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Abstract

We present a method of combining coupled cell systems to get dynamics supporting robust sim-
ple heteroclinic networks given by the product of robust simple heteroclinic networks (cycles).
We consider coupled cell networks, with no assumption on symmetry, and combine them via the
join operation. Assuming that the dynamics of the component networks supports robust simple
heteroclinic cycles or networks, we show that the join dynamics realizes a more complex hetero-
clinic network given by the product of those cycles or networks. Moreover, the equilibria in the
product heteroclinic network correspond to partially synchronous states. Assuming no symmetry
for the component coupled cell networks, one of the key points for the existence and robustness
of the heteroclinic dynamics are the flow invariant subspaces forced by the network structure -
the synchrony subspaces. The other key point is that the (linear) stability of equilibria in the join
dynamics is determined by the (linear) stability of equilibria in the component dynamics. The
first point depends only at the network structure of the component networks. The second one
depends both at the components network structures and the convenient choice of the join cou-
pling. The proposed method is general and can be applied to the join of symmetric or asymmetric
networks. Here, we illustrate it through the join of two asymmetric coupled cell networks where
robust simple heteroclinic cycles between fully synchronous equilibria occur. We obtain robust
simple heteroclinic networks for the join dynamics between partially synchronised equilibria for
the associated join network.

AMS classification scheme numbers: 37C29 34C15 37C80

1 Introduction

A wide range of applications in many diverse areas, such as biology, economics, physics and ecology,
are modelled through coupled cell systems. See, for example, Boccaletti et al. [13] and references
therein. The network structure associated to a coupled cell system can have a nontrivial impact on its
dynamical behaviour. One such example is the occurrence of robust heteroclinic cycles and networks.
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In terms of applications, particularly in computational neuroscience, heteroclinic phenomena have been
deserving a growing interest. See, for example, Ashwin et al. [8, 11], Neves et al. [22, 23], Rabinovich et
al. [24, 25].

Heteroclinic cycles and networks do not occur in a robust way for general systems, but it is well
known they do in the presence of flow invariant subspaces. Such flow invariant subspaces can arise, for
example, as a consequence of symmetry, that is, due to the equivariance with respect to a symmetry
group, see for example Homburg and Knobloch [19]. Another setting where flow invariant subspaces
appear and thus robust heteroclinic phenomena can occur is in replicator dynamics and bimatrix
games, see Aguiar [1].

In the context of coupled cell systems there are flow-invariant subspaces that are not related
to the symmetry or other specific features of the particular systems but instead are forced by the
associated network structure. These are the network synchrony subspaces. More specifically, the
synchrony subspaces of a network are polydiagonals, spaces described by equalities of groups of cell
coordinates, that are flow-invariant for every coupled cell system that have structure consistent with
the network. Moreover, the synchrony subspaces of a network are in one-to-one correspondence with
the polydiagonal subspaces that are left invariant under the network adjacency matrix (or adjacency
matrices in case different types of interactions occur), see [26, 17, 4]. Observe that, if the coupled
cell network is symmetric under the action of a nontrivial group Γ of permutations of the nodes (the
cells), then the fixed-point subspaces of subgroups of Γ, for the induced (permutation) action of Γ on
the total phase space of the associated coupled cell systems are flow-invariant. In general, for a fixed
network structure, symmetric or asymmetric, the set of the network synchrony subspaces contains
properly the set of fixed-point subspaces. See Antoneli and Stewart [7].

Robust heteroclinic phenomena in symmetric systems have been studied extensively in recent years
as becomes patent from the review article by Homburg and Knobloch [19]. Recently, interest has been
given to the study of the existence of heteroclinic cycles and networks in coupled cell systems, induced
by the associated set of network synchrony subspaces. See, for example, Aguiar et al. [2], Ashwin et
al. [12] and Field [15]. Note that, in general, the network has no symmetries and so these flow-invariant
subspaces are not fixed-point subspaces. See also the work of Chossat et al. [14] in the context of
Hopfield networks. The existence of heteroclinic networks can lead to the occurrence of complex
dynamics, see for example, Aguiar et al. [3, 5], Homburg et al. [18], Labouriau et al. [21], Kirk et
al. [20], Homburg et al. [19] and references therein. For coupled cell systems displaying unexpected
heteroclinic behaviour see, for example, the review in Ashwin et al. [9] and Ashwin et al. [10].

In this paper, we show how the join operation on coupled cell networks can be used to construct
dynamics supporting robust simple heteroclinic networks given by the product of robust simple hetero-
clinic cycles (or networks). Briefly, the key points in our proposal method of constructing heteroclinic
behaviour for join dynamics, from heteroclinic dynamics of the component network dynamics, are: the
existence of synchrony subspaces for the join obtained from the synchrony subspaces of the component
networks, see Aguiar and Ruan [6]; the linear stability of equilibria at the heteroclinic network for the
join dynamics is determined by the linear stability of equilibria for the component networks. Specif-
ically, assume, for example, that the component networks N 1 and N 2 support robust heteroclinic
connections between the equilibria p, q for N 1 and p, q for N 2. The coupling for the join coupled
cell systems can be chosen such that (p,p), (p,q), (q,p), (q,q) are equilibria for the join N 1 ∗ N 2.
Moreover, the stability of these equilibria depend mildly on the coupling function and strongly on the
stability of the equilibria p, q for N 1 and p, q for N 2. In particular, if p, q, p, q have full synchrony,
then the new equilibria (p,p), (p,q), (q,p), (q,q) have partial synchrony. These apply to a specific
asymmetric network structure example where it has been proved recently the existence of associated
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coupled cell systems that support, in a robust way, simple heteroclinic cycles between two fully syn-
chronised equilibria, see Aguiar et al. [2]. For this case, we prove the existence of coupled cell dynamics
for the join network supporting a robust simple heteroclinic network with four partially synchronous
equilibria. The method followed here can be used iteratively and can be generalised to other coupled
cell networks with dynamics realising heteroclinic networks as, for example, in Ashwin et al. [12] and
Field [15].

