\rm s}) = 3.34 \times 10^{-10}$
Monolithic	Water + Na_2SO_4	$k = 3.17 \times 10^{-4}$	$k = 1.03 \times 10^{-3}$ n = 0.839	$k = 4.09 \times 10^{-4}$ a = 0.792 b = 0.188	$k = 6.26 \times 10^{-4}$ n = 0.903 a = 0.985 $b = 9.47 \times 10^{-7}$	$D_{\rm eff} ({\rm m}^2/{\rm s}) = 0.48. \times 10^{-10}$
	Water + KCl	$k = 3.75 \times 10^{-4}$	$k = 2.24 \times 10^{-4}$ n = 1.07	$k = 3.64 \times 10^{-4}$ a = 0.986 b = 0	$k = 3.53 \times 10^{-5}$ n = 1.31 a = 0.966 b = 0	$D_{\rm eff} ({\rm m}^2/{\rm s}) = 0.61 \times 10^{-10}$
	Water	$k = 4.14 \times 10^{-4}$	$k = 1.15 \times 10^{-3}$ n = 0.858	$k = 5.49 \times 10^{-4}$ a = 0.842 b = 0.156	$k = 8.72 \times 10^{-4}$ n = 0.908 a = 1.00 $b = 1.26 \times 10^{-5}$	$D_{\rm eff} ({\rm m}^2/{\rm s}) = 0.70 \times 10^{-10}$
Hydraulic continuity	Water + Na_2SO_4	$k = 4.14 \times 10^{-4}$	$k = 1.26 \times 10^{-3}$ n = 0.846	$k = 4.45 \times 10^{-4}$ a = 0.885 $b = 8.71 \times 10^{-2}$	$k = 7.65 \times 10^{-4}$ n = 0.909 a = 0.981 $b = 9.47 \times 10^{-7}$	$D_{\rm eff} ({\rm m}^2/{\rm s}) = 0.69 \times 10^{-10}$
	Water + KCl	$k = 2.51 \times 10^{-4}$	$k = 6.38 \times 10^{-4}$ n = 0.875	$k = 3.29 \times 10^{-4}$ a = 0.783 b = 0.203	$k = 3.53 \times 10^{-5}$ n = 1.31 a = 0.966 $b = 6.75 \times 10^{-5}$	$D_{\rm eff} ({\rm m}^2/{\rm s}) = 0.34 \times 10^{-10}$
	Water	$k = 2.51 \times 10^{-3}$	$k = 2.77 \times 10^{-2}$ n = 0.601	$k = 3.65 \times 10^{-3}$ a = 0.827 b = 0.125	$k = 4.15 \times 10^{-2}$ n = 0.545 a = 1.06 $b = 1.48 \times 10^{-6}$	$D_{\rm eff} ({\rm m}^2/{\rm s}) = 5.08 \times 10^{-10}$
Perfect contact	Water + Na_2SO_4	$k = 4.46 \times 10^{-4}$	$k = 1.04 \times 10^{-2}$ n = 0.559	$k = 9.15 \times 10^{-4}$ a = 0.574 b = 0.367	$k = 7.65 \times 10^{-4}$ n = 0.909 a = 0.981 $b = 5.61 \times 10^{-6}$	$D_{\rm eff} ({\rm m}^2/{\rm s}) = 0.76 \times 10^{-10}$
	Water + KCl	$k = 3.69 \times 10^{-4}$	$k = 3.25 \times 10^{-4}$ n = 1.02	$k = 3.57 \times 10^{-4}$ a = 0.986 b = 0	$k = 8.60 \times 10^{-8}$ n = 1.19 a = 0.973 b = 0	$D_{\rm eff} ({\rm m}^2/{\rm s}) = 0.59 \times 10^{-10}$
	Water	$k = 4.30 \times 10^{-3}$	$k = 1.89 \times 10^{-2}$ n = 0.725	$k = 5.26 \times 10^{-3}$ a = 0.907 $b = 7.31 \times 10^{-2}$	$k = 2.44 \times 10^{-2}$ n = 0.692 a = 1.04 $b = 1.13 \times 10^{-5}$	$D_{\rm eff} ({\rm m}^2/{\rm s}) = 8.51 \times 10^{-10}$
Air space interface	Water + Na_2SO_4	$k = 9.77 \times 10^{-4}$	$k = 1.47 \times 10^{-2}$ n = 0.585	$k = 1.72 \times 10^{-3}$ a = 0.693 b = 0.261	$k = 7.77 \times 10^{-4}$ n = 1.05 a = 0.929 $b = 7.62 \times 10^{-5}$	$D_{\rm eff} ({\rm m}^2/{\rm s}) =$ 1.72 × 10 ⁻¹⁰
	Water + KCl	$k = 3.99 \times 10^{-4}$	$k = 2.58 \times 10^{-3}$ n = 0.744	$k = 6.59 \times 10^{-4}$ a = 0.686 b = 0.284	$k = 7.48 \times 10^{-4}$ n = 0.938 a = 0.974 $b = 4.38 \times 10^{-5}$	$D_{\rm eff} ({\rm m}^2/{\rm s}) = 0.66 \times 10^{-10}$

