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Resumo

Alguns problemas de classificação automática, tais como a classificação de texto, exigem um
grande esforço para a etiquetação dos exemplos necessários para treinar um classificador apesar
da facilidade e baixo custo envolvidos na recolha de exemplos não etiquetados. Contrariamente à
aprendizagem supervisionada, que exige que os exemplos do conjunto de treino sejam todos pre-
viamente etiquetados, a aprendizagem ativa é um paradigma em que os exemplos são etiquetados
em função da sua utilidade para o fim em vista. Para além da seleção criteriosa dos exemplos a
etiquetar, a aprendizagem ativa é um processo iterativo que pode ser interrompido quando o valor
acrescentado dos exemplos ainda não etiquetados fôr baixo. De uma forma geral, a aprendizagem
ativa requer um esforço de etiquetagem inferior ao da aprendizagem supervisionada.

A maioria das abordagens correntes da aprendizagem ativa aplicadas a problemas de classifi-
cação assume a existência de um conjunto de exemplos previamente etiquetados, cobrindo todas
as classes de interesse. O processo de aprendizagem é inicializado a partir deste conjunto. O es-
forço necessário para a etiquetação destes exemplos não é, de uma forma geral, contabilizado para
efeitos do cálculo do esforço total de etiquetação.

No entanto, a identificação de exemplos representativos de todas as classes pode exigir um
esforço significativo, em particular, no que refere à identificação de exemplos representativos de
classes minoritárias. Acresce que, em alguns domínios, tais como a deteção de fraude e o di-
agnóstico de doenças raras, por exemplo, estas classes minoritárias podem ser as mais críticas.
Nestas circunstâncias, conduzir e avaliar o processo de aprendizagem com base exclusivamente
em critérios de precisão, como é comum em problemas de classificação, pode não ser suficiente.
De facto, dependendo do enviesamento da distribuição das classes, um classificador pode apresen-
tar uma taxa de erro baixa mesmo desconhecendo por completo as classes minoritárias.

O tratamento adequado destes casos requer uma abordagem diferente que assegure, para além
da precisão, também a capacidade de reconhecimento de todas as classes independentemente da
sua distribuição. Entendemos que é possível desenvolver uma estratégia de aprendizagem ativa
que permita construir classificadores precisos, com conhecimento de todas as classes, com um
esforço de etiquetação (custo) inferior ao das abordagens atuais.

Nesta tese propomos uma estratégia de aprendizagem ativa que inclui um critério de seleção
dos exemplos a etiquetar e um critério de paragem que interrompe o processo de aprendizagem
quando o valor acrescentado dos exemplos disponíveis para etiquetar é baixo. Esta estratégia
promove a eficiência do processo de aprendizagem, focando-se nos exemplos mais informativos e
unicamente enquanto o seu valor acrescentado o justifique.

O critério de seleção proposto, d-Confidence, agrega a confiança do classificador com a distân-
cia entre os exemplos não etiquetados e as classes conhecidas. É um critério que tende a selecionar
exemplos de classes desconhecidas, em que o classificador tenha confiança reduzida, que se lo-
calizam em regiões inexploradas do espaço de exemplos, a uma grande distância das classes con-
hecidas. O critério de paragem proposto, hcw, combina dois indicadores do valor acrescentado do

i



ii

conjunto dos exemplos ainda não etiquetados: o gradiente de classificação e um indicador da esta-
bilidade da distribuição da entropia das previsões. O gradiente de classificação fornece informação
sobre a diferença nas predições entre duas iterações consecutivas. O indicador de estabilidade da
distribuição da entropia das previsões fornece indicações sobre a igualdade das medianas dessas
distribuições entre duas iterações consecutivas.

Espera-se que esta estratégia permita identificar exemplos de todas as classes, independen-
temente da sua distribuição, sendo capaz de gerar classificadores precisos com um esforço de
etiquetação inferior ao das abordagens atuais.

Os resultados da avaliação efetuada mostram que o d-Confidence supera outras abordagens na
identificação de exemplos cobrindo todas as classes. Os ganhos são particularmente notórios em
presença de distribuições enviesadas. Os classificadores construídos com o d-Confidence apresen-
tam também ganhos ao nível da precisão na maioria dos casos. No entanto, em algumas situações,
a redução do esforço de etiquetação necessário para cobrir todas as classes é obtida à custa de uma
precisão mais baixa.

O critério de paragem aqui proposto apresenta um desempenho superior às restantes abor-
dagens analisadas. É um critério robusto que gera indicações de paragem de forma consistente
quando a utilidade dos exemplos não etiquetados ainda disponíveis é baixa.

A estratégia de aprendizagem ativa proposta nesta tese, como um todo, incluíndo o critério
de seleção e o critério de paragem, gera classificadores precisos, capazes de reconhecer todas as
classes, a um custo reduzido em comparação com outras abordagens atuais.



Abstract

In some classification tasks, such as those related to the automatic building and maintenance of
text resources, it is expensive to obtain labeled instances to train a classifier although it is common
to have massive amounts of data available at low cost. Unlike supervised learning, that requires a
fully pre-labeled training set, active learning allows asking an oracle to label only the most infor-
mative instances given the specific purpose of the learning task and the available data. Moreover,
active learning is an iterative process that may be halted when the potential utility of the unlabeled
instances remaining in the working set is low. Active learning generally requires a lower labeling
effort to build accurate classifiers than supervised learning.

However, common active learning approaches assume the availability of a pre-labeled set, cov-
ering all the target classes, to initialize the learning process. The labeling effort required to build
this initialization set is not generally considered when analyzing the performance of the learning
process. When in presence of imbalanced class distributions, identifying labeled instances from
minority classes might be very demanding, requiring extensive labeling, if queries are randomly
selected. Nevertheless, these minority classes are the most critical to certain classification tasks,
such as, detection of fiscal fraud and rare diseases diagnosis. In such circumstances, evaluating
the performance and building a classifier based exclusively in accuracy might not be appropriate
since an accurate classifier might still fail to identify minority classes – the critical ones – with a
little impact in accuracy.

A novel approach to active learning is required in order to comply with these cases. Besides
accuracy, it is also important to assure that the classifier being built is aware of all target classes
irrespectively of their distribution. It is our belief that it is possible to develop an active learning
strategy that builds accurate classifiers being aware of all the target classes at a reduced labeling
effort – that is, at low cost – when compared to current approaches.

In this thesis we propose a strategy for active learning that comprises an active learning crite-
rion to select queries and a stopping criterion to halt the learning process when the utility of the
remaining unlabeled instances is low. D-Confidence, our query selection approach, is based on
a query selection criterion that aggregates the posterior classifier confidence and the distance be-
tween unlabeled instances and known classes. This criterion is biased towards instances belonging
to unknown classes – low confidence – that are located in unexplored regions in the input space
– high distance to known classes. The stopping criterion in our strategy, hcw, is an ensemble of
classification gradient and steady entropy mean, two base indicators of the utility of unlabeled
instances. Classification gradient provides evidence on the differences of the predicted labels
between two consecutive iterations of the learning process. Steady entropy mean provides infor-
mation on the stability of the distribution of the entropy of predictions between two consecutive
iterations.

This strategy is expected to identify exemplary instances from all the target classes, inde-
pendently of their frequency, being able to train an accurate classifier while requiring a reduced
labeling effort when compared to common active learning approaches.
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The main results from our evaluation show that d-Confidence outperforms state-of-the-art ap-
proaches in the identification of exemplary instances from all classes. The improvements are
mainly evident in imbalanced data. The accuracy of the classifiers built with d-Confidence im-
proves over other approaches in most situations. However, in some cases, the improved represen-
tativeness is obtained at the cost of accuracy.

The hcw stopping criterion significantly outperforms other state-of-the-art approaches used for
evaluation. It is a robust criterion, triggering consistent stop signs when the utility of the remaining
unlabeled instances is low.

The d-Confidence strategy as a whole – including both query selection and stopping criteria –
generates accurate classifiers, being able to recognize all target classes, with a reduced cost when
compared to state-of-the-art approaches.
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Chapter 1

Introduction

The Web is a comprehensive, dynamic, permanently up to date repository of information – readily

available for automatic processing by digital means – regarding most of the areas of human knowl-

edge (Hu, 2002) and supporting an increasingly important part of commercial, artistic, scientific,

public and personal transactions, rising a very strong interest from individuals, as well as from

private and public institutions, at a universal scale. The lack of any solid editorial control over

Web publishing is probably one of its main advantages contributing to its success but it is also

one of its main pitfalls demanding for costly validation efforts in order to assure the quality of the

information being retrieved.

But the Web is not the only source of valuable information being widely used on behalf of a

better life quality. In our daily lives data is produced, gathered, processed and used by a ever grow-

ing number of equipments and systems. Mobile devices and communication systems in general,

cars and other vehicles, labor equipment, sensors for a variety of purposes like pollution or dis-

abled people monitoring, surveillance systems, financial and banking monitoring systems, health

equipment and energy distribution are just a few examples.

Information is a core asset to improved quality of life and social progress (Atkinson and Castro,

2008).

However, as the potential benefit of information increases with the amount of information

available, also does the cost of retrieving useful information for a particular purpose. Investigating

how to conduct this retrieval process such that the cost-benefit ratio is favorable becomes more

important as more information is available. The ability to use information efficiently is a key issue

1
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to innovation and improvement in our daily lives. Information availability is a necessary condition

but not a sufficient one. The efficient use of information depends on its proper organization for a

specific need1. There must be a close mapping between organizational and domain concepts that

conforms to specific purposes.

Assigning previously defined classes to instances is a well established and effective approach

to organize collections of instances – the Dewey Decimal System (Dewey, 2004), for instance, is

a system of library classification in use since 1876. This task is known by classification in the ma-

chine learning field. When done by hand, classification is effective for small collections. However,

this manual process is not scalable. Automatic classification fixes this scalability problem allow-

ing people to take advantage of the amount and ubiquitousness of digital information available

these days.

Nevertheless, automatic classification systems require exemplary instances – previously clas-

sified by experts – that are representative of the target concepts. Automatic classification will

only be useful after building a classification model that is aligned with the target classes given the

specific purposes of the classification task. Building classification models in machine learning is

usually based on a set of pre-labeled exemplary instances. Classification models are then able to

assign categories to new instances replacing the domain expert at a lower cost – although with a

certain loss in accuracy. Automatic classification has a cost that is proportional to the amount or

pre-labeled instances required to build the classification model. This cost is related to the effort

that is required from domain experts to retrieve and classify a set of exemplary instances.

1.1 The problem

Effective classification requires a set of pre-labeled instances covering the target domain in breadth

– all target classes are represented thus contributing to class-completeness – and in depth – the pre-

labeled instances from each target class constitute a sound representative sample thus contributing

to accuracy. The work reported in this thesis is related to the construction of classification models,

addressing class-completeness and accuracy, at low cost.

1A traditional phone list, sorted by alphabetic order of names is very efficient when looking for the phone number
of a person whose name is known. But, what if we were searching for the name of a person whose phone number
is known? In such case, the former organization is as useless as a random list. Organizing information according to
specific needs is a core issue regarding its usefulness.
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The specific problem being addressed is the effective classification of collections of objects.

Effectiveness in this sense means (a) awareness of all the target classes – class-completeness, (b)

accuracy and (c) low cost. Our aim is to build effective classification models that can be used to

organize collections of objects according to specific needs at low cost in the absence of any prior

description of the target concept.

1.2 Hypotheses

We assume that there is no pre-labeled set of instances from which to initialize a classification

model but only a pool of instances that is representative of the target concept. Unlike most current

approaches, that assume the availability of such a pre-labeled set at no cost, we consider that the

task of labeling representative instances to initialize the learning process is an indispensable part of

the construction process itself. Our purpose is to build accurate and class-complete classification

models, irrespectively of class distribution, with less effort from domain experts (lower cost) than

that required by state-of-the-art approaches.

Active learning (AL) is an adequate learning setting for our purposes. Unlike supervised learn-

ing, which requires a fully pre-labeled set in advance to learning a classification model, AL builds

the pre-labeled set iteratively as it learns the classification model. The instances to label are se-

lected at each iteration of the learning process based on the current evidence which is incorporated

at each iteration. AL selects the most informative instances, given current evidence, potentially

reducing the number of pre-labeled instances required to build the classification model when in

comparison to the supervised setting. The selection criterion to be used may be tailored according

to specific purposes.

A core concern in AL relates to the compromise between exploration and exploitation that is

implemented by each query selection criterion. Query selection may be biased towards exploration

– selecting queries that will contribute to explore unknown regions in input space – or exploita-

tion – selecting queries that will contribute to fine tune the current learning function. Balancing

exploration and exploitation has impact on the performance of the learning strategy.

Another relevant characteristic of AL addressing our needs relates to the fact that AL processes

can be stopped when no further improvements are expected, something that is not possible in
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supervised learning since the pre-labeled set is prepared in advance. All of these characteristics

make AL an adequate setting given our purpose – build accurate classification models being aware

of all the target concepts at low cost, that is, demanding a reduced labeling effort.

Current AL approaches to classification are mainly focused on improving accuracy. The avail-

ability of a pre-labeled set including representative instances from all the target classes is generally

assumed. Under such an assumption, accuracy is the natural concern since class-completeness is

not an issue. However, it is not usually described how the class-complete pre-labeled set required

to initialize the learning process is obtained. The cost of such a class-complete pre-labeled set

may be high – depending on the target domain and its typical class distribution – and its feasibility

should be questioned. Moreover, when in presence of imbalanced class distributions, we may gen-

erate accurate classifiers that do not cover under-represented classes since those have a marginal

contribution to error. Nevertheless, those minority classes might be critical. Failing to learn them

may jeopardize all the efforts in building the classifier.

We are concerned with building low cost classifiers that are aware of all of the target classes.

The cost of instantiating the pre-labeled set required to initialize the learning process must also be

accounted for since it might be a significant part of the total cost. Unlike generally accepted in

the AL literature, we do not assume the availability of a pre-labeled set including representative

instances from all the target classes at zero cost. Our classifiers are initialized with a minimal

pre-labeled set having two labeled instances from two distinct classes selected from the initial

pool at random. During the AL process we keep querying with a focus on the early – low cost –

identification of exemplary instances from all the target classes. Accuracy is also a concern but it

is not the only one. We aim to build class-complete accurate classifiers.

1.3 Thesis proposal and expected results

We propose an AL strategy aimed at building class-complete accurate classifiers at low cost that

includes a query selection criterion, d-Confidence, and a stopping criterion, hcw.

D-Confidence selects queries – instances to label – based on a criterion that aggregates confi-

dence and distance to known classes. The query selected by d-Confidence at each iteration is one
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unlabeled instance for which the current classifier is not certain about its class – low confidence –

and that is simultaneously located far apart from the classes that are known – high distance.

At an initial stage of the learning process, when in presence of a sparse training set, d-Con-

fidence is expected to query regions in the input space that are far from what is already known

thus contributing to a fast coverage of the input space. At this initial stage, the distance factor of

d-Confidence is expected to be predominant introducing a bias favoring exploration of the input

space and contributing to the early retrieval of representatives of all classes to learn.

As the input space gets populated with labeled instances and target classes become represented

in the training set, the confidence factor is expected to become predominant. At this stage, d-

Confidence is expected to shift to an exploitation bias querying unlabeled instances contributing

to sharpen decision boundaries.

This nature of d-Confidence is expected to assure a dynamic compromise between exploration

and exploitation that will contribute to build accurate classifiers being aware of all target classes

at low cost.

AL processes run until some stopping condition is met. A trivial stopping condition is the

exhaustion of the pool of instances available to learn. However, efforts to build a classifier at low

cost – with few queries – may be useless if such a naive stopping condition is applied. If the

learning process keeps querying the oracle yet not improving the classifier, we are adding costs

at no benefit. From the point of view of cost-benefit, the decision on when to stop querying is as

important as selecting useful queries.

We propose three base stopping criteria plus two hybrid ones having the aforementioned as-

pects into consideration. One of the base stopping criteria is based on changes in predictions

between consecutive iterations. The other two are based on changes in the distribution of the en-

tropy of predictions between iterations, one being evaluated by a Wilcoxon test for equality of

medians and the other by a Kolmogorov-Smirnov test for equality of distributions.

The hybrid stopping criteria are ensembles of the base criteria merging changes in predictions

and changes in the distribution of the entropy of predictions. Changes in the predictions provide

evidence on the predictions themselves but do not inform on their confidence. Changes in the

entropy of predictions provides evidence on the distribution of the current classifier confidence

however, with no connection to the predictions themselves. Each of these conditions on its own is
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a necessary stopping condition but not a sufficient one. The ensemble of the two is expected to be

sufficient.

Our hypotheses were investigated through an empirical research methodology.

1.4 Main results

The main results from our experimental evaluation show that d-Confidence exhibits a significant

potential to the early coverage of input space. D-Confidence retrieves exemplary instances from all

the target classes at a lower cost than its baseline criteria and other state-of-the-art AL approaches.

This improvement, in general, has no negative impact on accuracy. In fact, in many cases, there is

an improvement in accuracy. In some other cases, the improvement in class coverage is made at

the cost of accuracy.

D-Confidence is characterized by a dynamic shift between exploration and exploitation that

arises from its nature and does not require any tuning, that is, no overhead cost. The compro-

mise between exploration and exploitation is balanced by the geometrical properties of the input

space itself. This characteristic of d-Confidence gears a faster coverage of the input space while

simultaneously generating accurate models.

Concerning the stopping criteria, our evaluation indicates that the hybrid criteria proposed in

this thesis outperform the other stopping criteria under evaluation. There is a clear dominance of

hybrid criteria, notably hcw, regarding both cost and predictive ability.

1.5 Thesis structure

The remaining of this thesis is organized in seven chapters. Chapters 2 and 3 refer to the state-

of-the-art of the AL field. In Chapter 2 we review this field of machine learning analyzing its

evolution from its inception in the 80s. Then, in Chapter 3 we describe in more detail two aspects

of AL that are fundamental to our work – query selection strategies and stopping criteria.

Chapter 4 reviews the main techniques in text classification. We refer to the pre-processing

phase, reviewing the preliminary aspects required for the automatic processing of text documents.

These include text preparation and models for text representation. Next, we review common text

classification settings, text classifiers and performance indicators.
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Chapter 5 elaborates a formal description of the problem studied in this thesis, providing a

general setting to promote discussion and further developments.

Chapters 6 and 7 are core to this thesis. They describe in detail our main contributions and the

evaluation of d-Confidence and the stopping criteria. The reader is assumed to be familiar with

the formal description of d-Confidence provided in Chapter 5.

In Chapter 8 we review the main contributions and describe opportunities for further research

arising from our work.
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Chapter 2

Active Learning Retrospective

Machine learning (Mitchell, 1997) is a scientific field of artificial intelligence. It covers the re-

search and development of models and computer algorithms based on patterns extracted from

empirical data. In this thesis we address one of the major areas of machine learning: classification

problems.

In a classification problem, labels – the classes – are assigned to instances. Class labels come

from a predefined set, previously established by the user. The assignment of classes to a given

instance is done by a classifier, based on a classification model. The classifier is inferred by a

learning algorithm from the empirical data. The models1 are constructed from a subset of the

instance space – the training set. Classification models are hypotheses of the target concept that

are consistent with the observed training instances – as perceived by the learner given evidence on

the target concept. In the context of this thesis we assume that instances are described by a set of

features.

2.1 Machine learning settings

There are several machine learning settings suited for classification each with its own pros and

cons given the specific problem at hand.

1Instance based learning (IBL) is a specific learning setting that does not require the induction of a model. IBL just
stores the training set that, in classification problems, is somehow used to assign labels to instances.

9
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Supervised learning This is a setting where the learner generates hypotheses mapping the input

features – the set of features describing instances – to a pre-established set of classes (Cunning-

ham P, 2008). Supervised learning algorithms require a set of pre-classified (pre-labeled) instances

from which the learner generates the hypotheses. The need to have a fully labeled training set is a

major drawback of such a setting, especially when the cost of labeling is high.

Unsupervised learning This setting does not require any pre-labeling; learning is achieved ex-

clusively from the input features (Ghahramani, 2004). Unsupervised algorithms seek to realize

what is the underlying structure governing the input features’ space. Unsupervised learning gen-

erates models relying on the most salient patterns found in the input feature space which may not

properly map the target concept. Unsupervised classification algorithms (Karakos et al., 2005;

Sona et al., 2006; Sigogne and Constant, 2009) are commonly based on clustering techniques

which, in the specific field of text categorization, assume the clustering hypothesis (van Rijsber-

gen, 1979) – documents having similar content are also relevant to the same topic. Unsupervised

learning does not require any labeling but users have no chance to tailor clusters to their spe-

cific needs and there is no guarantee that the induced clusters will be aligned with the classes to

learn. This lack of guidance towards user needs during the training phase is a major drawback of

unsupervised algorithms from the point of view of the work presented in this thesis.

Semi-supervised learning The learning settings above rely exclusively on a fully labeled dataset

– in the case of supervised learning – or on a completely unlabeled one – unsupervised learning.

Combining both labeled and unlabeled data to take advantage of this combination, and to leverage

the information contained in unlabeled data, is the goal of semi-supervised learning (Nigam et al.,

2000; Chapelle et al., 2006; Zhu, 2008; Zhu and Goldberg, 2009). Semi-supervised algorithms

usually rely on a small set of labeled data and a large set of unlabeled data. A simple heuristic

approach to semi-supervised learning consists in a two step learning process. In the first step a

classifier is trained based on the labeled data only. This classifier is then used to classify unlabeled

data. The instances where the current classifier is most confident about are added to the labeled

set assuming the predicted labels are correct.
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Active learning In supervised learning the training set can be obtained by some method, such

as random sampling, without any arbitration by the learning algorithm, in which case we refer to

passive learning, or by some specific sampling criterion under control of the learning algorithm,

biased according to some desirable properties of the training set, in which case we refer to active

learning. Active learning (Angluin, 1988; Cohn et al., 1994; Roy and McCallum, 2001; Muslea

et al., 2006) is a particular form of supervised learning where instances to label are selected by

the learner through some criteria aimed at reducing the labeling complexity (Hanneke, 2007).

Labeling complexity is defined as the number of label requests that are necessary and sufficient to

learn the target concept.

2.2 Active learning

Several classification tasks – for instance those involving unstructured data, such as, speech recog-

nition, text and Web pages (Settles, 2009) categorization, images and music retrieval and filtering

– require efficient classification algorithms due to the high labeling cost, on one side, and the vast

amount of available, but unlabeled, data, on the other. Efficiency in such circumstances refers to a

trade-off solution between high accuracy and comprehensiveness, on one hand, and low labeling

effort, on the other. Active learning (AL) is an appropriate learning setting for this scenario given

the chance to develop learning strategies aiming at a desirable trade-off.

In AL, the learner is allowed to ask an oracle (typically a human) to label instances – these

requests are called queries. The most informative queries, given the goals of the classification task,

are selected by the learning algorithm unlike passive learning where training instances are selected

at random. AL can be performed in several distinct settings which will be covered in Chapter 3.

The core idea in AL is to estimate the value of labeling unlabeled instances. The general learning

process in Algorithm 2.1 is the basis for AL classification.

Referring to Algorithm 2.1, W is the working set, a representative sample of instances from

the problem space. Li is a subset of W . Members of Li are the instances in W whose labels are

known at iteration i. At iteration i, Ui is the (set) difference between W and Li, Ui = W \Li, i.e.,

the set of unlabeled instances in the working set; hi represents the classifier learned at iteration i;

qi is the query selected by the active learner at iteration i. A specific instance is represented by
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Algorithm 2.1 General AL algorithm

1: Input: W , set of unlabeled instances x j; fq() query utility function
2: Output: hi, learned classifier
3:

4: Initialize L1, U1 from W
5: i = 1
6: while stopping criteria does not hold do
7: hi = learn(Li), generate classifier hi using current labeled set Li

8: Use hi to classify instances in the current unlabeled set Ui

9: qi = argmax
x j

fq (x j) ,x j ∈Ui, select qi = x j ∈Ui maximizing query utility

10: Ask the oracle for the label of x j, y j

11: Li+1 = Li∪< x j,y j >
12: Ui+1 =Ui \ x j

13: i++
14: end while
15: return hi

< x j,y j > where x j is the set of descriptive features and y j is its true class (label).

All AL approaches analyze unlabeled instances and select the most useful ones once labeled.

The general idea of AL is to estimate the value of labeling unlabeled instances, i.e., the value of

queries. Query selection may be based either on a generative strategy (Angluin, 1988) or on a

discriminative strategy (Li et al., 2010).

In a generative strategy – the query construction paradigm – queries are artificially synthe-

sized (Angluin, 1988; Baum, 1991). Generative strategies are suitable for the case where artifi-

cially synthesized instances make sense to the oracle providing labels. This assumption makes

generative AL strategies unsuited for the generality of unstructured data domains as is the case of

text corpora.

Discriminative strategies – the query filtering paradigm – select queries from a given distri-

bution. These strategies are suitable when the distribution of the available data might be different

from the target distribution and also when artificially synthesized instances are not meaningful to

the oracle as is usual in text categorization relying on the bag-of-words model (Harris, 1954). Two

approaches are common under the query filtering paradigm: pool based active learning (Lewis

and Gale, 1994; McCallum and Nigam, 1998) – where queries are selected from a static pool of

data – and stream based active learning (Zhu et al., 2007, 2010c; Chu et al., 2011) – processing

data streams and deciding online whether or not to query each new incoming instance.

Applying AL techniques to classification involves a set of specific challenges that add to the
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common issues arising in general classification problems. In general, automatic classification in-

volves a number of distinct tasks, including the definition of the main goal of the learning process,

setting the evaluation procedure, gathering training and test sets, defining the data representation

model, selecting and tuning the most adequate learner. Specific AL challenges include: retrieving

an initial set of labeled instances, establishing the query selection criteria, establishing the stop-

ping criteria, agreeing on a compromise between exploration – finding representative samples in

the dataset that are useful to label, focusing on completeness – and exploitation – sharpening the

classification boundaries, focusing on accuracy. Decisions on these issues are directed by the goals

of the classification problem at hand. These aspects of AL are addressed in the following sections.

2.3 A retrospective view

Research in AL became popular in recent years. The massive quantity of digital information that

has become widely available during the last years triggered its popularity. Nevertheless, the AL

paradigm, applied to machine learning, has been in use for over 30 years.

In 1984, Valiant describes machine learning – the process of “knowledge acquisition in the

absence of explicit programming” – as consisting of (i) an information gathering mechanism and

(ii) a process to explore the concept space that can be learned in a reasonable (polynomial) num-

ber of steps (Valiant, 1984). Performance and learnability are concerns already perceived from

this remark on “reasonable” complexity. It is worthwhile noting the core role assumed by the

information gathering mechanism in machine learning, from its inception. AL contributes to the

feasibility of the learning process by reducing the extent of the input needed to learn. In this work

from Valiant, the learning paradigm is extended to include queries, in the current sense of the term

in AL – the learner supplies a set of feature’s values and asks for an output that is provided by an

oracle.

In the following we will describe the most relevant landmarks of AL in the machine learning

field.
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2.3.1 Inception, 1980’s

The term active learning has been originally coined in the educational field in 1991, as a corollary

of the broad discussion around instructional paradigms that occurred during the 80’s, referring

to the instructional activities involving students in doing things and thinking about what they are

doing (Bonwell and Eison, 1991). In the educational field, AL has always been associated to

seeking new information, organizing it in meaningful ways and further exploiting it (Allen D.,

2005), the very same concerns of the machine learning field.

Learning from queries, 1981 A few years earlier, during the 80’s, the paradigm had already

been applied to machine learning, although not explicitly tagged as AL. In 1988, Dana An-

gluin (Angluin, 1988) proposes a formal framework to organize and study several types of queries

and their value for machine learning tasks. Six distinct types of queries were established: member-

ship, equivalence, subset, superset, disjointness, and exhaustiveness queries. The answer for each

one of these queries, except for the membership type which returns a single Boolean (True/False),

is composed by a Boolean result and a counterexample in case of a negative answer.

Before that, a few learning systems based on queries had been proposed. For instance, in 1981,

Shapiro (Shapiro, 1981) and, in 1986, Sammut et al. (Sammut and Banerji, 1986) both propose

generative approaches to learn new concepts from previous knowledge. However, Dana Angluin

did the first formal description of the AL paradigm in the machine learning field.

Farthest-first, 1985 One of the baseline criteria in our work, farthest-first was introduced in

1985 (Hochbaum and Shmoys, 1985) to find an efficient sub-optimal solution to the k-center

problem2. In this approach, an initial instance is selected at random. From there on, we select

the instance that is farther apart from the previously fetched instances until we have k instances.

These k instances – collectively known as the farthest-first traversal of the data – are set as cluster

centers. The remaining instances are then assigned to the closest center. The distance between

2The k-center problem is defined as follows (Mihelič and Robič, 2005): Let G = (V, E) be a complete undirected
graph with edge costs satisfying the triangle inequality, and k be a positive integer not greater than |V |. For any set
S ⊆ V and vertex v ∈ V , define d(v, S) to be the length of a shortest edge from v to any vertex in S. The problem is to
find such a set S⊆V , where |S| ≤ k, which minimizes maxv∈V d(v,S)
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an instance and a set is the minimum distance between the instance at hand and each of the in-

stances belonging to the set. Farthest-first traversal may provide a set of seeds to build hierarchical

clustering with certain performance guarantees (Dasgupta and Long, 2005).

Learnability, 1988 In 1998, Pitt et al. focus on learnability issues, stating that some concepts are

not learnable just by instances when we have no prior knowledge on the base distribution (Pitt and

Valiant, 1988). This same problem is discussed by Eisenberg and Rivest (Eisenberg, 1991), that set

a bound on the degree to which membership queries (Angluin, 1988) may improve generalization

when the underlying distribution is unknown. 1988 was also the year of the seminal paper from

Dana Angluin (Angluin, 1988) setting for the first time a formal framework for AL in the field of

machine learning.

In 1990, Kinzel et al. (Kinzel and Ruján, 1990) show evidence on the ability of simple per-

ceptron learners3 to strongly enhance generalization by allowing the network itself to select the

training examples.

In 1991, Baum (Baum, 1991) proposes a hybrid algorithm that learns a binary classifier from

pre-labeled instances and artificially synthesized queries. Two groundwork instances – one posi-

tive and one negative example – are randomly selected from the pre-labeled set to start with. Then,

a query is generated half way between those two. This generated instance is labeled by the oracle

and replaces the previous groundwork instance with the same label. The process iterates reduc-

ing the distance between the selected instances and the separating hyperplane in each and every

iteration.

2.3.2 Rudiments, early 1990’s

Selecting queries based on the distance to labeled instances, farthest-first, or on the posteriors

generated by the current classifier, uncertainty sampling, are, together with Query By Committee,

among the main groundwork approaches to AL. In the early 90’s, AL is explicitly assumed as a

research area in the machine learning field.

3A perceptron is a simple type of neural network, developed in late 50’s and early 60’s mainly by Frank Rosenblatt,
that deploys a linear binary classifier.
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Query By Committee, 1992 Seung et al. (Seung et al., 1992) propose Query By Committee

(QBC) in 1992, a new paradigm for AL, that relies on an ensemble of learners – the committee

– to select a query as the instance with the highest disagreement among the committee. While

most of the previous work in the field had been focused on improving generalization error, Seung

et al. clearly assume their focus on minimizing the number of queries that are required to learn a

concept. This same indicator – the minimum number of queries required to learn a concept – will

lately be named labeling complexity by Steve Hanneke in 2007 (Hanneke, 2007).

Understanding the general principles that govern, or should govern, the query selection criteria

is another major issue in AL, until then overlooked, that was also brought up by the authors. Their

approach is supported on entropy and information gain (Shannon, 1948). The authors claim that

the information value of a query can be estimated from the disagreement among the committee and

that by maximizing the disagreement the information gain can be high. They prove the advantages

of QBC when compared to random sampling (Cochran, 1977) in two toy classification problems.

When using QBC, the information gain of a query approaches a finite value, other than 0, when

the number of queries goes to infinity. This asymptotically finite information gain leads to an

exponentially decreasing generalization error. When relying on random sampling, the information

gain tends to 0, as the number of queries increases, and generalization error decreases as an inverse

power law in the number of queries, therefore performing poorer than QBC. In 1997, Freund

confirms the exponentially decreasing trend in generalization error (Freund et al., 1997).

Further work on QBC, by Freund et al. (Freund et al., 1993) in 1993, showed a sharp increase

in the utility of the selected queries when the size of the committee increases above two.

In 1992, Mackay proposes a query selection strategy based on the estimated utility of particular

sub-areas within the uncertainty region (MacKay, 1992). Queries come from the most informative

sub-areas that are dynamically bounded and evaluated for utility in each iteration.

Liere et al. (Liere and Tadepalli, 1997) apply QBC in a text categorization task relying on

Winnow as a base classifier. Winnow classifiers (Littlestone, 1988) are particularly suited to high-

dimensional feature spaces with many irrelevant features as is common in text corpora. The em-

pirical results show significant reduction in the labeling effort – by one to two orders of magnitude

– when comparing QBC to a single Winnow classifier. The authors experimented with several

strategies to select queries. The best AL strategy achieves the same accuracy as a supervised
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learner while requiring only less than 3% of the labeled instances. An interesting finding relates to

the committee dimension. In this work, the committee is composed by seven members, which was

determined by trial and error. The authors claim that an excessively large number of committee

members – committees of as much as 1000 members have been tested – imply high computational

costs with no significant improvements in accuracy while a too small committee gets dominated

by one or two of its members and the overall performance of the committee approaches that of a

single member.

In 1998, McCallum et al. (McCallum and Nigam, 1998) merge Expectation-Maximization

(EM) (Dempster et al., 1977) with QBC reporting significant reductions in the labeling effort

when compared to its baseline approaches, EM and QBC, alone. EM is used to provide labels for

unlabeled data that are used to support the query selection process of AL. Committee disagreement

is measured using Kullback-Leibler divergence to the mean (Pereira et al., 1993) that takes into

consideration not only the top ranked class by each committee member – as in vote entropy – but

also the certainty of disagreement computed from the committee members class distributions.

Uncertainty sampling, 1994 Lewis and Gale (Lewis and Gale, 1994) propose uncertainty sam-

pling in 1994, a sequential sampling approach (Ghosh, 1991). In a sequential sampling method

the sample size is not fixed in advance and the decision to add, or not, a new query is influenced by

previously labeled instances. Lewis and Gale demonstrate that uncertainty sampling reduces the

number of labeled instances that are required to generate an effective classifier. In uncertainty sam-

pling the set of queries in each iteration is the set of unlabeled instances whose class membership

is sufficiently uncertain by the current classifier.

Uncertainty sampling proved to be effective on text corpora both with logistic regression (Lewis

and Gale, 1994) and decision trees (Lewis and Catlett, 1994).

Lewis and Catlett were one of the first to address the computational cost of training online

while collecting training data. Training the best suited learner for a given task while simulta-

neously selecting the instances to train on might be too demanding. In their work, the authors

propose a heterogeneous approach that consists in using a low cost classifier – a highly efficient

probabilistic classifier – to select the instances that will be used to train the actual learner – a C4.5

decision tree (Quinlan, 1993).
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In 1995, Lewis (Lewis, 1995) reinforces the reduction in labeling effort that might be granted

by AL when building text classifiers and draws our attention to the risk of biasing the resulting

probability estimates.

Relevance sampling, 1994 Relevance feedback (Salton and Buckley, 1990), a common strategy

in information retrieval (Mooers, 1950) that significantly increases retrieval effectiveness (Croft,

1995), may be seen as a particular form of AL. Lewis et al. (Lewis and Gale, 1994) call this

approach relevance sampling. In relevance sampling, users are requested to confirm, or not, the

relevance of a given document under their current information need. The documents that users are

requested to label are those that the current classifier considers most likely to be relevant.

Active learning is coined, 1994 Although extensive research has been performed on AL during

the late 80’s and early 90’s, the term active learning has been explicitly used to refer to the field

in machine learning only from 1994 on, in a paper published at the Machine Learning journal

by Cohn et al. (Cohn et al., 1994). A preliminary version of this paper had been presented in

1990 (Cohn et al., 1990).

Before that, the AL setting in the machine learning field was commonly referred to by selective

sampling (Cohn et al., 1994), learning from queries, query learning and active data selection.

In statistics the problem of selecting samples to label is typically referred to by experimental

design (Pronzato, 2008) – a field of study concerned with the design of experiments aiming to

minimize the variance of a parameterized model.

Cohn et al., in their seminal paper from 1994 (Cohn et al., 1994), define AL as any form of

learning where the learner has some control over the inputs on which it trains. This work, however,

is restricted to membership queries. The authors define region of uncertainty as the areas that are

not determined by the available information, that is, the set of instances in the working set such

that there are two hypotheses that are consistent with all training instances yet disagree on the

classification of those.

Batch mode active learning, 1994 Batch mode AL – selecting a batch of queries instead of a

single one before retraining – is also discussed by Cohn et al. (Cohn et al., 1994), mainly the influ-

ence of the batch size in selective sampling. The authors conclude that the queries selected by the
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selective sampling algorithm are more valuable for smaller batch sizes. The process to select the

instances to include in the batch at each iteration does not consider members’ diversity and so, it

seems natural to have redundant instances present in the batch which leads to low efficiency. Batch

mode AL adds a new non-trivial challenge: the need to assure diversity among batch members to

avoid redundancy and querying unlabeled instances of low utility – wasted queries.

Iyengar et al. (Iyengar et al., 2000) use an ensemble of classifiers and their predictions to

select new queries. A set of weights are computed for unlabeled instances. These weights are pro-

portional to the classification error made by the ensemble, assuming the validity of the predicted

labels. A set of unlabeled instances is then selected by sampling using the normalized version of

these weights.

2.3.3 Maturity, late 1990’s

In the late 90’s, the AL field is established in machine learning. The ever growing amount of digital

data easily available to all promotes AL and creates the conditions for an increasing interest from

researchers.

Optimal solution for pool-based active learning, 1996 AL is quite adequate to analyze un-

structured and high-dimensional datasets where the labeling cost is usually high. It soon began to

be applied to text classification. Text documents, however, are hard to synthesize by a computer

algorithm if we want them to make sense to a human reader. In such a scenario, the most common

approaches in the early days of AL, relying on query synthesis, were not adequate – an artificial

text constructed by a learning algorithm will seldom be interpretable by a human oracle. The need

to filter queries out of a pool of existing unlabeled instances – the pool-based paradigm – instead of

the common generative query construction paradigm (Shapiro, 1981; Sammut and Banerji, 1986;

Angluin, 1988; Pitt and Valiant, 1988; Baum, 1991; Plutowski and White, 1993; Cohn et al., 1996)

arose.