The paper is organized in the following way. In Section 2 we introduce the basic facts concerning
coupled cell networks, heteroclinic networks/cycles, and the join operation on networks. In Section 3 we
propose a general method, via the join operation on networks, to construct dynamics supporting robust
simple heteroclinic networks given by the product of robust simple heteroclinic cycles (or networks).
We apply the method to an example in Section 4.

2 Coupled cell networks and the join of networks

In this section we review the main points concerning coupled cell networks and the join operation on
networks. We also give a brief review on heteroclinic cycles and networks.

2.1 Coupled cell networks

Following [26, 17, 16], a coupled cell network N is a directed graph whose nodes represent the cells
and the directed arrows the couplings. Nodes are represented by the same symbol if they correspond
to the same individual dynamics. Similarly, identical edges correspond to couplings of the same type.
For cell i of N , let Ii = {i1, . . . , iki} be the multiset of the cells with edges directed to cell i – the input
set of cell i. Two cells i and j are said to be input isomorphic if there is a bijection between Ii and Ij
preserving the edge types. A network is called homogeneous if all the cells are input isomorphic. For
each edge type of an n-cell network, we can consider the n × n adjacency matrix where the ij entry
is the number of edges of that type from cell j to cell i. Thus, a network N with p edge types has p
adjacency matrices.

Example 2.1 Consider the homogeneous network structure in Figure 1 appearing in [2]. There are
two edge types corresponding to the adjacency matrices

A1 =

 0 1 0
1 0 0
0 1 0

 and A2 =

 0 0 1
0 0 1
1 0 0

 .

Note that I1 = {2, 3}, I2 = {1, 3} and I3 = {1, 2}. Moreover, all the cells receive one edge of each
type. It follows then that all the cells are input isomorphic. For example, the function γ : I1 → I2
such that γ(2) = 1, γ(3) = 3 is a bijection between the two input sets preserving the edges types. 3

A coupled cell system compatible with a coupled cell network N is a system of ordinary differential
equations Ẋ = F (X) with structure consistent with N in the following way. If Pi is the cell phase
space of cell i then the total phase space is given by the product of the cell phase spaces. In this paper
we assume that Pi = R; if N has n cells then P = Rn. Denote by X = (x1, . . . , xn) ∈ P and let
F = (f1, . . . , fn). We have then that

ẋi = fi

(
xi;xi1 , . . . , xiki

)
3
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Figure 1: A three-cell homogeneous network with two edge types: every cell receives two directed
edges, one of each type.

where fi : R×Rki → R is smooth. It will also hold that if il, is ∈ Ii correspond to edges directed to
cell i of the same type, then fi is invariant under the permutation of the variables xil , xis . Moreover, if
i and j are input isomorphic, then fi and fj differ only by permutation of the corresponding variables
associated with Ii, Ij.

Example 2.2 Consider the homogeneous network structure in Figure 1. The admissible coupled cell
systems have the form

ẋ1 = f(x1;x2, x3)
ẋ2 = f(x2;x1, x3)
ẋ3 = f(x3;x2, x1)

, (2.1)

with f : R3 → R a smooth function. 3

A subspace ∆ of Rn given by equalities of certain cell coordinates is a synchrony subspace for the
coupled cell network N when it is flow-invariant for any coupled cell system with structure consistent
with N . From the results of Stewart and Golubitsky et al. [26, 17] it follows that a subspace given
by equalities of certain cell coordinates is a synchrony subspace for N if and only if it is left invariant
under the adjacency matrices of N . Moreover, the coupled cell systems consistent with a network N
restricted to a synchrony subspace S are coupled cell systems with structure consistent with a smaller
network, called the quotient network of N by S. See Aguiar and Dias [4] for a characterisation and
computation algorithm of the set of synchrony subspaces of a network which form a lattice under the
subset inclusion relation.

Example 2.3 Consider the two-cell network Q in Figure 2. The admissible coupled cell systems for
Q have the form

ẏ1 = f(y1; y2, y1)

ẏ2 = f(y2; y1, y1)
(2.2)

where f : R3 → R is a smooth function. For the homogeneous network in Figure 1 there are four
synchrony subspaces. See Table 1. Taking for example the synchrony subspace S3 = {(y1, y2, y1) ∈
R3}, the coupled cell systems equations (2.1) restricted to S3 are equations (2.2), taking f = f . We
say that Q is the quotient network of the network in Figure 1 by S3. 3

Observe that if N is an homogeneous coupled cell network with n cells, then the diagonal subspace
∆ = {x : x1 = · · · = xn} is a synchrony subspace. Denoting the adjacency matrices of N by Ai, then
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P = R3 S2 = {x : x1 = x2} S3 = {x : x1 = x3} ∆ = {x : x1 = x2 = x3}

Table 1: The synchrony subspaces for the network in Figure 1.

21

Figure 2: A two-cell quotient network Q of the network in Figure 1 by the synchrony subspace
S3 = {x : x1 = x3}.

if p = (p, . . . , p) and we have a coupled cell systems Ẋ = F (X) consistent with N , it follows that the
linearization of the vector field at p has the following form:

(∂F )p = αIdn +
∑
i∈I1

βiAi

where α = (∂f/∂x1)p and βi = (∂f/∂xi)p.

Example 2.4 For the homogeneous network in Figure 1 let p = (p, p, p). Recall the network adjacency
matrices A1 and A2 listed in Example 2.1. The linearization at p of the vector field determined by
equations (2.1) is:

J(p) =

 α β γ
β α γ
γ β α

 = αId3 + βA1 + γA2,

where α = ∂f
∂x

(p), β = ∂f
∂y

(p) and γ = ∂f
∂z

(p).