TABLE 3: Values of empirical constants and drying constant for the models tested.

since the maximum moisture flow values determined in this work were very close to the author's for a similar used material.

(iv) Specimens with hydraulic contact interface presented more heterogeneous results. Furthermore this kind of interface's hydric resistance depends on several factors like the water/cement ratio and curing conditions. Despite the difference between the specimen's characteristics, a comparison between ours and Cunha's results shows distinct behaviours in moisture transport through the interface despite using the same cement material.

FIGURE 5: Water absorption coefficient of red brick samples after 1 and 2 cycles, with pure water and saturated solutions of KCl and Na_2SO_4 , for (a) monolithic specimens, (b) hydraulic continuity interface, (c) perfect contact interface, and (d) air space interface.

Lointa	Colution			Chi-square (χ^2) err	ror	
Joints	Solution	Exponential	Page	Logarithmic	Midilli et al.	Diffusional
	Water	12.75%	1.54%	5.51%	7.19%	5.93%
Monolithic	Water + Na_2SO_4	9.01%	1.68%	1.58%	1.10%	20.01%
	Water + KCl	2.28%	2.25%	2.12%	0.86%	11.75%
	Water	1.83%	0.67%	0.60%	0.61%	4.65%
Hydraulic continuity	Water + Na_2SO_4	7.53%	2.23%	2.05%	1.45%	15.90%
	Water + KCl	2.44%	1.46%	0.91%	2.50%	12.66%
	Water	38.75%	4.14%	17.57%	2.76%	14.10%
Perfect contact	Water + Na_2SO_4	73.16%	3.12%	16.67%	57.93%	7.03%
	Water + KCl	1.07%	1.12%	0.89%	0.49%	7.70%
	Water	3.93%	1.10%	1.24%	0.54%	2.74%
Air space interface	Water + Na_2SO_4	69.91%	5.83%	7.69%	18.98%	20.76%
	Water + KCl	8.85%	1.61%	1.04%	1.00%	4.94%
Sum	ı	251.51%	26.75%	57.87%	95.41%	128.17%

TABLE 4: Results of the statistical analyses obtained with the drying models tested.

FIGURE 6: Representation of the absorption in the monolithic specimens and specimens with hydraulic continuity interface, perfect contact interface, and air space interface, for (a) pure water, (b) saturated solution of KCl, and (c) saturated solution of Na_2SO_4 .

FIGURE 7: Effect of the different interfaces on the FLUMAX: monolithic specimens, hydraulic continuity interface, perfect contact interface, and air space interface.

FIGURE 8: Drying curves of red brick samples with pure water and saturated solutions of KCl and Na_2SO_4 , for (a) monolithic specimens, (b) hydraulic continuity interface, (c) perfect contact interface, and (d) air space interface.

(v) Different first-order kinetics models were adjusted to describe the drying process and the results point that the Page and Logarithmic models allow the best fit.

Nomenclature

- A: Area
- A_w : Capillary absorption coefficient
- a, b, n: Empirical coefficients of models
- D_{eff} : Effective diffusivity coefficient
- *k*: Drying kinetic coefficient
- L: Thickness
- MBE: Mean bias error
- M_0 : Dry mass of the sample

 M_i : Mass of sample at time

 M_w : Amount of absorbed water per unit area

MR: Moisture ratio, MR = $(w - w_{eq})/(w_0 - w_{eq})$

N: Number of experimental points

p: Number of estimated parameters

- RMSE: Root mean square error
- S: Sorptivity
- t: Time
- *T*: Temperature
- *x*: Axial coordinate
- *w*: Moisture content
- w_e : Equilibrium moisture content
- w_0 : Initial moisture content
- χ^2 : Chi-square test
- ρ_w : Water density.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

The authors acknowledge the Foundation for Science and Technology (FCT) for the financial support (PTDC/ECM-COM/3080/2012). J. M. P. Q. Delgado would like to thank FCT for financial support through the Grant SFRH/BPD/ 109310/2015.

