
— END —
A Lightweight Algorithm to Estimate the

Number of Defects in Software
Technical Report

André Riboira1 and Rui Abreu2

HASLab/INESC-TEC
Informatics Department - University of Minho
Campus de Gualtar 4710-057 Braga - Portugal

1andre.riboira@fe.up.pt, 2 rui@computer.org

October 2013

Defect precision provides information on how many defects a given software
application appears to have. Existing approaches are usually based on time
consuming model-based techniques. A viable alternative is the previously
presented Abacus algorithm, which is based on Bayesian fault diagnosis.
This paper presents a novel alternative approach - coined End - that uses
the same input and produces the same output as the Abacus algorithm,
but is considerably more time efficient. An experiment was conducted to
compare both the accuracy and performance of these two algorithms. The
End algorithm presented the same accuracy as the Abacus algorithm, but
outperformed it in the majority of executions.

1 Introduction

This document presents the End1 algorithm, and is organized as follows:
This chapter introduces the motivations that underlie the work presented
herein, as well as the goals. Chapter 2 details the End algorithm. The fol-
lowing chapter presents the experiment conducted to validate the algorithm.
Chapter 4 contains a discussion of the results obtained in the experiment.
Finally, Chapter 5 concludes this document.

1End is an acronym that stands for ”Estimating the Number of Defects”.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143397429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1.1 Motivation

Defect prediction provides information on how many defects need to be re-
moved before shipping [5]. Existing approaches are usually based on model-
based techniques [6]. These require the fitting of a known defect prediction
model to estimate the number of defects that still exist in the software. The
selection of an appropriate model requires a large amount of historical data
containing several metrics collected from the development process, and is
usually a time consuming task [10, 7]. Moreover, with few exceptions, no
model accurately represents the software under analysis.

The previously presented Abacus algorithm aims to overcome the issues of
the techniques based on defect prediction models [14]. This defect prediction
reasoning approach is based on Bayesian fault diagnosis [2] using abstrac-
tions of program traces (also known as program spectra) [15]. However, the
performance of the Abacus algorithm suffers from the need to deal with a
Minimal Hitting Set (MHS) problem [11]. To circumvent this problem, Aba-
cus takes advantage of the use of the Staccato algorithm [1]. Staccato is
a statistics-directed approximate minimal hitting set algorithm. Despite be-
ing an viable alternative comparing to the usage of defect prediction models,
the performance of the Abacus algorithm is not ideal when dealing with a
large number of simultaneous independent faults [14].

1.2 Goals

The goal of the End algorithm is to use a different approach to avoid the
need to deal with a MHS problem [12]. The accuracy of the results is accepted
to be lower than the one resulting from the use of the Abacus algorithm.
The reason is that it is often not necessary to know the exact number of
faults needed to be fixed, but to have an approximated idea of that value to
be able to better manage the software development process [8]. Therefore,
a decreased accuracy of the results seem acceptable in favor of increased
performance.

2 Algorithm

Based on a program spectra, it is trivial to determine the minimal number
of independent defects (considering only the observed failures). One can
determine which candidate C participates in the largest number of failed
tests. If that candidate is not responsible for all the failed tests, it is known
that the software has more than a single defect. To know the minimum
number of independent defects, this process must be executed recursively,
using in each call the subset of the program spectra that does not include
the candidate C of the previous call, neither the tests hit by that candidate.

2



Algorithm 1 End algorithm.

1: procedure End(P,N)
2: if Ev has errors(P) then
3: R← SC(P )
4: T ← max(R)
5: P ← UPS(P, T )
6: return End(P,N + 1)
7: else
8: return N
9: end if

10: end procedure

The number of recursive calls will reveal the minimum number of independent
defects of the software under analysis.