Note that J(p) has eigenvalues µ1 = α+β+γ, µ2 = α−β, µ3 = α−γ associated with the following
eigenlines:

E1 : x1 = x2 = x3;
E2 : x2 = −(1 + γβ−1)x1, x1 = x3;
E3 : x3 = −(1 + βγ−1)x1, x1 = x2 .

Using the notation of Table 1, note that E1, E2 are contained in the synchrony subspace S3; also,
E1, E3 are contained in the synchrony subspace S2. 3

2.2 Heteroclinic cycles and networks

There is an heteroclinic cycle connecting a sequence of k saddle equilibria p0, . . . ,pk−1 if the unstable
manifold of pi intersects nontrivially the stable manifold of pi+1, for each i = 1, . . . , k (mod k). By a
robust simple heteroclinic cycle it is meant one in which the heteroclinic connections are one dimensional
and lying on a two-dimensional invariant subspace. In the context of this work, the invariant subspaces
are network synchrony subspaces.

A connected assembly of heteroclinic cycles forms a heteroclinic network. Thus, in a heteroclinic
network, every equilibria has at least one incoming and one outgoing connection; and given any
two equilibria in the network, there is a sequence of connections taking one to the other. In case

5



the heteroclinic cycles are robust and simple the heteroclinic network is a robust simple heteroclinic
network.

We say that a heteroclinic network (cycle)H is attracting in a flow-invariant manifold M containing
H if there exists a neighbourhood V of H such that any trajectory with initial condition in V ∩M is
attracted to H.

In [2] it is proved the existence of admissible vector fields for the network structure in Figure 1
supporting robust attracting simple heteroclinic cycles involving two fully synchronous equilibria p and
q. For example, following the notation of Example 2.4 above, assuming that W u(p) ⊂ {x : x1 = x3},
thus µ2 = α−β > 0, and assuming that W s(p) ⊂ {x : x1 = x2}, thus µ3 = α−γ < 0, and the opposite
for the invariant manifolds W u(q), W s(q) and corresponding eigenvalues, then there are admissible
vector fields f supporting the existence of the heteroclinic cycle depicted in Figure 3.

x
1 2= x

1 3x x=

p q

Figure 3: In [2], it is proved that the network structure in Figure 1 supports a robust attracting simple
heteroclinic cycle, as the one depicted here, involving two fully synchronous equilibria p and q, with
connections contained in the synchrony subspaces S2 = {x : x1 = x2} and S3 = {x : x1 = x3}.

A heteroclinic network (cycle) can be schematized by a directed graph where the saddle equilibria
and corresponding orbits (in forward time) linking them are represented by the nodes and directed
edges, respectively. In that sense, we say that a heteroclinic network H is given by the product of two
heteroclic networks (cycles), say H1 and H2, when it can be represented by the cartesian product of
the two directed graphs associated with the heteroclinic networks (cycles). That is, the nodes of the
product H1 × H2 are the cartesian product of the two sets of nodes of H1 and H2. Moreover, if we
denote by ij the node of the product where i corresponds to a node in H1 and j in H2, then there is
an arrow from the node ij to the node kl if and only if i = k and there is a directed edge from j to l in
H2, or j = l and there is a direcetd edge from i to k in H1. We call H a product heteroclinic network.

2.3 The join of two networks

The usual definition of join of graphs is given by the disjoint union of all graphs together with additional
arrows added between every two cells from distinct graphs. In Aguiar and Ruan [6], the join of two
coupled cell networks N 1 and N 2 is the network N 1 ∗ N 2 defined in the following way: the set of
cells of N 1 ∗ N 2 is the union of the sets of cells of N 1 and N 2; the set of edges is the union of the
sets of edges of the two networks plus bidirected edges connecting every cell of N 1 to every cell of
N 2. Here, we consider a more general definition of join of two networks given by the disjoint union
of the two networks together with additional directed arrows added between every two cells from the
two networks, but where directed arrows from one group to the other are not necessarily of the same
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type. Moreover, we allow the absence of arrows from the cells of one network to the cells of the other
one. In particular, the disjoint union of the two networks is a join special case.

For i = 1, 2, consider the network Ni, with set of cells (nodes) Ci and set of arrows E i. Denote
the adjacency matrices of N1 by Ai, for i = 1, . . . , p1 and the adjacency matrices of N2 by Bj, for
j = 1, . . . , p2. Assume r1 = #C1 and r2 = #C2. The join of N1 and N2, denoted by N1 ∗ N2, is the
network with set of cells C1 ∪ C2 and adjacency matrices(
Ai 0r1,r2

0r2,r1 0r2,r2

)
, i = 1, . . . , p1;

(
0r1,r1 0r1,r2

0r2,r1 Bj

)
, j = 1, . . . , p2;

(
0r1,r1 Cr1,r2

0r2,r1 0r2,r2

)
;

(
0r1,r1 0r1,r2

Dr2,r1 0r2,r2

)
,

where each C or D can be the zero matrix 0k,l or the 1k,l matrix, of the corresponding orders. Here
nk,l denotes the k × l matrix with entries all equal to n.

Example 2.5 The network in Figure 4 is the six-cell join of two networks N 1 and N 2 both with the
network structure given in Figure 1. Recall the adjacency matrices A1, A2, in Example 2.1, of the
network in Figure 1. The network N 1 ∗ N 2 has adjacency matrices(

Ai 03,3

03,3 03,3

)
,

(
03,3 03,3

03,3 Ai

)
,

(
03,3 13,3

13,3 03,3

)
,

if we consider only one join coupling type. Otherwise, instead of the adjacency matrix at the right,
we have the following two adjacency matrices:(

03,3 13,3

03,3 03,3

)
,

(
03,3 03,3

13,3 03,3

)
.

Here i = 1, 2. 3

2

3

1

2

3

1

Figure 4: The join network N 1 ∗ N 2 for networks N 1 and N 2 both with network structure given in
Figure 1. Here, the arrow type from cells in N 1 to cells in N 2 and from cells in N 2 to cells in N 1 are
drawn equally in order to make easier the visualization.