References

- A. S. Guimarães, J. M. Q. Delgado, and V. P. de Freitas, "Rising damp in walls: evaluation of the level achieved by the damp front," *Journal of Building Physics*, vol. 37, no. 1, pp. 6–27, 2013.
- [2] A. S. Guimarães, J. M. P. Q. Delgado, and V. P. de Freitas, "Rising damp in building walls: the wall base ventilation system," *Heat* and Mass Transfer, vol. 48, no. 12, pp. 2079–2085, 2012.
- [3] H. S. Hens, Building Physics-Heat, Air and Moisture-fundamentals and Engineering Methods with Examples and Exercises, Ernst & Sohn, Brussels, Belgium, 2007.
- [4] C. Hall, "Water sorptivity of mortars and concretes: a review," Magazine of Concrete Research, vol. 41, no. 147, pp. 51–61, 1989.
- [5] R. J. Gummerson, C. Hall, and W. D. Hoff, "Water movement in porous building materials-III. A sorptivity test procedure for chemical injection damp proofing," *Building and Environment*, vol. 16, no. 3, pp. 193–199, 1981.
- [6] C. Hall and W. D. Hoff, *Water Transport in Brick, Stone and Concrete*, Taylor & Francis, London, UK, 2002.
- [7] J. M. P. Q. Delgado, N. M. M. Ramos, and V. P. de Freitas, "Can moisture buffer performance be estimated from sorption kinetics?" *Journal of Building Physics*, vol. 29, no. 4, pp. 281–299, 2006.
- [8] L. Pel, H. Huinink, and K. Kopinga, "Salt transport and crystallization in porous building materials," *Magnetic Resonance Imaging*, vol. 21, no. 3-4, pp. 317–320, 2003.
- [9] D. Young, Salt Attack and Rising Damp: A Guide to Salt Damp in Historic and Older Buildings, Heritage Council of NSW, Heritage Victoria, South Australian, Adelaide City Council, 2008.
- [10] T. Gonçalves, Salt crystallization in plastered or rendered walls [Ph.D. thesis], Technical University of Lisbon and LNEC, Lisbon, Portugal, 2007.
- J. Azevedo, Capillary absorption of porous materials in salt solutions [M.S. thesis], Faculty of Engineering, University of Porto, Porto, Portugal, 2013.
- [12] V. P. de Freitas, Moisture transfer in building walls—interface phenomenon analyse [Ph.D. thesis], Faculty of Engineering, University of Porto, Porto, Portugal, 1992.
- [13] A. S. Guimarães, J. M. P. Q. Delgado, and V. P. de Freitas, "Influence of mortar joints on the moisture transfer in layered materials," *Defect and Diffusion Forum*, vol. 365, pp. 160–165, 2015.
- [14] H. Derluyn, H. Janssen, and J. Carmeliet, "Influence of the nature of interfaces on the capillary transport in layered materials," *Construction and Building Materials*, vol. 25, no. 9, pp. 3685–3693, 2011.

- [15] RILEM TC 25-PEM, "Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods," *Materials and Structures*, vol. 13, pp. 204–209, 1980.
- [16] P. Mukhopadhyaya, K. Kumaran, N. Normandin, and P. Goudreau, "Effect of surface temperature on water absorption coefficient of building materials," *Journal of Thermal Envelope and Building Science*, vol. 26, no. 2, pp. 179–195, 2002.
- [17] H. A. Iglesias and J. Chirife, Handbook of Food Isotherms, Academic Press, New York, NY, USA, 1983.
- [18] D. Marinos-Kouns, Z. B. Maroulis, and C. T. Kiranoudis, "Computer simulation of industrial dryers," *Drying Technology*, vol. 14, no. 5, pp. 971–1010, 1996.
- [19] J. Crank, *The Mathematics of Diffusion*, Oxford University Press, Oxford, UK, 2nd edition, 1975.
- [20] J. M. P. Q. Delgado, N. M. M. Ramos, E. Barreira, and V. P. de Freitas, "A critical review of hygrothermal models used in porous building materials," *Journal of Porous Media*, vol. 13, no. 3, pp. 221–234, 2010.