The minimal number of independent defects is usually not a rather helpful
information, because software usually embeds some sort of main procedure,
and the minimal number of independent faults tends to be 1. More use-
ful than knowing the minimal number of independent faults, is knowing the
predicted number of independent faults. It is currently not possible to accu-
rately determine this number without knowing the actual defects, but it is
possible to roughly predict it. The Abacus algorithm already do this rather
accurately, but at the cost of having to deal with a MHS problem. In turn,
the End algorithm uses an approach similar to the one used to determine the
minimal number of independent faults. The main difference is that instead
of selecting the candidate C which participates in a larger number of failed
tests, it selects the candidate T presenting the higher similarity coefficient.
Like the process to determine the minimal number of independent faults, the
End algorithm also recursively removes the candidate T of the previous call,
as well as the tests hit by that candidate, while recording the number of calls.
See Algorithm 1 for details.

The End algorithm receives as input the program spectra P (in the same
format as received by the Abacus algorithm) as well as a counter N with
the current call. It verifies if the received error vector2 still has any record of
a failed test (using procedure Ev has errors). If not, the algorithm reached
the final result. Otherwise, the algorithm calculates the similarity coefficient
for each candidate (using procedure SC), resulting into vector R. It then
selects the candidate T with the maximum similarity coefficient value, and
updates the current program spectra P (using procedure USP) removing both
the candidate T and the tests hit by it. Finally, the algorithm recursively calls
itself using the updated program spectra P and incrementing the counter N .

2The error vector is received as input inside P together with the program spectra matrix, and is a
binary vector recording for each test if it passed (0) or failed (1).

3



The End algorithm offers as an additional advantage the ability to define
boundaries for the recursive process. One can define a maximum number of
independent defects to look for, in order to avoid unacceptably long execution
delays when dealing with very large projects, or projects with a considerably
large number of independent defects. Due to its nature, the End algorithm
accuracy deeply depends on how the top positions of the similarity coefficients
ranking compares to the actual faulty candidates.

3 Experimental Setup

An experiment was conducted to verify how the End algorithm compares to
the Abacus algorithm in terms of performance and accuracy. It was used
the same version of the same web-based application presented in the previous
Abacus paper [14], as well as both the same test suite and injected defects.

The real-world application used in this experiment was Wordpress3 3.4,
obtained from trac.wordpress.org repository, changeset 22222. This Word-
press version consists of 439 PHP4 files, containing 110,891 LOC. It uses
PHPUnit5 [4] as the unit testing software framework of its choice. The unit
test suite related to this Wordpress version was obtained from the unit-
tests.trac.wordpress.org repository, changeset 1081. This test suite is com-
posed by 1019 passing tests and several other tests marked to be “skipped”
during the test suite execution. During this experiment only the passing unit
tests were considered to use with the PHPUnit version 3.6.12 framework.
These unit tests exercised 1059 different functions of the Wordpress appli-
cation. The accuracy and efficiency of both algorithms were verified using
255 different faulty versions of Wordpress. These faulty versions were ob-
taining by exploring all the possible combinations of 8 different faults injected
directly into the Wordpress source code. The 8 injected faults are detailed
in page ABACUS20136 of the Promisedata repository [13].

An implementation of the End algorithm was developed using the same
conditions as the Abacus experiment: It was developed using the same
version of PHP, running on the same virtual server. This experiment was
conducted in the Amazon Elastic Compute Cloud (Amazon EC2)7 infrastruc-
ture [9], using a M1 Medium Instance, with 3.75 GiB memory and 2 EC2
Compute Unit (1 virtual core with 2 EC2 Compute Unit). The executions of
both algorithms were interspersed during the tests to minimize the impact
of changes in external conditions. Thus, it was possible to not only compare
the accuracy of these two algorithms, but also to compare their performance.