Synchrony subspaces for the join of networks

For i = 1, 2, let Si be a synchrony subspace for N i. Then S1 × S2 is a synchrony subspace for
N 1 ∗N 2. If N 1,N 2 are homogeneous networks it follows then that each admits the full diagonal space
as synchrony space, say ∆i for N i. It follows then that N 1 ∗ N 2 has at least the following nontrivial
synchrony subspaces: ∆1×∆2, ∆1×P2 and P1×∆2. For the description of all the synchrony subspaces
for the join network that are obtained from the synchrony subspaces of the component networks see
Aguiar and Ruan [6].
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Example 2.6 The synchrony subspaces for the join networkN 1∗N 2, in Figure 4, are listed in Table 2.
3

P1 × P2

P1 × S2
2 = {(x,y) : y1 = y2}

P1 × S3
2 = {(x,y) : y1 = y3}

P1 ×∆2 = {(x,y) : y1 = y2 = y3}
S2
1 × P2 = {(x,y) : x1 = x2}
S2
1 × S2

2 = {(x,y) : x1 = x2, y1 = y2}
S2
1 × S3

2 = {(x,y) : x1 = x2, y1 = y3}
S2
1 ×∆2 = {(x,y) : x1 = x2, y1 = y2 = y3}
S3
1 × P2 = {(x,y) : x1 = x3}
S3
1 × S2

2 = {(x,y) : x1 = x3, y1 = y2}
S3
1 × S3

2 = {(x,y) : x1 = x3, y1 = y3}
S3
1 ×∆2 = {(x,y) : x1 = x3, y1 = y2 = y3}

∆1 × P2 = {(x,y) : x1 = x2 = x3}
∆1 × S2

2 = {(x,y) : x1 = x2 = x3, y1 = y2}
∆1 × S3

2 = {(x,y) : x1 = x2 = x3, y1 = y3}
∆1 ×∆2 = {(x,y) : x1 = x2 = x3, y1 = y2 = y3}

Table 2: The synchrony subspaces for N 1 ∗ N 2 in Figure 4. We use the notation of Table 1.

Admissible coupled cell systems for the join of networks

Suppose N1 and N2 are two (connected) homogeneous networks where N1 has r1 cells and N2 has
r2 cells. Consider the join network N1 ∗ N2 which has r = r1 + r2 cells. Assuming that the internal
dynamics of cells in N1 ∗N2 is one-dimensional, the state space of N1 ∗N2 is the cartesian product of
the phase spaces of the two networks: Rr1+r2 =̃ Rr1 ×Rr2 .

Let ẋ = F (x), for x ∈ Rr1+r2 , be a coupled cell system where the vector field F is admissible for
the join network N1 ∗N2. Denote by xi ∈ R and yj ∈ R the coordinates associated to the cell i of N 1

and cell j of N j, respectively. Let Ii be the set of cells in the network N1 that are coupled to cell i
on N 1 and Ij be the set of cells in network N2 that are coupled to cell j of N 2. It follows then that
the input set of cell i in the join network N1 ∗ N2 is the union of Ii with the set of cells C2. Similarly,
the input set of cell j is the union of Ij and C1. A vector field consistent with the structure of the join
network has then the i and j components of the form

ẋi = f
(
xi;xIi ; yC2

)
ẏj = g

(
yj; yIj ;xC1

) . (2.3)

Here, the invariance of f (resp. g) under some of the variables in xIi (resp. yIj) depends on the
structure of N1 (resp. N2). Note that the functions f, g are independent of i ∈ C1 and j ∈ C2, as the
join network maintains homogeneity for cells in C1 and cells in C2. Also, we use a bar in f to denote
that f is invariant under the variables yk for k ∈ C2, as all edges from cells in C2 to cells in C1 are of
the same edge type. Similarly, for g.
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Example 2.7 For the join network N 1 ∗ N 2 in Figure 4, assuming the cells are one-dimensional, the
admissible coupled cell systems have the form

ẋ1 = f(x1;x2, x3, y1, y2, y3)
ẋ2 = f(x2;x1, x3, y1, y2, y3)
ẋ3 = f(x3;x2, x1, y1, y2, y3)
ẏ1 = g(y1; y2, y3, x1, x2, x3)
ẏ2 = g(y2; y1, y3, x1, x2, x3)
ẏ3 = g(y3; y2, y1, x1, x2, x3)

, (2.4)

with f, g : R6 → R smooth functions.
3

Linear admissible vector fields for the join of networks

Let p = (p, . . . , p) ∈ Rr1 and p = (p, . . . , p) ∈ Rr2 . That is, (p,p) ∈ ∆1×∆2. Suppose that ẋ = F (x),
for x ∈ Rr1+r2 , is a coupled cell system where the vector field F is admissible for the join network
N1 ∗ N2. Using the notation of equations (2.3), take for example cell 1 ∈ C1 and the input set I1
formed by the cells in C1 that have directed edges to cell 1 and choose one cell il ∈ I1 for an edge of
type Ai. Similarly, take for example cell 1 ∈ C2 and the input set I1 formed by the cells in C2 that
have directed edges to cell 1 and choose one cell jm ∈ I1 for an edge of type Bj. Consider the following
partial derivatives:

α1 = (∂f/∂x1)(p,p), α2 = (∂g/∂y1)(p,p),

βi = (∂f/∂xil)(p,p), τj = (∂g/∂yjm)(p,p),

γ1 = (∂f/∂y1)(p,p), γ2 = (∂g/∂x1)(p,p) .