International Journal of Polymer Science

Smart Materials Research

BioMed **Research International**

Submit your manuscripts at http://www.hindawi.com

Nanomaterials

Materials Science and Engineering

Nanoscience

Journal of Crystallography

The Scientific World Journal

Journal of Ceramics

Journal of Textiles

Influence of immersion and drying cycles of aqueous salt solutions in multilayered elements

Ana Patrícia Albuquerque, Ana Sofia Guimarães and João Delgado

Faculty of Engineering of the University of Porto (FEUP)

1. Introduction

Due to the use of porous materials in construction, the combined effect of rising damp with soluble salts is one major problem in the industry. Rising damp allied with soluble salts can degrade the health conditions inside the buildings, through the migration of the salt ions dissolved in water into the porous network of the construction materials in the building (walls). After the water evaporates, the salt ions remain in the porous network, creating great pressure in the pores and fracturing the materials after several cycles of crystallization/dissolution.

2. Samples

Samples: air space, perfect contact, hydraulic continuity and monolithic (used as reference)

Solutions: sodium sulphate, potassium chloride and water (used as reference)

3. Methods

3.1. Capillary Absorption

The capillary absorption tests followed RILEM procedure "Water absorption coefficient". The samples were put in partial absorption or saturated salt solution and periodically weighted.

• Capillary coefficient: slope of the linear branch of the absorption curve

Figure 3 – Perfect contact samples, in the beginning of the drying test (after partial absorption in saturated solution of sodium sulphate) and at the moment

4. Results

4.1. Capillary Absorption

- All the absorption curves showed an initial decrease (crystal salts in the samples dissolved into the solution);
- In the air space samples the absorption curves did not show a clear stabilization (crystal reached the top red brick layer)

Figure 4 – Absorption curves of the combinations Air Space/Potassium chloride solution and Perfect Contact/Sodium sulphate solution

4.2. Evaporative drying

 Salt contaminated material dried very slowly (after 7 months they are not completely dry)

obtained when the cumulative volume of liquid absorbed per unit area (kg/m^2) is plotted against the square root of time $(s^{1/2})$

$$M_{w,i} = \frac{M_i - M_0}{S} \tag{Eq.1}$$

M₀(kg) – dry weight of the sample M_i (kg) – sample weight at the time i S (m²) – absorption surface area

Figure 2 – Air space samples, before and after second cycle of partial absorption in saturated solution of potassium chloride

• In the dying curves, disparity between values were lower than in the absorption curves

Figure 5 – Drying curves of the combinations Air Space/Potassium chloride solution and Perfect Contact/Sodium sulphate solution

5. <u>Conclusions</u>

 Soluble salts amplify the decay of the porous building materials, in a strongly divergent pattern between similar samples

3.2. Evaporative drying

The drying tests followed RILEM procedure "Evaporation Curve" and were carried out immediately after the absorption tests.

- Over a span of 7 months (in a conditioned room with a low air velocity;
- Underside of the samples was sealed with polyethylene sheet
- Samples were periodically weighted to monitor the mass loss due to evaporation
- Each cycle has a higher contribution to the porous materials deterioration

REFERENCES

 Gonçalves, T. Salt crystallization in plastered or rendered walls. Dissertação de Doutoramento, Instituto Superior Técnico e Laboratório Nacional de Engenharia Civil;
 Azevedo, J. Absorção por capilaridade de soluções Salinas em materiais porosos. Dissertação de Mestrado, Faculdade de Engenharia da Universidade do Porto, 2013;
 Rego, T. Efeito de soluções aquosas salinas nos processos de embebição de paredes com múltiplas camadas. Dissertação de Mestrado, Faculdade de Engenharia da Universidade do Porto, 2014.

EFFECT OF SALTS AND ABSORPTION CYCLES IN THE CAPILLARY COEFFICIENT OF BUILDING MATERIALS WITH DIFFERENT JOINTS

A.S. Guimarães¹, J.M.P.Q. Deslgado¹, V.P. de Freitas¹ and A.P. Albuquerque¹ ¹Facultyof Engineering, University of Porto, Porto, Portugal

ABSTRACT

Rising damp can reduce building's aesthetical value, comfort and health mark, when combined with the existence of soluble salts in the building components and in the ground water can even lead to material decomposition and compromise its structural performance.