In 1996, Cohn et al. prove that the optimal solution for pool-based AL (Cohn et al., 1996) is

possible when using models of mixtures of Gaussians (Titterington et al., 1985) or locally weighted

regression (Cleveland et al., 1988). According to their findings, the instance that produces the

minimum expected error is the one that minimizes the expected variance of the predictions.



20 Active Learning Retrospective

Learning with noise, 1998 It is generally assumed in AL that the oracle is able to provide

true labels for any query. Nevertheless, we may be learning from pre-labeled instances that are

corrupted by noise.

Kearns (Kearns, 1998) addresses these circumstances proposing the statistical query model.

In the statistical query model, the oracle provides the probability that an example belongs to a

particular class instead of providing actual class labels. This model restricts the way in which

a learning algorithm may use a random sample and creates conditions to construct hypotheses

that are based on the statistical properties of the working set rather than on the specificities of a

particular sample. The author claims that statistical query model of learning is a robust, noise-

tolerant learning process allowing to obtain efficient algorithms for several classes of problems.

Text categorization and SVM, 2000 In 2000, Schohn et al. (Schohn and Cohn, 2000) describe

a simple AL heuristic, based on SVM classifiers applied to text classification that, surprisingly,

assures better performance w.r.t. accuracy and computational cost than a supervised classifier

trained on all available data. This is a key finding, showing that, for the essayed text corpora, the

accuracy of AL improves as new queries are added until it achieves a maximum that overcomes the

maximum that is achievable using passive learning with all the available data. From that point on,

the accuracy of AL degrades as new queries are added. Their query selection heuristic estimates

the expected change in error from adding a given instance to the training set.

Tong et al. (Tong and Koller, 2002), working with SVM classifiers applied to text, propose

selecting queries from the SVM margin that halves the version space (M. and Mitchell, 1982;

Mitchell, 1997) at each iteration thus maximizing the reduction in version space – the set of hy-

potheses that are consistent with all labeled instances. Three methods to select queries – simple

margin, MaxMin margin and radius margin – are evaluated as to their efficacy and computational

cost. These are distance based approaches, under the pool-based setting of AL, that significantly

reduce – over an order of magnitude – the need to label training instances when compared to

random selection (the supervised setting). Performance improvements were observed at both in-

ductive and transductive settings4 (Vapnik, 1998; Joachims, 1999).

4In a traditional inductive setting, general rules are inferred from training instances and then applied to any test
instances. In a transductive setting, instead of inferring general rules, the patterns observed in the training instances are
transfered to specific test instances.
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Active learning performance validation, 2000 In 2000, Schohn et al. (Schohn and Cohn, 2000)

claim that cross validation does not provide reliable error estimates for an active learner. The

rationale for this conviction is that cross validation assumes that the distribution in the training set

is representative of the distribution in the test set which does not hold in AL due to its inherent

sampling bias, mainly when the labeled set is reduced. However, this assumption is violated

whenever the training set is not sufficiently large, independently of which learning setting, active

or passive, is being used.

The main concern of Schohn et al. is to estimate when generalization error has reached peak

performance. They propose an indirect method that can be applied with SVM base classifiers.

Peak performance is assumed to occur when the unlabeled instance closest to the decision hyper-

plane is no closer than any of the actual support vectors. In such circumstances the SVM margin

has been exhausted.

Active learning and instance deletion, dual approaches, 2002 Dataset reduction by deleting

instances from the training set is a general solution to the problem of instance selection. Instance

deletion may be seen as the dual of AL. In both settings the objective is to retain only the few

instances with high utility, ignoring the rest. In instance deletion, this goal is achieved by delet-

ing the redundant, low-utility, instances and keeping the remaining while AL selects the most

informative instances and ignores the remaining low-utility instances. Brighton et al., report good

performance with reduced data in instance based learning settings (Brighton and Mellish, 2002).

One important conclusion from their work is that the performance of the deletion/selection scheme

in classification tasks depends on the class structure of the input feature space. Distinct schemes

are required to deal with homogeneous and non-homogeneous class structures – homogeneous

classes are defined by homogeneous regions in feature space, i.e., instances from the same class

are located close to each other.

No universal top performer, 2002 In 2002, Brighton et al. (Brighton and Mellish, 2002) refer

the need to select the best AL scheme for a specific problem since there is no universal top per-

former. Another concern regarding the dominance of one scheme over the others concerns the

selection of the best performer at each step of a given AL process – a vertical view as opposed to

the horizontal view discussed by Brighton et al. (Brighton and Mellish, 2002). Instead of relying
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on a single base classifier, as is common, Baram et al. (Baram et al., 2004) propose an approach

that relies on an ensemble of base classifiers. The AL process is governed by an algorithm that

combines these base learners by evaluating their individual performance and dynamically switch-

ing to the best performer at each iteration.

Batch mode revisited, batch diversity, 2003 Batch mode AL is a learning approach that is

adequate when the training cost is high. Another motivation to add more than one query to the

training set at each iteration is to avoid annoying the user with many consecutive iterations of

a single query that might have a negligible improvement in the inferred classification model, not

really observable by the user (Chen et al., 2010). In batch mode, instead of retraining at each single

query – the traditional AL setting, retraining is done after having queried a batch of instances. This

approach poses a new problem. The issue is that diversity within the batch of instances to query

is required to avoid querying redundant instances. This desirable diversity is not assured by just

selecting the top m most informative instances as seen by the current learner (Schohn and Cohn,

2000; Warmuth et al., 2002). Specific care is needed to assure that all batch members add value

on top of the rest.

In 2003, Brinker (Brinker, 2003) proposes a new batch mode approach to AL that incorporates

a diversity measure while selecting batch members. This approach selects the queries lying close

to the decision boundary that have the largest angles to previously selected candidates. Brinker’s

approach outperforms previous AL approaches using SVM base classifiers.

Hoi et al. (Hoi et al., 2006) suggest a batch mode approach relying on the Fisher informa-

tion matrix (Papathanasiou, 1993) to reduce redundancy among selected instances. Li et al. (Li

and Sethi, 2006) compute diversity within selected instances from their conditional error. Hoi et

al. (Hoi et al., 2009) propose semi-supervised SVM batch mode, a new batch mode approach with

two objectives in mind: to increase the number of training instances and to assure their diversity

to improve SVM performance. Semi-supervised SVM batch mode first learns a kernel function

from labeled and unlabeled data. Then, this function is used to identify the most informative and

diverse instances to query.

Rare category detection, 2004 Pelleg (Dan Pelleg, 2004) describes a novel AL scenario that

addresses a very similar problem to our own. Pelleg explores AL with the purpose of identifying
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rare categories – experiments are reported with rare categories having as few as 0.002% instances

in the data pool – in a setting where no labeled instances from these classes are present in the

initial training set. Our work is somehow more general than this one. We focus on gathering

exemplary instances for all the classes to learn – irrespective of their frequency – in the absence

of any pre-labeled instances, at low labeling cost. The authors propose an interleaving strategy

based on a mixture model to fit the data and relying on the degree of ownership of each mixture

components w.r.t. unlabeled instances. In each iteration, a batch of 50 instances is selected based

on four selection criteria, one of which is the proposed interleaving strategy. No care to avoid

redundancy in the batch composition is suggested.

Hierarchical sampling, proposed by Dasgupta et al. (Dasgupta and Hsu, 2008) in 2008, was

also applied to the detection of rare categories. The authors report significant gains in the number

of queries that are required to discover at least one instance from each class. This latter work

is also in line with our own efforts for devising a method capable to swiftly identify instances

from unknown classes. Preliminary results have been published by us also in 2008 in a workshop

paper (Escudeiro and Jorge, 2008).

Class probability estimates, 2004 The most common use of AL is probably in classification

problems, aiming at maximizing accuracy. In many situations, however – for instance, when in

presence of unequal misclassification costs – computing class probability estimates is more useful

than aiming at high accuracy. Class probability estimates are used to evaluate the expected utility

of a set of alternatives, assuming particular relevance in decision making. A few works on the

application of AL to class probability estimates show empirical evidence on the improvements

assured by active selection of queries. BOOTSTRAP-LV (Saar-Tsechansky and Provost, 2004)

requires less labeled instances to produce accurate class probability estimates when compared

to the traditional uncertainty sampling strategy (Lewis and Gale, 1994). Melville et al. (Melville

et al., 2005) improve over the previous work by using the Jensen-Shannon divergence as a measure

of the utility of new queries.
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2.3.4 Exploring new directions, early 2000’s

Application of AL in stream-based settings and the scalability of QBC are among the new direc-

tions addressed by AL research in the early 2000’s. Theoretical essays, trying to provide a sound

theoretical ground for AL, were also a concern.

Clustering approaches, 2004 Clustering has also been considered to provide an initial structure

to data or to suggest valuable queries.

In 2004, Basu et al. (Basu et al., 2004) used AL based on farthest-first to provide labeled data

in a semi-supervised clustering setting (Basu et al., 2002). They actively acquire a set of must-

link and cannot-link constraints to improve the clustering process. Empirical results over UCI

data (Frank and Asuncion, 2010) and text corpora, show that the proposed AL strategy improves

over random pairwise queries.

In 2004, Nguyen et al. (Nguyen and Smeulders, 2004) incorporate clustering into AL by learn-

ing a classification model from the set of the cluster representatives, and then propagate the clas-

sification decision to the other instances via a local noise model. The proposed model allows to

select the most representative instances as well as to avoid repeatedly labeling instances in the

same cluster.

Adami et al. (Adami et al., 2005) merge clustering and oracle labeling to bootstrap a prede-

fined hierarchy of classes. Although the original clusters provide some structure to the input, this

approach still demands for a high validation effort, especially when these clusters are not aligned

with class labels.

Huang et al. (Huang et al., 2008) explore the Wikipedia5 as a background knowledge base

to create a concept-based representation of a text document enabling the automatic grouping of

documents with similar themes. The semantic relatedness between Wikipedia concepts is used to

find constraints for supervised clustering using AL.

In 2008, Dasgupta et al. (Dasgupta and Hsu, 2008) propose hierarchical sampling, a cluster-

based method that consistently improves label complexity over supervised learning by detecting

and exploiting clusters that are loosely aligned with class labels. Their method starts with a hier-

archical clustering of the unlabeled pool. Then, random samples from each node of a partition of

5http://en.wikipedia.org, accessed on October 2012
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the data, given by a pruning of the tree, are queried. Their labels are used to compute the purity

of each node in the partition. Nodes with low levels of purity are replaced by their child nodes.

This process can be halted whenever required, for instance when a given purity level is achieved

at each node. At each iteration, the sampling strategy favors less pure nodes.

Hu et al. (Hu et al., 2009), motivated by similar concerns, propose an AL schema, based

on graph-theoretic clustering algorithms. Their approach aims to suppress the lack of ability of

common AL approaches to query instances that belong to new classes, that have not yet appeared

in the training set. This motivation is common to our own.

The AL setting in general is considered to be an appropriate setting for learning from imbal-

anced data (Kapoor et al., 2010a).

Xu et al. (Xu et al., 2003) proposed representative sampling in 2003. Representative sampling

is an AL method that applies k-means clustering to the unlabeled instances lying within the SVM

margin and select the cluster centroids for labeling. Their proposal significantly outperforms SVM

AL - selecting the unlabeled instance that is closer to the separating hyperplane (Tong and Koller,

2002) – and random sampling at the initial stages of the learning process. However, after a number

of iterations, in some cases, SVM AL outperforms representative sampling. According to the

authors, this poor performance is probably due to the poor clustering structure of the unlabeled

instances within the SVM margin when the margin is getting exhausted.

Donmez et al. (Donmez et al., 2007) noticed that uncertainty based approaches tend to dis-

agree with density based approaches when selecting queries for AL. Due to their nature, uncer-

tainty based approaches perform well when in presence of a large labeled set and poorly when

in presence of few labeled instances. The opposite behavior is observable in density based ap-

proaches. Donmez et al. (Donmez et al., 2007) propose a method, in 2007, that mixes density and

uncertainty components to take advantage of their best performance at each particular situation.

Their method dynamically updates the selection strategy parameters based on the estimated future

residual error reduction.

Scalable QBC, 2005 Gilad-Bachrach et al. (Gilad-bachrach et al., 2005) introduce Kernel Query

By Committee, (KQBC), a novel QBC algorithm that is able to learn large scale problems by using
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AL. KQBC projects the input feature space into a low dimensional space to reduce the cost of

query selection. The authors reported improved performance over traditional QBC.

Instance deletion, filtering out irrelevant instances, 2005 The former work of Lewis et al. on

uncertainty sampling (Lewis and Gale, 1994) was extended by Becker et al. (Becker and Osborne,

2005) in 2005. In this later work, a two-stage method is proposed. In the first stage the instances

that cannot be reliably selected using uncertainty sampling are filtered out. At the second stage,

uncertainty sampling is applied to the remaining reliable instances to select queries. Empirical

results support better performance of this method when compared to pure uncertainty sampling.

A similar motivation – filtering out irrelevant instances that will most probably generate wasted

queries – is present in Mazzoni et al. (Mazzoni et al., 2006). They propose relevance bias that

combines the query selection criteria in use with the output of a relevance classifier, trained in

parallel, to favor instances that are likely to be both relevant and informative. Queries are ranked by

the product of the output of the active learner, normalized to [0,1], by the probability of relevance,

the output of the relevance classifier. Three query selection criteria have been evaluated – simple

margin (Tong and Koller, 2002), MaxMin margin (Tong and Koller, 2002) and a batch mode

strategy assuring diversity among the selected instances (Brinker, 2003) – and compared to random

query selection. The authors define probabilistic AL, a variant of the base query selection criteria

that sorts unlabeled instances by the query selection criteria and then selects a random sample

among the top 10% instead of selecting the top-ranked query. The rationale for this procedure

is based on the heuristic nature of the query selection criteria in use that does not assure optimal

query selection. Besides, the differences in the value of the selection criteria among the top-ranked

queries might be non-significant. For these reasons, the top-ranked query might not be the optimal

one and a random sample of the most probable candidates might be valuable. Despite the fact that

there is no justification for the threshold that the authors use – 10% of the top-ranked instances –

and that this threshold is independent of the data and, particularly, of the variance of the utility of

those 10% top-ranked instances, improvements in performance are observed when compared to

strict base criteria.

Stream-based active learning, 2005 We must go back a few years to review one of the former

approaches to stream-based AL. In 1997, Helmbold et al. (Helmbold and Panizza, 1997) discussed
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the trade-off between the cost of requesting a query and the cost of errors in a stream-based setting

– referred by label efficient learning. Further approaches to stream-based, or online, AL include

recent research efforts like the work from Bianchi et al. in 2005 and 2006 (Cesa-bianchi et al.,

2005; Cesa-Bianchi et al., 2006) and more recent work from Dasgupta et al. in 2009 (Dasgupta

et al., 2009) and Chu et al. in 2011 (Chu et al., 2011).

The dynamic nature of data streams – increasing data volumes and evolving decision concepts

– poses new challenges to stream-based AL. Between 2007 and 2010, Zhu et al. (Zhu et al., 2007,

2010c) introduce a minimum-variance principle to guide instance labeling from data streams based

on an ensemble of classifiers. A weight updating rule is derived to ensure a proper adjustment to

drifting concepts in the data stream.

Theoretical essays, 2005 In 2005, Dasgupta (Dasgupta, 2005) defined theoretical bounds show-

ing that AL has exponentially smaller label complexity than supervised learning under some par-

ticular and restrictive constraints. Kääriäinen extended this work by relaxing some of those con-

straints (Kääriäinen, 2006). An important conclusion of this later work is that the gains of AL are

much more evident in the initial phase of the learning process, after which these gains degrade and

the speed of learning drops to that of passive learning.

In 2006, Balcan et al. propose Agnostic Active learning (Balcan et al., 2006), A2. A2 achieves

an exponential improvement over the usual label complexity of supervised learning in the presence

of arbitrary forms of noise. This model is further studied by Hanneke (Hanneke, 2007), in 2007,

who sets general bounds on label complexity.

In 2007, Castro et al (Castro and Nowak, 2007) show theoretically that, in a classification task,

AL outperforms passive learning achieving a faster rate of classification error decay irrespective

of the behavior of the posterior probability in the vicinity of the decision boundary and of the

complexity of the Bayes decision boundary.

2.3.5 Modern active learning, late 2000’s to early 2010’s

Relaxing the base assumptions of AL sets the ground for proactive learning, a generalization of

the former. AL can be particularly beneficial to applications depending on unstructured, high-

dimensional data, like text and video. The compromise between exploration and exploitation is
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also being addressed.

Variable labeling costs, 2005 Cullota et al. (Culotta and McCallum, 2005) introduce variable

labeling costs applied to information extraction (IE) (Cowie and Lehnert, 1996). They propose a

new AL paradigm which reduces not only the number of instances to label but also the difficulty in

labeling each one of them. The proposed strategy provides a way to quantify the number of actions

a user must perform to label each training example, distinguishing between boundary annotations

– boundary or segmentation in IE is the task performed to define the limits of an entity in a

sequence of text – and classification annotations – classifying in IE is the task performed to assign

a class to an entity in a pre-segmented text. Boundary annotations are usually more demanding

than classification annotations.

SVM base classifiers, 2006 Most of the AL methods relying on SVM as base classifiers query

for instances based on their distance to the current separating hyperplane. Mitra et al. (Mitra

et al., 2004) extended this common approach by introducing to SVM an adaptive confidence factor

estimated from local information using k-nearest-neighbor principles. Their method, motivated

by the statistical query model of learning (Kearns, 1998), selects a batch of queries according to a

distribution that is determined by the current separating hyperplane and by this adaptive confidence

factor, enabling more robust and efficient learning capabilities.

Cesa-Bianchi et al. (Cesa-Bianchi et al., 2006) introduced, in 2006, a label efficient method

of selective sampling for linear classifiers that requests for the label of a given instance with a

probability that is a function of its distance to the dividing hyperplane. This probability is higher

when the distance to the hyperplane is lower. When this distance is 0, the current model has a

confidence of 0 on the instance label, and the probability of asking a query is 1.

Sculley (Sculley, 2007) proposes logistic margin sampling, a similar heuristic to the previous

work from Cesa-Bianchi et al. (Cesa-Bianchi et al., 2006) but that models the sampling probability

using a logistic regression of the distance to the dividing hyperplane. Both these heuristics are

compared to the so-called fixed margin sampling, proposed by the authors, that simply requests a

label for an instance when its distance to the dividing hyperplane is below a given preset threshold.
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Multi-label classification, 2006 AL is most frequently used in single-label classification tasks.

Uncertainty sampling, for instance, focuses on measuring the confidence of the most probable

class. Expected error reduction strategies are based on an error estimate for one single class.

QBC select the instances where the current committee has the biggest disagreement w.r.t. the top

class. There are some previous approaches of AL to multi-label classification (Brinker, 2006),

frequently applied to image retrieval (Li et al., 2004; Qi et al., 2009). However these approaches

are not adequate for text classification, as reported by Yang et al. (Yang et al., 2009) in 2009,

either for exhibiting poor performance when applied to text corpora or for requiring reading and

labeling the same document several times, which might be reasonable for images but very costly

for text documents. Yang et al. (Yang et al., 2009) propose an AL approach to deal with multi-label

text classification. The AL component selects queries based on the Maximum loss reduction with

Maximal Confidence (MMC) criteria as defined by the authors.

Esuli et al. (Esuli and Sebastiani, 2009) propose several AL strategies for multi-label classifica-

tion tasks, evaluating them on text corpora, each one combining the outputs returned by individual

binary classifiers as a result of classifying a given unlabeled document.

Both of these approaches to multi-label text classification (Yang et al., 2009; Esuli and Sebas-

tiani, 2009) are based on a set of binary classifiers, one for each class to learn.

Exploration versus exploitation, 2006 Kai Yu et al. (Yu et al., 2006) propose transductive

experimental design, an AL approach applied to regression (Hastie et al., 2003). Their work

is focused on experimental design, and denotes concerns related to the exploratory aspects of

AL (Thrun, 1998). Transductive experimental design searches for queries that are simultaneously

hard to predict – addressing exploitation – and representative of the unexplored data – addressing

exploration.

In 2009 Cebron et al. (Cebron and Berthold, 2009), introduce Prototype Based Active Clas-

sification (PBAC), an AL algorithm for classification that evaluates the potential of each instance

based on a combination of its representativeness and the uncertainty of the classifier. Their moti-

vation – the datasets need to be explored first to generate a coarse model and then the model can be

adapted to further fine-tune the classification accuracy – is aligned with our own and arises from

the need to classify large datasets without any a-priori information on the target classes. PBAC
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takes into account the density of the feature space and the uncertainty of the classifier combined

to form one single criterion for the selection of queries. The transition between exploration and

exploitation occurs as the learning process evolves. This transition is achieved at each iteration

by decreasing the influence in the selection criterion of the exploration term whilst exploitation

influence increases.

This concern, an explicit sense of exploration versus exploitation, is also present in the work

of Osugi et al. (Osugi et al., 2005) that apply a Kernel-Farthest-First algorithm for exploration in

AL with SVM. The decision to go for an exploration step is made at each iteration based on the

change that is induced by the newly added labeled instance on the hypothesis space.

Our proposal dynamically shifts between exploration and exploitation modes without requiring

any tuning thus, avoiding overhead costs. This automatic shifting is guided by both the geometric

properties of the working set and the knowledge on the target concept embedded in the current

hypothesis.

Transfer learning, 2008 AL and transfer learning (Caruana, 1997; Dai et al., 2007) are distinct

strategies to obtain labeled instances for learning. AL asks domain experts to label particularly

informative queries while transfer learning intends to leverage the knowledge from a given domain

to learn in a different one. Shi et al. (Shi et al., 2008) work on the application of AL to the transfer

of knowledge across domains. The authors propose a framework to actively transfer knowledge

from one domain in order to help labeling the instances in the target domain. They extend the

standard procedure by including an uncertainty based AL component that queries an oracle when

the out-of-domain example is classified with low confidence.

Videos may come from many different sources or domains. For instance, we may find a video

showing an airplane – let’s say, the semantic concept to learn – that comes from a movie or from a

news channel. Each of these sources has its distinctive class distribution so, transfer of knowledge

across different sources becomes relevant. AL can be used to reduce the labeling effort required to

build a classifier for a new source by reusing a classifier previously trained for the same semantic

concept but under a different source or domain.

Li et al. (Li et al., 2010) proposed an hybrid approach to select queries in a cross-domain

video semantic concept classification task. Their approach selects a batch of queries of fixed
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length. Queries are selected by an ensemble of a discriminative query strategy, SVM AL, and a

generative query strategy that selects the sample that is most unlikely to have been generated by

the source domain distribution. The percentage of queries in the batch that come from each of

these strategies is defined by a parameter of the model. This parameter is initialized at 50% and is

dynamically updated according to the number of positive instances that have been selected by the

strategy in the previous iteration. The strategy that selects more positive instances will be assigned

a bigger share in the batch of queries.

Proactive learning, 2008 Recent work on AL is focused on relaxing some of the base assump-

tions underlying this learning paradigm, such as, the existence of a single omniscient oracle who is

assumed to be infallible (never wrong), indefatigable (always answers), individual (only one ora-

cle) and insensitive to costs (always free or always charges the same). Proactive learning (Donmez

and Carbonell, 2008) is a generalization of AL designed to relax these unrealistic assumptions.

Recent approaches and applications of active learning, 2008 Robson Motta et al. (Motta

et al., 2009) propose a novel approach to support AL in classification tasks. They explore the use

of complex network properties (Newman, 2003; Luciano et al., 2007) – mainly vertex centrality

measures such as closeness and betweenness – to improve the performance of AL algorithms. The

authors discussed and evaluated how these measures can be explored to guide query selection.

Xiaofei He (He, 2010) showed improvements in optimal experimental design when applying

AL. He proposed a novel AL algorithm based on the intrinsic geometry of the input space, grasped

from the graph structure inferred from the data, to apply in image retrieval. Empirical results show

improvements over SVM AL and Laplacian regularized least squares (Belkin et al., 2006).

Despite the large volume of research on AL its methods are being slowly adopted in practical

applications (Attenberg and Provost, 2011). Text classification and movie filtering are among the

fields that may directly benefit from AL to a great extent. In general, any field characterized by

unstructured abundant data will possess the features required to benefit from AL: high labeling

cost and data availability. Meta-learning applied to predict the performance of learning algorithms

is a field that may also benefit from AL. Labeling instances in this field may be expensive since it
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is necessary to evaluate all the candidate algorithms and record the appropriate descriptors: meta-

features describing the problem and information on the performance of each learning algorithm

being evaluated.

Prudêncio et al. (Prudêncio and Ludermir, 2008) applied AL techniques to the meta-learn-

ing problem. Their proposal is developed in two stages. In a first stage, an outlier detection

technique, based on distance, is applied to delete eventual outlier instances. Then, uncertainty

sampling (Lewis and Gale, 1994) is applied to select the next meta-instance to label.

The interest on AL for realistic robotics applications arises naturally given its intensive need

for labeling unstructured data with severely imbalanced class priors. Dima et al. (Dima and

Hebert, 2005) concluded that when AL techniques are applied to obstacle detection in outdoor

robotic vehicles they significantly reduce the required labeling effort. Further successful applica-

tion of AL to classification tasks commonly arising in autonomous navigation in outdoor, off-road

environments, such as obstacle detection, road following and terrain classification are also de-

scribed (Dima et al., 2004).

Research on AL applied to multimedia – video, image and music – annotation and retrieval is

being very active in the last decade (Tong and Chang, 2001; Ferecatu et al., 2004; Li et al., 2004;

Goh et al., 2004; Dagli, 2005; Mandel et al., 2006; Wang et al., 2009; Kapoor et al., 2010b; Chen

et al., 2010). A comprehensive survey is available in Wang et al. (2011) (Wang and Hua, 2011)

Recent improvements on QBC, 2010 Adaptive informative sampling, proposed by Lu et al. (Lu

et al., 2010) in 2010, is a QBC approach that dynamically fine tunes the composition of an hetero-

geneous ensemble, composed by multiple instances of different classifier types. In the reported

work, they explore neural networks and decision trees. The purpose is to reach the most suitable

committee for a given dataset. Their motivation is that certain types of classifiers may prove more

suited to a given dataset than others.

A core issue in QBC is assuring that the committee is composed by consistent hypothe-

ses that are very distinct from each other. Melville et al. propose DECORATE (Melville and

Mooney, 2003) – a method that builds such committees using artificial data – and, later on,

ACTIVE-DECORATE (Melville and Mooney, 2004) – which uses DECORATE committees to

select queries – focusing their work on this core issue.
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Liu et al. (Liu and Agrawal, 2011) applied AL to the frequent itemset mining scenario (Agrawal

and Srikant, 1994) achieving more than 95% accuracy in estimating the support of frequent item-

sets with less than 10% of all the instances being labeled.

Active learning hierarchical clustering, 2012 Hierarchical Confidence-Based Active Cluster-

ing, (HCAC), is a new semi-supervised clustering method based on agglomerative hierarchical

clustering (Nogueira et al., 2012). HCAC uses cluster-level constraints, provided by a human

oracle, along the iterations of an agglomerative hierarchical clustering algorithm.

This AL approach is based on a new concept of merged confidence in agglomerative clustering.

When there is low confidence in a cluster merge the oracle is queried and provides a cluster-level

constraint indicating whether or not to merge the clusters being queried.

2.4 General assumptions in active learning classification

The majority of AL approaches for classification assume the availability of an initial labeled set

covering all the classes of interest. However, this assumption does not necessarily hold. In fact,

collecting and labeling instances is a critical stage in classification. Being one of the first stages in a

learning process, it might limit the performance of the following. Moreover, it is also a demanding

stage requiring domain specialists to retrieve and label exemplary instances for all target classes (Li

and Sethi, 2006). The effort in finding these exemplary instances is proportional not only to the

number of target classes (Adami et al., 2005) but also to their distribution in the working set.

On a highly imbalanced class distribution, it is particularly demanding to identify examples from

minority classes. These, however, may be important in terms of representativeness. Imbalanced

class distribution is a particular concern in machine learning in general (Kubat and Matwin, 1997;

Japkowicz, 2000; Novak et al., 2006; Ertekin et al., 2007; Lu et al., 2008).

This assumption might excel the cold start problem (Attenberg and Provost, 2011) but it is

misleading since it neglects the labeling effort that is required to setup the pre-labeled set covering

all classes which might be high. The cold start problem is a key difficulty in building effective

classifiers quickly and cheaply via AL, particularly when in presence of highly skewed class dis-

tributions. Data selection directly depends on the perception of the input space as provided by
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the current classifier, which might be deficient at the early stage of the learning process when no

pre-labeled set is available. This may generate costly wasted queries.

Traditional AL assumes that instances are freely available and a cost is incurred when asking

for labels. In 2007, Lomasky et al. discussed active class selection (Lomasky et al., 2007), a

setting where the learner knows the labels and retrieves exemplary instances representative of

particular labels.

In AL it is common to assume that the oracle is able of answering any query, that is, label-

ing any unlabeled instance w.r.t. the target concept. This assumption is questioned, in 2008, by

Harpale (Harpale and Yang, 2008) that proposes a personalized AL approach applied to collab-

orative filtering. The baseline query selection criterion, Bayesian selection (Jin and Si, 2004), is

multiplied by a personalization term estimated as the probability of getting a rating for a given ob-

ject from a given user. Collaborative filtering (Su and Khoshgoftaar, 2009) is an important setting

to recommend items whose relevance cannot be evaluated from its content/features. It is a popular

technique for retrieving unstructured objects, such as video, music and text, that are relevant to

a particular user, based on its relevance to other users exhibiting the same interests’ pattern. To

perform collaborative filtering it is required to have a global model of the interest or information

need, which is instantiated for each interest group, and a user model, which is instantiated for each

user. For new users, this user model is very weak and the learning system needs the user feedback

to fill it in. AL for collaborative filtering (Boutilier et al., 2003; Jin and Si, 2004) is an important

technique for the instantiation of these user models avoiding annoying the user with too many

queries.



Chapter 3

Active Learning Approaches

Many distinct heuristics have been proposed for selecting queries in active learning (AL). In this

chapter, we review the most relevant approaches to our work, organized into five groups according

to the underlying selection strategy – uncertainty based criteria, version space reduction, expected

utility gain, density based and hybrid approaches. In the last section of the chapter we review

initialization and stopping criteria.

3.1 Uncertainty reduction

Uncertainty sampling (Lewis and Gale, 1994) is a query selection criteria that aims to reduce the

classifier uncertainty by querying the unlabeled instances on which the current classifier is less

confident. Many AL approaches rely on this procedure: query those instances whose labels are

not perceptible with enough confidence. A key point, not always addressed by these approaches

is the meaning of “enough” in this sense. We will discuss this joint in Section 3.6.2. Uncertainty

sampling requires a base classifier that outputs posterior class membership probabilities. In (Lewis

and Gale, 1994) a binary probabilistic text classifier is used.

Lewis et al. (Lewis and Gale, 1994) claim that b in Algorithm 3.1 should ideally be set to 1,

although other values might be appropriate when scoring and selecting, or retraining, is expen-

sive. This algorithm can be applied with any base classifier that predicts a class and outputs a

measurement of its certainty – assuming that the certainty measure is a probability or an estimate

of a probability (without loss of generality).

35
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Algorithm 3.1 Uncertainty sampling (adapted from (Lewis and Gale, 1994))

1: Create an initial classifier h
2: while not stopping criteria do
3: Run h to classify unlabeled instances
4: Find the b instances for which the classifier h is least certain of class membership
5: Ask the oracle for the labels of the b instances in the subsample
6: Train a new classifier h on all labeled instances
7: end while
8: Return hi

The least reliable prediction of a binary classifier occurs when its confidence on any one of

the classes is 0.5 – assuming that the confidence is measured in the [0,1] range. The subsample

selected by uncertainty sampling in each iteration is composed by the b/2 instances with uncer-

tainty w.r.t. one of the classes closer to 0.5 and above it plus the b/2 instances with uncertainty

w.r.t. the same class closer to 0.5 and below it. This heuristic is based on the assumption that,

when in batch mode (b > 1), training on pairs of instances lying on both sides of the decision

boundary is useful. When b = 1, as recommended by the authors, this subsample is restricted to

the instance with uncertainty closer to 0.5. The results of this work from Lewis et al. demonstrate

that uncertainty sampling can significantly reduce the labeling effort in text classification tasks. In

some cases, random sampling requires 500 times more labels than uncertainty sampling.

Uncertainty sampling operates in batch mode when b > 1. In batch mode it is crucial to assure

an heterogeneous batch composition. Although not explicitly mentioned, this concern is addressed

by uncertainty sampling when selecting queries from both sides of the classification boundary.

AL query strategies are commonly based exclusively on the current hypothesis and its predic-

tions. Former predictions are neglected although they might add some evidence on the utility of

unlabeled instances. Davy et al. (Davy and Luz, 2007) describe an approach based on uncertainty

sampling that explores historical predictions to improve the query selection mechanism. They

propose two novel criteria, History Uncertainty Sampling (HUS) and History Kullback-Leibler

divergence (HKLD) that evaluate the utility of unlabeled instances from the variance of the former

predictions. HUS extends uncertainty sampling by redefining the uncertainty of a given instance

x j ∈Ui as the sum of the uncertainty computed at the last m iterations (Equation 3.1). Unlabeled

instances are ranked according to their HUS value and the unlabeled instance with the lowest HUS

is selected to query. In Equation 3.1, Φ̂i(x j) is the maximum a posteriori membership probability
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assigned by the hypothesis learned at iteration i to the unlabeled instance x j.

qi = argmin
x j∈Ui

m

∑
l=1

(∣∣Φ̂i−l(x j)−0.5
∣∣) (3.1)

HKLD is an alternative to HUS that evaluates the m former hypotheses as a committee and

measures uncertainty as the disagreement among committee members using Kullback-Leibler di-

vergence to the mean (McCallum and Nigam, 1998). Although the authors do not provide infor-

mation on statistical significance neither on the experimental procedure, the results presented on

binary classification tasks over text indicate that HKLD outperforms uncertainty sampling w.r.t.

accuracy. The impact of the depth of the history used to compute uncertainty, m, is mentioned by

the authors as future work.

Another common standing in uncertainty based AL strategies is to consider only the informa-

tion of the most probable class for each unlabeled instance, neglecting any other information about

the label distribution. Margin sampling (Scheffer et al., 2001) is an approach that selects queries

based on the difference between the posterior probabilities of the two most probable classes, c1

and c2, given the instance x j (Equation 3.2).

qi = argmin
x j∈Ui

(Phi (c1|x)−Phi (c2|x)) (3.2)

Instances with a large margin are not as informative as those with a lower margin, in which

case the classifier has a greater difficulty in distinguishing between the two most likely classes.

Many more AL approaches select queries based on uncertainty (Freund et al., 1997; Scheffer

et al., 2001; Mitra et al., 2004; Hwa, 2004; Li and Sethi, 2006; Shi et al., 2008; Settles and Craven,

2008; Prudêncio and Ludermir, 2008).

3.2 Version space reduction

This paradigm is focused on querying the instances that will further reduce version space (Mitchell,

1997). The optimum split, achieving the greatest reduction, is obtained when halving the version

space (Tong and Koller, 2002).

Query By Committee (Seung et al., 1992), for example, uses a set of classifiers – the commit-

tee – to identify the instance with the highest disagreement. Each unlabeled instance is evaluated



38 Active Learning Approaches

by a committee with an even number of members, 2m, each one assigning a label. Queries are

selected by the principle of maximal disagreement among committee members. In a binary clas-

sifier, disagreement maximization is achieved when half of the committee classifies the input as

positive while the other half classifies it as negative. In such circumstances, each query bisects the

version space when m→ ∞, maximizing information gain (Shannon, 1948). Monte Carlo simula-

tions using a two-member committee confirm the improved performance of Query By Committee

(QBC) over random sampling as prescribed by the theoretical study. The information gain of a

QBC query tends asymptotically to a finite non-zero value leading to an exponentially decreasing

generalization error as the number of queries increases. When using random sampling this infor-

mation gain tends to 0 and generalization error decreases as an inverse power law in the number of

queries thus, performing poorer than QBC. The authors refer that, in a filtering approach, where

queries are selected from the available dataset, the learner may have to evaluate many instances

before finding one where the committee disagrees. This drawback does not stand in the query-

construction setting where one can generate specific artificial instances to promote disagreement

in the committee. QBC is normally used in stream-based learning where a query is made for each

incoming instance generating committee disagreement. The results from this seminal paper on

QBC (Seung et al., 1992) are generalized and further discussed by Freund et al. (Freund et al.,

1997).

Lu et al. (Lu et al., 2010) sustain that specific datasets demand for specific ensembles of base

classifiers. The “one-size-fits-all” approach, underlying the original QBC approach, can be im-

proved by dynamically adapting the ensemble of base classifiers to the dataset at hand. The au-

thors propose adaptive informative sampling, extending the base QBC technique to accommodate

their claim. Adaptive informative sampling is initialized with a balanced ensemble composed by

an equal number of classifiers from two distinct types – their work relies on neural networks and

decision trees. Then, at each iteration, the percentage of committee members from each type

is updated based on the classifiers’ performance in the previous iteration in a way to favor best

performers.

The performance of a given classifier in the committee is evaluated by two distinct fitness

functions depending on the number of classes to learn. In binary classification tasks, committee

members, hi, are evaluated by the fitness function, f , in Equation 3.3, where t pk is the number of
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true positives identified for class ck and nk is the total frequency of class k in the training set.

f (hi) =
t p0

n0
× t p1

n1
(3.3)

For multi-class classification tasks the fitness function is defined as the number of misclassi-

fied instances in the training set. Experimental results show that adaptive informative sampling

consistently outperforms homogeneous ensembles.

3.3 Expected utility gain

The AL approaches that we have considered under this category select queries based on an estimate

of the utility of unlabeled instances. The utility measure depends on the concrete task but expected

error and error variance are usual.

Cohn et al. (Cohn et al., 1996) describe an optimal solution for pool-based AL that selects

the instance that, once labeled and added to the training set, produces the minimum expected

error. The expected error of the learner is decomposed into three terms: noise in the class dis-

tribution (independent from the learner), the learner’s bias and the learner’s variance (reflecting

the sensitivity of the learner to the training set). Direct estimation of both bias and variance, is

not possible for inductive learning since it requires knowing the actual class distribution which

is not available. However, variance estimation is computed without reference to the underlying

probability distribution. Moreover, when in presence of low variance, accurate classification is

achievable regardless of bias (Friedman, 1997). Cohn et al. assume approximately unbiased learn-

ers, i.e., learners whose average prediction for a given instance is equal to its true class. Under

such circumstances error is reduced to the variance term thus, minimizing the learner’s variance is

equivalent to minimizing error. This approach, however, requires high computational effort.

Schohn et al. (Schohn and Cohn, 2000) worked on AL, with SVM base classifiers, defining a

query selection heuristic that estimates the expected change in error when adding a given instance

to the training set. Their results are, in some cases, better than if all available data is used to train.