Recall that Ai denotes an adjacency matrix of one type of couplings for the network N1 and Bj

an adjacency matrix of one type of couplings for the network N2. Thus, α1, α2 are the linearized
internal dynamics, βi, τj are the linearized couplings strengths for the couplings in the networks N1,
N2, respectively, and γ1, γ2 are the linearized coupling strength for the couplings between the two
networks. We have then that

(∂F )(p,p) = α1

(
Idr1 0r1,r2

0r2,r1 0r2,r2

)
+

p1∑
i=1

βi

(
Ai 0r1,r2

0r2,r1 0r2,r2

)
+

α2

(
0r1,r1 0r1,r2

0r2,r1 Idr2

)
+

p2∑
j=1

τj

(
0r1,r1 0r1,r2

0r2,r1 Bj

)
+

γ1

(
0r1,r1 1r1,r2

0r2,r1 0r2,r2

)
+ γ2

(
0r1,r1 0r1,r2

1r2,r1 0r2,r2

)
.

Example 2.8 For the join networkN 1∗N 2 in Figure 4, the linearization of the vector field determined
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by equations (2.4) at (p,p) ∈ {(x1, x1, x1, y1, y1, y1) : x1, y1 ∈ R} is:

(∂F )(p,p) =

(
α1Id3 + β1A1 + β2A2 03,3

03,3 03,3

)

+

(
03,3 03,3
03,3 α2Id2 + τ1A1 + τ2A2

)

+ γ1

(
03,3 13,3
03,3 03,3

)
+ γ2

(
03,3 03,3
13,3 03,3

)
.

Considering f(x, y, z, t, w, l), g(x, y, z, t, w, l) in equations (2.4), we have that

α1 = (∂f/∂x)(p,p), β1 = (∂f/∂y)(p,p), β2 = (∂f/∂z)(p,p), γ1 = (∂f/∂t)(p,p),

α2 = (∂g/∂x)(p,p), τ1 = (∂g/∂y)(p,p), τ2 = (∂g/∂z)(p,p), γ2 = (∂g/∂t)(p,p) .

3

3 Product heteroclinic networks given by the join of net-

works

As before, we take two homogeneous networks, N1 and N2, where N1 has r1 cells and N2 has r2 cells
and consider the join network N1 ∗N2 with r = r1 + r2 cells. Let us assume that the internal dynamics
of cells in N1 and N2 is one-dimensional and so the state space of N1 ∗ N2 is the cartesian product of
the phase spaces of the two networks: Rr1 ×Rr2 .

Our aim is to construct admissible coupled cell systems forN1∗N2 supporting robust simple product
heteroclinic dynamics from the hypothesis that the admissible equations for N1 and N2 support robust
simple heteroclinic networks (cycles).

We impose two conditions:

(A) If p ∈ ∆1 and p ∈ ∆2 are equilibria involved in such heteroclinic networks (cycles) for the
admissible equations for N1 and N2, respectively, then consider the hyperplanes contained in the
synchrony subspaces P1 ×∆2 and ∆1 × P2, respectively,

Hp = {(x,y) : y = p} and Hp = {(x,y) : x = p},

and assume that these hyperplanes are flow-invariant for the join equations (2.3).

(B) The dynamics of equations (2.3) restricted to Hp (Hp) is conjugated to the dynamics associated
with the network N1 (N2).

Note that condition (A) implies that (p,p) ∈ ∆1 × ∆2 is an equilibrium for the join equations
(2.3).

Theorem 3.1 Consider two homogeneous networks N 1 and N 2 with dynamics supporting a robust
simple heteroclinic network (cycle) involving the hyperbolic saddle equilibria pi ∈ ∆1, for i = 1, . . . , n1,
and pj ∈ ∆2, for j = 1, . . . , n2, respectively. Assume conditions (A) and (B).
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Then, in the restriction to the invariant manifold ∆1 × P2 ∪ P1 × ∆2, the dynamics of N 1 ∗ N 2

supports a robust simple heteroclinic network

H =

(
n1⋃
i=1

Hi

)⋃(
n2⋃
j=1

Hj

)

involving the equilibria (pi,pj). Here, for each i = 1, . . . , n1, Hi denotes the heteroclinic network
(cycle), contained in the hyperplane Hpi

, involving the equilibria (pi,pj) for j = 1, . . . , n2. Also,
for each j = 1, . . . , n2, Hj denotes the heteroclinic network (cycle), contained in the hyperplane Hpj

,
involving the equilibria (pi,pj) for i = 1, . . . , n1.

Proof The existence of the robust simple heteroclinic networks (cycles) Hi in Hpi
and Hj in Hpj

follows from conditions (A) and (B). Note that the union of these networks (cycles) is a connected
invariant set as every intersection of Hi with Hj is nonempty (consists of a unique equilibrium) and
so H is a robust simple heteroclinic network.

Note that the equilibria and heteroclinic connections of H are contained in one-dimensional and
two-dimensional synchrony subspaces, respectively.

Na verdade não são bem espaços de sincronia mas sim dados pelo produto de um equiĺıbrio por
um subespaço de sincronia.

Note that the equilibria and heteroclinic connections of H are contained in one-dimensional and
two-dimensional invariant subspaces, respectively, given by the product of an hyperbolic equilibria by
one synchrony subspace.

Não sei se está formalmente correto. Senão temos que dizer que estão no produto de dois subespaços
de sincronia mas de dim 2 e 3.

Note that the equilibria and heteroclinic connections of H are contained in two-dimensional and
three-dimensional synchrony subspaces, respectively.