This research work intended to study the effect of different absorption cycles of two saturated solutions of sodium sulphate and potassium chloride in the capillary absorption curves obtained through the partial immersion of red brick samples without and with different joints. The results revealed significant differences in the capillary coefficients obtained when samples were tested with salt solutions.

INTRODUCTION

Rising damp is one of construction's major problems especially in old, ancient and historical buildings associated porous materials used in this industry. The phenomenon is caused by the migration of the salt ions dissolved in water into the porous network of the building's walls. This is where they remain and crystalize after the water evaporates creating great pressure aginst the pore walls and eventually resulting in their fracture after many cycles of crystallization/dissolution [1,2]. This mechanism has a massive influence on the degradation of historical buildings since they were built in a time when construction technologies made no effort to prevent this kind of pathologies.

The construction industry uses materials with porous caracteristics that favour the moisture fixation through mechanisms such as capillary, higroscopicity and condensation [3-7]. Rising damp, one of the moisture propagation mechanisms that accelerates the deterioration in buildings, may be explained by the capillary water migration from the the soil through the porous network of the materials in the building elements. In old buildings, mostly constucted in mansory, the effects of rising damp assume a greater expression, due to the porous materials tipically used such as ceramic bricks, mortars and stones [1,2].

The presence of dissolved salts in the water, which up rises through the porous network of building elements, constitutes an annoying factor for its

degradation [8,9]. The salts follow the water during its rise in liquid phase, however the same doesn't occur when the water evaporates. The salts remain in the pores of the building materials, eventually crystallizing after the solution has reached its supersaturation state. The salt crystallization can occur on the surface of the materials, developing efflorescence that disturb the aesthetical appearance of the building, or inside the porous network, dealing great pressures in the pore walls that can fragment them when exceeds its mechanical resistance [10,11]. The hygrothermal variations of the surronding environment promote cycles may of crystallization/dissolution and develop breaking tensions in the pores for each cycle.

The elements and components in the constructive systems, specially the masonry, hinge their functional efficiency on the combination of different materials and characteristics, which adds to the complexity of the moisture transfer analysis. This heterogeneity require knowledge about the individual characteristics of the materials as well as the continuity conditions of the interface that separates the different materials, bidding the crucial importance of the study of the joints influence in the transport phenomenon [12-14].

This paper intends to report the experimental work carried out with brick specimens, aiming to evaluate the effect of salt solutions in the capillary absorption of monolithic brick specimens in comparison with water. Sodium sulphate and potassium chloride were the chosen salts to perform the experiments. The first is one of the salts that impose more degradation to buildings, the second was chosen for being very commonly found in building materials, especially the ion chloride.

MATERIALS AND METHODS

The test specimens used were nine red brick monolithic samples with the dimensions 5x5x10 cm3 (three for each solution including water). All the specimens were sealed in the lateral faces with an epoxy coating to avoid the evaporation through these sides and assure the unidirectional moisture flow from the bottom to the specimens' top surface. Tests were performed only for pure water and two saturated salt solutions (KCl and Na₂SO₄).

The capillary absorption tests followed the procedure nº II.6 "Water Absorption Coefficient (Capillary)" of

RILEM [15]. The tests were preceded by the drying of the specimens in an oven at about 60°C until obtained constant mass, in order to calculate the dry mass of the specimens. After this step, specimens were stored in the test room for some days, until they reach the hygrothermal equilibrium.

Mukhopadhyaya et al. [16] confirmed the temperature influence on capillary absorption coefficient of brick specimens in his study with different porous materials. In order to minimize the effect of temperature on our results, tests were performed in a room with controlled temperature. The values of temperature and relative humidity (RH) of the air were measured every ten minutes for 33 days using a sequential data recording device. The mean values obtained were 22.8 °C for the temperature and 52.7 % for the RH.

Tests began with the partial immersion of the specimens 5mm deep. After the immersion, weightings were performed periodically in order to determine the amount of water absorbed during the test. On the first day, weightings were performed on all samples at minute 1, 3, 5, 10, 15, 30, 60, and afterwards at least once an hour. In general, weightings were attempted every two hours on the second day, every three hours on the third day and once a day for the remaining days of testing. This timing had yet to suffer some adjustments for some combinations tested. For instance, for the specimens with air space between layers, after the wet front have reached the interface the time between weightings were extended since the moisture transport at the interface took place in the vapour phase and was therefore much slower.