One optimal approach, in a binary classification task, estimates the expected error, E j, after adding

a new instance, x j, to the training set as the mean of the expected error when the new query being



40 Active Learning Approaches

added belongs either to class 1, E(x j,1), or to class −1, E(x j,−1) (Equation 3.4).

E j = P(y j = 1|x j) ·E(x j,1)+P(y j =−1|x j) ·E(x j,−1) (3.4)

E(x j,ck) might be computed by Monte Carlo simulation (Cohn et al., 1996) or, as suggested by

the authors, using a simpler non-probabilistic approach that defines E(x j,ck) as the volume spanned

by the SVM margin and then computes E j = max
(

E(x j,1),E(x j,−1)

)
. In such case, E j sets a lower

bound to the decrease in uncertainty that is achievable when adding x j to the training set.

However, both these greedy approaches are unfeasible in practice since computing E(x j,ck)

requires building a large number of classifiers for each iteration – twice the number of unlabeled

instances for a binary classification task. The same drawback – high computational cost – is

experienced by Roy et al. (Roy and McCallum, 2001) whose approach requires retraining the

classifier several times at each iteration, one for each class to learn.

To overcome this practical drawback, the authors claim that queries can be selected without

the need to estimate the expected change in error, thus avoiding extensive retraining. Selecting

the next query such that the expected generalization error is minimized can be accomplished by

narrowing the existing margin as much as possible, that is, by querying the unlabeled instance

that is closer to the dividing hyperplane. The computational cost of this heuristic is incomparably

lower than the one required by the optimal algorithms described above. The results reported by

the authors are also favorable to their proposal. High accuracy is achieved very quickly, in some

cases requiring four times fewer labeled instances than competing methods.

Chapelle (Chapelle, 2005) proposes an approach that directly computes an estimate of the ex-

pected generalization error, performing the optimal AL strategy described above (Equation 3.4) in

a feasible way. This approach relies on a simple classifier, the Parzen window classifier (Devroye

et al., 1996), that gives direct estimates of the posterior probabilities avoiding a costly retraining

process at each iteration.

Lindenbaum et al. (Lindenbaum et al., 2004) apply AL to instance based learning exploring

nearest-neighbor classifiers1. They propose two accuracy based utility functions that are maxi-

1The nearest-neighbor classifier stores all previously labeled instances that are then used to classify unlabeled in-
stances according to the label of its nearest labeled neighbor. Variations of this scheme include k-nearest-neighbor
classifiers (Duda and Hart, 1973) that assign classes to unlabeled instances by majority vote of the k-nearest labeled
neighbors (Cover and Hart, 1967).
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mized after labeling and adding the new query to the training set: an absolute-accuracy utility

function, that estimates the absolute expected accuracy of the future hypothesis regardless of the

current one and a gain-based utility function that estimates the accuracy gain of the future hypoth-

esis relative to the current one.

Using random field models (Wong and Hajek, 1985), Wong and Hajek estimate the probability

of the possible labels of an unlabeled instance, x j, and then compute its expected utility from those.

Berardi et al. (Berardi et al., 2012) propose inspection gain, an approach to text classification

that ranks automatically labeled documents by the expected improvement in the classification

effectiveness that is achievable by retraining after reviewing the automatically labeled documents.

The ranking function used to sort automatically labeled documents acts as a query selection criteria

based on utility.

3.4 Density based

Under this category we have considered AL approaches that are based either on the distance be-

tween instances or on the density of the data in input space or on clustering. Distance based ap-

proaches are common in AL. The frequent use of SVM as the base classifier may have contributed

to this since uncertainty in SVM classifiers is related to distance to the dividing hyperplane. The

simplest distance based approach, farthest-first (Hochbaum and Shmoys, 1985), selects the next

query as the unlabeled instance that is farther apart from all labeled instances. This approach,

favoring exploration over exploitation, relies exclusively on distance measures in the input space

that are independent from the base learner.

SVM AL (Tong and Koller, 2002) selects the instance lying within the SVM margin closest

to the dividing hyperplane. This approach assumes a clear focus on exploitation. From the point

of view of the exploration-exploitation trade-off these two opposing strategies, farthest-first and

SVM AL, both based on distance, take extreme positions.

Representative sampling (Xu et al., 2003), also a SVM based approach, goes a little further

beyond SVM AL and tries to capture the structure underlying the unlabeled instances within the

SVM margin. Representative sampling selects a batch of m queries in each iteration following
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Algorithm 3.2 until some stopping criteria is satisfied. This batch is composed by the medoids2 of

the clusters formed by the unlabeled instances lying inside the SVM margin.

Algorithm 3.2 Representative sampling (adapted from (Xu et al., 2003))

1: while not stopping criteria do
2: Train a linear SVM based on the labeled instances
3: Cluster the unlabeled instances lying in the margin of the newly trained SVM into m groups

using k-means clustering and inner product as a similarity measure
4: Identify the m medoids of the m clusters
5: Ask the oracle for the labels of these m instances
6: end while
7: Return the current SVM classifier

The clustering step (step 3 in Algorithm 3.2) is expected to preserve the density distribution by

allowing to query the most important uncertain instances. Batch diversity is achieved by selecting

the medoid of each cluster as the batch members.

Wang et al. (Wang et al., 2009) select a preliminary batch of instances that lie in the SVM

margin and then enforce diversity by selecting those instances from this preliminary batch that

explicitly maximize the distance between each other in the original input feature space. To assure

diversity, Chen et al. (Chen et al., 2010) use distance diversity and set density in the SVM feature

space to evaluate the heterogeneity of the selected batch.

Clustering has also been explored to provide an initial structure to data or to suggest valuable

queries (McCallum and Nigam, 1998; Nguyen and Smeulders, 2004; Hu et al., 2009; Zhu et al.,

2010a).

Adami et al. (Adami et al., 2005) merge clustering and oracle labeling to bootstrap a prede-

fined hierarchy of classes. Although the original clusters provide some structure to the input, this

approach still demands for a high validation effort, especially when these clusters are not aligned

with class labels.

This concern on misalignment is also present in (Dasgupta and Hsu, 2008). Dasgupta et

al. propose a cluster-based method that consistently improves label complexity – the number

of queries that is sufficient to learn a concept – over supervised learning. Their method detects and

exploits clusters that are loosely aligned with class labels.

2A medoid is a representative object of a given set. It is the instance whose average dissimilarity to all the instances
in the set is minimal. Medoids are similar in concept to centroids, but they are always real instances of the dataset. The
medoid is the dataset instance that is closest to the centroid.
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Jiang et al. (Jiang and Ip, 2007) propose a novel dynamic distance-based approach to AL

with SVM, named dynamic distance-based active learning. The authors claim that their approach

outperforms the standard SVM AL approach (Tong and Koller, 2002). The dynamic distance-

based strategy is implemented in two steps. In the first step, the nearest instance to the current

decision boundary is queried – the standard SVM AL approach. Then, its neighbors are sorted

by increasing distance to the current decision boundary. The second step involves the oracle that

must label the instances in this ranked list, in sequence, from top to bottom – the closest instances

to the decision boundary are queried first – until reaching an instance whose label is opposite to

the previous. The last positive instance is added to the training set.

3.5 Hybrid approaches

Hybrid approaches combine several distinct strategies in an attempt to take advantage of the ben-

efits from each one. Pure strategies tend to favor either exploration or exploitation competences.

While exploitation concerns seem to have been dominating AL research, exploration seems to

have been gaining relevance. The issue is that exploration and exploitation are correlated. Acting

on one has influence on the other, usually requiring a compromise solution. Focusing on instances

near the decision boundary, favoring exploitation, prevents exploring regions in the feature space

that might contain instances being misclassified by the current hypothesis (Baram et al., 2004). On

the other hand, focusing on exploration, i.e., selecting queries from regions in the feature space

away from the decision boundary, reduces the chances to sharpen current decision boundaries.

Several hybrid approaches, like Prototype Based Active Classification (PBAC) (Cebron and

Berthold, 2009), try to combine exploration and exploitation capabilities in a unique strategy in

search for a good compromise solution.

PBAC, motivated by the need to classify large datasets without any a-priori information, se-

lects queries based on the uncertainty distribution, a novel criterion proposed by the authors.

Uncertainty distribution estimates the utility of an instance from an aggregation of its representa-

tiveness potential, which is evaluated from density estimates on the unlabeled data, and classifier

uncertainty, based on labeled data. PBAC (Algorithm 3.3) starts by exploring a dataset to gener-

ate a coarse model; then, this preliminary model is exploited to tune classification accuracy. The
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transition from exploration to exploitation occurs as the learning process evolves by decreasing at

each iteration the influence of the exploration term while increasing the influence of the exploita-

tion term.

Algorithm 3.3 Prototype Based Active Classification (adapted from (Cebron and Berthold, 2009))
1: Set threshold T
2: GlobalPotential = 0
3: for all x j ∈U do
4: Compute the potential P(x j)
5: GlobalPotential = GlobalPotential +P(x j)
6: end for
7: while GlobalPotential > T do
8: for all x j ∈U do
9: Compute the classifier uncertainty C(x j)

10: Compute the uncertainty distribution D(x j) according to Equation 3.5
11: end for
12: Select qi the instance x j with the highest potential
13: Obtain a class label yi for qi

14: Create a new prototype with values qi and class label yi

15: Classify the datasets with the current set of prototypes
16: Reduce the potentials
17: end while

The uncertainty distribution, D, of an unlabeled instance, x j, combines its potential, P(x j),

computed on the unlabeled data, and the classification uncertainty, C(x j), computed on the labeled

data (Equation 3.5). In Equation 3.5, ε ∈ [0,1] controls the influence of the exploitation term.

D(x j) = (1− ε)P(x j)+ εC(x j) (3.5)

The potential of x j, P(x j), is computed from the distance between x j and its closest neighbors.

Instances that have more neighbors in their close vicinity have a higher potential. Having the

potentials computed, the instance with higher potential, x∗j , is selected and the potentials of x∗j and

their close neighbors are reduced to avoid having these instances selected in the next iteration. This

potentials’ reduction step also reduces the overall influence of exploration as the learning process

iterates. The reduction of potentials is also used to define a stopping criterion. The learning

process stops when the total sum of all potentials drops under a predefined threshold, T .

The classifier uncertainty for a given instance x j, P(x j), is computed as the entropy of its

membership probabilities for all classes. These class probabilities are computed from a weighted
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k-nearest-neighbor classifier based only on the labeled instances, called prototypes. The class

label for a given unlabeled instance, x j, is assumed to be the class label of the prototype with the

largest prototype weight, i.e., the closest prototype to x j.

An explicit concern of exploration versus exploitation, is also discussed by Osugi et al. (Osugi

et al., 2005). They propose an AL strategy that decides at each iteration whether to explore or

exploit. This decision is based on a binary random variable, a “coin flip” as the authors put it,

assigning a probability p to explore (and 1− p to exploit).

If the decision is to explore, the Kernel Farthest First (Baram et al., 2004) algorithm is applied

to select the next query – select the unlabeled instance that is further away from all labeled in-

stances in the feature space induced by the kernel function used by the classifier. Otherwise the

next query is selected with Simple (Tong and Koller, 2002) – select the unlabeled instance that is

closest to the current decision boundary. This new query is labeled and added to the training set.

To determine how successful an exploration step was, the authors compute d(hi−1,hi) ∈ [−1,+1],

the change induced from the previous hypothesis, hi−1, to the current, hi. If d(hi−1,hi) is positive,

implying significant change from hi−1 to hi, the previous exploration step is assumed to be suc-

cessful and the probability p is kept high encouraging further exploration. If d(hi−1,hi) is negative,

p is reduced.

The exploration probability p is updated from iteration i−1 to iteration i using Equation 3.6.

pi = max(min(pλed(hi−1,hi),1− ε),ε) (3.6)

where ε is a parameter that bounds the value of p (so there is always a chance of exploring and

exploiting) and λ is the learning rate for updating p. The function d(hi−1,hi), used to measure the

change induced by the query just added to the training set, is a linear transformation (Equation 3.7)

of the cosine, s(h,h′), between the vectors of the real-valued labels, h and h′, predicted by both

hypothesis hi and hi−1 for the working set (including the predictions for labeled and unlabeled

instances).

d(hi−1,hi) = 3−4s(h,h′) (3.7)
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3.6 Initialization and stopping criteria

AL classification is an iterative approach that evolves a base classifier until a certain performance

level which is assumed to be adequate given the task at hand. During the learning process the

same strategy is executed in every step of a loop. This loop is preceded by an initialization step –

providing an initial labeled set required to learn the first instance of the classifier – and halted when

a given stopping criterion is met. A simple way to perform the initialization step is by random

sampling while a simple stopping rule is the exhaustion of the unlabeled set. Some research has

been done to improve these naive approaches. We are particularly concerned with the stopping

criteria enabling us to halt the learning process when in presence of a good “enough” classifier,

thus avoiding to ask for labels that add little or no value.

3.6.1 Initialization

Initializing the labeled set in some proper way might reduce the number of wasted queries – queries

that produce useless labels – and improve the performance of the classifiers learned at the initial

stage of the learning process. Selecting a proper labeled set aims at early grasping the distribution

of the data to classify, thus creating conditions to select valuable queries in the following iterations.

This, however, is a task to be performed in the absence of any prior evidence on the concept to

learn. Several approaches, based on chance alone or exploiting somehow the available working

set, are available in the literature.

Some straight approaches to the initialization of the labeled set are common, such as using a

set of instances previously labeled by some mean (Sun and Hardoon, 2010) or random sampling.

Initializing the labeled set by randomly selecting training instances from every class to learn is

probably the most common approach (Tong and Koller, 2002; Zhang and Chen, 2002; Warmuth

et al., 2003; Xu et al., 2004; Schütze et al., 2006).

However, random sampling might be very demanding mainly when in presence of a severely

imbalanced dataset. This is one of the main concerns in (Dima and Hebert, 2005) who define an

initialization algorithm, based on the density of the input space, that discards redundant instances

– those lying in regions of the feature space that are densely populated – while keeping instances
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from sparse regions available for querying. Their assumption is that instances from densely pop-

ulated regions are representatives of the same class with high probability and repeated queries on

these regions will miss under-represented classes while increasing the number of wasted queries.

This assumption leads to a behavior which ranks exploration higher than exploitation.

An opposite reasoning – assuming that rare or borderline cases that do not occur very often

are not interesting for classification and, therefore, discarding them from the initial labeled set

– motivates the work described in (Cebron et al., 2007), where the seed queries are selected on

the basis of the so called potential of each unlabeled instance. This potential, as defined by the

authors, is a measure of the density of the input space in a given predefined neighborhood of the

instance being evaluated. Any instance that lies within this neighborhood has a large influence

on the potential of the instance at hand. Seed queries are the instances with the highest potential

score, that is, those that lie in densely populated regions. This reasoning boosts exploitation over

exploration.

Clustering is also a common approach to the initialization phase that tries to explore the in-

trinsic structure of the working set. K-means clustering is used to select initial training instances

in (Kang et al., 2004). The authors propose a method that divides the unlabeled instances into

clusters and then selects the clusters’s medoids which are assumed to be the most representative

instances from each cluster. The centroid itself may be difficult to label because it will be most

likely a synthetic instance mainly when working with high dimensional input spaces as is the

case with text corpora. Nevertheless, the cluster synthetic centroids themselves may also be used

as training instances at no extra labeling cost since they will be assigned the same label that the

oracle has assigned to the representative instance. In such a case, the centroids are named model

examples. Experiments performed on various text datasets have shown that the active learner start-

ing from the initial training set selected by this method reaches higher accuracy faster than when

initialized by random sampling. The inclusion of the model examples in the training set further

improves learning performance.

Nguyen et at. (Nguyen and Smeulders, 2004) use a simplified version of the K-medoid algo-

rithm (Kaufman and Rousseeuw, 1990) that finds K representatives of the dataset to initialize the

labeled set. These representative instances are those minimizing the sum of the distances from

the data samples to the nearest representative. To overcome the high computational cost of the
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K-medoid algorithm, the authors start by splitting the working set in smaller subsets and then

applying the K-medoid algorithm to cluster every subset into a limited number of clusters.

Han et al. (Han and Zhao, 2010) propose a method that firstly uses dynamic clustering to select

representative samples and labels them. These labeled samples are put in the training set. Then, a

linear classifier is trained to maximize the area under the Receiver Operating Characteristic (ROC)

curve (Bradley, 1997) following the AUC maximization algorithm proposed by the authors. This

procedure is repeated until AUC converges.

The concept of Representative Objects (RO), discussed by Tao Li et al. (Li and Anand, 2007)

in the field of relational data mining is another clustering approach that might be used to initialize

AL.

A linear discriminant approach (Liere and Tadepalli, 1997), which does not require any actual

data, computes the initial positions of the dividing hyperplanes so that they approximately bisect

the space of all possible data points. These hyperplanes can be computed only from the number

of attributes describing the data. The authors use QBC having individual committee members

randomly initialized to slightly different hyperplanes so that they represent different initial hy-

potheses.

Yuan et al. (Yuan et al., 2011) propose three initialization methods – center-based, border-

based and hybrid selection – based on fuzzy clustering (Bezdek, 1981). The initial training set is

a batch of m instances to be selected and queried. The authors start by performing fuzzy c-means

clustering on the unlabeled set, obtaining a class membership matrix containing for each unlabeled

instance a measure of its membership to each induced cluster – the number of induced clusters is

assumed to be r. There is no explanation on how to tune the required parameters, m and r. This

matrix is then used to provide the initial training instances, assuming that induced clusters are

aligned with the classes to learn, according to the following procedure:

• Center-based selection selects the instances with a high degree of membership. The same

number of instances is to be selected from each cluster, so, the top m
r instances w.r.t. cluster

membership degree are selected from each cluster. This procedure assumes a uniform dis-

tribution of the data which contradicts the aim of the authors to find a initial training sample

that is representative of the (unknown) underlying data.
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• Border-based selection selects the m instances standing closer to the borders of the clus-

ters, i.e., those instances having the most similar top-two class membership degrees. This

strategy always selects the instances with the minimum difference between their top-two

class membership degrees. This selection mechanism does not assure that all clusters will

be represented in the initial training set.

• Hybrid selection assumes that the samples from both the methods above are representative,

providing complementary evidence on the target concept, and generates the initial training

set by merging the samples obtained above. The top m
2 instances are selected from each of

the above samples.

The effective selection of instances to initialize AL based on centrality measures from complex

networks, such as closeness and betweenness, is being investigated by Motta et al. (Motta et al.,

2009, 2012). Such measures enable identifying instances that characterize prototypical or critical

regions in the input space.

3.6.2 Stopping criteria

The main goal in AL is to select an accurate hypothesis from the version space at low cost, i.e.,

while requiring as few queries as possible. Asking the oracle to label more instances than those that

are necessary has a negative impact on the performance (and cost) of the learning process. From

this point of view, knowing when to stop might be as relevant as having a good query selection

strategy.

The AL process should be stopped when the utility of new queries degrades below a given

threshold and model quality stops improving. Specifying this utility, and the critical threshold, are

task-dependent. Some simple stopping criteria, such as, exhausting the unlabeled set or predefin-

ing a desired size for the training set according to the available budget, are obvious but do not take

into account efficiency concerns neither assure that the resulting learner is accurate enough for the

task at hand.

Monitoring the learning process Setting stopping criteria for AL requires monitoring the learn-

ing process. AL monitoring is commonly based on the percentage of the candidate training in-

stances that must be queried to achieve the same performance as when using all the available
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training instances or as the difference between the performance delivered by AL, given a number

of queries, and that of supervised learning trained on a training set with equal size. These proce-

dures require a comparison with the supervised setting which implies the need for a fully labeled

training set. Stopping criteria for AL should not rely on a pre-labeled test set.

Convergence detection has been studied for the case of random sampling by estimating the

slope of the learning curve (Provost et al., 1999). Special care might be required in the AL setting

since the learning curve might be affected by the sampling bias.

A few approaches to monitoring the learning process, that depart from the graphical nature of

the learning curve (Olsson, 2009), have been proposed to resume the performance of the learning

process. Data efficiency (Abe and Mamitsuka, 1998) is defined as the ratio between the number

of iterations required by a base learner to reach top performance in a supervised setting and the

number of iterations required for the same base learner in an AL setting to reach the same per-

formance. Data utilization ratio (Melville and Mooney, 2004) is defined as the ratio between the

number of instances an active learner requires to reach a target error rate divided by the number of

instances that are required by the base learner to reach the same error rate in a supervised setting.

Both these measures reflect how good an active learner is at making use of the data.

Baram et al. (Baram et al., 2004) propose a performance measure aiming to quantify the de-

ficiency of an AL algorithm, A, when compared to a supervised learning algorithm f , throughout

the learning process. Deficiency is defined by Equation 3.83, where acct(l) is the average accuracy

achieved when using the learning function l trained with t labeled instances. f stands for a base

learning function and a stands for the active learner under evaluation. N is the total number of

available instances to learn.

de f (a) =
∑

N
t=2 (accN( f )−acct(a))

∑
N
t=2 (accN( f )−acct( f ))

(3.8)

This deficiency measure captures the global performance of active learner a throughout the

learning process. Smaller values indicate more efficient learning from a when compared to f .

Gradient-based approaches Laws et al. (Laws and Schätze, 2008) propose several gradient-

based stopping criteria for AL. Absolute criteria, such as minimum absolute performance – stop-
3In the original proposal the sums on both denominator and numerator start at t = 1 which we have replaced by

t = 2 to assure that the initial training set has at least one positive and one negative instance.
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ping when the current classifier performance has reached a predefined minimum assumed to be

good enough – or maximum possible performance – stopping when the maximum achievable per-

formance is reached – demand for a validation set requiring an additional labeling effort, which is

precisely what we want to avoid in AL in the first place. Thus, gradient-based approaches are more

suited since they do not require a pre-labeled validation set and just compare performance indica-

tors from one iteration to the next. Nevertheless, gradient-based approaches require the previous

knowledge of the expected behavior of the performance indicator as the classifier performance

reaches its optimal value. Laws et al. observe that the performance estimation rises along the

learning process until it starts to slow down to an almost constant value at about the time when

the true performance reaches its optimum. Based on this observation, they propose uncertainty

convergence, a new stopping criterion that estimates the gradient of the performance indicator and

stops when it approaches 0.

Bloodgood et al. (Bloodgood and Vijay-Shanker, 2009) follow this same gradient-based ra-

tionale to propose Stabilizing Predictions, a stopping criterion that checks for stabilization of

predictions on a set of instances, called the stop set – that should be a representative sample of

the target concept. Stabilization is evaluated by the agreement of the predictions made by the

classifiers learned in two consecutive iterations. The authors claim that measuring this agreement

by the percentage of instances on which both classifiers make the same predictions is not a robust

approach because different datasets have different levels of agreement that can be expected by

chance, which is not captured by percent agreement. They use a measure of agreement that takes

chance into account (Artstein and Poesio, 2008).

Ghayoomi hypothesizes that there is a correlation between performance saturation of the clas-

sifier and the variability on the confidence of the selected instances and proposes a stopping criteria

based on variance of confidence (Ghayoomi, 2010). He assumes that a pool-based AL process is

divided in three stages w.r.t. the classifier performance – untrained, training and trained. In the

initial untrained stage most of the class posteriors for unlabeled instances are low since the clas-

sifier is not trained enough. As a result its variance is also low since all observed posteriors are

similarly low. As the classifier is training with more data, the class posteriors of some unlabeled

instances will start increasing while other are still low. During this training stage the posteriors

variance increases. When the classifier is well trained most of the posteriors will be high and con-



52 Active Learning Approaches

centrated around a (high) mean. As a consequence, posteriors variance decreases. Based on this

assumption, the best stopping point is when the posteriors variance reaches its global peak and

starts to decrease.

Classification gradient (Escudeiro, 2004; Escudeiro and Jorge, 2006) is a stopping criterion ap-

plied in the semi-supervised setting that is based on the differences of the predictions made at two

consecutive iterations. This criterion is extended to AL in this thesis. Classification-change (Zhu

et al., 2008), described by Zhu et al. in 2008, is a similar criterion to classification gradient. The

work from Vlachos (Vlachos, 2008), may also be classified as gradient-based. These approaches

are detailed below in this Section.

SVM based criteria Schohn et al. (Schohn and Cohn, 2000) noticed an interesting outcome

when working with SVM base classifiers: classifier performance peaks at a level above that

achieved when using all available data. This means that a better performance is achieved when

training on a subset of data, than when using all available data. From this observation, they sug-

gest to stop the AL process when the next query is no closer to the decision hyperplane than any

of the support vectors. When this happens, the SVM margin has been exhausted and learning is

terminated. The authors claim that this is a good approximation of true peak performance.

Mitra et al. (Mitra et al., 2004) select a batch of size m in each iteration. The stopping criterion

proposed by them is based on the proportion of the batch corresponding to instances with margin

greater than one, i.e., uninformative instances regarding the settlement of the decision boundary.

The AL process is terminated when the proportion of instances in the batch exhibiting a margin

greater than unity exceeds a given threshold, such as 90%. A high proportion implies that the

current batch contains few instances able to impact the current hypothesis.

Criteria requiring a validation set Vlachos (Vlachos, 2008) claims that the confidence of un-

certainty based sampling exhibits a rise-peak-drop pattern – previously observed empirically by

Schohn (Schohn and Cohn, 2000) – due to the inclusion of queries with noisy features in the

training set. Peak confidence is observed when the training set includes the minimum number of

labeled instances covering all the unlabeled ones. From this point on, adding more queries to the

training set promotes overfitting with a negative effect on the classifier performance. Besides this

negative impact on the classifier performance, there is also no reason to continue querying the
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oracle beyond peak confidence since the rest of the unlabeled instances will probably be uninfor-

mative instances, already covered in the current training set. Supported by this reasoning, Vlachos

suggests to use classifier confidence as a means to define a stopping criterion for uncertainty based

sampling. The main idea is to stop querying when the confidence of the classifier remains at

the same level or drops for a number of consecutive queries. In concrete, the learning process

is terminated after having the confidence dropping for three consecutive iterations. Confidence is

computed on a test set. To avoid the cost associated to a fully labeled test set, which contradicts the

aims of AL, the authors suggest to compute confidence from the set of features of each instance in

the test set.

In his PhD thesis, Olsson (Olsson, 2008) formulates Intrinsic Stopping Criterion (ISC) which

is further developed by Olsson et al. (Olsson and Tomanek, 2009). ISC is a stopping criterion for

committee based AL relying only on the characteristics of the base learner and the data at hand

in order to decide when to stop the learning process. ISC builds upon a held-out validation set.

The reasoning behind ISC is the following: if the committee agreement w.r.t. the most informative

instance drawn from the unlabeled data pool, selection agreement (Tomanek et al., 2007), is larger

than the agreement of the committee w.r.t. an instance drawn from the validation set, validation

set agreement (Tomanek and Hahn, 2008), then the committee would learn more from a random

sample extracted from the validation set, than it would from the unlabeled data pool. Under the

ISC criterion, the learning process may be terminated when the selection agreement is greater

than, or equal to, the validation set agreement.

Other approaches Zhu and colleagues have performed extensive work on AL stopping criteria.

Several stopping criteria have been proposed as a consequence of this work, including max-con-

fidence and min-error (Zhu and Hovy, 2007), minimum expected error (Zhu and Wang, 2008),

overall-uncertainty and classification-change (Zhu et al., 2008) and selected accuracy (Zhu et al.,

2010b).

Max-confidence is based on uncertainty measurement, considering whether the entropy of the

unlabeled instance selected for querying is less than a predefined threshold close to zero (the au-

thors suggest 0.001). Min-error is based on the labels provided by the oracle, considering whether

the current classifier can correctly predict the true labels or the accuracy performance of predic-
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tions on queries is already larger than a predefined accuracy threshold (no benchmark is provided).

Max-confidence and min-error are suggested, respectively, as the upper bound and the lower bound

for stopping conditions. These criteria are based on the premises that if a classifier induced from

the current training data has strong classification confidence on an unlabeled instance, then we can

consider it as redundant.

It should be noticed that min-error is adequate for batch mode AL. In a different setting, where

only one query is selected per iteration, the accuracy performance is either 1, if the classifier

predicts the correct label, or 0, otherwise. In such settings, max-confidence and min-error might

be used ensemble. Once both conditions are met, the current classifier is assumed to have enough

confidence on the labels of all the remaining unlabeled data and the learning process terminates.

This former work by Zhu et al. is extended to introduce the minimum expected error strategy that

involves estimating the classification error on future unlabeled instances.

Overall-uncertainty is similar to max-confidence, but, instead of taking only the most infor-

mative instances into consideration, it is computed over all unlabeled instances.

Classification-change assumes that the most informative instance is the one which causes the

classifier to change its predicted label. Thus, the learning process is terminated once no predicted

label changes during two consecutive iterations.

Recently, in 2010, Zhu et al. (Zhu et al., 2010b) propose the selected accuracy method along

with combinations of all the above strategies to estimate the required thresholds. The selected

accuracy method is designed to apply in batch mode AL. In such a setting the learning algorithm

has access, in each iteration, to the true labels of all the batch members. The unlabeled instances

composing the batch are supposed to be the most informative given the current hypothesis and the

unlabeled data pool. The learning process is terminated when the accuracy of the current classifier

on these batch instances is above a given threshold.

Missed clusters Schutze et al. (Schütze et al., 2006) claim that there is no obvious procedure

to decide conveniently when to stop querying due to the so called missed clusters – unexplored

regions in the input space containing positive instances. Missing clusters can only be found by

chance, demanding for random sampling. As a consequence of this reasoning the authors claim

that instead of trying to set stopping criteria depending on the available data another alternative is
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to define a level of acceptable performance and stop the learning process when this level has been

reached – they suggest using F1 = 80%.
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Chapter 4

Text Classification

Classification tasks, in general, aim at assigning one or more classes, from a predefined set, to a

given instance from the target domain. Text classification, also known as text categorization, refers

to the classification task performed over text corpora. In text classification, classes, a.k.a. labels,

are assigned to text documents.

Early text classification approaches, in use between the 60’s and late 80’s, were performed by

domain experts deploying a set of rules to assign classes to documents in a specific domain. This

expert system’s approach has two major drawbacks: it is restricted to a specific target domain and

requires a significant effort and time from the domain experts. These approaches are not scalable

to the variety and volume of textual information that became available since the last decade of

the 20th century with the widespread use of the Web and other Internet services. This mismatch

between the chances offered by the amount of textual data widely available and the cost of text

classification motivated the search for automatic text classification solutions. Research efforts

focused on text classification in the area of machine learning arose naturally in the early 90’s.

Nowadays, many of the text classification systems rely, to some extent, on automatic classifiers

coming from the machine learning field. State-of-the-art text classification systems exhibit accept-

able performance at a lower cost than that required by non-automatic systems relying exclusively

on the knowledge of domain experts. Nevertheless, text classification has certain characteristics

that make it a difficult task for machine learning. Text corpora, collections of text documents,

are characterized by high-dimensional input spaces – frequently ranging over 104 dimensions –

having many irrelevant features and containing high levels of noise. As a consequence, a large

57



58 Text Classification

number of labeled instances is usually required to train. However, building classification rules

by hand is certainly more demanding – concerning human effort and the required skills – than

assigning labels to a set of text documents to be used to train a classifier (Hayes, 1992).

Text classification involves a set of tasks, including: (a) the proper preparation of text doc-

uments, which are by nature unstructured data objects, in order to extract the relevant features

that are required by the classification process; (b) the proper representation of text documents in a

format that is adequate for the classification process; (c) learning the target classes; (d) applying

the learned model to classify new documents and (e) evaluate the performance of the classification

process.

The pre-processing tasks, referred above as tasks (a) and (b), are discussed in Section 4.1,

while tasks (c) to (e) are discussed in Sections 4.2, 4.3, 4.4 and 4.5.

4.1 Pre-processing

We consider a pre-processing stage comprising the tasks that are required to obtain a suitable

document representation, valid for the subsequent automatic learning phase. This stage includes

text preparation and text representation.

4.1.1 Text preparation

The text preparation phase takes a text document as input and returns a set of features describing

it. This phase includes several steps that attempt to eliminate non-informative features and might

involve some or all of the following (based on (Baeza-Yates and Ribeiro-Neto, 1999) and (Weiss

et al., 2004)):

• tokenization – breaking the text document into tokens, commonly words; includes all sorts

of lexical analysis steps, such as: eliminating punctuation, numbers, accents and extra spac-

ing, converting to lower or upper case;

• stop-word removal – removing irrelevant terms; requires a list of stop-words (words to elim-

inate);

• stemming or lemmatization – reducing words to their semantic root; the Porter algorithm (Porter,

1980) is probably the most well known stemming algorithm; specific algorithms, such as the
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one proposed by Orengo et al. (Orengo and Huyck, 2001) for the Portuguese language, are

required for each language;

• feature selection – defining index terms, the features that will be used for document model-

ing. The full process of selecting features and computing their weights is known as indexing.

The application of these pre-processing tasks must be carefully done because the predictive

power of words is highly dependent on the topic of interest (Chakrabarti et al., 1998a). Another

essential aspect to consider is the language in which the document is written, which determines,

at least, the list of stop-words and the stemming algorithm to use.

Stop-words removal is controversial. Removing words from a text, even those that in a linguis-

tic sense have low semantic value, always reduces the information contained in the text document.

Stop-word removal reduces the dimensionality of the feature space at a cost of loosing some infor-

mation. A compromise solution must be set so that this information loss does not get counterpro-

ductive. What is left out from “to be or not to be” after stop-word removal? Recall that this phrase

is completely made up of words that are frequently recognized as stop-words. To avoid this loss,

some systems, like CiteSeer (Lawrence et al., 1999), for instance, do not remove any words from

the documents to be indexed. Web documents, formatted in HTML or other markup language,

still require splitting markup tags from content which is performed early in the tokenization step,

before lexical analysis.

The words that appear in documents often have many morphological variants. Thus, pairs of

terms such as “student” and “students”, will not be recognized as equivalent without some form

of processing. Reducing morphological variants of words with the same semantics to a common

root, or stem, is called stemming. A stem, by definition, is the portion of the word that is left

after the removal of its affixes (prefixes and suffixes). Most frequently, several morphological

variants of words have the same semantics and so they can be interpreted as the same for text

categorization purposes. This way, not only the number of features gets reduced but also the top-

ics described in the text get more noticeable to the learning algorithms since semantically similar

words are conflated to a single representative form. For automatic processing purposes, it does

not usually matter whether the stems generated are genuine words or not (for example: "computa-

tion" might be stemmed to "comput" instead of "compute") provided that different words with the

same base meaning are conflated to the same stem and that words with distinct meanings are kept
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separate. Inflectional stemming, in linguistic terminology called morphological analysis, may be

seen as a light stemming process limited to regularize grammatical variants such as singular/plural,

genre and past/present. There are a number of stemming algorithms (known by stemmers or lem-

matizers) available and widely used, such as, the Porter algorithm (Porter, 1980), the Krovetz

algorithm (Krovetz, 1993) and the Lovins algorithm (Lovins) – the first stemmer with widespread

dissemination, published in 1968.

In text classification the number of features is typically much larger than the number of train-

ing instances and, if care is not taken, undesirable overfitting may arise. Feature selection is de-

sirable not only to avoid overfitting but also to reduce feature space dimension and, consequently,

storage and processing cost. Feature selection (Yang and Pedersen, 1997) or feature reduction

techniques may be heuristic – governed by linguistic principles or specific rules from the universe

of discourse – or statistical. The procedure for feature selection usually comprises the following

steps (Chakrabarti, 2003):

1. compute, for each feature, a measure that allows to discriminate target classes;

2. list features in decreasing order of that measure and

3. keep the subset of the features with the highest discriminative power.

The high feature space dimensionality, common in text corpora, can be reduced with tech-

niques that might be categorized either as feature selection or re-parameterization techniques (Aas

and Eikvil, 1999). Feature selection attempts to remove non-informative words from documents

in order to improve categorization effectiveness and reduce computational complexity while re-

parameterization is the process of constructing new features, as combinations or transformations

of the original ones. Feature selection approaches are usually further classified as wrapper or filter

techniques depending on whether they explore the learning algorithm to select the most appro-

priate features or not. Among common feature selection techniques we may include (Yang and

Pedersen, 1997):

• document frequency threshold (Xu et al., 2008) relies on the inverse document frequency,

i.e. the number of documents where the feature is present, and eliminates features whose

inverse document frequency falls off some pre-defined threshold; the application of this
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technique is simple, inexpensive and has been providing good results, although it requires

some care in the specification of the threshold value;

• information gain (Zheng et al., 2004) sorts features by decreasing order of their information

gain; the most informative features are retained while the least informative are removed

from the feature set;

• mutual information (Dumais et al., 1998; Novovičová et al., 2004; Peng et al., 2005) mea-

sures the association between features and classes based on a two way contingency table;

features with the highest mutual information are selected;

• chi-square (Galavotti et al., 2000; Zheng et al., 2004) uses the same contingency table as

mutual information but performs a chi-square statistical test to infer independence between

features and target classes; the major advantage of this method, compared to mutual in-

formation, is that, since the test statistic is normalized, it allows for comparisons among

features for the same class;

• term strength (Wilbur and Sirotkin, 1992; Liu et al., 2003) is significantly different from the

above; this method computes each term strength independently from the document class.

It assumes that documents sharing many common words are similar and, further, that the

common words are informative. This method estimates term importance based on the con-

ditional probability of a term appearing in a certain document given that it appears in another

similar document;

• The Markov blanket criterion (Koller and Sahami, 1996; Aliferis et al., 2010) reduces the

feature set by incrementally excluding the least relevant features until the reduced subset is

satisfactory;

• Latent semantic indexing (Deerwester et al., 1990), LSI, is a re-parameterization technique,

which uses the singular value decomposition of the document×term matrix to reduce the

dimension of feature space;
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• Part-Of-Speech (POS) tagging assigns grammatical categories – such as verbs, nouns and

adjectives – to terms in a text depending on their definition and context. Using POS tag-

ging information for feature selection in text is a relevant approach to identify the most

meaningful terms (Masuyama and Nakagawa, 2004; Gonçalves et al., 2006);

• Named Entities (NE) may also provide very relevant indexing terms for text in specific do-

mains. NE are recognized as one of the most important indexing elements in biomedical

text (Saha et al., 2009). NE Recognition (NER) aims to locate and classify terms into se-

mantic categories, such as protein or gene, in the biomedical domain, or company or place

in the business domain.;

• Synonyms replacing is another technique available to reduce the dimension of the features

space in text (Bolshakov and Gelbukh, 2004). Synonyms may be replaced by a unique term.

Synonyms may be obtained from lexical databases, like WordNet1, or simpler synonyms

dictionaries.