Since small perturbations of equations (2.3) that preserve the join network structure preserve the
synchrony subspaces, it follows the robustness of the heteroclinic network H. 2

Consider now equations (2.3), where f, g take the following form:

f
(
xi;xIi ; yC2

)
= f1(xi;xIi)

(
1 + h1

(
yC2

))
,

g
(
yj; yIj ;xC1

)
= f2(yj; yIj)

(
1 + h2

(
xC1

))
,

(3.5)

with f1, f2, h1, h2 smooth functions. Thus equations (2.3) take the form

ẋi = f1(xi;xIi)
(

1 + h1

(
yC2

))
ẏj = f2(yj; yIj)

(
1 + h2

(
xC1

)) . (3.6)

Assuming that f1(p) = 0 and f2(p) = 0, it follows that (p,p) ∈ ∆1 × ∆2 is an equilibrium of
equations (3.6). Moreover, taking J1 to be the Jacobian at p of equations for N1 with f1 and J2 the
Jacobian at p of equations for N2 with f2, the Jacobian for the system (3.6) at (p,p) has the following
form:

diag ((1 + h1(p))J1, (1 + h2(p))J2) .
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Lemma 3.2 Consider the join coupled cell system (3.6). Assume f1(p) = 0 and f2(p) = 0, where
p ∈ ∆1 and p ∈ ∆2. Take J1 to be the Jacobian at p of equations for N1 with f1 and J2 the Jacobian
at p of equations for N2 with f2. Assume that

1 + h1(p) > 0 and 1 + h2(p) > 0 . (3.7)

Then:
(i) The equilibrium (p,p) ∈ ∆1 ×∆2 of (3.6) has stability determined by (the signs of the eigenvalues
of) J1 and J2.
(ii) The hyperplanes Hp and Hp are flow-invariant and contained in the synchrony subspaces P1×∆2

and ∆1 × P2, respectively.
(iii) The dynamics of equations (3.6) restricted to Hp (Hp) is conjugated to the dynamics associated
with the network N1 (N2).

Proof Statements (i-ii) follow trivially from the discussion above. For (iii), note that the restriction
of (3.6) to P1×∆2 is a coupled cell system associated with a quotient network with r1 + 1 cells . More
precisely, this quotient network admitts N1 as a subnetwork where all cells of N1 receive the same
input from the cell representing the cells of N2 in that quotient. This cell can be seen as a controller.
In the case that the controller cell is at the equilibrium state p then the dynamics of the restricted
system,

ẋi = f1(xi;xIi) (1 + h1 (p))
ẏj = 0

, (3.8)

is conjugated to the dynamics associated with the network N1, as we are assuming 1 +h1(p) > 0. The
same holds considering ∆1×P2, the network N2, the equilibrium p and the hyperplane Hp, assuming
the condition 1 + h2(p) > 0.

Corollary 3.3 Under the conditions of Lemma 3.2, assuming the dynamics of N 1 and N 2 supports
a robust simple heteroclinic network (cycle) involving the hyperbolic saddle equilibria pi ∈ ∆1, for
i = 1, . . . , n1, and pj ∈ ∆2, for j = 1, . . . , n2, respectively, the result in Theorem 3.1 applies to
equations (3.6). That is, in the restriction to the invariant manifold ∆1×P2 ∪P1×∆2, the dynamics
of N 1 ∗ N 2 supports a robust simple product heteroclinic network as described in Theorem 3.1.

4 Example

In this section, we consider the join network N 1∗N 2 in Figure 4 and the associated admissible coupled
cell systems in equations (4.9) below. We consider individual cell dynamics f1 and f2 associated to
N 1 and N 2, respectively, such that the corresponding admissible vector fields support the existence
of robust simple heteroclinic cycles. Note that we are assuming no symmetry for f1 and f2 and that
the flow invariant subspaces guaranteeing the existence and robustness of the heteroclinic cycles are
the synchrony subspaces determined only by the corresponding associated network structures.
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Join equations

Considering the equations (2.1) for the coupled cell systems admissible by the network structure of
both network N 1 and N 2, we take admissible equations for N 1 ∗ N 2 in the following way:

ẋ1 = f1(x1;x2, x3) [1 + h1(y1, y2, y3)]
ẋ2 = f1(x2;x1, x3) [1 + h1(y1, y2, y3)]
ẋ3 = f1(x3;x2, x1) [1 + h1(y1, y2, y3)]
ẏ1 = f2(y1; y2, y3) [1 + h2(x1, x2, x3)]
ẏ2 = f2(y2; y1, y3) [1 + h2(x1, x2, x3)]
ẏ3 = f2(y3; y2, y1) [1 + h2(x1, x2, x3)]

(4.9)

with h1, h2 : R3 → R smooth functions and f1, f2 admissible functions for the networks N 1 and N 2,
respectively.

Assumptions on equilibria and stability

For p, q, p, q ∈ R denote by p = (p, p, p) ∈ R3, q = (q, q, q) ∈ R3, p = (p, p, p) ∈ R3 and q = (q, q, q) ∈
R3. We will assume that:
(i) The points p and q are two non-zero distinct hyperbolic saddle equilibria with 1-dimensional
unstable manifolds for the equations (2.1) with f = f1.
(ii)The points p and q, distinct from p and q, are two non-zero distinct hyperbolic saddle equilibria
with 1-dimensional unstable manifolds for the equations (2.1) with f = f2.
In fact, we have the following stability assumptions:

f1(p) = f1(q) = 0, W u(p) ⊂ {x : x1 = x3}, W u(q) ⊂ {x : x1 = x2},

f2(p) = f2(q) = 0, W u(p) ⊂ {y : y1 = y3}, W u(q) ⊂ {y : y1 = y2}.

Using the notation of Example 2.4, for equilibria of equations (2.1) with f = f1, considering
f1(x, y, z), denote:

α1 = ∂f1
∂x

(p), β1 = ∂f1
∂y

(p), γ1 = ∂f1
∂z

(p),

α2 = ∂f1
∂x

(q), β2 = ∂f1
∂y

(q), γ2 = ∂f1
∂z

(q).

Similarly, using the notation of Example 2.4, for equilibria of equations (2.1) with f = f2, considering
f2(x, y, z), denote:

α3 = ∂f2
∂x

(p), β3 = ∂f2
∂y

(p), γ3 = ∂f2
∂z

(p),

α4 = ∂f2
∂x

(q), β4 = ∂f2
∂y

(q), γ4 = ∂f2
∂z

(q).