3Wordpress: http://wordpress.org/
4PHP: http://php.net/
5PHPUnit: http://phpunit.de/
6Repository at: https://code.google.com/p/promisedata/wiki/ABACUS2013
7Amazon EC2: http://aws.amazon.com/ec2/

4



4 Results and Discussion

The results from the End algorithm are roughly the same as those from the
Abacus algorithm in terms of accuracy. Due to its nature, the Abacus
algorithm presented an approximation of the predicted number of defects
(in a float format). Rounding this result to the nearest integer, we obtain
exactly the same prediction from both algorithms. These results were slightly
unexpected because the End algorithm is supposed to simply return a rough
approximation of the number of faults, because it does not deal with a MHS
problem. However, the End algorithm predicted correctly the precise number
of defects in all 255 tests.

While the accuracy of both algorithms shown to be similar, they performed
considerably different in terms of execution time (see Table 1). The End al-
gorithm took in average less than a second to return each result, while the
Abacus algorithm took roughly 5 times more. Regarding the minimum exe-
cution time, the difference between both algorithms is not relevant, where the
Abacus algorithm outperformed the End merely in 0.022 seconds. However,
the maximum execution time is considerably different. The End algorithm
proved to reduce more than 67 times the Abacus execution time in the most
time consuming scenario (8 simultaneous independent defects).

Table 1: End and Abacus execution times.

END ABACUS ∆ Performance

Min. 0.226 s 0.204 s + 0.022 s ( + 10,78 % )
Avg. 0.913 s 4.869 s - 3.956 s ( - 81,25 % )
Std. Dev. 0.316 s 11.949 s —
Max. 1.790 s 120.774 s - 118,984 s ( - 98,52 % )

To better understand the performance differences, refer to Figure 1 where
a bar chart is presented containing the average execution time by number of
simultaneous independent defects.

When dealing with a low number of simultaneous independent defects,
the differences in the performance of both algorithms is not very significant.
However, when the number of simultaneous independent defects increases,
the performance differences are evident. The End algorithm took approxi-
mately n×t seconds to compute the result, being n the number of simultane-
ous independent defects and t the time spent to compute a single defect. In
turn, the Abacus algorithm execution time increased exponentially as the
number of defects increased.

5



0 20 40 60 80 100 120

1

2

3

4

5

6

7

8

Execution Time (s)

N
u

m
b

er
of

si
m

u
lt

an
eo

u
s

in
d

ep
en

d
en

t
d

ef
ec

ts

End

Abacus

Figure 1: Execution times by number of simultaneous independent defects.

5 Conclusions

Predicting the number of defects present in a given software application is
important to evaluate not only how reliable the software appears to be, but
also to adequately plan the development process to fix those defects. Model
based techniques are very time consuming tasks, and the selected models
may not adequately fit the software under analysis.

The previously presented Abacus algorithm [14] tries to overcome these
issues using an approach based on data collected during software test exe-
cutions. However, its performance degrades considerably when dealing with
a large number of simultaneous independent defects, mainly because it has
to deal with a MHS problem. To solve this issue, the End algorithm pre-
sented in this document follows a rather different concept to avoid to deal
with a MHS problem, despite using the same input and intending to produce
a similar output as the Abacus algorithm.

An experiment was conducted to compare the accuracy and performance
of both algorithms. The End algorithm results were the same as the Abacus
algorithm in terms of accuracy. However, the End algorithm outperformed
the previous algorithm in most of the tests. The worst performance differ-

6



ence was a 10% increase of the execution time. However, one should notice
that these situations only occur when dealing with single faults, and that
this increase of 10% corresponds to a delay of less than one tenth of a sec-
ond. Overall, the End algorithm clearly outperformed the Abacus, having
execution times in average 81% lower. The most significant difference oc-
curred when dealing with 8 simultaneous independent faults, where the End
algorithm dramatically outperformed the Abacus, having an execution time
98% lower, from more than 2 minutes to less than 2 seconds.

The End algorithm proved to be a viable alternative to the Abacus algo-
rithm in predicting the number of defects existing in software applications.