A different approach aimed at reducing the time and computational effort required to train a

classifier is sub-sampling which uses only a reduced sample of the available data to train. Text

bundling (Shih et al., 2003) is a sub-sampling technique that reduces the number of training in-

stances by averaging together small groups of instances, such that important statistical information

is retained. Text bundling organizes texts belonging to the same class into homogeneous groups.

Each of these groups is averaged to generate a single bundled text that will replace all the group in

the training set. This approach requires a pre-labeled set that might be used to organize the corpus

in homogeneous groups corresponding to the target classes.

4.1.2 Text representation

Once the text preparation stage described above is concluded, each document is reduced to its

representative features. Then, at the next step, text representation, this set of features is encoded

into a specific format representing the document in an adequate manner for automatic processing.

1http://wordnet.princeton.edu/
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Classic text models, view a document as a bag-of-words, describing text documents by the

terms – words or phrases – appearing in it. In these models, each term in a document – known by

index term – has a weight associated to it.

The vector space model (Salton et al., 1997), probably the most commonly used model for

text representation, assigns real non-negative weights to index terms. In this model, documents

are represented by vectors in a multi-dimensional Euclidean space. Each dimension in this space

corresponds to an index term, a relevant term that is contained in the document collection and also

part of the vocabulary in use. In the vector model, index term weights are usually obtained as a

function of two factors:

• the term frequency factor, T F , a measure of intra-cluster similarity; computed as the number

of times that the term occurs in the document, normalized in a way as to make it independent

of document length and

• the inverse document frequency factor, IDF , a measure of inter-cluster dissimilarity; weights

each term according to its discriminative power in the entire collection.

The degree of similarity of documents is evaluated as the correlation between the vectors rep-

resenting the documents. This is usually quantified by the cosine of the angle between the two

vectors.

Some proposals, distinct from the traditional vector space model, try to explore sequences of

characters or words, known as n-grams (Cavnar and Trenkle, 1994; Lodhi et al., 2002; Zhang and

Zhu, 2007; Rahmoun and Elberrichi, 2007).

Structured models (Baeza-Yates and Navarro, 1996), combining information on text content

with information on the document structure, are also available although not as popular as bag-of-

words models. At the end of the 80’s and throughout the 90’s, various structured text retrieval

models have been proposed (Chakrabarti, 2003), such as non-overlapping list model, proximal

nodes model (Navarro and Baeza-Yates, 1995), simple concordance list models (Dao et al., 1997),

path prefixing and PAT expressions (Salminen and Tompa, 1994). These models, that explore

the structural characteristics of the documents, are more directed for information retrieval (Baeza-

Yates and Ribeiro-Neto, 1999), where the goal is to rank documents by their relevance to a given
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query, than for text classification, which is focused on assigning to documents the topics that

describe their content.

Much textual data is extracted from hypertext documents retrieved from the Web. Hypertext

documents contain other types of features besides content words (Ghani et al., 2000) that may

hold significant predictive power. Hypertext features on Web pages include HTML tags, URLs,

IP addresses, server names contained in URL, sub-strings contained in URLs, out-links (links

from the current page pointing to other pages) and in-links (links from other pages pointing to the

current page). Some models for hypertext documents include also the content of neighbors in the

representation of a given document (Yang et al., 2002).

Pure text classifiers deal primarily with flat text documents and do not consider other features

present in hypertext (Web) documents. Web page classifiers, relying on other features besides flat

text, may be categorized according to the data they explore (Quek, 1998):

• Classifiers that use data on the Web page itself: typically text mining algorithms applied

to the Web page content text and classifiers that try to explore HTML tags, like title and

headings, which usually carry significant semantic value;

• Classifiers that rely on the hyperlinks between Web pages: the Web is a kind of social

network and its structure naturally reveals clusters or groups of strongly interconnected

pages, which are usually associated to some kind of common interest; this evidence can be

leveraged in order to improve the classifier’s performance;

• Classifiers that examine metadata about the page: metadata can be obtained from several

sources, such as, specific HTML tags or the URL of the page that may contain some patterns

that might help the classification task.

This is merely a conceptual partition of the evidential sources for the classification task, which

does not prevent classifiers to combine information from several sources. In this thesis, we are

concerned exclusively with flat text classification.

For the description of text models we will apply the following notation: D = d1,d2, ...,dN is

the set of all documents, di, in the collection. N is the total number of documents in the collection.

T = t1, t2, ..., tM is the set of all index terms, t j, with cardinality M, the number of index terms in the

collection or the dimension of the vocabulary in use. wi j ≥ 0 is the weight associated with index
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term t j in document di; wi j = 0 if term t j is not present in document di. ~di = (w1 j,w2 j, ...,wNM)

is the index term vector associated with the document di. g j is a function that returns the jth

weight of ~di, g j(di) = wi j. N j is the number of documents in which the index term t j appears, Fi j

is the absolute frequency of term t j in document di, fi j is the normalized frequency of term t j in

document di, given by fi j =
Fi j

maxl(Fil)
where maxl(Fil) is computed over all terms in document di.

K is the number of classes to learn.

4.1.3 Bag-of-words models for text representation

Bag-of-words models do not take into consideration the structure of text documents. These text

models assume that each document is described by a set of representative terms, called index

terms (Baeza-Yates and Ribeiro-Neto, 1999). Index terms are words, or phrases, appearing in

the document and usually assumed to be independent from each other. Each bag-of-words model

assigns numeric weights to index terms, wi j, computed by some specific method.

Boolean model The simplest bag-of-words model merely reflects the presence or absence of

index terms in documents. Index terms’ weights are binary, wi j ∈ 0,1. wi j = 1 if the term t j is

present in document di and wi j = 0 otherwise.

Vector space model The vector space model (Salton and Buckley, 1997) is an algebraic model

that assigns real non-negative weights, wi j ≥ 0, to index terms. Documents are represented by

vectors in a multi-dimensional Euclidean space. Each dimension in this space corresponds to a

relevant index term contained in the document collection. A given document collection is then

represented by a matrix W , with elements wi j representing the weight of term t j in document di.

These weights are usually obtained as a function of two factors: the term frequency factor,

T F , and the inverse document frequency, IDF .

For the computation of wi j weights there are several proposals (Aas and Eikvil, 1999):

• Boolean weighting: the simplest approach is to let the weight to be 1 if the term occurs in

the document and 0 otherwise. In this case the vector space model becomes the Boolean

model, which may be viewed as a particular case of the former (Equation 4.1).

wi j = 1,∀i, j : Fi j > 0;wi j = 0,∀i, j : Fi j = 0 (4.1)
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• Word frequency weighting: another simple approach is to use the frequency of the index

term in the document (Equation 4.2). This approach, merely based on the TF factor, does

not take into account the information value of the index term. One term might appear very

frequently yet have a low information value.

wi j = Fi j (4.2)

• TF×IDF weighting: the previous schemes model a document independently of the collec-

tion where it is included. They do not take into account the frequency of the term throughout

the entire collection which might be rather relevant for discriminative purposes. A common

approach for computing wi j is the TF×IDF weighting (Equation 4.3), which assigns weights

to index terms that are proportional to the number of occurrences of the term in the document

– the T F (term frequency) factor – and inversely proportional to the number of documents in

the collection where the term occurs at least once – the IDF (inverse document frequency)

factor.

wi j = T F(di, t j) · IDF(t j) (4.3)

The coordinates of a document di are determined by two quantities:

Term Frequency, T F(di, t j) – the number of times that the term t j occurs in document di

normalized to make it independent of document length. There are many distinct ways to

normalize T F(di, t j), such as dividing by the total number of terms in the document or

dividing by the total number of occurrences of the most frequent term in the document.

Inverse Document Frequency, IDF(t j) – terms in the vocabulary are not equally important;

IDF(t j) weighs the discriminative power of term t j in the entire collection. The discrim-

inative power of a term depends on its distribution in the document collection, not on its

frequency. A very frequent term is not informative if its distribution in the collection is

uniform. A common way to compute IDF(t j) is:

IDF(t j) = log
1+N

N j
(4.4)

There are other ways of computing IDF(t j), in its majority as functions of N/N j. The
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weight of index term t j in document di, is then given by:

wi j = fi j · log(
N
N j

) (4.5)

• TFC-weighting: the TF×IDF weighting does not take into account that documents may

have different lengths. The T FC weighting is similar to the TF×IDF approach except that

length normalization is used as part of the word weighting formula (Equation 4.6).

wi j =
fi j · log( N

N j
)√

∑
M
j=1

(
fi j · log( N

N j
)
)2

(4.6)

• Entropy weighting: inspired in information theory (Equation 4.7).

wi j = log( fi j +1) ·

(
1+

1
log(N)

·
N

∑
i=1

(
fi j

N j
· log

fi j

N j

))
(4.7)

where 1
log(N) ∑

N
i=1

(
fi j
N j

log fi j
N j

)
is the average entropy of term t j. This quantity equals 1 if the

word is equally distributed over all documents and 0 if the term occurs in a single document.

The vector space model is simple and fast, providing better or almost as good results as other

known alternatives (Chakrabarti, 2003). This model ignores the context in which terms are in-

cluded, considering them as isolated and independent features. It is assumed that the relative

positioning of terms has a weak discriminative power. Although some models try to explore this

relative positioning of words, by considering phrases as dimensions – instead of isolated terms –

or statistical measures of co-occurrence, the underlying framework is based on a vector represen-

tation.

Some new proposals, distinct from the traditional vector space models, try to explore se-

quences of characters using kernel functions to measure similarity between documents; the string

kernel model. Text can further be represented as sequences of words, which are linguistically

more meaningful than characters, adapting string kernel functions to word kernel functions and

significantly reducing the problem dimension (Lodhi et al., 2002; Cancedda et al., 2003).

The classic vector model assumes independence of index terms, which means that the set of
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vectors representing the t index terms forms a basis, of dimension t, for the indexing space. Usu-

ally this independence is interpreted in a more restrictive sense to mean pair-wise orthogonality

between the index term vectors, i.e., meaning that for each pair of index term vectors,~tr and ~tp, we

have~tr⊗~tp = 0. In the generalized vector space model, the index term vectors are assumed linearly

independent but are not pairwise orthogonal. In this model, index term vectors are composed as

linear combinations of the orthogonal vectors that form the basis of the space, called the minterms,

which are derived from the original index term vectors. The generalized vector space model adopts

as a basic foundation the idea that co-occurrence of index terms inside documents induces depen-

dencies among them. It is not clear whether this approach provides a clear advantage over the

classic vector space model. Nevertheless, it is certainly more complex and computationally more

expensive (Baeza-Yates and Ribeiro-Neto, 1999).

The degree of similarity between documents di and dk, sim(di,dk), is evaluated by the correla-

tion between vectors ~di and ~dk, which can be, and usually is, quantified by the cosine of the angle

between the two vectors (Equation 4.8).

sim(di,dk) = cosine(di,dk) =
~di⊗ ~dk∥∥∥~di

∥∥∥ ·∥∥∥~dk

∥∥∥ =
∑

t
j=1 wi jwk j√

∑
t
j=1 w2

i j

√
∑

t
j=1 w2

k j

(4.8)

Since all weights are positive, ∀i, j,wi j ≥ 0, the similarity is always a positive quantity 0 ≤

sim(di,dk)≤ 1.

4.2 Types of classification tasks

Document classification or categorization is the task of assigning one or more predefined cate-

gories to documents. Text classification tasks are frequently characterized by the properties of the

set of classes to learn, C, and from the relationships between instances, i.e., text documents, and

this set of classes. The number of classes to learn, K, is a common descriptor of a classification

task. From this perspective, we refer to binary (K = 2) or multi-class (K > 2) classification (Kumar

and Gopal, 2011). A complementary aspect, also very relevant, is the number of distinct classes

that can be assigned to one single instance. From this point of view, single-label, a.k.a. one of or

multinomial (Manning et al., 2008), refers to classification tasks assigning one single class to each

instance while multi-label (Tsoumakas and Katakis, 2007; Moskovitch et al., 2006), a.k.a. any of
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or multi-value (Manning et al., 2008), refers to classification tasks where each instance may be

associated with more than one class. The structure of the set of classes to learn is also used to

describe the classification problem. Flat classification refers to unstructured class sets, having all

classes at the same level, while hierarchical classification (D’Alessio et al., 2000; Sun and Lim,

2001; Silla and Freitas, 2011) refers to a set of classes organized as a hierarchy, a frequent setting

in text categorization.

In single-label problems, each document belongs to just one of the K classes to learn. The

probability of accurately classifying a given document by chance is 1
K , assuming a uniform distri-

bution. For multi-label problems each document may belong to just one or more than one of the K

classes. In this case, each document might be assigned to any of the 2K−1 =

(
K
1
)
+

(
K
2
)
+ ...+(

K
K
)

subsets that can be obtained from the set of classes to learn, C. The probability of accurately

classifying a given document by chance in multi-label problems is thus 1
2K−1 , assuming a uniform

distribution. These thresholds may be used as benchmarks for evaluation purposes.

Classification tasks may then be characterized by these dual aspects: binary or multi-class,

referring to the cardinality of C, single-label or multi-label, referring to the number of classes that

an instance may belong to and flat or hierarchical, referring to the internal structure of C. By

nature, binary problems cannot be simultaneously multi-label neither hierarchical.

The probability of predicting the true class by chance in single-label classification, assuming

a uniform class distribution, is 1
K . In the special case of binary classification, where K = 2, this

probability is 50%. Binary classification algorithms assume a particular relevance since they can

be used to solve multi-class and multi-label problems by mapping the original problem to a set of

independent binary sub-problems whose output is aggregated to produce an answer for the original

(multi-class or multi-label) problem (Sebastiani and Ricerche, 2002).

This same strategy is frequently used in multi-label classification by breaking down the orig-

inal problem into a set of single-label problems whose outputs are then combined to produce

the answer for the original problem (Boutell et al., 2004; Diplaris et al., 2005). These problem

transformation strategies are independent from the base classifier. Another strategy to deal with

multi-label classification, known by algorithm adaptation (Tsoumakas and Katakis, 2007), con-

sists in transforming the learning algorithms used in single-label classification to adapt them to

the multi-label setting (Clare and King, 2001; Crammer and Singer, 2003; Godbole and Sarawagi,
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2004; Zhang and Zhou, 2005).

In hierarchical classification it is also common to break down the original problem into a set

of flat problems for simplicity reasons. These approaches, however, do not take into account the

information contained in the hierarchical structure of the concept to learn (Koller and Sahami,

1997; Kiritchenko et al., 2006). Top-down, or level-based, approaches, take into account the

hierarchical nature of the target concept at a local level (Sun and Lim, 2001). These approaches

build flat classifiers to learn classification models that can predict the classes at each level of

the hierarchy. These flat classifiers are then applied sequentially at all levels in the hierarchy

that are deemed relevant for a given instance by the previous level classifier. The process stops

when a certain level classifier does not find any relevant class for the instance at hand at its own

level or when the process reaches a leaf node. Global approaches for hierarchical classification,

known by big-bang (Sun and Lim, 2001; Kiritchenko et al., 2006), build a single classifier able

of discriminating all the classes in the hierarchy taking into consideration the existing hierarchical

relationships.

4.3 Learning settings

The application of machine learning techniques to classification problems generally requires two

distinct stages: (1) the learning stage – when the classifier is learned, that is the algorithm builds

a model of the concept to be learned based on training and test data – and (2) the production

stage – when the previously learned model is applied to unseen instances in order to classify

them. The learning stage demands for a sample of the target population that is to be partitioned in

a training set and a test set. The need to label instances in this sample, according to the specific

target concept, is probably one of the most expensive tasks experienced during all the classification

process. Therefore, it becomes a core aspect to take into consideration.

Irrespectively of the learning setting in use, some target classes may not be learnable for several

reasons (Schütze et al., 2006), such as, having few instances available in the corpus or using a text

model that is not expressive enough for the purpose of the classification task – the bag-of-words

model, for instance, does not take into consideration the relative order of words which might be of

crucial importance.
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When both training and test sets are fully labeled, we are in presence of a supervised learning

setting. On the other extreme, if none of the training instances is labeled, we are in presence

of unsupervised learning. When the training data is partially labeled, we are in presence of a

semi-supervised learning setting. Bennet et al. (Bennett and Demiriz, 1998) further classify semi-

supervised learning problems as either semi-supervised clustering, when the number of labeled

instances is small when compared to the dimension of the training set, or transduction problems,

when the number of labeled instances is large when compared to the training set dimension. The

transduction problem refers to the estimation of the value of a classification function at a given

instance, which opposes to the standard inductive learning problem of estimating the classification

function for all possible instances and then using the fixed function to deduce its value at a given

instance.

The supervised setting requires the full dataset, from where the training and test samples are

obtained, to be labeled or, at least, that there is a large number of labeled instances from each class.

This is one major drawback in this setting, concerning text classification, because of the high cost

of labeling text documents. The process of manually assigning labels to text documents is both

time consuming, inaccurate and subject to incontrollable factors arising from human nature (Mac-

skassy et al., 1998) – two users with the same skills may classify the same page differently or the

same user may classify the same page differently at different moments of time. In opposition to

this passive learning process, active learning (Chapters 2 and 3) gives the learner the ability to

select which instances should be included in the training set. Active learning (AL) reduces the

amount of labeling that needs to be done through selective sampling of unlabeled data. In AL

the learner examines a collection of unlabeled instances and selects the most informative ones,

requiring an annotator to label the selected instances, and iteratively re-trains on the augmented

set of labeled training examples.

In the unsupervised setting there is no prior knowledge on labels, neither on the labels of

each document nor even on the labels themselves. Clustering algorithms organize documents in

homogeneous groups, based on their similarity, forming partitions of the dataset that minimize

intra-group variance and maximize inter-group variance.

Semi-supervised learning techniques are particularly interesting when the process of labeling

training data is expensive and time consuming, as is the case of labeling text documents. In this
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setting, classifiers are wrapped by some method in order to take advantage of unlabeled documents.

Several approaches have been proposed to solve the semi-supervised learning problem:

• Bootstrapping (Jones et al., 1999) is a simple iterative method. At each iteration, labeled

instances are used to learn a classifier. This classifier is applied to label unlabeled instances;

those where there is enough evidence in favor of a certain label against the others are added

to the labeled set. The algorithm proceeds iteratively until convergence.

• Usage of Expectation-Maximization (Nigam et al., 2000) (EM) to estimate maximum a pos-

terior parameters for a generative text classification model.

• Co-training (Blum and Mitchell, 1998) is a supervised learning method, particularly useful

when it is required to combine sources of evidence originated form very distinct spaces –

particularly if they have rather different dimensions and scales, which may bias the aggrega-

tion of measures from these distinct sources. With co-training distinct classifiers keep dis-

junctive, independent feature sets and their estimates are never directly consolidated; instead

this method uses the estimates of one classifier to train others. The application of co-train-

ing requires the existence of distinct and independent sets of features. Blum et al (Blum and

Mitchell, 1998) apply co-training to Web document classification, a field where the features

are naturally separable into disjoint sets, such as text in the page itself and words appearing

in the in-links to the page, and two classifiers, one for each feature set, can be built.

• Error Correcting Output Code (Dietterich and Bakiri, 1995) (ECOC) is a method that con-

verts a K-multi-class problem in a set of L binary problems (Witten and Frank, 2000). Any

binary classifier can then be used to learn these L problems. ECOC assigns to each class a

unique binary string, the code word, where each bit is predicted by one of the binary classi-

fiers. The predicted class is the one whose code word is closest to the code word produced

by the set of the L binary classifiers. The distance between code words is computed by the

Hamming distance, which is calculated as the number of different bits in both code words.

Ghani (Ghani, 2001) describes a method for semi-supervised learning that uses the ECOC

method bundled with co-training techniques in order to learn the binary classifiers.
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• Transduction (Gammerman et al., 1998) is naturally related to instance based learning. In

transduction we are interested in the classification of a particular instance rather than in a

general rule for classifying any future instance.

• Coaching (Tibshirani and Hinton, 1998) is a technique that applies when we are in the

presence of two distinct sets of predictive variables but only one of these will be available

on the future examples to classify. Coaching techniques use one of the sets of predictive

variables to coach the other set how to improve prediction in the absence of the former.

4.4 Text classifiers

Many classification problems are binary in nature: a given example either belongs to some speci-

fied concept or it does not. In text categorization we are usually interested in sets of classes with

more than just two distinct classes: the classification problem is frequently a multi-class problem.

One common approach to multi-class problems, valid for some classifiers, is to use a set

of binary classifiers, each one responsible for determining the relevance of the document as to

one specific class. The relevance scores of each one of the individual binary classifiers are then

combined in order to provide the final answer.

Several types of classifiers used in machine learning in tabular, structured data, are also applied

to unstructured high-dimensional problems like text classification.

4.4.1 Rochio

Rochio’s algorithm (Joachims, 1997) is a classic method for document categorization in Informa-

tion Retrieval2 (Manning et al., 2008). In this method the training examples are used to build a

prototype vector for each class. The prototype vector for each class is computed as the average

vector over all the training document vectors that belong to the class. A new document is classified

according to the distance measured between the document vector and the class prototype vectors.

2The purpose of Information Retrieval is not to assign classes to documents but to rank documents according to
their similarity to a given query document – usually a user query specified through a set of keywords.
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4.4.2 K-Nearest-Neighbors

K-Nearest-Neighbors (KNN) is an instance based classifier which has been demonstrating good

performance in pattern recognition and text categorization problems (Yang and Chute, 1994; Yang

and Pedersen, 1997). This method classifies a document based on the characteristics of its closest

k neighbor documents in the input space.

In applications to text categorization, documents are usually represented in the traditional vec-

tor space model and the cosine between document vectors is also frequently used as the similarity

measure. Classes might be assigned by some voting scheme – the majority class in the k neighbors

is assigned, for instance – or, the classes that have a relevance score above a given threshold are

assigned to the document (Yang et al., 2002).

KNN is a local method based on instances that does not require any training stage. However,

it demands for a fully pre-labeled set of instances.

4.4.3 Naive Bayes

Naive Bayes methods (Kibriya et al., 2005; Kim et al., 2006; Jiang et al., 2011) use the joint

probability of terms, ti, and categories, c j, to estimate category probabilities given a document,

P(c j|t1, t2, ..., tn). Dependencies between terms are ignored, i.e., Naive Bayes assumes that the

conditional probability of a term given a category is independent of the conditional probability of

any other terms given the category – the naive assumption.

When assuming term independence, the conditional probability of document d, given class c j

can be obtained by Equation 4.9:

P(d|c j) = ∏
i

P(ti|c j) (4.9)

Given a document, the algorithm computes the posterior probabilities of each one of the classes

and assigns to the document the most probable one, cNB (Equation 4.10). Marginal, a priori, class

probabilities, P(c j), may be estimated from the class distribution in the training set.

cNB = argmax
c j∈C

P(c j)∏
i

P(ti|c j) (4.10)
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Computing class posteriors requires to estimate the conditional probabilities P(ti|c j), which

may be obtained by Equation 4.11:

P(ti|c j) =
ni +1

n+ |vocabulary|
(4.11)

In Equation 4.11, n is the total number of terms in all training documents belonging to category

c j, ni is the frequency of term ti and |vocabulary| is the total number of distinct terms in the training

corpus – the lexicon cardinality (Fang et al., 2001).

The constant 1, added to the numerator, and |vocabulary|, added to the denominator, are both

necessary to avoid the 0/0 indeterminate that would arise for the terms, ti, not appearing in the

training documents belonging to class c j, thus forcing P(d|c j) = 0 in such cases.

Special care is required when applying Naive Bayes to high-dimensional data, as is the case

of text corpora. In fact, when dealing with very large sets of attributes, problems relating to the

limits of precision in computers may arise. By nature of probability, P(x|y) <= 1. It is also

true that lim
n→∞

∏i P(ti|c j) = 0. In practice, it may happen that n grows large enough for the value

of ∏i P(ti|c j) to exceed below the limits of double precision floating point numbers in modern

computers. Computing the logarithm of the conditional probabilities as follows, addresses this

problem (Equation 4.12).

argmax
c j∈C

[
−log(P(c j)∏

i
P(ti|c j)

]
= argmax

c j∈C

[
−log(P(c j))−∑

i
log(P(ti|c j))

]
(4.12)

4.4.4 Decision trees

Decision trees are decision structures built over a root node containing all the training instances (Wit-

ten and Frank, 2000; Lewis and Ringuette, 1994). The set of instances in any specific node is par-

titioned into its descendant nodes. This split is made with the objective of minimizing the diversity

of categories present at each node and it is carried out until no further reasonable improvement

is possible. At a given node, the split is made as to assure that the sum of the diversities at the

child nodes is (much) less than the diversity at the present node without splitting. The goal is to

maximize diversity(node)−∑diversity(childnodes).

Care must be taken to avoid overfitting which is usually done by pruning the decision tree.
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There are two common pruning approaches: post or backward pruning and pre or forward prun-

ing (Witten and Frank, 2000). In the pos-pruning approach the tree is expanded as much as possible

at an initial stage and then it is pruned back by removing those nodes that do not significantly im-

prove the homogeneity, hence the predictive power, of the tree. Pre-pruning approaches evaluate

when to stop developing sub-trees during the tree construction process.

The nodes at the bottom of the tree are called the leaf nodes. Any training example belongs

to a certain leaf node. Each leaf node is then assigned to a class and the error rate of the leaf is

the probability of examples in that leaf node being misclassified. The global tree error rate is a

weighted sum of all the leaf nodes error rates.

A key issue in decision trees is to decide which features allow for the best split at each node,

the one that generates the most homogeneous partition, and the definition of the diversity measure

to use. One of the most common diversity measures is entropy. The entropy of a given node, L, is

given by Equation 4.13.

−
K

∑
j=1

P(c j|L)log(P(c j|L)) (4.13)

Where P(c j|L) is the probability of a training example belonging to class c j given that it

is located in node L, which can be estimated by the relative frequency of class c j in node L

(Equation 4.14):

P(c j|L) =
N j(L)
N(L)

(4.14)

N j(L) is the number of instances of class c j in node L and N(L) is the total number of instances

in node L. Several algorithms are available to grow decision trees – CART, ID3, CHAID and C4.5

are common approaches (Aas and Eikvil, 1999). The CART algorithm (Breiman et al., 1984)

builds a binary decision tree by splitting the training examples at a given node. The splitting rule

is a linear combination of features. The main task is to decide, at each node, which combination

of features performs the best partition and what is the split value. ID3 (Quinlan, 1986) splits

nodes based on the unused attribute exhibiting minimum entropy – i.e., maximum information

gain. The C4.5 (Quinlan, 1993) algorithm builds decision trees that have two children per node,

when splitting on numeric features, but might have more then two children per node when the

splitting rule is based on a categorical attribute. In such cases, it is not limited to binary trees (two

children per node) as is CART. CHAID (Kass, 1980) is also a popular algorithm but it is limited
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to categorical features; thus, if the domain under study has numeric attributes then they must be

previously discretized.

4.4.5 Support Vector Machines

Support Vector Machines (SVM) (Joachims, 1998) are based on the intuition that a hyperplane

that is close to several training examples will have a bigger chance of making erroneous decisions

than one which is as far as possible from all training examples. The SVM algorithm is a binary

classifier that defines a maximum margin hyperplane between the convex hulls formed by the

training examples of each class. The maximum margin hyperplane is the one that is as far away

as possible from both convex hulls – it is orthogonal to the shortest line connecting the hulls,

intersecting it half way. This hyperplane may be defined as a function of the training examples

that are closest to it, the support vectors.

SVMs, like all discriminative classifiers, are non-parametric. They do not assume any under-

lying data distribution besides the trivial assumption that training and testing instances all come

from the same population, thus assuming identical distributions.

SVM implementations require some parameter tuning depending on the type of kernels in

use. Linear kernels require no parameters. Radial Basis Function (RBF) kernels require setting γ ,

the width of the RBF kernel, and the cost parameter, C, that affects the trade-off between model

complexity and training error, that is, the acceptable proportion of nonseparable instances. If C

is too large, favoring model complexity, we have a high penalty for nonseparable instances which

may lead to store many support vectors and overfit – C = 1 is a small value for C while C = 1000

is high.

4.4.6 Exploring other features besides content text

Hypertext (Web) documents might have some additional attributes besides content text. When

compared to plain text this type of documents allows for a richer representation that might be

explored in (hyper)text classification. Yang et al (Yang et al., 2002) define five types of regularities

that might be present in hypertext collections:

• no regularity – the only place that has relevant information about the class of the document

is the document itself,
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• encyclopaedia regularity – documents with a given class only link to documents with the

same class,

• co-referencing regularity – some, or all, of the neighboring documents belong to the same

class but this class is distinct from the document class,

• pre-classified regularity – the regularity is present at the structural level where a single page

(hub) points to several pages which belong to the same class and

• metadata regularity – metadata is available from external sources and can be explored as

additional sources of evidence generating new features.

The authors then define the types of features that should be used in order to improve the classi-

fication task of documents belonging to each of these regularities. However, there is no suggestion

as to how to previously determine the type of regularity that is present in a given document collec-

tion. According to their experiments different classifier designs should be considered, depending

on which of the above regularities holds. With no regularity we would not expect any benefit from

using hyperlinks and the suggestion is to use flat text classifiers, exclusively based on the text of

the document itself. Encyclopaedia regularity suggests augmenting the text of each document with

the text of its neighbors, thus increasing the number of words related to the topic that are present

in the document representation. In the case of co referential regularity, the text of the document

should also be augmented with the text from its neighbors but these imported words should be

treated as if they came from a different vocabulary, for instance prefixing them with a specific tag.

If the collection has a pre-classified regularity then there is no need to look at the document text,

it suffices to look at the pages that link to it and determine their class. When external sources of

information are available that can be used as metadata, metadata regularity, we can collect them –

possibly relying on information extraction techniques.

Chakrabarti et al (Chakrabarti et al., 1998b) also test several feature sets, similar to the ones

suggested by (Yang et al., 2002): local text, local text concatenated with all neighbors text, local

text plus neighbors text prefixed with discriminative tags. They conclude that naive use of terms

in the link neighborhood of a document can even degrade performance. Yang et al (Yang et al.,

2002) have reached the same conclusion, which seems consensual. Although the use of extended

sets of features available in hypertext collections – including text from hyperlink anchors, the full
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text from neighbor documents, HTML tags, category distribution over a linked neighborhood,

metadata available from external sources – might provide rich information for the classification

task, it is not guaranteed that the use of such features will improve performance, which in general

is dependent of the specific document collection.

A folksonomy3, a.k.a. social classification or collaborative tagging is a distributed unsuper-

vised classification system created and maintained by a group of individual users. Folksonomies

may suffer from common problems related to tag ambiguity, synonymous tags or multilingual-

ism (Robu et al., 2009; Wetzker et al., 2010; Trattner et al., 2011). Nevertheless, an empirical

analysis of the complex dynamics of tagging systems (Halpin et al., 2007) shows that coherent

categorization schemes can emerge from unsupervised tagging by groups of users.

4.5 Performance measures

Performance evaluation is one of the most important issues in machine learning, in general. In

classification tasks, this evaluation can be based on several measures. Common measures in text

classification are recall, precision, F-measure – which aggregates recall and precision in a single

measure – and accuracy or error – two complementary measures of the efficiency of the learner.

Recall is defined as the ratio between the number of documents correctly classified and the

total number of documents in the category. Precision is defined as the ratio between the number

of documents correctly classified and the total number of documents classified in the category.

Usually a classifier exhibits a trade-off between precision and recall. These measures are

negatively correlated: improvement in recall is made at the cost of precision and vice-versa. It

is frequent to have text classifiers operating at the break-even point – the operating point where

recall and precision have the same value. The F-measure combines recall and precision in a unique

indicator (Equation 4.15):

Fβ =

(
β 2 +1

)
× precision× recall

β 2× precision+ recall
(4.15)

where β is a parameter allowing different weighting of precision and recall – precision and recall

are equally weighted when β = 1. At the break-even point, recall, precision and F1 all have the

3http://vanderwal.net/folksonomy.html
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same value.

Accuracy and error are complementary measures of the error probability of the classifier given

a certain category. Accuracy is defined as the ratio of the number of correctly classified examples

by the total number of evaluated examples, while error is defined as the ratio of the number of

incorrectly classified examples by the total number of evaluated examples.

These measures are defined for binary classifiers. To measure performance in multi-class

problems there are two common approaches that aggregate the measures evaluated at each singular

class: macro-averaging and micro-averaging. Macro-averaged measures are obtained by first

computing the individual scores, for each individual class, and then, averaging these scores to

obtain the global measure. Micro-averaging measures are obtained by first computing the total

number of documents correctly and incorrectly classified, irrespectively of their classes, and then

using these values to compute the global performance measure by applying its definition. There

is an important distinction between these two aggregation algorithms: macro-averaging equally

weighs all classes while micro-averaging gives equal weight to every document.



Chapter 5

Problem Statement

Organizing objects into a set of classes is probably one of the oldest and most effective ways for

storing and retrieving information (Dewey, 2004). This cataloging process requires the specifica-

tion of a model defining the classes in the target concept. Defining classes from instances is an

adequate strategy for this purpose in machine learning: on the one hand, it is expressive enough –

we may express almost any information need from a set of instances; on the other hand, it does not

demand for specific domain knowledge – it does not require neither the explicit specification of the

classes to learn nor any formal specification model. However, retrieving and labeling exemplary

instances to get a full description of the target concept may still be very demanding.

5.1 Motivations

Active learning (AL) is an iterative process guided by specific criteria tailored to meet specific

goals. Our research is focused on building accurate classifiers recognizing all target classes at

a reduced cost when compared to current approaches. Our main motivation is to reduce human

effort in text categorization of documents in large corpora.

5.1.1 Labeling cost

Collecting and annotating instances that fully describe the target concept is a critical and demand-

ing stage in classification tasks (Li and Sethi, 2006). It is critical because it is one of the first

stages of the whole classification process and limits the performance of all the following stages. It

81
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is demanding because it requires domain experts to retrieve and label exemplary instances for all

classes to learn. Given the weight of this initial stage in the cost of the whole process – approxi-

mately 80% of the total effort (Li and Sethi, 2006) – any improvements at this stage may be very

important to reduce editorial costs. The number of labeled instances that are required to learn the

target concept may be reduced by selecting the most informative instances, instead of selecting

instances to label at random. Knowing how to select the most informative instances to label is an

important aspect regarding cost reduction.

AL implements iterative processes that select the most informative instances to query at each

iteration. As a consequence, the utility of unlabeled instances decreases as the learning process

proceeds. Knowing when this utility has dropped below the minimum acceptable prevents wasted

queries and unnecessary costs. Defining a proper stopping criterion is another important aspect

regarding cost reduction in AL.

This thesis is directed to reduce the total cost of the entire learning process.

5.1.2 Full class coverage assumption

AL seems adequate to our goals as it learns from instances that are selected by the learning al-

gorithm according to ad-hoc criteria. These criteria may be biased to meet specific goals that go

beyond error minimization – the traditional goal in classification tasks is to achieve low error. This

does not mean that we are not concerned with classification error; instead, it means that we are not

exclusively concerned with error. Besides error, representativeness – covering all the target classes

– is also crucial in our research.

There is a variety of underlying approaches to apply AL to classification problems. Just to

name a few, we may refer to AL classifiers based on uncertainty, see for example (Lewis and

Gale, 1994; Becker and Osborne, 2005; Cebron and Berthold, 2009), others that rely on dis-

tance (Hochbaum and Shmoys, 1985; Tong and Koller, 2002; Brinker, 2003), on clustering tech-

niques, such as (Xu et al., 2003; Nguyen and Smeulders, 2004; Dasgupta and Hsu, 2008), or on

committees of classifiers (Seung et al., 1992; Iyengar et al., 2000; Lu et al., 2010). However, all

the above mentioned solutions assume the availability of a pre-labeled set covering all the classes

to learn. This assumption is not valid in our setting – we assume no previous knowledge on the

target concept – which demands for a new approach.



5.1 Motivations 83

5.1.3 Imbalanced class distributions

The effort required to retrieve and label representative instances is not only related to the number

of target classes (Adami et al., 2005); it is also related to the class distribution in the available

pool. Random sampling over a fairly balanced pool will provide exemplary instances from all

classes with a high probability. On a highly imbalanced class distribution, however, it is particu-

larly demanding to identify instances from minority classes. In such a setting, random sampling

will not be efficacious in finding representatives for those classes. These, however, may be im-

portant in terms of representativeness (Attenberg and Provost, 2011). It is the case, for instance,

of Web resources (Escudeiro and Jorge, 2006), news organization (Ribeiro and Escudeiro, 2008)

and assisted assessment of written examinations (Escudeiro and Escudeiro, 2011) where minor-

ity classes may correspond to specific concepts which are as relevant as those corresponding to

majority classes. If this specificity is not taken into account, many queries will be wasted before

these special instances are retrieved. In many more situations, such as fraud detection and clinical

diagnosis, we face the problem of imbalanced class distributions where minority classes are prob-

ably the most valuable to be properly identified (Ertekin et al., 2007). Failing to identify instances

from under-represented classes may have costs and, in some cases, put at risk the goals of the

classification problem under consideration.

5.1.4 Missed clusters

Common active learners focus on the uncertainty region asking queries that are expected to narrow

it down. The issue is that the uncertainty region is determined by the labels that are known in

advance. Focusing our search for queries exclusively on this region, while we are still looking

for exemplary instances on some labels that are not yet known, is not effective. Under such

circumstances, unknown classes hardly come by unless, by chance, they happen to be represented

in the current uncertainty region. This myopic view of the uncertainty region has already been

noticed in the early days of AL. Cohn et al. (Cohn et al., 1994) refer to the limitation generated by

the inductive bias of some learning algorithms that tend to draw sharp distinctions in input space

becoming overly confident in regions that are still unknown. As a result, the uncertainty region,

as perceived by the learning algorithm, will in general be a small subset of the true region of

uncertainty. This behavior may be more evident when in presence of imbalanced datasets. To our
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knowledge, there is no general procedure, so far, for determining missed clusters (Schütze et al.,

2006) – unexplored regions of the input space that contain positive instances.

5.2 Research questions

The research problem investigated in this thesis – efficient AL strategies to build accurate classi-

fiers aware of all the target classes – is closely related to the typical exploitation versus exploration

compromise in AL. Exploitation bearing tends to improve the decision functions in known regions

in instance space while a exploratory drift is likely to query instances in unknown regions. AL al-

gorithms focused on exploitation tend to generate narrower classifiers but more sharp over known

classes while focusing on exploration tends to generate broader classifiers but not as sharp. Fa-

voring exploitation might be an adequate strategy when in presence of a pre-labeled set covering

all the classes to learn but an exploratory bias is required, mainly at an initial stage of the learning

process, when the training set does not cover all the target classes. Shifting between these two

modes of operation during the learning process might contribute to improve efficiency.

Several research questions arise in this scenario addressing specific issues that are expected to

contribute to reduce the labeling cost:

(i) How can we improve instance space coverage and early class exposure?