The amount of absorbed water per unit area at time ti assay Mw,i (kg/m^2) is calculated using Eq. (1), where M0 (kg) is the dry mass of the sample, Mi (kg) of the mass of sample at time ti and S (m²) is the area of the base of the specimen.

$$M_{w,i} = \frac{M_i - M_0}{S} \tag{1}$$

Once determined the amount of water absorbed over the time until the saturation of the porous media, it was then possible to calculate the capillary absorption coefficient and the maximum moisture flow through the interface. The capillary absorption coefficient corresponds to the slope of the first linear portion of the absorption curve, that expresses the amount of water absorbed per unit area (kg/m2) as a function of the root of time (s1/2). The maximum moisture flow through the interface corresponds to the slope of the linear approximation of the absorption curve that expresses the amount of water absorbed per unit area (kg/m2) as a function of time (s) once reached the interface. The results of capillary absorption are given by the sorptivity S (m/s0.5). This property, which depends on both the material and the liquid, expresses the tendency of a building material to absorb and transmit a liquid by capillarity [6], as shown by Eq. (2):

$$S = \left(\frac{\sigma}{\eta}\right)^{1/2} \dot{S} \tag{2}$$

where σ is the surface tension of the liquid, η is the viscosity of the liquid and S is the intrinsic sorptivity of the material.

RESULTS AND DISCUSSION

Figure 1 sketch a representation of the monolithic specimen, hydraulic continuity interface, perfect contact interface and air space interface.

Figure 1: Virtual representation of the different types of specimen tested.

The capillary absorption curves obtained for those specimens, in the second cycle of absorption, for each one of the three solutions tested are represented in the Figure 4. The capillary absorption coefficients determined from these curves are represented in Table 1.

The results support the theory that wetting kinetics of the porous materials, at least for brick materials as it was the material used in this study, is affected by the presence of soluble salts dissolved in water.

The cappillary absorption coefficient illustrate that the presence of sodium sulphate induces an decrease in this coefficient in comparison with the reference test (pure water). On the contrary, the coefficient determined for the specimens immersed in saturated solution of potassium chloride was significantly higher than the one obtained for the reference solution. The different between the reference absorption coefficient and the saturated solution is higher in the sodium sulphate case than it is in the potassium chloride. Our results are in line with that observed by Azevedo [11] who concluded that salts with potassium ion (K^+) lead to the decrease of the capillary absorption coefficient when compared with pure water, while salts with sodium ion (Na+) induce a decrease in the capillary absorption coefficient.

Figure 2: Illustration of some samples before the beginning of the 2° cycle tests: (a) monolithic specimens, (b) hydraulic continuity interface and (c) air space interface.

Figure 3: Illustration of some samples after several weeks of the 2° cycle tests: (a) air space interface and (b) monolithic specimens.

The capillary absorption curve of Red Brick samples as a function of the root of time, after 1 and 2 cycles, with the three different solutions for each joint type, is represented in the Figure 4.

A more detailed analyse was done in Figure 5, and the results obtained show that comparing the 1st and 2nd absorption cycles, it is possible to conclude that the specimens immersed in water practically absorbed the same amount of water, but when the samples are immersed in salt solutions (Na2SO4 and KCl) the mass gain in the absorption process is lesser in the 2nd cycle than in the 1st cycle.

Table 1. Capillary absorption coefficient of monolithic red brick specimens partially immersed in pure water and saturated solutions of KCl and Na₂SO₄.

Solution	Capillary absorption coefficient [kg/(m ² .s ^{1/2})]							
Solution	Mean	Standard deviation	Variation Coeff (%)					
Water	0.0675	0.0035	5.2%					
Water+Na ₂ SO ₄	0.0551	0.0025	4.5%					
Water+KCl	0.0660	0.0025	10.6%					

Figure 4: Capillary absorption curve of Red Brick samples as a function of the root of time, after 1 and 2 cycles, with pure water and saturated solutions of KCl and Na₂SO₄, for: (a) monolithic specimens, (b) hydraulic continuity interface, (c) perfect contact interface and (d) air space interface.

Figure 5: Water absorption coefficient of Red Brick samples after 1 and 2 cycles, with pure water and saturated solutions of KCl and Na₂SO₄, for: (a) monolithic specimens, (b) hydraulic continuity interface, (c) perfect contact interface and (d) air space interface.