As future work, the algorithm implementation should be tuned and com-
piled, and not interpreted (as it was during this experiment, using PHP), in
order to increase its performance [3]. Note that although the Abacus frame-
work is built using PHP, its core processing (staccato and abacus algorithm
itself) is implemented in C. Other work that could be done is to signifi-
cantly increase the number of simultaneous independent defects to verify if
the trend seen in this experiment still verifies. Finally, this new approach
may also be useful in fault diagnosis field. Perhaps it could be developed to
allow a multiple fault diagnosis approach without the need to deal with a
MHS problem.

Acknowledgments

This work is financed by Portuguese National Funds through the FCT -
Fundação para a Ciência e Tecnologia (Portuguese Foundation for Science
and Technology) within Ph.D. Grant SFRH/BD/88535/2012.

References

[1] Rui Abreu and Arjan J. C. van Gemund. “A Low-Cost Approximate
Minimal Hitting Set Algorithm and its Application to Model-Based
Diagnosis”. In: Proceedings of the 8th Symposium on Abstraction, Re-
formulation and Approximation (SARA’09). Ed. by Vadim Bulitko and
J. Christopher Beck. Lake Arrowhead, California, USA: AAAI Press,
2009.

[2] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. “Spectrum-
Based Multiple Fault Localization”. In: Proceedings of the 2009 IEEE
/ACM International Conference on Automated Software Engineering.
ASE ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 88–
99. isbn: 978-0-7695-3891-4.

7



[3] Varsha Apte, Tony Hansen, and Paul Reeser. “Performance compar-
ison of dynamic web platforms”. In: Computer Communications 26.8
(2003), pp. 888–898.

[4] S BERGMANN. “PHPUnit Official Manual”. In: Git Hub Inc, Alema-
nia (2010).

[5] Marco D’Ambros, Michele Lanza, and Romain Robbes. “Evaluating
Defect Prediction Approaches: A Benchmark and an Extensive Com-
parison”. In: Empirical Softw. Engg. 17.4-5 (Aug. 2012), pp. 531–577.
issn: 1382-3256.

[6] Norman E Fenton and Martin Neil. “A critique of software defect pre-
diction models”. In: Software Engineering, IEEE Transactions on 25.5
(1999), pp. 675–689.

[7] Norman E Fenton and Martin Neil. “A critique of software defect pre-
diction models”. In: Software Engineering, IEEE Transactions on 25.5
(1999), pp. 675–689.

[8] Brent Hailpern and Padmanabhan Santhanam. “Software debugging,
testing, and verification”. In: IBM Systems Journal 41.1 (2002), pp. 4–
12.

[9] Gideon Juve et al. “Scientific workflow applications on Amazon EC2”.
In: E-Science Workshops, 2009 5th IEEE International Conference on.
IEEE. 2009, pp. 59–66.

[10] Paul Luo Li et al. “Empirical Evaluation of Defect Projection Models
for Widely-deployed Production Software Systems”. In: Proceedings of
the 12th ACM SIGSOFT Twelfth International Symposium on Founda-
tions of Software Engineering. SIGSOFT ’04/FSE-12. Newport Beach,
CA, USA: ACM, 2004, pp. 263–272. isbn: 1-58113-855-5.

[11] Carsten Lund and Mihalis Yannakakis. “On the Hardness of Approxi-
mating Minimization Problems”. In: J. ACM 41.5 (Sept. 1994), pp. 960–
981. issn: 0004-5411.

[12] Carsten Lund and Mihalis Yannakakis. “On the hardness of approxi-
mating minimization problems”. In: Journal of the ACM (JACM) 41.5
(1994), pp. 960–981.

[13] Tim Menzies et al. The PROMISE Repository of empirical software
engineering data. 2012. url: http://promisedata.googlecode.com.

[14] A. Riboira and R. Abreu. “How Many Defects Need to be Fixed?” In:
(TBP).

[15] Peter Zoeteweij et al. “Diagnosis of embedded software using program
spectra”. In: Engineering of Computer-Based Systems, 2007. ECBS’07.
14th Annual IEEE International Conference and Workshops on the.
IEEE. 2007, pp. 213–220.

8