(ii) How to swap between exploration and exploitation lightly?

(iii) How to identify the most appropriate time to stop querying?

(iv) How can we assess the effectiveness of such approaches?

Answering these questions will guide our investigation towards the main research question:

(v) How can we reduce the labeling effort that is required to build classifiers that are aware of

all the classes to learn and still accurate?
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5.3 Hypotheses

The aim of our research is to produce a strategy that, with a reduced number of queries to the

user, is able to generate a classifier that has a high predictive ability and covers the set of existing

classes. Our hypotheses are:

1. an active learning strategy based on distance and confidence improves the results of ex-

isting strategies in terms of number of queries needed to cover the set of classes without

compromising predictive ability,

2. a stopping criterion based on the combination of classification gradient and label distribution

provides better results.

5.4 Formal problem setting

A formal description of the research problem provides a general setting supporting further devel-

opments and promoting discussion related to this investigation.

AL in general, and our proposal in particular, includes a set of data objects that evolves over

time, as the learning process iterates, converging to the final solution. In general, AL classification

is an iterative process where each cycle includes a learning stage, a predicting stage and a querying

stage. The learning stage outputs a classifier from a set of labeled instances. This classifier is then

used to predict the labels of unlabeled instances at the predicting stage. These predictions are

sustained by the statistics that are output by the classifier, such as confidence, or computed from

these, such as entropy. At the querying stage, the AL algorithm selects unlabeled instances to query

relying on some ad-hoc selection heuristic based on current evidence. This selection heuristic is

expected to maximize the utility of the queries given the goal of the learning task.

5.4.1 General setting

A target concept is characterized by a set C of classes – a.k.a. labels – ck, k ∈ {1,2, ...,K}. W is a

set of N instances, x j, j ∈ {1,2, ...,N}, that is assumed to be representative of the target concept,

i.e., that contains examples from all classes in C. The true class y j of instance x j is not known

in advance for any instance x j ∈W . However, it can be requested to some domain expert, E,
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throughout the learning process. None of the classes to learn are previously specified with the

exception of what can be inferred from W .

We are assuming an iterative learning process with queries being asked at each iteration.

When a query is asked we assume that the true label y j of one unlabeled instance x j is al-

ways provided. At each iteration, i, during the learning process, Li and Ui form a set parti-

tion of W . Li is the subset of instances in W whose true label is known at iteration i, Li ={
< x j,y j >: x j ∈W ∧ y j = E(x j) ∈C

}
. Ui is the subset of instances in W whose label is not known

at iteration i.

A domain expert, E, knowing the target concept and being aware of each of the classes in C, is

always available. At each iteration, i, this expert may be queried for the label of a single unlabeled

instance x j ∈Ui – batch mode AL was not considered – at a certain cost, A. When queried for

a label, the expert always provides its true label, ∀ j,E(x j) = y j,y j ∈ C – the expert E is always

available and always certain.

We assume the availability of a base classification algorithm that generates hypotheses – a.k.a.

classifiers, h, from a set of labeled instances. The classifier, hi, generated at each iteration, i, from

Li, predicts labels, ŷ j, for the instances x j ∈Ui.

The utility of an instance at iteration i, B, is the value of the improvement in the performance

of h that a query may induce if included in Li+1.

5.4.2 Learning process

In general, AL is an iterative process. Each iteration has three phases: learn, predict and query.

This learning process is initialized from a set of pre-labeled instances, L1. This set must contain at

least two labeled instances from W having distinct labels. This imposition stems from the fact that

we need at least a positive and a negative example to boot up a classifier. Besides this imposition,

there are no other constrains to the building process of L1. A core concern, however, must be taken

into consideration. Since we are focusing on cost reduction and the cost of L1 is N1A, assuming

N1 is the number of pre-labeled instances in L1, then N1 should be small, ideally N1 = 2 as we

use. The instances in L1 are randomly selected from W . Their labels are requested to the domain

expert, E.



5.4 Formal problem setting 87

Once this initialization set, L1, is built we enter the iterative learning process. At each iteration,

i, the labeled set Li is used to build a classifier, hi, that predicts labels to all instances in Ui. Then,

the AL criteria in applied to select a query, qi from Ui. We are assuming that one single query is

selected at each iteration. Batch mode AL was not considered.

The label of the selected query is requested to the expert, E. The query is then added to the

labeled set, Li and removed from the unlabeled set, Ui. The labeled set for the next iteration,

Li+1, is the union of the previous labeled set and the query selected at the current iteration Li+1 =

Li ∪{< qi,E(qi)>}. The unlabeled set for the next iteration, Ui+1 is the set difference between

the previous unlabeled set and the query selected at the current iteration Ui+1 = Ui \{qi}. Li and

Ui always form a partition of W . This process iterates until a given stopping criterion is met.

The verification of the hypotheses under investigation depends on:

1. the early identification of instances whose labels fully cover C, i.e., there should be a small

i such that ∀ck ∈C,∃x j ∈ Li : E(x j) = ck:

2. simultaneously, a low error rate should be observed at the predictions made by the learned

hypothesis, i.e., the ratio of the number of correct predictions made by hi on Ui by the

cardinality of Ui should be low when compared to current approaches;

3. the identification of effective stopping criteria preventing costly useless queries.

5.4.3 Evaluation of solutions

The evaluation of the solutions for our problem should be based on error, an essential performance

dimension in classification, and on the number of target classes that are known, i.e., that have

representative instances in L. Having representatives from all classes in C is a core concern in the

research problem being investigated.

At each iteration, i, the error rate is evaluated on the set of unlabeled instances, Ui – general-

ization error. The number of known classes is evaluated on the set of labeled instances, Li. Besides

the number of known classes in itself, it is also important to record the first time that a given class

is identified, i.e., the first iteration outputting a query being labeled with a given class, ck. We will

refer to this indicator as first-hit. From a broader perspective it is also important to evaluate the

minimum number of queries that are required to identify representative instances of all the target
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classes. we define label disclosure complexity for this purpose. All these performenca indicators

are defines in Section 6.3.1.



Chapter 6

D-Confidence

Given a target concept with an arbitrary number of classes together with a sample of unlabeled

instances from the target space – the working set, W – our purpose is to build an accurate classifier

covering all target classes while posing as few queries as possible. A query consists of requesting

the oracle, E, to provide the true label, y j, to a specific instance, x j ∈U . U is the set of instances

in W whose label is not known. Querying E for a label has a cost, A – the querying cost – assumed

to be constant throughout the learning process. The working set is assumed to be representative of

the class space – the representativeness assumption (Liu and Motoda, 2001).

Active learners commonly search for queries in the neighborhood of the decision boundary

(Figure 6.1a), where class uncertainty is higher. However, the uncertainty region, as perceived

given current evidence, might be unaligned with the real target concept. The (perceived) uncer-

tainty region is defined (Cohn et al., 1994) as the area that is not determined by available infor-

mation, that is, the set of instances in the working set such that there are two hypotheses that are

consistent with all training instances yet disagree on the classification of those.

Limiting instance selection to the perceived uncertainty region seems adequate when the train-

ing set is a representative sample of the target concept in which case the perceived uncertainty

region is probably consistent with the target concept. Class representativeness in the training set is

assumed by the majority of active learning (AL) approaches. In such a scenario, selecting queries

from the uncertainty region is effective in reducing version space.

But, what if the real uncertainty region is not correctly or fully perceived by the current hy-

pothesis? Under such an assumption, favoring exploitation rather than exploration withholds the

89
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chances to achieve an early complete coverage of the target concept.

(a) Perceived uncertainty region (b) Real uncertainty region

Figure 6.1: Uncertainty region (shaded). n represents labeled instances from class cn and x repre-
sents unlabeled instances. We assume that the concept to learn has three distinct classes, one of
which has not yet been identified

6.1 The intuition

The initial stage of the learning process, when still searching for exemplary instances covering

all target classes, is critical regarding the labeling cost. While still missing labeled instances of

some target classes, the uncertainty region perceived by the active learner (Figure 6.1a) might be

reduced to a portion of the real uncertainty region (Figure 6.1b) or might be severely biased. Being

limited to this partial erratic view of the concept, the learner may be misled and is more likely to

waste queries, thus increasing labeling cost at no benefit. The amount of the uncertainty region

that the learner misses is related to the number of target classes that have not yet been identified.

Our intuition (Figure 6.2) is that query selection should be based not only on classifier confi-

dence but also on distance to previously labeled instances. In the presence of two instances with

equally low confidence – say, Xa and Xb in Figure 6.2 – we prefer to select the one that is farther

apart from what we already know, i.e., from previously labeled instances – referring to Figure 6.2

we would prefer to query Xa than Xb.
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Figure 6.2: For equally confident instances prefer those that are far from previously explored
regions in instance space

We expect that an AL approach that exhibits a high exploratory potential at the initial phase of

the learning process – while still searching for exemplary instances for some of the target classes

– and then smoothly shifts to a higher exploitation potential might reduce the amount of wasted

queries, thus reducing the labeling cost. We search for a query selection criterion that favors

exploration – tends to selects queries from unexplored regions in instance space – at an initial

phase and then, as the input space is becoming explored, turns to favor exploitation.

6.2 The d-Confidence criterion

Many AL approaches rely on classifier confidence to select queries (Angluin, 1988) and assume

that the pre-labeled set covers all the labels to learn. The performance of these approaches is

focused on accuracy, favoring exploitation over exploration. Our scenario is somehow different:

we do not assume that we have pre-labeled instances from all classes and, besides accuracy, we

are mainly concerned with the fast identification of representative instances from all classes.

To achieve our goals we propose a new selection criterion, d-Confidence (Escudeiro and Jorge,

2012), which deals well with under-represented classes. Instead of relying exclusively on classifier

confidence we propose to select queries based on the ratio between classifier confidence and the

distance to known classes. D-Confidence, weighs the confidence of the classifier with the inverse

of the distance between the instance at hand and previously known classes.
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D-Confidence is expected to favor a faster coverage of instance space, exhibiting a tendency

to explore unknown regions. As a consequence, it provides better exploratory behavior than confi-

dence alone. This drift towards unexplored regions and unknown classes is achieved by selecting

the instance with the lowest d-Confidence as the next query. Low d-Confidence combines low

confidence – probably indicating instances from unknown classes – with high distance to known

classes – pointing to unseen regions in instance space. This effect produces significant differences

in the behavior of the learning process. Active learners focused on the uncertainty region, ask

queries that are expected to narrow it down. The issue is that the portion of the uncertainty region

that is perceived at a given moment is determined by the labels known at that moment. Focusing

our search for queries exclusively in this region, while we are still looking for exemplary instances

of some target classes that are not yet known, is not effective given our goals. Unknown classes

hardly come by unless they are represented in the current uncertainty region.

Algorithm 6.1 presents d-Confidence, our AL proposal specially tailored to achieve a fast class

representative coverage.

Algorithm 6.1 D-Confidence algorithm
1: given W
2: compute distance between instances in W
3: i = 1
4: initialize L1
5: while not stopping criteria do
6: Ui =W −Li

7: Ci = distinct class labels in Li

8: learn hi from Li

9: apply hi to Ui generating con fi(x j,ck),∀x j ∈Ui,Ck ∈Ci

10: for (x j ∈Ui) do
11: for (ck ∈Ci) do
12: dk

j =ClassDist(x j,ck)

13: dcon fi(x j,ck) =
con fi(x j,ck)

dk
j

14: end for
15: dCon fi(x j) = maxck(dcon fi(x j,ck))
16: end for
17: qi = argmin

x j

(dCon fi(x j))

18: Li+1 = Li∪< qi,E(qi)>
19: i++
20: end while

W is the working set, a representative sample of instances from the problem space. Li is a
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subset of W . Members of Li are the instances in W whose labels are known at iteration i. Ci is

the set of the class labels that have representative instances in Li. U , a subset of W , is the set of

the unlabeled instances present in the working set. At iteration i, Ui is the (set) difference between

W and Li; hi represents the classifier learned at iteration i; qi is the query selected at iteration i;

con fi(u j,ck) is the posterior confidence on class ck given instance u j, at iteration i.

The core of our proposal is the computation of the d-Confidence value of unlabeled instances.

That is accomplished at the outer for cycle in Algorithm 6.1, at steps 10 to 16, as explained next.

6.2.1 Computing d-Confidence

D-Confidence is obtained as the ratio between confidence and distance between unlabeled in-

stances and known classes (Equation 6.1). We may view d-Confidence as the confidence per unit

distance.

dCon f (x j) = max
k

(
con f (x j,ck)

dk
j

)
(6.1)

For a given unlabeled instance, x j ∈Ui, the classifier generates the posterior confidence w.r.t.

known classes (step 9 in Algorithm 6.1). The distance between one unlabeled instance x j and all

labeled instances belonging to class ck ∈ Ci, dk
j , is computed by ClassDist() at step 12. At our

current implementation this distance indicator, dk
j , is the median of the distances between instance

x j and all labeled instances in Li belonging to class ck. We expect the median to soften the effect

of outliers. The Euclidean metric was previously used, at step 2, to compute the distance between

all pairs of instances in W . We compute dcon fi(x j,ck), the marginal d-Confidence for each known

class ck ∈Ci given x j, by dividing class confidence by the aggregated distance to that class (step

13).

The maximum d-Confidence on individual classes ck ∈Ci for a given instance x j ∈Ui is finally

computed (step 15) as the d-Confidence of the instance at iteration i, dCon fi(x j).

If we now look at the iterative learning process as a whole, we see that at the initial phase there

are few labeled instances – the instance space is barely explored – and the median of the distances

to know classes is high for many unlabeled instances and low for others. This high variability will

have a big influence in d-Confidence and will led it to select queries that lie far apart from known

classes, thus exhibiting a high exploratory potential. When the instance space gets more and more
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explored, the median of the distances to known classes is expected to become more homogeneous

among unlabeled instances and the confidence factor of d-Confidence exerts its influence rising

the exploitation potential of d-Confidence.

D-Confidence is expected to dynamically shift between exploration and exploitation as the

learning process iterates. This dynamic shifting is guided by the bond between the variance of the

posteriors generated by hi and the variance of the distance between members of Ui and Li.

Being based on the distance between what is known and what has not been explored yet,

d-Confidence is also a robust approach that applies independently of the specific geometric prop-

erties of the instance space. D-Confidence automatically adapts to the input space structure –

having both U and L into consideration – without requiring any preliminary tuning effort. This

characteristic of d-Confidence is expected to reduce any severe bias from the original data distri-

bution that may occur in AL approaches that are exclusively based on confidence (Wang and Hua,

2011) and do not take into consideration the structural properties of the input space.

Also, this approach does not incur in the overhead cost that is imposed by the few AL ap-

proaches that are concerned with the exploration versus exploitation compromise. For instance,

(Osugi et al., 2005; Cebron and Berthold, 2009) are two of these approaches, both requiring to

tune two parameters guiding the transition between exploration and exploitation.

SVM classifiers – by default, we use SVM as the base classifier – can be unstable with a small

training set (Dagli, 2005). This is probably due to the fact that SVM confidence is very high for

any instances lying far from the decision margin. The decision hyperplane might change signifi-

cantly from one iteration to the next when the training set is small and even more when we do not

have an initial pre-labeled set covering all classes. As a consequence the set of instances where

the classifier is highly confident may also change from iteration to iteration rather easily. D-Confi-

dence merges two complementary aspects of the working dataset: distance, which is measured in

the input features space, and confidence, which is computed in the base classifier features space.

Adding the contribution of the distance measured in the input space is expected to improve the

robustness of d-Confidence and contribute to improve the stability of the learning process when

using SVM base classifiers.
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6.2.2 Baseline criteria

D-Confidence aggregates two baseline AL criteria, confidence and distance (based on farthest-

first). The confidence generated at each iteration by the current version of the base classifier,

con fi(x j,ck), is the posterior probability of class ck given x j. The aggregated distance to known

classes, dk
j , is computed by ClassDist(x j,ck) based on the individual distances between each pair

of instances (Equation 6.2). Individual pair distances might be computed by any distance function

– at the current implementation we are using the Euclidean distance. ClassDist(x j,ck) is any

aggregation function computed on the individual pair distances between one unlabeled instance

x j ∈Ui and every labeled instance from class ck ∈Ci – at the current implementation we are using

the median.

ClassDisti(x j,ck) = dk
j = median

(
dist

(
x j,Lk

i

))
(6.2)

Lk
i is the set of labeled instances known at iteration i that belong to class ck, that is, Lk

i ={
< x j,y j >∈ Li : y j = ck

}
.

6.2.3 Effect of d-Confidence on SVM

The output of SVM classifiers is the signed distance to the decision boundary measured in terms

of half margin width – an instance located on the decision boundary outputs 0 while an instance

which is collinear with support vectors for class +1 generates an output 1 and an instance which

is collinear with support vectors for class −1 generates an output −1. An instance with a distance

to the decision boundary that is n times the distance between the boundary and a support vector

outputs n. This distance, d, is transformed into p ∈ [0,1], a measure of the posterior confidence of

the learner on class +1.

If, as is commonly the case, this transformation is based on logistic regression (Equation 6.3),

the SVM classifier will be very confident on any instance located far from the decision boundary

(Figure 6.3a), reducing the chances to select queries that are far from the current uncertainty

region.

p = f (d) =
1

1+ e−d (6.3)
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To prevent this behavior and to direct the learner to low confidence instances but also to unex-

plored regions in instance space, the d-Confidence value of an instance is high in the neighborhood

of known instances – featuring high confidence and low distance to labeled instances – decreasing

with the distance to those (Figure 6.3b).

(a) Confidence for class +1 (b) D-Confidence for class +1

Figure 6.3: Effect of d-Confidence for class +1 with an SVM classifier. We assume we have
labeled instances near the point (0,0) of the bi-dimensional input space. The decision boundary is
the diagonal line from (−10,10) to (10,−10)

6.3 Experimental setup

The evaluation of d-Confidence described in this chapter provides empirical evidence related to its

ability as a query selection criterion. In particular, we investigate whether d-Confidence reduces

the labeling effort needed to cover the set of target classes without compromising predictive ability.

Our evaluation plan was designed to address the following issues:

(a) compare the performance of d-Confidence against its baseline and other state-of-the-art crite-

ria regarding the ability to retrieve exemplary instances from all target classes at low cost;

(b) compare the performance of d-Confidence against its baseline and other state-of-the-art crite-

ria regarding generalization error;

(c) assess the impact of the base classifier on the performance of d-Confidence;

(d) determine whether the performance of d-Confidence depends on the dimensionality of the

input feature space. In particular, we want to determine whether d-Confidence is appropriate

for high-dimensional unstructured datasets, mainly text corpora.
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The evaluation of d-Confidence was performed over three base classifiers, 29 datasets and

seven state-of-the-art query selection criteria, including d-Confidence and its baseline criteria –

confidence and farthest-first. Each experimental trial is characterized by a dataset, a base classifier

and a query selection criterion.

The following performance indicators were used:

• error and known classes (see Definition 1) that are evaluated at each iteration throughout

the learning cycle and

• first-hit (see Definition 2) and label disclosure complexity (see Definition 3) that are evalu-

ated once for each combination of dataset, base classifier and query selection criterion.

6.3.1 Performance indicators

To make the performance indicators referred above – error, known classes, first-hit and label dis-

closure complexity – clear, lets assume a generic classification task. C is the set of class labels to

learn (refer to Section 5.4.1 in Chapter 5). Ci ⊆C is the set of class labels contained in the training

set, Li, available at iteration i.

AL is an iterative process requiring some prior initialization. C1 is the set of labels that are

represented in L1, the initialization training set. L1 contains two pre-labeled instances from W

representing two distinct target classes, that is, C1 contains two distinct classes from C. At each

iteration a new labeled instance, called query, is added to the training set.

Error is a common assessment criterion for classification tasks. We have computed the progress

of the generalization error – the error in the test set – over all iterations as new labeled instances

are added to the training set.

Known classes is the number of classes that have representative labeled instances in the training

set, Li, at a given iteration, i.

Definition 1. Known classes, kci is the cardinality of Ci, that is, the number of classes given for

learning.
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First-hit is a performance indicator defined for each class, ck, as the number of queries that are

required to identify the first instance of the class for a given dataset, base classifier and query se-

lection criterion. The two initial queries – the instances in L1 – are not considered when computing

first-hit. In each experimental trial first-hit is computed for all ck ∈C such that ck /∈C1.

Definition 2. For each ck ∈C, first-hit, f hk, is the number of queries required to identify the first

instance of class ck.

Label disclosure complexity aims to evaluate the ability of the learning process to reveal all

the target classes. Label disclosure complexity (LDC) is inspired on label complexity (Hanneke,

2007). Label complexity is defined for the AL setting as the number of queries that are sufficient

and necessary to learn the target concept. LDC is the minimum number of queries required to

identify at least one instance from every class to learn. LDC equals the maximum first-hit com-

puted over all the classes for a given combination of dataset, base classifier and query selection

criterion.

Definition 3. Label disclosure complexity, LDC, is the minimum number of queries that are re-

quired to identify at least one instance from every ck ∈C. LDC is equal to maxk ( f hk).

6.3.2 Evaluation plan

The d-Confidence evaluation plan includes three phases that were performed in sequence. Besides

these results we will also refer to an independent work from our colleagues Motta et al. (Motta

et al., 2012) given its relevance for our investigation (Section 6.4.4).

Our first concern was the preliminary evaluation of the general competence of d-Confidence

regarding an early coverage of the input space which is expected to contribute to the early discov-

ery of all target classes. This competence was evaluated at the first phase, Instance space coverage

(Section 6.4.1), over 16 artificial datasets simulating a broad range of two-dimensional input space

topologies. This phase is a preliminary study aimed at realizing the potential of d-Confidence in

addressing issues (a) and (b) (refer to Section 6.3).

In the second phase, Class disclosure and accuracy (Section 6.4.2), addressing issues (a), (b)

and (c), we have evaluated on real datasets the impact of the base classifier on d-Confidence –

issue (c) – and its performance regarding class disclosure and accuracy – issues (a) and (b). For
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this phase we have used five UCI datasets (Frank and Asuncion, 2010) and three distinct base

classifiers.

The third evaluation phase, Text (Section 6.4.3), is focused on text corpora. At this phase we

have used two text corpora to evaluate the performance of d-Confidence regarding class disclosure

and accuracy on high-dimensional unstructured datasets. This phase addresses issues (a), (b) and

(d).

Estimates were performed using 10-fold cross validation. Whenever possible, folds are strati-

fied random samples comprising a partition of the working set. Stratified samples are not possible

in extremely imbalanced datasets due to the big difference between the frequency of majority and

minority classes. In such cases, we respect the original proportions whenever possible, i.e., when

the classes are frequent enough. The remaining classes are represented by the minimum number

of unlabeled instances, one or two, according to their relative frequency.

The labels in the training set are initially hidden from the classifier being revealed as the

learning process iterates. In each iteration, the AL algorithm asks for the label of a single instance.

In each cross validation fold, the AL process is initialized by revealing to the classifier two pre-

labeled instances from two distinct classes. These are randomly selected from the training set. For

a given dataset the initial pre-labeled instances in each fold, L1, are invariant. The same L1 is used

to boot all classifiers at the same validation fold.

In all the experiments, in all assessment phases, we have compared d-Confidence against its

baseline criteria: confidence – where query selection is solely based on low posterior confidence

of the current classifier – and farthest-first – where query selection is based only on distance from

training instances which is independent from the base classifier.

We have performed significance t-tests for the differences of the means observed when using

farthest-first, confidence and d-Confidence. Statistically different means, assuming a significance

level α = 5%, are presented in bold face.

In some cases, to avoid excessive computation time, we have used stratified random samples

extracted from the whole dataset. There is no loss of generality arising from this fact since the

learning process converges in respect to the indicators being measured, before those samples are

exhausted. Sample dimension was previously estimated to assure acceptable computation costs as

well as residual impact, if any, on the experimental results.
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D-Confidence is tailored to use SVM as a base classifier. The main reason for this choice is

the fact that we are concerned with text classification and SVM is commonly referred as being

among the most accurate classifiers for high dimensional input spaces, in general, and text, in

particular (Chakrabarti, 2003). Except for the second phase – class disclosure and accuracy –

where we address the impact of other base classifiers, we always use SVM classifiers. We are using

linear kernels for text corpora and Radial Basis Function (RBF) kernels for tabular data. Linear

kernels do not require any parameter tuning while RBF kernels require to tune two parameters: C,

the penalty cost for errors in the training set and γ , the width of the RBF kernel. We have used

the SMV implementation provided by the e1071 package for R1. Parameter tuning in this SVM

implementation – available through the tune.svm() function – is unstable, depending on the cross

validation folds used. Thus, to avoid uncontrollable effects we have decided to set C and γ to

standard values for all datasets: C = 10 and γ = 0.1.

Datasets used in the first phase A preliminary analysis of instance space coverage was investi-

gated during the first evaluation phase over bi-dimensional artificial datasets. These datasets were

tailored to simulate certain geometric properties allowing to study the impact of global dataset

meta-attributes on the performance of d-Confidence. We have complemented these with a (real)

UCI dataset, Iris, with the aim of further illustrating the robustness of d-Confidence.

Artificial datasets were designed to simulate a set of geometric properties: cluster alignment,

label distribution, cluster topology and cluster separability. All these properties are defined as

binary.

Cluster alignment refers to non-collinear centroids (0) or collinear centroids (1). Collinear

centroids means that the gravitational centers of data clusters lie in or close to a straight line in

input features’ space.

Label distribution may be balanced (0) or imbalanced (1). Balanced datasets have a uniform

label distribution in the working set.

Cluster topology may be polymorphic (0) or isomorphic (1). Polymorphic datasets have clus-

ters of instances belonging to the same class located in several distinct regions in input space.

1http://www.r-project.org, accessed on October 2012
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Cluster separability may be separable (0) or overlapping (1). Separability refers to the input

features space – on separable clusters it is possible to define linear decision boundaries between

all pairs of clusters. It should be noted that linear separability of classes is not always considered

in its strict sense. This would imply, for each pair of classes, the existence of some linear decision

function being able to distinguish instances from those classes. However, in the polymorphic

datasets, classes are constituted by several clusters which are apart from each other. In these cases

when referring to separable classes we mean in fact linear separability in its strict sense but for

each pair of clusters. At polymorphic datasets the strict sense of linear separability is verified

between pairs of clusters, not classes.

Sixteen artificial datasets covering the possible combinations of these four binary meta-de-

scriptors were generated (Table 6.1). These datasets have been named with a four digit key where

each digit refers to a given property as previously defined. For instance, the ds0010 dataset has

non-col-linear centroids, balanced label distribution, isomorphic structure and linearly separable

classes.

We expect that a group of artificial datasets covering the possible combinations of these geo-

metric properties will provide valuable information on the behavior of d-Confidence that can be

extrapolated and further investigated in the following phases. These artificial datasets are simplis-

tic – with only two attributes – but suitable for a simple graphical representation which is useful

for a preliminary study.

Artificial instances are described by two numeric attributes plus the class attribute. Numeric

attributes are random variables with uniform distribution centered at O with range 2R. O and R

are set according to the pattern we want to simulate in each dataset. Random noise with a normal

distribution – with zero mean and σ = 0.1R – is added to both attribute values. The class attribute

has three distinct values, C = {1,2,3}. Regular classes have 100 instances and under-represented

classes have 10 instances. A scatter plot of these datasets is presented in Figure 6.4.

Datasets used in the second phase The experiments in the second phase – class disclosure and

accuracy – were performed over tabular data. We have used five datasets from the UCI reposi-

tory (Frank and Asuncion, 2010):

• Iris (one class is separable while the other two are not),
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(a) ds0000 (b) ds0001 (c) ds0010 (d) ds0011

(e) ds0100 (f) ds0101 (g) ds0110 (h) ds0111

(i) ds1000 (j) ds1001 (k) ds1010 (l) ds1011

(m) ds1100 (n) ds1101 (o) ds1110 (p) ds1111

Figure 6.4: Artificial datasets
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Table 6.1: Artificial datasets and their properties

Dataset properties
DatasetAlignment Distribution Topology Separability

non-collinear

balanced

polymorphic
separable ds0000

overlapping ds0001

isomorphic
separable ds0010

overlapping ds0011

imbalanced

polymorphic
separable ds0100

overlapping ds0101

isomorphic
separable ds0110

overlapping ds0111

collinear

balanced

polymorphic
separable ds1000

overlapping ds1001

isomorphic
separable ds1010

overlapping ds1011

imbalanced

polymorphic
separable ds1100

overlapping ds1101

isomorphic
separable ds1110

overlapping ds1111

• Cleveland heart disease (imbalanced class distribution),

• a random sample from Vowels (higher number of distinct classes than the others),

• a sample from Satlog (higher number of attributes than the others) and

• a sample from Poker (highly imbalanced class distribution).

These datasets were selected for their properties, mainly due to their distinct class distributions

(Table 6.2).

Table 6.2: Class distribution in tabular datasets

Dataset #instances #features 1 2 3 4 5 6 7 8 9 10 11

Iris 150 4 50 50 50
Cleveland 298 13 161 53 36 35 13
Vowels 330 10 30 30 30 30 30 30 30 30 30 30 30
Satlog 500 36 125 118 96 67 48 46
Poker 500 10 270 170 34 12 4 3 3 2 1 1

The Poker dataset with a highly imbalanced class distribution causes some exceptions. The

two classes with frequency 1 from the Poker dataset are never selected as initial classes. Two out

of the 10 folds used for cross validation do not include all the 10 classes in the Poker dataset.
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For this reason, the maximum number of classes found when using this dataset is below the total

number of classes in the dataset, since this figure is estimated as a mean over all validation folds.

At this second evaluation phase we have investigated the performance of d-Confidence when

using, besides SVM, neural networks (NNET) and decision trees (RPART) as base classifiers.

Datasets used in the third phase For the third phase we have selected two high-dimensional

unstructured datasets. Two samples from traditional text corpora were used:

• a stratified sample from the 20 Newsgroups corpus (NG), containing 500 documents de-

scribed by 10333 terms and

• a stratified sample from the R52 set of the Reuters-21578 collection (R52), containing 1000

documents described by 6019 terms.

The NG dataset has documents from 20 distinct classes while the R52 dataset has documents from

52 distinct classes. Text documents are modeled with TF×IDF weighting. These datasets have

been selected for their distinct class distributions. The class distribution in NG is fairly balanced

(Figure 6.5a) with a maximum frequency of 35 and a minimum frequency of 20 while the R52

dataset presents an highly imbalanced class distribution (Figure 6.5b). The most frequent class in

R52 has a frequency of 435 while the least frequent has only two instances in the dataset. This

dataset has 42 classes, out of 52, with a frequency below 10 from which 31 have a frequency below

five.

(a) NG corpus (b) R52 corpus

Figure 6.5: Class distributions in text corpora

We are relying on SVM as our base classifier by default. Although the performance of text

classifiers depends heavily on the document collection at hand (Yang and Pedersen, 1997), some



6.4 Evaluation 105

classifiers, particularly SVM and K-Nearest-Neighbors seem to outperform others in the majority

of the domains (Joachims, 1998). A few properties of text documents – high dimensional feature

spaces, many irrelevant features, document vectors’ sparsity and the fact that most text catego-

rization problems are linearly separable – justify the dominance of SVM in text categorization

tasks (Joachims, 1998).

6.4 Evaluation

The evaluation of d-Confidence described in this chapter investigates its ability as a query selection

criterion in comparison to its baseline and other state-of-the-art criteria. In particular, we inves-

tigate the ability of d-Confidence to reduce the labeling effort needed to cover all target classes

without compromising accuracy. The results obtained in the three phases of our evaluation plan

are discussed in Sections 6.4.1 to 6.4.3. The results from the work of our colleagues Motta et

al. (Motta et al., 2012) are discussed in Section 6.4.4.

6.4.1 Instance space coverage

This phase aims to assess the ability of d-Confidence to achieve a fast coverage of input space and

fast retrieval of representative instances from all target classes. Fast, in this sense, means with few

queries which is equivalent to low cost. We also want to evaluate the accuracy of the classification

models generated by d-Confidence. Are we trading accuracy for coverage? Another aim of these

experiments is to investigate how the geometric structure of the dataset impacts the performance

of d-Confidence.

In this phase we have used SVM with RBF kernels as the base classifier. We have recorded,

at every iteration, the newly added query, the number of distinct labels known to the classifier

and generalization error for all selection criteria under evaluation – farthest-first, confidence and

d-Confidence. From these, we have computed, on each dataset, mean coverage, mean number

of queries required to identify the hidden class – which in this case is equivalent to LDC since

#C = 3 and #C1 = 2 – and mean generalization error in each iteration over all cross validation

folds (Table 6.3).
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Table 6.3: Coverage (Cov), mean number of queries to identify one instance from the unknown
class (LDC) and error (Err) with an SVM classifier on artificial data. Mean coverage and error are
computed over all iterations in all cross validation folds for every artificial dataset. ff stands for
farthest-first, c stands for confidence and dc stands for d-Confidence

Dataset Cov (ff) Cov (c) Cov (dc) LDC (ff) LDC (c) LDC (dc) Err (ff) Err (c) Err (dc)
ds0000 0.745 0.967 0.979 46 20 6 0.209 0.038 0.023
ds0001 0.756 0.922 0.937 42 19 22 0.281 0.192 0.174
ds0010 0.716 0.920 0.908 71 19 2 0.104 0.032 0.014
ds0011 0.684 0.893 0.886 24 27 3 0.198 0.137 0.104
ds0100 0.838 0.897 0.945 180 9 10 0.185 0.032 0.046
ds0101 0.721 0.914 0.933 66 35 13 0.221 0.112 0.106
ds0110 0.725 0.877 0.894 147 28 2 0.149 0.052 0.019
ds0111 0.675 0.875 0.870 149 34 11 0.219 0.111 0.086
ds1000 0.767 0.908 0.974 89 29 3 0.352 0.077 0.088
ds1001 0.743 0.953 0.976 74 11 7 0.411 0.240 0.255
ds1010 0.771 0.893 0.958 180 24 2 0.238 0.039 0.016
ds1011 0.704 0.911 0.933 92 25 6 0.282 0.174 0.144
ds1100 0.769 0.883 0.819 104 55 13 0.222 0.183 0.198
ds1101 0.767 0.852 0.835 89 22 11 0.276 0.188 0.178
ds1110 0.766 0.862 0.877 18 29 2 0.153 0.052 0.028
ds1111 0.667 0.803 0.827 7 32 3 0.220 0.128 0.120

Iris 0.720 0.918 0.949 84 18 3 0.304 0.134 0.082

Instance space coverage is the percentage of instances in W that lie on a given neighborhood

of any labeled instance. We assume that, at any iteration i, those instances yielding a distance

to any labeled instance in Li lower than 1
10 of the maximum distance between instances in W are

covered. The progress of instance space coverage is depicted in Figure 6.6 where we can see the

percentage of covered instances after querying four, 16 and 64 instances.

Figure 6.6: Progression of instance space coverage as new queries are added. c stands for confi-
dence; dc stands for d-Confidence

On every dataset we have computed mean coverage and mean error over all iterations and

over the 10 folds for farthest-first, confidence and for d-Confidence. This process generated three
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paired samples with the observed instance space coverage plus three paired samples with observed

error. With these samples we have tested the significance of the differences of the means using

paired t-tests.

The number of queries required to identify one instance from the unseen class is estimated as

the average over the 10 folds for farthest-first, confidence and d-Confidence. These means have

also been tested for equal means with paired t-tests. Statistically different means, at a significance

level of 5%, are bold faced in Table 6.3.

D-Confidence consistently improves instance space coverage over both confidence and far-

thest-first. This behavior is observed irrespectively of dataset properties. There is a clear domi-

nance of both d-Confidence and confidence when compared to farthest-first.

D-Confidence outperforms confidence on six out of eight collinear datasets – collinear datasets

have the first numerical digit on their name set to 1, ds1??? (see Section 6.3.2). This same figure is

observed on balanced datasets (ds?0??), on polymorphic (ds??0?) and also on separable (ds???0)

datasets. On all the other groups of datasets – non-collinear (ds0???), imbalanced (ds?1??), iso-

morphic (ds??1?) and overlapping (ds???1) – d-Confidence outperforms confidence on five out

of eight datasets.

The results on polymorphic datasets are particularly interesting since these contain classes

having distinct clusters in different regions of instance space. Although the coverage efficiency

of d-Confidence is not as clear as in isomorphic datasets, d-Confidence still outperforms both

confidence and farthest-first.

From Figure 6.6 we observe that confidence generally achieves a better coverage than d-Con-

fidence after the initial four queries – which happens in 10 out of 16 datasets. After these few

initial queries this trend reverses and d-Confidence improves over confidence. After 16 queries

d-Confidence outperforms confidence in 14 out of 16 datasets.

Label disclosure complexity When analyzing LDC – which, in this case is equivalent to the

number of queries required to first hit an instance of the third class – we observe a clear dominance

of d-Confidence against confidence and farthest-first. D-Confidence outperforms confidence and

farthest-first in 14 out of 16 datasets. Confidence present a lower LDC at ds0001 and ds0100. The

overall mean LDC on these artificial datasets is 7 for d-Confidence, 26 for confidence and 86 for
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farthest-first – a clear advantage of d-Confidence. This is a core result addressing our purposes.

The low LDC observed in these artificial datasets is a very promising indicator of the competence

of d-Confidence to achieve low-cost disclosure of all target classes.

Error Somehow surprisingly, we observe that d-Confidence also improves on error. D-Con-

fidence outperforms both confidence and farthest-first in 11 out of 16 datasets while confidence

achieves the better performance in four out of 16. In other words, improved class coverage is not

done at the cost of increasing error.

Cluster morphism seems to have impact on error. From all the isomorphic datasets, d-Con-

fidence has a significant lower mean error than that of confidence and farthest-first on seven out

of eight datasets. However, on polymorphic datasets, d-Confidence has similar results to those of

confidence – d-Confidence outperforms confidence on three out of eight datasets, while the inverse

occurs on four datasets.

Performance evaluation on Iris Such results on simulated data have been checked on a real

dataset (Figure 6.7). We have applied this same experimental plan to the Iris dataset (Frank and

Asuncion, 2010). The results we have achieved on Iris confirm the results on artificial data. In-

stance space coverage is more efficient when using d-Confidence and this is not achieved at the

cost of increasing error which, in fact, also improves.

Figure 6.7: Instance space coverage on the Iris dataset as new queries are added
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On the Iris dataset we have also recorded the number of queries required to get a full coverage

of instance space. Instance space is assumed to be fully covered when all instances in the working

set lie closer than a certain predefined distance from at least one labeled instance. This predefined

distance has been set to 1
10 – the initial setting – and then to 1

8 , 1
6 and 1

4 of the maximum distance

between instances. It is expected that the number of queries required to achieve a full coverage

decreases as the radius of the assumed covered neighborhood increases. This should be more

evident when newly added queries belong to remote regions in instance space thus having reduced

neighborhood intersections with previously covered instances. Our purpose is to evaluate whether

d-Confidence is in fact exploring unseen regions in instance space more efficiently than confidence

– its direct competitor.