Recalling Example 2.4, we have that the eigenvalues of J(p) for (2.1) with f = f1 are

µ1
1 = α1 + β1 + γ1, µ1

2 = α1 − β1, µ1
3 = α1 − γ1

and are associated with the following eigenlines

E1 : x1 = x2 = x3, E3 : x2 = −(1 + γβ−1)x1, x1 = x3, and E2 : x3 = −(1 + βγ−1)x1, x1 = x2.
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We are assuming that W u(p) ⊂ {x : x1 = x3}, thus we suppose that µ1
2 = α1 − β1 > 0. Similarly, as

we are assuming that W u(q) ⊂ {x : x1 = x2}, we suppose that µ2
3 = α2 − γ2 > 0. Using the notation

of Table 1, note that E1, E2 are contained in the synchrony subspace S2
1 and E1, E3 are contained in

the synchrony subspace S3
1 .

Assume so that:
(i) Eigenvalues of J(p) for (2.1) with f = f1:

µ1
1 = α1 + β1 + γ1 < 0, µ1

2 = α1 − β1 > 0, µ1
3 = α1 − γ1 < 0;

(ii) Eigenvalues of J(q) for (2.1) with f = f1:

µ2
1 = α2 + β2 + γ2 < 0, µ2

2 = α2 − β2 < 0, µ2
3 = α2 − γ2 > 0.

Moreover, assume that:
(iii) Eigenvalues of J(p) for (2.1) with f = f2:

µ3
1 = α3 + β3 + γ3 < 0, µ3

2 = α3 − β3 > 0, µ3
3 = α3 − γ3 < 0;

(iv) Eigenvalues of J(q) for (2.1)with f = f2:

µ4
1 = α4 + β4 + γ4 < 0, µ4

2 = α4 − β4 < 0, µ4
3 = α4 − γ4 > 0.

Heteroclinic cycles for the N 1 and N 2 admissible equations

As shown in [2], there is cell dynamics f1 for the cells in N 1 such that there are admissible vector
fields supporting a robust attracting simple heteroclinic cycle involving p and q. Similarly, there are
admissible vector fields for N 2 that support a robust attracting simple heteroclinic cycle involving p
and q. Recall the discussion at Section 2.2.

Consider the three-dimensional invariant hyperplanes

Hp = {(x,y) : y1 = y2 = y3 = p} and Hq = {(x,y) : y1 = y2 = y3 = q}

contained in P1 ×∆2,

Hp = {(x,y) : x1 = x2 = x3 = p} and Hq = {(x,y) : x1 = x2 = x3 = q}

contained in ∆1 × P2, and the following conditions:

1 + h1(p) > 0, 1 + h1(q) > 0, 1 + h2(p) > 0, 1 + h2(q) > 0 . (4.10)

Lemma 4.1 Assume conditions (4.10). There are admissible equations (4.9) such that in the restric-
tion to the union of the synchrony subspaces P1 ×∆2 and ∆1 × P2, the network N 1 ∗ N 2 supports the
existence of the following robust attracting simple heteroclinic cycles:

(a) H1, contained in Hp, involving the equilibria (p,p) and (q,p);
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(b) H2, contained in Hq, involving the equilibria (p,q) and (q,q);

(c) H3, contained in Hp, involving the equilibria (p,p) and (p,q);

(d) H4, contained in Hq, involving the equilibria (q,p) and (q,q).

The heteroclinic cycles H1,H2 are attracting in P1×∆2 and the heteroclinic cycles H3,H4 are attracting
in ∆1 × P2.

Proof We argue the existence of the heteroclinic cycle H1. The existence of the other heteroclinic
cycles can be shown analogously.

The restriction of the join equations (4.9) to the four-dimensional synchrony subspace P1 ×∆2 is
given by:

ẋ1 = f1(x1;x2, x3) [1 + h1(y1; y1, y1)]
ẋ2 = f1(x2;x1, x3) [1 + h1(y1; y1, y1)]
ẋ3 = f1(x3;x2, x1) [1 + h1(y1; y1, y1)]
ẏ1 = f2(y1; y1, y1) [1 + h2(x1, x2, x3)]

. (4.11)

The associated quotient network is pictured in Figure 5. We recall Lemma 3.2 (iii) that, in the
particular situation where the individual dynamics of the controller cell is at the equilibrium state p,
then the dynamics of the restricted systems is conjugated to the dynamics associated with the network
N 1, and we can conclude the existence of a robust simple heteroclinic cycle. In fact, the restriction of
equations (4.11) to the three-dimensional invariant hyperplane Hp take the form

ẋ1 = f1(x1;x2, x3)
[
1 + h1(p, p, p)

]
ẋ2 = f1(x2;x1, x3)

[
1 + h1(p, p, p)

]
ẋ3 = f1(x3;x2, x1)

[
1 + h1(p, p, p)

]
ẏ1 = 0

.

Assuming conditions (4.10) and taking into account Lemma 3.2 (i), we have that the stability of the
equilibria (p,p) and (q,p), in the restriction to the hyperplane Hp is determined by the stability of
p and q, respectively. Using the same arguments for the local and global construction of heteroclinic
orbits presented in Sections 5.2 and 5.3 of [2], that allow to conclude the support by the dynamics of
N 1 of a robust attracting simple heteroclinic cycle involving the two equilibria p and q in ∆1 with
heteroclinic connections in S2

1 and S3
1 , we can conclude the existence of cell dynamics such that there

exists a robust attracting simple heteroclinic cycle H1 in the invariant hyperplane Hp involving the
two equilibria (p,p) and (q,p)

in (∆1 ×∆2) ∩Hp, and with heteroclinic connections in (S2
1 ×∆2) ∩Hp and (S3

1 ×∆2) ∩Hp.
in ∆1 × {p} and with heteroclinic connections in S2

1 × {p} and S3
1 × {p}.

2

Lemma 4.2 Assuming conditions

1 + h1(y) > 0, 1 + h2(x) > 0, ∀(x,y) ∈ P1 × P2, (4.12)

in the restriction of the join equations (4.9) to the synchrony subspace P1×∆2 (∆1×P2) the invariant
hyperplanes Hp and Hq (Hp and Hq) are attractors.