Figure 6 shows the mass gain by the samples tested in water and both salts solutions, for the three different joints analysed. For hydraulic continuity interface, the contact between layers were done with a mortar joint of 7 mm and with an interpenetration of both layers. Figure 6 shows a slowing of the wetting process when the moisture reaches the interface due to the interface hygric resistance. This result reveals the existence of a resistance associated with the maximum flow transmitted (FLUMAX), who presents the higher value FLUMAX, as showed in Figure 7. The maximum flow transmitted value is a parameter easy to obtain experimentally and an important input for the hygrothermal programs available in literature [20].

In the case of the perfect contact interface, the curve in Figure 6 shows a slowing of the wetting process when the moisture reaches the interface, due to the interface hygric resistance. Once again, this result reveals the existence of a resistance associated with the maximum flow transmitted, but the lower slow mass gain by the samples indicate a high hygric resistance and an expectable lower maximum flow transmitted value than the obtained in the hydraulic continuity interface situation.

Finally, for the samples with air space interface, the samples are separated by about 3 mm of an air space in order to have an hidric cut that prevents the moisture transfer in liquid phase. Figure 6 shows a slowing of the wetting process when the moisture reaches the interface due to the interface hygric resistance however, this hygric resistance is higher than the resistance observed in the perfect contact interface. This phenomenon is observed by the extremely slow weight gain presented in Figure 6, for the situation described, and once again reveals the existence of a resistance associated with the maximum flow transmitted. This value is expected to be lower than the obtained with a perfect contact interface (see Figure 7).

Figure 6: Representation of the absorption in the monolithic specimens, and specimens with hydraulic continuity interface, Perfect contact interface and air space interface, for: (a) pure water, (b) saturated solution of KCl and (c) saturated solution of Na₂SO₄.

Figure 7: Effect of the different interfaces on the FLUMAX: (a) monolithic specimens, (b) hydraulic continuity interface, (c) perfect contact interface and (d) air space interface.

CONCLUSIONS

In this work an extensive experimental campaign was presented to study the effect of different absorption cycles of two different saturated solutions of sodium sulphate and potassium chloride in the capillary absorption curves obtained through the partial immersion of red brick samples without and with different joints. The drying kinetic process was also analysed for all the samples tested.

The main conclusions were:

- Both salts influence the capillary absorption coefficient in a distinct way. The presence of sodium sulphate induces a decrease in this coefficient compared to tests performed with pure water, while the tests performed with potassium chloride showed an increase of the capillary absorption coefficient compared to pure water, despite presenting a lower difference.
- All three types of interface studied presented hydric resistance during the capillary absorption tests, although with different levels of magnitude. Specimens with air space between layers offered much more resistance to moisture transport through their interface compared to both perfect contact and hydraulic contact specimens due to the fact that moisture only flow in vapour phase unlike the other two which also support liquid phase transport.
- Comparing our results with those obtained by Freitas (1992) helped sustaining the author's theory that maximum moisture flow through the air space and perfect contact interfaces (individually) may be fixe within a close range of values for the same material, since the maximum moisture flow values determined in this work were very close to the author's for a similar used material.
- Specimens with hydraulic contact interface presented more heterogeneous results. Furthermore this kind of interface's hydric resistance depends on several factors like the water/cement ratio and

curing conditions. Despite the difference between the specimen's characteristics, a comparison between ours and Cunha's results shows distinct behaviours in moisture transport through the interface despite using the same cement material.