We have observed that the number of queries required to get a 100% coverage of instance

space with confidence decreases from 84 to 35 – a reduction of 58% in the labeling effort –

when the neighborhood radius goes from 1
10 to 1

4 . On this same scenario, d-Confidence labeling

effort to get a full coverage is reduced from 51 to 8 queries – a reduction of 84%. These results

confirm that d-Confidence selects queries from remote regions in instance space more efficiently

than confidence.

The performance of d-Confidence on Iris supports the foreseen improvements over its baseline

criteria. The Iris LDC for farthest-first is 84, for confidence it is 18 and for d-Confidence, three.

The mean error is 30.4% for farthest-first, 13.4% when using confidence and 8.2% when using

d-Confidence.

Impact of input space geometry The difference between farthest-first’s performance and the

other criteria is very significant. We have questioned whether farthest-first under-performance is

related to some bias introduced by our artificial datasets and/or the indicator we are using to assess

instance space coverage. Our hypothesis is that it is related to both the topology of the dataset –

mainly with the relation between dense and sparse regions in instance space – and the indicator in

use to measure coverage.

Being guided by distance only, farthest-first might be directed to distant regions that are sparse.

This behavior does not contribute to instance space coverage the way we have defined it – number

of instances lying in some neighborhood of all labeled instances in Li.
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Table 6.4: Artificial datasets sorted by decreasing order of farthest-first coverage

Dataset Cov (ff)

ds0100 0.838
ds1010 0.771
ds1100 0.769
ds1000 0.767
ds1101 0.767
ds1110 0.766
ds0001 0.756
ds0000 0.745
ds1001 0.743
ds0110 0.725
ds0101 0.721
ds0010 0.716
ds1011 0.704
ds0011 0.684
ds0111 0.675
ds1111 0.667

Sorting the artificial datasets by decreasing order of farthest-first mean coverage (see Table 6.4)

provides some evidence on this question.

We may observe that in the top eight datasets there are six separable datasets. Our separable

datasets have dense clusters distant from each other (see Figure 6.4). This is an adequate topology

for farthest-first that guides the learning process to select queries from distant regions that are

simultaneously dense thus, contributing to improved coverage in our sense. In non-separable

datasets there is no clear distance between clusters and the distribution of instances in input space

is more homogeneous. When being directed to select queries in borderline regions, that are also

less dense, farthest-first misses the chance to improve coverage as much as the other criteria.

Impact of cluster variance Analyzing cluster variance (Table 6.5) provides further evidence on

this hypothesis. Inter-cluster and intra-cluster variance were computed for the number of clusters

artificially generated in each dataset.

The correlation between the percentage of total variance that is explained by inter-cluster vari-

ance and instance space coverage for farthest-first (Table 6.6) is more than 10% higher than that

of confidence and d-Confidence. There is also a high correlation between d-Confidence and con-

fidence coverage rates.
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Table 6.5: Percentage of inter-cluster to total variance

Dataset Number of clusters Inter-cluster/Total variance

ds0000 6 0.886
ds0001 5 0.785
ds0010 3 0.875
ds0011 3 0.670
ds0100 5 0.974
ds0101 5 0.874
ds0110 3 0.837
ds0111 3 0.664
ds1000 6 0.958
ds1001 6 0.947
ds1010 3 0.924
ds1011 3 0.765
ds1100 5 0.897
ds1101 5 0.827
ds1110 3 0.666
ds1111 3 0.651

Apparently confidence introduces a bias that leads the learning process to select queries from

more dense areas in instance space – favoring exploitation. Farthest-first directs the learning pro-

cess to query instances in unexplored regions irrespectively of how dense they are – favoring

exploration. Despite the high correlation between the coverage rates of d-Confidence and con-

fidence, d-Confidence outperforms confidence probably for its ability to take advantage of the

merits of both its baseline criteria.

Main outcomes The results from these experiments provide evidence that d-Confidence outper-

forms the traditional confidence approach as well as farthest-first regarding instance space cover-

age, identification of unknown classes and error. D-Confidence improves instance space coverage

and reduces the number of queries required to identify instances from unknown classes without

Table 6.6: Correlation between inter-cluster/total variance and coverage

Correlation Inter/Total Cover ff Cover c

Cover ff 0.689 1
Cover c 0.562 0.231 1

Cover dc 0.580 0.316 0.806
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degrading accuracy – in fact, improving it on average – when compared to confidence and far-

thest-first. We are not trading coverage by accuracy in these artificial datasets.

Instance space is covered more efficiently when using d-Confidence, creating conditions to

identify representative instances from unknown classes earlier. On average, d-Confidence requires

almost four times less queries to identify instances from unknown classes than confidence and 12

times less than farthest-first.

Regarding the global properties of the datasets, d-Confidence is clearly better than confidence

on well behaved datasets (balanced, collinear, isomorphic and separable). On not so well behaved

datasets, d-Confidence is also better, but not as clearly, especially with respect to classification

error. In general, d-Confidence also improves the results of its baseline criteria regarding the

predictive ability.

6.4.2 Class disclosure and accuracy

In this experimental phase we have evaluated the performance of d-Confidence over tabular data

w.r.t. LDC, accuracy and first-hit. This assessment was performed over a set of distinct base

classifiers to evaluate their impact on the performance of the learning strategy.

We have recorded the number of distinct labels identified and the error on the test set for each

iteration, for each combination of dataset, base classifier and query selection criteria. From these,

we have then computed the mean number of known classes and mean generalization error in each

iteration over all cross validation folds.

The evolution of the error rate and the number of known classes for each dataset, when using

SVM as a base classifier, is shown in Figures 6.8a to 6.8e with curves for each selection criteria

under evaluation2.

For convenience of representation, the mean number of known classes was normalized to

the total number of classes in the dataset thus being transformed into the percentage of known

classes instead of the absolute number of known classes. This way the number of known classes

and generalization error are both bounded in the same range – between 0 and 1 – and can be

conveniently represent on the same chart.

2We will use the following notation to refer to results in tables and charts: ff stands for farthest-first, c stands for
confidence and dc stands for d-Confidence. Generalization error will be referred by e, kc will refer to the mean number
of known classes and ldc refers to LDC.
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Means at each iteration (Table 6.7) are micro-averages – all the instances are equally weighted

– over all cross validation folds for a given combination of dataset, classifier and selection cri-

terion, providing a perspective of the average performance of the query strategy throughout the

learning cycle.

The evolution of these indicators – generalization error and mean number of known classes –

throughout all the learning cycle can be summed up to provide evidence on overall performance.

Table 6.7: Micro-averaged number of known classes and error. Means have been computed over
all iterations from all cross validation folds for each combination of dataset, classifier and query
selection criteria

Dataset Classifier ff.kc c.kc dc.kc ff.e c.e dc.e

Iris SVM 2.8 3.0 3.0 0.257 0.134 0.082
Iris NNET 2.8 2.7 3.0 0.14 0.164 0.05
Iris RPART 2.8 3.0 3.0 0.342 0.187 0.184
Cleveland SVM 4.9 4.8 4.9 0.451 0.473 0.45
Cleveland NNET 4.9 4.9 4.9 0.464 0.465 0.447
Cleveland RPART 4.9 4.9 4.9 0.479 0.496 0.485
Poker SVM 8.7 7.2 8.8 0.484 0.466 0.484
Poker NNET 8.7 7.8 8.8 0.526 0.49 0.49
Poker RPART 8.7 7.5 8.6 0.524 0.495 0.517
Satlog SVM 5.6 5.8 6.0 0.349 0.186 0.162
Satlog NNET 5.6 5.9 5.9 0.729 0.726 0.739
Satlog RPART 5.6 5.9 6.0 0.430 0.261 0.28
Vowels SVM 9.8 10.4 10.5 0.546 0.341 0.322
Vowels NNET 9.8 10.7 10.6 0.661 0.601 0.623
Vowels RPART 9.8 10.7 10.5 0.645 0.617 0.632

Besides the overall error and number of known classes we have also observed first-hit (Ta-

ble 6.8). When computing first-hit for a given class we have omitted the experiments where the

initialization labeled set, L1, contains that class, following Definition 2.

From first-hit we compute LDC for each scenario (Table 6.9) – LDC is the maximum first-hit,

that is, the first-hit of the last class being identified. LDC gives the minimum number of queries

that are required by the AL strategy to fully cover the target concept, that is, to identify at least

one instance from each target class.

Support vector machine as base classifier If we focus on SVM, we can observe in Table 6.7

that, in general, d-Confidence outperforms confidence and farthest-first, both at labeling effort
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(a) Iris dataset (b) Cleveland dataset

(c) Vowels dataset (d) Satlog dataset

(e) Poker dataset

Figure 6.8: Known classes and generalization error in tabular data (when using SVM as the base
classifier)
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Table 6.8: Mean number of queries required to first hit unknown classes

Dataset Classifier AL 1 2 3 4 5 6 7 8 9 10 11

Iris SVM ff 1.0 65.3 1.0
Iris SVM c 1.0 6.7 2.7
Iris SVM dc 1.0 2.7 1.0
Iris NNET ff 1.0 65.3 1.0
Iris NNET c 37.5 1.0 83.0
Iris NNET dc 1.0 1.3 1.0
Iris RPART ff 1.0 65.3 1.0
Iris RPART c 1.0 2.0 3.3
Iris RPART dc 1.0 1.7 1.0
Cleveland SVM ff 3.2 12.5 13.5 2.3 24.2
Cleveland SVM c 2.5 7.0 8.3 19.0 39.8
Cleveland SVM dc 2.7 14.5 8.3 4.8 8.0
Cleveland NNET ff 3.2 12.5 13.5 2.3 24.2
Cleveland NNET c 2.2 2.8 5.3 3.5 16.2
Cleveland NNET dc 1.7 9.8 4.7 3.5 10.5
Cleveland RPART ff 3.2 12.5 13.5 2.3 24.2
Cleveland RPART c 3.0 1.0 17.7 4.3 16.2
Cleveland RPART dc 2.2 13.2 3.5 4 5.3
Poker SVM ff 4.5 2.0 2.9 17.2 27.6 85.1 39.1 63.5 200.4 63.7
Poker SVM c 1.0 3.0 19.5 42.8 112.5 112.2 146.9 222.9 250.9 248.8
Poker SVM dc 3.0 2.0 4.6 9.0 45.0 96.6 98.2 68.1 90.0 58.8
Poker NNET ff 4.5 2.0 2.9 17.2 27.6 85.1 39.1 63.5 200.4 63.7
Poker NNET c 2.5 1.0 12.5 41.2 74.7 145.3 177.5 67.0 70.6 311.6
Poker NNET dc 2.0 2.0 7.0 26.1 49.2 38.7 74.0 63.6 114.2 95.1
Poker RPART ff 4.5 2.0 2.9 17.2 27.6 85.1 39.1 63.5 200.4 63.7
Poker RPART c 1.0 3.0 29.0 48.0 34.1 116.8 124.5 211.6 326.5 155.9
Poker RPART dc 2.5 2.0 5.6 11.3 24.9 89.0 83.8 73.0 168.4 92.0
Satlog SVM ff 68.0 107.0 20.9 1.6 1.1 95.8
Satlog SVM c 11.5 5.2 34.1 31.6 28.1 23.1
Satlog SVM dc 8.8 9.6 4.4 3.0 1.1 9.5
Satlog NNET ff 68.0 107.0 20.9 1.6 1.1 95.8
Satlog NNET c 4.8 6.6 7.9 2.5 24.4 6.2
Satlog NNET dc 3.5 8.4 5.0 2.5 1.2 15.9
Satlog RPART ff 68.0 107.0 20.9 1.6 1.1 95.8
Satlog RPART c 5.8 1.0 2.3 10.9 16.0 7.8
Satlog RPART dc 7.8 7.4 4.1 2.4 1.1 11.4
Vowels SVM ff 1.1 13.0 22.6 52.2 60.5 71.4 66.4 8.2 62.1 3.9 88.6
Vowels SVM c 2.5 10.0 14.0 31.0 12.3 27.3 29.0 15.0 31.3 18.3 24.0
Vowels SVM dc 2.0 12.0 19.0 16.0 24.3 26.3 23.3 2.3 25.7 3.0 22.7
Vowels NNET ff 1.1 13.0 22.6 52.2 60.5 71.4 66.4 8.2 62.1 3.9 88.6
Vowels NNET c 27.3 13.0 4.5 7.1 13.8 7.5 9.5 14.8 5.6 11.8 5.9
Vowels NNET dc 3.6 8.4 15.9 7.8 21.6 15.5 9.5 7.5 11.9 4.8 24.3
Vowels RPART ff 1.1 13.0 22.6 52.2 60.5 71.4 66.4 8.2 62.1 3.9 88.6
Vowels RPART c 2.0 31.6 17.8 4.9 2.8 12.8 10.0 3.8 12.9 11.8 4.0
Vowels RPART dc 1.3 8.0 39.0 17.1 13.2 30.9 10.5 3.2 26.6 6.2 39.9
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Table 6.9: LDC for tabular datasets

Dataset Classifier ff.ldc c.ldc dc.ldc Best

Iris SVM 65.3 6.7 2.7 dc
Iris NNET 65.3 83.0 1.3 dc
Iris RPART 65.3 3.3 1.7 dc
Cleveland SVM 24.2 39.8 14.5 dc
Cleveland NNET 24.2 16.2 10.5 dc
Cleveland RPART 24.2 17.7 13.2 dc
Poker SVM 200.4 250.9 98.2 dc
Poker NNET 200.4 311.6 114.2 dc
Poker RPART 200.4 326.5 168.4 dc
Satlog SVM 107.0 34.1 9.6 dc
Satlog NNET 107.0 24.4 15.9 dc
Satlog RPART 107.0 16.0 11.4 dc
Vowels SVM 88.6 31.3 26.3 dc
Vowels NNET 88.6 27.3 24.3 dc
Vowels RPART 88.6 31.6 39.9 c

and accuracy. The only exception occurs at the Poker dataset where error is lower when using

confidence.

The dominance of d-Confidence throughout all the learning process is also observable from

Figures 6.8. This dominance is clear, both in terms of error and known classes, at Iris, Vowels

and Satlog (charts 6.8a, 6.8c and 6.8d). Iris and Vowels have uniform class distributions while

Satlog has a fairly balanced class distribution with a coefficient of variation3 equal to 42%. The

same performance is also evident at the Cleveland dataset (Figure 6.8b). Here, however, while the

gain of d-Confidence over confidence is clear it is not as salient over farthest-first. The Cleveland

dataset has one majority class with a frequency over 50% and one under-represented class with

frequency below 5%. The coefficient of variation of the class distribution in the Cleveland dataset

is equal to 98%. At the highly imbalanced Poker dataset (Table 6.2) d-Confidence takes clear

advantage over confidence w.r.t. known classes over all the learning process (chart 6.8e). We can

also observe that d-Confidence is outperformed by farthest-first w.r.t. known classes at the initial

quarter of the learning process – up to iteration 106 – but overcomes it from there on. At this

dataset, however, the error of d-Confidence is clearly dominated by that of confidence at the initial

stage of the learning process.

3The coefficient of variation is a measure of relative dispersion computed by the ratio of the standard deviation to
the mean.



6.4 Evaluation 117

The differences in mean error gains are statistically significant at the Iris, Satlog and Vowels

datasets in favor of d-Confidence. At the other datasets – Cleveland and Poker – the difference is

not statistically significant. Besides confirming the ability of d-Confidence to find representatives

of all classes early in the learning process, the most relevant evidence, when using SVM as the

base classifier, is probably the fact that d-Confidence does not degrade error in general. In fact, the

predictive ability of d-Confidence generally improves when compared to confidence and farthest-

first.

Other base classifiers If we move now to the other base classifiers – NNET (neural networks)

and RPART (decision trees) – we can observe a similar dominance. D-Confidence achieves higher

or equal means of the number of known classes on all combinations except when using NNET and

RPART over the Vowels dataset and RPART over Poker (Table 6.7).

When it comes to the mean error rate, d-Confidence does not perform as well as when relying

on SVM as the base classifier. D-Confidence presents a lower mean error at the Iris dataset,

when using NNET or RPART, and also at Cleveland and Poker when using NNET. At the other

combinations, the differences in mean error observed when using d-Confidence in comparison

with the other AL criteria are not statistically significant.

D-Confidence also outperforms confidence w.r.t. first-hit performance, in general. The same

does not hold when comparing d-Confidence to farthest-first in which case there is no clear evi-

dence on the best performer.

If we sum the number of classes over all datasets, we can find a total of 35 classes over the

five tabular datasets (three from Iris, five from Cleveland, 10 from Poker, six from Satlog and 11

from Vowels). These datasets have been submitted to three distinct base classifiers – SVM, NNET

and RPART. In total, for all the experiments, we have evaluated 105 classes. We can observe that

confidence first-hits classes before d-Confidence only on 33 out of these 105 classes (Table 6.8).

From these 33 cases, 8 happen when using SVM as a base classifier, 12 when using NNET and

13 when using RPART. It is worthwhile noting that 17 out of these 33 cases occur at the Vowels

dataset. The Vowels dataset has a uniform class distribution. The added value of d-Confidence

applied on these real datasets is more evident on imbalanced class distributions.

The Poker dataset – where two out of 10 classes occur only on a single case corresponding to
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a relative frequency of 0.2% and six other classes have a relative frequency below 1% – allows

evaluating the early identification of under-represented classes. The average first-hit computed

from Table 6.8 over under-represented classes – classes 5 to 10 – shows a weak performance of

confidence in finding rare classes (Table 6.10).

Table 6.10: Average first-hit over under-represented classes at the Poker dataset

Classifier ff c dc

SVM 80 182 76
NNET 80 141 72
RPART 80 162 89

D-Confidence outperforms both its baseline criteria w.r.t. the early identification of instances

from under-represented classes when using SVM and NNET as base classifiers. Farthest-first

however, improves over the other when using RPART.

LDC provides further evidence supporting the improved performance of d-Confidence over

its baseline criteria. In fact, d-Confidence has the lowest LDC on all combinations of dataset and

classifier that were evaluated on tabular data except on the Vowels dataset when using RPART as

a base classifier (Table 6.9). The average gain on d-Confidence LDC for all pairs dataset/classifier

when compared to confidence on tabular data is of 542%, meaning that confidence requires over

six times more queries than d-Confidence to identify all target classes. This figure, however, is

highly biased by the outlier observed on Iris/NNET. Nevertheless, if we remove this outlier from

our data we still have a gain of 101% in LDC, meaning that, on average, confidence requires twice

as many queries as d-Confidence to achieve a full coverage of the classes to learn on all tabular

datasets.

Performance under different levels of class imbalance With the purpose of further investigat-

ing the ability of d-Confidence when in presence of imbalanced data, we have evaluated the AL

strategies being studied under different levels of class imbalance. We have performed this evalu-

ation on the datasets with uniform class distribution – Iris and Vowels – using SVM as the base

classifier. The original training datasets were manipulated to assure imbalanced class distributions.

From each of those datasets we have extracted four samples with biased class distributions. At

Iris, the number of instances from one of the classes – which will become the minority class – was
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reduced in those samples to 1, 3, 5 and 9, corresponding to a percentage of 2%, 6%, 11% and 19%

relative to the frequency of each of the two remaining classes which kept their original frequency.

At Vowels, the number of instances from four of its 11 classes – which will become the minority

classes – was reduced in those samples to 1, 2, 3 and 6, corresponding to a percentage of 3%,

7%, 10% and 21% relative to the frequency of each of the remaining classes whose frequency was

kept unchanged. Then we have repeated the same experiments as before but now on these biased

training sets. The empirical results are presented in Table 6.11.

The LDC computed from these experiments (Table 6.11) confirms the ability of d-Confidence

to retrieve rare instances in comparison to its baseline criteria.

Table 6.11: LDC under different imbalance levels. SVM as base classifier. Imbalance is the ratio
of the frequency of the minority classes to the rest

Dataset Imbalance ff.ldc c.ldc dc.ldc Best

Iris 19% 84 61 3 dc
Iris 11% 87 61 3 dc
Iris 6% 87 61 4 dc
Iris 2% 88 88 5 dc
Vowels 21% 99 26 23 dc
Vowels 10% 84 39 35 dc
Vowels 7% 98 69 55 dc
Vowels 3% 102 58 74 c

On average, d-Confidence presents lower LDC than its baseline criteria on all settings except

at Vowels with 3% imbalance. We may observe a similar scenario, with a significant dominance by

d-Confidence, when analyzing the number of known classes and error (Table 6.12). D-Confidence

outperforms its baseline criteria with statistical significance at all settings except at the Vowels

dataset with 21% imbalance.

Common queries selection Comparing the instances that are selected by each AL strategy adds

relevant information to our discussion. Are all strategies selecting the same instances at the same

stages of the learning cycle? We have investigated this question by measuring the percentage of

common queries being selected by each criteria as the learning process iterates at Iris (Figure 6.9a)

and Vowels (Figure 6.9b). Each curve in these charts represents the average, computed over all

cross validation folds at each iteration, of the percentage of common instances observed in the

labeled sets used to train the classifier under the referred strategies – d-Confidence (dc), confidence
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Table 6.12: Micro-averaged number of known classes and error. Means have been computed over
all iterations from all cross validation folds for each combination of dataset, imbalance level and
query selection criteria. Bold faced values are statistically significant at 5%

Dataset Imbalance ff.kc c.kc dc.kc ff.e c.e dc.e

Iris 2% 2.56 2.48 2.96 0.72 0.79 0.67
Iris 6% 2.60 2.58 2.98 0.63 0.59 0.40
Iris 11% 2.61 2.59 2.98 0.58 0.49 0.26
Iris 19% 2.64 2.62 2.98 0.52 0.41 0.15
Vowels 3% 8.11 8.87 8.98 0.94 0.92 0.92
Vowels 7% 8.40 9.36 9.55 0.92 0.92 0.91
Vowels 10% 8.65 9.77 10.12 0.91 0.89 0.89
Vowels 21% 8.83 10.27 10.28 0.81 0.77 0.76

(c) or farthest-first (ff). Instances in L1 – which, given a dataset, are the same for all AL criteria

– were not considered when computing these intersections. Only the instances that were in fact

selected by each criteria from the first iteration on were accounted for.

(a) Iris (imbalance 19%) (b) Vowels (imbalance 21%)

Figure 6.9: Evolution of the percentage of common selected queries throughout the learning cycle.
Each line represents the percentage of common instances for a given pair of strategies (dc-c, dc-ff,
c-ff)

It is clear from Figure 6.9a that d-Confidence and confidence query many common instances

during the initial stage of the learning process at the Iris dataset. In fact, after the first 29 queries,

the labeled sets of both these strategies, L29, have nearly 60% intersection. This level of overlap-

ping then stabilizes to start increasing later as a consequence of the exhaustion of the unlabeled

set which necessarily increases the interception between the labeled sets of all strategies.
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The opposite behavior is observed when comparing farthest-first with either confidence or d-

Confidence. Despite the fact that d-Confidence and farthest-first share many common instances at

the very first iterations (60%), this overlap drops fast getting close to 20% after 11 queries.

At the Vowels dataset, the overlap between the labeled sets being built by all AL strategies

increases at a constant rate throughout the majority of the learning process. Only at the very be-

ginning, during the initial 35 iterations, a distinct behavior is observed with d-Confidence and

farthest-first querying more common instances than the other. As observed also at the Iris dataset,

confidence and farthest-first are the strategies sharing fewer queries. This behavior is expected

since d-Confidence is a combination of both confidence and farthest-first while these are indepen-

dent from each other.

With the exception of the initial stage of the learning process for Iris w.r.t. dc-c, the percentage

of common queries shared by d-Confidence and its baseline criteria is small. This is an indication

that d-Confidence is promoting a new learning path.

6.4.3 Text

The evolution of the error rate and the number of known classes over text corpora is shown in

Figures 6.10a and 6.10b with curves for each selection strategy under evaluation.

(a) NG corpus (b) R52 corpus

Figure 6.10: Known classes and generalization error

Similarly to what we have done at phase two, the evolution of error and mean number of

known classes throughout all the learning cycle has been also summed up to summarize overall
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performance on text corpora (Table 6.13).

Table 6.13: Micro-averaged number of known classes and error. Means have been computed over
all iterations from all cross validation folds for each combination of dataset, classifier and query
selection criteria

Dataset Classifier ff.kc c.kc dc.kc ff.e c.e dc.e

NG SVM 19.2 18.6 19.1 0.631 0.629 0.612
R52 SVM 34.4 35.5 39.7 0.531 0.383 0.447

Besides the total number of queries required to retrieve labels from all classes and generaliza-

tion error, we have also observed first-hit (Tables 6.14 and 6.15). When computing first-hit for a

given class we have excluded the experiments where the initial labeled set, L1, contains instances

from that class.

Table 6.14: First-hit for the NG dataset

Class Freq ff-fh c-fh dc-fh

1 29 29.8 36.9 35.7
2 22 45.4 46.6 45.7
3 21 87.9 63.7 85.4
4 34 7.5 29.4 7.4
5 35 22.2 23.6 25.2
6 24 17.6 41.2 17.1
7 21 11.4 59.6 12.6
8 24 12.6 32.9 13.1
9 25 12.5 45.4 11.4
10 22 45.5 41.1 48.9
11 22 3.8 47.2 3.9
12 24 3.7 31.8 4.8
13 28 30.0 31.3 34.0
14 28 6.1 25.8 5.4
15 22 5.4 27.4 6.2
16 28 2.4 14.9 2.6
17 23 25.3 23.8 31.0
18 26 8.6 38.3 8.6
19 22 22.7 23.6 24.7
20 20 8.6 29.7 7.7

average 20.45 35.71 21.57

The learning process for the R52 dataset was halted after 600 iterations, before exploring the

full unlabeled pool – the working set had 1000 instances, 900 of which were used for training

in each fold. All the class labels to learn were identified after 600 iterations for all the selection
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Table 6.15: First-hit for the R52 dataset

Class Freq ff-fh c-fh dc-fh

1 239 1.0 24.0 1.0
2 5 78.5 115.6 64.7
3 3 230.3 118.6 178.7
4 2 98.7 167.4 107.8
5 6 239.0 173.7 110.6
6 11 7.5 80.0 10.0
7 4 15.9 123.6 19.1
8 3 130.0 173.3 102.9
9 7 240.2 128.8 136.0
10 2 153.2 118.0 99.5
11 40 14.6 12.4 20.0
12 2 209.9 158.5 166.4
13 435 2.5 25.2 4.0
14 2 219.0 152.2 150.4
15 3 192.8 214.1 123.9
16 7 113.7 91.9 107.8
17 9 33.1 92.7 46.3
18 5 24.9 96.7 16.8
19 2 93.1 140.0 104.7
20 3 411.8 206.7 184.9
21 2 273.2 143.6 154.5
22 2 588.6 188.9 202.8
23 30 76.0 28.9 63.4
24 4 341.9 171.7 171.1
25 4 253.9 196.2 224.0
26 2 459.6 313.1 256.4
27 5 282.8 130.0 150.7
28 2 294.7 216.3 144.5
29 2 422.5 175.5 198.7
30 3 68.5 213.3 85.2
31 2 111.7 206.0 126.7
32 2 248.3 233.7 167.0
33 30 53.0 39.7 49.7
34 15 67.6 44.6 99.0
35 4 187.8 271.6 219.6
36 2 58.2 153.2 84.1
37 3 45.7 137.6 44.8
38 3 66.6 159.3 52.1
39 2 101.2 226.0 106.9
40 2 90.4 144.3 75.5
41 5 67.6 68.7 62.9
42 3 206.6 159.1 144.8
43 4 43.4 153.4 36.7
44 14 72.7 103.8 76.6
45 3 86.5 179.7 123.9
46 12 3.2 68.6 6.6
47 2 45.9 148.5 51.1
48 3 101.9 160.8 76.1
49 35 39.4 36.4 72.9
50 3 219.0 175.6 108.7
51 3 482.2 146.1 183.5
52 2 302.7 258.8 196.5

average 159.10 143.58 107.16
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criteria, except for farthest-first. The mean number of known classes after 600 iterations equals 52

for confidence and d-Confidence, meaning these criteria have achieved full coverage of the class

labels to learn in all the cross validation folds. For farthest-first the average number of known

classes, 50.3, is below 52 which means that farthest-first was not able to identify all class labels

in all cross validation folds after 600 iterations. Farthest-first missed, in several folds, six classes

with frequency of two, two classes with frequency of three and one class with a frequency of four.

In such cases we have assigned the most favorable first-hit value for the unidentified classes –

a value from 601 on. For instance, in a given fold where farthest-first misses two classes their

first-hit values are assumed to be 601 and 602 – the very first queries after halting the learning

process at 600 iterations. First-hit means were computed on this assumption – the most favorable

assumption for farthest-first.

Finding under-represented classes There is no clear dominance, neither from d-Confidence

nor from farthest-first, when finding unknown classes in the NG dataset (Figure 6.10a). However,

both these criteria outperform confidence at this dataset. The difference between mean first-hit of

d-Confidence and farthest-first in Table 6.14 – 20.45 for farthest-first and 21.57 for d-Confidence

– is not statistically significant (α = 5%).

In R52, farthest-first starts by identifying unknown classes a little faster than d-Confidence

(Figure 6.10a). However, after the initial learning stage, d-Confidence outperforms and dominates

farthest-first. This behavior had already been observed, with tabular datasets, in the previous

experimental phase. When identifying unknown classes, farthest-first leads, up to the 45th query,

on average, taking a maximum advantage of two classes after 37 queries. After 45 queries, with

13.2 classes identified on average, d-Confidence clearly dominates farthest-first.

It is interesting to notice that farthest-first beats d-Confidence on the majority classes (Ta-

ble 6.15) but, once all majority classes have been found and only minority classes are left unex-

posed, d-Confidence reveals its ability to find rare instances. The mean frequency of the classes

that are first found in R52 by d-Confidence is 3.2, while it is 12.5 for confidence and 33.8 for

farthest-first.

This aspect might be further investigated from a coarser point of view by analyzing how fast

each AL criterion retrieves exemplary instances from a batch of classes instead of analyzing single
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classes one at a time. To analyze this particular aspect we provide a benchmark based on random

query selection – averaged over 10 random samples.

We have recorded the number of queries required to identify bunches of distinct classes in

multiples of 10 for R52 and multiples of 4 in NG. These bunches are constituted by classes sorted

by increasing order of their first-hit. Figures 6.11 and 6.12 give an overview of the number of

queries that are required in each setting to first hit a given number of distinct classes.

Figure 6.11: Queries required to identify bunches of distinct classes in NG dataset

Figure 6.12: Queries required to identify bunches of distinct classes in R52 dataset

In the case of the R52 dataset, d-Confidence always finds new classes faster, that is with fewer

queries, than confidence. The first bunch of 10 distinct classes – the first classes being identified
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are generally majority classes – is found as fast with random sampling and farthest-first as with

d-Confidence but, from there on, when rare classes come by, d-Confidence takes the lead.

The outcome is quite different in the NG dataset. In this dataset d-Confidence still outper-

forms confidence but it is beaten by random selection of instances after identifying 13.3 classes

on average – after 22 queries on average. The ability to retrieve exemplary instances from un-

known classes of d-Confidence is comparable to that of farthest-first on NG. When in presence of

balanced datasets, as NG, d-Confidence identifies new classes faster than random selection at the

initial phase of the learning process but selecting instances by chance is better to identify instances

in the latest stage of the learning process when few classes remain undetected.

Figures 6.13 provide additional evidence on the ability of d-Confidence to find rare instances.

(a) D-Confidence vs farthest-first (b) D-Confidence vs confidence

Figure 6.13: Average gain of d-Confidence over its baseline criteria to first hit classes on R52.
Classes are sorted by increasing frequency

These charts represent the difference in d-Confidence first-hit compared to their baseline cri-

teria. Negative differences mean that d-Confidence performed better, i.e., found representative

instances of the class with fewer queries than its baseline criteria. In these charts, classes are

sorted by increasing frequency, in first place, and then by decreasing gain. This sorting scheme

is responsible for the patterns that are observed in both charts of Figure 6.13. For instance, all

the minority classes that are represented in the horizontal axis of Figures 6.13a and 6.13b by the

coordinates 1 to 17 have a frequency of two. For this group, the gain is sorted by increasing order

thus generating the pattern that we may observe in both charts for each group of classes with the

same frequency.

The dashed trend lines, represented in both charts (Figures 6.13), with a positive slope clearly
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show that the gain in d-Confidence first-hit, when compared to its baseline criteria, decreases when

the class frequency increases. D-Confidence assures a significant reduction in the mean number

of queries that are required to first hit classes in R52. This reduction is more important in minority

classes, i.e., in the first classes appearing in the horizontal axis.

Another perspective of these results may clarify our point of view. Figure 6.14a presents the

number of classes that were first found by each criteria for each different class frequency in the

horizontal axis. Figure 6.14b represents the accumulated number of first found classes.

As detailed below, both these charts show evidence on the improved ability of d-Confidence

to find exemplary instances of under-represented classes.

(a) First found classes (b) Accumulated first found

Figure 6.14: Number of classes of a given frequency first found by each criteria on R52

When comparing d-Confidence against farthest-first we can observe that from the 17 classes in

R52 that have a frequency of two, d-Confidence finds 11 before farthest-first. From the 12 classes

with a frequency of three, d-Confidence finds 10 before farthest-first. From the 13 classes with

frequency between four and nine, d-Confidence finds 10 with fewer queries than farthest-first.

From the remaining 10 classes, with a frequency between 11 and 435, d-Confidence finds only

two before farthest-first.

A similar comparison against confidence shows similar results. From the 17 classes in R52

that have a frequency of two, d-Confidence finds 13 before confidence. From the 12 classes

with a frequency of three, d-Confidence finds 10 before confidence. From the 13 classes with

frequency between four and nine, d-Confidence finds 10 with fewer queries than confidence. From

the remaining 10 classes, with a frequency between 11 and 435, d-Confidence finds five before

confidence.
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Error D-Confidence accuracy dominates that of farthest-first (Figure 6.10b). The mean accu-

racy of d-Confidence over all iterations is 2% better that of farthest-first. This result is significant

at 5% significance. The NG dataset has a fairly balanced class distribution. On the R52 dataset,

which has an highly imbalanced class distribution, we can observe very distinct performance (Fig-

ure 6.10b).

At the R52 dataset the difference of mean error is significant in favor of confidence. D-Con-

fidence reduces the labeling effort that is required to identify instances in R52, exhibiting better

representativeness capabilities in this corpus. However, the error rate increases. Apparently, d-

Confidence gets to know more classes from the target concept earlier although less sharply. In the

R52 dataset d-Confidence is exchanging accuracy for representativeness.

Effect of data dimensionality on the distance factor of d-Confidence If we take a step back

to analyze d-Confidence first-hit against farthest-first on the highly imbalanced Poker dataset we

may find some unexpected outcome. In this case, farthest-first generally outperforms d-Confi-

dence in finding rare instances, contrary to what happens in text corpora. This is probably a sign

that distance might be a better discriminator in low-dimensional input spaces than it is in high-di-

mensional input spaces.

Distance functions might lose their usefulness in high-dimensional spaces where the distance

to the nearest and farthest neighbors come very similar – the curse-of-dimensionality (Bellman,

1957). This effect is most noticeable when using Lk − norm distances with a high value of k

(k ≥ 3). Euclidean distance, a L2− norm metric, is not much affected (Aggarwal et al., 2001).

To assess this effect on our datasets we have computed the relative contrast – measuring the

relative distance of the nearest and farthest neighbors of a given query – for all instances in each

dataset (Equation 6.4). In Table 6.164 we can observe that the discrimination between the nearest

and farthest neighbors is not too sensitive to the data dimensionality. Despite the fact that the

minimum relative contrast exhibits a negative correlation of 64% to the data dimensionality, the

maximum relative contrast is not correlated and there is no evidence that high-dimensional data is

4Notation: min.rc and max.rc stand for the minimum and maximum relative contrast observed in each dataset;
global.rc is a global contrast measure for each dataset computed by Equation 6.4 but using the maximum and minimum
distances between all the instances in the dataset.
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affecting the distance metric in use. The lack of correlation between the global contrast measure

and data dimensionality supports this conclusion.

DMax−Dmin

Dmin
(6.4)

Table 6.16: Relative contrast using Euclidean distance

Dataset Dim. Instances min.rc max.rc global.rc

Iris 4 150 4.477 63.985 69.852
Vowels 10 330 2.424 51.371 65.253
Poker 10 500 2.117 7.426 9.630
Cleveland 13 298 1.085 59.944 68.921
Satlog 36 500 1.682 23.760 26.258
R52 6019 1000 0.315 52.292 67.812
NG 10333 500 0.428 23.034 32.197

6.4.4 Independent assessment of other active learning strategies

The work performed by our colleagues Motta et al. (Motta et al., 2012) – using network models and

complex network characterization measures to select queries – includes an independent evaluation

of several state-of-the-art query selection strategies for AL including d-Confidence. Given the

relevance of this work to our own investigation we discuss their results related to error and known

classes.

In their work, the authors evaluate, among others, the evolution of error and number of known

classes as the learning process iterates. Their evaluation was performed over several UCI datasets.

Error and known classes are estimated with 10-fold cross validation. SVM base classifiers where

used with RBF kernels. The required parameters were tuned by the tune.svm() function of the

e1071 R package.

Motta et al. (Motta et al., 2012) have compared the performance w.r.t. error and known classes

of four query selection criteria besides d-Confidence, including Simple, Kernel Farthest First,

Hierarchical Clustering and BalancedEE.

Simple Tong et al. (Tong and Koller, 2002), working with SVM classifiers applied to text, pro-

pose Simple, an AL criterion that selects the query lying in the SVM margin closest to the dividing
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hyperplane. This will be the query that maximizes the reduction in version space – the set of

hypotheses that are consistent with all labeled instances – thus contributing to faster convergence.

This choice is equivalent to selecting the most uncertain instance, that is, the one the current clas-

sifier is less confident about.

Kernel Farthest First The Kernel Farthest First (KFF) (Baram et al., 2004) algorithm selects

the unlabeled instance further away from all labeled instances in the feature space induced by the

kernel function used by the classifier. A similar criterion to our version of farthest-first except that

we compute distance in input feature space.

Hierarchical Sampling Hierarchical Sampling (HS) (Dasgupta and Hsu, 2008) is a cluster-

based method that consistently improves label complexity – the number of queries that is sufficient

to learn a concept – over supervised learning by detecting and exploiting clusters that are loosely

aligned with class labels. It starts with a hierarchical clustering of the unlabeled pool. Then,

random samples from each node of a partition of the data, given by a pruning of the tree, are

queried and their labels are used to compute the purity of each node in the partition. Nodes with

low levels of purity are replaced by their child nodes. This process can be halted, for instance,

when a given purity level is achieved at each node. At each iteration, the sampling strategy favors

less pure nodes.