15



2

3

1

1

Figure 5: Quotient network of the join network N 1 ∗ N 2 by the four-dimensional synchrony subspace
P1 ×∆2. Here, P1 is the total phase space for N 1 and ∆2 is the full synchrony subspace for N 2.

Proof We present the proof for the hyperplane Hp. The proof for the other hyperplanes is analogous.
Consider equations (4.11) that correspond to the restriction of the join equations (4.9) to the synchrony
subspace P1 × ∆2. The result follows from the fact that for every point in Hp the eigenvalue of the
Jacobian matrix of equations (4.11) in the direction transversal to Hp is negative. In fact, that
eigenvalue is given by (α3 + β3 + γ3)(1 + h2(x)) which is negative taking the assumptions. Note that
the last row of the Jacobian matrix of equations (4.11) at a point of the form (x,p) has all the entries
equal to zero with the exception of the entry in the last column which is (α3 + β3 + γ3)(1 + h2(x)).

2
From the conclusions above we get then the following result.

Theorem 4.3 Assuming conditions (4.10), in the restriction to the invariant manifold ∆1 × P2 ∪
P1 ×∆2, there are admissible join equations (4.9) for N 1 ∗N 2 supporting a robust simple heteroclinic
network H = ∪4i=1Hi involving the equilibria (p,p), (p,q), (q,p) and (q,q). The heteroclinic network
H is robust for small perturbations that preserve the join network structure. Moreover, assuming
conditions (4.12), there are admissible equations of the form (4.9) such that the heteroclinic network
H is attracting in ∆1 × P2 ∪ P1 ×∆2. See Figure 6 for a schematic representation of the heteroclinic
network H.

Proof The existence of the robust simple heteroclinic network H follows from Corollary 3.3 and
the analysis above of the dynamics associated to the join network N 1 ∗ N 2 in the restriction to the
synchrony subspaces P1 ×∆2 and ∆1 × P2.

From Lemma 4.1, we have that there are admissible vector fields f1 such that the heteroclinic cycles
H1,H2 are attracting in P1 × ∆2 and there are admissible vector fields f2 such that the heteroclinic
cycles H3,H4 are attracting in ∆1 × P2.

From Lemma 4.1, we have that there are admissible vector fields f1 such that the heteroclinic cycles
H1,H2 are attracting in Hp and Hq, respectively, and there are admissible vector fields f2 such that
the heteroclinic cycles H3,H4 are attracting in Hp and Hq, respectively.

From Lemma 4.2, we have that the invariant hyperplanes Hp and Hq are attractors in P1×∆2 and
∆1 × P2, respectively.

From Lemma 4.2, we have that the invariant hyperplanes Hp and Hq are attractors in P1×∆2 and
the invariant hyperplanes Hp and Hq are attractors in ∆1 × P2.

We can conclude then that, there are admissible equations of the form (4.9) such that the hetero-
clinic network H is attracting in ∆1 × P2 ∪ P1 ×∆2.

2

16



(p,p)

(q,q) (p,q)

(q,p)

Figure 6: Schematic representation of the robust simple heteroclinic network H supported by the join
network N 1 ∗ N 2 equations (4.9).

Remark 4.4 (i) The equilibria in the heteroclinic network H are partially synchronous equilibria.
(ii) The manifold ∆1×P2∪P1×∆2 is not a (synchrony) subspace. (iii) Since the unstable manifolds of
all the four equilibria in the heteroclinic network H are two-dimensional it is expected that H is a sub-
network of a bigger network that also contains heteroclinic connections in P1×P2\(P1 ×∆2 ∪∆1 × P2).
For example, on the assumptions that 1 + h1(y) 6= 0, 1 + h2(x) 6= 0 for (x,y) ∈ P1 × P2, there are no
more equilibria beyond those obtained by the product of the equilibria in N 1 and N 2. It is expected
that there are heteroclinic connections from (p,p) to (q,q) in S3

1×S3
2 , from (p,q) to (q,p) in S3

1×S2
2 ,

from (q,p) to (p,q) in S2
1 × S3

2 and from (q,q) to (p,p) in S2
1 × S2

2 . Thus, in the total phase space
P1 × P2, the network H is not an attractor. 3

5 Conclusions

In this work we have described a method to combine, via the join operation, two networks N 1 and
N 2, with dynamics realising a robust simple heteroclinic network (cycle), in order to get a coupled
cell network with dynamics supporting a robust simple heteroclinic network H given by the product
of the two networks (cycles).

An observation that can be inferred from our construction is that the existence of the heteroclinic
network H occurs even for the particular cases where one, or both, coupling functions is the zero
function. That is, taking the join special cases, either by using the join of two networks just as its
disjoint union or by taking the join of two networks where there are only join arrows from the cells of
one network to the cells of the other network. The same key points imply the aforementioned existence
of product heteroclinic networks for the join.

We have assumed no symmetry for the component networks of the join as we aimed to construct
heteroclinic networks not forced by symmetry but only by the network structure. It easily follows that
it is also possible to get a product heteroclinic network by doing the join of two symmetric coupled cell
systems with heteroclinic cycles (or networks) contained in the union of fixed point subspaces, instead
of the union of synchrony subspaces.

The procedure presented here can be applied iteratively. For example, if we consider a network
N 3 with the same network structure as N 1 and N 2, and do the join of N 1 ∗ N 2 with N 3 then
there are coupled cell systems associated to the join network (N 1 ∗ N 2) ∗ N 3 supporting a robust
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simple heteroclinic network involving eight partially synchronous equilibria, given by the product of
the heteroclinic network H with the heteroclinic cycle supported by the dynamics associated to N 3.
Moreover, the method used generalizes to other coupled cell network structures realising heteroclinic
cycles or networks.

A natural extension of this work is to consider the construction of complex heteroclinic networks
based on simpler heteroclinic networks (cycles) using other network graph operations as, for example,
the product operation.
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