REFERENCES

- A.S. Guimarães, J.M.P.Q. Delgado and V.P. de Freitas; "Rising damp in walls: Evaluation of the level achieved by the damp front"; Journal of Building Physics; Vol. 37(1); 6-27; 2013.
- [2] A.S. Guimarães, J.M.P.Q. Delgado and V.P. de Freitas; "Rising damp in building walls: the wall base ventilation system"; Heat and Mass Transfer; Vol. 48(12); 2079-2085; 2012.
- [3] H.S. Hens; "Building physics heat, air and moisture – fundamentals and engineering methods with examples and exercises"; Ernst & Sohn, Belgium; ISBN: 978-3-433-01841-5; 2007.
- [4] C. Hall; "Water sorptivity of mortars and concretes - a review"; Magazine of Concrete Research; Vol. 41; 51–61; 1989.
- [5] R.J. Gummerson, C. Hall and W.D Hoff; "Water movement in porous building materials-III. A sorptivity test procedure for chemical injection damp proofing"; Building and Environment; Vol. 16 (3); 193-199; 1981.
- [6] C. Hall and W.D Hoff; "Water transport in brick, stone and concrete"; London, UK, New York, NY: Taylor & Francis; ISBN: 0-419-221890-X; 2002.
- [7] J.M.P.Q. Delgado, N.M.M. Ramos and V.P. de Freitas; "Can moisture buffer performance be estimated from sorption kinetics?"; Journal of Building Physics; Vol. 29(4); 281-299; 2006.
- [8] L. Pel, H. Huinink and K. Kopinga; "Salt transport and crystallization in porous building materials"; Magnetic Resonance Imaging; Vol. 21; 317–320; 2003.
- [9] D. Young; "Salt attack and rising damp, A guide to salt damp in historic and older buildings"; Heritage Council of NSW, Heritage Victoria, South Australian, Adelaide City Council, ISBN 978-0-9805126-4-9; 2008.
- [10] T. Gonçalves; "Salt crystallization in plastered or rendered walls"; PhD Thesis Technical University of Lisbon and LNEC, Lisbon, Portugal; 2007.
- [11] J. Azevedo; "Capillary absorption of porous materials in salt solutions"; MSc. Thesis; Faculty of Engineering, University of Porto, Porto, Portugal; 2013.
- [12] V.P. de Freitas; "Moisture transfer in building walls – Interface phenomenon analyse"; PhD Thesis; Faculty of Engineering, University of Porto, Porto, Portugal; 1992.
- [13] A.S. Guimarães, J.M.P.Q. Delgado and V.P. de Freitas; "Influence of mortar joints on the moisture transfer in layered materials"; Defect and Diffusion Forum; Vol. 365; 160-165; 2015.
- [14] H. Derluyn, H. Janssen, and J. Carmeliet; "Influence of the nature of interfaces on the capillary transport in layered materials"; Construction and Building Materials; Vol. 25(9); 3685–3693; 2011.
- [15] RILEM TC 25-PEM; "Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods"; Materials and Structures; Vol. 13; 204-209; 1980.
- [16] P. Mukhopadhyaya, K. Kumaran, N. Normandin and P. Goudreau; "Effect of surface temperature on water absorption coefficient of building materials"; Journal of Thermal Envelope and Building Science; Vol. 16; 179-195; 2002.
- [17] H.A. Iglesias and J. Chirife; "Handbook of food isotherms"; Academic Press, New York, USA; 1983.
- [18] D. Marinos-Kouris, Z.B. and C.T. Maroulis Kirannoudis; "Computer simulation of industrial dryers"; Drying Technology; Vol. 18(5); 971-1010; 1996.
- [19] J. Crank; "The mathematics of diffusion"; Second edition, Oxford University Press; United Kingdom, ISBN: 978-019-853344-3; 1975.
- [20] J.M.P.Q. Delgado, N.M.M. Ramos, E. Barreira and V.P. de Freitas; "A critical review of hygrothermal models used in porous building materials"; Journal of Porous Media; Vol. 13(3); 221-234; 2010.

CESBP/BauSIM 2016 (Dresden, Germany)

I (we), the author(s) of the attached paper, have read the following Copyright Transfer and Disclaimer and agree to them by submitting the attached paper.

(1) The author(s) affirm(s), that the paper has not been published elsewhere and, if the paper is accepted, will not be published elsewhere prior to CESBP/BauSIM 2016.

(2) If the paper is accepted, the author(s) will automatically grant to the conference organizers a nonexclusive, royalty-free, perpetual, worldwide, irrevocable, sub-licensable and transferable license to publish the paper (in unmodified form) in any fashion (including but not limited to inclusion in the CESBP/BauSIM 2016 printed and CD proceedings, via electronic means such as the WWW, and inclusion in future compilations of papers). This "nonexclusive" license means that the author(s) are not restricted to future use of the material except that exclusive rights cannot be granted to another.

(3) The author(s) affirm(s) that he/she (they) has (have) the right to grant the license specified in (2), that is, publication by the conference organizers or its licensees will not be in conflict with the copyright or other restrictions.

(4) The author(s) acknowledge(s), that acceptance of the paper does not imply the conference organizers endorsement of or agreement with the ideas presented. Under no circumstances shall the conference organizers be liable for any damages resulting from used information included in the paper.

Figure 2: The author will be required to accept these conditions when they submit their paper via the web site.