BalancedEE BalancedEE (Osugi et al., 2005) is an AL strategy that decides at each iteration

whether to explore or exploit. This decision is based on a binary random process assigning a

probability p to explore (and 1− p to exploit). If the decision is to explore, the KFF (Baram

et al., 2004) algorithm is applied to select the next query. Otherwise, the next query is selected

with Simple (Tong and Koller, 2002). To determine how successful an exploration step was, the

authors compute d(hi−1,hi) ∈ [−1,+1], a measure of the change induced from one iteration to the

next (Equation 3.7). If d(hi−1,hi) is positive, implying that the learned hypothesis significantly

changed at the current iteration, the probability p is kept high encouraging further exploration. If

d(hi−1,hi) is negative, p is reduced.
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Assuring comparability of results In order to convey to the initial conditions that we have

assumed in our experimental analysis, we focus our attention on the datasets used by Motta et

al. (Motta et al., 2012) that have more than two target classes. These include 10 numerical datasets

in total (Table 6.17). Eight of them come from the UCI repository (Frank and Asuncion, 2010).

The other two are image datasets referred by Img-corel (Li and Wang, 2003) – photographs on ten

different themes represented by 150 descriptors – and Img-med – images obtained by magnetic

resonance imaging, each represented by 28 features.

Table 6.17: Datasets used by Motta et al. to evaluate active learning criteria

Dataset Attributes #Classes #W Class distribution

Balance 4 3 625 fair
Cleveland 13 5 298 imbalanced
Ecoli 7 8 336 imbalanced
Img-corel 150 10 1000 balanced
Img-med 28 12 540 imbalanced
Iris 4 3 150 balanced
Satimg 36 6 500 fair
Vehicle 18 4 846 balanced
Vowels 10 11 990 balanced
Wine 13 3 178 balanced

The learning process deployed by Motta et al. (Motta et al., 2012) starts with no initialization

training set. The first training instance is selected at random from the working set and the learning

process iterates from there. In our experimental setup, however, we have assumed that the learning

process is to be initialized by a training set containing two labeled instances from two distinct

classes. To assure compliance with this setup, our estimates of the number of known classes

(Table 6.18) and error (Table 6.19) ignore the first two iterations/queries considered by Motta et

al. being computed from the third iteration on. In Tables 6.18 and 6.19 statistically significant

differences, at a significance level of 5%, are boldfaced.

Discussion These results show a clear dominance of d-Confidence regarding the early identifi-

cation of target classes when compared to state-of-the-art AL strategies. D-Confidence identifies

all target classes before the other criteria under evaluation in all datasets except Iris and Wine.

On these two, however, there is no statical significance supporting the null hypothesis of different

means of the number of known classes throughout the learning process.
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Table 6.18: Mean number of know classes throughout the learning process (Motta et al.)

Dataset simple kff dConf hs balee

Balance 2.924 2.933 2.990 2.921 2.942
Cleveland 4.877 4.819 4.959 4.712 4.837
Ecoli 6.398 7.285 7.830 6.178 7.062
Img-corel 8.520 9.479 9.695 9.292 9.433
Img-med 7.618 10.871 11.531 10.936 10.381
Iris 2.957 2.993 2.995 2.945 2.992
Satimg 3.370 5.840 5.917 5.706 5.180
Vehicle 3.937 3.944 3.990 3.901 3.951
Vowels 6.990 9.882 10.632 10.020 9.205
Wine 2.715 2.993 2.993 2.957 2.993

Table 6.19: Mean error throughout the learning process (Motta et al.)

Dataset simple kff dConf hs balee

Balance 0.115 0.160 0.105 0.175 0.133
Cleveland 0.502 0.452 0.575 0.463 0.435
Ecoli 0.306 0.207 0.240 0.324 0.222
Img-corel 0.618 0.342 0.411 0.409 0.351
Img-med 0.658 0.352 0.345 0.387 0.373
Iris 0.062 0.060 0.042 0.08 0.054
Satimg 0.697 0.281 0.346 0.262 0.446
Vehicle 0.419 0.370 0.388 0.397 0.380
Vowels 0.762 0.51 0.511 0.543 0.573
Wine 0.246 0.044 0.034 0.050 0.040
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D-Confidence also exhibits statistically significant improvements on accuracy throughout the

learning process on four out of 10 datasets – Balance, Img-med, Iris and Wine. KFF reports the

lowest mean error on three datasets – Ecoli, Img-corel and Vehicle. hs outperforms the other crite-

ria on Satimg while balee is the best performer regarding error on Cleveland. The improvements

of d-Confidence regarding error are not as clear as those regarding the early identification of target

classes. Nevertheless, d-Confidence outperforms the other criteria on more datasets than the rest

also regarding error.

The evolution of the number of known classes and error during the learning cycle on typi-

cal cases – Img-med, Vowels and Ecoli – is represented in Figure 6.15. At the Img-med dataset

d-Confidence outperforms the other AL criteria at both known classes (Figure 6.15a) and error

(Figure 6.15b). At Vowels, d-Confidence outperforms the other AL criteria at known classes (Fig-

ure 6.15c) but there is no single top performer on error (Figure 6.15d). At Ecoli, d-Confidence is

the top performer regarding known classes (Figure 6.15e) and KFF is the top performer regarding

error (Figure 6.15f).

At both Img-med and Vowels, d-Confidence finds exemplary instances of all target classes

during the very first iterations. Concerning the identification of known classes, d-Confidence

performs very close to the optimal. D-Confidence LDC for Img-med – a dataset with 12 classes –

is 13 and for Vowels – with 11 classes – is 12. This performance has no negative impact on error.

Main outcomes The results obtained by our colleagues (Motta et al., 2012) bring additional

evidence on the improvements of d-Confidence over state-of-the-art AL strategies.

Their results show that d-Confidence outperforms Hierarchical Sampling (Dasgupta and Hsu,

2008), hs, a clustering based approach to AL, and BalancedEE (Osugi et al., 2005), balee, an

approach explicitly focused on the balance between exploration and exploitation. D-Confidence

also outperforms Simple (Tong and Koller, 2002) and KFF (Baram et al., 2004). Simple is based

on maximum reduction of version space – which, in case of SVM, is equivalent to low confi-

dence. KFF is based on distance. These last results reinforce our previous observations based on

confidence and farthest-first.

The observed improvements are very noticeable w.r.t. known classes, with a clear dominance

of d-Confidence. This dominance is not as clear w.r.t. error. Nevertheless, d-Confidence still
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(a) Img-med known classes (b) Img-med error

(c) Vowels known classes (d) Vowels error

(e) Ecoli known classes (f) Ecoli error

Figure 6.15: Evolution of known classes and error (results from Motta et al.)
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presents the best performance on average when compared to the other criteria regarding error.

6.5 Exploration-exploitation trade-off

Balancing the trade-off between exploration and exploitation is an important issue in AL (Cebron

and Berthold, 2009) contributing to maximize the marginal utility of queries along the learning

process. The nature of d-Confidence – aggregating distance, that favors an exploration bias, and

confidence, favoring an exploitation bias – grants dynamic shifting between exploration and ex-

ploitation as the learning process iterates. The shift between exploration and exploitation occurs

in an unsupervised manner guided by the structure of the input space.

In a simplistic way, d-Confidence is formulated by min
(

con f idence
distance

)
. When the confidence is

similar for all unlabeled instances, the numerator is nearly constant, say C, and the driving force

of d-Confidence is distance. In such circumstances d-Confidence selects queries with maximum

distance to what is already known in order to minimize C
distance thus, favoring exploration. On

the other hand, when the distance between known classes and unlabeled instances is similar for

all unlabeled instances, the denominator is nearly constant, D, and d-Confidence is mastered by

confidence to minimize con f idence
D thus, favoring exploitation.

To investigate this characteristic of d-Confidence we have analyzed the variance of confidence,

V (c), and the variance of distance to known classes, V (d), computed for all unlabeled instances,

x j ∈Ui, during the learning process. Lower variance means that individual observations are closer

to the mean and to each other. Low V (d) means that the distance of unlabeled instances to known

classes is barely constant. Likewise, low V (c) means that the confidence on the labels of unlabeled

instances is barely constant.

When V (d) is lower than V (c), d-Confidence is mainly driven by confidence and we say it

is operating in exploitation mode, MI. When the opposite occurs, V (c) is lower than V (d), d-

Confidence is mainly driven by distance and we say it is operating in exploration mode, MR.

Figures 6.16 represent for each dataset the average variance of confidence, V (c), and the av-

erage variance of distance, V (d), computed over all unlabeled instances x j ∈Ui on the 10 cross

validation folds as the learning process iterates. V (c) and V (d) are normalized to the maximum

on each dataset for convenience of representation. There is no loss of generality arising from this
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normalization since the impact of either confidence or distance on d-Confidence at each iteration

is conditioned by variability rather than absolute values. The evolution of the number of known

classes throughout the learning process, kc, is also represented in these charts – also normalized to

maximum. The operating mode regarding exploration versus exploitation is highlighted in these

charts by vertical lines indicating the iterations when a shift of mode occurs. Exploration mode is

referred by MR while exploitation mode is represented by MI.

Dynamic shifting between exploration and exploitation modes is clear in most datasets. The

Poker dataset (Figure 6.16e) is an exception where the compromise between exploration and ex-

ploitation is not evident.

At Iris (Figure 6.16a) after a brief initial period running on exploratory mode, d-Confidence

shifts to exploitation for a few more iterations and then, around iteration 15, shifts again to explo-

ration mode in which it remains for the rest of the learning cycle.

Vowels (Figure 6.16c) and the NG corpus (Figure 6.16a) are those exhibiting the more clear

and effective trade-off. At the Vowels dataset we may observe an initial exploration bias until all

the classes are identified followed by a period running in exploitation mode while the classifier

is learning the target classes and confidence has high variability. Once the classification model

is accurate enough, confidence variance decreases and d-Confidence shifts again to exploration

mode. At the NG corpus the learning process starts running in exploratory mode until all target

classes are known. Then, it shifts to exploitation mode where it remains until the end of the

learning process while the classifier is being trained on the previously identified classes.

Satlog (Figure 6.16d) shifts its operating mode three times during the learning process. It starts

in exploratory mode until all classes are identified. Then is shifts to exploitation while training the

classifier and while confidence variance is high. Roughly half in the learning process, the variance

of confidence has dropped and stabilized at a low level. This is an indication that the classifier is

well trained and d-Confidence shifts to exploratory mode. At the last stage of the learning cycle,

when input space is covered by the labeled instances, the normalized distance variance decreases

below confidence and we shift to exploitation one more time.

At the Cleveland dataset (Figure 6.16b) we are operating mostly in exploitation mode. Al-

though there is an initial, very short, period running in exploratory mode, we shift very fast to

the exploitation mode and remain operating at that mode for all the learning cycle. However, the
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(a) Iris (b) Cleveland

(c) Vowels (d) Satlog

(e) Poker (f) NG

(g) R52

Figure 6.16: Exploration-Exploitation trade-off
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prevalence of confidence over distance is more clear during the second half of the learning cycle

when the variance of confidence increases and that of distance decreases.

At the Reuters corpora (Figure 6.16a) there is a shift from exploration to exploitation around

iteration 250 when more than 90% of the target classes are already identified. The distance vari-

ance, V (d), starts decreasing a few iterations before identifying all target classes.

6.6 Prevailing outcomes

Experimental results provide evidence on the performance of d-Confidence towards our objectives.

Instance space coverage D-Confidence achieves a faster coverage of input space than both con-

fidence and farthest-first irrespectively of the geometric properties of the working set. This im-

provement in instance space coverage is not made at the cost of accuracy. In fact, in general

d-Confidence improves accuracy over confidence and farthest-first .

Base classifier The performance of d-Confidence seems to be slightly affected by the base clas-

sifier, mainly w.r.t. error. When referring to known classes, d-Confidence generally improves over

its baseline criteria irrespectively of the base classifier. D-Confidence is suited for SVM classi-

fiers where it generally improves over its baseline criteria. When using other base classifiers the

performance is affected but improvements are still observable in general.

Confidence vs d-Confidence If we focus on SVM, we can observe that d-Confidence outper-

forms confidence, both at labeling effort and accuracy, over tabular datasets as well as over text

corpora. D-Confidence dominates confidence w.r.t known classes throughout all the learning pro-

cess. D-Confidence also outperforms confidence first-hit performance, in general. This dominance

is also evident w.r.t. error except on highly imbalanced datasets where confidence outperforms d-

Confidence.

Farthest-first vs d-Confidence D-Confidence clearly dominates farthest-first w.r.t. error when

using SVM classifiers. The relative performance of these two criteria when it comes to known

classes depends on the class distribution at the working set. On balanced datasets, d-Confidence
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clearly outperforms farthest-first. On imbalanced datasets d-Confidence still outperforms farthest-

first on average; however farthest-first generally finds majority classes before d-Confidence.

State-of-the-art criteria vs d-Confidence In general d-Confidence requires less queries than

state-of-the-art criteria to find representative instances from all target classes. This reduction of

the labeling effort is expressive. The gain in minority classes is noteworthy. In general, this

reduction on the labeling effort is not made at the cost of accuracy. Although in some scenarios

d-Confidence is outperformed by other criteria w.r.t. accuracy, in general it is the most consistent

approach also regarding predictive ability.

Data dimensionality The dimensionality of the input feature space does not compromise d-

Confidence in general. Performance improvements over its baseline and other state-of-the-art

criteria are observed irrespectively of the number of descriptive features. D-Confidence over-

comes the weak discriminative power of Euclidean distance in high-dimensional spaces. Merging

distance and confidence softens undesirable effects from the curse-of-dimensionality (Berchtold

et al., 1997; Weber et al., 1998; Aggarwal et al., 2001) .

Balanced vs imbalanced class distributions In general, d-Confidence outperforms state-of-

the-art criteria in finding exemplary instances from all the target classes. The gain is particularly

relevant when finding under-represented classes in presence of highly imbalanced data. Under

such circumstances, this gain however is achieved at the cost of accuracy. When in presence of

imbalanced data, the exploratory bias of d-Confidence promotes exchanging accuracy for repre-

sentativeness. This characteristic might be convenient to address the cold start problem (Attenberg

and Provost, 2011) in an early stage of the learning process.

Exploration-exploitation trade-off The nature of d-Confidence boosts its exploration poten-

tial when the variance of the distances between unlabeled instances and known classes is higher

than that of confidence. Exploitation behaviors become more evident when the opposite occurs.

This is a main characteristic of d-Confidence that meets our goals. D-Confidence, formulated by
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min
(

con f idence
distance

)
, dynamically shifts between exploration and exploitation according to the cur-

rent properties of both labeled and unlabeled sets. This is an automatic unsupervised process not

requiring any tuning effort or additional cost.

Label disclosure complexity and error D-Confidence is an AL criterion combining confidence

and distance that improves over existing strategies in terms of LDC – the number of queries needed

to cover all target classes – without compromising predictive ability. There is a clear dominance

of d-Confidence over other state-of-the-art criteria w.r.t. LDC. The effect on error is not as evi-

dent. Nevertheless, in the majority of the scenarios that we have essayed, d-Confidence presents

improved or similar accuracy in comparison with its baseline or other state-of-the-art criteria.

6.7 Applications

D-Confidence has been applied to several real-world applications requiring text classification ac-

cording to specific needs.

MailMaid is an application to assist e-mail users organizing their mailbox. MailMaid was de-

veloped in 2010 for the Portuguese Association for Artificial Intelligence5 (APPIA). It is a tool to

assist users to organize the APPIA mailbox according to each one’s specific interests. D-Confi-

dence supports the learning stage of the tool. MailMaid was developed by two Belgian students,

Matthias Vermeiren and Joachim Seminck, during their BSc capstone project on top of the previ-

ous MSc thesis performed by Luiza Gabriel who studied the potential of d-Confidence to organize

mail corpora. This MSc thesis, Automatic Email Organization (Gabriel, 2009), was awarded an

honorable mention at the national TLeIA contest in 20096.

TIENA Tecnologias Inovadoras em mineração de textos para a Espacialização de Notícias Agrí-

colas: piloto cana-de-açúcar is a research project, coordinated by Embrapa7 – Empresa Brasileira

5http://www.appia.pt, accessed on October 2012
6http://www.appia.pt/index.php?option=com_content&task=view&id=456&Itemid=166, accessed on October 2012
7http://www.embrapa.br, accessed on October 2012
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de Pesquisa Agropecuária, that aims to organize text corpora on an holistic approach contem-

plating time, geographical and topic views. D-Confidence is being applied to support the topic

view.

Free text assessment is another application of d-Confidence developed by a BSc student, Au-

gusto Cruz, for his capstone project – Correcção semi-automática de testes. The aim of this ap-

plication is to support teachers in the assessment of free text answers to open questions. D-Con-

fidence is wrapped in the assessment process and reorders the students answers being presented

to the teacher for assessment, categorizing them in accordance to the marks that the teacher is

assigning as the process runs. The rationale is that by organizing answers in homogeneous groups,

aligned with the marks recently assigned, the assessment process is less dependent on judgment

drift and more reliable. This work was granted the best paper award of the Portuguese/Spanish

track at the 9th European Conference on e-Learning (Escudeiro et al., 2010).

Automatic clipping is one more application of d-Confidence, that builds on top of Automatic

Harvesting of Academic Events, a former capstone project developed by Els Bockaerts in 2009.

The aim of this application is to assist a web site editor in keeping the Activities web page of the

Erasmus website of the Computer Engineering Department at ISEP updated, helping incoming

Erasmus students to know Porto and to find social activities in the Porto region. The application

retrieves news on relevant events from a set of web sites previously specified. D-Confidence is

used to build the classifier that will organize these news according to the structure of the Activities

web page.
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Chapter 7

Stopping Criteria

Active learning (AL) aims at selecting the most informative instances to query taking the goal of

the learning task into account. When the goal is to reduce the cost of the learning process, as in our

case, it is important to go a little further and analyze whether the most informative instance is still

valuable enough. In our case, the utility of the queries should compensate their cost. Therefore,

querying the oracle should stop once the cost of querying overcomes the utility of the unlabeled

instances still remaining in the working set. When to stop querying is one important open issue

in AL. This concern led us to investigate suitable stopping criteria for d-Confidence subject to the

goals governing our research problem.

7.1 D-Confidence stopping criteria

Our preliminary reflections on stopping criteria drove us to propose three base criteria – classi-

fication gradient, steady entropy mean and steady entropy distribution – plus two hybrid criteria

aggregating the former in a specific way as to improve over its foundational criteria – ensemble

of classification gradient and steady entropy mean, ensemble of classification gradient and steady

entropy distribution.

7.1.1 Base stopping criteria

All the base stopping criteria proposed in this work evaluate stopping conditions from variations

of certain indicators observed between two consecutive iterations during the learning process.

143
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Classification gradient at iteration i, cgri, is the percentage of instances x j ∈Ui whose label,

ŷi
j, as predicted by hi is distinct from the label predicted at the previous iteration i−1, ŷi−1

j (Equa-

tion 7.1).

cgri =
#
{

x j ∈Ui : ŷi
j 6= ŷi−1

j

}
#Ui

(7.1)

This criterion provides evidence on the ability of qi – the query at the current iteration – to

change the current hypothesis. When the change in the classifier predictions being induced by

querying and adding the most informative unlabeled instance to the training set is residual then we

assume that the set of unlabeled instances does not contain further evidence on the target concept

that is worth considering. The utility of the remaining instances in Ui is low for the learning

problem being studied and we may discard them.

Applying cgr requires tuning of the parameter that triggers the stop sign. This parameter, ∆Ŷ ,

sets the minimum classification gradient below which querying should stop. This threshold sets the

minimum percentage of predictions that have changed from one iteration to the next below which

it is assumed that the cost of querying overcomes the potential utility of the unlabeled instances

which, in this case, relates to the potential to induce changes in predictions.

Steady entropy mean at iteration i, sewi, is based on the entropy of Ŷ i
j (Equation 7.2). Ŷ i

j is a

discrete random variable of the predictions made by hi given an instance x j ∈Ui.

H(Ŷ i
j) =− ∑

ck∈Ci

pi (ck|x j) ln(pi (ck|x j)) (7.2)

In Equation 7.2, Ci is the set of classes known at iteration i and pi (ck|x j) is the posterior

probability of ck given x j at iteration i.

To compute sewi we compare the median of H(Ŷ i) =
{

H(Ŷ i
1), ...,H(Ŷ i

j), ...,H(Ŷ i
Ni
)
}

with the

median of H(Ŷ i−1) =
{

H(Ŷ i−1
1 ), ...,H(Ŷ i−1

j ), ...,H(Ŷ i−1
Ni−1

)
}

. Ni is the cardinality of Ui. This is

done using a Wilcoxon test. sew stands for Steady Entropy Wilcoxon.

H0: the median of H(Ŷ i) is equal to that of H(Ŷ i−1)

H1: the median of H(Ŷ i) is not equal to that of H(Ŷ i−1)
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At each iteration we record the p-value of the test to decide whether to reject the null hypothesis

or not. The sewi value is in fact an integer counting the number of consecutive iterations, including

i, where the null hypothesis of the Wilcoxon test was not rejected. sewi is reset to 0 at any iteration

rejecting the null hypothesis.

This criterion is motivated by the assumption that if the unpredictability of H(Ŷ i) is centered

at the same level as that of H(Ŷ i−1) then we may assume that Ui cannot provide any more evidence

on the target concept.

This criterion requires two parameters. We must set the significance of the Wilcoxon test,

α , and the number of consecutive iterations not rejecting H0 that must occur to stop the learning

process, l.

Steady entropy distribution seki, is similar to sewi but using the Kolmogorov-Smirnov test for

equal probability distributions instead. sek stands for Steady Entropy Kolmogorov-smirnov.

H0: H(Ŷ i) and H(Ŷ i−1) come from the same distribution

H1: H(Ŷ i) and H(Ŷ i−1) do not come from the same distribution

This criterion is motivated by the assumption that if H(Ŷ i) and H(Ŷ i−1) both follow the same

probability distribution, then we may presume that Ui cannot provide any more evidence on the

target concept.

Like sew, this criterion also requires two parameters: the significance of the Kolmogorov-

Smirnov test, α , and the number of consecutive iterations not rejecting H0 that must occur to stop

the learning process, l.

7.1.2 Hybrid stopping criteria

One drawback of the criteria based on the entropy of Ŷj alone is that we may have the same value

for H(Ŷj) generated for different predictions. Entropy is computed from the probabilities only

with no association to the predicted labels. For instance, the entropy of the predictions Ŷ a and Ŷ b

for the hypothetic case presented in Table 7.1 is H(Ŷ a) = H(Ŷ b) = 0.5 despite the fact that they

correspond to different predictions, with Ŷ a
1 = 1 and Ŷ b

1 = 2.

Each of sew and sek are necessary but not sufficient conditions for stopping. Our hybrid stop-

ping criteria attempt to overcome this drawback by complementing sew and sek with cgr. The
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Table 7.1: Drawback of entropy as a stopping criteria

ck pa(ck|x0) pb(ck|x0)

1 0.8 0.2
2 0.2 0.8

rationale is that classification gradient, cgr, provides evidence on the predicted labels themselves

while entropy based criteria – sew and sek – inform on the probability distribution of those predic-

tions. Together they are expected to be sufficient stopping conditions making the hybrid criteria

more robust than their baseline alone.

We have defined two hybrid criteria each one being triggered when both its baseline criteria

have been triggered.

Ensemble of classification gradient and steady entropy mean hcw, triggers at the first iter-

ation i that simultaneously verifies cgr and sew. hcw stands for Hybrid Classification gradient

Wilcoxon test for steady entropy mean.

Ensemble of classification gradient and steady entropy distribution hck, triggers at the first

iteration i simultaneously verifying cgr and sek. hck stands for Hybrid Classification gradient

Kolmogorov-smirnov test for steady entropy distribution.

7.2 Other stopping criteria under evaluation

To evaluate the stopping criteria being proposed in this thesis we have assessed their performance

in comparison with five other criteria.

Average confidence (Vlachos, 2008) cdrp, computes the average confidence on a pre-labeled

validation set and stops the learning process when this average remains stable or drops for a num-

ber of consecutive rounds. This criteria has one main disadvantage when compared to our propos-

als given our concrete research problem. It requires, according to the authors, a large pre-labeled

validation set that adds a significant overhead to the cost of the learning process. This criterion

requires tuning two parameters: the maximum change in average confidence from one iteration to
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the next allowing to state that confidence remains stable or drops, ∆P, and the number of consec-

utive drops that are necessary to trigger the stopping sign, l.

Max-confidence (Zhu and Hovy, 2007) maxc, based on class posteriors, stops the learning

process when the entropy, H(Ŷ i
j), of the predictions of a query (Equation 7.2) is less than a very

small predefined threshold, H, close to zero – the authors suggest H = 0.001. This method relies on

the entropy of one single unlabeled instance, the one where the current classifier is less confident

about. Maxc requires tuning of one parameter – the entropy threshold H.

Overall-uncertainty (Zhu et al., 2008) ovru, is based on max-confidence with the difference

that while max-confidence only assesses the most informative instance at each iteration, i, overall-

uncertainty assesses all unlabeled instances x j ∈Ui. At each iteration, overall-uncertainty com-

putes the average entropy on the unlabeled set, H, and checks whether it is below a very small

threshold halting the learning process when this is verified. This method requires tuning the aver-

age entropy threshold, H.

Min-error (Zhu and Hovy, 2007) mine, is based on the oracle’s feedback when asked for the

true label of a query. It considers whether the current classifier can correctly predict the label of

the selected query – or achieve a high accuracy performance of predictions in batch mode AL –

as the learning process iterates. Stopping is triggered when the average accuracy of the predicted

labels is larger than a predefined accuracy threshold, AT – the authors use AT = 0.9. This method

requires tuning the accuracy threshold.

Variance model (Ghayoomi, 2010), cvar, computes the variance of the confidence on the t

top-confidence predicted labels and decides to stop when this variance decreases in l sequential

iterations. This criterion is based on the assumption that the variance of confidence scores of the

top-confidence predicted labels increases during an initial stage of the learning process, while the

classifier is untrained, to become stable at a second stage, when the classifier has improved its

performance and training is becoming more efficient, followed by a final stage, when the classifier

is well trained and variance decreases. From among the stopping criteria being evaluated this is

the one that requires most parameters. The variance model requires to set three parameters: the
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length of the batch required to estimate variance, t, the minimum number of consecutive iterations

having variance decreasing, l, and the minimum change in variance, ∆V , between iterations to

assume that the variance has decreased – the authors use t = 5, l = 2 and ∆V = 0.5.

7.3 Experimental setup

The evaluation of stopping criteria was performed over 20 datasets and 10 stopping criteria –

five of which are proposed by us. This evaluation aims to assess these stopping criteria with the

purpose of selecting the most appropriate to use in d-Confidence AL. The criteria proposed by us

– cgr, sew, sek, hcw and hck – are highlighted in bold in the tables presenting evaluation results.

7.3.1 Datasets used to evaluate stopping criteria

The evaluation of the proposed stopping criteria was performed over 20 datasets, the majority

of them retrieved from UCI (Frank and Asuncion, 2010), including three text corpora. These

datasets (Table 7.2) were selected to assure a broad coverage of their meta-properties, namely

number of attributes – ranging from four to 10333, number of classes – from three to 52 – and

class distribution – six balanced datasets, six imbalanced datasets and eight with a fairly balanced

distribution. From the three text corpora used for evaluation, two – R52 and NG, previously used

to evaluate d-Confidence – are modeled using TF×IDF and the other one – Amazon, retrieved

from UCI – is modeled using TF.

From each of these datasets we have extracted a random sample to be used exclusively for cdrp

validation as required by this criterion (Vlachos, 2008) (column #Validation in Table 7.2). The

remaining instances at each dataset were partitioned into 10 random samples of equal dimension.

One of these samples at a time is used at each of 10 validation folds for testing. The remaining

constitute the working set at each validation fold for a given dataset, W – the AL pool. Estimates

are generated by 10-fold cross validation.

7.3.2 Parameter tuning

Before proceeding to evaluation we have fine tuned the parameters of each stopping criteria.

Fine tuning was based on the experimental results observed on three of our datasets. These
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Table 7.2: Datasets used to evaluate stopping criteria

Dataset Type Attributes Classes #W #Test #Validation

Abalone tabular 8 28 450 50 100
Amazon text (TF) 10000 50 450 50 100
Balance tabular 4 3 450 50 100
Car tabular 6 4 450 50 100
Cleveland tabular 13 5 210 30 58
Ctg tabular 21 10 450 50 100
Digit tabular 240 10 450 50 100
Iris tabular 4 3 105 15 30
Isolet tabular 617 26 450 50 100
Letter tabular 16 26 450 50 100
Lrs tabular 101 48 360 40 100
NG text (TF×IDF) 10333 20 350 50 100
Nursery tabular 8 5 450 50 100
Optdigits tabular 64 10 450 50 100
Poker tabular 10 10 350 50 100
R52 text (TF×IDF) 6019 52 800 100 100
Robot tabular 24 4 450 50 100
Satlog tabular 36 6 350 50 100
Segment tabular 19 7 450 50 100
Vowels tabular 10 11 227 33 70

three datasets were selected from their class distribution. We have ranked the datasets by in-

creasing order of the absolute value of their class distribution skewness (Table 7.3) and then

selected for parameter tuning one of the most balanced – Iris, the most imbalanced – Poker –

and one fairly balanced dataset – Ctg. We have assumed as balanced one distribution having

−0.03 ≤ skewness ≤ 0.03. A distribution with −1 ≤ skewness ≤ −0.03∨ 0.03 ≤ skewness ≤ 1

is assumed to be fairly balanced and one with skewness ≤ −1∨ skewness ≥ 1 is assumed to be

imbalanced.

To tune the parameters we have evaluated the average penalty, computed over the three tuning

datasets, incurred by each stopping criteria when the parameter value changes. At each dataset,

the penalty is the absolute mean difference – computed on the 10 validation folds – between the

iteration that triggers the stop sign and the ideal iteration to stop w.r.t. error. The iteration when

the generalization error reaches its minimum for the first time is assumed to be the ideal iteration

to stop w.r.t. error.

The value of each parameter starts at a hypothetical reasonable value and is changed to higher

values and to lower values until a minimum penalty is observed. Initial values are those proposed
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Table 7.3: Class distribution skewness

Dataset Skewness |Skewness | Bias Tuning

Iris 0.000 0.000 balanced X
Vowels 0.000 0.000 balanced
Amazon 0.0131 0.0131 balanced
Isolet 0.0146 0.0146 balanced
Optdigits 0.018 0.018 balanced
Digit -0.024 0.024 balanced
Segment 0.036 0.036 fair
NG 0.039 0.039 fair
Letter -0.052 0.052 fair
Satlog 0.285 0.285 fair
Ctg 0.394 0.394 fair X
Nursery 0.488 0.488 fair
Balance -0.500 0.500 fair
Robot 0.967 0.967 fair
Cleveland 1.031 1.031 imbalanced
Car -1.032 1.032 imbalanced
R52 1.234 1.234 imbalanced
Abalone 1.491 1.491 imbalanced
Lrs 1.961 1.961 imbalanced
Poker 3.213 3.213 imbalanced X

by the authors, when available, or commonly accepted benchmarks, like α = 5%. For those

stopping criteria requiring more than one parameter, each one is tuned at a time while keeping

the remaining constant. In first place we always fine tune the parameter evaluating the marginal

progression from one iteration to the next – significance of the statistical test in both sew and sek,

change in average confidence at cdrp and change in confidence variance in cvar. Once these are

fixed, we proceed fine tunning the number of individual stop signals required to assume that the

stopping criterion is stable.

For instance, to tune the two parameters required by sek (Table 7.4) – significance of the Kol-

mogorov-Smirnov test, α , and the number of consecutive iterations accepting the null hypothesis,

l – we have started by analyzing the effect of significance, starting with α = 5% and changing

this value up and down until a minimum was observed while l was kept constant at l = 3. The

most common significance levels – 1%, 5% and 10% – were essayed. Then, the significance was

set to the best performer, α = 5%, and l was changed until a minimum was found. Finally, the

parameters were set to the best combination found through this process. In the case of sek the

tuned parameters are α = 5% and n = 5 as set at the fifth tuning run. This tuning process was
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performed to set the parameters of all stopping criteria under evaluation (see Table 7.5).

Table 7.4: Tuning process for sek

Run α l Penalty

1 0.05 3 25
2 0.01 3 26
3 0.1 3 45
4 0.05 1 31
5 0.05 5 16
6 0.05 7 18

Table 7.5: Stopping criteria parameters

Criteria ∆Ŷ α ∆P H H AT ∆V l t

cgr 0.01
sew 0.05 3
sek 0.05 5
cdrp 0.01 3
maxc 0.5
mine 0.9
ovru 0.5
cvar 0.0001 2 5

∆Ŷ is the minimum classification gradient triggering cgr. α is, for both sew and sek, the

significance level of the corresponding statistical test. For both these criteria, l refers to the number

of consecutive iterations accepting the null hypothesis that is required to stop. ∆P is the threshold

change in average confidence required by cdrp. For cdrp, l is the number of consecutive drops

in average confidence that is required to stop. H and H both refer to the threshold of the entropy

of the predictions below which the corresponding criteria are triggered. H refers to the marginal

entropy of the instance where the current classifier is least certain about while H refers to the

average entropy of the predictions of all unlabeled instances. AT is the minimum accuracy of

query predictions that is required to trigger mine. ∆V is the minimum change in the variance of

confidence between two consecutive iterations required to assume that it is decreasing. Regarding

cvar, l refers to the minimum number of consecutive iterations having variance decreasing that

are required to stop while t refers to the length of the batch required to estimate the variance of

confidence.
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7.3.3 Evaluation plan

Having all the parameters tuned we have proceeded to evaluate the performance of the stopping cri-

teria running d-Confidence on the previously described datasets (Section 7.3.1). For each dataset

and for each iteration of the AL process we have recorded error, the number of known classes and

the stopping criteria indicators.

The ideal iteration to stop was defined w.r.t. both error and known classes (Table 7.6). For each

dataset, the ideal iteration to stop regarding error is the iteration where the generalization error

achieves its minimum for the first time. The ideal iteration to stop regarding the number of known

classes is the first iteration, i, during the learning process verifying ∀ck ∈C,∃< x j,y j >∈ Li : y j =

ck. The maximum number of iterations at each dataset is N−2. This limit corresponds to querying

all instance in the working set, one at a time, except the two pre-labeled instances in L1.

Table 7.6: Ideal iteration to stop querying

Dataset Error Known classes Maximum

Iris 14 3 103
Cleveland 36 15 208
Vowels 221 27 225
Poker 80 99 348
Satlog 74 10 348
R52 353 257 798
NG 284 86 248
Abalone 416 442 448
Amazon 435 267 448
Balance 191 14 448
Car 440 392 448
Robot 358 33 448
Ctg 417 136 448
Digit 148 51 448
Isolet 323 165 448
Letter 362 138 448
Lrs 306 296 358
Nursery 229 326 448
Optdigits 447 63 448
Segment 436 59 448

For each dataset, the number of iterations required to trigger the stop signal is estimated by the

average over the cross validation folds (Table 7.7). The entries in Table 7.7 marked with * refer to

situations where stopping did not occur during the entire learning process. In such cases, a penalty

of one iteration w.r.t. the worst criterion that effectively stopped is charged.
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Table 7.7: Number of iterations to stop

Dataset cdrp ovru maxc mine cvar cgr sew sek hcw hck

Iris 24 21 32 13 5 24 11 19 24 24
Cleveland 6 207 208 116 5 104 52 35 104 104
Vowels 8 7* 7* 119 12 152 42 33 152 152
Poker 5 4* 4* 98 9 72 77 49 77 72
Satlog 8 169 148 55 13 56 38 43 56 56
R52 4 3* 3* 335 4 11 376 225 376 225
NG 4 3* 3* 324 324 4 179 162 179 162
Abalone 4 3* 3* 3* 29 445 124 138 445 445
Amazon 4 0* 1 433 7 434 97 72 434 434
Balance 9 93 126 91 7 89 11 92 89 92
Car 7 3 179 14 7 48 330 43 330 48
Robot 10 227 297 199 15 127 261 60 261 127
Ctg 4 3* 3* 429 437 47 406 430 406 430
Digit 4 249 283 3* 11 99 37 42 99 99
Isolet 4 3* 3* 198 4 225 66 46 225 225
Letter 4 3* 3* 272 11 293 119 64 293 293
Lrs 4 3* 3* 3* 8 317 93 64 317 317
Nursery 7 4 216 98 13 57 13 28 57 57
Optdigits 4 3* 3* 3* 3* 134 400 429 400 429
Segment 7 2* 2* 3 2* 4 380 416 380 416

7.4 Evaluation

The evaluation of the stopping criteria was performed with a main concern in cost reduction.

The cost of querying and the opportunity cost of not querying are two opposite factors being

considered. Cost analysis is guided by error and known classes, the relevant indicators of classifier

quality given our objectives. Performance loss due to erratic stop is an alternative perspective of

cost that we have also analyzed.

7.4.1 Stopping criteria performance

To have a clear view on the performance of each stopping criterion, we have computed from the

results in Tables 7.6 and 7.7 the penalty incurred in each dataset w.r.t. error (Table 7.8) and known

classes (Table 7.10). Penalty here is assumed to be the difference between the iteration when the

first stop signal is triggered and the ideal stopping iteration regarding either error or the number

of known classes. Negative differences mean that the stop signal was triggered before the ideal
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while positive differences mean it was triggered after the ideal. The majority of first stop signs

w.r.t. error occurs before the ideal (Table 7.9).

Table 7.8: Penalty iterations w.r.t. error

Dataset cdrp ovru maxc mine cvar cgr sew sek hcw hck

Iris 10 7 18 -1 -9 10 -3 5 10 10
Cleveland -30 171 172 80 -31 68 16 -1 68 68
Vowels -213 -214 -214 -102 -209 -69 -179 -188 -69 -69
Poker -75 -76 -76 18 -71 -8 -3 -31 -3 -8
Satlog -66 95 74 -19 -61 -18 -36 -31 -18 -18
R52 -349 -350 -350 -18 -349 -342 23 -128 23 -128
NG -280 -281 -281 40 40 -280 -105 -122 -105 -122
Abalone -412 -413 -413 -413 -387 29 -292 -278 29 29
Amazon -431 -435 -434 -2 -428 -1 -338 -363 -1 -1
Balance -182 -98 -65 -100 -184 -102 -180 -99 -102 -99
Car -433 -437 -261 -426 -433 -392 -110 -397 -110 -392
Robot -348 -131 -61 -159 -343 -231 -97 -298 -97 -231
Ctg -413 -414 -414 12 20 -370 -11 13 -11 13
Digit -144 101 135 -145 -137 -49 -111 -106 -49 -49
Isolet -319 -320 -320 -125 -319 -98 -257 -277 -98 -98
Letter -358 -359 -359 -90 -351 -69 -243 -298 -69 -69
Lrs -302 -303 -303 -303 -298 11 -213 -242 11 11
Nursery -222 -225 -13 -131 -216 -172 -216 -201 -172 -172
Optdigits -443 -444 -444 -444 -444 -313 -47 -18 -47 -18
Segment -429 -434 -434 -433 -434 -432 -56 -20 -56 -20

The same analysis can be made w.r.t. known classes. Tables 7.10 and 7.11 present the results

observed when comparing the iteration when the first stop signal is triggered and the ideal stopping

iteration regarding the number of known classes.

Stop signs w.r.t. the number of known classes occur earlier than the ideal for cdrp, cvar, ovru

and maxc and later than the ideal for hcw, hck, cgr and mine (Table 7.11). The clear trend to stop

before the ideal w.r.t. error, irrespectively of the stopping criteria, is not observed regarding the

number of known classes.

The behavior of cdrp, cvar, ovru and maxc from both points of view – error and known classes

– is very similar exhibiting a clear trend to stop earlier than the ideal. The other criteria – sew, sek,

mine, cgr, hck and hcw – have a tendency to stop earlier than the ideal when it comes to error and

after the ideal regarding known classes.
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Table 7.9: Number of datasets where stopping occurs before/after ideal w.r.t. error

Criteria Before After

hck 15 5
hcw 15 5
cgr 16 4
maxc 16 4
mine 16 4
ovru 16 4
cvar 18 2
sek 18 2
sew 18 2
cdrp 19 1

Table 7.10: Penalty iterations w.r.t. known classes

Dataset cdrp ovru maxc mine cvar cgr sew sek hcw hck

Iris 21 18 29 10 2 21 8 16 21 21
Cleveland -9 192 193 101 -10 89 37 20 89 89
Vowels -19 -20 -20 92 -15 125 15 6 125 125
Poker -94 -95 -95 -1 -90 -27 -22 -50 -22 -27
Satlog -2 159 138 45 3 46 28 33 46 46
R52 -253 -254 -254 78 -253 -246 119 -32 119 -32
NG -82 -83 -83 238 238 -82 93 76 93 76
Abalone -438 -439 -439 -439 -413 3 -318 -304 3 3
Amazon -263 -267 -266 166 -260 167 -170 -195 167 167
Balance -5 79 112 77 -7 75 -3 78 75 78
Car -385 -389 -213 -378 -385 -344 -62 -349 -62 -344
Robot -23 194 264 166 -18 94 228 27 228 94
Ctg -132 -133 -133 293 301 -89 270 294 270 294
Digit -47 198 232 -48 -40 48 -14 -9 48 48
Isolet -161 -162 -162 33 -161 60 -99 -119 60 60
Letter -134 -135 -135 134 -127 155 -19 -74 155 155
Lrs -292 -293 -293 -293 -288 21 -203 -232 21 21
Nursery -319 -322 -110 -228 -313 -269 -313 -298 -269 -269
Optdigits -59 -60 -60 -60 -60 71 337 366 337 366
Segment -52 -57 -57 -56 -57 -55 321 357 321 357
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Table 7.11: Number of datasets where stopping occurs before/after ideal w.r.t. known classes

Criteria Before After

hcw 3 17
hck 4 16
cgr 7 13
mine 8 12
sek 10 10
sew 10 10
maxc 14 6
ovru 14 6
cvar 16 4
cdrp 19 1

7.4.2 Penalty cost

Given the aims of our research, the cost associated to stopping out of time is probably more

relevant then the difference between real and ideal stopping iterations. To evaluate this we have

assigned a marginal cost per iteration that corresponds to the cost of having classifiers which

have not queried useful instances. This marginal cost, B, is the utility of unlabeled instances or,

from another perspective, the opportunity cost of not querying. The cost of querying, A, is the

other relevant cost associated to the stopping decision. The total cost associated to the penalty of

stopping out of time, A+B, is the sum of the utility of the queries that were wasted for not being

asked – when stopping before the ideal – and the querying cost of unnecessary queries – when

stopping after the ideal.

When the utility of unlabeled instances is assumed to be equal to the cost of querying, both

being equal to 1, A = B = 1, the total cost equals the absolute value of the difference between

the iteration when the first stop signal is triggered and the ideal stopping iteration. Total penalty

costs associated to each stopping criteria in each dataset, assuming A = B = 1, are presented in

Table 7.12, regarding error, and in Table 7.13, regarding known classes.

The rank of the stopping criteria being evaluated by decreasing order of the penalty w.r.t. error

(Table 7.14) shows that the new criteria being proposed perform well in general. Our five criteria

are ranked in top six.

The average penalty cost of the hybrid stopping criteria combining classification gradient and

steady entropy mean, hcw, outperforms all the other. The statistical significance of the observed
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Table 7.12: Total cost w.r.t. error when A = B = 1

Dataset cdrp ovru maxc mine cvar cgr sew sek hcw hck

Iris 10 7 18 1 9 10 3 5 10 10
Cleveland 30 171 172 80 31 68 16 1 68 68
Vowels 213 214 214 102 209 69 179 188 69 69
Poker 75 76 76 18 71 8 3 31 3 8
Satlog 66 95 74 19 61 18 36 31 18 18
R52 349 350 350 18 349 342 23 128 23 128
NG 280 281 281 40 40 280 105 122 105 122
Abalone 412 413 413 413 387 29 292 278 29 29
Amazon 431 435 434 2 428 1 338 363 1 1
Balance 182 98 65 100 184 102 180 99 102 99
Car 433 437 261 426 433 392 110 397 110 392
Robot 348 131 61 159 343 231 97 298 97 231
Ctg 413 414 414 12 20 370 11 13 11 13
Digit 144 101 135 145 137 49 111 106 49 49
Isolet 319 320 320 125 319 98 257 277 98 98
Letter 358 359 359 90 351 69 243 298 69 69
Lrs 302 303 303 303 298 11 213 242 11 11
Nursery 222 225 13 131 216 172 216 201 172 172
Optdigits 443 444 444 444 444 313 47 18 47 18
Segment 429 434 434 433 434 432 56 20 56 20
cost 273 265 242 153 238 153 127 156 57 81
σcost 146 145 154 158 159 149 106 131 46 96
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Table 7.13: Total cost w.r.t. known classes when A = B = 1

Dataset cdrp ovru maxc mine cvar cgr sew sek hcw hck

Iris 21 18 29 10 2 21 8 16 21 21
Cleveland 9 192 193 101 10 89 37 20 89 89
Vowels 19 20 20 92 15 125 15 6 125 125
Poker 94 95 95 1 90 27 22 50 22 27
Satlog 2 159 138 45 3 46 28 33 46 46
R52 253 254 254 78 253 246 119 32 119 32
NG 82 83 83 238 238 82 93 76 93 76
Abalone 438 439 439 439 413 3 318 304 3 3
Amazon 263 267 266 166 260 167 170 195 167 167
Balance 5 79 112 77 7 75 3 78 75 78
Car 385 389 213 378 385 344 62 349 62 344
Robot 23 194 264 166 18 94 228 27 228 94
Ctg 132 133 133 293 301 89 270 294 270 294
Digit 47 198 232 48 40 48 14 9 48 48
Isolet 161 162 162 33 161 60 99 119 60 60
Letter 134 135 135 134 127 155 19 74 155 155
Lrs 292 293 293 293 288 21 203 232 21 21
Nursery 319 322 110 228 313 269 313 298 269 269
Optdigits 59 60 60 60 60 71 337 366 337 366
Segment 52 57 57 56 57 55 321 357 321 357
cost 140 177 164 147 152 104 134 147 127 134
σcost 137 119 105 126 141 91 124 136 105 123

Table 7.14: Criteria rank of penalty cost w.r.t. error

Criteria Cost

hcw 57.4
hck 81.3
sew 126.8
mine 153.1
cgr 153.2
sek 155.8
cvar 238.2
maxc 242.1
ovru 265.4
cdrp 273.0
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differences of mean penalty cost of hcw compared to each of the other stopping criteria was evalu-

ated by t-tests on paired samples for equal means. The p-value of these tests (Table 7.15) confirms

that hcw achieves lower penalty costs than all the other except hck, assuming a significance level

of 5%.

Table 7.15: P-value for equal means of error penalty cost w.r.t. hcw

Criteria p-value

cdrp 3.75×10−6

ovru 7.78×10−6

cvar 7.12×10−5

maxc 1.35×10−4

sek 0.002
cgr 0.007
sew 0.008
mine 0.014
hck 0.157

To investigate whether penalty costs are related to class distribution we have computed for hcw

– the top performer – the correlation between penalty costs and distribution skewness. The corre-

lation between the penalty cost regarding error and skewness is -0.267 while that of penalty cost

regarding known classes is -0.390. Although these are not strong correlations they make us suspect

of a light tendency to have lower hcw penalty costs associated to imbalanced class distributions

than those associated to balanced data. This makes sense because achieving class-completeness –

finding representative instances for all target classes – and learning classification models requires

more queries for imbalanced datasets than for balanced ones. The hcw stopping criterion, on its

own, depends on the stability of cgr and sew which also requires a sufficiently large number of

queries. This, however, is not much dependent on the skewness of the underlying class distribu-

tion (Table 7.16). In Table 7.161, we have computed the average percentage of instances in W that

are queried before stopping. These averages were computed over all balanced and imbalanced

datasets as defined in Table 7.3. Class distribution has a high impact on the ideal iteration to stop

w.r.t. known classes. The ideal iteration to stop w.r.t. known classes occurs after querying 56%

of all instances in W , on average, for imbalanced data, and after 23% on balanced data. The same

1In Table 7.16, Ideal e and Ideal kc refer, respectively, to the ideal iteration to stop w.r.t. error and known classes.
hcw stop refers to the iteration where hcw triggers for the first time. Diff. to ideal e and Diff. to ideal kc refer to the
differences between hcw stop and, respectively, Ideal e and Ideal kc. These differences are proportional to penalty
costs.
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influence is not observed w.r.t. error. In fact, in balanced datasets, the ideal iteration to stop occurs

on average after querying 69% of available queries while, for imbalanced datasets, this figure is

60%. The correlation between penalty cost and class distribution is explained by the differences

between the ideal and the real stopping iterations. These differences are always lower for imbal-

anced than for balanced data (Table 7.16). As a consequence the corresponding penalty cost is

also lower for imbalanced data.

Table 7.16: Percentage of instances in W that are queried before stopping

Distribution Ideal e Ideal kc hcw stop Diff. to ideal e Diff. to ideal kc

Balanced 0.69 0.23 0.58 -0.11 0.35
Imbalanced 0.60 0.56 0.63 0.03 0.07

The dominance of hcw w.r.t. known classes penalty cost is not empirically supported by our

results (Table 7.17). Despite the fact that hcw and cgr still present the lowest mean cost, we

cannot reject the null hypothesis of equal means in none of the t-tests performed to evaluate the

mean penalty cost of hcw in comparison with the other (Table 7.18).

Table 7.17: Criteria rank of penalty cost w.r.t. known classes

Criteria Cost

cgr 104.4
hcw 126.6
hck 133.6
sew 134.0
cdrp 139.5
sek 146.8
mine 146.8
cvar 152.1
maxc 164.4
ovru 177.5

7.4.3 Sensitivity analysis of penalty cost

For the cost analysis of the stopping criteria presented in Section 7.4.2 we have assumed that the

cost of querying, A, and the opportunity cost of not querying, B – the utility of one unlabeled

instance when stopping earlier than the ideal – were equal. However, while the cost of querying

is constant as the learning process iterates – it only depends on the cost of service of the oracle
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Table 7.18: P-value for equal medians of known classes penalty cost w.r.t. hcw

Criteria p-value

ovru 0.212
maxc 0.336
cgr 0.422
sek 0.476
cvar 0.533
mine 0.595
hck 0.679
sew 0.734
cdrp 0.757

– the utility of unlabeled instances is not. The utility of unlabeled instances is higher before the

ideal stopping iteration than after. Stopping at iteration i, before the ideal stopping point, s, means

that we would still be able to improve the performance of hi by querying s− i more unlabeled

instances. Then, those last s− i unlabeled instances have some utility since they would add value

to the current solution. Moreover, querying after the ideal iteration to stop, s, will not add any value

to hs, otherwise hs would not be the ideal hypothesis and so s would not be the ideal iteration to

stop.

Wasting the utility, B, of potentially useful unlabeled instances that are not queried has an

impact on the penalty cost of extemporaneous stopping. We have analyzed the sensitivity of the

penalty cost w.r.t. the utility of unlabeled instances by computing total penalty cost for different

ratios of B, the opportunity cost of not querying, by A, the querying cost, ranging from 0.1 – the

cost of querying is 10 times the utility of one unlabeled instance – to 10 – the utility is 10 times

the cost of querying.

Both our hybrid criteria – hcw and hck – always outperform the other ones concerning the

penalty cost w.r.t. error. Thus, we have focused on the analysis of penalty costs related to known

classes – stopping before or after knowing all the target classes. We have computed total cost

when the opportunity cost of not querying, B, varied in {1,2,4,10} while the cost of querying was

kept constant at A = 1 – covering a range of B/A between 1 and 10 – and the inverse, B = 1 and

A∈ {1,2,4,10} – covering a range of B/A between 0.1 and 1. The evolution of total costs for each

stopping criterion as B/A changes is presented in Figure 7.1 (cost unit is the cost of one query).

We may observe high sensitivity to changes in the relative costs of querying or not. When



162 Stopping Criteria

Figure 7.1: Total cost sensitivity to B/A, w.r.t. known classes

the opportunity cost of not querying is greater than or equal to the cost of querying, B/A≥ 1, the

stopping criteria with best performance w.r.t. error are also top performers w.r.t. known classes.

This costs balance is the common setting given our goals. We are focused in the first place on the

early identification of classes which is coherent with the assumption that the query cost is lower

than the opportunity cost of not querying. Stopping before the ideal w.r.t. known classes prevents

the identification of all target classes, our main goal.

To evaluate the statistical significance of the changes in penalty costs we have performed t-

tests for equal means of total penalty w.r.t. known classes for all stopping criteria in comparison

to hcw. The corresponding p-values are presented in Table 7.19.

Table 7.19: P-value of t-test for equal means of penalty cost w.r.t. hcw

Criteria B/A = 0.1 B/A = 0.25 B/A = 1 B/A = 4 B/A = 10

ovru 0.080 0.227 0.212 0.003 0.001
cdrp 0.001 0.009 0.757 0.006 0.001
cvar 0.015 0.061 0.533 0.009 0.003
maxc 0.114 0.251 0.336 0.011 0.006
sek 0.025 0.100 0.476 0.03 0.016
mine 0.209 0.373 0.595 0.121 0.081
sew 0.014 0.052 0.734 0.092 0.054
cgr 0.027 0.043 0.422 0.223 0.094
hck 0.450 0.628 0.679 0.347 0.299

Although hcw consistently outperforms hck regarding the penalty cost w.r.t. known classes,

the difference is never statistically significant. As previously noticed, for a cost ratio of B/A = 1,

none of the stopping criteria dominates all the other w.r.t. known classes. As expected, since hcw
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has a tendency to stop after having identified all target classes while other criteria stop before,

when the cost ratio, B/A, decreases below 1 – when the cost of querying is assumed to be higher

than the utility of one unlabeled instance – hcw gets dominated by its baseline criteria, sew and

cgr, and also by sek, cdrp and cvar. At a cost ratio B/A = 0.1 there is still statistical evidence,

at a significance level α = 10%, to conclude that the mean of total penalty costs incurred by hcw,

hck, mine and maxc are similar.

The dominance of hcw is evident when the costs ratio is bigger than unity – when the utility

of one unlabeled instance is higher than the cost of querying. In fact, at a costs ratio of B/A = 4

only mine and cgr incur in penalty costs that are comparable to those incurred by our hybrid

approaches. At a costs ratio of B/A = 10 we have statistical evidence to reject H0, with α = 10%,

for all stopping criteria except hck.

7.4.4 Penalty cost space

For an holistic performance view we have represented the evaluated stopping criteria in what we

call the penalty cost space (Figure 7.2). Our penalty cost space is a two-dimensional Cartesian

space formed by penalty cost w.r.t. error and penalty cost w.r.t. known classes. The penalty

cost space is divided in quadrants defined by halving the range of observed penalty costs in each

dimension.

When the learning task aims mainly at error we should select a stopping criteria from quadrants

II or III. When we are mainly concerned with known classes, we should use a stopping criteria in

quadrants III or IV. Top performers – those achieving simultaneously lower penalty costs at both

perspectives – are located in quadrant III while the worse performers will be located in quadrant

IV.

In these charts we have used a square to represent the single stopping criteria we are proposing

– chr, sew and sek – and a triangle to represent hybrid stopping criteria – hcw and hck. The

stopping criteria from other authors are represented by circles. Colors are used to distinguish

them. The full list of symbols used for representing stopping criteria is provided in Figure 7.3

The performance of the stopping criteria under evaluation for different B/A is depicted in

Figures 7.4a to 7.4c. The chart in Figure 7.4d represents the evolution of penalty costs when the

ratio B/A changes from 0.1 to 1 and to 10. The size of the symbols representing stopping criteria is
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Figure 7.2: Penalty cost space

Figure 7.3: Symbols representing stopping criteria
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indicative of the magnitude of B/A – the smaller symbols stands for penalty costs observed when

B/A = 0.1. In this chart we have normalized the penalty costs for each different B/A – all the

penalty costs observed at a given B/A were divided by the corresponding maximum. For a better

understanding we have illustrated the path of hcw as B/A increases.

(a) B/A = 0.1 (b) B/A = 1

(c) B/A = 10 (d) Path as B/A changes, costs normalized to maximum

Figure 7.4: Cost sensitivity to B/A

In seven out of the nine scenarios in Table 7.20 hcw is always the top performer. In the remain-

ing scenarios, that is when B/A = 0.1 and when considering total penalty cost or known classes

penalty cost, cgr is the best performer. The best performer in all scenarios with no exception is
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always one of the stopping criteria proposed by us – either hcw or cgr. Only at the B/A = 0.1

scenario relating to known classes penalty cost there are two criteria not being proposed by us –

cdrp and cvar – among top performers in quadrant I (QI).

Table 7.20: Stopping criteria top performers

Penalty ratio Total cost Error cost Known classes cost

B/A = 0.1 cgr hcw cgr
hck cdrp
sew cvar
sek
cgr

B/A = 1 hcw hcw hcw
hck sew hck

hck
cgr

B/A = 10 hcw hcw hcw
hck hck hck
sew sew cgr

sew

As the opportunity cost of not querying – the utility of one unlabeled instance – comes more

important when compared to the querying cost, the performance of both hcw and hck moves from

QII to QIII (Figure 7.4d). Both these criteria present low cost w.r.t. error, irrespectively of the B/A

ratio. Their performance is better when the utility of unlabeled instances is more important that

the cost of querying.

7.4.5 An alternative perspective to cost

The impact that the nature of the problem, regarding utility and cost of querying, has on the cost

incurred by the stopping criterion in use can be analyzed from a different point of view. Instead

of considering the rate of the utility of one unlabeled instance by the cost of querying we may

consider an alternative perspective and analyze the rate of negative – early stop – by positive – late

stop – differences between the real stopping iteration and the ideal one.

The average of these differences (Table 7.21) computed over the 20 datasets used for evalua-

tion, show that all stopping criteria have a tendency to stop earlier than the ideal w.r.t. error by a

factor of two at least. When regarding the number of known classes, a similar trend is observed,

although not as salient, for all stopping criteria except hcw and sew. In fact, both hcw and sew tend
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to stop querying only after having identified all the target classes. This is very relevant considering

our concern with the identification of exemplary instances from all classes.

Also from this point of view, hcw demonstrates good performance. hcw has the smallest ratio

of negative by positive differences to the ideal stopping point w.r.t. error. This means that although

there is a tendency to stop earlier than the ideal, the bias is not as severe as with the other criteria.

hcw also performs well w.r.t. known classes, being second only to sew. It is one of the only two

criteria that, on average, stop after identifying all the classes.

Table 7.21: Ratio between average negative by average positive differences to ideal stop

Criteria Error Known classes

hcw 2.381 0.918
maxc 2.783 1.027
ovru 3.298 1.382
hck 3.802 1.344
mine 4.852 1.573
cgr 6.241 2.118
sew 7.114 0.840
cvar 8.711 1.148
sek 19.123 1.306
cdrp 28.679 6.940

7.4.6 Robustness

So far we have studied the performance of the stopping criteria based on the first time the stopping

condition is satisfied. But this first signal may be spurious. It might happen that there is a big gap

between the iteration when the first stop sign is triggered and the next. To evaluate the robustness

of the stopping criteria we have computed how many iterations are required to get the third and

the fifth stop signal after the first one was triggered. The number of iterations between the first

stop sign and the third and fifth, in Figure 7.5, are the average of these indicators computed over

the datasets where all the stopping criteria have triggered the stop sign at least five times – Iris,

Satlog, Balance, Car, Robot and Nursery.

Stopping criteria sew, cdrp, hcw, sek and hck are robust, consistently triggering stop signs

after the first. The first stop sign triggered by ovru, cvar and mine seems to be incidental since

there is a big gap between the iterations when the stop sign is triggered for the first and third times.

When using maxc or cgr the first three stop signs are close to each other but the fourth and the
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Figure 7.5: Mean number of iterations, after the first stop has been triggered, required to trigger
the stop sign for the third and fifth time

fifth require a significant number of queries to be triggered. The stopping criteria with the worse

robustness performance is mine taking much more iterations than the rest to trigger after the first

time. Those stopping criteria that consistently trigger stop signs are more reliable than those that

trigger occasionally.

7.4.7 Utility as performance loss

One last concern relates to the fact that we have assumed so far that the utility of one unlabeled

instance – the opportunity cost of not querying, B – is constant during all the learning cycle,

independently of the added value that it might bring to the current hypothesis. In fact, this utility

may also be related to the potential improvement that additional queries may add to the hypothesis

as more data is available to the classifier. The potential improvement that unlabeled instances in

Ui may add is the performance loss of stopping at iteration i. From this point of view the utility is

not constant.

As the learning process iterates, more labeled instances are available and each new hypothesis

is built with more information about the target concept. Besides, AL is expected to add to the

training set the most informative instances available at each iteration. As a consequence, it is

expected that the utility of the remaining unlabeled instances decreases as the learning process

iterates and the unlabeled pool gets reduced to a set of redundant instances – or at least not as
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informative.

The potential improvement – or performance loss – was computed for error and for known

classes. The potential improvement w.r.t. error (Table 7.22) was estimated by the average of the

differences between the error observed at the iteration triggering the stop sign and minimum error.

Potential improvement regarding known classes (Table 7.23) is the average of the differences

between the number of classes in the dataset and the number of classes known at the stopping

iteration. These averages were computed over the six datasets where all the stopping criteria

trigger before exhausting the working set.

Table 7.22: Query utility as potential error improvement

Dataset Ideal error cdrp ovru maxc mine cvar cgr sew sek hcw hck

Iris 0.033 0.022 0.016 0.009 0.007 0.331 0.022 0.051 0.018 0.022 0.022
Satlog 0.141 0.543 0.007 0.011 0.02 0.421 0.021 0.059 0.043 0.021 0.021
Balance 0.065 0.353 0.041 0.011 0.049 0.567 0.054 0.301 0.046 0.054 0.046
Car 0.08 0.247 0.316 0.047 0.211 0.247 0.157 0.013 0.173 0.013 0.157
Robot 0.195 0.360 0.025 0.016 0.039 0.352 0.071 0.253 0.163 0.017 0.071
Nursery 0.107 0.532 0.567 0.007 0.019 0.383 0.179 0.383 0.217 0.179 0.179
average 0.343 0.162 0.017 0.057 0.384 0.084 0.177 0.11 0.051 0.083

Table 7.23: Query utility as potential known classes improvement

Dataset #classes cdrp ovru maxc mine cvar cgr sew sek hcw hck

Iris 3 0 0 0 0 0 0 0 0 0 0
Satlog 6 1.6 0 0 0 0.8 0 0 0 0 0
Balance 3 0.1 0 0 0 0.2 0 0.1 0 0 0
Car 4 1.9 2 0.3 1.9 1.9 1 0.2 1 0.2 1
Robot 4 0.7 0 0 0 0.5 0 0 0 0 0
Nursery 5 2.2 2.8 0.9 1 1.9 1.5 1.9 1.8 1.5 1.5
average 1.08 0.80 0.20 0.48 0.88 0.42 0.37 0.47 0.28 0.42

Apparently maxc is the stopping criterion that takes better advantage of the utility of unlabeled

instances since it stops when the utility of the remaining instances is the lowest among all –

regarding error as well as known classes. However, this utility indicator must not be analyzed on

its own. A trivial optimal solution, strictly from the performance loss point of view, is to stop when

only one instance in the working set remains unlabeled. This instance will have the lowest utility

thus, top performance from this point of view. However, such a stopping criterion is not adequate

for its potentially high penalty cost. Utility, defined this way, must be complemented with the gap

between real and ideal stop iterations. From this perspective maxc is a poor performer being the

second last one w.r.t. known classes (Table 7.17) and the last but two w.r.t. error (Table 7.14).
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From all the other, hcw exhibits the best performance also from the perspective of this utility

indicator – stopping when the utility of the remaining unlabeled instances is low. The difference

to maxc is that this evidence on the merits of hcw is supported by the distance between real and

ideal stop iterations – hcw is first for error (Table 7.14) and second for known classes (Table 7.17).

7.5 Prevailing outcomes

In general the stopping criteria proposed in this thesis outperform state-of-the-art proposals. Our

hybrid criteria, hcw and hck, are the top performers on the generality of the evaluation scenarios

with advantage to hcw.

Stopping before or after the ideal Although in general the stopping criteria under evaluation

have a tendency to stop querying before the ideal, mainly regarding error, hcw and hck are those

that stop after the ideal iteration more consistently over the datasets used for evaluation. This

behavior is particularly significant regarding known classes. Stopping only after having retrieved

exemplary instances from all the target classes is a core characteristic given our goals that is clearly

present in hcw and hck but not in the rest.

Penalty cost of stopping out of time From the point of view of penalty costs, hcw also out-

performs the other stopping criteria. hcw dominates all the other criteria – except hck – when

analyzing penalty costs w.r.t. error. The same dominance is observed regarding penalty costs

related to known classes except when the cost of querying is assumed to be higher than the op-

portunity cost of not querying. However, such a relation of costs is contradictory to our goals –

identifying exemplary instances from all target classes.

Robustness A group of stopping criteria, including hcw, hck, sew, sec and cdrp, trigger stopping

signs consistently being more reliable than the rest. These stopping criteria trigger consecutive

stop signs after the first while the rest trigger occasionally which indicates that the first stop signs

triggered by those stopping criteria are casual. The robustness and reliability of hcw, hck, sew, sec

and cdrp clearly outperforms the other.
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Potential improvement utility hcw also outperforms the other criteria when we analyze the

utility of unlabeled instances as the potential improvement they may add to the current hypothesis.

Although maxc takes better advantage of this utility, this is a trivial solution that does not take into

consideration the cost of querying, one of our main concerns.

For all these results, hcw, exhibiting the most favorable characteristics regarding our research

goals, seems to be the most appropriate choice. The combination of low classification gradient

and label distribution steadiness provides efficient stopping criteria.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In general the results from our research support the hypotheses under investigation. An active

learning (AL) strategy guided by d-Confidence – an aggregation of distance and confidence – is

able to build accurate classifiers covering all the target classes with a reduced cost when compared

to state-of-the-art approaches. The hcw stopping criterion – an hybrid criterion based on the clas-

sification gradient and the stability of the distribution of predictions – provides precise and robust

indications to stop querying, outperforming current stopping criteria.

Building accurate, class-complete classifiers at reduced labeling effort D-Confidence is an

effective query selection criterion for AL that retrieves exemplary instances from all the target

classes in an early stage of the learning process outperforming common AL approaches in use

(Figure 6.15). The stopping criterion based on the ensemble of classification gradient and steady

entropy mean, hcw, triggers robust indications to halt the AL process at appropriate stages of the

leaning process taking into account both the cost of querying and the utility of the remaining unla-

beled instances (Table 7.12). D-Confidence and hcw together constitute an efficient and efficacious

AL strategy to build accurate classifiers with a comprehensive coverage of the target classes at low

cost, that is, requiring fewer queries than state-of-the-art approaches.

Although d-Confidence is tailored to use SVM base classifiers, it is also effective with other

base classifiers – particularly neural networks and decision trees – assuring significant reduction
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in the labeling effort in general (Table 6.9). In such cases, however, the accuracy is not as good

as when using SVM base classifiers (Table 6.12 and Figure 6.8). The base classifier used in the

learning process has some influence on accuracy but apparently not on the labeling effort required

to identify instances covering all target classes.

The reduction in the labeling effort achieved by d-Confidence, when compared to other state-

of-the-art AL strategies, is particularly noticeable in retrieving instances from under-represented

classes in highly imbalanced data. However, under such circumstances, this improvement is in

some cases achieved at the cost of a marginal reduction of accuracy. This pattern is observed in

high-dimensional unstructured data as well as on low-dimensional tabular data (Figures 6.8, 6.10

and 6.15).

The exploratory bias that d-Confidence generally exhibits at an early stage of the learning

process may cause exchanging accuracy for representativeness when in presence of imbalanced

data. Nevertheless, a marginal reduction in accuracy may be acceptable, mainly in those scenarios

where the early identification of minority classes is critical – such as, clinical and financial data.

D-Confidence provides significant improvements over state-of-the-art AL strategies. mainly in

such scenarios.

Shifting between exploration and exploitation modes D-Confidence dynamically shifts its

operative mode between exploration and exploitation. This shift is conducted by the geometric

properties and by the class distribution in the labeled set used to train, L, and also by the geometric

properties of the unlabeled set available to search for queries, U . The exploratory potential of

d-Confidence is boosted when the variance of the distances between unlabeled instances in U and

known classes in L is higher than that of confidence. Otherwise the exploitation behavior of d-

Confidence is enhanced (Section 6.5). This shift occurs as a natural consequence of changes in

the composition of U and L at each iteration of the learning process. Shifting between exploration

and exploitation is an automatic unsupervised process that does not require any pre-tuning nor

additional costs, contributing to improve the efficiency of d-Confidence.

Stop querying The hybrid stopping criterion aggregating classification gradient and steady en-

tropy mean, hcw, consistently outperforms other common stopping criteria. It presents the lowest

penalty cost w.r.t. both error and known classes except when the cost of querying is assumed to
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be much higher – one order of magnitude – than the opportunity cost of not querying (Tables 7.12

and 7.13, Figure 7.1). Such a cost value relationship, however, is not expected in our setting,

mainly during the early stage of the learning process when still searching for exemplary instances

to cover all target classes.

Both hybrid criteria proposed in this thesis, hcw and hck, have a tendency to halt the learn-

ing process only after all the target classes are identified, in contrast to the rest. This behavior

significantly contributes to our goals when the cost of querying is assumed to be lower that the

opportunity cost of not querying. Besides, hcw is a stable stopping criteria triggering even stop

signs (Section 7.4.6).

The hcw criterion is also the one that takes most advantage of the potential improvement that

a new query may add to the current classifier.

Early class exposure In general, d-Confidence exhibits significantly lower LDC – minimum

number of queries required to retrieve exemplary instances from all target classes – than other

state-of-the-art approaches. Moreover, d-Confidence is particularly fit to retrieve exemplary in-

stances from minority classes (Tables 6.11 and 6.12, Figure 6.12). This is a relevant characteristic

of d-Confidence that makes it particularly suited for domains with imbalanced class distributions.

These outcomes naturally arise from the efficient coverage of the input space as provided by d-

Confidence (Table 6.3).

Early class disclosure and fast instance space coverage are in part due to the inclusion of the

distance factor in d-Confidence. This factor adds an exploratory bias, particularly influential when

instance space still has unexplored clusters contributing to a high variance of the distance between

labeled and unlabeled instances (Section 6.5).

Effectiveness assessment The evaluation of our proposal was in part supported by performance

indicators that are typical in classification tasks, like error rate. However, these indicators do not

provide enough information w.r.t. to our specific goals. Mainly class exposure is not addressed by

performance measures focused on error. We propose three novel performance indicators for AL,

known classes, first-hit and LDC, addressing class exposure (Section 6.3.1).
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8.2 Summary of contributions

The main contributions of this work include:

(1) D-Confidence, a query selection criterion for AL, combining distance and confidence, that in

general outperforms state-of-the-art approaches in building accurate class-complete classifiers

(Tables 6.18 and 6.19). D-Confidence has top performance in the early identification of rep-

resentative instances of all target classes, mainly on imbalanced data (Figures 6.12 and 6.14).

In general, it reduces the labeling effort required to build classifiers with a particular benefit

in domains where under-represented classes are critical.

(2) The hybrid stopping criterion, hcw, triggers halt signals when the utility of unlabeled instances

is low (Tables 7.22 and 7.23). This stopping criterion takes best advantage of the utility of

unlabeled instances in a robust fashion, consistently triggering stop signs at proper stages of

the learning process (Section 7.4.6). hcw consistently outperforms other common stopping

criteria w.r.t. the cost value relationship (Figure 7.4).

(3) A learning strategy supporting the full AL process. This strategy includes not only the query

selection criterion, d-Confidence, but also the hcw stopping criterion that halts the learning

process when no further improvements are expected. In the absence of a reliable stopping

criteria, all the gains obtained from a proper selection criterion may be jeopardized since we

will keep incurring in the cost of querying the oracle with ever lower return.

(4) Definition of a set of indicators – known classes, first-hit and LDC – to evaluate the perfor-

mance of the AL process w.r.t. the coverage of target classes (Section 6.3.1).

(5) A comprehensive cost/benefit analysis of stopping criteria having into consideration the cost

of querying and the opportunity cost of not querying (Section 7.4).

(6) A formal definition of a specific classification problem setup that is of particular relevance

when the cost of querying is high, unlabeled data is easily available, class distribution is

severely imbalanced and under-represented classes are critical. This formal problem statement

(Section 5.4) provides a common background to support further investigation.
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(7) The development of several applications of d-Confidence included in research projects, MSc

theses and BSc capstone projects (Section 6.7).

8.3 Future work

There are several opportunities for further research on the d-Confidence strategy aimed to build

accurate classifiers being aware of all target classes at low cost.

Semi-supervised d-Confidence In AL the training set is built iteratively by sequentially labeling

and adding the most informative instances given the current hypothesis and available data. The

least informative instances – those that are not expected to induce significant changes to the current

hypothesis if labeled and added to the training set – are not deemed as relevant. However, these

might reinforce the description of target classes that is available to train, contributing to improve

the classifier accuracy. With semi-supervised techniques this added value might be obtained at no

additional cost. Merging semi-supervised techniques in our AL strategy aiming to leverage the

intrinsic value of highly confident unlabeled instances at no cost might improve accuracy without

increasing labeling cost.

Representativeness and retrieval When the representativeness assumption fails to hold, the

working set will not contain instances from all the target classes. In such circumstances, a po-

tential source of instances from the target domain may be used to search and retrieve additional

instances to complement the working set and fill the gap. This seems particularly relevant in text

categorization given the amount of text information available in the Web which makes it a potential

source for text instances on almost any topic. Developments in this matter may also contribute to

reduce the computational cost of d-Confidence by deliberately using just a subset of the available

data which is then updated with new instances on a need-to-know basis.

Distance computation Computing distances between all pairs of instances in the working set

as required by d-Confidence demands for significant computational resources and is not scalable.

This effort can be reduced by first pre-selecting a subset of instances being representative of the
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geometric structure of the working set and then extrapolating these results to compute d-Confi-

dence.

Initialization D-Confidence is initialized by a set of two instances selected at random from

the working set. When building this initialization set, our only concern was to initialize at the

minimum cost. The potential utility of the instances selected to initialize was not considered. It

might happen that the additional cost eventually required to improve the initialization set may

payoff by creating conditions for a faster convergence and a lower LDC. This problem is being

investigated by our colleagues at the University of São Paulo (Motta et al., 2012) who are analyzing

the potential of complex network properties for this purpose.
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Jurij Mihelič and Borut Robič. Solving the k-center problem efficiently with a dominating set
algorithm. Journal of Computing and Information Technology, 13, 3:225—-233, 2005.

Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

P. Mitra, C. A. Murthy, and S. K. Pal. A probabilistic active support vector learning algorithm.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(3):413–418, 2004.

C. N. Mooers. The theory of digital handling of non-numerical information and its implications to
machine economics. In Technical Bulletin No. 48. Cambridge, MA: Association of computing
machinery meeting. Zator Co., 1950.

R. Moskovitch, S. Cohenkashi, U. Dror, I. Levy, A. Maimon, and Y. Shahar. Multiple hierarchical
classification of free-text clinical guidelines. Artificial Intelligence in Medicine, 37(3):177–190,
July 2006. ISSN 09333657.

Robson Motta, Alneu Andrade Lopes, and Maria Cristina Oliveira. Centrality measures from
complex networks in active learning. In Proceedings of the 12th International Conference on
Discovery Science, DS ’09, pages 184–196, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN
978-3-642-04746-6.

Robson Motta, Alipio Mario Jorge, Alneu de Andrade Lopes, Nuno Escudeiro, and Maria Cristina
Oliveira. Combining network and confidence based approaches for active learning (submitted).
In 12th IEEE International Conference on Data Mining, 2012.

Ion Muslea, Steven Minton, and Craig A. Knoblock. Active learning with multiple views. Journal
of Artificial Intelligence Research, 27:203–233, 2006.

Gonzalo Navarro and Ricardo Baeza-Yates. A language for queries on structure and contents of
textual databases. In Proceedings of the 18th annual international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’95, pages 93–101, New York, NY,
USA, 1995. ACM. ISBN 0-89791-714-6.

M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45(2):167–256,
2003.



REFERENCES 193

Hieu T. Nguyen and Arnold Smeulders. Active learning using pre-clustering. In Proceedings of
the 21st International Conference on Machine Learning, pages 623–630. ACM Press, 2004.

Kamal Nigam, Andrew Kachites McCallum, Sebastian Thrun, and Tom Mitchell. Text Classifica-
tion from Labeled and Unlabeled Documents using EM. Mach. Learn., 39:103–134, May 2000.
ISSN 0885-6125.

Bruno M. Nogueira, Alípio M. Jorge, and Solange O. Rezende. Hierarchical confidence-based
active clustering. In Proceedings of the 27th Annual ACM Symposium on Applied Computing,
SAC ’12, pages 216–219, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-0857-1.
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